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Abstract

This paper is an analysis of current developments in rendering botanical
structures for scientific and entertainment purposes with a focus on visualis-
ing growth. The choices of practical investigations produce a novel approach
for parallel parsing of difficult bracketed L-Systems, based upon the work of
Lipp, Wonka and Wimmer (2010). Alongside this is a general overview of the
issues involved when looking at growing systems, technical details involving
programming for the Graphics Processing Unit (GPU) and other possible
solutions for further work that also could achieve the project’s goals.
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Glossary

Grammar In computer science a formal grammar is a set of rules used to
define a strings structure. 10, 12, 14, 15

Kernel A computer program managing input and output requests and in-
structions. 21, 25, 26, 29–31

Shader These are sets of instructions for the gpu to process. They normally
come in different types for various stages of the gpu pipeline. 18–20

String A computer programming term for a collection of characters or let-
ters. 5, 10, 11, 13, 14, 16, 18, 19, 21, 26, 27

Thread A thread is a term used to refer a set of instructions being carried
out, typically multiple threads run in parallel. 21, 24, 26, 27, 29–31

Time Box An allotted space of time used in project management. 3, 4

Acronyms

API Application Programming Interface. 19, 20

CPU Central Processing Unit. 16, 19, 28, 30, 31

FPS Frames Per Second. 7

GPGPU General-Purpose Computing On Graphics Processing Units. 16,
18

GPU Graphics Processing Unit. 1, 6, 9, 10, 16–21, 24, 29, 31

HLSL High Level Shader Language. 20

IFS Iterated Function System. 7, 8

LBDP L-System Bracket Depth Parsing. 24, 26, 29–31

LOD Level Of Detail. 6

VBO Vertex Buffer Object. 21
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1 Introduction

Animating plant life presents many problems for computer graphics; large
amounts of detailed geometry, complex underlying mechanics and various
visual effects that need to be applied for a realistic result. The problems
have been tackled fairly well for some years with many techniques discovered
and applied. There are two options for creating digital representations of
plant life, they can be procedurally created by an engine at run time or they
can be modelled by an artist in a separate software package then stored in
memory for later use. Modelling in the past was tedious work as dense scenes
contain large amounts of very complex geometry, commonly leading to a mass
of identical foliage due to time constraints. The industry focus has been on
allowing designers to quickly model plant life and then populate a scene
which has been quite successful with various options available (Lintermann
and Deussen, 1999; Interactive Data Visualization Inc, 2012).

Procedurally generated content is a more difficult scenario. Many sys-
tems will procedurally place pre-built models across a scene to various levels
of complexity (Cohen, Deussen, Hiller and Shade, 2003) which is another
method of creating rather vibrant scenes with minimal effort. The research
done here will be focusing on procedurally creating the plants themselves.

This project’s primary goal is a highly optimized technique focusing on
the growth of botanical systems, working to a ‘Firm real-time’ restriction
(Mok, 1996). Growing systems present even greater challenges with devel-
opments in this area being either slow, heavy load simulations or detailed
animations for pre-rendered scenes, likely due to the constantly shifting ge-
ometry and updates to the underlying data required.

There will be a balance in approaching this goal between how demanding
any investigated/created technique is and what that technique can achieve;
an optimal result being a large number of objects or systems that follow
naturally accurate growth pattern while allowing for heavy user interaction.
Regardless of how demanding any creation is, it should be focused on opti-
misation. This goal pushes the project’s research towards the entertainment
demographic where lowering the hardware demand is particularly important.
However if an optimised technique can be found which allows for the edit-
ing of environmental parameters affecting growth and produces a botanically
accurate result, then the application will perhaps engage a scientific demo-
graphic.

For a clear definition of the project goals the MoSCoW method is em-
ployed. With it four different levels of prioritisation are layed out which are
to be completed within a time box. Miranda (2011) lists the MoSCoW rules
as follows:
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1. Must Have: Those features that the project, short of a calamity, would
be able to deliver within the defined time box

2. Should Have: Those features that have a fair chance of being delivered
within the defined time box

3. Could Have: Those features that the project could deliver within the
defined time box if everything went extraordinarily well, i.e. if there
were no hiccups in the development of requirements assigned to higher
priority categories

4. Wont Have features, those for which there is not enough budget to
develop them

For this project the time box will cover the entirety of research, implemen-
taion and analysis. Laying out these goals makes evaluation of a chosen
methodology clearer, in terms of how many and how important the achiev-
able priorities are in relation to the MoSCow method.

1. Must Have: Animated growth of plant life.

2. Should Have: Innovation, optimisation or investigation of currently
applied techniques.

3. Could Have: Scientifically accurate representations or applications.
Ability to handle large loads of data or replicate the results.

4. Wont Have: Incorporation of modern computer graphic techniques
based around lighting and texturing.

Possible clients might include; forestry commissions or studies of botany if
simulation aspects are followed allowing them to display future possibilities,
in contrast specific computer game applications where real time growth adds
to the player’s enjoyment in some fashion will find simpler low load techniques
of use. Also those interested in architectural modelling and possible effects
of plant life growth to an area may find value in the work. Research should
not only cover the expansive subject matter of botanical simulation but also
venture into current computer graphics developments. Relevant research will
need to be individually assessed, understood and evaluated with the aim of
finding room for innovation.
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2 Research

2.1 L-Systems

L-Systems (short for Lindenmayer-Systems) were developed by Aristid Lin-
denmayer ‘as a theoretical framework for studying the development of simple
multicellular organisms’ (Lindenmayer, 1968), their application for modelling
larger biological structures followed soon after. The systems consist of formal
grammars based upon the process of rewriting. They start with an ‘axiom’
string and apply ‘production rules’ to each character. The rules replace the
characters with a new string, this is done in parallel across the original string.
The process is repeated as many times as required. These strings are used
to form a geometry, each character representing a structure or change in di-
rection. The strings can also represent other states of the plant which may
not be visible.

