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Abstract: It has been shown that the number of subapertures and the amount of overlap has a 

significant influence on the stitching accuracy. In this paper, a non-overlap subaperture interferometric 

testing method (NOSAI) is proposed to inspect large optical components. This method would greatly 

reduce the number of subapertures and the influence of environmental interference while maintaining 

the accuracy of reconstruction. A general subaperture distribution pattern of NOSAI is also proposed 

for the large rectangle surface. The square Zernike polynomial is employed to fit such wavefront. The 

effect of the minimum fitting terms on the accuracy of NOSAI and the sensitivities of NOSAI to 

subaperture’s alignment error, power systematic error, and random noise are discussed. Experimental 

results validate the feasibility and accuracy of the proposed NOSAI in comparison with wavefront 

obtained by a large aperture interferometer and stitching surface by multi-aperture overlap-scanning 

technique (MAOST).  

Keywords: surface reconstruction; non-overlap subaperture stitching; subaperture distribution pattern; 

polynomial fitting; square Zernike polynomial;  

 

1. Introduction  

The accuracy, reproducibility and efficiency of the measurement techniques and systems need to be 

improved with increasing demands from the optical manufacturing. Subaperture stitching 

interferometry plays an important role in large aperture and large NA surface metrology, including 

planar, spherical, aspherical and even free-form surfaces, because it can extend the lateral measurement 

ranges while enhancing the lateral and vertical resolutions.  

In the early models of stitching interferometry, there was no overlap between subapertures
[1]

. In order 

to improve the stitching accuracy and achieve high spatial resolutions, multi-aperture overlap-scanning 

technique (MAOST) was proposed for high precision large aperture measurement
[2,3]

. With MAOST, a 

large optical surface is tested by an overlap-scanning sequence with a small aperture interferometer and 

then the surface of the full aperture is reconstructed through the consistency of data in overlapping 

regions. One reconstruction approach was to simultaneously
 
make the sum of the squared differences 

for all overlapping data minimum to reduce the accumulation error of stitching
 [4]

. In order to improve 

the accuracy, compensation using a reference mirror 
[5]

 or an iterative algorithm 
[6]

 have been proposed. 

These approaches have been used for large area measurement of planar
[7]

, cylindrical
[8]

, spherical
[9]

 and 

aspherical
[10]

 surfaces. The optimal overlap area for these methods has been shown to be 30% of the 

subaperture area
[11]

. Thus the number of subapertures will increase with the size of optics. For example, 

for a 400×800 mm optical flat, 66 subapertures at 30% overlapping ratio are needed if a 100 mm 

interferometer is used. Furthermore to ensure accuracy, the environment and the entire measurement 

system must be stable during scanning of these 66 subapertures making it difficult to be used in a 

workshop environment
 [12]

. Hence the need arises for fewer subapertures for reduced environment 

uncertainty and reduced errors in the stitching process.  

Two methods namely the Kwon-Thunen and Simultaneous fit
 [13,14] 

reconstruct the full aperture using 



Zernike polynomial with non-overlapping subapertures but with some differences. In the 

Kwon-Thunen method, the subaperture wavefront and full aperture wavefront are both fitted by a 

Zernike polynomial and the polynomial coefficients are solved by minimizing their difference. This 

method is more sensitive to the alignment errors of the subapertures. In the Simultaneous fit approach, 

the first three Zernike terms, namely piston, x-tilt and y-tilt, of each subaperture are fitted 

independently, which can avoid their impact on the fitting of higher-order terms and with better 

computational efficiency. Though both methods suffer from the problem of describing some 

wavefronts with localized irregularities with the Zernike polynomials, they have sufficient precision for 

testing relative smooth surfaces, such as planar surfaces. The greatest advantage of this kind of method 

is the reduction in the number of subapertures. Using the same optical flat with the size of 400×800 

mm as an example, the Kwon-Thunen or Simultaneous fit method, needs to scan about 32 subapertures 

saving more than 50% scanning time. Furthermore, for fewer scanning subapertures, the start-up and 

stop times are also reduced greatly, thus reducing mechanical errors.  

