
University of Huddersfield Repository

Cheng, Long, Tachmazidis, Ilias, Kotoulas, Spyros and Antoniou, Grigoris

Design and Evaluation of Small-Large Outer Joins in Cloud Computing Environments

Original Citation

Cheng, Long, Tachmazidis, Ilias, Kotoulas, Spyros and Antoniou, Grigoris (2017) Design and
Evaluation of Small-Large Outer Joins in Cloud Computing Environments. Journal of Parallel and
Distributed Computing. ISSN 0743-7315

This version is available at http://eprints.hud.ac.uk/id/eprint/31274/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Design and Evaluation of Small-Large Outer Joins in

Cloud Computing Environments

Long Chenga,b,∗, Ilias Tachmazidisc, Spyros Kotoulasd, Grigoris Antoniouc

aEindhoven University of Technology, The Netherlands
bTU Dresden, Germany

cUniversity of Huddersfield, UK
dIBM Research, Ireland

Abstract

Large-scale analytics is a key application area for data processing and par-
allel computing research. One of the most common (and challenging) oper-
ations in this domain is the join. Though inner join approaches have been
extensively evaluated in parallel and distributed systems, there is little pub-
lished work providing analysis of outer joins, especially in the extremely
popular cloud computing environments. A common type of outer join is the
small-large outer join, where one relation is relatively small and the other
is large. Conventional implementations on this condition, such as one based
on hash redistribution, often incur significant network communication, while
the duplication-based approaches are complex and inefficient. In this work,
we present a new method called DDR (duplication and direct redistribution),
which aims to enable efficient small-large outer joins in cloud computing en-
vironments while being easy to implement using existing predicates in data
processing frameworks. We present the detailed implementation of our ap-
proach and evaluate its performance through extensive experiments over the
widely used MapReduce and Spark platforms. We show that the proposed
method is scalable and can achieve significant performance improvements
over the conventional approaches. Compared to the state-of-art method, the
DDR algorithm is shown to be easier to implement and can achieve very sim-

∗Corresponding author.
Email addresses: l.cheng@tue.nl (Long Cheng), i.tachmazidis@hud.ac.uk (Ilias

Tachmazidis), spyros.kotoulas@ie.ibm.com (Spyros Kotoulas),
g.antoniou@hud.ac.uk (Grigoris Antoniou)

Preprint submitted to JPDC January 14, 2017

ilar or better performance under different outer join workloads, and thus, can
be considered as a new option for current data analysis applications. More-
over, our detailed experimental results also have provided insights of current
small-large outer join implementations, thereby allowing system developers
to make a more informed choice for their data analysis applications.

Keywords: parallel joins, outer joins, small-large joins, cloud computing,
performance evaluation.

1. Introduction

In light of the explosion of available data and the increasing connectivity
between data systems, the infrastructure for scalable data analytics is as
relevant as ever. An essential operation in this domain is the join, which
facilitates the combination of records based on a common join key. This data-
intensive operation can incur significant costs, in terms of communication and
computation. Improving the efficiency of this operation can have a significant
impact on the performance of applications mainly for analytical workloads [1].

Although inner join algorithms have been widely studied in parallel and
distributed systems [2], [3], [4], [5], there has been relatively little done on
the topic of outer joins. In fact, outer joins are common in complex queries
and widely used in various applications [6]. An example domain where outer
joins are particularly important is the Semantic Web: queries containing
outer joins account for as much as 50% of the total number of queries, based
on the analysis of DBpedia query logs [7]. In general, in AI-related fields
and Cognitive computing applications, there is a trend towards computation
with sparse, semi-structured data. Data in this domain lack normalisation,
which makes outer joins as relevant as ever.

Inner join implementation can discard records with keys that do not
match the keys from the other side of the join as soon as this is discov-
ered. For outer joins, this decision needs to be taken at a later stage, since
the final join results contain not only the matched part but also the non-
matched part. For example, for a left outer join (on) between two input
relations R(a, x) and S(b, y) on their attributes a and b, the final output
contains not only the matched records in the form of < a, x, y >, for a match
condition, but also < a, x, null >, when values do not match.

Recently, several approaches for efficiently implementing outer joins have
been proposed [8], [9]. However, such methods focus on large-large table

2

outer joins, while a special case, namely small-large outer joins, seems to
have been neglected. In fact, small-large outer joins are quite common in
real applications. For example, in business intelligence, a small record with
customer ids often left outer join with a large transaction record, to analyze
purchase patterns [10].

Most of the small-large outer join implementations still rely on the two
conventional outer join algorithms [10], namely the redistribution outer join
algorithm (ROJA) and the duplication outer join algorithm (DOJA). How-
ever, as we will explain later, both methods could meet performance issues.
The state-of-the-art algorithm DER [10] (duplication and efficient redistri-
bution), which has been designed specifically for small-large outer joins, has
achieved significant performance improvements over the conventional ap-
proaches. Regardless, the DER algorithm is specifically designed for rela-
tional database management systems (RDBMSs), with its implementation
heavily relying on the schema of the input data (as explained later), which
could require several modifications for other environments such as the cur-
rently popular cloud computing platforms that are studied in this work.

In fact, with data applications growing in scale, cloud environments play
a key role in application scale-out, exploiting parallelisation to speed up op-
erations and extending the amount of available memory available to develop-
ers [11]. In such scenarios, efficient parallel implementation of the small-large
outer joins over scale-out data platforms, best suited to cloud environments
(such as MapReduce [12] and Spark [13]), is increasingly desirable. Such
platforms are frequently preferable for certain non-transactional workloads,
since they allow for easy deployment and straightforward scale-out capability,
compared to the conventional parallel RDBMSs [14]. In fact, most vendors
provide, either on-premise or on the cloud, solutions that compute massive
volumes of structured, semi-structured and unstructured data for their busi-
ness applications [11].

Motivated by the application domain mentioned above, in this paper, we
present a new approach called DDR (duplication and direct redistribution).
Our approach is aimed at efficiently performing small-large outer joins over
distributed systems. We show that DDR is easier to implement for cloud-
based computing frameworks and can achieve similar performance, compared
to the state-of-the-art algorithm. To the best of our knowledge, this is the
first work specified on the detailed design and evaluation of small-large outer
joins in cloud computing environments. Here, we summarize the contribu-
tions of this work as follows:

3

• We adapt the state-of-the-art approach called DER to a cloud com-
puting environment and present the detailed implementation of the
variant.

• We propose a new approach called DDR (duplication and direct redis-
tribution) aimed at efficient small-large outer joins in cloud computing
environments. We show that DDR is easier to implement than DER
and does not require any customization of existing operations.

• We present a highly efficient design for the implementations of DER and
DDR over the MapReduce framework, which utilizes various details of
MapReduce job execution, making that both approaches can be done
within a single MapReduce job.

• We conduct a detailed experimental evaluation of our method and com-
pare its performance with current approaches. Experimental results
show that DDR is scalable, and can clearly outperform conventional
approaches with achieving performance similar to the state-of-art DER
method. Thus, DDR can be considered as a new option for data ana-
lytics in large-scale distributed scenarios.

• We also examine the potential factors of performance by using different
inputs in our evaluations, the results characterizing the performance of
current small-large outer join implementations as well as their differ-
ences over different underlying platforms will provide helpful informa-
tion on query optimization for data analytics in real applications.

Additionally, in contrast to the original DER implementation, which is
protected by a patent [15], our approach as well as the algorithms provided in
this manuscript do not have such restrictions, which could make our approach
more attractive. The rest of this paper is organized as follows: In Section 2,
we analyze current outer join implementations, including the state-of-the-art
DER method. In Section 3, we introduce our DDR approach and compare
its details with the DER algorithm. In Section 4, we present the detailed im-
plementation of our approach over current cloud-based computing platforms.
Section 5 describes the experimental framework while Section 6 provides the
experimental results. We report on related work in Section 7 and conclude
in Section 8.

4

2. Background

In this section, we introduce the current outer join approaches and dis-
cussing their possible limitations. Moreover, we also present a variant im-
plementation of the state-of-art DER method, in order to make it applicable
for cloud computing environments.

We focus on left outer joins in the following, since they are the most
commonly used outer joins. In addition, to capture the core performance of
queries, we focus on a single join operation between two input relations R
and S over a n-node system1. We assume that both relations are in the form
of <key, value> pairs, where key is the join attribute. In the meantime, we
assume that the relation R is smaller than the relation S.

2.1. Conventional Outer Join Methods

2.1.1. ROJA

The implementation of the redistribution outer join algorithm is very
similar to inner joins, and consists of the following two main steps:

• Step 1. The initially partitioned relations Ri and Si at each node
i are partitioned into distinct sets Rik and Sik respectively, normally
according to the hash values k of their join key attributes. Then, each of
these sets is transferred to a corresponding remote node. For example,
tuples in Rik and Sik at node i will be transferred to the k-th node.

