
University of Huddersfield Repository

Alturbeh, Hamid and Whidborne, James F.

Real-time obstacle collision avoidance for fixed wing aircraft using B-splines

Original Citation

Alturbeh, Hamid and Whidborne, James F. (2014) Real-time obstacle collision avoidance for fixed
wing aircraft using B-splines. In: UKACC International Conference on Control 2014, 9th - 11th
July 2014, Loughborough, UK.

This version is available at http://eprints.hud.ac.uk/id/eprint/30348/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Real-time Obstacle Collision Avoidance for Fixed
Wing Aircraft Using B-splines

Hamid Alturbeh
School of Engineering, Cranfield University

Bedfordshire MK43 0AL, UK.
Email:h.alturbeh@cranfield.ac.uk

James F. Whidborne
School of Engineering, Cranfield University

Bedfordshire MK43 0AL, UK.
Email:j.f.whidborne@cranfield.ac.uk

Abstract—A real-time collision avoidance algorithm is devel-
oped based on parameterizing an optimal control problem with
B-spline curves. The optimal control problem is formulated in
output space rather than control or input space, this is feasible
because of the differential flatness of the system for a fixed wing
aircraft. The flat output trajectory is parameterized using a B-
spline curve representation. In order to reduce the computational
time of the optimal problem, the aircraft and obstacle constraints
are augmented in the cost function using a penalty function
method. The developed algorithm has been simulated and tested
in MATLAB/Simulink.

Keywords—Aircraft control, Aerospace trajectories, Au-
tonomous vehicles, Splines, Obstacle avoidance, Receding horizon.

I. INTRODUCTION

Unmanned Aircraft Systems (UAS) are of increasing im-
portance in the aerospace industry for both civilian and military
applications due to their ability to complete dull, dirty and
dangerous missions [1]. However, operation of Unmanned
Aerial Vehicles (UAV’s) in civil/non-segregated airspace is re-
stricted by the policies of aviation authorities which require full
compliance with rules and obligation that apply for manned
aircraft [2]. Trajectory tracking and collision avoidance are
issues that a UAV must deal with in a way that gives the
UAV the ability to avoid conflict situations. Thus, any UAV
that will be operated in civil/non-segregated airspace must be
equipped with a collision avoidance system that has the ability
to avoid conflict scenarios in full compliance with airspace
traffic rules. Much research is being undertaken to enable the
routine use of UAV’s in all classes of airspace without the
need for restrictive or specialized conditions of operation. The
ASTRAEA program [3] is one example.

Trajectory planners can be divided into two main categories
[4]; global planners which require good knowledge about the
environment that the aircraft is going to fly in, and local tra-
jectory planners which are algorithms that run continuously in
order to allow the aircraft to deal with events that may happen
during the flight. Many methods for generating trajectories
that guarantee collision avoidance have been proposed in the
literature. For example: predefined, protocol based [5], E-field
[6], geometric [7] and automotive [8].

This paper presents an approach for generating collision
avoidance trajectories based on B-spline curves. Essentially,
a finite-horizon optimal control problem is periodically
solved in real-time hence updating the aircraft trajectory to
avoid obstacles and drive the aircraft to its global path. The

proposed approach can be summarized as follows:

1) Given a global trajectory that the aircraft is required
to follow, solve the optimal control problem

min
U(t)∈U

J(U(t)) (1)

subject to the aircraft dynamics constraints pair,
(Ẋ = f(X,U),Y = g(X)), state constraint, X(t)
∈ X , and aircraft trajectory obstacles constraint,
Y (t) ∈ Y , where U ∈ U is the control and J is a
cost measured over a finite time horizon, t ∈ [t0, tf],
that drives the local trajectory to the global trajectory.

2) The problem is solved by a direct method by inverting
the dynamics, so the optimization is performed in
the output space Y (t) ∈ Y , and parameterizing the
trajectory by a spline function. The cost is augmented
to maintain the constraints.

3) The generated local trajectory allows the UAV to
track the global trajectory while avoiding any intruder
or conflict scenarios that may occur. The local tra-
jectory optimization is periodically solved on-line in
a receding horizon approach to account for system
uncertainties and obstacle changes.

In Section II, the system model is described. Section III
discusses B-spline basis functions and curves. Section IV
shows the formulation of the optimal problem to find the
optimal local trajectories. Section V presents the simulation
results.

