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Abstract 

The demand for cost effective, reliable and safe machinery operation requires accurate fault 

detection and classification. These issues are of paramount importance as potential failures of 

rotating and reciprocating machinery can be managed properly and avoided in some cases. 

Various methods have been applied to tackle these issues, but the accuracy of those methods 

is variable and leaves scope for improvement. 

This research proposes appropriate methods for fault detection and diagnosis. The main 

consideration of this study is use Artificial Intelligence (AI) and related mathematics 

approaches to build a condition monitoring (CM) system that has incremental learning 

capabilities to select effective diagnostic features for the fault diagnosis of a reciprocating 

compressor (RC). 

The investigation involved a series of experiments conducted on a two-stage RC at baseline 

condition and then with faults introduced into the intercooler, drive belt and 2nd stage 

discharge and suction valve respectively. In addition to this, three combined faults: discharge 

valve leakage combined with intercooler leakage, suction valve leakage combined with 

intercooler leakage and discharge valve leakage combined with suction valve leakage were 

created and simulated to test the model. The vibration data was collected from the 

experimental RC and processed through pre-processing stage, features extraction, features 

selection before the developed diagnosis and classification model were built. 

A large number of potential features are calculated from the time domain, the frequency 

domain and the envelope spectrum. Applying Neural Networks (NNs), Support Vector Machines 

(SVMs), Relevance Vector Machines (RVMs) which integrate with Genetic Algorithms (GAs), 

and principle components analysis (PCA) which cooperates with principle components 

optimisation, to these features, has found that the features from envelope analysis have the 

most potential for differentiating various common faults in RCs. 

The practical results for fault detection, diagnosis and classification show that the proposed 

methods perform very well and accurately and can be used as effective tools for diagnosing 

reciprocating machinery failures. 
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ṁvd  Mass flow rate through the discharge valve [kgs−1] 
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Chapter 1  

Introduction to Condition Monitoring 

This chapter reviews the importance of CM and fault diagnosis for the smooth running of 

industrial processes. The sections of the chapter sequentially present the motivation for this 

research project, outline the aims and objectives and present the methodology and structure 

of this thesis. 

1.1 Background and Motivation 

CM is carried out in various industries to ensure the reliability and state of machine health. 

Principally, CM allows maintenance personnel to monitor machine health by measuring certain 

key variables that are related to machine element performance. This method stands in contrast 

to shutting down the machine to physically observe any signs of wear and suggest 

maintenance accordingly. CM can reduce the need for machine shutdowns for observation and 

maintenance and allows maintenance teams to take timely action to resolve outstanding 

causes of machine wear and possible failure.(Liu, 2008). 

The use of CM can be seen as a development from preventive maintenance, which itself 

developed from break down maintenance. Modern process requirements demand greater 

availability and reliability of machines which can only be provided through accurate monitoring 

of machine health. This allows maintenance personnel to determine the best possible course of 

action based on knowledge available from CM (Abd Kadir Mahamad, 2010). 

CM has found greater importance in maintenance circles based on savings and system 

simplification it provides. Not only does CM allow the operator to make correct and on time 

maintenance decisions, it also allows a reduction in maintenance costs. The improvements 

offered in terms of greater system availability also provide direct financial benefit to processes 

that cannot afford to have prolonged maintenance delays. Overall a sizable reduction in 

maintenance costs and direct fiscal benefits offered by more reliable machines has pushed CM 

to the forefront of maintenance globally (Fuqing, 2011). 

CM can be carried out in a number of different ways ranging from the manual tabulation of 

manually measured variables to more complex and intelligent systems that offer diagnosed 

causes for machine wear. Over the years, CM has evolved significantly given the need to 

diagnose faults in larger and more dynamic industrial systems. There has been an increase in 

the use of AI and a number of mathematical techniques, such as PCA, in order to isolate faults 

and offer diagnosis for industrial systems. 
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1.1.1 Need for AI Applications in CM 

AI techniques have been applied to a number of different industrial systems including CM. In 

order to drive up the reliability of the fault detection mechanisms, AI and PCA are applied. 

More notably, the neural networks have found pervasive application in CM systems. The 

application of AI for CM is required in areas where analytical knowledge is difficult to come 

across. The use of AI allows creation of new knowledge from existing knowledge and input 

data from monitored variables (Shi, 2004). The use of AI and PCA techniques is required since 

vibration data sets contain a lot of data which results in the creation of a large set of features. 

Optimal feature selection is only achievable through the application of AI and PCA approaches. 

A comparison of AI and PCA application versus conventional methods such as time domain, 

frequency domain and envelope analysis reveals that the former results in greater efficiency 

and savings. The application of conventional methods requires human resources with the 

appropriate expertise as well as significant time, which is a financial cost to the maintenance 

establishment. In contrast, the application of AI and PCA techniques allows for much faster 

and more reliable fault detection without the hassle of added costs. However, the variables 

measured from CM require treatment at various levels to process them into discernible and 

actionable knowledge. 

1.1.2 Soft Computing AI and PCA Based Diagnosis Methods 

The focus of the current research is to utilise an AI framework that is further classified using 

PCA so as to detect faults for a RC. A RC rig has been utilised in order to study vibration 

characteristics through the introduction of faults. The same rig was also utilised to detect faults 

based on the AI learning and PCA processing of recorded data. 

Vibration recorded from various locations on the RC rig was used for feature extraction. Time 

domain, frequency domain and envelope analysis techniques were applied for feature 

extraction. Tools utilised in the time domain included (but were not limited to) maximum, 

minimum, averages, root mean square, kurtosis and other statistical techniques. The various 

features identified through feature extraction of recorded vibrations were then utilised for 

feeding the AI model. The contention was to use processed vibration data in order to enrich 

the AI so that it could be used later for fault diagnosis. A number of different AI models were 

utilised in order to test their efficacy for the provided RC system. More primitive AI models 

included ANN derivatives. In addition, GAs were utilised to test their efficacy for fault 

diagnosis. Moreover, SVM methods were used for fault diagnosis purposes too. The major 

schema revolved around the use of neural networks with GA alone and the use of neural 

networks combined with GA and SVM simultaneously. All of the aforementioned AI models 

served the purpose of both detecting and then classifying various fault conditions. 

Investigation of AI models mentioned above revealed that GA provided the most reliable and 

optimal fault detection and classification. The inclusion of a large feature set meant that ANN 

and SVM were not as effective as GA for fault detection and classification. Results produced 
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through GA based implementation of AI produced the most optimal feature selection and 

hence fault diagnosis. 

It needs to be mentioned here that fault detection and diagnosis also depends on PCA. 

Features selected previously from time domain was used as baselines to compare features 

extracted from test runs. The comparisons between both sets of data were performed through 

PCA which allowed fault detection and diagnosis. Major techniques used for PCA included the 

utilisation of the Q statistic, the T2 statistic and contribution plots. It must be mentioned here 

that fault detection and optimal feature selection were carried out through differing methods. 

The Q statistic and the T2 statistic were used only in order to perform fault detection. In 

comparison, the contribution plots were utilised only in order to select the optimal features 

that had been derived from the processes mentioned above. The research process is detailed 

in the chapters that follow. 

1.2 Research Topic 

The research topic of this thesis is “The Use of Advanced Soft Computing for Machinery 

Condition Monitoring”. The main part of this thesis is to improve the accuracy of the diagnosis 

system based on features or information that are fed into the AI techniques and PCA method, 

therefore the selection of the features is very important. This research explores the possibility 

of improving this matter by using PNN, SVMs, and RVMs which integrate with GAs. 

1.3 Aim of the Research 

The aim of this work is to develop a CM technique capable of detecting and diagnosing faults 

seeded into a RC and analysis using advanced computing techniques, and to practically assess 

the technique developed using a laboratory test rig. 

1.4 Research Objectives  

The main objectives of this research are stated as follows: 

1. Development of effective features for AI model and PCA methods. 

2. Development of diagnosis, classification methods based AI and PCA techniques for RC 

compressor failure. 

In order to provide effective features, it is required to establish many features during feature 

extraction. But the most important thing is providing the useful features during features 

selection. In this research for features extraction, features from both time and envelope 

spectrum are considered. Meanwhile for feature selection, the distance evaluation technique is 

used due to its simplicity. On the other hand, in the development of diagnosis, classification of 

RC failure, the AI and PCA techniques are used. For these purpose eight different sets (classes) 

of data are used for diagnosis, classification of machine failure. 

To fulfil the research purpose, the following objectives have been formulated: 
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Objective 1: To construct a comprehensive RC test rig to simulate faults and obtain 

experimental data on consequent system behaviour. This work will allow CM of the system 

using different monitoring strategies, with the same user interface, and moreover, to seed 

faults into the system.  

Objective 2: To develop a mathematical model of the two stages RC to be used for CM. The 

experimental results will be used to verify the model predictions.  