Figure 1: Development of Lychnis coronaria (Prusinkiewicz et al., 1993). An
example of L-Systems used to model growth

They have undergone a large number of improvements to the basic under-
lying principles allowing for more adaptability; many of these changes build
upon one another to produce different effects. For this projects goals the
focus is on applications which apply L-System growth in real-time. Research
involved with L-Systems and development of botanical structures are more of-
ten highly intensive with detailed processes such as plant light in-take (Soler,
Sillion, Blaise and Dereffye, 2003) or root growth and distribution (Leitner,
Klepsch, Bodner and Schnepf, 2010). These types of work don’t aim for
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user interaction as the simulation progresses, however with advancement of
hardware the benefits of such a feature could provide unforeseen advantages.

An interesting adaptation is the introduction of Level Of Detail (LOD)
data for L-System constructions (Lluch, Camahort and Vivó, 2003; Lluch,
Camahort and Vivó, 2004), modern engines rely heavily on this data to
construct expansive, detailed scenes while keeping a low demand. Other
real-time focused research in this area advices interpretation of L-Systems
on the GPU(Baele and Warzée, 2005) which will be assessed in section 4.

2.2 Billboarding

Billboards are flat, semi-transparent textured polygons which rely on keep-
ing the image facing the viewer to simulate a full 3D model. They have
become a useful tool for cheaply rendering forests, where a single billboard is
repeated and oriented towards the viewer. Billboards struggle with an aerial
perspective and can’t hold the detail of a polygon model with closer inspec-
tions. Advanced implementations tackle these downfalls using a LOD system
where trees near to the viewer have modelled skeletons with billboarded fo-
liage and those far away are clusters of billboards (Colditz, Coconu, Deussen
and Hege, 2005; Behrendt, Colditz, Franzke, Kopf and Deussen, 2005).

Figure 2: Here a breakdown from full model to clean billboard representation
can be seen (Behrendt et al., 2005).
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When looking for representations of growth, the process is limited to
simple scaling of the texture (Zhang, Teboul, Zhang and Deng, 2007). The
transformation process from model to billboard is far too expensive for a
real-time adaptation of changing geometry. Even modern examples using
optimised approaches, still rendering a static forest, achieve below 15 Frames
Per Second (FPS) (Bao, Li, Zhang, Che and Jaeger, 2011). Growth could
be represented by these systems using the near view model-billboard hybrids
in the future with hardware advancement or large optimisations, yet how to
smoothly transition between them and pre-built billboards of the entire tree
is difficult to determine.

2.3 Iterated Function Systems, Fractals and Botanical
Algorithms

There are a number of methods outside of L-Systems for tree construction
which have been investigated in computer science to varying degrees.

Figure 3: Fractal Fern
(Barnsley et al., 1986)

Iterated Function Systems (IFSs) are
similar to L-systems in that they are a rep-
etition of a process on a set of data. In-
stead of strings IFSs apply purely to nu-
meric sets, be it a set of real numbers, vec-
tors or both. The data can then be inter-
preted geometrically and representations of
botany can be produced. Fractal patterns
are common occurrences in nature, leading
Barnsley et al. (1986) to present a simple
fern pattern using IFSs showing their abil-
ity to create botanical simulations. They
have also been found to be interchangeable
with L-Systems under certain circumstances
(Prusinkiewicz and Hammel, 1994), around
the same date visualisations of the two pro-
cesses were brought together under ‘The
object instancing paradigm’ (Hart, 1992)
which is a modelling technique designed to
handle recursive structures. When looking
to simulate growth IFSs have a similar issue
of only presenting large changes to geome-
try. For a smoother process either a sep-
arate system must interpret and visualise
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the distance between newly created points
or the IFSs must undergo alterations to the original process (Huaiqing and
Min, 2009; Min, Huai-qing and Kang-ning, 2010). For a more in-depth look
at fractals and IFSs see Barnsley and Rising (1993).

Different attempts at modelling are more focused constructions with sim-
ple variables. Bloomenthal (1985) is a well cited early demonstration which
takes point data which is presumed to be manually declared and focuses
on representing that data geometrically with ‘splines’, these consist of vector
cylinders spaced across the branches of the tree that are angled to show bend-
ing and arching in the model instead of straight lines. Simulating growth in
real-time using this technique is a simple case of hardware brute force to
model changes. Oppenheimer (1986) shows a similar structure which is ap-
plied to animations; also shown is how fractals can be used for creating tree
topologies.

The earliest look at growth in terms of simulation focuses on the struc-
ture and topology of the plant life. It is a detailed procedural process which
is based upon observational study of how plants grow (de Reffye, Edelin,
Françon, Jaeger and Puech, 1988). The results are surprisingly visually im-
pressive with varying output for such a tailored process, see figure 4.