This paper will test the rectangular optical flats with large scales on the machine tool table in workshop 

by non-overlap subaperture interferometric testing method (NOSAI). It introduces the principle of 

NOSAI and gives the revised Zernike polynomial suitable for rectangular shape. The effect of the 

minimum number of fitting terms on the accuracy of NOSAI and the sensitivities of NOSAI to 

subaperture alignment error, power systematic error, high frequency noise, higher-order terms of fitted 

surface and subapertures distribution are discussed. The experimental system is established with a 

dynamic interferometer as the measuring instrument. Experiments verified the feasibility and accuracy 

of NOSAI. In Section 2, the basic principle of NOSAI and square Zernike polynomials is described. In 

Section 3, a numerical simulation is given to test the validity and the sensitivities of the method. In 

Section 4, experimental verification of NOSAI is shown. 

2. Principle of NOSAI 

Assuming that the translation between subapertures is rigid and excluding geometrical errors from the 

mechanical platform, the measured wavefront of subapertures should be consistent with the full 

aperture wavefront in theory if the intererometrer is correctly calibrated. According to this principle, 

the fitting coefficients of piston, tip and tilt terms of subapertures and the fitting coefficients of the full 

aperture wavefront can be solved simultaneously. NOSAI does not involve positional relationships 

between subapertures, which mean that an arbitrary distribution of the subapertures is acceptable, even 

without overlap.  

The wavefront of the full aperture surface can be expressed as,  

𝑊(𝑥, 𝑦) = ∑ 𝑚𝑖𝑍𝑖(𝑥, 𝑦)𝑁
𝑖=4                           (1) 

where 𝑊(𝑥, 𝑦) is the fitted wavefront of the full aperture and (𝑥, 𝑦) is its coordinate, 𝑍𝑖(𝑥, 𝑦) is the 

ith fitting polynomial, 𝑚𝑖  is its coefficient, N is the total number of polynomial terms. The 

coefficients of the first three terms (piston, tip and tilt) are not related to the surface shape and set to 

zero in Eq. (1). 

If there is only rigid translation between measured subaperture and full aperture wavefronts, then the 

residue error R can be calculated as  

𝑅 = ∑ ,(𝑤𝑘(𝑥, 𝑦) + 𝑛𝑘1 + 𝑛𝑘2𝑥 + 𝑛𝑘3𝑦 − ∑ 𝑚𝑖𝑍𝑖(𝑥, 𝑦)𝑁
𝑖=4 )𝑄𝑘(𝑥, 𝑦)-2𝑀

𝑘=1        (2) 

where M is the total number of subapertures, 𝑤𝑘(𝑥, 𝑦)  is the measured wavefront of the k
th
 

subaperture, 𝑄𝑘(𝑥, 𝑦) is the corresponding weight value of the k
th 

subaperture at point (𝑥, 𝑦) to 



separate the useful sampling points (𝑄𝑘(𝑥, 𝑦) = 1) and the useless sampling points(𝑄𝑘(𝑥, 𝑦) = 0). The 

alignment coefficients of k
th

 subaperture relative to the full aperture is 𝑛𝑘 = (𝑛𝑘1, 𝑛𝑘2, 𝑛𝑘3)T  in 

𝑋𝑘 = (1, 𝑥𝑘 , 𝑦𝑘).   

The fitting coefficients of all subapertures are denoted as 𝑆𝑛 = (𝑛1, 𝑛2, ⋯ , 𝑛𝑀)T, and the subaperture  

coordinates are 𝑋 = (𝑋1, 𝑋2, ⋯ , 𝑋𝑀) , the fitting coefficients of the full aperture are  

𝑆𝑚 = (𝑚4, 𝑚5, ⋯ , 𝑚𝑁)T , the Zernike polynomial terms 𝑍 = (𝑍4, 𝑍5, ⋯ , 𝑍𝑁)，  the subaperture 

wavefronts 𝑊 = (𝑤1 , 𝑤2, ⋯ , 𝑤𝑀)  with their weights 𝑄 = (𝑄1 , 𝑄2, ⋯ , 𝑄𝑀) , then Eq.(2) can be 

rewritten as 

𝑅 = ∑ 𝑄(𝑊 − 𝐻𝑉)2𝑀
𝑘=1                             (3) 

where 𝐻 = ,𝑍 𝑋-, 𝑉 = ,𝑆𝑚  𝑆𝑛-𝑇.  

