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Abstract 

 
Dropwise condensation has superior heat transfer efficiency than filmwise condensation; however 

condensate evacuation from the surface still remains a significant technological challenge. The 

process of droplets jumping, against adhesive forces, from a solid surface upon coalescence has been 

studied using both experimental and Computational Fluid Dynamics (CFD) analysis. Both Lattice 

Boltzmann (LBM) and Volume of Fluid (VOF) methods have been used to evaluate different 

kinematic conditions of coalescence inducing a jump velocity. In this paper, an optimisation 

framework for superhydrophobic surface designs is presented which uses experimentally verified 

high fidelity CFD analyses to identify optimal combinations of design features which maximise 

desirable characteristics such as the vertical velocity of the merged jumping droplet from the surface 

and energy efficiency. A Radial Basis Function (RBF)-based surrogate modelling approach using 

design of experiment (DOE) technique was used to establish near-optimal initial process parameters 

around which to focus the study. This multidisciplinary approach allows us to evaluate the jumping 

phenomenon for superhydrophobic surfaces for which several input parameters may be varied, so as 

to improve the heat transfer exchange rate on the surface during condensation. Reliable conditions 

were found to occur for droplets within initial radius range of r=20-40 μm and static contact angle 

θs~160º. Moreover, the jumping phenomenon was observed for droplets with initial radius of up to 

500 μm. Lastly, our study also reveals that a critical contact angle for droplets to jump upon 

coalescence is θc~140º. 

 

Keywords  Condensation heat transfer, Super-hydrophobic surface, Jumping droplets velocity, 

Multi-disciplinary optimisation. 

 

 

Nomenclature  

 

Abbreviation 

CFD  Computational fluid dynamics 

DOE  Design of experiment 

GA  Genetic algorithm 

LB(M)  Laticce Boltzmann (method) 

RBF  Radial basis function 

VOF  Volume of fluid 

2D  Two dimensional 

3D  Three dimensional 

 

Symbols 
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A  Surface area [m
2
] 

cp  Specific heat capacity [J/(kg K)] 

g  Gravity [m/s
2
] 

m  Mass [kg] 

P  Pressure [Pa] 

Q  Heat energy [J] 

q  Heat flux [W/m2] 

r  Droplet radius [m] 

r
3
  Radial basis function  

T  Temperature [K] 

t  Time [s] 

�⃗�  Velocity [m/s] 

�̅�   Mass-averaged y-velocity 𝑣𝑦 [m/s] 

�̅�j  Jumping velocity [m/s] 

w  Weighting function 

α  Phase fraction, 0 ≤ α ≤ 1 [-] 

ρ  Density [kg/m
3
] 

μ  Dynamic viscosity [Pa.s] 

σ  Surface tension [N/m] 

θ  Contact angle [
o
] 

 

Subscript 

c  Critical angle 

co  Compression velocity 

g  Gas 

i  Index i 

j  Jumping 

l  Liquid 

s  Static 

 

1 Introduction 

Drop-wise condensation processes, where condensation occurs through small droplets on a solid 

surface, has been demonstrated to significantly improve heat transfer rates in comparison to film-

wise condensation (where a whole surface is covered by a thin film of liquid) [1, 2]. Drop-wise 

condensation usually takes place on hydrophobic or super-hydrophobic surfaces as demonstrated by 

Boreyko and Chen [3]. One of the main technological challenges is to create such a surface, so as to 

allow condensation and evacuation of the droplets to take place in a continuous manner. Droplet 

coalescence is a complex physical phenomenon and optimisation of kinematic conditions leading to 

surface dewetting and jumping of droplets is of paramount importance for processes like heat 

transfer, de-icing, atmospheric water harvesting or dehumidification [4-6]. Dropwise condensation 

heat transfer performance can be enhanced by allowing condensed droplets to be removed rapidly 

from the surface to minimize the thermal barrier [7].  Recently, researchers showed that super-

hydrophobic surfaces provide a higher mobility of condensates, which may enhance the heat transfer 

performance [1-7]. Coalescence-induced jumping phenomena occur on superhydrophobic surfaces 

but within a small range of initial droplet radii. Recent interest in these phenomena has led to the 

influence of the droplets radii on the resulting jumping velocity to be explored [3, 8-12]. However, 

previous analysis on coalescence-induced jumping droplets focused only a limited range of contact 

angles and droplet radius [10-12].  While Liu et al. [12] assumed only the contact angle of 180
o
; 

Cheng et al. [13] proposed a wider range in their numerical investigations. In this study we 

investigate such jumping phenomena both experimentally and numerically. We undertake 
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experimental analysis for larger droplets, in the range of 400-500μm, and we develop numerical 

models to explore the effects of variation in initial droplet radius and the static contact angle in the 

ranges 30-500μm and 130-180
o
 respectively. We also establish a range of conditions where jumping 

upon coalescence can take place through a formal optimization framework.  