• Step 2. A local outer join between received Rk (i.e.,
⋃n

i=1Rik) and Sk

(i.e.,
⋃n

i=1 Sik) at each node k is implemented in parallel to formulate
the final outputs.

2.1.2. DOJA

The implementation of the duplication outer join algorithm has significant
differences compared to inner joins. It contains two main stages as follows.

• Stage 1. The tuples in Ri at each node are firstly duplicated (broadcast)
to all nodes. Then, an inner join between received

⋃n
i=1Ri (i.e., R)

and locally kept Si is implemented in parallel at each node i. This
formulates an intermediated result Ii at each node.

1Here, we focus on explaining the join pattern in a distributed environment. In terms
of terminology, a node here means a computing unit (e.g., a Reducer in MapReduce or an
execution core in Spark).

5

• Stage 2. An outer join between the relation R and the intermediate join
results Ik to construct the final outputs, based on the ROJA approach
described above.

2.1.3. Discussion

Every step for the two approaches above can be implemented in parallel
across the computing nodes, and the number of execution units can be in-
creased by deploying additional machines. Therefore, both algorithms show
the potential ability on scale-out processing of large input datasets. More-
over, since their join patterns only reply on the operators of redistribution
and duplication, which can be easily done in a cloud computing environ-
ment, they can be applied in cloud-based data analytics directly. However,
with regards to the detailed performance, for a small-large case, the ROJA
algorithm could be expensive as it has to redistribute the large relation.
Moreover, in the presence of data skew [16], load balancing would be a prob-
lem, thus deteriorating the overall performance. Meanwhile, for the DOJA
algorithm, though the broadcast cost could be small, such a scheme could
still encounter performance bottlenecks. The reason is that the intermedi-
ated result I, which has to be redistributed in the stage 2, could be very
large in some cases (e.g., Cartesian product) [8]. In such scenarios, an effi-
cient small-large outer join implementation suitable for a cloud computing
environment is becoming desirable.

2.2. State-of-the-art DER

The DER algorithm (duplication and efficient redistribution) is the state-
of-art method specified for optimizing small-large table outer joins in RDBMSs.
As shown in Figure 1, for a 2-node system, the detailed implementation of
this algorithm comprises of four main steps as follows.

• Step 1. Following the DOJA algorithm, tuples of Ri at each node i are
duplicated to all other computing nodes in this step.

• Step 2. A local left outer join between the received tuples of R and
locally kept Si is implemented in parallel at each node after the dupli-
cation. In contrast to a conventional approach, the outer join here is
customized, recording ids of all non-matched rows of R in this step2.

2For a RDBMS, each row has a unique id, thus we can retrieve the required ids directly
based on the non-matched results.

6

• Step 3. After the local outer joins, the extracted ids at each node will
be redistributed among nodes based on their hash values.

• Step 4. As demonstrated, this step contains two main operations:

– The received ids at each node are counted, if the number of times
an id appears is equal to the number of computing nodes n (i.e.,
2 in this example), then this row-id will be recorded.

– After that, all tuples in R with the recorded row-ids will be ex-
tracted to formulate the non-matched results.

Figure 1: The implementation flow of the DER algorithm over a 2-node system. The
additional operation in the dash square is only specified for a cloud computing environment
as described in Section 2.3.

7

The final output is the union of the matched results in the second step
and the non-matched results in the fourth step. In fact, DER presents a
very efficient way to extract non-matched results. Note that the join in
the first step of the DOJA algorithm is an inner join rather than an outer
join, the reason is that a direct outer join would bring either redundant
or erroneous non-matched outputs [8]. The DOJA approach alleviates this
problem by redistributing all the inner join results. In comparison, DER
uses a more efficient way, in that each tuple can be indicated by a row-id
from the relation R, which is redistributed. As the transferred ids are always
very small (because the number of ids is smaller than |R|), the network
communication can be greatly reduced. Additionally, since non-matched
tuples can be retrieved by ids directly as described in the step 4, the local
computing cost could be also reduced. The experimental results presented
in [10] have shown that the DER algorithm can achieve significant speedups
over current methods on small-large outer joins in a parallel DBMS.

2.3. Applying DER in Cloud Environments

It can be seen that row-ids for the tuples in relation R are critical to
successfully implementing the DER algorithm. In RDBMSs, it is common
that each tuple has an id. However, for a cloud computing environment,
normally there will be no id for each tuple that participates in an outer join.
The main reason is that relations usually come from different data sources
and lack schemas.

For this condition, we add an extra operation in the step 1 of the DER
approach, so as to make it applicable to a cloud environment. As shown
in the dashed square in Figure 1, we explicitly assign a unique id for each
tuple in the relation R and use the ids for the subsequent join executions.
Since the relation R is small for a small-large join case, this additional op-
eration would be extremely lightweight, and will not affect significantly the
performance of the original DER implementation. We will show that this
new implementation still performs efficiently on small-large outer joins (for
details see Section 6). For simplification, since in this work we focus on ap-
proaches in cloud computing environments, in the following we will refer to
this variant of the original DER algorithm as DER.

8

3. Our Approach

In this section, we first describe the proposed DDR approach and its
detailed work flow. Then, we conduct a comprehensive comparison of this
method with the state-of-art DER algorithm.

3.1. The DDR Algorithm

Duplication is usually the ideal operation for processing small-large joins.
In such a case, for outer join implementations, the core challenge becomes
how to efficiently identify the correct non-matched results. To achieve this,
our DDR approach directly outputs the non-matched results and then re-
distributes them. The details of our implementation are shown as Figure 2.
Similar to the DER algorithm, DDR also consists of four main steps:

• Step 1. This step is similar to the first step of DOJA where all tuples
of Ri at each node are broadcast.

• Step 2. A common left outer join between received Ri (i.e., R) and
locally kept Si is implemented in parallel at each node i. In this opera-
tion, the matched results will be output directly and the non-matched
results will be recorded.

• Step 3. The non-matched results at each node are redistributed to all
nodes based on their hash values.

• Step 4. The received records at each node are counted, if the number of
times a record appears is equal to the number of computing nodes, then
this record will be considered as one of the final non-matched results.

Compared to the conventional DOJA algorithm, it can be seen that we
focus on redistributing the non-matched results in step 2 in order to elimi-
nate possible errors and redundancies. Evidently, our implementation adopts
the most common duplication and redistribution operations, thus it can be
directly implemented on a RDBMS. Moreover, compared to DER algorithm,
we do not rely on any id information, and thus, DDR can be used directly
on a cloud computing platform.

We first duplicate all the tuples of R, then we identify the non-matched
results by another efficient way—direct redistribution, compared to the DER

9

Figure 2: The implementation flow of the DDR algorithm.

approach, hence we named our approach DDR (duplication and direct re-
distribution). We will show later that DDR is very efficient on processing
small-large outer joins.

In fact, the proposed DDR algorithm can be applied to small-large full
outer joins as well. For example, if we change the left outer join to a full
outer join in our example, the only change in our DDR implementation is
that we only need to change the local left outer join implementation in the
step 2 to full outer join and then directly output the non-matched tuples of
S as part of the final results. The reason is that each tuple in S appears
only once as well as at one node, while each Si examines the non-matched
tuples over the full relation R at each node, which means that there will
be no error or redundant non-matched results from S. Here, we do not
consider the right outer joins since they can be rewritten to equivalent left
outer joins [10]. Recall that because left outer joins are the most popular
outer join operations, we only focus on the performance of such operations
in our evaluations in Section 6.

10

3.2. Compared to the State-of-the-art DER

We compare the proposed DDR method with the presented DER al-
gorithm in two aspects. Firstly, we focus on their general implementa-
tions. Then, we concentrate on the performance comparison between the
two methodologies at a theoretical level.

3.2.1. High-level Implementation

We focus on efficiently processing small-large outer joins. Compared to
the DER implementation, it can be seen that our DDR approach has several
clear differences, which mainly include the following four parts.

• In step 1, the DER approach has to use extra operations to assign the
row-id to each tuple, but DDR does not need to do so and the input
tuples can be processed directly.

• In step 2, to get the non-matched row-ids, for the DER algorithm, we
have to customize the local outer join implementation and use the re-
lation R to search over S. In comparison, the proposed DDR approach
does not have such limitations.

• In step 4, the DER approach has to convert the non-matched ids to the
corresponding tuples by accessing the relation R. In contrast to that,
our DDR approach does not need such operation because we can get
the non-matched tuples directly.

• In step 2, 3 and 4, the DER approach has to keep the duplicated R
in memory through the whole process, because in its step 4, the final
non-matched results have to be retrieved from R, as described3. In
contrast, after the left outer joins in the step 2 of our DDR approach,
the relation R will no longer be required for the remaining steps and
thus can be discarded immediately.

