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Abstract. 

 

The densification kinetics and structure of TiB2-TiC-C, TiB2-C and TiB2-B4C-C hetero-modulus 

ceramics produced via reaction hot-pressing of B4C and TiС precursors are investigated. The reaction begins 

at 1100°C with boron carbide decomposition and progresses in two main stages which can be predominantly 

determined by the boron atoms to TiC grains diffusion mechanisms. The solid phase grain boundary 

diffusion starts at 1100°C and effective gas phase transport finalises the reaction at temperatures above 

1400°C. Two distinctive waves of the charge consolidation allow densifying investigated refractory 

materials at 1900°C and 30MPa during 16 minutes. The reaction is shown to define the features of the 

composite structure: submicron TiB2 particles and faceted voids in B4C matrix, flake-like graphite and TiB2 

inclusions in TiC matrix. High concentration of carbon atoms (~ 10 at.%) in synthesized diboride titanium  

grains have been observed.  

 

Keywords: hetero-modulus ceramics, structure, reaction hot pressing, interaction mechanisms, 

densification 

 

1. Introduction 

 

Anoxic ceramics possess excellent properties such as high melting points, hardness and Young’s 

modulus [1] which make it possible to use them as structural   materials under extreme conditions of 

ultrahigh temperature [2, 3]. The main issue for all materials based on covalent bonding structure is their 

brittleness which results in low toughness and low thermal stress resistance [4]. This also adds to   poor 

machinability [5] and limit practical use of such materials. Hasselman with coworkers managed to improve 

thermal shock durability of alumina [6] and zirconium carbide [7] by adding h-BN (hexagonal boron nitride)   

and experimentally confirmed [4] that the thermal stress resistance of ceramics with high values of Young’s 

modulus can be increased considerably by the adding   “soft” dispersed phase particles. Similarly,  low-E 

(where E is Young’s modulus) inclusions of graphite or graphite-like boron nitride can also improve 

machinability and oxidation stability of such superhard materials as silicon nitride [5, 8], boron carbide [9], 

transitional metals carbides [10 – 12]. The term “Hetero-Modulus Ceramics” (HMC) is slowly established in 



the ceramic community. It is worth to note that mentioned above HM gained machinability and thermal 

shock resistance, inevitably lost hardness but their high temperature characteristics have not degraded as 

both boron nitride and graphite melting points are higher than 3000°C [13].  

It is possible to anticipate that the toughness and strength would decrease with “soft” phase fraction 

inclusion which indeed has been shown experimentally for h-BN-containing HMC with various matrixes 

such as B4C [9], ZrC [7], Al2O3 [6] and Si3N4 [5]. Nevertheless, there are some   data in the similar 

composites showing strength [8] or toughness [14] rise at 5 – 10 vol. % of soft phase. The only substantial 

difference of the latter set of ceramics was that the nanoscale sizes of boron nitride inclusions they 

contained.  On this basis it is possible to predict that one, by the providing proper composite dispersion, can 

improve both machinability and toughness.  

Ceramic sintering temperature depends to the great extent on the initial powder melting point, so it is 

expectable that anoxic HMC sintering process requires heating to ultrahigh temperatures. For example TiC-

graphite composites were hot pressed at 2700°C for 30 minutes [10]. Enthalpy of the reactions can aid with 

the lowering sintering temperature and the authors [15] managed to optimize TiC-TiB2-C composite 

sintering conditions to 1900°C and 16 minutes using the reaction between ТіС and В4С during charge 

consolidation. Fracture toughness of sintered composites has depended strongly on graphite inclusion 

content having maximum at 5 – 15 vol. % of the soft phase. The possibility of such improvement have been 

claimed to be connected to the peculiarities of the composite structure which was developed via 

aforementioned solid phase reaction. However both reaction and structure were described just in outline.  

The main purpose of the present work is to investigate ТіС-В4С reactions and synthesis parameters 

influence on consolidation kinetics and structure of TiC-TiB2-C and B4C-TiB2-C HMCs.  

 

2. Experimental 

Commercially available powders of TiC (30 – 50 μm) and B4C (60 μm) (all of them produced by 

Donetsk Reactive Factory, Ukraine) were used as starting materials. Both materials have 99.0% purity. 