 

In the following section, we describe both the experimental and the numerical methods that have 

been developed to undertake this study, as well as providing an overview of the optimization strategy 

that is used to investigate conditions for which the heat transfer may be maximized. Section 3 then 

presents typical experimental and computational results which are verified against others appearing 

in the literature and shown to provide good validation of our numerical simulations. This, in turn, 

allows us to seek optimal parameter regimes for heat transfer based upon coalescence-induced 

jumping. The paper ends with some brief conclusions.  

 

2 Materials and methods 

In this study experimental analysis of droplet jumping coalescence is carried out to develop and 

validate two numerical models: a 2D Lattice Boltzmann Method (LBM) and 3D Volume of Fluid 

(VOF) models.  

 

2.1   Experimental velocity measurement 

For the physical experiments, the superhydrophobic surface has been prepared on copper alloy UNS 

C17000 (sample size 10x10x10mm) by covering the surface with a thin layer of a paraffin film and 

subsequently by a monolayer of hydrophobic fumed silica particles. The prepared specimen was then 

heated to 50ºC to create a bond between the silica and paraffin films. Any excess silica powder was 

cleaned from the surface by a pressurised air jet. Such prepared surface is superhydrophobic with a 

measured static contact angle of θs=157±2º (Fig.1). 

 

 
Figure 1: Contact angle measurement of water droplet on a superhydrophobic surface 

prepared on copper alloy. 

 

To extend the range of experimentally explored conditions a number of water droplets sizes were 

used which experience a jumping phenomenon upon coalescence: the initial radii being from 100 to 

515μm. A shadowgraph technique was used to measure the droplet size with a diffused light source. 

Horizontal and vertical diameters of the droplets were measured and an average value was 

calculated. Calibration was undertaken using 1mm radius stainless steel ball. For larger droplet cases, 

the droplets were formed from two smaller droplets of quasi-identical size which were carefully 

deposited on the superhydrophobic surface using a micro-pipette (0.2-2μl). These droplets were 

initially deposited in very close proximity so that even small vibrations or spreading lead to droplet 

movement and coalescence. For the smaller droplet cases, in the range of 100-300 μm, a mist of 

distilled water was created using a manual atomiser and was sprayed onto the superhydrophobic 

surface. This lead to the formation of droplets, followed by coalescence of neighbours and finally to 

500 μm

157

°
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droplets jumping phenomenon. Several repetitions of this procedure allowed us to select a number of 

droplet jumping events to cover a wide range of droplet sizes. The process was recorded with high 

speed Mikrotron MotionBlitz EoSence CL camera, with a frame rate of 1200 fps. Examples of 

droplets with initial radius of 515 μm are presented in Fig. 6 The initial droplet velocities were 

measured by tracing the droplets’ vertical position as a function of a time, and the slope of the 

resulting curve at the point when a droplet leaves the surface is taken as the initial jump velocity of 

that droplet. However, due to droplet oscillations, the vertical position of the droplet is calculated as 

the midpoint between the top and bottom droplet interface. This methodology was also used to 

calculate the initial droplet velocity in the numerical simulations described below.  

 

2.2 Lattice Boltzmann method 

Our LB solver is based on the Shan-Chen [14] multiphase model, with wetting boundary conditions 

based upon the adhesion force described by Sukop and Thorne [15]. In particular, we use the 

OpenLBMflow code [16], with a modified adhesion term for wettability. The main advantage of the 

lattice Boltzmann method is that the interface between light and heavy fluids is diffuse, and the 

position of interface is computed as a result of the simulation. In particular, this approach does not 

require interface tracking or reconstruction. However, the modelled fluid can change phase and as it 

can be noticed in Fig. 7 the air initially trapped between coalescing droplets compresses and change 

to a heavy phase (water). Unless otherwise stated, the following parameters were used in all of lattice 

Boltzmann simulations described in this work: G= -6, ρL=0.0734 ρH=2.65, τ=0.54, δx=2.5x10
-6

m, 

δt=2.86x10
-7

s. These parameters correspond to dynamic conditions of water with surface tension 

σ=0.0727 N/m and dynamic viscosity μ=4.3x10
-3 

Pa.s. A detailed description of this lattice 

Boltzmann solver may be found in [17]. 