Figure 4: From SIGGRAPH ’88
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The issue with a system so heavily invested in biological data is that
recreating these visuals requires a detailed knowledge of botany. Another
data based implementation breaks down the visual aspect of tree topology
into variables and constants (Weber and Penn, 1995). Here the hope is
that one can build trees with less botanical knowledge, they also present
ideas on handling level of detail across distance. The most impressive work
found using botanical functions was that of Pirk, Niese, Deussen and Neu-
bert (2012). They use a mesh contraction algorithm to create a skeleton from
pre-constructed tree meshes, this is used as the starting point for the creation
on an animation which represents the trees life span. The application allows
for editing of the trees in real-time and quickly alters the animation data
to accommodate, fulfilling many the goals this project aims to achieve. In-
vestigating this application for optimisation would be difficult, there is little
description of how data is processed, the research is focused on the botanical
algorithms and how to produce accurate results. There are also downsides to
this approach in that only a certain type of tree structure can be replicated.

More exotic are the particle based systems which require highly intensive
computation for rich images (Reeves and Blau, 1985), their demand pushes
them away from real-time applications. Finally when looking specifically at
a large volume of growing structures Fan, Guan and Tang (2011) present
an interesting set of controls for forest simulation, the visualisation is a set
of different billboards represetning different ages o as previously mentioned
in section 2.2. This could be used as a method for controlling other more
elaborate visualisations to create a highly realistic forest simulation. Their
suggestions for further work includes GPU implementations.
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3 L-System Breakdown

After initial research the project moved towards an investigation into L-
Systems on the GPU. To help display how the projects focus was decided
below is a table listing each priority defined by the MoSCoW method in
section 1 and each of our research topics. Justification for these short notes
are in the previous section. The ‘should have’ item, ‘Innovation, optimisation
or investigation of currently applied techniques’ will be evaluated with the
projects final results. ‘Won’t have’ priorites are ignored, all the techniques
will likely be compatible with graphic shaders.

Research
Topic

Animated
Growth

Scientically accurate Handling Large Load

L-Systems Varying
Complexity

Used by the scientific
community for com-
plex simulations

Can become unman-
ageable quickly

Billboards Basic
representa-
tions

Not Applicable Can be used to ren-
der entire forests eas-
ily

IFS Difficult
to manage
and design

Used to represent
fractal patterns in
nature

Simple data struc-
ture should be easily
scaled

L-Systems are a versatile tool and are a key component in botanical simula-
tions, they present the most flexible option in terms of what the research can
achieve. Implementations that demand large amounts of geometry can take
a single string and duplicate its output or keep the iterations of multiple sys-
tems low. More complex simulations can run detailed ‘Open L-Systems’ with
outside variables affecting parameters. When specifically looking at growth,
they again offer a range of computational demand with the various grammar
rules allowing for multiple effects. Other techniques researched are just as
valid options for creating plant life in computer graphics, however for the
goals of this research with a focus on real-time growth it was felt that this
direction was the best suited in the search for innovative optimisations.

The next sections are a breakdown of L-System properties and features
which allow for such varying output. These variants were built into an early
prototype and a majority of this writing was taken from previous research
(Caldwell, 2013). A more in-depth explanation of these systems can be found
in “The Algorithmic Beauty of Plants”. This book is heavily cited when it
comes to the topic of L-systems and is well regarded (Springer, 2013), it
is the original reference for all of the L-system variants given here. The
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website http://algorithmicbotany.org which is hosted by the University
of Calgary (2013) also provides a wealth of resources on the subject of L-
system progress.

3.1 Basic L-system

L-Systems come from a history of formal grammars (Chomsky, 1956). The
key characteristic that defines them is that the rewriting is carried out in
parallel rather than sequentially. Before detailing the significant types of
L-System, first the basic terms must be outlined.

• ‘Axiom’ is the starting point of the string or the state before any
changes are applied.

• ‘Non-terminal Symbols’ are letters or characters which can be replaced.

• ‘Terminal Symbols’ conversely are items which are not to be replaced.

• ‘Production Rules’ are a set of rules which dictate the conditions under
which non-terminal symbols can be replaced and what replaces them.

The basic L-system begins with the axiom, ω and a set of rules, P .
The rules are applied to the axiom and then the output is stored for the next
iteration. Here is a common example:

Figure 5: Screenshot from the
prototype

ω = A
P1 : A→ AB
P2 : B → A

The first parse will output AB after the rule
A → AB is applied. On the second itera-
tion AB is then rewritten again to produce
ABA, moving across the string from left to
right taking A through A → AB then B
through B → A. This process is repeated
until a desired depth is reached. To trans-
form these strings into some form of graph-
ical representation they need to be parsed.
In the early implementations for this project
the wire frame was constructed using a pro-
cess akin to turtle graphics. The ‘turtle’ is a
stored position and orientation starting at the base of the tree, upon reading
a character F (or any other designated letter) the parser moves the turtle for-
ward a set distance and records a new point. Different characters can change
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the orientation (Here + and − are used to denote changes in angle/rotation)
so that the next new point’s course is altered, See figure 5 for a visual of the
process.

3.2 Bracketed L-systems

The first step in creating tree like structures is the introduction of brackets.
To create ‘branches’ the ‘turtle’ needs to revert to a previous point after
reaching the end of a section. To do this a stack is created which stores
the orientation and position of the ‘turtle’ at these branching points. An
L-System signifies this using brackets, [ being a push onto a stack and ] a
pop.