Objective 3: To introduce specific quantified faults into the RC in the different parts and both 

measure and predict the effects on compressor valves performance.  

Objective 4: To review the baseline of vibration data under different operating condition using 

conventional signal processing methods, which will be referenced for comparison with more 

advanced methods. 

Objective 5: To develop automatic data processing methods based on advanced soft 

computing such as NNs, GAs, SVMs and RVMs. 

Objective 6: To develop of an effective feature selection approach for RC fault diagnosis by 

using PCA. 

Objective 7: To provide some useful information to guide future research in this field. 

1.5 Research Methodology 

The research method is driven by problem identification and solution. Developing a powerful 

and innovative framework with an open and flexible architecture enables the user to integrate 

current and future research. 

The research in this area of machinery CM was started by conducting a literature review. The 

overall research plan for this topic addresses the development of a machinery CM system. The 

aim of the methodology is to approach the problem in a systematic way and to propose and 

develop an appropriate solution. 

The methodology consists of three steps: 

1. The case study (experimental work) is based on CM data collected from a two-stage RC 

test rig.  

2. Feature extraction was employed using the conventional methods including: time, 

frequency domain and envelope spectrum. 

3. Feature selection and classification were investigated using two different approaches: 

AI and PCA. A hybrid approach that combines GA technique with other AI approaches 

was also developed and investigated.  

 Procedure: The procedure adopted to implement this methodology was to: 

1. Define or examine the type of data collected from the test rig and the signal processing 

techniques implemented to extract features from the collected data. Two data types 

were collected to cover the healthy condition of RC and the faulty conditions as well. 

The faulty data were generated by seeding different physical faults with in the Test rig. 
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The collected data from different tests was not averaged because the compressor will 

be under variable discharge pressures which influence vibration responses significantly. 

The test rig was selected as it is one of the most important industrial machines and as a 

model of real world applications. 

2.  The capabilities of the time, frequency domain and envelope spectrum in feature 

extraction of RC were investigated through comparison between the healthy and faulty 

conditions. These techniques are simple and can be implemented easily to obtain an 

overview of the system behaviour.    

3. The variety of extracted features was fed into the PNN, SVM and RVM to find the 

classification rate. Then, the same features were utilised in combined approaches GA-

PNN, GA-SVM and GA-RVM. GA was used in order to facilitate the identification of the 

optimal parameters that implied during execution of AI approaches. These approaches 

are characterises by their capability for training and do not require any mathematical 

model for the system under consideration.  

4. The PCA was also used for fault identification and classification for RC utilising the 

features extracted from the statistical time domain. PCA is an accurate, fast and 

powerful technique that depends on mathematical representation of the system.    

1.6 Structure of the Thesis  

This thesis is structured into eleven chapters as follows: 

Chapter 1: Provides the background information on CM, this chapter describes various CM 

technologies. The issues of CM technology are described and AI techniques that can be used to 

address some of these problems are mentioned and the present research topic, aim and 

objectives. 

Chapter 2: This chapter provides an introduction to the RCs and how it works and describes 

the common types of valves and reviews RC failures experienced in industry. Finally, it 

highlights the use of different CM techniques in fault diagnosis and gives a brief literature 

review of AI techniques and PCA method for machinery fault detection and classification.  

Chapter 3: In this chapter, the test rig and its facilities are described, and then a brief 

description is given of the transducers used: accelerometers, shaft encoder and pressure 

sensors. It also describes data acquisition and data management. Finally, it explains how local 

faults of valve leakage, belt looseness and intercooler leak were seeded. 

Chapter 4: This chapter describes the mathematical model of the RC, including quantifying 

physical parameters, valve opening and closing times. It then briefly explains how the 

simulation was implemented and comparison of model predictions and system behaviour 

made. 
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Chapter 5: This chapter introduces how the features extraction and presents the use of 

vibration techniques in compressor fault detection and the relative merits of analysing 

compressor valve signals using time domain, frequency domain and envelope spectrum 

techniques. 

Chapter 6: This chapter begins by giving a background to AI, including its theoretical basis. It 

also explains the new novel PNN, SVM, RVM integrated with GA and how to apply them for RC 

fault detection and classification. 

Chapter 7: This chapter implements the AI techniques to the problem of CM. PNN and GAs are 

used to build an automatic CM system to find high classification rate and optimal features.  

Chapter 8: This chapter summarises the results performance of SVM for binary and multi-

classes in classification and selection the optimal features via GA. 

Chapter 9: This chapter develops RVM via OAO scheme with GA feature optimisation for 

applying this binary classifier to the compressors data, and examines the harmonics selected 

for classification to find the insight of the classifier in associated with the physical supports.  

Finally, the performance of the multiclass multi-kernel mRVM is also explored for obtaining 

more efficient fault classification.  

Chapter 10: This chapter introduces the results of PCA method and its applications for fault 

classification using the features extracted from time domain for RC.  

Chapter 11: Summarises the findings of the work and gives suggestions for future research. 
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Chapter 2  

Reciprocating Compressors, Their Faults and 

Condition Monitoring Techniques 

This chapter starts by giving an introduction on RCs and how they work. It then describes the 

common types of valves and reviews RC failures experienced in industry, and identifies valves 

as a main cause, the intercooler and the belt drive. Next, it discusses the more common types 

of conventional CM techniques used for reciprocal compressors. Then, the literature reviews of 

AI and PCA that are mainly used in fault detection and classification problems have been 

reviewed. Finally, the pre-processing data includes: feature extraction and feature selection 

are discussed.  

2.1 Reciprocating Compressors 

RCs are among the few and common machines used for compressing and processing of gas in 

the oil and gas industry. The designing and manufacturing principles of these compressors 

have been tested and proven a high level of reliability. Nevertheless, the reliability of these 

compressors can be improved through CM. CM slows down these machines enabling them to 

operate at their full potential. CM also helps in deciding if it would be beneficial to change the 

defective part of the compressor instantly or wait for a certain period of time. One of the 

foremost components of a RC is the valve; there are basically two types of valves in a RC - 

suction and discharge valve. Both of these valves account for almost forty percent of the cases 

where the valves are required to be shut down, and these valves account for almost more than 

fifty percent of the cases where they are the total cost of repair (B.-S. Yang, Hwang, Kim, & 

Chit Tan, 2005). Both of these facts serve as the driving reason for making improvements in 

the process of CM for predicting valve failure and the severity. It is used in oil refineries, gas 

transportation (pipelines), chemical plants, and refrigeration plants. It is also used in the 

manufacturing and blow moulding of glass, plastic (polyethylene terephthalate or PET) and for 

liquids. 
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Figure 2.1 Cutaway view of the compressor (Bloch & Hoefner, 1996) 

In most RCs, gaskets are used between adjacent parts to ensure leak proof conditions, 

because most of the surfaces are not machined finely enough to give a metal-tight body. 

Mainly gaskets are used between the cylinder head and the valve plate, between the valve 

plate and the compressor housing, between the compressor body and the bottom plate, if any, 

and also between the outer valves service and mounting bases. When the contact parts are 

tightly secured, shape and contour printed on the material, which is usually soft and resilient 

enough to take printing and thereby seal any oil or gas will possibly escape to the atmosphere, 

prevent penetration of air. 

2.2 Working of a Reciprocating Compressor 

A reciprocating piston uses the reciprocating action of a piston inside the cylinder for 

compressing the refrigerant. The process begins with the downward movement of the piston, 

which results in the creation of a vacuum inside the cylinder. During this process the pressure 

in the top intake and the pressure in the lower intake falls, due to this rise in pressure the 

intake valve is forced to open and once the valve of the intake opens up the refrigerant is then 

sucked inside the cylinder. Once the piston reaches its bottom point it then starts to move in 

an upward direction (Heinz & John, 1996). Afterwards, the intake valve then closes, leaving 

the refrigerant trapped inside the cylinder, and once the refrigerant is trapped inside the 

cylinder, the piston then continues to move in the upward direction to compress the 

refrigerant, which increases the amount of pressure inside the compressor. After a certain 

period of time there comes a point when the pressure exerted by the refrigerant is forced by 

the exhaust valve to open up and allows the compressed refrigerant to flow out of the cylinder. 
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This process is complete when the piston reaches its top most position, and afterwards it starts 

to move back in downward direction to its original position (Albert, Avery, Narin, & McAllister, 

1991). 

 

Figure 2.2 Air flow through a two-stage RC (Albert, et al., 1991) 

RC valves can be opened and closed only by effect of cylinder pressure. This is achieved 

because the valves only open in one direction so that the intake valve opens in the direction 

towards the bottom dead centre of the cylinder and the discharge valve opens in the direction 

opposite to the intake valve. In the suction stage, the discharge valves are closed due to the 

vacuum effect created by the piston in its descending stroke (M Elhaj et al., 2008). Conversely, 

when the pressure has increased sufficiently, the discharge valve opens and the intake valve 

will be closed. The compressor duty cycle of the RC is divided into four stages that are defined 

below: 

(A) Top compression 

In this phase of the cycle the cylinder is filled with gas. 

