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Abstract

There has recently been an increased emphasis on reduc-
ing energy consumption in manufacturing. This is largely
because of fluctuations in energy costs causing uncertainty.
The increased competition between manufacturers means that
even a slight change in energy consumption can have impli-
cations on their profit margin or competitiveness of quote.
Furthermore, there is a drive from policy-makers to audit the
environmental impact of manufactured goods from cradle-to-
grave. The understanding, and potential reduction of machine
tool energy consumption has therefore received significant in-
terest as they require large amounts of energy to perform ei-
ther subtractive or additive manufacturing tasks.
One area that has received relatively little interest, yet could
harness great potential, is reducing energy consumption by
optimally planning machine activities while the machine is
not in operation. The intuitive option is to turn off all non-
essential energy-consuming processes. However, manufac-
turing processes such as milling often release large amounts
of heat into the machine’s structure causing deformation,
which results in deviation of the machine tool’s actual cutting
position from that which was commanded, a phenomenon
known as thermal deformation. A rapid change in temper-
ature can increase the deformation, which can deteriorate
the machine’s manufacturing capability, potentially produc-
ing scrap parts with the associated commercial and environ-
mental repercussions. It is therefore necessary to consider the
relationship between energy consumption, thermal deforma-
tion, machining accuracy and time, when planning the ma-
chine’s activity when idle, or about to resume machining.
In this paper, we investigate the exploitability of auto-
mated planning techniques for planning machine activities
between subtractive manufacturing operations, while being
sufficiently broad to be extended to additive processes. The
aim is to reduce energy consumption but maintain machine
accuracy. Specifically, a novel domain model is presented
where the machine’s energy consumption, thermal stability,
and their relationship to the overall machine’s accuracy is en-
coded. Experimental analysis then demonstrates the effec-
tiveness of the proposed approach using a case study which
considers real-world data.

Introduction
Machine tools are complex mechantronic system used in
both subtractive and additive manufacturing. Much of their

Copyright © 2016, All rights reserved.

Figure 1: Example C-Frame three-axis machine tool

performance comes from their mechanical rigidity. For ex-
ample, Figure 1 illustrates the structure of a three-axis ma-
chine tool. Machine tools come in a large variety of sizes
and configurations, but a common feature is their ability to
position their tool in a three-dimensional space relative to
the workpiece either to remove (cut, grind, etc.) or add
material. Accuracy is often a primary commercial driver
in the advancement of machine tools for precision, high-
value manufacturing to micrometre-level tolerances. How-
ever, maintaining such high levels of accuracy requires strict
control of the many factors which can cause a change in ac-
curacy. For example, the effect of temperature change on
the machine’s structure can have a dramatic impact on the
accuracy of the tool. Energy efficiency is also becoming an
increasingly important factor in machine tool development
both to reduce manufacturing costs (Draganescu et al. 2003;
Diaz et al. 2011), as well as reducing environmental im-
pact (Diaz et al. 2010). However, the relationship between
the improvement in energy efficiency and possible reduc-
tion in machine accuracy resulting from rapid temperature
change is less well explored. This is surprising consider-
ing the amount of heat generated from electrical devices and
mechanical subsystems during the machining process.

The use of machine tools has been identified as the largest
consumer of energy during the manufacturing of parts. It
has been established that machine tools use 63% of the to-
tal energy required to manufacture a part (Hesselbach and
Herrmann 2011). Additionally, energy consumption occu-
pies over 20% of the operating costs of machine tools per
year, in excess of £10,000. While it is difficult to state



how much of the 20% is consumed between manufactur-
ing operations, it is likely that the machine will be station-
ary for many periods during the working-day as new parts
are loaded, etc. Many researchers have investigated the po-
tential of reducing energy consumption during the manu-
facturing process itself (Vijayaraghavan and Dornfeld 2010;
Liu et al. 2014; 2015). For example, reducing energy usage
during milling (Diaz et al. 2011). These works have largely
been motivated by the fact that large forces are required to
cut material, and any reduction at this stage can therefore be
significant. However, one area that has received less atten-
tion is the consumption of energy between manufacturing
operations, when the machine is not cutting and therefore is
nominally idle. In the first instance it may appear that if the
machine is idle it will be consuming no energy. However, it
is often the case that many electrical components of a ma-
chine tool will continue to use energy. Furthermore, once
the machine is required to operate once again, an energy-
intensive warm-up cycle is often required to bring the sub-
system (e.g spindle motor) into a suitable (stable) state for
actual machining.