Figure 6: Take note of multiple brackets allowing for branches within
branches

3.3 Stochastic L-systems

If the L-System as described so far were used to render a forest, the repeated
identical trees would damage the scene’s perceived realism. By giving letters
in a grammar multiple rules and assigning each of these a probability, highly
varying trees from a single L-system definition are possible. Here is a gram-
mar where each rule has an equal chance of being applied (

−−→
0.33 meaning a

33.3̇% chance of application):
ω = F
P1 : F

−−→
0.33F [+F ]F [−F ]F

P2 : F
−−→
0.33F [+F ]F

P3 : F
−−→
0.33F [−F ]F

12



The more iterations in a stochastic L-System the greater the variation in the
final string as shown by the output in figure 7.

Figure 7: Three stochastic trees

There is an issue with stochastic L-systems however. To implement such
a system would require the L-systems to be built in run time, otherwise
the process has no value. At high depths, L-system parsing can become
quite intensive with hundreds of thousands of characters being analysed.
Normally around the sixth to seventh iteration is where most systems become
unmanageable.

3.4 Context-sensitive L-systems

Context sensitivity is an addition to the rule declarations that gives them
two new requirements before application. A left and right context is to be
checked and only when these are both considered to be true can the rule
be applied. These systems normally require an ignore list, which allows the

13



parser to skip over characters that aren’t involved in the process (+ and − for
example) to find the correct context. Bracketed systems also require jumps
over closed sections and the letters within them to allow context. Here is the
example given in (Prusinkiewicz and Lindenmayer, 1990):

BC < S > G[H]M → S
Can be applied to S in the string

ABC[DE][SG[HI[JK]L]MNO]

Figure 8: Parametric exam-
ple. The branches decrease in
length with each iteration

To find BC the parse skips [ as it has no
effect, then [DE] is skipped over entirely as
it denotes a branch. To find G[H]M the
parser reaches I[JK]L and as H has already
been considered true within its bracketed
segment the letters can be skipped to find
M . Context sensitivity can make parsing
much more consuming with the new require-
ments. One optimisation is to have a data
structure where bracket locations are known
so that parsing can skip large sections.

3.5 Parametric L-systems

To get a higher level of control Aono and
Kunii (1984) built upon some of the early L-
systems with the introduction of parameters
allowing for varying geometry with a simpler
grammar and a better ability to express un-
derlying mechanics; this was well expressed
in Prusinkiewicz, Lindenmayer and Hanan
(1988), research with a focus on incremen-
tal development of Herbaceous Plants. To
put it simply, this addition allows parentheses after a letter to denote input
to the letters function. For example F in previous systems may have repre-
sented a movement of length 5 along the Y axis, parametric L-systems allow
F to move any desired length with the string F(x), another application is
angles.

This functionality becomes very powerful in allowing for more dynamic
and varying tree structures. It can also be used to introduce new features
like ‘width’ to the L-systems grammar so that the tree can not only produce
smaller branches but also thinner ones.
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3.6 Timed L-Systems

L-Systems are normally given a specific iteration length and then the process
is ended before the data involved becomes too large. This creates a very
static, ‘jumpy’ process if one is looking to use L-systems for animation.

Timed L-systems (or differential L-systems)(Prusinkiewicz et al., 1993)
introduce a new parameter to the system rules called ‘terminal age’, this
means a rule can only be applied when the letter relating to it has a local
age equal to or greater than the terminal age. In this paper’s implementations
these functions are applied using new rules with a zero terminal age. Rules
are attempted in order so that the rules relating to a time are handled first
and if they’re successful no further rules are read. Other implementations
use a growth function that is presumed to be applied in a separate stage to
the rewrite process where only the parameters of letters are altered.

ω = A(1, 1)
P1 : A(a, 1)→ A(a, 0)B(a, 0)
P2 : A(a, t)→ A(a ∗ t, t)
P3 : B(a, 1)→ A(a, 0)
P4 : B(a, t)→ B(a ∗ t, t)

Here a is used to represent geometric length when rendering. t is the lo-
cal time of the letter, which is increased globally by a predetermined static
amount or a system variable, called the ‘time slice’ or 4t.

3.7 Environmentally-Sensitive L-Systems

The most recent extension to the grammar is the ability for environmental
input and output. This is achieved through the introduction of another
command to L-System grammar, the ‘query module’, normally symbolised
by ?. This command returns the current turtle position for a specific letter,
which can then be used to alter production rules using context sensitivity.
Here is a simple example provided by Prusinkiewicz, James and Měch (1994)
in their introduction of the command:

ω = A
P1 : A→ F (1)?P (x, y)
P2 : F (k)→ F (k + 1)

15



This command requires additional step in each rewrite pass for the query
modules to be processed, here each step is listed with SN to show the changes
to parameters and the string:

S1 : A
S2 : F (1)?P (∗, ∗)− A
S3 : F (1)?P (0, 1)− A
S4 : F (2)?P (∗, ∗)− F (1)?P (∗, ∗)− A
S5 : F (2)?P (0, 2)− F (1)?P (1, 2)− A
S6 : F (3)?P (∗, ∗)− F (2)?P (∗, ∗)− F (1)?P (∗, ∗)− A
S7 : F (3)?P (0, 3)− F (2)?P (2, 3)− F (1)?P (2, 2)− A

For output, which was introduced shortly after (Mech and Prusinkiewicz,
1996), the query module can be set with data when written, so ?P (3) would
pass the value 3 to the environment when it is applied in a production
rule. Overall these changes allow for a massive array of new applications.
Light and soil can be properly simulated, separate systems can be informed
of each other and properly avoid collision, even insect damage to plants
can be created (Prusinkiewicz, Hanan, Hammel and Mech, 1997). Partic-
ularly impressive is the implementation of an animation system built en-
tirely around L-system rules (Noser and Thalmann, 1996; Noser and Thal-
mann, 1999; Noser, 2002).