(B) Compression  

In this phase the piston acts on the mass of its original volume reducing gas with a parallel 

increase in the pressure thereof. The cylinder valves are closed.  

(C) Expulsion 

Before the compression stroke is completed the exhaust valve opens. As a result of this the 

compressed gas is released from the cylinder, due to its own pressure through the valve. 

Before reaching the limit switch the discharge valve is closed, leaving the cylinder space filled 

with gas at discharge pressure. 

(D) Expansion 

In this phase of the cycle, both the exhaust valve and the inlet are closed. The piston starts 

moving from Reverse Run race and the gas contained within the cylinder undergoes a volume 

increase so that the pressure inside the system is reduced. Before reaching the final point the 

intake valve opens the cylinder.  
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(E) Admission stage 

In this phase of the cycle the piston goes back causing a depression in the cylinder which is 

compensated by the fresh gas inlet through the intake line. Just before reaching the lowest 

point of the race the intake valve closes, returning to state A) so that a new cycle begins. 

 
 

Figure 2.3 Different working stages of a RC (Zheng, 2005) 

This type of compressor uses an automatic valve spring which opens only when sufficient 

pressure differential exists. Intake valves open when the pressure within the cylinder is slightly 

lower than the gas inlet pressure. The exhaust valve opens when the pressure in the cylinder 

is slightly higher than the pressure in the discharge line. Certain applications necessitate the 

use of high compression ratios (the ratio between the absolute intake pressure and gas 

absolute pressure the gas in the discharge) complicated by the need to verify in a single stage 

compression due to the high temperature reached by the gas in the discharge. Thus it is 

necessary to use serial compression that involves multiple compression stages. The gas is 

usually cooled between stages to reduce the temperature and volume before entering the next 

stage. It should be noted that each stage is constituted by a compressor in itself (Cho & Moon, 

2005). This is designed and dimensioned to operate in series with one or more basic 

compressor elements, although they may all be fed from the same source but remain 

separate. 
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2.3 Types of Compressor Valves  

Valves are automatic mechanisms placed on the suction and discharge of each of the cylinders, 

allowing gas flow in one direction, either into the cylinder (suction) or outwardly (drive). These 

mechanisms operate by pressure difference, although in certain conditions may be aided by 

springs. The following are different types of valves used in compressors: 

2.3.1 Process Poppet Valves 

The process poppet valve consists of a hole, usually round or oval, and a tapered plug, usually 

disc-shaped, placed at the end of a rod, also called a valve stem. There is a guide rod located 

around the valve that serves both to control the flow of a function element to all or nothing. 

The closure element rests on a seat ring and a circular section. As the closure is approaching 

the seat, the passage cross section is reduced and therefore increases the pressure loss by 

reducing the flow rate. In some applications, the pressure difference helps to close the valve, 

and other assistance to open it. 

  

Figure 2.4 Process Poppet Valve (Dresser-Rand, 2005) 

Poppet valves are very sturdy and resistant and commonly applied for industrial use in 

directional control valves. They are usually very tolerant to air contaminants (rust, dirt, etc) 

when used in compressed air service. They also allow high flows and high-speed operation. 

When the valve is actuated, it opens quickly and the area to pass the fluid is also large. The 

valve is operated by an actuator which in turn works on the valve stem, peeling off the disc 

from its seat to open (in the case of the normally closed valves) and allow passage of the fluid, 

or to support the disc in the seat and close (in the case of normally open valves), and to 

prevent the passage of fluid or gas. When the actuator stops applying force on the valve, a 

spring returns the valve to its original position (in the case of the normally closed valves), 
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causing the valve disc into contact with the seat; pressure fluid within the valve body helps 

keep it closed. In the case of normally open valves, fluid pressure assists the spring to 

separate the valve seat, opening the passage again. 

2.3.2 HPS Valve 

The HPS valves are one of the most versatile valves that are being used in compressors. The 

HPS valves consist of a number of circular plates that are moved with the displacement of the 

springs to which they are attached. These circular plates are then guided on the diameter, 

which enables the plates to hold their position over the slots in the seat. The buttons and rings 

of the HPS valves are made up of Hi-Temp© PEEK (Foreman, 2002). The HPS valves also 

contain a metallic ring that is capable of holding elements at very high temperature. 

 

Figure 2.5 HPS valve (Foreman, 2002) 

Throughout the lift, seat and exit areas , the HPS valves maintains a balanced flow, which 

results in the creation of a lower drop in pressure across the valve, limiting the loss of the 

valve and increasing the overall efficiency of the valve. The centre bolt of the valve is designed 

with a right hand thread on one half and a left hand thread on the other half.  The internal 

components of the valves such as: springs, buttons, and rings are interchangeable between 

the discharge and the suction process. This minimises the maintenance and inventory cost. 

2.3.3 PF Valves 

PF valves are a ported plate type valve; these values are extremely versatile and can be used 

for an extensive amount of applications. The valves of the PF valves are joined with the help of 

radial ribs for the formation of a single plate. During the cycling process various coil springs 

make contact with the bottom of the plate, which results in the elimination of buttons on top of 

the springs. As a result of this process the compressor can perform operations at a very high 

speed, building the momentum and causing an efficient coil to coil contact in the spring. 
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Figure 2.6 PF valve (Foreman, 2002) 

PF valves usually use a patented scalloped plate. Since there are very rare occasions in which 

these plates moves parallel to the seat, the plates located on the outside edge initially make 

contact with each other. This results in the creation of a higher amount of stress on the plate 

cracks and the outer edges. PF valves also consist of scallops located on the outside edges of 

the plate, just alongside the radial ribs which increase the cross sectional between the points 

of impact of the plates. 

2.3.4 Reed Valves 

Reed valves are commonly used in high performance versions of two-stroke engines, where it 

controls air-to-fuel mixture, its admission to the crankcase, and further up to the piston. Reed 

valves consist of a series of ports positioned adjacent to each other and each covered by a 

sheet with an extension which allows sufficient flow section even with small bending of the 

sheets. 

Reed valves help to create an overpressure inside the compressor, since two-stroke engines do 

not have valves such as a four-stroke engine. Reed valves limit the flow of gas to one 

direction, opening and closing under changing pressure on each side. Modern versions usually 

consist of flexible metal or carbon fibre. The Reed valve sits between the carbonator and 

crank. 



THE USE OF ADVANCED SOFT COMPUTING  
FOR MACHINERY CONDITION MONITORING 

 

DEGREE OF DOCTOR OF PHILOSOPHY (PHD) Page 40 

 
 

Figure 2.7 A diagram of the reed valve, showing the flexible reed petal, base, and stopper 

(Dhar, Tamma, Bhakta, & Krishna, 2014) 

2.4 The Dynamics of Reciprocating Compressor Valves 

The valve dynamics of a RC is determined by the distance between the seating and the plates 

(valve lift). The motion of the valve plate is simply determined by the help of the forces acting 

on these values. The calculation of the dynamics of the wall has been a normal routine process 

specifically at the design stage of the valves. This method is widely demonstrated and 

accepted for steel elements in industry (Quillen & Webster, 2001). To calculate the dynamics 

of a valve, the following three factors are considered along with the resulting force in Equation 

2.1: the difference in pressure across the force area of the valve plate Av, the springing of the 

valve and lastly the contribution made by the viscous forces during the initial stages of the 

valve opening.  

𝑚𝑣�̈�𝑣 = (𝑝1 − 𝑝2)𝐴𝑣 − 𝑘(𝑥𝑣 + 𝑙1) − 𝐹𝑎𝑑ℎ               Equation 2.1 

Where: 

𝑚𝑣 =Mass of the valve plates 

𝑘 and 𝑙1 = The stiffness of springing and initial deflection of the springs 

𝑝1=Pressure in front of the valve 

𝑝2=Pressure behind the valve 

𝐹𝑎𝑑ℎ=Force 

The force 𝐹𝑎𝑑ℎis obtained through the formula:  

𝐹𝑎𝑑ℎ = 𝑓1
�̇�𝑣

𝑥𝑣
3              Equation 2.2 

The factor f1 in Equation 2.2 depends completely on the geometric features of the properties 

and the value of the refrigerant. It also takes lubrication oil at the valve plate into account. 