Such warm-up cycles are often required since the heat
generated from the machine components during manufac-
turing will transfer to the machine tool’s structure and cause
deformation. This thermal deformation is, in the simplest
case, a first-order response to the temperature step input.
Heating the subsystem prior to manufacturing means that
much of the deformation will take place before cutting be-
gins, helping to reduce in-process change and increasing the
accuracy of the component. A warm-up cycle is usually en-
ergy intensive, but will only be necessary should the heat-
generating subsystem and surrounding structure decrease
below an identified temperature. This creates an interest-
ing possibility where keeping the machine subsystems ac-
tive, at a reduced level, whilst not manufacturing can gen-
erate sufficient heat to maintain the thermal stability of the
machine tool’s structure and remove the need for a warm-
up cycle, thus reducing the overall energy consumption. For
example, Figure 2 illustrates, through Finite Element Anal-
ysis (FEA), the deformation of the machine tool’s structure
resulting from the release of heat generated by the spindle
motor and friction in the moving mechanical elements. In
the diagram, the nominal tool position and orientation are
shown superimposed on the actual location; the difference
between the two, caused by temperature effects, leads to a
displacement at the tool tip, which is known as the ther-
mal error. If this deformation were to take place during
the manufacturing process then the resultant manufactured
component would display the results of this error, leading to
a requirement for rework or even scrapped parts. However,
if this deformation were to occur before the manufacturing
process, then the thermal error of the machine can remain
stable during the process, and therefore the accuracy of the
produced part is largely unaffected.

Energy consumption information for many machine tool
electrical subsystems is widely available, but that from me-
chanical interaction (friction) is often less well defined.
However, in both cases the amount of heat released into the
machine’s structure and its affect on machine accuracy needs

Figure 2: Deformation of the machine tool’s structure due to
heat generated by the spindle motor

to be established. This can be acquired by recording the
temperature of the machine tool’s structure while monitor-
ing the deviation of the machine tool’s cutting point. Dur-
ing analysis, each subsystem will typically be run at differ-
ent speeds to establish the relationship between the differ-
ent levels of energy consumption and heat generation, and
also the relationship between heat generation at the subsys-
tem’s location and the effect on machine accuracy. Once
all the data has been acquired, FEA can be used to com-
putationally model the relationship between heat generation
and deformation of the machine tool (Mian et al. 2011;
2013). This model can then be used to derive a series of co-
efficients that describe the generation of heat with increased
energy consumption, and the change in machine tool accu-
racy from the resulting different thermal gradients.

The number of electrical subsystems, the different op-
erational levels, the current state of the machine tool, and
the required initial state of the next manufacturing operation
make it challenging to consider all possible options and min-
imise energy consumption whilst maintaining a desired level
of accuracy. This creates an interesting and novel possibil-
ity to utilise Automated Planning to automate the process,
removing the requirement for expert knowledge, minimise
energy consumption, and maintain the required level of ac-
curacy. While the exploitation of planning techniques for
planning machine activities between manufacturing opera-
tions has never been investigated, previous works demon-
strated the potential of using automated planning for opti-
mising different aspects of using machine tools. For exam-
ple, the non-productive time (downtime) of a machine tool
during calibration has been reduced through automatically
constructing calibrations plans, reducing reliance on expert
knowledge (Parkinson et al. 2012a; 2012b). Further work
of encoding mechanisms to calculate measurement uncer-
tainty (Parkinson et al. 2014b) created the potential to per-
form multi-objective optimisation (Parkinson et al. 2014a).

This paper is organised as follows: first, the importance
of planning for activity between manufacturing operations
(named interval activity herein) is described and motivated.
Second, we provide a discussion on the importance of plan-
ning interval activity, and a domain model is provided,
encoded using the Planning Domain Definition Language
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Figure 3: Illustrating how the machine tool energy consump-
tion, structural temperature, and accuracy is changing during
manufacturing and interval periods.

(PDDL) (Fox and Long 2003). Then, the effectiveness of
automated planning is demonstrated using a real-world case
study. Finally, conclusions are given.

Importance of Interval Activity
In this section, the importance of considering interval ac-
tivity is motivated. In particular, the relationship that is of
interest in this paper is that between energy consumption,
generation of temperature profile, and the affect on machin-
ing accuracy. Prior knowledge of this relationship creates
the potential to optimise machine tool use between man-
ufacturing operations. For example, in some situations, it
may be advantageous to keep the electronic components in
use to maintain energy consumption, generate heat, and thus
maintain machine accuracy.