 

2.1. Bulk ceramic sample sintering and preparation 

 

The powder mixtures of different compositions (Table 1) were grinded in a planetary mill for 16 

minutes and hot-pressed in a graphite die, without a special protective atmosphere. Hot-pressing 

temperatures ranged from 1800 to 1950 ºС for main sample set (№1 - №10) and from 1200 to 1800 ºС for 

additional one (№11 - №13). The pressure of 30 MPa and isothermal dwelling time of 16 minutes were 

applied for hot-pressing procedure. Densification kinetics was observed during the hot-pressing using video 

registration of micrometre with an error of not more than 10 μm. 



 

Table 1.  

Initial powder composition and sintering temperature  

№ TiC, at. % B4C, at. % 

Sintering 

temperature, 

°C 

1 4.3 95.7 1900 

2 7.4 92.6 1850 

3 13.8 86.2 1800 

4 21 79 1800 

5 28.5 71.5 1800 

6 44.4 55.6 1800 

7 61.5 48.5 1850 

8 76.2 23.8 1900 

9 86.5 13.5 1900 

10 93.2 6.8 1950 

11 44.4 55.6 1200 

12 44.4 55.6 1400 

13 44.4 55.6 1600 

 

The bulk densities of obtained materials were measured using the Archimede’s method and relative 

densities were calculated on the basis of the theoretical densities of TiB2 (4.495 g/cm3), TiC (4.9 g/cm3), 

B4C (2.51 g/cm3) and C (graphite) (2.28 g/cm3) assuming the rule of mixtures. Crystalline phase presence in 

the hot-pressed specimens was determined by X-ray diffractometry (DRON–4M, St. Petersburg, Russia). 

Microstructural observations and local compositional analysis measurements were taken with SEM and 

SEM-EDX. For further investigation, some specimen surfaces were polished with diamond abrasive 

powders. The heat effect and adiabatic temperature were calculated using thermochemistry data from the 

NIST Chemistry WebBook [10]. 

 

2.2. Contactless investigation of the interaction between TiC and B4C 

  

To clarify the influence of B4C decomposition on TiB2 formation mechanisms the possibility of 

contactless interaction (gas phase transport) between titanium and boron carbides at 1100 – 1900 0С was 

investigated in a separate set of experiments.  



 

Figure 1. Contactless interaction experiment package drawing 

 

For this purpose TiC and B4C discs (d = 10mm, h = 5mm) from pure materials were sintered at 

1300°C and 10MPa for 16 minutes and had relative density of approximately 60%. Sample surfaces were 

grinded and cleaned with acetone. Graphite ring was positioned between titanium and boron carbide plates 

to prevent contact (Fig.1). The package was annealed in graphite die for 16 minutes with no special 

protective atmosphere. This way, the time and atmosphere were similar to those of main samples (№ 1 – 10, 

Table 1) sintering. Phase changes of both surfaces after annealing were investigated with XRD. 

 

3. Results and discussion 

 

3.1. Densification and new phase emerging 

 

The X-ray diffractometry of hot-pressed ceramics  presented in Fig.2 has showed that the sintering 

process causes the initial TiC and B4C phase content reduction and this has been coincided with TiB2 and 

graphite formation. It was proposed by us earlier that the following chemical reaction between titanium and 

boron carbides  in this case takes place: 

2TiС + B4C = 2TiВ2 + 3С.   (1) 

 



 

Figure 2. X-ray diffractometry of stoichiometric (2TiC-B4C) composition (samples 6, 11-13, Tab.1) 

sintered at different temperatures: a – initial powder; b – 1200°C; c – 1400°C; d – 1600°C; e – 1800°C. 

 

As it can also be seen in Fig.2, the reaction (1) begins at a temperature which is lower than 1200°C 

and progresses slowly up to 1400°C. Further increases in temperature lead to considerable reaction rate 

rising, so it is mostly completed after 16 minutes at 1600°C (Fig.2d). 



 

Table 2. 