These results are used for selecting the amount of valve lift required during the cycle, and the 

stiffness of a compressor. This process also determines the valve life, the pressure volume and 

the impact velocities on the seat and the guard. It also helps in the calculation of the total 

power loss and the total capacity caused by the valves during the cycle. 
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2.5 Main Failures in Reciprocating Compressors 

2.5.1 Valve Failures  

Valve failure in a RC can occur due to many reasons. Motriuk (Motriuk, 1996) indicates that 

the reason behind the improper installation of the valve during the compression cycles are a 

result of pressure pulsation inside the pipe, wrong selection of the valve meters and wide 

operating conditions. Valve failure can also occur due to corrosion as the valves of the 

compressor are frequently exposed to gases containing corrosive elements. During the 

compression cycle, these corrosive elements mix up with the gas and often cause the spring 

(or the moving elements inside the compressor) to halt permanently due to the fatigue caused 

by corrosion (Winandy, Saavedra O, & Lebrun, 2002). 

Poor quality of gas can also result in valve failure, as the presence of debris and dirt in the gas 

causes accelerated wear. This results in the materialisation of poor sealing between the seat 

and the moving element, causing the guard and the flow holes in the seat to choke (not 

allowing the gas to flow through the valve). The liquids present in the gas steam also 

contribute to the valve failure, as large amount of liquids cause high impact slugging inside the 

compressor, resulting in reducing the effectiveness of the lubricant inside the compressor. In 

addition to this, it causes high amplitudes and pulsation that increases the frequency of the 

compressor, resulting in increased stress inside the compressor, and the potential for surge 

due to coil contacts on the valve springs. This effect causes a pressure drop that eventually 

causes the compressor unit to shut down. 

Stiction is also among the many factors that could result in the failure of the valve.  It occurs 

when a thin film of the oil causes the moving element to stick to the guard. This causes an 

additional amount of force for the spring to close the element once it is fully opened against 

the guard. When the spring is not strong enough, it will delay the close down, causing 

excessive impact velocity against the seat. The pressure force required for opening the moving 

elements will build up and result in excessive impact velocity and eventually halt the process 

when stiction is excessive. 

2.5.2 Leak in Intercooler 

In a RC the leak mostly occurs at the intercooler and during the process the clamps inside the 

compressor loosen and leak occurs. Leaks are mostly found at the bottom of the intercooler 

system and could be identified by pressurizing the compressor from 22 psi to 24 psi. These 

leaks can be detected through gentle wiggling of the pipes. There are certain circumstances 

where there are holes in the intercooler piping; there are other cases in which the leak occurs 

around the rubber pipes that are located inside the stock woven mesh pipes cracks (To, 1984). 
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2.5.3 Loose Drive Belt 

In a RC there are certain situations in which the drive belt gets loose. This mostly happens 

when the belt is too tight around the body of the compressor. Under such circumstances the 

belt becomes overloaded, leading to wear and heat arising from friction as well as an increase 

in power consumption. In cases where the pressure increases significantly, the belt could 

break due to high tension.  On the other hand, when the belt is too loose, the belt easily slips 

away from the compressor that leads to heat generation, unsteady rotation and abrasion on 

the belt that causes insufficient displacement of air inside the compressor (Iturriaga-Notario, 

1978). 

2.6 Overview of Practical CM Techniques 

2.6.1 Vibration Monitoring 

Vibration monitoring is one of the most commonly used techniques in CM whereby the 

condition of a machine is determined by analysing the vibration signals it generates. Every 

machine or process will produce vibrations in one form or another while in operation, and the 

vibration mechanisms of most machines are sufficiently understood enough to detect faulty 

operations  from the vibration characteristics. The most commonly used transducer is the 

accelerometer which is particularly good for analysing rotating machinery due to its relative 

ease of use and low cost (Peters, 2002). Figure 2.8 shows trace of amplitude of the vibration 

detected by the accelerometer for the 2nd stage valves opening and closing under normal, 

healthy conditions and with 0.2%, and 0.8% discharge valve leakage. The 2nd stage discharge 

valve opens early at 185º for 0.2% valve leakage and 180º for 0.8% leakage, compared to a 

healthy valve which opens at about 192º. In this case the greater the leakage the greater the 

impact severity (M Elhaj, 2005). 
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Figure 2.8 Time domain representation of vibration signal from accelerometer on the 2nd stage 

cylinder of a RC with valve leakage 2mm and without a leaky discharge (M Elhaj, 2005) 

However, difficulties with vibration monitoring can occur due to the presence of multiple 

vibration sources within the machine for which the signals can combine in non-linear and 

possibly non-stationary ways.  

2.6.2 In-cylinder Pressure Monitoring 

In many machines such as diesel engines or RCs, the in-cylinder pressure signals usually have a 

lot of information on the condition and efficiency of the machine. The pressure transducer used 

for monitoring the cylinder pressure will, of course, depend on the machine. Figure 2.9 shows 

the dynamic pressure measured in the second stages of a RC with and without faults in the 

discharge valve. 
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Figure 2.9 Measured cylinder pressures for a healthy second stage compressor and 

compressor with belt loosens (Naid, 2009) 

Faults ranging from wear, sticking rings, to incorrect timing can be detected and diagnosed from 

cylinder pressure. For diesel engines an early indication of combustion problems can be obtained 

by measuring the in-cylinder pressure because of the strong relationship between cylinder 

pressure and power. In Figure 2.9 the typical cylinder pressure trace for a RC is shown in some 

detail. There is a rise in pressure as the piston moves “up” the cylinder. A short time before top 

dead centre the valve opens, causing a reduction in the rate of pressure rise in the cylinder. As 

the piston passes through TDC, the pressure in the cylinder begins to drop and there may by an 

oscillation in the cylinder pressure. The changes in pattern that occur with the presence of the 

given valve faults are clear. 

2.6.3 Instantaneous Angular Speed Monitoring 

The instantaneous angular speed (IAS) of reciprocating and rotating machinery will contain 

significant information about in-cylinder pressure, see Figure 2.10. This technique has been 

used to detect faults in fuel injection systems, in combustion processes and with valve 

leakage. This technique requires the use of speed sensors such as encoders, usually fitted onto 

the crankshaft of the flywheel. With a rotating compressor the IAS will vary over a working 

cycle; during the compression stroke the IAS will be less than during the expansion stroke. If 

the cylinder pressure is lower than it should be, the IAS will be faster than for the healthy 

case. The main disadvantage of this technique is that it is complicated to use. However, while 

it is a diagnostic technique that is useful for confirming the identification of faults detected by 
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other methods it has been used successfully to detect and identify faults such as leaky valves 

and deteriorating valve springs within a compressor, and rotor bar faults in an electric motor 

(Liang, 2000). 

Considerable effort has been made on frequency domain analysis to obtain the IAS signal. 

These methods have been based on the Fast Fourier Transform (FFT) and rely largely on digital 

signal processing.  In the near future, with the development of more advanced signal analysis 

techniques, it is expected that IAS would be more successful at fault detection and diagnosis 

(Yuhua Li et al., 2005). 

 

Figure 2.10 Measured cylinder pressures and Instantaneous Angular Speed for a healthy 

second stage compressor with small leak in discharge valve 2mm (Liang, 2000) 

2.6.4 Acoustic Monitoring 

Acoustic technology has been developed to include the field of CM. Acoustic analysis is now a 

recognised technique of non-destructive testing. This approach concentrates on the analysis of 

acoustic or noise waveforms produced by machinery processes (BenSasi, 2005). Microphones 

are often used to pick up acoustic signals to be compared against vibration-monitored 

waveforms. Microphones are sensitive, easy to mount and possess wide frequency response 

ranges that can give appropriate and comprehensive information. Therefore, microphones are 

utilised in many applications including gearbox, bearing, tool and engine CM (Erdelyi & Erie, 

1956; Liang, 2000; Mayes, Steer, & Thomas, 1981) . On-line CM requires remote non-intrusive 

data collection, so the use of microphones is an attractive option. Moreover, acoustic 
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monitoring techniques offer a direct interpretation of vibration sources and generation 

mechanisms when the problem of ambient noise is to be addressed. However, because 

machines generate not only vibration but airborne noise as well, one of the major limitations of 

acoustic monitoring is the contamination of acoustic waveforms by background noise from 

similar adjacent machines (W. Li, 2000). 

2.6.5 Infrared Thermography 

Infrared thermography is now being targeted as a versatile tool for CM of equipment (Hung-Yi, 

Chao, & Tsai, 2005). IR imaging would enable fast and efficient approach in identifying the 

areas that are most in need of maintenance. The IR thermal imaging method utilise the radiant 

existence in the IR spectral band from measured objects to measure temperature. It is non-

intrusive, applicable in remote areas and suitable for measurements of a large area. It can also 

serve to record data for subsequent storage and processing with a PC. Ay et al. (Ay, Jang, & 

Yeh, 2002) used an IR thermal imaging camera to observe the surface temperature of a plate 

finned-tube heat exchanger and calculated the local heat transfer coefficient. IR thermography 

on equipment shows that the surface thermal patterns are a consequence of internal 

conditions (Singh & Singh, 2011). 