II. FIXED WING AIRCRAFT MODEL

A fixed wing aircraft dynamic can be expressed by a point-
mass model [9]:

ẋ
ẏ
ż
γ̇
χ̇

V̇

 =


V cos γ cosχ
V cos γ sinχ
V sin γ

(g/V)(n cosφ− cosχ)
(g/V)(n sinφ/ cos γ)
(T −D)/m− g sin γ

 (2)

where x, y, z are the aircraft center of gravity coordinates in
earth axis, γ is the flight-path angle, χ is the heading angle,
V is the aircraft speed, g is the gravity acceleration, φ is the
bank angle, T is the thrust, D is the drag, m is the total mass,
n = L/(mg) is the load factor and L is the total aircraft lift.

The input and output vectors are defined respectively as:

U = [φ T n]
T

Y = [x y z]
T (3)

In order to determine an optimal control trajectory for
aircraft using direct methods, the optimal control problem
is formulated in output space rather than control or input
space. However, the output design space technique is only
available when the system is differentially flat [10]. A system
is differentially flat if its states and inputs can be expressed
as functions of the output vector and its derivatives [10], [11].
Fortunately most fixed-wing aircraft systems can be considered
as differentially flat system, the following discussion shows
that the fixed wing aircraft possesses the property of flatness.
Modifying (2) obtains:

V =
√
ẋ2 + ẏ2 + ż2 (4)

γ = arcsin (ż/V) (5)
χ = arcsin (ẏ/(V cos γ)) (6)

φ = arctan
(
(χ̇V cos γ)/(g cos γ + V ˙̇γ)

)
(7)

n = (g cos γ + V γ̇)/(g cosφ) (8)

T = D +mV̇ +mg sin γ (9)

The aerodynamic drag is given by [12]:

D = 1
2ρSCDV

2 (10)

where CD = CD0 + kC2
L is the drag coefficient, CL =

2nmg/(ρSV 2) is the lift coefficient, ρ is the air density, CD0

is the minimum drag coefficient of the aircraft and S is the
wing area. It can be noticed from (4)–(10) that the inputs
and the states of the system can be expressed as functions
of the output vector and its derivatives, hence the system is
differentially flat. So the optimal problem can be formulated
in output space rather than control space. Thus, it is useful
to find a sufficient description for the output space (trajectory
profiles in our case) which makes the optimal problem more
tractable.

III. TRAJECTORY DESCRIPTION

NURBS curves are used to describe the trajectory profiles.
A NURBS curve is a vector-valued piecewise rational polyno-
mial function. The pth degree NURBS curve is given by:

P (τ) =

n∑
i=0

Ri,p(τ)Ci (11)

Ri,p(τ) =
wiNi,p(τ)Ci
n∑
i=0

wiNi,p(τ)

; a ≤ τ ≤ b (12)

where Ri,p(τ) are rational basis functions. The analytical
properties of Ri,p(τ) determine the geometric behavior of
curves [13], wi are the weights, Ci are the control points,
and Ni,p(τ) are the pth degree B-spline basis functions.
There are many ways to represent B-spline basis functions,
for computer implementation the recursive representation of
B-spline basis functions is the most useful form [13]. Let
U = [u0, u1, . . . , um−1, um] be a nondecreasing sequence of
real numbers i.e, ui ≤ ui+1; i = 0, 1, . . . ,m − 1, ui called
knots or breakpoints, and U is the knot vector that contain

m + 1 knots. So the ith B-spline basis function of p-degree
(order p+ 1), denoted by Np,i(τ) is defined as:

Ni,0(τ) =

{
1 if ui ≤ τ < ui+1

0 otherwise
(13)

Ni,p(τ) =
τ − ui

ui+p − ui
Ni,p−1(τ)

+
ui+p+1 − τ

ui+p+1 − ui+1
Ni+1,p−1(τ) (14)

and Ni,p(τ) = 0 if τ is outside [ui, ui+p+1[. The degree of the
basis function p, number of control point (n+1), and number
of the knots (m+ 1) are related by m = n+ p+ 1.

The knot vector can be realized in different forms, but it
must be a nondecreasing sequence of real numbers. There are
two types of knot vector, periodic and open, in two flavours,
uniform and nonuniform [14]. In a uniform knot vector,
individual knot values are evenly spaced. In practice, uniform
knot vectors generally begin at zero and are incremented by 1
to some maximum value, or it can be normalized in a range
between 0 and 1. A periodic uniform knot vector will give
periodic uniform basis functions for which:

Ni,p(τ) = Ni−1,p(τ − 1) = Ni+1,p(τ + 1) (15)

Thus, each basis function is a translation of the other.