4 Parallel Implementations

From the offset of this research it was expected that General-Purpose Com-
puting On Graphics Processing Units (GPGPU) would be of interest, a se-
quential process is inherently inefficient for real time applications. It has
become increasingly common for applications to offload tasks from the Cen-
tral Processing Unit (CPU) to the GPU allowing for huge increases in speed
across numerous tasks. SIGGRAPH have given examples of improvements
with data showing the computational speed differences:
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Figure 9: gigaFLOPS comparison (Green, 2007)

Figure 10: A comparison of FFT performance (Boyd, 2008)

The defining feature of L-systems is that the rewriting process is to be
performed in parallel, with any context checks being based on the strings
entirety before any changes occur. On the GPU this can be a rather difficult
task, the process requires delicate control of memory with lots of shifting
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data. A much larger issue however is how L-Systems are parsed, where
‘branches’ of the string are sequentially dependent on the results before them.

Research finds three key investigations into this subject area, each show-
ing an interesting development with new hardware capabilities. The earliest
work (Lacz and Hart, 2004) starts off by tackling how to handle bracketed
L-Systems, they present a simple rule:

L→ aLf [+L]Lf [L]L
To parse this in a parallel system, they take each of the rules non-terminal
symbols as a separate command (each L) and apply all prior terminal symbols
(all a +−):

L→ {aL, af + L, afL, aff − L, affL}
The downside to this technique is the added calculation involved for each
draw command. The greater issue for this early implementation was limited
memory storage. Issues cited are a lack of a “render-to-vertex buffer” feature
meaning data has to leave main GPU memory to be used in a draw cycle
when handling large L-Systems.

Hardware progression and new techniques allowed Budapest (2009) to
build upon Lacz and Hart’s (2004) work. Their technique is fully GPU
processed using the geometry shader. They achieve better memory control
and avoid a sorting stage which was the root of many issues. However in
doing so they lose the ability to compute context sensitive L-Systems.

Figure 11: Shapes generated by the L-system given above. From left to right:
the axiom (L); after 1 iteration; after 3 iterations; after 3 iterations with color
and orientation perturbed by a random amount.

The latest development takes a different approach and doesn’t change
the underlying principle of the L-System. Lipp et al. (2010) tackle the
bracketing with a work queue approach, based upon other GPGPU algo-
rithms for bounding volume hierarchy construction (Lauterbach, Garland,
Sengupta, Luebke and Manocha, 2009), Kd-Tree construction (Zhou, Hou,
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Wang and Guo, 2008) and Reyes-style adaptive surface subdivision (Patney
and Owens, 2008). Advantages of their approach include the return of con-
text sensitive derivation and no longer requiring a shader compilation step
present in earlier work:

we make explicit use of parallel primitives and do not rely on
the graphics pipeline to deal with data amplification and other
issues. We fully support productions having side-effects and thus
do not need to rely on the specific side effect-free turtle commands
presented by Lacz and Hart. Furthermore, we can directly use
the productions without requiring a compilation or transformation
step.

Other more recent investigations are based on NVIDIA’s CUDA platform.
First derivation of the L-System (Liu, Zhang, Zeng, Zhu and Li, 2011) and
then their Interpretation (Zhang, Zhu, Liu and Zeng, 2013). The system re-
quires a CPU side scan of the string to prepare data for the GPU. Regardless
of this hardware communication their results show a faster output than Lipp
et al. (2010).

5 Working On The GPU

The project will be built upon on a C++ Direct3D core, a highly popu-
lar choice in the computer games industry meaning any discoveries can be
quickly adapted to existing software. OpenGL is arguably the only other real
competitor in graphics Application Programming Interfaces (APIs), which
focuses on multi-platform applications while Direct3D is Microsoft Windows
focused. The ‘OpenGL vs Direct3D’ debate is a hot topic that’s ever chang-
ing, at the time of writing a quick look across the web brings up several
viewpoints. Here is the Valve Linux team (2012) talking about the perfor-
mance increase for their engine with OpenGL:

why does an OpenGL version of our game run faster than Di-
rect3D on Windows 7? It appears that it’s not related to multi-
tasking overhead.We have been doing some fairly close analysis
and it comes down to a few additional microseconds overhead per
batch in Direct3D which does not affect OpenGL on Windows.

And here’s John Carmack speaking on how his opinions of the API have
changed in an interview with bit-tech,“Direct3D handles multi-threading
better, and newer versions manage state better.” (Hardwidge, 2011) From
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current findings, it’s believed OpenGL may be a more suitable choice if the
project were to move towards a computer simulation focus instead of com-
puter games, due to portability. It has also been decided not to use any ad-
ditional graphics rendering libraries as any features provided by these would
move the project focus towards visual quality and fidelity which is outside of
the initial aims. Another investigation was done for Ogre3D, a massive open
source engine (Ogre3D, 2012). After some initial testing adoption was not
taken.