 

Figure 2.11 Thermographs of High Pressure and Low Pressure cylinders (Singh & Singh, 2011) 
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2.7 Literature review of AI Techniques and PCA Method for CM 

Many AI techniques have been applied for fault diagnosis such ANN, SVM and RVM are briefly 

introduced with literature reviews. In addition, PCA method for fault detection and fault 

diagnosis are reviewed. 

2.7.1 Neural Network  

ANNs have potential application in the automated detection and diagnosis of machine 

condition. The use of the PNN has increased recently because it provides sound statistical 

confidence levels for its decisions. The goal of a PNN can be trained using test data to 

determine the features for the classifiers. These features have been calculated from the data 

obtained from the time and frequency domains and envelope analysis and were used for 

classifying the health of a RC. However, there remains the need to build an accurate and fast 

classification process using the optimal features which best characterize the system conditions 

and thus allow optimization of the parameters of the ANNs with a minimum number of 

features.  

GAs have been used for automatic feature selection in machine CM (Samanta, Al-Balushi, & Al-

Araimi, 2006). Moreover, GAs can be used to simultaneously find optimal structure of a spread 

value of PNN, in terms of concurrently determining the number of nodes in the hidden layers 

and connection matrices for evolving the ANN (Saxena & Saad, 2007). 

Samanta and Al-Balushi (Samanta, et al., 2006) applied neural networks to the diagnosis of 

rolling element bearing faults using time-domain features from vibration signals. They also 

used GAs to optimize the features vector for gear fault detection using experimental vibration 

data from a gearbox (Samanta, Al-Balushi, & Al-Araimi, 2004). Orlowska-Kowalska (Kowalski 

& Orlowska-Kowalska, 2003) used a NN for induction motor fault diagnosis. Tiwari and Yadav 

(Tiwaria & Yadav, 2005) applied ANN in the CM of a defective RC using simulated data. Yang et 

al (B.-S. Yang, W.-W. Hwang, et al., 2005) presented classifiers including the self-organizing 

feature map (SOFM), learning vector quantization (LVQ), and SVM for fault features of a small 

RC. Yang et al., attempted to examine the performance of different multi-class SVM strategies 

on the diagnosis of faults in rotating machinery and compared the results with those obtained 

by ANNs (B.-S. Yang, Han, T., Hwang, W-W. , 2005). Jack et al examined the use of a GA to 

select the most significant input features from a large set of possible features in machine CM 

and shown that using a GA, a small subset of six allows more than 99% recognition accuracy, 

compared with an accuracy of 87.2% using an ANN without feature selection (L.B. Jack, 

Nandi., & McCormick., 2000). Worden et al. investigated GA in determining the parameters of 

Multi-Layer Perceptron (MLP) and selecting features for damage localisation in an aircraft wing 

(Worden K, January 2008), showing effectiveness of GA in performance improvement. Yang 

Genetic Programming (GP) used to combine optimally for engine valve fault detection (W.-X. 

Yang, 2006). Results obtained are better compared with Principal Component Analysis (PCA). 
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However, in these researches, more computational efficient NNs such as PNN have not been 

explored and a combination of ANN and GA has been received little attention for CM.  

2.7.2 Support Vector Machines  

SVMs have been introduced by Vapnik (V. N. Vapnik, 1995) and have become one of the most 

famous intelligent learning machines and a very good option to neural networks. SVMs are 

used for classification and regression analysis, data analysing, pattern recognition and 

nonlinear modelling. SVM is a popular and well-known method used for many applications such 

as signal processing , finding fault and control (Smola & Schölkopf, 2004). 

(SVM) methods have been used along with grid search and other learning techniques. 

Similarly, SVM methods have been applied in tandem with GAs to obtain fault classification for 

fault prone software components. Comparably, SVM in tandem with GAs produced the best 

classification results, proving its superiority over other methods for fault classification (Martino, 

Ferrucci, Gravino, & Sarro, 2011). Mathematical modelling and testing of SVM methods with 

GA indicate their superiority over regular SVM methods in dealing with unbalanced classes to 

produce higher classification and faster learning (Amer, El-Garhy, Awadalla, Rashad, & Abdien, 

2011). Hybrids of SVM methods such as combined SVM (CSVM) have been used extensively 

for process control such as in the Eastman process. Results indicate the superiority of SVM 

based methods over other methods of control (Tafazzoli & Saif, 2009). 

SVM methods were employed in order to classify faults of reciprocating refrigeration 

compressors through the application of wavelet transform and statistical methods. Significant 

features were extracted from both raw noise signals and vibration signals. The selection of 

relevant RBF kernel parameters was carried out through iteration (B. S. Yang, Hwang, Kim, & 

Tan, 2005). In a similar application, SVM methods were applied to RCs butterfly valves to 

classify cavitation faults (B. S. Yang, Hwang, Ko, & Lee, 2005). Similar research was 

performed on RC valves to classify faults through vibration signals alone. Data for this purpose 

was gathered from the surface of the valve and the resulting vibration signals were 

decomposed by applying local wave methods (Ren, Ma, & Miao, 2005). 

One of the larger problems posed by RC valves is the non-stationary and non-linear 

characteristics of the extracted vibration signals. In order to deal with the non-stationary and 

non-linear nature of such data, information entropy with good fault tolerance potential was 

utilised as the feature parameter fed to a SVM. This was utilised as being a comprehensive 

characteristic of the raw vibration signal. The resulting decision function was used to solve the 

limits of traditional fault classifications. The added strength of the SVM was its ability to be 

trained with only a few input samples to deal with multiple new faults (Zhigang Chen & 

Xiangjiao Lian, 2010). 

The small linear pattern recognition performance and relatively small data sets extracted from 

RC valves present unique problems for fault classification. SVM has been utilised to deal with 

such limitations by employing information entropy since it is flexible as well as being liberal in 
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terms of non-linear behaviour. The SVM was trained by using a small vibration data set from 

RC valves characterised by information entropy. The fault classification results of SVM methods 

proved accurate enough for fault classification in valve failure of RCs (Cui, Zhang, Kang, & Lan, 

2009). 

Another limitation of vibration data from RCs is the small amount of fault data that can be 

extracted from regular runs compared to a large number of excitation sources. SVM was 

applied in tandem with Statistical Learning Theory (SLT) in order to overcome this challenge. 

Vibration signals were extracted from the rolling bearing in RC’s crankcase through the 

utilisation of a test bed. A SLT scheme was developed to extract features that were then fed to 

the SVM for intelligent fault classification. Results showed that the application of these 

methods identified faults immediately with significant accuracy (Sheng, Jing, & Yabin, 2009). 

2.7.3 Relevance Vector Machine  

The RVM, introduced by M E. Tipping (M. E. Tipping, 2001), is a probabilistic sparse kernel 

model and is analogous to SVMs. It adopts a Bayesian approach to learning, by introducing a 

prior density over the weights, governed by a set of hyper parameters, whose most probable 

values are iteratively estimated from the data. Sparsity is achieved because in practice the 

posterior distributions of many of the weights are sharply peaked around zero. Furthermore, 

unlike the support vector classifier, the non-zero weights in the RVM are not associated with 

examples close to the decision boundary, but rather appear to represent prototypical examples 

of classes; the relevance vectors. The most compelling feature of the RVM is that, while 

capable of generalisation performance comparable to an equivalent SVM, it typically utilises 

dramatically fewer kernel functions. Furthermore, the RVM suffers from none of the other 

limitations of the SVM described above, as it is a probabilistic model.(Y. Hu & Luob, 2013). 

RVM have been used in tandem with GA in order to classify faults in non-linear systems. The 

relative accuracy of RVM systems supported by GAs provide better classification rates for small 

learning data sets than for other comparable AI fault classification methods. 

RVM has been utilised along with GA in order to optimally control nonlinear manufacturing 

processes. The technique relies upon discerning (approximately) the optimal control 

parameters of the manufacturing device. In turn, the non-linear behaviour of the 

manufacturing device has regression built in to filter out noise through the utilisation of a 

kernel based Bayesian structure. The GA tabulates the near optimal control parameters in 

order to maximise the required objective (Yuan, Wang, Yu, & Fang, 2007). 

Rotating machinery fault diagnosis has been attempted using thermal imaging processed 

through RVM methods in combination with bi-dimensional empirical mode decomposition 

(BEMD) and generalised discriminant analysis (GDA). The BEMD enhanced thermal image is 

treated with GDA to reduce features, after which RVM is implemented for fault classification 

(Tran, Yang, Gu, & Ball, 2013). 
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RVM has been compared to SVM methods to demonstrate its robustness for gear fault 

detection. Compared to SVM, the RVM method required lesser kernel functions and learning 

time while demonstrating comparable performance (C. He, Li, Huang, Liu, & Fei, 2009). 