By minimizing 𝑅, the least squares estimate of V is,  

�̂� = (𝐻𝑇𝑄𝐻)−1𝐻𝑇𝑄𝑊                             (4) 

Thus, the fitting coefficients of full aperture wavefront and alignment coefficients of each subaperture 

can be obtained simultaneously through a global coordinate synchronization. Thus the impact of 

accumulation error and local measurement errors can be reduced.  

3. The measurement scheme for rectangular optical flats 

For the rectangular plane surface, we attempt to program a general measurement scheme with the 

appropriate polynomial and the optimized subaperture distribution. This is more valuable for further 

application.  

3.1. Square Zernike polynomial 

Zernike polynomials are often used to express the wavefronts since the polynomial terms with the same 

forms as the aberrations observed in optical testing. It should be noted that the Zernike polynomials are 

orthogonal only over the unit circle. It is convenient to represent a square or rectangular aperture with 

2D set of Legendre polynomials for its orthogonality, but it does not include the useful 

rotationally-symmetric terms, in particular, ―power‖ term, i.e. (x
2
+y

2
)

[15]
. In ISO/TR14999, orthogonal 

square Zernike polynomials are built, which have the same forms as the corresponding classical 

Zernike polynomials but with different coefficients
 [16]

. Due to the complex interaction between the 

square area of definition and the rotationally symmetrical basis of these functions, there is no simple 

formula for the polynomial coefficients. They can only be described term by term using the following 

expression， 

∑*𝑃𝑛(𝑟) cos(𝑚𝜃)+ and ∑*𝑄𝑛(𝑟) sin(𝑚𝜃)+                  (5) 

where (r, θ) are polar coordinates, 𝑟 = √𝑥2 + 𝑦2. The range of x and y is [-√2,√2], which means half 

diagonal of the area should be equal to one. 𝑃𝑛(𝑟) and 𝑄𝑛(𝑟) denote polynomials in the variable ―r‖.  

and the order of the function is n + m，where n, m are non-negative integers.  

The first 11 square Zernike polynomials based on polar symmetry are given in Table 1. Theoretically, 

the fitting accuracy can achieve 10
-15

 by using appropriate terms.  

Table 1 Square Zernike Polynomials [16] 

Term Order(n+m) n m Polynomial 

Z1 0 0 0 1 

Z2 2 1 1 𝑟cos𝜃 

Z3 2 1 1 𝑟sin𝜃 



Z4 2 2 0 2𝑟2 − 2 3⁄  

Z5 4 2 2 𝑟2 cos 2𝜃 

Z6 4 2 2 𝑟2 sin 2𝜃 

Z7 4 3 1 𝑟(15𝑟2 − 7) cos 𝜃 5⁄  

Z8 4 3 1 𝑟(15𝑟2 − 7) sin 𝜃 5⁄  

Z9 4 4 0 2(315𝑟4 − 240𝑟2 + 31)/105 

Z10 6 3 3 𝑟3 cos 3𝜃 + 3𝑟(13𝑟2 − 4) cos 𝜃 /31 

Z11 6 3 3 𝑟3 sin 3𝜃 + 3𝑟(4 − 13𝑟2) sin 𝜃 /31 

3.2. Compare with normal Zernike polynomial 

The most common fitting principle for the rectangular surface is using polynomials which are derived 

from Zernike polynomials and made orthogonal over corresponding apertures. This change should be 

fully transparent to the fitting process. A rectangular wavefront is simulated as Eq. (6) and fitted using 

two different polynomials, one is the orthogonalized Zernike polynomials, the other is the square 

Zernike polynomials. RMS of the residual surface error is used to illustrate the fitting accuracy. It could 

get 10
-4

 when using the orthogonalized Zernike polynomials (Fig.1 (a)) and get 10
-14

 when using the 

square Zernike polynomials (Fig.1 (b)). Both of these two polynomials could get well precision in the 

simulation with no error introduced. The square Zernike polynomial is a bit better than the 

orthogonalized Zernike polynomials and more reasonable in fitting rectangle surface.  