With Direct3D the choice, developing on the GPU will be done using the
compute shader. It is an almost separate stage from the classic pipelines
focused on general purpose computing taking advantage of the GPU archi-
tecture of parallel processors (Microsoft, 2012). Introduced with the DirectX
11 iteration of the API, the programmer writes in High Level Shader Lan-
guage (HLSL) and is able to perform most of the basic programming systems
like looping, branching statements and structures. For L-System derivation
and interpretation in particular, processes which require very different output
and input, the compute shader offers a flexible environment for all stages of
the implementation. Here are some of the tasks Boyd (2008) lists as possible
algorithms which can be implemented on the compute shader:

• Ray-tracing, collision detection

• Inverse kinematics, Physics, AI, fluid simulation, radiosity

• Quad/octrees, irregular arrays, sparse arrays

• Linear Algebra

5.1 The Work Queue Approach

After a second stage of investigation and research the choice was made to
focus on the work of Lipp et al. (2010). This project’s practical investiga-
tions aims were to find improvements. Describing the limitations of their
technique:

The varying results of the work-queue approach indicate that
there may be future work necessary in creating more consistent
speedups, maybe a more elaborate work-queue management can
achieve this.

First the work-queue process must be understood. As mentioned this tech-
nique is based upon algorithms for other processes (Lauterbach et al., 2009;
Zhou et al., 2008; Patney and Owens, 2008). Here is a rough overview of
these very different algorithms:
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• A set of input data is processed. Perhaps each thread of the GPU
taking one item.

• This data creates new items, a ‘split’, these are sent to the work queue.

• If no new items were created, end the routine. Otherwise begin again.

When applied to L-Systems the process begins at the start of the string which
is considered as a single input. The parser moves along a set distance with
‘splits’ occurring at the final position if there is still data to be parsed and
when ever a bracket is hit. The issue here is kernel calls, Steinberger, Kenzel,
Kainz, Müller, Peter and Schmalstieg (2014) in their analysis of Lipp et al.
(2010) describe the problem:

This approach requires a high number of kernel launches inter-
rupted by read-backs from the GPU. Every kernel launch requires
the current state to be flushed to slow global memory and read
back from the GPU, which stalls the entire device.

There are around five kernel launches for various processes before parsing
can even begin and before that you may want to apply a rewrite which is
two more. This situation is compounded by the parsing being such a varying
process based upon the L-Systems structure. A rather contrived worst case
scenario being a large string with no brackets occurring until the very end.
In this situation the parsing suggested will repeatedly create a new kernel
launch with only one thread. This may not be an issue that arises too often
with most bracketed L-systems allowing for splitting quickly which greatly
increases the amount of parsing completed across kernel calls.

L-Systems can be parsed in parallel quite efficiently when brackets are not
in use (see figure 12). Each thread parses a section of the string, storing the
number of objects and a final matrix representing the position and rotation
of the turtle after the last character. This information is then summed across
threads and groups. When each thread knows the number of objects and the
turtle position before it, data can be output to the Vertex Buffer Object
(VBO).
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Figure 12: Visualisations of unbracketed L-System parsing (Lipp et al.,
2010)

The work queue process traverses almost sequentially, using brackets as
a opportunity to begin parallel processing. Knowing this, an approach was
taken to parse the L-System in parallel at each depth of the brackets within
it. Before explaining this approach lets explain the ‘Scan’ sorting algorithm,
also known as the ‘Prefix Sum’. It is a key element used throughout the
parsing process.

5.2 Prefix Sum

The ‘Prefix sum’ algorithm is used to calculate offsets in data when the
writing is to be preformed, it is a simple addition of items in a set together
as they are iterated. For example:

Set : 1, 3, 4, 11, 0, 2
Output : 0, 1, 4, 8, 19, 19

Performing this algorithm in parallel also presents challenges. The sequen-
tial implementation has a complexity of O(n), to achieve a similar result in
parallel the additions are broken down and the entire process is done in two
steps.
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Figure 13: Stage 1, called the ‘reduce phase’ sums interleaved nodes at over
a delimiter

The first stage is a summing of all the values. The set is looped for log2

of the total, where each loop takes a different total across the set until a
final value is found. The second stage begins by setting this final value to
zero, then in the same loop goes back across the set making comparisons and
swaps of data, creating a gradual sum of values across the set.

Figure 14: Stage 2, called the ‘down-sweep phase’ first zeros the last value,
then moves through the data swapping and summing the other half of the
interleaved nodes with that on the left

This process is only applicable to sets of data which total a power of 2.
For an uneven or sizeable amount the process must be padded to a power
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of 2, or to take advantage GPU structure, the process is broken down into
smaller powers of 2. The final optimisation is the avoidance of an issue called
‘Bank conflicts’ (Thibieroz and Cebenoyan, 2010). When multiple threads
try and access shared memory within the GPU these bank conflicts occur
which stall further calculations. Avoiding this is done by padding the data
in relation to the ‘degree of bank conflict’.

Figure 15: A breakdown of how the algorithm applied to multiple sets in
sequence

For a more in-depth explanation of this process and the problems it
presents refer to Mark Harris (2007) in ‘GPU Gems 3’ (Nguyen, 2007),
or for layout of the prefix sum algorithm described (Sengupta, Lefohn and
Owens, 2006).