RVM combined with GA has been utilised in state classification of roll bearings. The GA is 

applied to determine training parameters for RVM. Experimentation and analysis revealed that 

the application of GA in combination with RVM produced better results than back propagation 

neural networks and SVM (Yanhong Li & Liu, 2010). 

A comparison of multi class RVM and SVM methods for low speed bearing fault detection 

revealed that RVM methods held great promise for accurate fault classification. Component 

analysis was carried out in order to classify features and to reduce the dimensions of the raw 

data set. Fault diagnosis was carried out with feature extraction and without it (A. Widodo et 

al., 2009). 

Wavelet packet feature extraction was applied in tandem with RVM for detecting gear faults. 

Using the Fisher criterion, the discrimination power of the features is tabulated and two 

optimal features are selected in the time domain and wavelet domain. These are used as 

inputs to the RVM. Comparisons with SVM revealed that the RVM based method produced 

better results for online classification (N. Li, Liu, He, Li, & Zha, 2011). 

RVM methods have been used on multi class discrimination problems in order to examine 

sparsity and recognition problems. RVM was used in tandem with multi class and multi kernel 

methods to test a number of different real world data sets. Results obtained from these 

methods were compared to results obtained from existing classification techniques. The 

application of multi kernel RVM methods demonstrated accuracy in producing multi class 

discrimination problems (Ioannis Psorakis, Theodoros Damoulas, & Mark A. Girolami, 2010a). 

RVM methods were applied to analogue circuits for the diagnosis of faults modelled as multi 

class machine learning problems. Investigation was carried out on a first order Op-amp 

reluctance capacitance (RC) circuit in order to demonstrate the capabilities of RVM methods in 

resolving such problems. Results indicated that these methods could be utilized in order to 

diagnose faults in more intricate analogue circuits that involve a greater number of 

components (V. Jain, G. N. Pillai, & I. Gupta, 2011). 

2.7.4 Principal Component Analysis  

PCA is highly effective in reducing the overall dimensions of varied input data sets for more 

effective analysis. Over time, PCA has been adopted for use in different applications such as 

fault monitoring and diagnosis, signal processing, recognition of patterns, data compression 

and other similar tasks (Zhu, Bai, & Yang, 2009). PCA allows projecting large streams of input 

data onto a smaller dimensional space, so that the projected data is uncorrelated when 

compared to the original data. The various elements of such projected data are better known 

as the principal components (Mdlazi, Marwala, Stander, Scheffer, & Heyns, 2007). PCA has 

been employed with GA in order to reduce data dimensionality for use in fault diagnosis of 
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induction motors. PCA was employed to remove relative features, following which GA was 

employed to select the irrelative features and to optimise the ANN (B.-S. Yang, HAN, & YIN, 

2006). Fault detection and diagnosis of plant subsystems has also been attempted using PCA. 

Normal plant operation decomposed through PCA was compared to faulty operation data 

through PCA decomposition to create thresholds for taking corrective actions. Real time 

monitoring of plant operation data was compared to both data sets with thresholds settled 

through Q statistics in order to detect faults (Villegas, Fuente, & Rodríguez, 2010). 

Vibration monitoring of helicopter transmissions has been attempted using tri-axial 

accelerometers and PCA processing of the obtained data. The three different dimensions of 

acceleration data obtained using accelerometers were reduced to a single dimension using PCA 

for simpler processing. This approach is seen to provide a simpler and computationally robust 

technique for vibration monitoring in highly complex systems (Tumer & Huff, 2002). 

Independent PCA models suffer due to the control limits required for the Q and T2 statistics. 

Also, the limits are produced assuming that the process data is Gaussian in character, which 

may lead to complications if the process data is not actually Gaussian in character. Probabilistic 

techniques have been used in conjunction with PCA (PPCA) in order to handle both Gaussian 

and non-Gaussian process data for fault detection and diagnosis in a process control 

environment. Outcomes signified improvement over simple PCA based control schemes, but 

certain areas still required improvement under the PPCA based control scheme (B. He, Yang, 

Chen, & Zhang, 2012). 

PCA applications to process control are growing over time. Polyester film process monitoring 

has been attempted using Q and T2 statistics through a PCA approach for multivariate quality 

control (MQC). When compared to other techniques, PCA provided a more robust model for 

fault detection although diagnosis was not highly reliable. It could be inferred that PCA 

standalone approaches are best suited to fault detection since fault diagnosis requires the 

application of other techniques for established reliability (Qin, 2003).  

PCA has been used in CM applications to reduce the size of input space provided to the neural 

network for processing (Mdlazi, et al., 2007). When using the PCA method, the faulty signal is 

detected by either the T2 or the Q statistic. The use of either statistic is not enough to provide 

the root cause of the fault, which must be determined using contribution plots. It can be seen 

that the contribution of the Q statistic is easier to determine compared to the T2 statistic. 

Theoretically, if only a single principal component is recognised, which is responsible for a 

fault, the T2 statistic could be used with ease. However, practically this is not possible since 

practical application requires the use of multiple scores that are connected to a fault (Kano, 

Hasebe, & Hashimoto, 2000). 

The PCA can be used independently in order to classify faults if historical data is available for 

comparison. In case that there is no historical data for fault comparison and classification, 

contributions plots must be used to classify faults. The contribution of different variables, or 

their groups, to a monitored index can be used in order to recognise variables that are causing 
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the monitored index to reach out of bound values. There is a growing school of thought that 

tends to favour the use of contribution plots in comparison to PCA alone or PCA combined with 

other methods for fault identification. This method has been expressed as ‘DISSIM’ and is 

known to operate better than conventional PCA methods (Kano, Hasebe, Hashimoto, & Ohno, 

2001). 

Contribution plots can provide what variable is most strongly related to the observed fault. 

Typical batch processing operations utilise Q and T2 statistics in order to identify the presence 

of faults. In turn, contribution plots are used to decipher what variables have the greatest role 

to play in the observed fault. It must be noted that this conventional method cannot apply if 

the identified variable(s) is the cause for or merely connected to the fault. Progressive PCA 

modelling has been used in batch operations to successively eliminate variables for progressive 

fault variable identification (Jie, Hong, & Zhang, 2010). 

Contribution plots have been applied after PCA in order to detect sensor faults on a localised 

scale. PCA was used in order to detect faults while contribution plots were created in order to 

locate the fault on a local scale. The contribution plots were applied through a hierarchical 

scheme that allowed processing blocks and groups of variables for fault diagnosis (Benaicha, 

Guerfel, Bouguila, & Benothman, 2010). 

2.8 Data Pre-processing  

2.8.1 Feature Extraction 

Achieving good performance of machine fault diagnosis is largely dependent on appropriate 

features extraction and features selection techniques. The selection of vital features from the 

targeted machine is the main contribution to increase the effectiveness of fault diagnosis 

process. Features extraction techniques can be categorized into three categories; time domain, 

frequency domain and envelope spectrum (A K Mahamad & Hiyama, 2008). 

2.8.1.1 Time Domain Features 

The features extracted from raw vibration signals are the statistical measures including root 

mean square (RMS), peak factor, lower bound, upper bound, entropy, variance, skewness, 

kurtosis, maximum value and range. Supposing that the signal is x = x1, x2…xN, these features 

are calculated by: 

RMS = √
1

N
∑ [xi − x̅]2N
i=1                                Equation 2.3 

where xi is a element of x;  x̅  is the mean value which is calculated by x̅ =
1

N
∑ xi
N
i=1  and N is the 

number of sample points. 

Peak factor =
max (x)

RMS
              Equation 2.4 

Lower bound = min(X) −
1

2

max(X)−min(X)

Nb
                     Equation 2.5 
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Upper bound = max(x) +
1

2

max(x)−min(x)

Nb
                     Equation 2.6 

Entropy = ∑ pi
N
i=1 log  pi                                      Equation 2.7 

Where pi is the probability density of signal x 

Variance =
∑ (xi−x̅)

2N
i=1

N−1
                       Equation 2.8 

Skewness =
1

N
∑ xi

3N
i=1

σ3
              Equation 2.9 

Where: 

σ = RMS 

Kurtosis =
1

N
 ∑ xi

4N
i=1

σ4
                   Equation 2.10 

Maximum = abs(max(xi))            Equation 2.11 

Range = max(xi) − min(xi)            Equation 2.3 

The interquartile range, normal negative log-likelihood value (Nnl) and Weibull negative log-

likelihood value (WNL) have been calculated and used as the input features for PCA (Yadav & 

Wadhwani, 2011). 