𝑊 = 0.3𝑥2 + 0.2𝑥2𝑦2 − 0.3𝑦2(−1 ≤ 𝑥, 𝑦 ≤ 1)                 (6) 

 

                  (a)                                   (b)  

Fig.1 The residual error of fitting surface using (a) the orthogonalized Zernike polynomials; (b) the square 

Zernike polynomials 

3.3. Effect of the minimum fitting terms  

The simulated full aperture surface in Cartesian coordinate with the wavelength λ is expressed as 

follows  

𝑊0 = 0.3𝑥2 + 0.2𝑥2𝑦𝑎 − 0.3𝑦2(−1 ≤ 𝑥, 𝑦 ≤ 1)                 (7) 

where a can be changed to get different surface order.   

Firstly, simulate a surface with order 3 by setting a = 1, and then fit the simulated surface with different 

Zernike polynomials by changing the minimum fitting terms, with same sampling points in each 

calculation. The residual RMS of the fitted and original surface is shown in Fig.2 (a). Similarly, by 

simulating a surface with order 4 (a = 2), and doing the same calculation gives Fig.2 (b). From these 

two figures, it can be seen that the fitting error is decreased with increasing the number of Zernike 

terms. When the highest fitting term reaches a certain number, the residual RMS will quickly converge 

to the desired accuracy of 10
-15

. Changing a to any other value gives the same conclusion. It shows that 



the minimum fitting terms O and the highest order of the fitted surface in Cartesian coordinate 𝛿 

satisfy the following relationship: 

𝑂 = 𝛿2 + 2                                (8) 

For example, when a = 1, the highest order of surface 𝛿 is 3 in W0, so the minimum fitting terms is 11 

according to Eq.(8). So choosing 11 as the highest fitting term is sufficient and using higher fitting 

terms will not improve accuracy any more. In practice, a priori knowledge about tested surface is 

favorable for the polynomial order choice. And it is an effective way for inhibiting the impact of higher 

order terms on the reconstruction accuracy.  

The sampling point does not require much. As shown in Fig.2, the trends of accuracy with 100, 600 and 

1000 points are similar. Therefore, reducing the number of points in a certain range does not reduce 

accuracy, but improves computational efficiency.  

 

                  (a)                                   (b)  

Fig.2 Residual error vs. polynomial terms and sampling points: (a) 3rd order surface when a=1; (b) 4th order 

surface when a=2 

3.4. Subapertures’ amounts and distribution  

A full aperture rectangular surface W1 is simulated with square Zernike polynomials, which has 200×

300 sampling points, PV 0.625 λ and RMS 0.137 λ.  

𝑊1 = 0.1𝑍4 − 0.2𝑍5 + 0.1𝑍6                            (9) 

where Z4, Z5, Z6 are shown in Table 1. To analyze the influence of the subaperture distribution when 

using NOSAI, the simulated wavefront W1 is divided into fifteen overlapping subapertures, as shown in 

Fig.3, and different combinations of subapertures are selected as shown in Table 2. In these 

compositions, some have normal overlap between the adjacent subapertures as MAOST, some only 

have part overlap and some have no overlap. Random alignment errors are added in each subaperture 

before NOSAI calculation. Anyone subaperture could reconstruct the entire wavefront without any 

other errors introduced in simulation, and the accuracy of reconstruction could be 10
-14

. But the error is 

unavoidable in the actual measurement, so the amount and distribution of the subapertures should be 

analyzed. We added a Gaussian type random noise N (0, 0.01) to each simulated subaperture, and 

reconstructed the wavefront with different subapertures. The PV and RMS of the residual surfaces are 

listed in Table 2. It can be found that the accuracy of reconstruction is decreased with reducing the 

number of subapertures. The subaperture distribution as Fig.4 is considered as the optimal scheme of 

NOSAI for the rectangle wavefront. It can be expanded as the dotted line pattern with the increase of 

the tested surface size. As this pattern, there is no overlap between each subapertures and the amount 

could be decreased a half than MAOST.  