Figure 3 provides a graphical illustration of two manu-
facturing operations with an interval between. The figure
illustrates the relationship between increasing energy con-
sumption (green), heat generation (red), and increasing ma-
chine error (blue) through a simplified representation. Note
that although the figure is for illustration purposes, the data
is a realistic, if simplified, representation of what occurs.
In the figure, it can first be seen that energy consumption
is at its lowest when the machine is idle, and its highest
when a new manufacturing job is started, This is because
a dedicated warm-up cycle is required to stabilise the ma-
chine’s structure and avoid thermal change during manufac-
turing. It is then noticeable in the figure that as the energy
consumption increases, so does the temperature of the ma-
chine’s structure. The final relationship presented is that the
error of the machine tool increases to a steady-state value
and maintained when the temperature is stable. In practice,
the number of different operations that occur during machin-
ing mean that the energy profile, and resulting temperature
and error trends, will display somewhat more complex be-
haviour. In the remainder of this section, a more detailed
analysis of each element (energy consumption, temperature
and accuracy) is presented.

Figure 4: Heat generated by spindle motor during a two-
hour heating and cooling cycle. Spindle bottom, top and
motor indicate the normalised temperature for three surface
temperature sensors mounted around the spindle. Spindle
RPM reports the normalised spindle speed in RPM (0 to
9000).

The relationship between energy consumption, the gener-
ation of heat and its dissipation into the machines structure
is different for every subsystem: a high-speed spindle motor
uses significantly more power than a linear axis servo motor.
For example, consider manufacturing an aluminium housing
with the dimensions of 150mm × 50mm × 20mm (Heiden-
hain 2010). The total energy needed for the machine tool to
produce the part is 20.4kW. A total of a 4.8kW for the ma-
chine tool spindle, and 0.5kW for the three axes’ feed drives.
Other electrical subsystems (e.g controller, coolant pump,
etc.) make up the remainder. As both these components
have different levels of energy consumption, they generate
different amounts of heat. Each component will have dif-
ferent modes of operation. For example, a common spindle
motor might be capable of speeds in excess of 9,000 revo-
lutions per minutes (RPM). Figure 4 demonstrates the heat
generated as the spindle speed increases on a three-axis ma-
chine tool. The figure shows the normalised spindle speed in
RPM (0 to 9000), and normalised temperature for three sur-
face temperature sensors mounted around the spindle. There
are: (1) spindle bottom (21.8◦C to 27.4◦C), (2) spindle mo-
tor (21.6◦C to 26.2◦C), and (3) spindle motor (21.7◦C to
33.1◦C). The graph illustrates that when the spindle is used
at its higher speed, the temperature of the machine tool’s
structure surrounding the spindle increases rapidly in tem-
perature. Once high speed usage has finished, it can be seen
that the structure of the machine tool begins to reduce in
temperature.

The next relationship of interest is that of changing ma-
chine tool temperature and its effect on structural deforma-
tion of the machine tool. The heat generated by machine
subsystems transfers into the machine tool’s structure caus-
ing distortion. The severity of the effect of changing tem-
perature is dependent on the material from which it is con-
structed. For example, steel has a high coefficient of thermal
expansion (~12µm per ◦C ) compared to carbon fibre (~2µm
per ◦C ), though much less than aluminium (~22µm per ◦C).



Figure 5: Error of a three axis machine tool generated during
a two hour spindle heating and cooling cycle.

Considering the previous example of a spindle motor, Fig-
ure 5 illustrates the effect of changing temperature on the
machine’s structure. In this figure the spindle of a three-axis
machine tool was running at 9,000 RPM (70% utilisation)
for 120 minutes, and then left to cool for a further 120 min-
utes. From this experiment, it is noticeable that error for
each of the three axes is changing throughout the heating
cycle in the first 120 minutes, and then once the spindle is
disabled, the errors continue to increase as the heat is still
transferred into the machine’s structure.