5.3 L-System Bracket Depth Parsing

L-System Bracket Depth Parsing (LBDP) is this paper’s method of pars-
ing sets of brackets at specific depths in parallel. It is built upon the known
method of parallel parsing L-Systems and applies it to the data within brack-
ets separately. It begins by scanning the spaces in-between brackets at each
depth, then summing the number of items to create a set of positional data
for parsing at each depth.
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Before this can be achieved the Parallel hierarchy extraction algorithm
must be understood (Lipp et al., 2010), a preliminary to the work queue
approach. It is used to find bracket positions which allows parsing to continue
once a bracket is reached.

Figure 16: The Parallel hierarchy extraction algorithm(Lipp et al., 2010).

The algorithm requires five kernel calls but is only applied once. The
first pass calculates the depth of each assigned section, the next pass scans
the depth values so that a depth table can be constructed and so that each
thread knows the depth it is starting from. The depth table is then filled, and
then scanned. The final pass stores the positions of brackets in the bucket
using the table’s determined offsets.

At this stage of analysis an issue was discovered with this approach which
impeded the implementation. The system presumes a known depth maxi-
mum. Looking at figure 16 one might presume the depth could be deter-
mined from the second pass, however if a pair of brackets open and close
within a parse block they become lost. Depth maximum could be found
at the rewriting stage based upon the iteration depth with rules that apply

25



brackets (Ignoring the issue of stochasticism and context sensitivity effecting
this) however for a timed L-System where the rewrite process is to be applied
every frame this isn’t possible. To remedy this an alteration to the process is
applied. On the first call the system also records the maximum depth discov-
ered in each block. This value is taken and it is added to the summed value,
the maximum in the group is found with a process of similar complexity to
the ‘reduce stage’ of the prefix sum algorithm. In this implementation the
data is scanned in the first stage then the second is used to scan the group
totals. It’s here the final ‘true’ maximum is deduced.

Another alteration made to accommodate LBDP is to the bucket, a one
dimensional array of unsigned integers which is used extensively. The size
is increased to hold not only the bracket positions but also the number of
previous draw commands, the depth and the count ‘above’ so the number of
brackets within a pair at the next depth is known.

Figure 17: A single thread group’s
view of finding spacing data, summing
it and then creating positional data for
parsing

With this extra data the next
stage is a calculation of the space
in-between brackets. Each bracket
pair is given its own thread group
(The first group considers the begin-
ning and end of the entire string as
a pair of brackets) and each thread
finds a bracket within that pair and
records the space in-between it and
the next bracket pair, storing that
value in group memory. Then only
the first stage of the prefix sum al-
gorithm is used to find the group to-
tal. This total along with other data
is stored and then summed again in
the next kernel launch which gives
each groups an offset telling it how many positional data points are used in
the preceding bracket pairs.

The first step of this is then repeated, using the newly calculated offset
to store the positional data which will be used in parsing, see algorithm 1.
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Algorithm 1: Setting thread parse positions

foreach thread with spatial data to read do
get relevant bracket data, used as a ParsePosition;
find the spacing(SpV al) and store in local group;

end
Prefix Sum local group data;
if thread in use then

get local group data, TrailingV al;
/* ParseChunk is the number of allotted items each

thread will parse in later stages */

TrailingNum← TrailingV al/ParseChunk;
EndNum← (TrailingV al + SpV al)/ParseChunk;
if EndNum > TrailingNum then

mResult← TrailingV al mod ParseChunk;
/* If the items before don’t fit the parseChunk, the

first parse position stored is offset */

if mResult 6= 0 then
TrailingNum← TrailingNum + 1;
mResult← ParseChunk −mResult;

end
ParsePosition← ParsePosition + mResult;
write ParsePosition data;
/* With an inital position set, parse positions are

written across the space between this threads

alloted bracket space */

set new variable i to 1;
while TrailingNum < EndNum do

TrailingNum← TrailingNum + 1;
ParsePosition← ParsePosition + (i ∗ ParseChunk);
write ParsePosition data to TrailingNum;
i++;

end

end

end

With specific parse positions discovered the process can finally begin cal-
culating the rotational and positional data that the string represents. Much
like the previous stage each thread group parses and sums its data, a global
sum is applied then a final pass uses this data to write the final results. The
difference being data now consists of matrices, similar to figure 12.
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This method of parallel parsing must be applied to each depth separately,
the overall process looking like this:

1. Parse entire L-System. Count number of draw items, brackets and find
maximum bracket depth. Have each group sum this data and pass
results into global buffer.

2. Sum the global buffer and transfer results to the CPU for depth looping
and buffer sizes.

3. Parse entire L-System again, creating the depth table with brackets.
Depth table is then summed.

4. Sum the depth table across groups

5. Parse again, storing the positions, depth and depth table value for each
bracket using the depth table to find the offset

6. Now each bracket pair is given a thread group and the total items to
be parsed are calculated

7. The total for each bracket pair is summed in a single group, giving each
group an offset

8. Using the group offsets, the bracket spaces are read again and positional
data is written

9. Now loop across each depth of the L-System.

(a) Each thread parses the L-System starting at the given position
and stores matrix data.

(b) Matrix data is summed for groups within the same sequential
brackets.

(c) Last parse, setting vertice and indice data

10. L-System is now parsed and the structure can be rendered.
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Figure 18: Here is a visualisation of the process. The arrows represent
individual threads, take note that in this example the parse block is four
items long and bracket jumps are considered to be one item.