Table 2 Subaperture combination (unit: λ) 

Number of 

subapertures 
15 9 8 7 6 5 4 3 

Selected 

subapertures 
1~15 

1,3,5,6,8,

10,11,13,

15 

1,3,5,7,9,

11,13,15 

1,3,5,8, 

11,13, 

15 

1,3,5,11,

13,15 

1,5,8, 

11,15 
1,5,11,15 1,5,13 

Overlapping 

status 
normal part non part non non non non 

Residual PV 0.0635 0.0645 0.0747 0.0782 0.0759 0.085 0.0831 0.1125 

Residual 

RMS 
0.0068 0.0068 0.0077 0.008 0.0078 0.0086 0.0085 0.0128 

 

Fig.3 Subapertures distribution             Fig.4 The general subapertures distribution pattern  

 

4. Numerical analysis of NOSAI  

Two simulated full aperture surfaces with different Zernike polynomials are chosen for analysis. The 

full aperture surfaces are divided into non-overlapping subapertures and then reconstructed by NOSAI. 

By comparing the original full aperture surface with the reconstructed results, the accuracy can be 

evaluated. The effect of the minimum number of fitting terms of Zernike polynomials on the 

reconstructed accuracy is analyzed. Then the sensitivity of residual errors on the reconstructed accuracy, 

including the alignment errors (piston and tilt), power error, higher-order error and high frequency 

noise，which may occur in the subaperture data according to the characteristics of the dynamic 

interferometer in the workshop environment, are discussed. 

4.1. Sensitivity to subaperture alignment error 

In actual testing, it is inevitable to introduce some piston and tilt alignment errors due to the 

straightness or verticality of the mobile platform or environmental factors. This section will analyze the 

suppression characteristics of NOSAI for these alignment errors.  

The simulated surface W1 in Eq. (9) is divided into six non-overlapping subapertures, as shown in Fig.5 

(a). Random alignment is added to each subaperture.  

𝑊1𝑘 = 0.1𝑍4𝑘 − 0.2𝑍5𝑘 + 0.1𝑍6𝑘 + 𝛼𝑍1𝑘 + 𝛽𝑍2𝑘 + 𝛾𝑍3𝑘              (10) 

where α, β, γ are random values in (-1,1). k represents the k
th

 subaperture. 

The full aperture surface is reconstructed by NOSAI. The residual surface between reconstructed result 

and the simulated full aperture surface is shown in Fig.5 (b), PV is 8.6×10
-14 

λ and RMS is 1.4×10
-14 

λ.  

subapertures

simulated 

wavefront

6 7 8 9 10

11 12 13 14 15

1 2 3 4 5



 

(a)                                       (b) 

 Fig.5 Simulated surface W1 and the reconstructed residual surface: (a) simulated surface W1; (b) Residual surface 

 

In order to verify the above conclusion, a different simulated rectangular surface 𝑊2 is processed 

similarly  

𝑊2 = 0.05𝑍5 − 0.1𝑍6 + 0.2𝑍8                           (11) 

Fig. 6 (a) shows the simulated surface, PV is 0.575 λ and RMS is 0.073 λ. The surface is divided into 

six subapertures and for each a random alignment is added as before. The residual surface is calculated 

and shown in Fig. 6 (b), which PV is 3.1×10
-14 

λ and RMS is 4.3×10
-15 

λ. The value of reconstructed 

residual error is also very small, so NOSAI can effectively calibrate the piston and tilts of subapertures 

and reconstruct the whole surface with high accuracy.  

    

(a)                                          (b)  

Fig. 6 (a) Simulated surface W2 and (b) the reconstructed residual surface. 

4.2. Sensitivity to subaperture systematic second order error 

The systematic second order error contains power and astigmatism error. In interferometry, it is one of 

the main systematic errors 
[17]

, especially for a dynamic interferometer with off-axis optical path design. 

In subaperture testing, if the systematic errors are not calibrated before testing and controlled carefully 

during testing, it will always affect the measurement results of each subaperture. It is obviously 

influence on the reconstructed result and hard to be removed completely. It is usually the same in each 

subaperture if the testing environment is stable. 