The formula interquartile range (IQR) is: 

IQR = Q3 − Q1                       Equation 2.13 

Where: 

Q3 = L + [
(
3
4
n − CF) i

f
] 

Q1 = L + [
(
1
4
n − CF) i

f
] 

L is lower limit of the class containing the quartile 

n the number of data points 

CF the cumulative frequency up to, but not including, the class containing the quartile 

f the frequency in the class containing the quartile the quartile 

i the class interval or class width 

Weibull negative log-likelihood value and normal log-likelihood value were used recently for 

features extraction from vibration signals (Yadav & Wadhwani, 2011). 

−LogL = −Log∏ f (a,
b

xi
)i=1 = −∑ log f(a, b\xi)

n
i=1                             Equation 2.14 

Where f(xi, a, b) is the probabilty density function. For Weibull negative log-likelihood function 

and normal negative log-likelihood function, the  𝑝𝑑𝑓𝑠 are calculated as follows: 

Weibull pdf  f(xi\a, b) =
b

a
 (
xi

a
)
b−1

exp−(
xi
a
)
b

                   Equation 2.15 
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Norm pdf  f(xi\μ, σ) =
1

σ√2π
exp−(xi−μ 2σ2)⁄

2

                    Equation 2.16 

Where μ and σ denote the mean and standard deviation respectively. 

2.8.1.2 Frequency Domain Features 

The frequency spectrum of time signals is computed using the Discrete Fourier Transform 

(DFT). The DFT of a N point time series x(n) is given as: 

X(k) = ∑ x(n)e−j2π(k−1)(n−1)/NN
n=1                              K = 1,2, ………N                      Equation 2.17 

Normally, to compute the DFT, the Fast Fourier Transform algorithm (FFT) is 

employed(Vachtsevanos, Lewis, Roemer, Hess, & Wu). 

2.8.1.3 Envelope Spectrum Features 

Envelope analysis is suitable for diagnostics of machinery where faults have an amplitude-

modulating (AM) effect on the characteristic frequencies of the machinery (Feng et al., 2013). 

Therefore in this situation, the envelope spectrum is required which can be used to localise the 

defects. Envelop spectrum features are proven to have a capability to reveal the fault sign 

from machine failure (Ahmed, Gu, & Ball, 2011).  

x = fft(xin)                       Equation 2.18 

𝑥𝑎(𝑛) = {

𝑥(𝑛),                                  𝑛0,𝑁/2

2 ∗ 𝑋(𝑛),                        1 < 𝑛 <
𝑁

2
− 1     

0,                          
𝑁

2
+ 1 < 𝑛 < 𝑁 − 1

                            Equation 2.19 

𝑥𝑎 = 𝑖𝑓𝑓𝑡(𝑥ℎ)              Equation 2.20 

𝑥𝑒𝑛𝑣 = √𝑥𝑎 ∗ 𝑐𝑜𝑛𝑗(𝑥𝑎)                       Equation 2.21 

𝑥𝑒𝑛𝑣 = |𝑖𝑓𝑓𝑡(𝑥𝑒𝑛𝑣)| 

Where 𝑥𝑖𝑛 is the vibration signal; 𝑋 is the FFT of 𝑥𝑖𝑛; 𝑥𝑎 is the FFT of analytic signal for 𝑥𝑖𝑛, 𝑥𝑎 is 

the analytic signal for 𝑥𝑖𝑛; 𝑥𝑒𝑛𝑣 is the analysed envelope signal and 𝑥𝑒𝑛𝑣 is the envelope 

spectrum. 

2.8.1.4 Data Normalization 

The data sets were all normalized before training to put data on the same scale before further 

analysis of both the speed and success of training. In this work the scheme of normalization 

with zero mean and standard deviation of 1 for each feature set was attempted. The 

normalized value of ei for E in the ith column is calculated as (Patki & V.Kelkar, 2013): 

Normalized(ei) =
ei−E̅

std(E)
                               Equation 2.22 

Where 

E̅ =
1

n
∑ ei
n
i=1                  Equation 2.23 

𝑠𝑡𝑑(E) = √
1

(n−1)
∑ (ei − E̅̅)2n
i=1                               Equation 2.24 
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2.8.1.5 Distance Measures 

Also are known as divergence or separability measure. For two classes, a feature X is preferred 

to another feature Y if induces a greater difference between the two classes, conditional 

probabilities than Y, if the difference is zero, then X and Y are indistinguishable. One of those 

methods to measure the distances is Euclidean distance method.  

The Euclidean distances between examples of concepts is based on the idea that the greater 

the distance between the examples from different concepts the better the class 

separability(Guyon, Gunn, Nikravesh, & Zadeh, 2008). The Euclidean distances function is 

computed as follows: 

D(X, Y) = {∑ [(Xi − Yi)
2U(Xi − Yi)]

n
i=1 }

1
2⁄                     Equation 2.25 

U(Xi − Yi) = {
0  if Xi < Yi  
1  if Xi ≥ Yi

                      Equation 2.26 

Where D(X, Y)is the distance between two features X and Y size of n, and U(Xi − Yi) is the unit 

step function as defined by Eq 2.26. 

2.8.2 Features Selection 

The task of fault diagnosis of modern machinery has become difficult due to the growing 

complexity of machine design. But with the development of advance sensor technology and 

signal processing techniques, many features can be extracted from targeted machines for fault 

diagnosis purposes. 

Normally, fault diagnosis has characteristic uncertainties. The uncertainties information can be 

reduced by using multiple sources of information. This means that the fault diagnosis capability 

can be improved by feeding inputs with multiple features. The problem may exist with the 

increase of features that can increase the difficulty of data analysis. It is unnecessary to 

employ all the features for fault diagnosis purposes. Some features can contribute significant 

information of faulty signs while some only contribute less information. Thus, it is necessary to 

have appropriate feature selection to increase the accuracy of the fault diagnosis process. 

Various methods can be used for feature selection. Basically the features selection is done by 

evaluating the features based on other evaluation measurement such as distance, information, 

dependency and classification error rate obtained during measurement. Various methods can 

be used for feature selection such as modified distance discriminant technique (Xu, Xuan, Shi, 

Wu, & Hu, 2009b), distance evaluation technique (Q. Hu, He, Zhang, & Zi, 2007; Lei, He, Zi, & 

Hu, 2007; Xu, Xuan, Shi, Wu, & Hu, 2009a) , neural network (Matsuura, 2004). The selection 

of features selection is essential to increase the accuracy of fault diagnosis system. 

2.9 Summary  

This chapter introduced how the importance is the RCs with its operating method and the 

functions of parts of the compressor into which faults will be seeded, the valves, the 
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intercooler and the belt drive, and the consequences of such faults in an industrial context. 

Also the chapter has introduced to the reader the aspects of CM and various CM techniques.   



THE USE OF ADVANCED SOFT COMPUTING  
FOR MACHINERY CONDITION MONITORING 

 

DEGREE OF DOCTOR OF PHILOSOPHY (PHD) Page 57 

Chapter 3  

Test Rig and Experimental Arrangements 

This chapter introduces the test rig with its faults seeding, instrumentation and system 

procedures. It begins by giving a brief description of the compressor characteristics and 

specifications; then the fault seeding. Thereafter, it discusses the operation of the transducers 

and its measured parameters, as well as a description of the data acquisition system. Finally, 

the calibrations of the pressure and vibration sensors are explained. 

3.1 Test Rig Description   

The Broom Wade TS9 RC was selected because such machines are widely used in industry and 

this particular compressor has previously been used by researchers in the Diagnostic Research 

Group and its elements are well known. The chosen compressor is a two-stage, single acting, 

V-formed with two cylinders designed to deliver compressed air between 0.55MPa and 0.8MPa 

to a horizontal air receiver tank with a maximum working pressure of about 1.38MPa. A 

diaphragm pressure switch on the tank could be set to switch off the electrical current to the 

motor or trigger data collection when the air pressure in the storage tank reached a prescribed 

value. As shown in Figure 3.1, the driving motor used was a three phase, squirrel cage, air 

cooled, type KX-C184 with a 2.5kW induction motor. It was mounted on the top of the receiver 

and transfers its power to the compressor through a pulley drive belt system. The transmission 

ratio was 3.2, which results in a crank shaft speed of 440rpm when the motor runs at its rated 

speed of 1420 rpm. An intercooler is situated between the cylinders.  

 

Figure 3.1 Broom-Wade TS9 RC 

Figure 3.1 also shows the compressor attached to a storage vessel(Wade, 1964). Basic 

technical specifications of the compressor are listed in Table 3.1 : 
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Compressor Broom Wade TS9 

Max working pressure 1.38 MPa 

Number of cylinders 2 (90° opposed) 

Piston stroke 76 mm 

Speed 440 rpm 

Motor power 2.5/3 HP 

Voltage 380/420 V 

Motor Speed 1420 rpm 

Current 4.1/4.8 A 

Piston Diameter [Low Pressure Cylinder] 93.6 mm 

Piston Diameter [High Pressure Cylinder] 55.6 mm 

Table 3.1 Compressor specifications 

Intake air is filtered to ensure it is sufficiently clean and dry before entry into the compressor. 