 

2.3 Volume of Fluid (VOF) Method 

For our finite volume simulations the two-phase interFoam solver [18] from the OpenFOAM open 

source CFD software tool [19] was chosen. This solver includes automatic interface tracking and 

mass conservation. Unlike other numerical techniques [20] dealing with complex wall-boundary 

flow systems interFoam uses a VOF [21] approach modified with the introduction of an additional 

term in the volume fraction equation, to obtain interface compression by means of a tuneable 

parameter as detailed in [22]. 

 

In the conventional volume-of-fluid (VOF) method, the transport equation for an indicator function, 

representing the volume fraction of one phase, is solved simultaneously with the continuity and 

momentum equations: 

 

                                 𝜌 (
𝜕�⃗⃗�

𝜕𝑡
+  �⃗�. ∇�⃗�) =  ∇𝑃 + ∇(𝜇(∇. �⃗� + ∇. �⃗�𝑇)) + 𝜌𝑔                             (1) 

                                                  ∇. �⃗� = 0                                                                                   (2) 

                                   (
𝜕𝛼

𝜕𝑡
+  �⃗�. ∇α) = 0                                                                                    (3) 

 

where �⃗� represents the velocity field shared by the two fluids throughout the flow domain, α is the 

phase fraction, µ the viscosity,  ρ the density, P the pressure and g the gravity. The phase fraction α 

can take values within the range 0 ≤ α ≤ 1, with the values of zero and one corresponding to regions 

accommodating only one phase, e.g. α = 0 for gas, α = 1 for liquid. Accordingly, gradients of the 

phase fraction are encountered only in the region of the interface as represented in Fig. 2. 
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Figure 2: The VOF method indicating values of the phase fraction α:  

α = 0 for gas, α = 1 for liquid and 0 ≤ α ≤ 1 for the interface. 

 

Two immiscible fluids are considered as one effective fluid throughout the domain, the physical 

properties of which are calculated as weighted averages based on the distribution of the liquid 

volume fraction,: 

 

                                                         𝜌 =  𝜌𝑙  𝛼 +  𝜌𝑔 (1 − 𝛼)                                                     (4)    

                                                      𝜇 =  𝜇𝑙  𝛼 +  𝜇𝑔 (1 − 𝛼)                                                     (5) 

 

where ρl and ρg are the liquid and gas densities, whereas µl and µg are the liquid and gas viscosities 

respectively. 

 

In the present study a modified approach similar to the one proposed in [23] is used, which is 

formulated in the interFoam flow solver [18], relying on a two-fluid formulation of the conventional 

volume-of-fluid model in the framework of finite volume method. 

In this model an additional convective term originating from modelling the velocity in terms of 

weighted average of the corresponding liquid and gas velocities is introduced into the transport 

equation for phase fraction, providing a sharper interface resolution. The model makes use of the 

two-fluid Eulerian model for two-phase flow, where phase fraction equations are solved separately 

for each individual phase (see [24]); hence the equations for each of the phase fractions can be 

expressed as 

                                                    
𝜕𝛼

𝜕𝑡
+  �⃗�𝑙 . ∇α = 0                                                                     (6)            

                                    
𝜕(1−𝛼)

𝜕𝑡
+  �⃗�𝑔 . ∇(1 − α) = 0                                                                     (7)   

 

where the subscripts l and g denote the liquid and gaseous phase, respectively. Assuming that the 

contributions of the liquid and gas velocities to the evolution of the free surface are proportional to 

the corresponding phase fraction, and defining the velocity of the effective fluid in a VOF model as a 

weighted average 

                                                                        �⃗⃗� = 𝛼 �⃗�𝑙 + (1 − α) �⃗�𝑔                                          (8)   

 

Equation 6 can be rearranged and used as an evolution equation for the phase fraction 𝛼, 
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𝜕𝛼

𝜕𝑡
+ �⃗� . ∇α + �⃗�𝑐𝑜 . ∇(α(1 − α)) = 0                                                                         (9)         

 

where �⃗�𝑐𝑜  = �⃗�𝑙 − �⃗�𝑔 is the vector of relative velocity, designated as the "compression velocity". 