In an open uniform knot vector, the end knot values have
multiplicity equal to the order of the B-spline basis functions
p + 1. NURBS basis functions have many useful properties
[14]. For example, they are nonnegative, satisfy the portion
of unity property, have a local support, remain in the convex
hull of the control points, and all their derivatives exist in
the interior of the knot span [ui, ui+p+1[, where they are
rational functions with nonzero denominators. The recursive
calculation of the NURBS basis functions makes them
easily, efficiently, and accurately processed in a computer. In
particular:

1) the computation of point and derivatives on the curves
is efficient;

2) they are numerical insensitive to floating point round-
ing error, and

3) they require little memory for storage requirements.

A. Derivatives of B-Spline Curves

The derivatives of B-spline curves can be calculated simply
by computing the derivatives of their B-spline basis functions.
The kth derivative of P (τ), P (k)(τ), is given by:

P (k)(τ) =

n∑
i=0

N
(k)
i,p (τ)Ci (16)

where N (k)
i,p (τ) is the kth derivative of B-spline basis functions

which can be calculated recursively:

N
(k)
i,p (τ) = p

(
N

(k−1)
i,p−1 (τ)

ui+p − ui
−

N
(k−1)
i+1,p−1(τ)

ui+p+1 − ui+1

)
(17)

IV. LOCAL TRAJECTORY OPTIMIZATION

The optimal local trajectory profiles can be achieved by
finding values of design variables that minimize a defined cost
function and satisfy all constraints.

1 2 3 4 5 6 7
-1

0

1

2

3

4

5

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1



N
(

) i,
p

Basis functions
U=[0 0 0 0 0 0 0 1 1 1 1 1 1 1]

Control polygon

Curve

Control point

Curve value at the Knots

R
0

R
1

R
2

R
3

R
4

R
5

R
6

Fig. 1. Bezier curve (top), and its basis functions (bottom)

A. Bezier Curve

Bezier curves represent a special case of NURBS where all
the weights are equal to unity, i.e. wi = 1, and the knot vector
is U = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1] (for p = 6). In this
case the basis functions are called Bernstein basis functions.
A 6th order Bezier curve (p = 6) has been used to represent
the aircraft local trajectories. Using (12)–(14), the 6th order
Bezier curve basis functions are

R0 = (1− τ)6, R1 = 6τ(1− τ)5,
R2 = 15τ2(1− τ)4, R3 = 20τ3(1− τ)3,
R4 = 15τ4(1− τ)2, R5 = 6τ5(1− τ), R6 = τ6

(18)

Figure 1 shows a Bezier curve (p = 6), and its basis
functions (Bernstein basis functions). It can be noticed that
the first basis function, R0, has a significant effect on the
start point of the curve, R6 controls the end point of the
curve and the remainder of basis functions have no effect
on the start and end points. This is one advantage of Bezier
curves, and this property reduces the computational time
during trajectory optimization. The trajectory shape will vary
with variation of the coefficients Ci. The control point that
are used in Bezier curve shaping in Figure 1 are C =
{(1, 2), (2, 3), (3, 2), (4, 4), (5, 4), (6, 0), (7, 3)}.

B. Trajectory Profiles Description

The speed profiles in forward (u), lateral (v), and vertical
(w) axes can be written by using polynomial functions (6th
order Bezier function):

u(τ) = cu0R0(τ) + cu1R1(τ) + · · ·+ cu6R6(τ)

v(τ) = cv0R0(τ) + cv1R1(τ) + · · ·+ cv6R6(τ) (19)
w(τ) = cw0 R0(τ) + cw1 R1(τ) + · · ·+ cw6 R6(τ)

Using 6th order polynomial functions to describe the speed
profiles gives a good flexibility over the design horizon with
acceptable number design variables (the polynomial coeffi-
cients) [15]. Calculation of acceleration, jerk, and position
profiles can be done by taking the first derivative of (19) for
the acceleration profiles, the second derivative of (19) for the

jerk profiles, and integration for the position profiles. In order
to do so, a relationship between the curve parameter τ and
time t must be defined. A fixed time horizon (th) is used so t
can be represented by t = th.τ . Hence the acceleration profiles
can be calculated:

u̇(τ) =
1

th

(
cu0
dR0(τ)

dτ
+ · · ·+ cu6

dR6(τ)

dτ

)
(20)

and
d2u

dt2
=

1

t2h
· d

2u

dτ2
(21)