Composition (estimated considering reaction 1 to be completed [8]) and density of the samples after hot 

pressing 

 

 

 

 

G

raphics 

in Fig.3 

illustrat

e the 

differen

ces in densification kinetics of samples 2, 6 and 9 (Tab.2). In sample 6 (Fig. 3b) the first stage of significant 

porosity decreasing begins at 1100°C and the second one at 1550°C. Considering Fig.2 these stages 

correspond to the beginning of the reaction (1) below 1200°C and its acceleration between 1400°C and 

1600°C, so they should be the reflections of different interaction mechanisms. 

 

Figure 3. Densification kinetics for samples: №2 (a), №6 (b) and №9 (c). 

 

Similar stages in relevant temperature intervals can be seen in Fig. 3a and 3c though they are not so 

clear. The latter proves the reaction process affects the densification as samples 2 and 9 initial powders 

contain no more than 20% of stoichiometric (2TiC-B4C, equation 1) mixture while the 6-th sample titanium 

to boron carbides ratio is just 2:1 (see Table 1). There is one more simply noted attribute of the sintered 

samples: densities of the composites are higher than corresponding theoretical values and the discrepancy is 

again the greatest (~ 10%) for the stoichiometric composition (See Table 2). The mismatch is striking 

because the reaction (1) occurs with no dilatometric effect: the densities of 2TiC+B4C and 2TiB2+3C 

compositions differ not more than 0.1%. It means that the deviation cannot be explained just with the 

completeness of the transformation (actually noticeable in Fig. 1 as very little but distinct TiC peaks). 

№ TiC, v. % B4C, v. % TiB2, v. % C, v. % ρ, g/cm3 

ρtheor,  

g/cm3 

1 0 89.7 6.8 3.5 2.64 2.65 

2 0 82.2 11.8 6 2.79 2.75 

3 0 67.3 21.6 11.1 3.12 2.95 

4 0 50.7 32.6 16.7 3.4 3.16 

5 0 33.9 43.7 22.4 3.64 3.37 

6 1 0 65 34 4.15 3.77 

7 34.5 0 43.3 22.2 4.41 4.16 

8 61.2 0 25.6 13.2 4.72 4.46 

9 78.7 0 14.1 7.2 4.83 4.66 

10 89.4 0 7 3.6 4.79 4.78 



3.2. Structure of the composites 

 

Phase distribution on composite fracture surfaces presented in Fig. 4 – 6 corresponds to XRD data 

[15] and reflects phase composition variation according to initial component ratio. Low TiC in initial 

powder content, like in samples 2 and 4 (Fig. 4, 7a) provides boron carbide matrix with titanium diboride 

and graphite inclusions.  

 

Figure 4. SEM analysis of sintered sample fracture surfaces: №2 (a), №4 (b) 



 

 Figure 5. SEM analysis of sintered sample 6 fracture surface 

Boron and titanium carbides disappearance during hot pressing of stoichiometric mixture (sample 6, 

Tables 1, 2) leads to formation of TiB2-based matrix containing considerable, up to 34 vol.% amount of 

carbon precipitates (Fig. 5). Further initial TiC content increasing (samples 7 – 10, Table 1, Fig. 6) results 



similar composites with titanium carbide and diboride matrix. 

 

Figure 6. SEM analysis of sintered sample fracture surfaces: №7 (a), №9 (b) 

Analysis of SEM pictures (Fig. 4 – 6) allows noting some features of sintered materials structure. 

Boron carbide matrix of samples 1 – 5 (see Fig. 4) contains certain amount of micro voids bordered with 

smooth walls resembling crystalline faceting. Considering that the walls of different voids within the same 

grain are parallel to each other one can definitely connect them to boron carbide crystal plains. Another 

peculiarity of mentioned samples is two types of titanium diboride grains: crystallites of 2 – 10 μm and 

submicron inclusions allocated within boron carbide matrix. It is evidently that relatively large grains inherit 

initial powder structure while submicron particles (Fig. 4) within B4C crystals should reflect sintering 

process peculiarities. Diboride particles in the samples 7 – 10 (Table 1, Fig. 6) are also of two different 



types: shapeless grains alternated with graphite and plate-like ones surrounded by TiC. 