 

 
Figure 3: 3D VOF flow domain D emphasising two droplets on the functional surface. 

 

 

The VOF domain consists of the [0, 2600μm]
3
 block discretised with around 1.3M cuboid elements 

as indicated in Figure 3 with: (i) no-slip imposed on the bottom, left and right walls for velocity, (ii) 

zero dynamic pressure and (iii) zero gradient on left and right walls with constant static angle equals 

to θs on the bottom wall for phase fraction. 

 

The VOF numerical methodology is validated and tested against the results published by Liu et al. 

[12]. The validation mainly focuses on the evaluation on the maximum velocity of merged droplet 

upon the coalescence of two symmetrical droplets with initial radius r = 75μm and static contact 

angle θs = 180◦.  This was the only contact angle considered in [12]. 

The resulting process of the 3D coalescence is depicted in Figure 4 and is in agreement with that one 

of Liu et al. [12]. After the coalescence is originated by the overlapping interfaces, a liquid bridge 

develops upon coalescence with an expanding bridge reaching the surface at around 0.00007s, at 

which point the merged droplet experiences an upward motion. The functional surface counteracts 

the impingement of the liquid bridge, forcing a portion of the downward-moving mass towards the 

sides, leading to a maximum deformation in the x direction at 0.00009s. The upward force from the 

surface culminates at 0.000175s, beyond which the apparent contact area between the merged drop 

and the substrate gradually reduces towards zero at 0.000255s, the point of departure. The launched 

droplet continues to oscillate while maintaining the upward motion. 

 

For the coalescence of two symmetric identical droplets, similarly to Liu Et al. [12] and F. Raees Et 

al. [25] we define the instantaneous velocity of the merged droplet �̅�  by mass-averaging the y 

component of velocity over the entire droplet, 

 

                                         �̅� =
∫ 𝛼𝜌𝑙  𝑣𝑦 𝑑𝐷 

∫ 𝛼𝜌𝑙  𝑑𝐷 
                                                                          (10) 
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where D represents the entire computational domain and y is the vertical direction perpendicular to 

the functional surface as displayed in Figure 3.   

 
Figure 4: Time sequence of the 3D coalescence of two droplets (x-y view) with initial  

radius r =75μm and static angle θs = 180°. The isosurface α=0.5 is displayed. 

 

A further illustration of the jumping process in the above Figure 4 is shown in Figure 5 where the 

temporal evolution of the droplet velocity defined in (10). As identified by Liu Et al. [12] and based 

on these figures, the jumping process upon coalescence can be approximately divided into four 

stages: (I) expansion of the liquid bridge between the coalescing droplets, till approximately 

0.00007s; (II) acceleration of the merged droplet on the surface, eventually reaching a maximum 

velocity at 0.00023s; (III) detachment of the merged droplet from the surface, till a complete 

departure at 0.000255s; and (IV) deceleration of the departed drop in air, where the oscillating drop 

relaxes towards the ultimate equilibrium shape of a sphere. 

 

The jumping velocity �̅�j is extracted from the curve and is found to be 0.210 m/s and is in very good 

agreement with the value 0.211 m/s found Liu Et al. [12]. 

 

 
Figure 5: Evolution of the instantaneous droplet velocity during the jumping process of Fig. 4. 
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As identified by Liu Et al. [12], the �̅�(𝑡) curve can be divided into four regimes: I, expansion of the 

liquid bridge in the air; II, acceleration of the merged drop on the substrate; III, departure of the 

merged drop from the substrate; and IV, deceleration of the departed drop in the air. 

 

2.4 Heat transfer model 

Note that the fluid models described above assume that the flow is isothermal. This approximation is 

based upon the assumption that the heat transfer between the wall and the droplets is sufficiently 

rapid that it occurs well before coalescence has completed. Whilst it is likely that this assumption 

will only be valid for sufficiently small droplets we do not investigate the precise range of validity in 

this work. 