The acceleration and jerk profiles for lateral and vertical axis
can be calculated in a similar way. The position profile is
driven by integration of the basis function with respect to time
t. This can be done by substituting τ = t/th in (18) and then
integrating the basis functions with respect to time:

Rinti =

∫ th

0

Ri(t)dt; i = 0, 1, . . . , 6 (22)

The receding horizon trajectory profiles are discretized
into n steps within the period 0 ≤ τ ≤ 1 to evaluate the
cost function at each step during the optimization process.
Discretized trajectory profiles can be calculated by discretizing
the basis functions into n steps, so the resulted discrete basis
functions can be written as matrices as follow:

R =

R0(τ1) · · · R0(τn)
...

. . .
...

R6(τ1) · · · R6(τn)

 (23)

The same procedure can be applied to calculate R′, R′′,
and Rint, all these matrices can be calculated off-line, hence
the on-line trajectory profiles calculation is reduced to simple
matrix multiplication:

u = CuT

R, u̇ =
1

th
CuT

R′,

ü =
1

t2h
CuT

R′′, x = x0 +CuT

Rint
(24)

where CuT

is the vector of coefficients for forward axis:

CuT

= [cu0 cu1 · · · cu6] (25)

The trajectory profiles for the lateral and vertical axes can be
similarly calculated.

By parameterizing the output profiles by the Bezier func-
tions, the optimal control problem is converted into an opti-
mization problem with the design variables being the poly-
nomial coefficients. Hence there are 21 coefficients to be
determined (seven for each axis).

C. Initial Conditions

The current aircraft state can be measured by a sensing
unit and used as the initial boundary conditions that guarantee
a smooth transition from the current state to the target state.
Substituting τ = 0 in the trajectory profile equations (19), (20),
and (21) gives:

cu0 = u0, cu1 =
th
6
u̇0 + cu0 , cu2 =

t2h
30
ü0 − cu0 + 2cu1

(26)

where u0 is the initial forward speed, u̇0 is the initial forward
acceleration and ü0 is the initial forward jerk. Thus the first
three coefficients for each trajectory profile can be determined
and the number of design variables reduced from 21 to 12.
In order to reduce the computational time of the optimization
problem, the aircraft and the obstacles constraints have been
augmented in the cost function by using a penalty function
method.

D. Aircraft Constraints

In order to ensure that the resulted optimal trajectory will
be achieved without exceeding the aircraft performance and
control limits (i.e. ensure U ∈ U , X ∈ X), the cost function is
augmented with additional penalty function terms. The Yukawa
potential function [16] is used :

Cp = Ap
e−αpdp

dp
(27)

where Cp is the aircraft performance constraint term added to
the total cost function, Ap is the scaling factor, αp is the decay
rate and dp is the performance margin given by:

dp(%) = 100− 100

(
current state value

state max\min value

)
(28)

To avoid a zero value of dp, a minimum performance margin
value dmin must be defined so that:

if dp ≤ dmin then dp = dmin

It can be clearly seen from (27) that when the performance
margin decreases (i.e. the current state value is close to its
limit), the potential function takes a huge value. Thus the total
cost function will increase significantly, so the search algorithm
tries to find another solution that keeps the aircraft state away
from its limits.

E. Obstacle Constraints

The collision avoidance constraint, Y ∈ Y , can be achieved
by either including constraints on the optimization process
or by augmenting the cost function with a penalty function.
The latter is used here so that the total computation time of
the optimization process is reduced. As for the performance
constraints, the Yukawa potential function is used to punish
the cost function if the aircraft approaches an obstacle:

Cob = Aob
e−αobdob

dob
(29)

where Cob is a penalty term that represents the obstacle
constraints, Aob is a scaling factor, αob is the decay rate and
dob is the distance between the nearest point on the obstacle
and the point of interest.