The ideal surface, W1, expressed in Eq. (9) above is divided into six non-overlap subapertures. A power 

error surface P=0.005 r
2
 (PV=0.005 λ, RMS=0.002 λ) is simulated and added in each subaperture. The 

reconstructed result by NOSAI is shown in Fig.7 (a). The residual surface distribution is also 

power-type which is shown in Fig.7 (b). It means the power error will accumulate in the reconstructed 

process and increasing with the number of subapertures. The same situation exists in the systematic 

astigmatism error when the tested piece cannot rotate in testing process. It should be noted that the 

accumulation of systematic second order error has no relation to the profile of test surface. If the 



number of the subapertures increases, the accumulated error cannot be ignored even though the value 

of the systematic second order error in each subaperture is small. So the subapertures’ systematic 

second order error is the main error source in stitching measurement. The calibration before or during 

testing thus becomes very important and will be discussed in a future publication. 

 

(a)                                     (b)  

Fig.7 Reconstructed results when subapertures with power error: (a) reconstructed surface (PV: 0.666λ, RMS: 

0.143λ); (b) residual surface (PV: 0.066λ, RMS: 0.015λ) 

4.3. Sensitivity to subaperture random noise 

The accuracy of interferometry is limited by the measuring environment where random noise is 

inevitable. Gaussian type high frequency noise N (μ, σ
2
) is added into each subaperture of W1 (PV: 

0.625 λ, RMS: 0.137 λ) to examine the sensitivity of NOSAI to the high frequency noise. 

Reconstructed surfaces are calculated for different values of standard deviation σ with mean value 

fixed at μ = 0. For each σ, 10 calculations are done and their maximum, minimum, average and 

standard deviation of the residual RMS are calculated and the results are shown in Fig. 8. It can be seen 

that the average and standard deviation of residual RMS increase with standard deviation σ, but the 

values of residuals RMS are less compared with the RMS of the original surface. So these graphs 

support the conclusion that random noise in subapertures do not accumulate significantly in the 

reconstructed results, and that means NOSAI has a certain degree of suppression for random noise. 

This is mainly because the algorithm calculates the fitting coefficients in simultaneous manner.  

 

Fig. 8 Residual RMS vs. standard deviation σ (μ=0) 

5. Experimental verification 

In order to simulate in situ testing in workshop, an experimental system is designed on non-isolation 

platform in ordinary room as shown in Fig.9. A dynamic interferometer ZYGO DynaFiz™ 

(Middlefield, CT) with 4 inch (100 mm) aperture is used to obtain the phase data. In the testing 

environment, the vibration amplitude is greater than 700 nm at the frequency less than 1 Hz as tested 

by the interferometer’s embedded measurement software. The experimental system also consists of a 

liftable interferometer support, a two-dimensional mobile platform, and a numerical control system. 



The horizontal moving range of 2D mobile platform is 400 mm and the vertical range is 150 mm. The 

test sample is a K9 optical flat with 200×300×30 mm. Its full aperture wavefront is obtained by a 

24-inch phase-shifting interferometer and shown in Fig.10 (a). Fig.10 (b) shows its fitting surface by 

the first 11 square Zernike polynomials.  

 

Fig.9 Experimental system 

 

(a)                                    (b)  

Fig.10 Testing results of the sample flat with 200×300 mm：(a) Full aperture wavefront (PV: 0.534 λ, RMS: 0.092 

λ)；(b) fitting surface using the first 11 terms (PV: 0.538 λ, RMS: 0.091 λ) 

 

Subapertures are arranged in 15 lattice pattern as shown in Fig.3 with a lateral overlap ratio of 30% and 

the vertical overlap 40%, and the resulting phase maps are seen in Fig. 11. Testing every subaperture 

and stitching them by MAOST, the map of stitching surface and its fitting map using the first 11 square 

Zernike polynomials are shown in Fig.12. Fig.13 shows the reconstructed surface obtained by NOSAI 

using the same subapertures. The maps of fitting surfaces obtained by MAOST and NOSAI, which are 

shown in Fig.12(b) and Fig.13(a), are compared and the residual map of them is showed in Fig.13 (b), 

which deviation is ΔPV=0.193 λ, ΔRMS=0.024 λ. That is more related to the accuracy of selected 

subaperture data. Generally, the difference is almost uniform and acceptable for surface shape 

measurement. NOSAI described here can effectively reconstruct the full aperture surface with fewer 

subapertures compared with the widely applied method MAOST. 