The examples discussed in this section demonstrate the
importance of planning for machine activity between man-
ufacturing operations. However, planning in this context is
not a trivial task as any action can impact on machine accu-
racy and energy usage, both of which can have significant fi-
nancial implications. Currently it is up to the machine oper-
ator to make the correct decision in an ad-hoc manner where
they determine machine activity by knowing future manu-
facturing operations, as well as the energy saving policies of
their manager. However, this planning for the machine oper-
ator is complicated by the large number of different machine
activity actions that can be performed and their potential
implications on machine accuracy and energy consumption.
For example, each axis and spindle can be moved at differ-
ent speeds sequentially or concurrently for different periods
of time. Moving a single linear axis will transfer heat in the
machine’s structure surrounding the axis and would result
in thermal distortion from that location, whereas moving all
three axes simultaneously would transfer heat into more of
the machine’s structure and potentially result in more sym-
metrical expansion.

Domain Modelling

In this section, a PDDL model is developed and discussed
to describe the domain of interval planning. In the presented
model, the two following equations are used to determine
energy consumption as well as machine accuracy. These
equations require machine-specific data acquired through
performing an error mapping and energy monitoring audit.

total error = total error + duration×
(effect on error × energy consumption) (1)

total energy = total energy+

(duration× energy consumption) (2)

Equation 1 is used for updating the error fluent by a quan-
tity of time in minutes, multiplied by the the effect on error
in micrometres of deviation per minute of energy consump-
tion. Here, there is a different effect on error value for each
different mode of operation. Equation 2 updates the energy
consumption fluent by the same duration (in minutes) mul-
tiplied by the a fluent storing the energy use of a particular
component when being used in a predefined mode of opera-
tion.

The use of predefined modes has been adopted to reduce
the size of the domain model, in terms of number of op-
erators, and make it easier to be handled by state-of-the-
art planning engines. Many machine subsystems, such as
the spindle motor, can be run at any speed between station-
ary and their maximum RPM. This continuous behaviour
could be encoded in PDDL+ (Fox and Long 2006); how-
ever, this would dramatically increase domain complexity
as the number of heat-generating machine components in-
creases. In addition, the number of planning systems able to
handle PDDL+ is limited (see, e.g. (Coles and Coles 2014;
Della Penna et al. 2009)), especially when compared with
those capable of handling different versions of PDDL. Even
more restricted is the number of solvers able to support the
entire function set of PDDL+. Therefore, for the prelimi-
nary work undertaken to determine the feasibility of using
automated planning in this domain, PDDL2.2 (S. Edelkamp
and J. Hoffmann 2004) –an extension of PDDL2.1 (Fox and
Long 2003)– is used. The International Planning Competi-
tion1 has resulted in the existence of a significant number of
planners able to solve PDDL2.2 planning problems.

Initial and Goal State
The initial state specifies energy consumption and effect
on machine accuracy for each predefined level of oper-
ation through the use of numeric fluents. For example,
energy idle ?c and error ?c represent the energy
consumption and the effect on accuracy for a component
?c. In addition time unit fluent is introduced to spec-
ify a predetermined duration of an action that should occur
to bring about a change in accuracy and energy consump-
tion. The total error and total energy fluents are
used in the initial state to encode information regarding the
machine’s current state after finishing manufacturing. In ad-
dition, timed initial literals are also used to encode the dura-
tion of the interval. Using timed initial literals restricts the
makespan to the duration of the interval, overcoming some
planner’s inability to handle concurrency in durative actions.

The goal state makes use of four optional numeric con-
ditions to impose a tolerance window on the total error and

1http://www.icaps-conference.org/index.php/Main/Competitions



(:durative-action normal
:parameters (?c - component)
:duration(= ?duration (time unit ?c))
:condition
(and

(over all (in interval))
(at start (not(in use ?c)))

)
:effect
(and

(at start (in use ?c))
(at end (not(in use ?c)))
(at end (increase(total error)

(*(time unit ?c)
(*(error normal ?c)
(/(energy normal ?c)60)))))

(at end (increase(total energy)
(*(time unit ?c)
(/(energy normal ?c)60))))

)
)

)

Figure 6: Durative action representing the fact that the ma-
chine component ?c is planned to remain in a normal state
of operation for a time unit.

energy consumption. The tolerance window for the total er-
ror creates the possibility to specify the manufacturing re-
quirements of the next job and to ensure the interval activity
correctly prepares the machine’s state. For example, using
(< (total error) 10) and (< (total energy)
4) in the goal state would ensure that the error must be less
than 10µm(at the end of the modelled interval, thus ready
for the next job) and the overall energy usage must be less
than 4Wm−1.