Although using potential functions to describe the ob-
stacle constraints complicates the cost function, it simplifies
the search algorithm in the optimization process. Another
advantage of using a potential function is that it handles the
collision event in a manner which is closer to human behaviour.
For example, avoidance manoeuvres can vary according to
many factors such as aircraft speed, obstacle speed, aircraft
manoeuvrability, and obstacle manoeuvrability. Additionally,

due to the difficulty in generating a full 3D illustration for
the obstacles that are detected by the on-board sensor unit the
potential function approach does not need a 3D description of
an obstacle, it just needs the distance between the aircraft and
the nearest point in the obstacle [17].

F. Total Cost Function

The following cost function is thus used for the optimiza-
tion process:

J =

n∑
i=1

[
λpJ

p
i + λsJ

s
i + λprfJ

prf
i + λobJ

ob
i

]
+ λtJ

t (30)

where
Jpi is the position cost function:

Jpi = (xdi − xai)2 + (ydi − yai)2 + (zdi − zai)2 (31)

Jsi is the speed cost function:

Jsi = (udi − uai)2 + (vdi − vai)2 + (wdi − wai)2 (32)

Jprfi is the vehicle constraints penalty function:

Jprfi =

q∑
j=1

Ap
e−αpdp

dp
(33)

Jobi is the vehicle constraints penalty function:

Jobi =

m∑
j=1

Aob
e−αobdob

dob
(34)

and
J t = λh(ψ

d
n − ψan)2 + λf (γ

d
n − γan)2 (35)

where λ are scaling factors, n is the number of points that
will be evaluated across the design horizon, q is the number
of performance constraints, m is the number of detected
obstacles, ψ is the heading angle and γ is the flight path angle.
The superscript a means the actual value, while the superscript
d means the demanded value.

It can be seen that the cost function given by (30) provides
a balance between the different terms; trajectory tracking terms
(Jp, Js, J t) and constraints terms (obstacle avoidance term
Job, performance constraint term Jprf). This balance can
be controlled by changing the scaling factors λ. The scaling
factors can be constants or they may vary according to the
situation, in other words the priority of the cost function terms
can be varied in order to allow the aircraft to fly safely in
different flight scenarios. By augmenting the constraints in
the cost function the optimal problem will be solved as an
unconstrained optimal problem, thus the computational time
will reduced significantly.

G. Avoiding Local Minima

Using a gradient-based method to solve the optimal prob-
lem introduces the local minimum problem. The performance
constraints tend to act as an enclosing boundary around the
entire search space, hence are less likely to result in local
minimum. Thus, the obstacle constraints are the primary source
of the local minima. When obstacles are detected this can

Inverse

Dynamic

Aircraft

model

Local

Trajectory

Planner

(On-line)

Trajectory

profiles
Global Trajectory

Planner

(Off-line)

Vehicle states

Local obstacles

Detection(states

estimation)

Controllers

Fig. 2. System block diagram

have the impact of dividing the feasible design space into
unconnected regions, therefore reducing the effectiveness of
the solver of the optimal problem [17]. The possibility of
getting trapped in local minimum is reduced by providing a
mechanism for the search to jump to the different regions
of the design space. This is achieved by generating a set
of candidate trajectories then comparing the cost for each
candidate then select the one that gives the minimum cost to
initiate the optimal problem solver. The candidate trajectories
are generated by applying maximum/minimum inputs to the
vehicle model with the current vehicle states as initial states
to ensure that the maximum performance manoeuvres in each
axis are always available if required. In this case the input
commands are:

φ = [φmin φc φmax]

T = [Tmin Tc Tmax] (36)
n = [nmin nc nmax]

where φc, Tc, and nc are the current values of the inputs, and
φmin/max, Tmin/max, and nmin/max are the minimum and
maximum values of the inputs which can be calculated from
the vehicle specifications (the Aerosonde UAV [?] model and
specifications are used here). This combination will produce
33 = 27 candidate trajectories.

V. SIMULATION RESULTS

This section demonstrates the method’s effectiveness by
showing simulation results of different scenarios. Figure 2
shows the system block diagram that is used in MAT-
LAB/Simulink to produce the simulation results. For all sce-
narios, the global trajectory is level flight with constant speed
v = 30 m.s-1 at 1000 m height, heading ψ = 0, the receding
horizon time is th = 100 s and sampling time ts = 0.2 s, the
optimization process is updated every 10 seconds. The obstacle
is represented as a sphere, and a 4D model of the moving
obstacle is generated using a straight projection method [18],
which assumes that the obstacle does not manoeuvre during
the receding horizon time.