  

Under the assumption that: (i) the coalescence process of two identical spherical droplets with radius 

r results in a droplet of radius √2
3

r; (ii) there is a temperature difference ΔT between the droplets and 

the functional surface; (iii) rapid removal of the heated resulting jumping droplets of radius √2
3

r 

from the wall surface upon coalescence is taking place to reduce the thermal barrier effects; the heat 

Q between the droplets and the functional surface can hence be evaluated as 

 

                                                    𝑄 = 𝑚 𝑐𝑝 ∆𝑇                                                                         (11) 

 

where 𝑚 =  𝜌𝑙
8𝜋

3𝑟3    with 𝜌𝑙 denoting the liquid density and 𝑐𝑝 is the specific heat.  

The heat flux q is then determined by:   

 

                                                      𝑞 = 𝑄/𝐴                                                                                 (12) 
 

and A represents the surface area.  

 

2.5 Optimisation strategy 

The jumping velocity �̅�j is parametrised in terms of the two design variables, namely the droplet 

radius r and the contact angle θ. A multi-design optimisation processes are carried out whose goals 

are to: (i) maximise the jumping velocity �̅�j and (ii) maximise both �̅�j and the heat flux q. Due to the 

computational requirements of the 3D VOF CFD and the experimental analyses, a surrogate 

modelling approach is adopted for the optimisation study, a methodology that has been successfully 

applied by the authors for a range of engineering applications, e.g. the design optimisation of 

commercial ovens [26-28]. A  Design of experiments (DOE) approach based on 2D LBM is used to 

generate 67 points uniformly spread within the design space (r, θ) ∈ [30, 500] × [130, 180]. Note 

that our computational results in section 3.2 below indicate a sufficiently strong correlation between 

the 2D LBM predictions and the (much more expensive) full 3D VOF predictions to justify this 

approach. 

  

A Radial Basis Function (RBF) method [29], shown to be an effective design tool for industrial 

applications such as combustion systems [30] for instance, is employed to build the surrogate models 

of �̅� j, where a cubic radial power function is used to determine the weighting of points in the 

regression analysis at each point: 

 

                                  𝑤𝑖 = 𝑟𝑖
3                                                           (12) 

 

The RBF-based surrogate models for the jumping velocity �̅�j and heat flux, q are built by carrying 

out 2D LBM CFD calculations and solutions of Eq. (12) respectively at each of the DOE points and 
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using these values to build surrogate models of their dependence on the design variables throughout 

the design space.  

 

3 Results and discussion 

 

3.1 Experimental results 

Droplets jumping upon coalescence are of particular interest for number of engineering applications, 

however the physical conditions for which coalescence will lead to dewetting of a surface are limited 

to superhydrophobic surfaces with low contact angle hysteresis. Usually, superhydrophobic surfaces 

will have high roughness and droplets will remain in the so-called Cassie-Baxter state where only 

peaks of roughness morphology will be in contact with water. This state significantly facilitates the 

dewetting process after coalescence however it also renders the surface to appear more soft than for a 

flat surface of the same material. Consequently, the experimentally observed jumping velocity will 

usually be slightly lower than the theoretical and numerically simulated estimates. Our experimental 

results show jumping velocities from 0.14 m/s for droplets of r=96.5 μm down to 0.039 m/s for 

droplets of r=515 μm. An example of a droplet jumping after coalescence is presented in Fig. 6. Note 

that these experimental data are in good agreement with previously published results [3]. The 

experimental data were used also to validate results of the numerical 2D and 3D models. 

 

 
Figure 6: Experimental validation of jumping phenomenon on superhydrophobic surface, 

droplet with initial radius 515 µm jumping upon coalescence, droplet velocity �̅�j =0.039 m/s. 

 
3.2 LBM and VOF results 

As described above, the droplets’ coalescence and jumping phenomena have been modelled 

numerically using both 2D LB (Fig. 7) and 3D VOF (Fig. 8) methods. Analysing the results of this 

numerical modelling, we believe that the primary jumping phenomenon can be explained as a 

dynamic process where the diameter of resulting droplet, following coalescence, is larger than the 

diameters of the initial droplets. 

 

 
Figure 7: Results of 2D LB modelling of droplet coalescence and jumping phenomenon, initial 

droplet radius 405 µm and droplet velocity �̅�j =0.064 m/s. 