Operators
In our domain there are machine component objects, and
four operators representing different levels of operation: off,
idle, normal and high. Each operator is similar apart from
the equation to update both error and energy fluents. Fig-
ure 6 details the normal durative action where the machine
error and energy usage are adjusted based on a normal mode
of operation. The action will execute for the time unit,
while the in interval predicate is true. The full PDDL
source is available from the authors on request.

Plan Metric
In this paper the following three different metrics are used:

1. (:metric minimize (total error))

2. (:metric minimize (total energy))

3. (:metric minimize
(/(+(total error)(total energy))2))

The first two aim to minimise the values held in the to-
tal error and total energy fluent, whereas the third metric is

Electrical
Item

Off
Wm−1,

µm

Idle
Wm−1,

µm

Normal
Wm−1,

µm

High
Wm−1,

µm

Multiplier

X
Servo

0, 1 0.1,
0.1

0.7,
0.5

2.8, 2 1.2E-
005

Y
Servo

0, 1 0.1,
0.1

0.7,
0.5

2.8, 2 1.2E-
005

Z
Servo

0, 3 0.2,
0.3

1.0,
1.5

4.2, 6 2.4E-
005

Spindle
Motor

0, 6 1.3,
0.6

6.5,
3.1

26, 12 7.7E-
006

Table 1: Case study data demonstrating the different energy
consumption (in Wm−1) and the effect on error (in µmper
minute)

used to minimise the arithmetic mean of both. This creates
the potential to perform multi-objective optimisation where
both error and total energy consumption are minimised for a
given weighting.

Experimental Analysis
In this section, a case study is provided where interval plan-
ning is performed for a single machine tool when consider-
ing different interval scenarios. The data presented in Ta-
ble 1 details the energy consumption of the machine tool,
as well as the relationship between energy consumption and
machine error. These values have been extracted from a sim-
ilar machine tool as presented in earlier sections of this pa-
per. As interval duration is in minutes, the data presented in
Table 1 has been converted into time units. These are Watts
per minute (Wm−1) and the positional error in microme-
tres per Wm−1. This is calculated using a multiplier de-
rived from dividing the deviation in micrometres per minute
by Watts per minute (µmWm−1m−1). For example, to cal-
culate the micron error resulting from 60 minute high use
of the spindle motor would be 12 µm by using Equation 1
where duration = 12, energy consumption = 26,000,
and effect on error = 7.7E − 006.

The machine-specific data presented in Table 1 is now
used in the creation of several PDDL problem files to sim-
ulate the following interval scenarios. First, problem defini-
tions are created with a duration of 30, 60, and 120 minutes.
Following this, three variations of each problem are created
with three different requirements on machine error. These
are: tight (<20µm), medium (<50µm), and large (>50µm).
These requirements are synthetically generated; however,
they do provide an adequate description of different energy
and machine tool accuracy requirements in a manufactur-
ing environment. Considering the combination of each of
these scenarios results in the creation of 9 different prob-
lem instances. In addition, each problem instance will be
solved using each of the three metrics stated in the domain
modelling section, resulting in a total of 27 different PDDL
problem definition files. LPG-td (Gerevini et al. 2006) is
used to find the best solutions (in terms of the specified met-
ric) to the problem definitions within a 5 minute time-frame.



Metric: Error Metric: Energy Metric: Er + En
Instance En(Wm−1) Er(µm) En(Wm−1) Er(µm) En(Wm−1) Er(µm)

T-30 138 10 138 10 138 10
T-60 260 16 220 19 232 20
T-120 520 19 380 20 410 20

M-30 0 21 0 21 0 21
M-60 800 26 374 44 670 36
M-120 1351 45 984 47 1263 46

L-30 - - - - - -
L-60 2578 52 - - - -
L-120 3951 58 1641 61 2584 60

Table 2: Experimental results detailing both error and error values for each of the nine scenarios when using three different
metrics. Entries marked with a dash (-) were not solved within the 5 minute cut-off time. Problem instances are in the format of
a character to represent the scenario and the interval duration in minutes. The characters are: T= tight, M = medium, L = large.

LPG-td has been used in “anytime” configuration; it keeps
increasing the quality of plan, for a given problem instance,
until the available CPU-time is over.