3Note that, we can also discard R directly or keep R in disks in the DER implementa-
tion, however, these operations will bring extra costs on distributed joins or system I/O in
the final step. Such implementation is required by MapReduce as each Mapper or Reducer
initializes its memory prior to processing any given subset. However, for Spark, in order
to keep reduce runtime, in our implementations, we have chosen to keep R in memory,
since we believe that R is small and this will not bring memory pressure for the underlying
system in a small-large join case.

11

In this work, we focus on implementing our approach in a cloud computing
environment. More specifically, we are interested in applying our approach
in the most popular platforms, namely MapReduce [12] and Spark [13]. In
such settings, the above differences could make our DDR algorithm easier,
more flexible and more suitable for a real application, in terms of detailed
implementations.

For example, the Spark platform has provided several join APIs, and thus,
can be used directly in DDR. In comparison, an implementation of DER
needs customized local outer joins, as we have described above. More im-
portantly, in a large-scale distributed scenario, large computational resources
would be tapped in a short time, which requires very fast data loading of the
target dataset(s). In turn, to shorten the data processing life-cycle for each
query, exploration and analysis should be done in an interactive manner. In
such scenarios, additional operations could bring more synchronizations and
require more strict fault-tolerant mechanisms, and consequently impact the
system performance or make the implementation challenging.

3.2.2. Performance Analysis

In order to examine the performance difference between the proposed
DDR algorithm and the state-of-art DER approach as well as investigate the
possible impact factors of the difference, we conduct here a concise theoret-
ical analysis. We are interested in the performance of join implementations
rather than other operations of a join such as data loading and result ma-
terialization. Considering the whole time cost in an outer join, there are
generally two kinds of time costs in a distributed implementation: (1) cost
on local operators, which do not contains any inter-machine communication;
and (2) cost on network communication, which do involve data shipping over
networks. For simplification, we assume that data is always uniformly dis-
tributed in each redistribution operation. In the meantime, the local joins
adopt the commonly used hash operators4 (i.e., hash table building & hash
table probing [18]). For convenience, we use the notations in Table 1.

Following the implementation of DER algorithm, the time cost for an
outer join implementation CDER at each node will be composed by six parts

4When calculate the time cost of local joins shown in the equations below, the number
of whole hash operations of a join between A and B will be |A|+ |B|, because of the hash
operations on tuple inserting and searching. This is an ideal condition, that the inserting
and searching of a tuple is done in O(1) time with a hash function [17].

12

Table 1: Table of notations

Notation Meaning

T a join participated relation (R or S)
|T | the number of tuples in T
n the number of computing nodes in the system
t average transmission time for a tuple in size
α the join selectivity (represented by the non-matched ration of R)
j average hash time table building/probing time for a tuple
m processing time on mapping a tuple to an id or reverse
l the ration of the length of an id to a tuple (l < 1)
c average time of count operator for a tuple

as following:

CDER

t× |R| (broadcast)

m× |R| (id assignment)

j × (|R|+ |S|
n

) (local join)

t× α|R| × l (id redistribution)

c× α|R| (count)

j × (1 + α)|R| (retrieve tuple)

(1)

Similarly, the time cost of DDR implementation contains the following
four parts:

CDDR

t× |R| (broadcast)

j × (|R|+ |S|
n

) (local join)

t× α|R| (tuple redistribution)

c× α|R| (count)

(2)

From above two equations, it can be seen that for a given underlying
platform (i.e., the values of t, j, m and c are fixed), higher values for α, |R|
and |S| will lead to longer runtimes (higher time costs) for both the DER and
DDR algorithms. Thus, reducing the join selectivity and increasing the size
of two inputs will result in increased join execution time. This is reasonable,
as both the local computing and network communication costs are increased

13

under these conditions. Moreover, compared the Equation (1) and (2), we
have that the time cost difference between DER and DDR is:

∆C = CDER − CDDR

= m× |R|+ t× α|R| × (l − 1) + j × (1 + α)|R|
= |R| × (m− αt× (1− l) + j × (1 + α))

= |R| × δ

We can see that the value of δ is critical for ∆C, which indicates when
an algorithm is faster. In more detail, it is possible that:

• DER will outperform DDR when the value of αt×(1− l) in δ is compa-
rably larger, namely ∆C < 0. This could happen in conditions where
the non-matched ration is high, the length of each tuple is large and
the network transmission rate is low. For a given input with fixed α
and l, the larger the t is, the smaller the ∆C will be. This means that
the performance advantage of DDR is more network bounded. The
main reason for this is that DDR redistributes the non-matched results
in the form of tuples, which brings in more network communication
compared to DER, in which only row-ids are redistributed.

• On the other hand, DDR will outperform DER when the value m +
j × (1 + α) is comparably larger. Namely, ∆C would be positive in
the conditions that the values of m, j and α are large. The former two
parameters are highly related to the capability of system CPUs and
memory access, for a fixed input, in contrast to DDR, the performance
advantage of DER will be more CPU and memory bounded.

For a given outer join workload, the above analysis has shown that DER
and DDR algorithms would beat each other over systems with different hard-
ware configurations. Regardless, for current computing platforms, especially
in large-scale distributed cases, the values of t, j and m are always very
small, and thus, the value of δ will be small. In the meantime, when |R|
is small enough for an ideal small-large case, then, we have that ∆C ≈ 0.
This means that the proposed DDR approach will generally perform at the
same level with the state-of-art DER algorithm for a small-large outer join
execution. As we will show in our experimental results in Section 6, under
different outer join workloads (with different values on |T |, α and l), over a

14

commodity computer cluster, DDR generally achieves the same performance
as the state-of-art DER algorithm.

4. Implementation

We have implemented our approach over two of the most popular platforms—
MapReduce and Spark, in terms of cloud computing. Here, we only present
the details of our implementations over the former framework. We have two
reasons for this choice: (1) join operations can be challenging in MapRe-
duce [18]; and (2) MapReduce paradigm is highly sensitive to the number of
jobs [19]. Thus, it brings more challenges on the DER and DDR algorithms,
as they have more steps than the ROJA and DOJA algorithms. On the
other hand, Spark has provided abstract level operations, where various data-
parallel applications, initially designed for MapReduce, can be expressed and
executed efficiently using Spark.

In the following, we first introduce the related MapReduce and HDFS
systems, and then we present the detailed implementation of our DDR algo-
rithm as well as the DER approach.

4.1. Overview of MapReduce and HDFS

MapReduce is a framework for parallel processing over huge datasets [12].
The data is typically stored in the underlying Hadoop Distributed File Sys-
tem (HDFS) [20] and each unit of processing (a job) is carried out in two
phases, a map and a reduce phase. For each phase, a set of user-defined map
and reduce functions are run in parallel. The former performs a user-defined
operation over an arbitrary part of the input and partitions the data, while
the latter performs a user-defined operation on each partition.

MapReduce is designed to operate over key/value pairs. Specifically, each
Map function receives a key/value pair and emits a set of key/value pairs. All
key/value pairs produced during the map phase are grouped by their key and
passed to reduce phase. During the reduce phase, a Reduce function is called
for each unique key, processing the corresponding set of values. More details
and examples have been given in the tutorial at http://hadoop.apache.

org/docs/r1.2.1/mapred_tutorial.html.
HDFS is designed to provide high throughput access to large-scale data,

which is critical to the implementations of MapReduce programs. Internally,
a data file is split into one or more blocks and these blocks are stored across
different computing nodes. Compared to other file systems, HDFS caters

15

to cloud computing environments since it is highly fault-tolerant. There are
mainly two reasons for this [21]: (1) data replication across machines in
a large cluster ensures that very large files can be reliably stored. When
part of the data on a node is lost, replicas stored on other nodes will still
be accessible; and (2) HDFS has a master/slave architecture and applies
heartbeats between the master node and slaves to check the availability of
each node. Currently, HDFS also provides a robust and convenient file system
for Spark [11].

4.2. Implementation with MapReduce

4.2.1. Challenges

In order to solve a given problem using MapReduce, it should first be
transformed so as to follow the MapReduce paradigm. However, this may
result in an implementation requiring multiple number of jobs, which in turn
could deteriorate significantly the overall performance as multiple iterations
over the input lead to I/O and communication overheads [18, 19, 22]. Since
both DER and DDR are more complex than the two conventional approaches,
namely ROJA and DOJA, a straightforward implementation may result in
multiple jobs. In contrast, ROJA and DOJA can easily be implemented
within a single MapReduce job.

Unlike the RDBMSs, careless design of MapReduce jobs will impair the
advantage of DER and DDR over the two conventional approaches. Thus, in
order to retain the same level of performance, we designed a highly efficient
algorithm for DER and DDR, which utilizes various details of MapReduce
job execution, resulting in both DER and DDR being computed within a
single MapReduce job. We have also implemented ROJA and DOJA in a
single MapReduce job. In addition, we have made our code, for the four
evaluated algorithms in this work, publicly available at https://github.

com/longcheng11/small-large.