6 Conclusion

The aims of the practical investigations were to produce a more efficient
parallel parsing solution for the GPU. A working prototype was developed
which produced basic vertex data. It would also have been of interest to have
built a work queue approach alongside the implementation to compare speeds
of parsing. What can be assessed to some degree is whether a reduction of
kernel calls in comparison to a work queue has been achieved. How many
calls each method requires in practice relies entirely on the L-System being
parsed and how many items either system reads per thread. LBDP requires
a preliminary 7 kernels over the work queue’s 5. Each pass of the work
queue will require 2-3 launches based upon Lipp et al.’s (2010) description
of their implementation, LBDP uses 3. This flat performance loss is to be
gained back across large L-systems where the work queue takes more passes
to clear.

Creating a successful GPU based algorithm requires lots of delicate con-
trol of memory and good design. Terms commonly used to describe how
algorithms perform are occupancy (how much of the GPU is in use), concur-
rency (making sure all threads are active) and divergence (a term describing a
process used to handle if-else statements (Micikevicius, 2012; Woolley, 2013)).

Divergence is the branching within a GPU, normally based around an
if statement (Han and Abdelrahman, 2011). This project’s implementation
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contained a number of branching statements across the process. The imple-
mentation did not reach the stage of investigating optimisations presented in
Han and Abdelrahman (2011).

In LBDP when thread groups are assigned, any threads that aren’t in use
are left to stall, creating poor concurrency. The work queue approach can
launch just the right number of thread groups using an extra call to scan
new items and align pointers, meaning that nearly all threads are in use.
For LBDP this issue can be mitigated by small thread groups or possibly by
aggregating the data for multiple pairs of brackets that are known to contain
small amounts of data. If the data required summing then it would need
to be done on a single thread. This could be a solution to be investigated
in future work. Another concurrency issue that effects both systems is the
natural variation in tasks that the L-System will create, each thread will
unlikely be covering an identical load.

Occupancy is the area where LBDP aims to greatly improve on the work
queue approach. As mentioned, it is expected that the L-System being parsed
decides how well these algorithms perform. For LBDP a small depth with
large amounts of data between brackets is optimal. A work queue will per-
form better with L-Systems which contain large numbers of brackets that are
reached quickly. In general the larger the L-System the better LBDP should
perform as more items can be processed in the initial kernel launches.

Looking back to section 1 and the MoSCoW priorities listed, we achieved
animated growth of plant life. The L-System parser can handle timed L-
Systems allowing for smooth changes to geometry. Looking at the ‘Should
have’ priorities, the investigation has approached the specific difficulties of
real-time growth and provided a possible new parsing technique to improve
performance for a specific implementation. Research should provide those
interested in the project aims a wealth of possible avenues for development
depending on their choice of approach. ‘Could have’ priorities like scientific
accuracy are dependent on the L-System fed into the parser, L-system parsing
can be highly complex as seen in this work, the projects implementation
should easily be able to adress most challenges although ‘Open L-Systems’
could prove difficult. How well LBDP handles large load is dependent on
hardware and the data involved, output of any parsed system can easily be
duplicated.

7 Future Work

Another method of reducing CPU interaction is a recently introduced tech-
nique called ‘Dynamic Parallelism’ (Jones, 2012). This is a new hardware
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capability, where the GPU is able to relaunch threads as if a new dispatch call
is made without CPU interaction. A kernel can include a specific command
that will dictate a variable number of new thread groups. The choice of plat-
form (Direct3D) unfortunately didn’t allow testing of ‘Dynamic Parallelism’.
Logistically the difficulty with this is how to adapt the system to work within
a single call, the work queue system has a break in each pass to scan the new
work queue items for the global queue, LBDP had a group summing kernel
launch that would likely be an issue. If the technique could be applied to
either algorithm it could provide a considerable boost in performance due to
the slow delays caused by GPU dispatch calls.

An area that was originally planned to be investigated is ‘Skinned/Crowd
Instancing’ (Dudash, 2007). These systems take a single object, normally
along with animation information; and instance that object multiple times.
The aims were to build a GPU based animation system using L-Systems
where instanced objects would all have their own unique time value repre-
senting a certain iteration point of that L-System. A forest of identical trees
could easily be achieved with a pre-built animation, including L-System data
could allow for stochastic variation, each tree could be given a ‘seed’ for a
random number generator meaning it would always produce the same tree
from stochastic L-System data. Instancing is already heavily used to render
plant geometry, as either small structures to create basic botanical repre-
sentations or artist pre-built models instanced to create large biomasses.
Crowd instancing has been adapted in interesting ways (Zhou, Tang and
Ji, 2013; Peng, Park, Cao and Tian, 2011), if the described technique was
successful it would allow for large numbers of growing trees with comparably
small computational costs.

Other work which wasn’t fully evaluated are techniques that look for
short-cuts in the foundations of the systems used to render tree like struc-
tures. The first is a look at applying binary trees to L-System rewriting. The
rewriting process in the implementation was always far quicker than parsing
so investigations into optimisations were not followed. The work of Yang,
Huang, Lin, Chen and Ni (2007) could prove to be of some value to an L-
System backed implementation if the process described could be applied to
the GPU and merged with other systems. Another more recent piece looks at
tree’s self nested properties, similar to the Hart’s (1992) ‘Object Instancing
Paradigm’. This work is less focused on real-time interpretation of tress and
more on compression of data (Godin and Ferraro, 2010). If memory issues
ever became an issue this is an avenue which could provide a solution.
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