 

Kinetic momentum created initially by the coalescing droplets acts in horizontal direction, and 

deforms the interface, but the droplet can only escape upwards due to the close proximity of the solid 

wall (see the change of shape between 2.7ms and 6.1ms in Figure 7, and the change of shape 

between 0.8ms and 1.6ms in Figure 8 – note that the different time-scales is explained by the 

2.7ms 6.1ms 13.6ms0.9ms0.4ms0.0ms
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difference between 2D and 3D droplets. If the resulting vertical force, acting on the combined drop, 

is sufficient to overcome the adhesion forces between the surface and the droplet, the droplet will 

jump away from the surface. Viscous dissipation of the fluid will also take place. Further analysis 

concentrated on establishing necessary kinematic conditions for this jumping phenomenon to occur. 

A Design of Experiment approach was followed, with the initial droplet radius (r) and the static 

contact angle (θs) of the surface being analysed through 2D numerical simulations. The estimated 

surface response obtained from this analysis is presented in Figure 11.  

 
Figure 8: Results of 3D VOF modelling of droplet coalescence and jumping phenomenon, 

initial droplet radius 405 µm and droplet velocity U=0.082 m/s. 

 

 
Figure 9: Comparison of numerical simulations and experimental analysis together with the 

experimental data from Boreyko & Chen [3]. 

 

 

8.0ms 1.6ms 0.8ms 0.0ms 
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It may be noted that the jumping velocity is higher for more hydrophobic surfaces. This may be 

explained by the fact that the contact area between the merged droplet and the surface is smaller; 

therefore less energy is required to dewet the surface. Despite the expected advantage of more 

superhydrophobic surfaces, it is difficult to fabricate a long-lasting surface with static contact angle 

significantly above 160º. Hence, due to our desire for experimental validation, we focused our 

remaining simulations on surface with θs=160º. Analysing the initial droplet radius we conclude that 

the jumping velocity increases for smaller droplets with initial radius of about 30μm (Figure 11), 

however for smaller droplets (<20μm) the jump velocity follows experimental observations and 

decreases (see Figure 9, LB curve). 

 

 
Figure 10: Influence of the static contact angle on the droplet jumping velocity, and 

determination of critical contact angle for jumping phenomenon (θc=140º) (after Khatir & 

Kubiak [31]). 

 
Figure 10 shows the influence of the static contact angle on the jumping velocity, and a critical value 

of the static contact angle has been obtained (θc=140º) for droplets with initial 2D radius of 100 μm. 

Jumping occurs for all values of θ between 140º and 180º. However, for a surface with static contact 

angle θ=160º, the jumping velocity is already 90% of the jumping velocity for θ=180º. A wider 

selection of numerical results is presented in Figure 9, which shows very good agreement with 

experimental values across a wide range of initial droplet radii from 20μm up to 500μm. Overall, the 

numerical methods developed in this study appear to show reliable predictions. So far maximum 

jumping velocity reported in the literature from numerical simulations [12] and experimental analysis 

[3] is in the region of 0.25 m/s, which is consistent with our results presented in this paper. Note that 

fewer computational results for the 3D simulations by the VOF method. These results are 

considerable more computationally demanding, however they demonstrate very good agreement with 

experimental data and with data published by Liu et al. [12].  
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3.3 Multi-design optimisation 

 

Firstly, the design goal is formulated as the unconstrained, optimization problem of maximizing the 

jumping velocity �̅�j. The global minimum of the surrogate model for �̅�j is obtained using a single-

objective genetic algorithm (GA) approach. The parameters of the optimal design were obtained as 

follows: r=35μm, θ=161⁰ with consequential jumping velocity �̅� j=0.226m/s from the surrogate 

model. An illustrative example of surface functions �̅�j in terms of the design variables r and θ is 

shown in Figure 11. 

 

 
Figure 11: Response surface of the jumping velocity �̅�j from the surrogate model  

together with the DOE points; ●. 

 
Table 1: Super-hydrophobic functional surface performance at stages of the single-objective 

design process. 

      Response from   �̅�j 

Best design from DOE 

Optimized design after  GA  

 

CFD prediction with    

optimized design variables      

   LBM 

   RBF 

 

   

   LBM 

   VOF       

0.314 

0.226 

 

 

0.242 

0.216 

 

The optimized design from the surrogate model was validated against our corresponding 2D LBM 

and 3D VOF CFD solutions with the same design variables. They showed good agreement with the 

surrogate model with �̅�𝑗
𝐿𝐵𝑀

= 0.242m/s   and �̅�𝑗
𝑉𝑂𝐹

= 0.216m/s which are within 7% of the surrogate’s 

prediction. The results of the validation process and the predicted functional surface performance 

objective function �̅�j for the single-objective function are given in Table 1 together with the best 

design from the DOE. Note that our GA algorithm restricted the parameter range for the optimization 

to a maximum contact angle of 170⁰, which reflects the practical difficulties of obtaining a 
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physical system with a contact angle that is closer to 180⁰. The best DOE result was actually 
achieved for a contact angle of 180⁰ however, which leads to a theoretically higher value for 
the best possible jumping velocity. 
 