4.2.2. Detailed Implementation

As shown in Algorithms 1 and 2, we present a high-level pseudo-code
of our implementation over MapReduce. In this way, we provide the in-
sights that allowed us to implement both DER and DDR within a single
MapReduce job like the ROJA implementation. Step 1 is implemented in
the “setup(Context context)” of Map (see Algorithm 1), where relation R is
loaded for each Map directly from HDFS (see Algorithm 1, line 1). Note that
relation R is kept in-memory (r Map), which is modeled as a map of maps in

16

Algorithm 1 DER and DDR algorithm over MapReduce - Steps 1 and 2
// Step 1 of DDR/DER
setup(Context context):
// matched = false
// r Map (DDR): R.a → R.x → matched
// r Map (DER): R.a → R.x → id → matched

1: r Map = load R from HDFS()

// Step 2 of DDR/DER
map(Long key, String value):
// key: position in document (irrelevant)
// value: document line (tuple)

2: if value.predicate == “S” then
3: if r Map.contains(value.b) then
4: for all R.x ∈ r Map.get(value.b).keySet() do

// output matched results directly to HDFS
5: emit(“<value.b, R.x, value.y>”,“”)

// mark matching tuples in r Map
// DDR:

6: r Map.get(value.b).put(R.x, true)
// DER:

7: for all id ∈ r Map.get(value.b).
get(R.x).keySet() do

8: r Map.get(value.b).get(R.x).put(id, true)
9: end for
10: end for
11: end if
12: end if

cleanup(Context context):
// output non-matched tuples of R to Reduce

13: for all R.a ∈ r Map.keySet() do
// DDR:

14: if r Map.get(R.a).containsValue(false) then
15: for all R.x ∈ r Map.get(R.a).keySet() do
16: emit(“<R.a, R.x, null>”,“”)
17: end for
18: end if

// DER:
19: for all R.x ∈ r Map.get(R.a).keySet() do
20: if r Map.get(R.a).get(R.x).containsValue(false) then
21: for all id ∈ r Map.get(R.a).get(R.x).keySet() do
22: emit(“id”,“”)
23: end for
24: end if
25: end for
26: end for

order to provide efficient lookups5. Thus, values of R.a are connected with

5We focus on small-large joins in this work, the small means that the size of the small
relation is much smaller (e.g., 1000×) than the large one (e.g., user information outer joins
with large collected logs), thus it can be stored in memory in a large system. Actually,

17

Algorithm 2 DER and DDR algorithm over MapReduce - Steps 3 and 4
// Step 3 of DDR/DER
MapReduce grouping/sorting

// Step 4 of DDR/DER
setup(Context context):

1: maps = context.getNumberOfMaps()
// DER:
// r Map: id → {R.a, R.x}

2: r Map = load R from HDFS()

reduce(String key, Iterator values):
// key: non-matched tuple (DDR) or id (DER)
// values: list of empty values

3: count = 0
// count non-matched tuples (DDR) or ids (DER)

4: for all v ∈ values do
5: count += 1
6: end for
7: if count == maps then

// DDR:
// output non-matched tuple as is

8: emit(“key”,“”)
// DER:
// translate id using r Map

9: emit(“<r Map.get(key).a,r Map.get(key).x,null”,“”)
10: end if

values of R.x (R.a → R.x), while for DER we also need to connect values of
R.x with values of id (R.x → id). Finally, the last field, namely matched, is
initiated as false since at the beginning of the Map, none of R tuples have
matched tuples of S.

During Map (step 2), at each node, we check whether the predicate of
input tuple (value) is S, and whether S.b (value.b) matches any existing R.a
in r Map (see Algorithm 1, lines 2-3). For each matched R.a (or S.b) in
r Map we need to go through all corresponding R.x in r Map (see Algo-
rithm 1, lines 4-10), and (1) output matching results, to HDFS, directly as
final output (see Algorithm 1, line 5) and (2) mark matched tuples of R by
setting the last field of r Map, namely matched, as true. Note that we provide
the implementation of marking the field matched for both DDR (see Algo-
rithm 1, line 6) and DER (see Algorithm 1, lines 7-9), with DER requiring
an additional iteration over each id.

This knowledge of matched tuples of R is used during “cleanup(Context

keeping a small relation in memory is a commonly used strategy in current solutions using
Hadoop (e.g., the SCOPE system in Microsoft [9] and the approaches presented in [18]).

18

context)” of Map in order to pass non-matched tuples or ids of R to Reduce.
Thus, for each R.a in r Map (see Algorithm 1, lines 13-26) we provide the
implementation for both DER and DDR. For DDR (see Algorithm 1, lines 14-
18), we need to check whether there is a R.x → matched in r Map such
that matched equals to false (because the join is performed on R.a, if at
least one R.x → matched is false then all are). If matched is false then we
output the non-matched tuple itself (see Algorithm 1, line 16). For DER (see
Algorithm 1, lines 19-25), an additional iteration through R.x is required.
Then we need to check whether there is an id → matched in r Map such
that matched equals to false. However, as opposed to DDR, for DER we
output only the id of the non-matched tuple (see Algorithm 1, line 22). Note
that in both cases, namely DER and DDR, we output an empty value (“”)
in order to minimize the communication overhead, while each empty value
corresponds to one occurrence of the given non-matched tuple or id.

The MapReduce framework will perform grouping/sorting (step 3), re-
sulting in groups where the non-matched tuple or id is the unique key followed
by the corresponding list of empty values (see Algorithm 2). Then (step 4),
prior to processing each group, in “setup(Context context)” of Reduce (see
Algorithm 2, lines 1-2), we need to get the number of executed Map oper-
ations during the current job (see Algorithm 2, line 1), for both DER and
DDR, as it will be the threshold that determines whether the given non-
matched tuple or id will be considered as final output. In addition, for DER
we also need to load relation R from HDFS (see Algorithm 2, line 2). Note
that relation R is kept in-memory (r Map) only for DER, which is modeled
as a map from id to the corresponding pair of R.a, R.x, in order to be able
to translate each id to its corresponding tuple.

During Reduce (see Algorithm 2, lines 3-10), at each node, we need to
count the occurrences of each non-matched tuple or id of R, namely the
number of its corresponding empty values (see Algorithm 2, lines 3-6). In
case the number of empty values is equal to the number of executed Map
operations (see Algorithm 2, line 7), we have encountered a final output.
For DDR, we output the non-matched tuple itself (see Algorithm 2, line 8),
which is the key. For DER, generating the final output is more complex as
we need to translate the id (see Algorithm 2, line 9), which is the key, using
r Map, to each field of relation R, namely R.a and R.x.

19

4.2.3. Discussion

It is clear from Algorithms 1 and 2, that DER and DDR follow a similar
algorithmic structure. However, DDR is easier to implement compared to
DER. Indeed, in “setup(Context context)” of Map the in-memory map of
relation R (r Map) has a simpler structure for DDR, thus leading to easier
parsing of relation R, while DER requires also the storage of corresponding
ids. This simpler structure of r Map also results in an easier way of recording
which tuples of R match with tuples of S, during Map, and an easier way of
emitting non-matched tuples to Reduce during “cleanup(Context context)”
of Map.

In addition, in “setup(Context context)” of Reduce, DDR only needs to
get the number of executed Map operations. On the other hand, DER also
needs to load in-memory the relation R. Note that the map of relation R
in “setup(Context context)” of Reduce has a different structure compared
to the one loaded in “setup(Context context)” of Map, and thus, a different
parsing method needs to be implemented. In order to emit a non-matched
tuple during Reduce, for DDR we can emit directly the key itself, which is
the non-matched tuple. However, for DER we first need to translate the
given id into the corresponding tuple.

It is evident that DDR provides a simpler implementation compared to
DER for a cloud computing environment. However, for both DER and DDR
a naive approach would require two jobs, as follows. In the first job, during
Map, tuples of S are redistributed over k Reducers, with step 1 performed
in “setup(Context context)” of Reduce and step 2 performed during Reduce,
emitting both matched and non-matched results. In the second job, during
Map, both matched and non-matched results are passed to Reduce, followed
by MapReduce framework grouping/sorting (step 3), while step 4 is per-
formed during Reduce, emitting both matched and final non-matched tuples.
Such a naive implementation introduces the following overheads compared
to our algorithm: (1) the redistribution of tuples of S during the first job,
(2) emitting matched results during the first job and subsequently processing
them during the second job, and (3) processing non-matched tuples during
Map of the second job.

5. Experimental Setup

We have conducted a rigorous quantitative evaluation of the proposed
approach based on the setup as follows.

20

5.1. Platform

Our evaluation platform is the HRSK-II system of ZIH at TU Dresden.
Each node we used has two 12-core Intel Xeon CPU E2680 processors running
at 2.50 GHz, resulting in a total of 24 cores per physical node. Each node has
64GB of RAM and a single 128GB SSD local disk, and nodes are connected
by Infiniband. The operating system is Linux kernel version 2.6.32-279 and
the software stack consists of Hadoop version 1.2.1, Spark version 1.2.1, Scala
version 2.10.4 and Java version 1.7.0 25.