 

Fig. 11 Phase maps of subapertures 

 

(a)                                                 (b) 

      Fig.12 (a) Stitching results by MAOST (PV: 0.543λ, RMS: 0.087λ); (b) fitting surface of (a) using the first 

11 square Zernike polynomials (PV: 0.535λ, RMS: 0.086λ). 

 

(a)                                                 (b)  

Fig.13 (a) Reconstructed surface by NOSAI (PV: 0.539λ, RMS: 0.089λ); (b) residual map of Fig.13(a) and 

Fig.12(b) (PV: 0.193λ, RMS: 0.024λ).  

 
The reason why the first 11 Zernike polynomial terms were used to do fitting is explained here. The 

purpose of NOSAI was testing the surface shape of large optical flats. The low frequency information 

was enough to represent the surface shape. Furthermore, NOSAI applied in the precision grinding 

process, the moderate and high frequency information should be controlled in polishing process. From 

the algorithm perspective, the fitting results were almost consistent using more than 11 square Zernike 

polynomials. As illustrated in Fig. 14, 15 subapertures are calculated by NOSAI with different square 

Zernike terms, then compared with the fitted surface of full aperture. Consider the highest order δ of 

the test surface ranges from 2 to 6, then according to Eq.(7), the minimum fitting terms are equal to 

6,11,18,27 and 38. It can be seen that after 11 Zernike polynomial terms, the fitting results are similar. 



The maximum differences of PV and RMS in later four terms are less than 0.06 λ and 0.003 λ. Thus for 

surface shape testing more polynomials were not necessary by NOSAI. 

 

Fig. 14 Results by NOSAI with different Zernike polynomial terms 

 

Table 3 lists the results obtained by NOSAI using different subapertures and same square Zernike terms. 

ΔPV and ΔRMS represent their deviations from the full aperture data. It is seen that the reconstruction 

with 8 subapertures gives the best result, which only need the half number of subapertures used by 

MAOST. As shown in Fig.15, their coefficients support the same conclusion. We compare the fitting 

coefficients of full aperture tested map, stitched map by MAOST and reconstructed map by NOSAI 

using 15 and 8 subapertures. The coefficients of 15 and 8 subapertures are approximate equal to each 

other, which illustrate 8 subaperture is enough for reconstructed accuracy by NOSAI. Relatively, the 

obvious differences are no more than 0.03 in coma and astigmatism, which corresponding the 

difference surface with PV 0.18 λ and RMS 0.032 λ. That means these aberrations are more sensitive to 

the distribution of subapertures. So a rational layout is important to enhance the stitiching accuracy 

while using fewer subapertures for NOSAI. Their differences with the fitting coefficients of full 

aperture map come from the differences of measurement instruments and environment. The proposed 

NOSAI used to in-situ testing the surface shape in precision grinding process, so all differences in this 

graph are within the acceptable range.  

Table 3 Results by NOSAI using different subapertures and same square Zernike terms 

Number of 

subapertures 
15 9 8 7 6 5 

Select 

subaperture 
all 

1,3,5,6,8,10 

11,13,15 

1,3,5,7,9,11 

13,15 

2,4,6,8,10 

12,14 

2,4,7,9,12 

14 
1,5,8,11,15 

PV（λ） 0.521 0.462 0.532 0.543 0.577 0.450 

RMS（λ） 0.086 0.077 0.093 0.085 0.099 0.079 

ΔPV（λ） 0.017 0.076 0.006 0.005 0.040 0.088 

ΔRMS（λ） 0.005 0.014 0.002 0.006 0.008 0.012 

 



Fig.15 Comparison of the fitting coefficients obtained from full aperture, stitching map by MAOST and stitching 

map by NOSAI using different distributing subapertures.  

6. Conclusions 

The challenge in subaperture stitching for large flats in workshop is the uncertainty from long time 

testing in turbulent environments. Under the premise of testing accuracy, reducing the number of 

subapertures is an effective way to achieve in situ testing during processing. In this paper, the 

non-overlap subaperture interferometric testing method (NOSAI) is applied for reconstructing the 

wavefront of large rectangle plano optics in workshop. The square Zernike polynomial is more proper 

in this case. The simulation and experimental tests verify NOSAI can be used to reconstruct the 

low-frequency full aperture surface with fewer non-overlap subapertures. This method has its 

limitations, but it is very effective as a rapid in situ testing method used in the machining process. The 

errors we are discussing are acceptable in our application. More accurate reconstruction or error 

compensation methods need to be considered for higher precision measurement.  

