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ABSTRACT  

 

New technology brings ever more data to support decision-making for intelligent transport 

systems. Big Data is no longer a futuristic challenge, it is happening right now:  modern 

railway systems have countless sources of data providing a massive quantity of diverse 

information on every aspect of operations such as train position and speed, brake 

applications, passenger numbers, status of the signaling system or reported incidents.  

The traditional approaches to safety management on the railways have relied on static data 

sources to populate traditional safety tools such as bow-tie models and fault trees. The Big 

Data Risk Analysis (BDRA) program for Railways at the University of Huddersfield is 

investigating how the many Big Data sources from the railway can be combined in a 

meaningful way to provide a better understanding about the GB railway systems and the 

environment within which they operate. 

Moving to BDRA is not simply a matter of scaling-up existing analysis techniques. BDRA 

has to coordinate and combine a wide range of sources with different types of data and 

accuracy, and that is not straight-forward. BDRA is structured around three components: 

data, ontology and visualisation. Each of these components is critical to support the overall 

framework. This paper describes how these three components are used to get safety 

knowledge from two data sources by means of ontologies from text documents. This is a 

part of the ongoing BDRA research that is looking at integrating many large and varied data 

sources to support railway safety and decision-makers. 

 

 

1. INTRODUCTION 

 

Over the past decades, safety science has developed safety risk models based on static data 

from failures of systems, causes of accidents, incidents or near misses to discover hazardous 

situations (Figure 1). Railways have embraced many of these models in order to support 

safety management and decisions-making (e.g. Heinrich’s Law, Reason’s Swiss Cheese 

Model and Bow-Tie models). In the GB railways, the Safety Risk Model (SRM) has been 

developed based on a set of fault and event trees for hazardous events (Marsh and Bearfield, 

2008), which come from a combination of expert judgement and incident data from the rail 

industry’s accident reporting system (Safety Management Information System, SMIS).  
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Figure 1. Evolution of safety risk models. 

 

New technological railway systems are producing massive amounts of data which could be 

related to safety. The GB railways is, for example, dealing with how to manage complex rail 

assets by means of the ORBIS and the Future Railway programs (NR, 2016; RSSB, 2016). 

These ambitious programmes bring a cultural change in the railway organisations to improve 

the acquisition, storage and use of asset information for a truly digitised railway. Big Data 

analytics techniques based on these complex data could support safety management by 

providing valuable information on the precursors of hazardous events. The aim of the Big 

Data Risk Analysis (BDRA) programme at the University of Huddersfield is to investigate 

whether Big Data processing techniques can support the current railway risk models and 

safety decision-making and change traditional risk analysis, and if so, how (Van Gulijk et 

al., 2015). 

 

Our research to date has identified three basic components of a BDRA system: data, ontology 

and visualisation.  

 

Data is the basis of BDRA. Converting and integrating various types of data from 

heterogeneous information systems is the starting point Big Data analysis. Combining these 

data sources can provide a powerful insight into how the operation and failure of equipment 

contribute to failures and accidents on the railway. An example of data sources are the Close 

Call (CC) records, Train Describer (TD) Messages or On-Train Monitoring and Recording 

(OTMR) data. 

 

Ontology is “an explicit specification of a conceptualization” (Gruber, 1993). It is a 

representation of a domain knowledge that supports the use of different databases in a 

meaningful way and enables data analysis: it can be compared to a search engine which 

holds the right search keys to produce results that can be interpreted or analysed by the 

human operator. In this case the domain is safety and risk management for the GB railways, 

the concepts are the ways in which the components within the domain combine and interact 

to create the emergent behavior of the overall system (Van Gulijk and Figueres-Esteban, 

2016). 

 

Visualisation is a powerful, and arguably the only useful, tool for understanding large 

quantities of data by humans. Hundreds of different visualisation techniques are available to 

provide visual output of data. However, visualisation is not just for representing results. 

Modern visual analytics tools also provide the ability to interact with the data to perform 



Authors accepted manuscript 

 

data analysis (Figueres-Esteban et al., 2015a, 2015c). 

 

2. CASE STUDY DESCRIPTION 

 

This section provides an overview of the key components being used in the development of 

a trial for practical implementation of BDRA. The aim of this trial is to extract information 

from the Close Call database and Rail Notices related to Possession events, that is, Close 

Call events and notices related to the arrangements of planned blockages of a line section 

for infrastructure engineering works.  