Secondly, the design goal is now formulated as the unconstrained, multi-objective optimization 

problem of maximizing the jumping velocity �̅�j and q simultaneously. The global minimum of the 

surrogate model for �̅�j and q is obtained using a multi-objective genetic algorithm (GA) approach 

based on [32-33]. For the computation of q, ΔT=4 K, A=(500μm)
2
, cp=4200J/kgK and 

ρl=1000m
3
/kg. The parameters of the optimal design were obtained as follows: r=39μm, θ=166⁰ with 

resulting jumping velocity �̅�j=0.228m/s from the surrogate model. An illustrative example of surface 

functions 𝑞 in terms of the design variables r and θ is shown in Figure 12. 

 

 
Figure 12: Response surface of the heat flux q together with the DOE points;●. 

 

 

Table 2: Super-hydrophobic functional surface performance at stages of the multi-objective 

design process. 

      Response from   �̅�j q 

Best design from DOE 

Optimized design after  GA  

 

CFD prediction with    

optimized design variables      

   LBM 

   RBF 

 

   

   LBM 

   VOF       

0.314 

0.228 

 

 

0.246 

0.220 

0.005 

0.015 

 

 

0.011 

0.011 

 

The optimized design from the surrogate models was validated against our corresponding 2D LBM 

and 3D VOF CFD solutions with the same design variables. They showed good agreement with the 
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surrogate model with �̅�𝑗
𝐿𝐵𝑀

= 0.246m/s and �̅�𝑗
𝑉𝑂𝐹

= 0.22m/s which are within 8% of the surrogate’s 

prediction. The heat fluxes, q
LBM

 = q
VOF

= 0.011 kW/m
2
. The results of the validation process and the 

predicted functional surface performance objective functions �̅� j and q for the multi-objective 

functions are given in Table 2 together with the best DOE design. Although this best DOE design 

again leads to a higher jumping velocity, the predicted heat flux is significantly lower than the 

optimal value in this case. 

 

In a multi-objective optimisation problem a Pareto front can be used by designers to choose the most 

appropriate compromise between the various objective functions that have been identified and for 

which the goal is to minimise the objective functions. It is not possible to move along the design 

points on the Pareto front to decrease any of the objective functions without increasing at least one 

other objective function, and Pareto points are often referred to as being ‘non-dominated’. In the 

present case with two objective functions the Pareto front showing the impact of the two objectives 

of interest here is shown in Figure 13. This data provides a convenient and scientifically-rigorous 

means by which designers can quantify the effect of their design criteria on both manufacturability 

and energy efficiency of functional surfaces.  

 

 
Figure 13: Pareto front showing the compromises that can be obtained in  

maximising both �̅�j and q. 

 

4 Conclusions 

Evacuation of condensate during dropwise condensation is technologically challenging. The process 

of droplet coalescence on superhydrophobic surface, and resulting jumping phenomenon, have been 

analysed experimentally and successfully modelled numerically with both 2D lattice Boltzmann and 
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3D Volume of Fluid techniques. The coalescence-induced velocity of jumping droplets has been 

explored, and optimal kinematic conditions for jumping droplets have been established to be in a 

range of initial droplet radii from r=20μm to 40μm, for a static contact angle in the proximity of 

θs~160º. Critical value of static contact angle for jumping phenomenon to take place has been found 

to be around θc~140º. It is clear that the development of functional surfaces to obtain continuous 

drop-wise condensation can be a good strategy to enhance the heat transfer rate in condensation 

processes. The heat transfer model used in this paper is, like many others in the literature (such as 

[13], for example), relatively simply: based upon an assumption that the heat transfer between the 

surface and the droplet occurs almost instantaneously. Future work should explicitly model thermal 

energy transfer within the fluid as the droplets coalesce in order to assess the range of validity of this 

assumption. 
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