 

Figure 7. Graphite inclusions in sintered composites: №2 (a), №8 (b) 

Graphite phase is distributed in the hard carbide-boride matrix nonhomogeneously (Fig. 7). 

Considerable amount of carbon is accumulated in 10 – 50μm areas mixed with TiB2 particles (Fig. 6, 7), 

while rest of the phase forms isolated flake-like inclusions (Fig. 8).  

 

Figure 8. Flake-like graphite inclusion (sample 8) 

 



Interestingly that additional milling of the initial powder mixture (it has been done for the 

stoichiometric sample 6) does not affect aforementioned graphite-enriched areas in the material after hot 

pressing so their appearance should also be referred to the composite sintering process.  

3.3. Contactless TiC-B4C interaction. 

Following [13], boron carbide enthalpy reverses positive at temperatures higher than 1000°C thus it 

becomes unstable at elevated temperatures. As it can be seen from Table 3 data annealing of Fig.1 

arrangement up to 1300°C doesn’t alter surface phase composition significantly. 

Table 3 

Phase composition (according to XRD analysis) of B4C and TiC sample surfaces (Fig. 7) after 

annealing 

Annealing temperature 

Surface phase composition, at% 

ТіС sample В4С sample 

ТіС TiB2 TiCN BN B4C С (graphite) 

1100 0С 100 - - - 97 3 

1300 0С 100 - - - 95 5 

1400 0С 94 2 4 - 66 34 

1500 0С 57 33 10 - 62 38 

1900 0С 23 52 23 3 58 42 

 

At temperatures more than 1400°С titanium diboride formation occurred on ТіС sample surface 

while boron carbide evidently decomposes loosing boron atoms. Temperature increasing intensifies boron 

carbide decomposition resulting diboride being predominant phase on carbide sample surface. Thus the non-

contact interaction experiment proved gaseous transport of boron atoms to be efficient way of TiB2 creation 

at elevated temperatures. 

 

3.4. Discussion. Interaction and structure formation mechanisms. 

Correlation between consolidation and reaction stages according to densification kinetics and XRD 

data (Fig. 1 and 2) together with essential decreasing of sintering temperature and time comparing to similar 

material creation [16] allows to assume that the main role in presented composites structure formation plays 

the reaction (1) occurring alongside with hot pressing of initial powder mixtures. Sample sintering 

temperature (≤1900°C) is considerably lower than melting points of both starting components and products 

hence the boron and titanium carbides interaction occurs with no liquid phase. As is shown in [17] titanium 

carbide has wide homogeneity region and actually is TiC1-x where x = 0.1÷0.4 thus its cubic lattice contains 

a great amount of vacancies in carbon places which can easily be filled up with boron atoms being similar in 

their sizes to carbon ones. On the other hand, boron carbide formation enthalpy turns positive at 1000°C so 

B4C phase becomes metastable at higher temperatures. Experiments in contactless TiC-B4C interaction (See 

Fig. 1, Table 3) showed that its decomposition causes extremely effective boron atoms to TiC surface 



transport at temperatures higher than 1400°C which correlates pointedly with the reaction (1) intensification 

(Fig. 2).  

The solid-phase reaction between titanium and boron carbides most probably begins with B4C 

decomposition. In TiC-B4C contacts boron atoms diffuse into titanium carbide grains accumulating in vacant 

carbon places. At certain concentration the energy of solid solution of boron in TiC becomes higher than that 

of carbon in TiB2 thus diboride nucleation occurs. The lattice tolerance to carbon decreases and provokes its 

migration towards grain boundary where it can dissolve in nearby carbide grain or (if there is lack of vacant 

places in the lattice) consolidate into plate-like precipitates (Fig. 8). New boride crystal appearing according 

to described mechanism should actually be a nucleus of oversaturated solid solution of carbon in titanium 

diboride. As is shown with EDX-analysis (Fig. 9) TiB2 grains really contain approximately 10 at.% of C-

atoms.  