 

In the GB railways, the Rule Book is the safety document that describes operational rules 

for railway staff to enable safe engineering works, and therefore it describes the operational 

rules related to possessions. This safety document is complemented by numerous standards 

from the infrastructure manager (Network Rail) which also comply with the requirements of 

European regulations (e.g. Technical Specification for Interoperability relating to the 

‘operation and traffic management’). The details of the possession’s arrangements are 

published and described in the Rail Notices system. The case study attempts to extract 

information from the Close Call database using the knowledge domain described in the 

documents and standards. Figure 2 shows the BDRA components involved in the case study. 

 

 

 
Figure 2. Basic components of BDRA in the Possession case study. 

 

 

2.1. Data 

 

Railway Close Calls are free-text descriptions of hazards provided by railway workers. The 

non-numeric data is an example of the variety of BDRA. Where standard numerical 

processing techniques can be used for data sources such as TD or OTMR data, these are not 

available for CC data. Close Call records are provided through a number of interfaces: 

entered directly into a mobile app by a worker, through a web interface, or typed by a 

telephonist who receives a call from a railway worker. The Close Call System collects about 

150,000 text-based records each year on potentially dangerous events, including events 

related to possession arrangements.    

 

A potential complementary semi-structured data source is the Rail Notices system. It is a 

web-based application which allows users to search, view, create and manage notices and 

alerts relating to a variety of rail industry processes, in particular, related to Weekly 

Operating Notices that describe possession arrangements. This information is provided by 

means of a combination of free-text descriptions and structured data.  
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The challenge for BDRA is to uncover how this free-text information can be understood and 

integrated in a way that is meaningful within a railway safety context. Natural Language 

Processing (NLP) and data integration techniques based on ontologies are used to extract 

safety information of railway operations related to possessions.  

 

 

2.2. Ontology 

 

A key component of this case study is the development of an ontology that represents the 

knowledge domain of possession management to support the text analysis and data 

integration from Close Call and Railway Notices. In this case it is not possible to reuse other 

ontologies because of the singularity of the topic, so it is necessary to build the ontology 

from scratch. The process to build an ontology is also called Ontology Learning. There are 

different approaches to build ontologies (Corcho et al., 2003). In this case study is used a 

corpus-based methodology. This method helps to acquire ontologies from a set of documents 

written in natural language that explain the knowledge of the domain. This approach is a 

semi-automatic method that implies a human interactive terminology extraction and natural 

language processing. Moreover, this method allows population of a lexicon related to the 

meaning of the extracted concepts. At this stage it is possible to represent a low-level 

ontology in a UML sequence or class diagram (Figure 3) that support the development of 

the formal ontology. A formal ontology describes the concepts, the different types of 

relationships and the axioms of the domain. This formal ontology has to be represented in a 

knowledge representation language for further use.  

 

 
 

Figure 3. Part of a UML sequence diagram of the Rule Book, issue 6: Possession of a 

running line for engineering work. 

 

 

 

 



Authors accepted manuscript 

 

2.3. Visualisation 

 

Visual Analytics can support text analysis by means of network text analysis (Figueres-

Esteban et al., 2015b). In this trial, we use a directed graph of words with part-of-speech tag 

attributes to support the term extraction in the Ontology Learning process. Figure 4 shows 

how it is possible to detect multi-word terms, for example detonator protection or block 

marker, and key concepts from the Rule Book related to possessions (e.g. PICOP or 

signaller).  

 

Figure 4. Network of Nouns and Proper Nouns (NN, NP, NNS and NNPS) of the Rule 

Book, issue 6: Possession of a running line for engineering work. Filtered graph by 

degree ≥ 5.  

 

 

3. CONCLUSION AND NEXT STEPS 

 

The BDRA programme aims to investigate how data from large and heterogeneous data 

sources can be tamed to provide meaningful information about railway safety. This paper 

describes the key elements of BDRA for practical implementation of a case study: getting 

insight from data about the railway operations related to possession. Close Call database and 

Rail Notices are potential data sources to extract safety information about possession events. 
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This paper demonstrates the extraction of terms from the Rule Book to create an ontology to 

represent the domain knowledge of possession. Visual Analytics is supporting the Ontology 

Learning process for term extraction from text, as well as the creation of a lexicon linked to 

the concepts of the ontology.  

 

The next stages of our research will construct a formal ontology and represent the ontology 

in a knowledge representation language. The ontology will be used for the natural language 

interpretation of hazards related to possession railway operations that are reported in the 

Close Call System. Moreover, it will allow to integrate the information from Close Call and 

Rail Notices to improve the railway operations related to possession.  
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