5.2. Datasets

We have used the TPC-H benchmark [23] in our tests. There are two
advantages for this choice: (1) the benchmark has been widely used in eval-
uating database queries with joins, and (2) there is no skew in the generated
data sets, which let us to be able to focus on the performance of join im-
plementation, rather than other issues (e.g., skew handling). We use the
following query in our experiments:

select *

from CUSTOMER left outer join SUPPLIER

on C.NATIONKEY = S.NATIONKEY

In this case, the generated tuples can be then considered as in the form
<key, payload> pairs. There are only 25 unique Nationkey values in TPC-
H, similar to other work [4], [24], we increase the number of the unique
Nationkey values to 10000. This guarantees that the generated tuples can
be more evenly distributed during the hash redistribution process. In the
meantime, the number of output results can be also efficiently reduced6.

For simplification, we refer to the relation CUSTOMER as R and the
relation SUPPLIER as S in the following. We generate different datasets by
varying the scale factor of TPC-H to generate datasets. As the inner join
cardinality (referred to as selectivity) is critical for outer joins (i.e., making
outer join and inner join implementations different), in our experiments, we
vary the values of selectivity for R and S from 0% to 100% (20% increment
in each step) by controlling the values on their join keys, while keeping the
sizes of R and S constant. For example, the selectivity with value 60% means

6For example, with only 25 unique keys, the join between 10K and 1B tuples will bring
in 400B tuples for a full match condition. In comparison, with 10K keys, the number will
be reduced to 1B (approximately 160GB).

21

that we randomly choose 60% of tuples of R and keep their keys unchanged,
while the rest of the tuples of R have their keys changed to their negative
values, so that they will have no matches in S.

5.3. Setup

We have chosen 17 nodes (408 cores) from the cluster for our experi-
ments. We chose one node as the master and the rest as the slavers (work-
ers). We implemented our tests over both the MapReduce and Spark frame-
work. We set the following parameters for the MapReduce implementations:
map.tasks.maximum and reduce.tasks.maximum to 24, the mapred.child.java.opts
to 1GB, while the remaining parameters were set to their default values. For
Spark, we set the following system parameters: spark worker memory and
spark executor memory were set to 60GB, and spark worker cores was set to
24. As the computational infrastructure is using a shared network and non-
virtualised computational resources, we believe that this setup approximates
commercial offerings. In particular, it very closely approximates the Bare
Metal servers in IBM Softlayer [25] and the Cluster instances in Amazon
EC2 [26].

For all of our experiments, we read input files and write the output on
HDFS. We configure HDFS to use the SSD on each node and use a 64MB
block size. For fault tolerance, each HDFS block is replicated three times.
We measure runtime as the elapsed time from job submission to the job
being reported as finished and we record the mean value based on three
measurements. Additionally, to focus on the runtime performance of each
outer join implementation, we only record the number of the final outputs,
rather than materialising the output (due to large output volumes in our
cases).

6. Evaluation

In this section, we present the experimental evaluation of the proposed
DDR approach and compare its performance with the approaches described
in Section 2, namely the ROJA, DOJA and DER algorithm. We are inter-
ested in how efficient the four approaches are, and how the join workloads
impact their performance, in the presence of small-large conditions. There-
fore, we focus on the four possible impact factors in our evaluation: the
number of tuples in S and R as well as the size of payloads in S and R. We

22

present the detailed results in the following. Moreover, we also evaluate the
scalability of each approaches by varying the number of nodes.

6.1. Impact of |S|
The size of tuples in S could affect the required time for tuple redistribu-

tion and local joins. To see how performance changes for increasing numbers
of tuples in S, we fix the number of tuples of R to 10K and vary the size of
S by 10M (1.5GB), 100M, 300M and 1000M tuples (160GB). The detailed
results over MapReduce and Spark are presented in Figure 3, where the two
numbers in the caption of each subfigure correspond to the number of tuples
of R and S.

For the MapReduce and Spark implementations, we have a clear picture
of the results. The ROJA, DER and DDR algorithms generally have steady
performance for varying join selectivity (recall that we do not include the
final output, which is the same for all four methods). In comparison, the
DOJA algorithm is highly affected by the join hit rate, mainly due to the
intermediate materialization of matching R and S joins (see the Stage 1 of
DOJA in Section 2). In the meantime, it can be observed that the DER
and DDR algorithms generally outperform the ROJA and DOJA algorithms
for different |S|. Moreover, though the runtime of all four algorithms is
increasing with increasing sizes of S, the cost difference between the two
conventional approaches and DER as well our proposed DDR is becoming
more clear, demonstrating the efficiency of the latter two approaches on
processing small-large outer joins. For a general case with selectivity 60%,
Figure 4 shows a more intuitive view of these changes. We can see that the
runtime of ROJA and DOJA increases sharply with increasing sizes of |S|,
while there is only slight increase for DER and DDR, due to the increment
of the local join workloads.

Comparing the runtimes of the four algorithms over the MapReduce and
Spark platform, it can be seen that the implementations of DOJA, DER and
DDR over the latter framework are generally faster than the former one. The
possible reason for this could be that these three algorithms result in rela-
tively complex implementations, and Spark processes the workflows in a more
efficient way, while having the advantage of in-memory storage. In compari-
son, for the simplest implementation - ROJA, when |S| is small, MapReduce
is initially faster than Spark and then becomes slower for increasing sizes of
|S|. The possible reasons could be that: (1) the overheads of implementation
of Spark is greater than our MapReduce implementation at the beginning,

23

0 2 0 4 0 6 0 8 0 1 0 00

5

1 0

1 5

2 0

2 5

3 0
Ru

nti
me

 (s
)

S e l e c t i v i t y (%)

 R O J A
 D O J A
 D E R
 D D R

(a) MapReduce, (10K, 10M)

0 2 0 4 0 6 0 8 0 1 0 00
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0

Ru
nti

me
 (s

)
S e l e c t i v i t y (%)

 R O J A
 D O J A
 D E R
 D D R

(b) MapReduce, (10K, 100M)

0 2 0 4 0 6 0 8 0 1 0 00
2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0
1 8 0
2 0 0

Ru
nti

me
 (s

)

S e l e c t i v i t y (%)

 R O J A
 D O J A
 D E R
 D D R

(c) MapReduce, (10K, 300M)

0 2 0 4 0 6 0 8 0 1 0 00
5 0

1 0 0
1 5 0
2 0 0
2 5 0
3 0 0
3 5 0

Ru
nti

me
 (s

)

S e l e c t i v i t y (%)

 R O J A
 D O J A
 D E R
 D D R

(d) MapReduce, (10K, 1000M)

0 2 0 4 0 6 0 8 0 1 0 00
5

1 0
1 5
2 0
2 5
3 0
3 5

Ru

nti
me

 (s
)

S e l e c t i v i t y (%)

 R O J A
 D O J A
 D E R
 D D R

(e) Spark, (10K, 10M)

0 2 0 4 0 6 0 8 0 1 0 00

1 0

2 0

3 0

4 0

5 0

6 0

Ru
nti

me
 (s

)
S e l e c t i v i t y (%)

 R O J A
 D O J A
 D E R
 D D R

(f) Spark, (10K, 100M)

0 2 0 4 0 6 0 8 0 1 0 00

2 0

4 0

6 0

8 0

1 0 0

1 2 0

Ru
nti

me
 (s

)

S e l e c t i v i t y (%)

 R O J A
 D O J A
 D E R
 D D R

(g) Spark, (10K, 300M)

0 2 0 4 0 6 0 8 0 1 0 00
5 0

1 0 0
1 5 0
2 0 0
2 5 0
3 0 0
3 5 0
4 0 0

Ru
nti

me
 (s

)

S e l e c t i v i t y (%)

 R O J A
 D O J A
 D E R
 D D R

(h) Spark, (10K, 1000M)

Figure 3: The runtime of the four algorithms over MapReduce and Spark by varying the
inner join selectivity and the number of tuples in S.

and (2) when |S| is huge, the data management (transferring and in-memory
storage) of Spark is more efficient than MapReduce.

24

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 00
5 0

1 0 0
1 5 0
2 0 0
2 5 0
3 0 0
3 5 0

Ru
nti

me
 (s

)

t u p l e s (m i l l i o n s)

 R O J A
 D O J A
 D E R
 D D R

(a) MapReduce

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 00

5 0

1 0 0

1 5 0

2 0 0

2 5 0

Ru
nti

me
 (s

)

t u p l e s (m i l l i o n s)

 R O J A
 D O J A
 D E R
 D D R

(b) Spark

Figure 4: The trends of runtime of different algorithms by varying the size of |S|. Here,
|R| = 10K and selectivity = 60%.