 

Figure 9. EDX analysis of sample 8 polished surface 

The latter consequently means that considerable amount of carbon doesn’t segregate into separate 

phase but remains inside diboride grains as solid solution. It means graphite (the most soft and light) phase 

content is approximately 20% less than estimated according to reaction (1). It should inevitably result 

density increasing which we indeed observed experimentally (See Table 2). It can be noted that considering 

[18], carbon solubility in titanium diboride is less than 2 at.% so aforementioned solid solution is in highly 

nonequilibrium state but, the investigation of the phase should be the topic of separate experimental work 

and here we just propose its appearance as the most probable explanation of all the collected data. 

Thereby considering the reaction mechanisms and kinetics the first stage of composite structure 

formation begins at T > 1000°C with diffusion of boron into titanium carbide grains via intergranular 

contacts. After accumulating of B-atoms in certain volume of TiC grain TiB2 nucleation occurs. Because of 

lattice discrepancy as well as probable carbon precipitation nucleated diboride nanoparticle breaks off the 

mother grain under external loading. Such destruction of grain contact regions initiates first densification 

stage and explains the presence of TiB2 submicron particles (Fig.4). The reaction decelerates because of 



product interlayer formation. Further temperature increasing results boron sublimation from all the surfaces 

of B4C grains. B-atom transport via gas phase is not limited with titanium and boron carbides intergranular 

contacts.  So the second consolidation wave begins. Reaction (1) heat effect increases almost linearly with 

temperature from ∆H -170kJ/mole at 1000°C to ∆H -220kJ/mole at 1800°C. Its adiabatic temperature at 

1600°C amounts to 2600°C which is higher than boron carbide dissociation temperature (2450°C). Quick 

depletion of boron carbide surface provokes B diffusion from inner crystalline areas and formation of 

vacancies and vacancy clusters. Such clusters join into voids presented in Fig. 3a and 3b. When TiC amount 

is sufficient the depletion process can continue leaving at last shapeless carbon inclusion instead of B4C 

grain. C-atoms being replaced with boron during TiC – TiB2 transformation diffuse and cluster somewhere 

near nucleating diboride grain either piling up B4C remnants or forming individual plate-like precipitates 

(Fig. 7). Such precipitates formation corresponds to John and Jenkins [19] referring to similar effect in 

annealed TiC-graphite system. When an amount of carbon is not sufficient to oversaturate nearby carbide 

lattice, clear TiC-TiB2 interface (Fig. 9) appears.  

Intensification of the interaction (1) at 1600°C increases temperature in local areas and accelerates 

titanium diboride and graphite formation. Graphite precipitates emerging into grain boundaries soften 

intergranular links. The latter occurring under the external pressure facilitates the densification and allows 

obtaining bulk heteromodulus refractory materials with improved toughness at comparatively low 

temperatures. 

 

 

5. Conclusions 

 

- Processes of the densification kinetics and structure of TiB2-TiC-C, TiB2-C and TiB2-B4C-C hetero-

modulus ceramics produced via reaction hot-pressing of B4C and TiС precursors are investigated. 

- The interaction between titanium and boron carbides starts with B4C decomposition and B-atoms 

accumulation inside TiC grains in vacant C places. At certain boron concentration initial TiC lattice ceased 

to posses the lowest energy and TiB2 nucleus emerges pushing carbon out. Thus, two types of graphite areas 

in sintered composite structure can be described as (i) shapeless remnants of boron carbide and (ii) plate-like 

precipitates being formed as a result of TiB2 nucleation.  

- Titanium diboride produced during synthering contains approximately 10 at.% of carbon atoms 

failing to escape the lattice during TiC – TiB2 transformation. In the result the soft graphite phase content in 

sintered composites is ~ 20% lower than the value which can be estimated basing on the reaction (1). The 

fact can explain higher density of created samples and should be considered in material composition 

prediction. material composition. 

- The sintering  of powder mixtures occur in two main stages. First stage begins at approximately 

1100°C with boron atoms diffusion into TiC grains through intergranular contacts. The second is caused by 



intense gaseous transport of boron atoms from B4C grain surfaces occurring at temperatures higher than 

1400°C and resulting in quick (16 minute at 1800°C) composite densification and reaction (1) completion. 
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