Table 2 provides the error (Er) and energy (En) values for
each problem instance and the use of the three metrics. From
the Table it is evident that the majority of the problem in-
stances were solved within the 5 minute cut-off time. After
examination, it is noticeable the problem instances requir-
ing a large error (L) are not solved within the allowed time.
It is worthy reminding that, while T and M benchmarks re-
quire that the initial error value is lower than a given value,
in L benchmarks the accuracy requirement is to have a value
higher than a given threshold. Therefore, plans which are
suitable for T and M, are not valid for the L scenario. The
fact that some instances are not solvable is not because the
planning problem requires more time to identify a solution,
rather there is no suitable sequence of actions capable of tak-
ing the error beyond that specified in the goal state during the
allocated interval duration. However, this should be seen as
a useful piece of information rather than an issue: it would
not be detrimental for a manufacturer to manufacture a part
on a machine with a smaller error than required to satisfy the
tolerance constraints of the part.

From analysing the results presented in Table 2, it can also
be seen that for both the tight and medium 30 minute interval
problem instances, optimising for all three metrics results in
the identification of the same plan. In addition, in some in-
stances the energy consumption is 0. Interestingly, this is
because the planner is able to identify a plan where the ma-
chine is switched-off and the slow deterioration in accuracy
over the 30 minute period does not take the accuracy beyond
the value set in the initial state (<20µmand <50µm). In ad-
dition, it is also possible to identify that optimising for a sin-
gle metric is often at the expense of the other. For example,
in T-60 it can be seen how the error is reduced to 16µmby
using 260Wm−1when optimising for error, whereas when
optimising for energy, the error increases to 19µmand the
energy usage decreases to 220Wm−1. Optimising for the
arithmetic mean of both metrics also results in a plan where
both metrics are at their lowest.

This experimental analysis has demonstrated that the
technique is useful for stabilising the machine error whilst
reducing estimated energy consumption. It has also demon-
strated that planning for large machine error is unnecessary
as it will result in high energy consumption over short dura-
tions to generate large amounts of heat and cause structural
deformation to reduce accuracy. Conversely, when planning
for tight tolerances, the plan will contain actions with low
energy consumption which will result in gradual heat gen-
eration, leading to thermal stabilisation and improved accu-
racy. For example, in the following plan excerpt it can be
seen how, over a 30 minute period, the spindle is initially
turned off and then switched back on and left to idle to main-
tain accuracy.

0: (OFF SPINDLE MOTOR) [10.0000]
10: (IDLE SPINDLE MOTOR) [10.0000]
20: (IDLE SPINDLE MOTOR) [10.0000]

Conclusion
This paper presents the exploitative use of automated plan-
ning to plan for machine tool activity between manufactur-
ing operations. This is a novel application with potential to
aid machine tool operators prepare their machine for the next
manufacturing task considering overall energy consumption
and the effect on manufacturing accuracy. Research has pre-
viously been undertaken in the area of reducing energy con-
sumption and improving the error of machine tools during
manufacturing. However, to the best of the authors’ knowl-
edge, little work has considered the intervals between man-
ufacturing.

The paper provides a discussion detailing that subsystems
of a machine tool (in particular servo motors) consume a
large quantity of energy and that this energy results in the
generation of heat. It was then discussed how this heat
transfers through the machine tool’s structure causing ther-
mal deformation, resulting in positioning error of the ma-
chine tool’s cutting point relative to the workpiece. This er-
ror then transfers to the manufactured component and can



result in the production of out-of-tolerance parts. It was
discussed how changing the machine’s activity during non-
manufacturing intervals can help to stabilise the machine
tool’s structure, resulting in a reduction in error. An experi-
mental PDDL domain model was then developed to enable
planning for manufacturing intervals using available energy
and error information.

Experimental analysis was then performed using the de-
veloped domain model and nine different problem instances.
Each instance relates to a different combination of accuracy
requirements and interval duration. The exploratory exper-
imental analysis demonstrates good potential as accuracy,
energy, and the arthritic mean of both are minimised below
the specified accuracy limit. It has also been identified that
automated planning is capable of providing a viable mecha-
nism for aiding manufacturing, albeit with a simplified do-
main model. The developed domain requires further devel-
opment and testing to make it more accurately represent in-
terval planning. One limitation of the presented domain is
that the relationship between temperature and accuracy is
non-linear, whereas for this initial proof-of-concept the rela-
tionship has been discretized into linear rates-of-change. Fu-
ture work will include investigating alternative approaches
to solve problems of a larger size to gain better results. For
example, the use of PDDL+ and mixed integer programming
will be considered, as well as undertaking further domain
modelling work with the view of experimenting with differ-
ent planning algorithms.
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