6.2. Impact of |R|
As the number of |R| would affect both the network communication (due

to data redistribution and duplication) and local join workloads, we also
examine how this factor impacts the runtime. In the scope of a small-large
case, we keep the number of tuples in S to 300M (46GB) and vary the number
of tuples in R by 10K, 100K, 300K and 1M (136MB). The detailed results
of the implementations over MapReduce and Spark are shown in Figure 5.
Results for |R| equal to 10K have been presented in Figure 3(c) and 3(g)
respectively.

It can be observed that runtimes for the ROJA algorithm remain rela-
tively stable for varying join selectivity, while runtimes for DOJA increase
sharply. Moreover, for the conditions with non-zero selectivity, DOJA cannot
cope with the experiments when |R| is greater than 10K. The reason for this
could be that the number of intermediate matched results becomes very large
and redistributing them is extremely expensive. This also means that DOJA
is generally not well-suited for small-large outer joins. In the meantime, we
can see that the DER and DDR algorithms show similar performance in
all four cases and their runtime generally decreases with the increase of the
selectivity. The reason for this could be that the number of non-matched
tuples decreases, which results in less data transferring. In the meantime, we
notice that the decrease of the runtime over Spark is more clear than that
over MapReduce. The reason could be that the performance over Spark is
more sensitive to the network communication.

When |R| is very small (i.e., 10K), DER and DDR perform much faster

25

0 2 0 4 0 6 0 8 0 1 0 00

2 0

4 0

6 0

8 0

1 0 0

1 2 0
Ru

nti
me

 (s
)

S e l e c t i v i t y (%)

 R O J A
 D O J A
 D E R
 D D R

(a) MapReduce, (100K, 300M)

0 2 0 4 0 6 0 8 0 1 0 00
5 0

1 0 0
1 5 0
2 0 0
2 5 0
3 0 0
3 5 0

Ru
nti

me
 (s

)
S e l e c t i v i t y (%)

 R O J A
 D O J A
 D E R
 D D R

(b) MapReduce, (300K, 300M)

0 2 0 4 0 6 0 8 0 1 0 00
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0

Ru
nti

me
 (s

)

S e l e c t i v i t y (%)

 R O J A
 D O J A
 D E R
 D D R

(c) MapReduce, (1M, 300M)

0 2 0 4 0 6 0 8 0 1 0 00

2 0

4 0

6 0

8 0

1 0 0

Ru
nti

me
 (s

)

S e l e c t i v i t y (%)

 R O J A
 D O J A
 D E R
 D D R

(d) Spark, (100K, 300M)

0 2 0 4 0 6 0 8 0 1 0 00

2 0

4 0

6 0

8 0

1 0 0

1 2 0

Ru
nti

me
 (s

)

S e l e c t i v i t y (%)

 R O J A
 D O J A
 D E R
 D D R

(e) Spark, (300K, 300M)

0 2 0 4 0 6 0 8 0 1 0 00

5 0

1 0 0

1 5 0

2 0 0

2 5 0

Ru
nti

me
 (s

)
S e l e c t i v i t y (%)

 R O J A
 D O J A
 D E R
 D D R

(f) Spark, (1M, 300M)

Figure 5: The runtime of different algorithms by varying the size of |R|.

than ROJA over both MapReduce and Spark platforms. However, their per-
formance changes as |R| is growing. For the MapReduce-based implementa-
tions, the runtime of DER and DDR start to perform slower than the ROJA
algorithm when |R| is greater than 100K. Meanwhile, when |R| reaches 1M,
the DER and DDR algorithms begin to perform similarly to ROJA, over the
Spark platform. For the general case with selectivity 60%, Figure 6 shows
the runtime trends of each algorithm with increasing |R|. It can be observed
that the duplication-based approaches are very sensitive to the size of R and
increase sharply with the increase of |R|. There are three possible reasons
for this: (1) the broadcast is becoming more expensive with increasing |R|;
(2) the increased number of non-matched results (ids) also brings in commu-
nication overheads; and (3) local joins between the broadcast |R| and locally
kept S become more expensive. In this process, DDR always performs simi-
lar to DER, which means that redistributing non-matched results or ids does
not have a clear impact on small-large outer joins, in terms of performance.

26

Moreover, w.r.t. performance advantage compared to the ROJA, it can be
noticed that the DER and DDR algorithm shows more tolerance on the size
of relation R over the Spark platform than MapReduce. The reason could
be the existing I/O overheads for the MapReduce-based implementations. It
can be seen that DER and DDR could lose their performance advantages
over ROJA, when |R| reaches 1M, which is still a much smaller size com-
pared to the relation S (300M tuples). This means that in real applications
we should examine or detect the threshold of the small relation very carefully
in small-large outer joins, though in many cases the relation may appear very
small.

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 00

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

Ru
nti

me
 (s

)

t u p l e s (t h o u s a n d s)

 R O J A
 D O J A
 D E R
 D D R

(a) MapReduce

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 00
2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0

Ru
nti

me
 (s

)

t u p l e s (t h o u s a n d s)

 R O J A
 D O J A
 D E R
 D D R

(b) Spark

Figure 6: The trends of runtime of different algorithm by varying the size of |R|. Here,
|S| = 300M and selectivity = 60%.

6.3. Impact of payload size in R

In the TPC-H datasets, the payloads for all tuples are always long strings,
while transferring such strings could bring heavy network communication as
well as local computation overheads (because of the extra serialized/deserialized
processing). Though large datasets in real applications could contains large
number of long strings, to check the detailed effects of the size of payload in
R, in our tests, we simply change the payload in a tuple from a string to an
integer.

Figure 7 presents the results for the join between 300K and 300M tuples
by changing the payloads in R. In this case, the size of R in MB is changed
from 41MB to 4MB. For a general case, we just show the runtimes where
selectivity is 40% and 60% (as the DOJA algorithm is costly we only present
the remaining three algorithms). It can be seen that the runtime of ROJA

27

remains generally the same with varying the payload size over both MapRe-
duce and Spark platforms. This is reasonable, since reducing the payload size
of the small relation has no clear impact on the time spent on redistribution
and the local join implementations. In comparison to that, the DER and
DDR algorithms show a clear decrease on runtime with reducing the pay-
load size. The reason for this could be that the cost of broadcast is highly
reduced. In the meantime, the I/O costs are also highly reduced for the
MapReduce-based implementations, which brings in more clear performance
improvements, compared to that over the Spark platform. This is partly at-
tributed to the fact that non-matched tuples between map and reduce phase
are temporarily stored in HDFS (for both DER and DDR), while for DER
the broadcast data is read by reducers (see Algorithm 2, line 2). All these
results together with the ones presented in previous subsection, indicate that
the size of the small relation in MB is also critical for the success of the DER
and DDR algorithms, for the case of small-large outer joins.

0
5 0

1 0 0
1 5 0
2 0 0
2 5 0
3 0 0

Ru
nti

me
 (s

)

 S t r i n g
 I n t

S e l e c t i v i t y = 6 0 %S e l e c t i v i t y = 4 0 %

A l g o r i t h m
D D RD E RR O J A D D RD E RR O J A

(a) MapReduce

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

A l g o r i t h m
D D RD E RR O J A

S e l e c t i v i t y = 6 0 %S e l e c t i v i t y = 4 0 %

Ru
nti

me
 (s

)

 S t r i n g
 I n t

D D RD E RR O J A

(b) Spark

Figure 7: Runtime of each algorithm by changing the size of payloads in R. The outer
join is between 300K and 300M tuples.

6.4. Impact of payload size in S

Similar as above, we also examine how the payload size of tuples in S
impacts the join performance by changing the payloads from strings to inte-
gers. In this condition, the size of S is changed from 46GB to 4GB. Figure 8
shows the results of the three algorithms (ROJA, DER and DDR) for the
join between 300K and 300M. The reduction of the size of S brings clear
runtime decrease for the three algorithms over both MapReduce and Spark
framework. Regardless, it can be observed that runtime of ROJA decreases

28

more sharply than runtime of DER and DDR, which makes it clearly faster
than the two algorithms when the payloads are integers, though the outer
joins can still be considered as a small-large join, in terms of both number of
tuples and size in MB (41MB join with 4GB). This indicates that it is bet-
ter to use the DER and DDR algorithm under the condition that the large
relation is large enough, in terms of size in MB.

0
5 0

1 0 0
1 5 0
2 0 0
2 5 0
3 0 0

Ru
nti

me
 (s

)

 S t r i n g
 I n t

S e l e c t i v i t y = 4 0 % S e l e c t i v i t y = 6 0 %

A l g o r i t h m
D D RD E RR O J A D D RD E RR O J A

(a) MapReduce

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

Ru
nti

me
 (s

)

 S t r i n g
 I n t

A l g o r i t h m
D D RD E RR O J A D D RD E RR O J A

S e l e c t i v i t y = 4 0 % S e l e c t i v i t y = 6 0 %

(b) Spark

Figure 8: Runtime of each algorithm by changing the size of payloads in S. The outer
join is between 300K and 300M tuples.