 

 

ACKNOWLEDGEMENTS 

This work was performed under the support of the National Natural Science Foundation of China 

(NSFC) (No. 51175318) and the National Science and Technology Major Projects (No. 

2013ZX04006011-217). Xin Wu (xin5star@126.com) is also thankful for the support of the China 

Scholarship Council to carry out research at the Centre for Precision Technologies, University of 

Huddersfield for one and half year. 

 

 

REFERENCES 

 
[1] C. Kim, J. Wyant. ―Sub-aperture test of a large flat or a fast aspheric surface‖, J. Opt. Soc. Am., 71: 

1587 (1981). 

[2] M. Y. Chen, W. M. Cheng, and C. W. Wang, ―Multiaperture overlap-scanning technique for 

large-aperture test‖.  Proc. SPIE 1553, 626–635 (1991). 

[3] W. M. Cheng, M.Chen. "Transformation and connection of subapertures in the multiaperture 

overlap-scanning technique for large optics tests." Opt. Eng. 32, 1947-1950 (1993). 

[4] M. Otsubo, K. Okada, and J. Tsujiuchi. ―Measurement of large plane surface shapes by connecting 

small- aperture interferograms‖. Opt. Eng. 33, 608–613 (1994). 

[5] P. Su, J. H. Burge, and R. E. Parks, ―Application of maximum likelihood reconstruction of 

subaperture data for measurement of large flat mirrors.‖ Appl. Opt., vol. 49, no. 1, pp. 21–31, 

(2010). 

[6] S.Y. Chen, S. Y. Li, Y. F. Dai, and Z.W. Zheng, ―Iterative algorithm for subaperture stitching test 

with spherical interferometers.‖ J. Opt. Soc. Am. A 23, 1219–1226, (2006). 

[7] M. Bray, ―Stitching interferometer for large plano optics using a standard interferometer.‖ Proc. 

SPIE 3134. 39–50, (1997). 

[8] J. Peng, H. Xu, Y. Yu, and M. Chen, ―Stitching interferometry for cylindrical optics with large 

angular aperture.‖ Meas. Sci. Technol., 26, 025204 (2015). 

[9] J. Fleig, P. Dumas, P. E. Murphy, G. W. Forbes, and Q. E. D. Technologies, ―An automated 

subaperture stitching interferometer workstation for spherical and aspherical surfaces.‖ Proc. SPIE 

vol. 5188, 296–307 (2003). 

[10] P. Murphy, J. Fleig, G. Forbes, D. Miladinovic, G. DeVries, and S. O’Donohue, ―Subaperture 

stitching interferometry for testing mild aspheres.‖ Proc. of SPIE vol. 6293, 62930J (2006). 



 
[11] J. C. Wyant and J. Schmit, ―Large field of view, high spatial resolution, surface measurements.‖ 

Int. J. Mach. Tools Manuf., vol. 38, 691–698 (1998). 

[12] Ziqiang Yin, Shengyi Li, Fujing Tian. ―Exact reconstruction method for on-machine measurement 

of profile.‖ Precision Engineering, vol. 38, 969–978, (2014). 

[13] S. C. Jensen, W. W. Chow, and G. N. Lawrence, ―Subaperture testing approaches: a comparison.‖ 

Appl. Opt., vol. 23, 740-745, (1984). 

[14] T. W. Stuhlinger, ―Subaperture optical testing: experimental verification.‖ Proc. SPIE 656, 118–

127 (1986). 

[15] Michael Bray. ―Orthogonal polynomials: a set for square areas.‖ Proc. SPIE 5252, 314-321(2004). 

[16] ISO/TR 14999-2. Optics and photonics — Interferometric measurement of optical elements and 

optical systems. (2005). 

[17] S. Chen, Y. Dai, S. Li, X. Peng, and J. Wang, ―Error reductions for stitching test of large optical 

flats.‖ Opt. Laser Technol., vol. 44, no. 5, pp. 1543–1550 (2012). 