A. Trajectory Tracking and Pop-up Obstacle Avoidance

In this scenario the initial position of the UAV is higher
than the global trajectory but with the same speed and di-
rection. There is also a pop-up obstacle that the UAV must
avoid. Figure 3 shows the simulation result of this scenario,
it can be seen that the UAV is converging to the global
trajectory then when the static obstacle appeared in its way,
the UAV performed the necessary manoeuvre in order to avoid
the obstacle. Then the UAV converged again to the global

0
1000

2000
3000 4000

5000
6000

-500

0

500

200

400

600

800

1000

1200

1400

X: 3326

Y: 26.46

Z: 1314

X [m]

X: 0

Y: 10

Z: 1200

Y [m]

X: 0

Y: 10

Z: 1000

Z

[m
]

Global Trajectory

Static Obsticale

Local Trajectory

Fig. 3. Converging to the global trajectory and avoiding a pop-up obstacle

0 50 100 150 200
0

2000

4000

6000

8000

x
 [
m

]

0 50 100 150 200
-20

0

20

40

60

y
 [
m

]

0 50 100 150 200
800

1000

1200

1400

z
 [
m

]

Time [sec]

0 50 100 150 200
25

30

35

V
 [
m

/s
e

c
]

0 50 100 150 200
-0.1

0

0.1

0.2

0.3


 [
ra

d
]

0 50 100 150 200
-0.5

0

0.5


[r

a
d

]

Time [sec]

Fig. 4. Position, speed, heading, and flight path during the manoeuvre

trajectory after passing the static obstacle. Figure 4 shows time
histories of some state variables of the UAV (position, speed,
heading angle ψ, and flight path angle γ) during this scenario.

B. Global Trajectory Tracking with Two Moving Intruders

In this case the aircraft encounters two types of intruders so
that there are two potential collisions, head-on and overtaking.
The UAV has the following initial flight state (level flight at
the initial position (0,10,1000) m heading ψ = 0, constant
speed v = 30 m.s-1). The first intruder (Intruder1) has the
following state (level flight at initial position (2000,10,1000)
m, heading ψ = π rad, constant speed v = 18 m.s-1). The
second intruder (Intruder2) has the following initial state (level
flight at initial position (2100,10,1000), heading ψ = 0 rad,
constant speed v = 15 m.s-1). So Intruder1 causes a head-
on collision scenario, and then the UAV overtakes Intruder2.
The protection zone around each intruder was chosen to be
200 m, so the distance between the UAV and the intruders
should not become less than 200 m. Figure 5 shows the UAV
trajectory during these scenarios. It can be seen that the UAV
avoided both collision scenarios and returned to the global
trajectory when it finished overtaking Intruder2. To clarify the

-1000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

-500

0

500

0

500

1000

1500

2000

X [m]

 Y [m]

Z
 [

m
]

intruder2
intruder1

Fig. 5. Collision avoidance scenarios, head-on (intruder1), overtaking
(intruder2)

0 50 100 150 200 250 300
-5000

0

5000

10000

x
 [

m
]

0 50 100 150 200 250 300
-100

0

100

200

y
 [

m
]

0 50 100 150 200 250 300
900

1000

1100

1200

z
 [

m
]

Time [sec]

0 50 100 150 200 250 300
26

28

30

32

34

V
 [

m
/s

e
c
]

0 50 100 150 200 250 300
-0.4

-0.2

0

0.2

0.4


 [

ra
d
]

0 50 100 150 200 250 300
-0.2

0

0.2

0.4

0.6


[r

a
d
]

Time [sec]

Fig. 6. Position, speed, heading, and flight path during the manoeuvre

performed manoeuvres, the projection of the UAV position on
the horizonal and the vertical planes are included in Figure 5.
The spheres that appear in Figure 5 represent the protection
zones around the intruders when they and the UAV have the
same position on the x-axis. Figure 6 gives the time histories
of some UAV state variables (position, speed, heading angle
ψ, and flight path angle γ) during these scenarios, and it also
shows the position state of the intruders. The top-left subplot
in Figure 6 shows the x distance time histories of the UAV
(solid line), Intruder1 (dashed line), and Intruder2 (dotted line),
while the other two subplots in the left column show the y and
z distance time histories. It can be noted that when the UAV
and one of the intruders have the same x distance, y and z
will be at their maximum values, so the UAV is avoiding a
conflict with the intruders.