6.5. Scalability

We test the scalability (scale-out) of our approach by varying the number
of slaves (workers), from 48 cores (2 nodes) to 384 cores (16 nodes). For
a general case, we keep the selectivity to 60% and the number of tuples in
S to 300M (46GB). As we have shown in our previous results, MapReduce
and Spark have different tolerance on the concept of small in the scope of
small-large outer joins. According to the results demonstrated in Figure 6,
to make our evaluation here meaningful, i.e., in a case that DER and DDR
perform faster than conventional approaches, we keep the number of tuples
in R to 10K for MapReduce and 300K for Spark. The detailed results of our
tests are presented in Figure 9. We can see that the runtimes of all three
algorithms decrease with increasing numbers of cores, which means that they
generally scale well over both the MapReduce and Spark frameworks.

Moreover, we can see that the benefit of adding more cores (i.e., the
scaled speedup) decreases as the runtime becomes lower for all the cases. We
attribute this to platform overhead since the workload is comparably small
for the underlying platform as the number of cores increases. Comparing

29

the detailed performance of DER and DDR, it can be observed that both
algorithms perform nearly the same for both MapReduce and Spark. More
specifically, when the number of cores is small, DDR performs slightly slower
than DER over MapReduce, while slightly faster than DER over Spark. The
possible reasons are: (1) DDR transfers more than DER (transferring tuples
instead of ids) and thus its I/O overhead in MapReduce could make it slightly
slower; and (2) in contrast, there is no such overhead in Spark. In addition,
DDR is simpler than DER in terms of system implementations, allowing for
an easier and quicker development process. Regardless, with the underlying
system going to large-scale, such performance differences become negligible,
which is consistent with our previous theoretical analysis in Section 3.2.2.

0 1 0 0 2 0 0 3 0 0 4 0 00

1 0 0

2 0 0

3 0 0

4 0 0

Ru
nti

me
 (s

)

N u m b e r o f c o r e s

 R O J A
 D E R
 D D R

(a) MapReduce, (10K, 300M)

0 1 0 0 2 0 0 3 0 0 4 0 00

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0
Ru

nti
me

 (s
)

N u m b e r o f c o r e s

 R O J A
 D E R
 D D R

(b) Spark (300K, 300M)

Figure 9: Runtime of each algorithm over MapReduce and Spark by varying the number
of cores, with selectivity = 60%.

6.6. Discussion

In terms of general implementations, the proposed DDR approach has
the overhead of storing and sending the whole non-matched tuples, however
it does not need any further operations on data transformation. In compari-
son, the DER method has the advantage of less data transmission due to the
ids, but it also has an overhead of transforming ids. From the results pre-
sented above, we can see that DER and DDR scale well, and always achieve
very similar performance under various workloads, over both MapReduce and
Spark platforms, which is consistent with our theoretical analysis presented
in Section 3.2.2. All these mean that we can implement the proposed DDR
algorithm for small-large outer joins in a cloud based environment expecting
similar performance as the state-of-the-art DER algorithm. Note that DDR
is easier to implement, as we do not need to handle the encoding/decoding of

30

ids for non-matched results, though these operations would be lightweight as
we explained. In such scenarios, the DDR algorithm could be more preferable
for cloud-based architectures form an engineering point view.

Moreover, for an ideal small-large outer joins (e.g., the small relation is
small enough and the large one is large enough), our experimental results
have demonstrated that the DER and DDR algorithms can clearly outper-
form the two conventional approaches, which confirms that the presented
DER and DDR are the state-of-the-art approaches for small-large outer joins
in a cloud computing environment. Though in some cases, we see that ROJA
performs faster than or similar to the DER and DDR approaches, the main
reason is that the small relation is not sufficiently small. On the other hand,
it should be noted that ROJA could meet performance issues in the pres-
ence of data skew due to the load imbalance problem. In comparison, DER
and DDR are duplication-based approaches, thus they are more suitable for
processing skewed datasets. In fact, the optimizer of a given system could
pick the correct implementation based on the input so as to minimize run-
time. Additionally, it can be seen that DER and DDR have slightly different
behaviors on the Hadoop and Spark platforms. This is mainly attributed to
the fact that Spark runs everything in memory, while Hadoop relies heavily
on HDFS, resulting in extra I/O overheads.

7. Related Work

The studies in parallel joins on shared memory systems [1] and GPUs [27]
have already achieved significant performance speedups, through improve-
ments in architecture at the hardware-level of modern processors. Neverthe-
less, with the growing challenges from big data, the performance of their join
executions is limited by either the number of available threads, or the sys-
tem memory and I/O. Therefore, efficient implementations of parallel joins
on distributed memory machines such as in a cloud computing environment
are becoming more and more attractive.

To efficiently implement joins in a distributed architecture, various tech-
niques such as dynamic scheduling [28] and statistics [29], have been pro-
posed. Regardless, their implementations are still based on the two most
conventional join patterns: redistribution and duplication. Specifically, as
the latter operation is very costly in a distributed environment, normally it is
only applied to process small relations. Though some existing approaches use
duplication on large datasets [30], their implementations rely highly on the

31

emerging computing infrastructures (e.g., underlying high-speed networks),
which are normally unavailable in cloud computing environments.

Current research on outer joins focuses on optimization of existing meth-
ods, which mainly include outer join elimination [31], outer join reordering [6]
and view matching for outer join views [32]. There is little work done on outer
join implementations. The reason for this may be the assumption that in-
ner join techniques can be easily applied to outer joins [10]. However, as we
have described, outer joins have their unique characteristics, especially in the
condition that the implementation is using duplication.

Recently, several approaches have been designed on outer join implemen-
tations [8], [9], [33], [34] and the experiments have shown that they are very
efficient in this aspect. However, all proposed methods focus on data skew
handling (either single or pipeline joins) in large-large joins, but not improv-
ing the performance for the small-large outer joins. As we have described,
the DER algorithm [10] is the state-of-the-art approach in such cases. Re-
gardless, our DDR method is shown to be easier to implement and has no
usage constrains. More importantly, as demonstrated in our experiments,
DDR always achieves similar performance as DER under different workloads
in a cloud computing environment.

Regarding joins in a cloud computing environment, most of current works
focus on proposing novel data skew handling techniques to improve the load-
balancing and scalability of join implementations in the presence of big data
(e.g., SALA [35], SkewTune [36] and the approaches presented in [37], [38]),
as opposed to the detailed implementation and evaluation of joins that is
studied in this work. Moreover, the large scale data-analytics community
has developed its own set of parallel processing paradigms and related join
operations. For example, popular platforms such as Spark [13], provide their
APIs for different join implementations. In the meantime, several efforts in
designing high level query languages on MapReduce, such as Pig [39] and
Hive [40], also provide high level join operations. In addition to that, to
support ad-hoc data access, various key-value stores such as HBase [41] and
Cassandra [42] provide related functions as well. However, their outer join
implementations are still based on the two conventional approaches, namely
ROJA and DOJA, without any specified optimizations for the small-large
case, which has been studied in this work. Furthermore, though the work
in [18] presents an extensive implementation of joins in MapReduce, it focuses
on execution profiling and performance evaluation of inner joins, but not of
outer joins. The recent work [11, 19] has implemented efficient outer joins

32

in cloud computing environments, still, it just focuses on skew handling in
large-large joins.

To the best of our knowledge, this is the first work specified for detailed
design and evaluation of small-large outer joins in cloud computing environ-
ments, and we have shown that the proposed DDR approach is efficient and
can be easily applied in such environments. Moreover, we believe that the
evaluation conducted in this work and the described results are of value to
the community as a basis for understanding the merits of the approach. In
the meantime, based on the advantages of our new implementation, we ex-
pect that our approach will also be efficient and easy to implement in more
complex enviroments such as heterogeneous environments [43], which require
more efficient strategies on resource management [28], [44].

8. Conclusions

In this paper, we have introduced a new outer join algorithm called DDR
(duplication and direct redistribution), which is specified for efficient pro-
cessing of small-large outer joins in cloud computing environments. We have
presented the detailed implementation of our algorithm and conducted an ex-
tensive evaluation of this method over the MapReduce and Spark platforms.
Compared to the state-of-art DER approach [10], we have shown that DDR:
(1) is easier to implement; (2) scales well and achieves similar performance to
DER; and (3) has no usage constrains in real commercial cases. In such sce-
narios, our new approach can be considered as a new option for cloud-based
large-scale data analysis applications. Moreover, the detailed experimental
results characterizing current implementations will also contribute to the en-
gineering in this domain.

Acknowledgments

Part of the work was done when Long Cheng worked at TU Dresden, and
supported by the German Research Foundation (DFG) within the Cluster
of Excellence “Center for Advancing Electronics Dresden” (cfaed), the Col-
laborative Research Center SFB 912 (HAEC) and Emmy Noether grant KR
4381/1-1 (DIAMOND).

33

References

[1] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D. Nguyen, N. Satish,
J. Chhugani, A. Di Blas, P. Dubey, Sort vs. hash revisited: fast join
implementation on modern multi-core CPUs, Proc. VLDB Endowment
2 (2) (2009) 1378–1389.

[2] D. DeWitt, J. Gray, Parallel database systems: the future of high per-
formance database systems, Commun. ACM 35 (6) (1992) 85–98.

[3] D. J. DeWitt, J. F. Naughton, D. A. Schneider, S. Seshadri, Practical
skew handling in parallel joins, in: Proc. 18th Int. Conf. Very Large
Data Bases, 1992, pp. 27–40.

[4] Y. Xu, P. Kostamaa, X. Zhou, L. Chen, Handling data skew in parallel
joins in shared-nothing systems, in: Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2008, pp. 1043–1052.

[5] L. Cheng, S. Kotoulas, T. E. Ward, G. Theodoropoulos, Robust and
skew-resistant parallel joins in shared-nothing systems, in: Proc. 23rd
ACM Int. Conf. Inf. Knowl. Manage., 2014, pp. 1399–1408.

[6] C. Galindo-Legaria, A. Rosenthal, Outerjoin simplification and reorder-
ing for query optimization, ACM Trans. Database Syst. 22 (1) (1997)
43–74.

[7] M. Atre, Left bit right: For SPARQL join queries with OPTIONAL
patterns (left-outer-joins), in: Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2015, pp. 1793–1808.

[8] L. Cheng, S. Kotoulas, T. E. Ward, G. Theodoropoulos, Robust and
efficient large-large table outer joins on distributed infrastructures, in:
Proc. 20th Eur. Conf. Parallel Process., 2014, pp. 258–369.

[9] N. Bruno, Y. Kwon, M.-C. Wu, Advanced join strategies for large-scale
distributed computation, Proc. VLDB Endowment 7 (13) (2014) 1484–
1495.

[10] Y. Xu, P. Kostamaa, A new algorithm for small-large table outer joins
in parallel DBMS, in: Proc. IEEE 26th Int. Conf. Data Eng., 2010, pp.
1018–1024.

34

[11] L. Cheng, S. Kotoulas, Efficient skew handling for outer joins in
a cloud computing environment, IEEE Trans. Cloud Comput. (in
press)doi:10.1109/TCC.2015.2487965.

[12] J. Dean, S. Ghemawat, MapReduce: simplified data processing on large
clusters, Commun. ACM 51 (1) (2008) 107–113.

[13] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, I. Stoica, Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing, in: Proc.
9th USENIX Conf. Netw. Syst. Des. Implementation, 2012, pp. 15–28.

[14] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden,
M. Stonebraker, A comparison of approaches to large-scale data analysis,
in: Proc. ACM SIGMOD Int. Conf. Manage. Data, 2009, pp. 165–178.

[15] Y. Xu, O. P. Kostamaa, Performing an outer join between a small table
and a large table, U.S. Patent No. 8,600,994 (Dec. 3 2013).

[16] S. Kotoulas, E. Oren, F. Van Harmelen, Mind the data skew: distributed
inferencing by speeddating in elastic regions, in: Proc. 19th Int. Conf.
World Wide Web, 2010, pp. 531–540.

[17] L. Cheng, S. Kotoulas, T. E. Ward, G. Theodoropoulos, Design and
evaluation of parallel hashing over large-scale data, in: Proc. 21st Int.
Conf. High Perform. Comput., 2014, pp. 1–10.

[18] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, Y. Tian,
A comparison of join algorithms for log processing in MapReduce, in:
Proc. ACM SIGMOD Int. Conf. Manage. Data, 2010, pp. 975–986.

[19] L. Cheng, S. Kotoulas, Efficient large outer joins over MapReduce, in:
Proc. 22nd Eur. Conf. Parallel Process., 2016, pp. 334–346.

[20] D. Borthakur, HDFS architecture guide, Hadoop Apache Project (2008)
53.

[21] C.-Y. Lin, C.-H. Tsai, C.-P. Lee, C.-J. Lin, Large-scale logistic regression
and linear support vector machines using Spark, in: Proc. IEEE 3rd Int.
Conf. Big Data, 2014, pp. 519–528.

35

[22] S. Wu, F. Li, S. Mehrotra, B. C. Ooi, Query optimization for massively
parallel data processing, in: Proc. 2nd ACM Symposium on Cloud Com-
puting, no. 12, 2011.

[23] T. P. P. Council, TPC-H benchmark specification, Published at
http://www.tpc.org/tpch/.

[24] W. Liao, T. Wang, H. Li, D. Yang, Z. Qiu, K. Lei, An adaptive skew
insensitive join algorithm for large scale data analytics, in: Proc. 16th
Asia-Pacific Web Conf., 2014, pp. 494–502.

[25] http://www.softlayer.com/.

[26] https://aws.amazon.com/ec2/.

[27] B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo, P. Sander,
Relational joins on graphics processors, in: Proc. ACM SIGMOD Int.
Conf. Manage. Data, 2008, pp. 511–524.

[28] K. Imasaki, S. P. Dandamudi, An adaptive hash join algorithm on a
network of workstations, in: Proc. Int. Parallel and Dist. Process. Symp.,
2002.

[29] M. Al Hajj Hassan, M. Bamha, An efficient parallel algorithm for eval-
uating join queries on heterogeneous distributed systems, in: Proc. Int.
Conf. High Perform. Comput., 2009, pp. 350–358.

[30] P. W. Frey, R. Goncalves, M. Kersten, J. Teubner, Spinning relations:
high-speed networks for distributed join processing, in: Proc. 5th Int.
Workshop Data Manage. on New Hardware, 2009, pp. 27–33.

[31] J. Rao, H. Pirahesh, C. Zuzarte, Canonical abstraction for outerjoin
optimization, in: Proc. ACM SIGMOD Int. Conf. Manage. Data, 2004,
pp. 671–682.

[32] P.-Å. Larson, J. Zhou, View matching for outer-join views, The VLDB
Journal 16 (1) (2007) 29–53.

[33] Y. Xu, P. Kostamaa, Efficient outer join data skew handling in parallel
DBMS, Proc. VLDB Endowment 2 (2) (2009) 1390–1396.

36

[34] L. Cheng, S. Kotoulas, T. Ward, G. Theodoropoulos, Efficient handling
skew in outer joins on distributed systems, in: Proc. 14th IEEE/ACM
Int. Symp. Cluster, Cloud Grid Comput., 2014, pp. 295–304.

[35] Z. Lin, M. Cai, Z. Huang, Y. Lai, SALA: A skew-avoiding and locality-
aware algorithm for MapReduce-based join, in: Proc. 16th Int. Conf.
Web-Age Information Manage., 2015, pp. 311–323.

[36] Y. Kwon, M. Balazinska, B. Howe, J. Rolia, Skewtune: Mitigating skew
in Map-Reduce applications, in: Proc. ACM SIGMOD Int. Conf. Man-
age. Data, 2012, pp. 25–36.

[37] J. Myung, J. Shim, J. Yeon, S.-g. Lee, Handling data skew in join algo-
rithms using MapReduce, Expert Systems with Applications.

[38] M. A. H. Hassan, M. Bamha, F. Loulergue, Handling data-skew effects
in join operations using Map-Reduce, Procedia Computer Science 29
(2014) 145–158.

[39] A. F. Gates, O. Natkovich, S. Chopra, P. Kamath, S. M. Narayana-
murthy, C. Olston, B. Reed, S. Srinivasan, U. Srivastava, Building a
high-level dataflow system on top of Map-Reduce: the Pig experience,
Proc. VLDB Endowment 2 (2) (2009) 1414–1425.

[40] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, R. Murthy, Hive: a warehousing solution over a Map-Reduce
framework, Proc. VLDB Endowment 2 (2) (2009) 1626–1629.

[41] L. George, HBase: the definitive guide, ” O’Reilly Media, Inc.”, 2011.

[42] A. Lakshman, P. Malik, Cassandra: a decentralized structured storage
system, ACM SIGOPS Operating Systems Review 44 (2) (2010) 35–40.

[43] Q. Chen, J. Yao, Z. Xiao, Libra: Lightweight data skew mitigation in
Map-Reduce, IEEE Trans. Parallel and Dist. Syst. 26 (9) (2015) 2520–
2533.

[44] X. Zhang, T. Kurc, T. Pan, U. Catalyurek, S. Narayanan, P. Wyckoff,
J. Saltz, Strategies for using additional resources in parallel hash-based
join algorithms, in: Proc. 13th IEEE Int. Symp. High Perform. Dist.
Compt., 2004, pp. 4–13.

37