VI. CONCLUSION

An optimal local trajectory generation by using B-spline
is proposed for a real-time collision avoidance algorithm. On-
line avoidance maneuver generation, optimisation, and global
trajectory tracking for different conflict scenarios are tested
successfully in simulation environment (MATLAB/Simulink).

Although the optimisation solver could be trapped in the local
minima due to the obstacles existing, the coarse grid approach
that is proposed in IV-G allows the solver to escape the
local minima and ensure sufficient coverage of the overall
design space. A computational time for the real-time collision
avoidance algorithm is reduced significantly by using output
space to formulate the optimal problem, and augmenting the
vehicle/obstacle constraints in the cost function. The simula-
tion results show that the proposed approach allows the UAV
to track a predefined global trajectory as well as avoiding
collisions with different types of conflict scenarios in real-time.

REFERENCES

[1] C.-K. Lai, M. Lone, P. Thomas, J. Whidborne, and A. Cooke, “On-
board trajectory generation for collision avoidance in unmanned aerial
vehicles,” in 2011 IEEE Aerospace Conference, march 2011, pp. 1–14.

[2] T. Hutchings, S. Jeffryes, and S. Farmer, “Architecting UAV sense and
avoid systems,” in 2007 IET Conference on Autonomous Systems, Nov.
2007, pp. 1–8.

[3] T. Robinson. (2013, Jan.) Unlocking the skies. Aerospace Insight
Blog. Royal Aeronautical Society. London, UK. [Online]. Available:
http://media.aerosociety.com/aerospace-insight
/2013/01/04/unlocking-the-skies/7633/

[4] I. Cowling, “Towards autonomy of a quadrotor uav,” Ph.D. dissertation,
Cranfield University, School of Engineering, 2008.

[5] C. Tomlin, G. Pappas, and S. Sastry, “Conflict resolution for air traffic
management: a study in multiagent hybrid systems,” IEEE Transactions
on Automatic Control, vol. 43, no. 4, pp. 509 –521, Apr. 1998.

[6] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in IEEE International Conference on Robotics and Automation,
vol. 2, Mar. 1985, pp. 500–505.

[7] A. Chakravarthy and D. Ghose, “Obstacle avoidance in a dynamic
environment: a collision cone approach,” IEEE Transactions on Systems,
Man and Cybernetics, Part A: Systems and Humans, vol. 28, no. 5, pp.
562–574, Sep. 1998.

[8] M. Y. Cho, A. J. Lichtenberg, and M. A. Lieberman, “Minimum
stopping distance for linear control of an automatic car-following
system,” IEEE Transactions on Vehicular Technology, vol. 45, no. 2,
pp. 383–390, 1996.

[9] A. Bicchi and L. Pallottino, “On optimal cooperative conflict resolution
for air traffic management systems,” IEEE Transactions on Intelligent
Transportation Systems, vol. 1, no. 4, pp. 221–231, dec 2000.

[10] I. D. Cowling, O. A. Yakimenko, J. F. Whidborne, and A. K. Cooke,
“Direct method based control system for an autonomous quadrotor,”
Journal of Intelligent & Robotic Systems, vol. 60, pp. 285–316, 2010.

[11] H. Sira-Ramı́rez and S. K. Agrawal, Differentially Flat Systems. Marcel
Dekker, 2004.

[12] M. V. Cook, Flight Dynamics Principles, 2nd ed. Elsevier, 2007.
[13] L. Piegl, “On NURBS: a survey,” Computer Graphics and Applications,

vol. 11, no. 1, pp. 55–71, jan. 1991.
[14] L. Piegl and W. Tiller, The NURBS Book. Springer Verlag, 1997.
[15] A. Berry, “Continuous local motion planning and control for unmanned

vehicle operation within complex obstacle-rich environments,” Ph.D.
dissertation, University of Leicester, 2010.

[16] C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics. Wiley,
1977.

[17] A. Berry, J. Howitt, D. Gu, and I. Postlethwaite, “Continuous local
motion planning & control for micro-air-vehicles in complex envi-
ronments,” in AIAA Guidance, Navigation, and Control Conference,
Toronto, Ontario, 2010.

[18] B. Albaker and N. Rahim, “Straight projection conflict detection and
cooperative avoidance for autonomous unmanned aircraft systems,” in
4th IEEE Conference on Industrial Electronics and Applications (ICIEA
2009), May 2009, pp. 1965–1969.