The compressor initially compresses the air in the low-pressure cylinder and subsequently into 

the intercooler before the high-pressure cylinder, which has a smaller bore. The compressed 

air is ejected from the second cylinder into the storage cylinder which has a safety valve fitted 

to prevent excessive pressure build-up (M Elhaj, 2005). Splash lubrication is used to protect 

moving parts. The compressor drives a vane flywheel, the airflow from which passes over the 

coiled copper piping forming the intercooler, removing heat from it. Additional cooling of the 

intercooler is provided by the airflow in and out of a crankcase breather as the pistons move. 

An isolator and a direct online starter connect the compressor to a three-phase current supply. 

A safety valve is fitted on the compressor to protect the motor from overload. 

3.2 Fault Seeding 

Seven common faults were separately introduced into a RC. These are a case of a leaky 

discharge valve in the high pressure cylinder, a leak in the intercooler and a loose drive belt. 

The experimental tests were carried out in the following sequence: 

1. A healthy compressor with both stages operating normally. 

2. A leaky discharge valve in the high pressure cylinder (second stage). 

3. A leaky suction valve in the high pressure cylinder (second stage). 

4. A leak in the intercooler. 

5. A loose drive belt. 

6. Discharge valve leakage combined with suction valve leakage. 

7. Suction valve leakage combined with intercooler leakage. 

8. Discharge valve leakage combined with intercooler leakage. 

In order to determine the state of health of the compressor a reference or base-line signal 

(signature) is required. This reference was obtained when the healthy compressor was 

operating normally after a thorough inspection by qualified staff. The compressor was then 
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operated with each fault in turn, the signal from each transducer compared to that detected for 

normal operation, and deviations of the measured signal from the base line noted. 

3.2.1 Valve Leakage Simulation 

The valve leakage was introduced by drilling a small hole in the valve plate of the second stage 

discharge valve as shown in Figure 3.2. The hole was 2mm diameter and it is 2% of the flow 

cross-sectional area. 

 

Figure 3.2 Leak in 2nd stage valve plate 

3.2.2 Leak in Intercooler 

Leakages are common in joints in the pipe work carrying the process gas from the first stage 

to the second. Here a loose intercooler joint is seeded into a compression joint close to the 

second cylinder. The pipeline screw nut, shown on the Figure 3.3, was loosened to create the 

leak. A small leakage was achieved by turning the nut through one turn. Unfortunately, whist 

this represented a realistic leakage; it was not possible to quantify the leak as a proportion of 

the area of the flow cross-section. 

 

Figure 3.3 Leak in the intercooler 
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3.2.3 Loose Drive Belt 

To model a loose belt arising from belt wear due to friction the separation of the centres of the 

two pulleys was reduced from 169mm to 167mm, equivalent to a 0.5% increase in belt length. 

 

 

Figure 3.4 A belt fault 

3.3 Measurement Transducers 

The test rig has been used for several previous CM research projects and so a number of 

different transducers were already fitted. This includes accelerometers, instantaneous angular 

speed (IAS) encoder, static and dynamic pressure sensors and thermocouples. Each of these 

transducers is connected to a data acquisition system (DAQ) by coaxial BNC cables to reduce 

signal noise.  

3.3.1 Accelerometers 

Two accelerometers, type YD-5-2 with frequency range 0-15kHz, sensitivity 45mv/ms-2, 

capable of withstanding temperatures of up to 150°C and acceleration of up to 2000ms-2, were 

positioned at the  inlet and outlet valves of the compressor to measure vibration (Kjaer, 1997). 

Figure 3.5 shows how each accelerometer is connected via a screw-threaded brass stud 

bonded to the casing with ceramic cement, which helps to avoid over-heating.  
 

 

Figure 3.5 Location of an accelerometer at top of cylinder head 
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3.3.2 Dynamic Pressure Sensor 

For dynamic pressure measurements, an analogue pressure transducer was placed on the 

head of each cylinder. The pressure sensors were fitted via a small hole drilled into the head of 

each cylinder, as shown in Figure 3.6. These sensors were GEMS type 2200 strain gauge 

pressure transducers with an output of 100mV for full range pressure when used with a 

10Vd.c. power supply. These sensors have a range of up to about 4MPa (600psi) and an upper 

frequency limit of about 4 kHz. 

 

Figure 3.6 Dynamic pressure sensor on cylinder head 

3.3.3 Static Pressure Sensor 

A Gem type PS20000 static pressure sensor is installed on the air storage tank, see Figure 3.7. 

Its operating range is from 0 to 1.35MPa (200Psi), with a maximum output 100mV when 

supply voltage is 15V. Operating temperature range is –20oC to +105oC. 

 

 

Figure 3.7 Static pressure sensor on air storage tank 

This sensor is used to monitor the tank pressure and can be used to trigger data collection 

automatically when the pressure reaches the prescribed set points. Knowing the pressure 

delivered to the storage tank allows the efficiency of the compressor to be calculated. 
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3.3.4 Temperature Measurement 

Figure 3.8 shows the K type thermocouples with a linear response at temperatures between -

20ºC to 220ºC. Thermocouples were inserted alongside the pressure sensor to measure the 

temperature of the air in each compressor cylinder. This ensured the safe operation not only of 

the pressure sensors, but also of the compressor itself. 
 

 

Figure 3.8 Thermocouple 

3.3.5 Shaft Encoder 

Figure 3.9 shows the Hengstler incremental optical encoder which was attached to the drive 

shaft using a spindle adapter and used to measure the IAS of the drive shaft accurate to 1o. 

This allowed small changes in shaft speed to be measured and recorded. The encoder may be 

connected directly to the PC via the DAQ. 

 

Figure 3.9 Hengstler encoder sensor 

3.3.6 Current Transducer 

The Hall Effect current transducer, RS number 286-327, used to measure the stator current is 

mounted on a printed circuit board (PCB). This transducer, see Figure 3.10, is designed for 

measuring circuit current without actually connecting into the circuit. Technical specifications 

are given in Table 3.2. 



THE USE OF ADVANCED SOFT COMPUTING  
FOR MACHINERY CONDITION MONITORING 

 

DEGREE OF DOCTOR OF PHILOSOPHY (PHD) Page 63 

 

Figure 3.10 Three-phase current measuring unit 

Hall Effect current 

transducer 

(RS 286-327) 

Response time (Inst.) 1  sec. 

Supply voltage ±15V dc, (±5%) 

Operating temperature 0 °C to +70°C 

Bandwidth DC to 100kHz 

Analogue output voltage 5V 

Table 3.2 Technical specifications for Hall Effect current transducer (RS 286-327) 

3.3.7 Microphone 

Airborne sound was measured using Bruel & Kjaer precision microphone type 4130 as shown in 

Figure 3.11. This has a linear response up to about 16 kHz which is well above the upper 

frequency limit of the sound of interest (about 10kHz) and a dynamic range to 130dB which is 

well above the maximum noise level expected. The microphone was 10cm from the cylinder 

band hence it was in the acoustic near field for all frequencies below about 1 kHz. 

 

Figure 3.11 High-bandwidth microphone 
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Parameter Value 

Model MK224 

Type 4130 

Sensitivity 41.7mV/Pa 

Frequency response 16kHz 

Maximum range 130dB 

Table 3.3 Specification for Bruel & Kjaer precision microphone 

3.4 Data Acquisition System 

3.4.1 Hardware: 1401 CED 

In the present work, the ADC used is the Power 1401 CED as shown in Figure 3.12 and Figure 

3.13, from Cambridge Electronics Ltd. Analogue to digital converter is an electronic device, 

often an integrated circuit that converts an analogue voltage to a digital value. Two main 

parameters of interest in ADCs are the rate at which the converter can sample analogue 

values, and the resolution at which it can resolve the values. Sampling rate is given in samples 

and the resolution is given as a percentage of the maximum voltage that the converter can 

resolve, or the number of bits that this corresponds to. It can record waveform data, event 

(digital) data and marker information at 400 kHz with 16bit resolution. It can also 

simultaneously generate waveforms and digital outputs for real-time, multi-tasking 

experimental systems(Ltd, 1991).We only use seven channels of sixteen channels. Channel ‘1’ 

collects the data from low pressure transducer. Channel ‘2’ collects the data from the high 

pressure transducer. Channel ‘3’ collects the data from the low vibration accelerometer. 

Channel ‘4’ collects the data from high vibration accelerometers. Channel ‘5’ collects the data 

from shaft encoder to measure the angle index signal. Channel ‘6’ collects the data to measure 

angular position mark for position TDC piston and channel ‘7’ collects the data from current 

transducer. 

 

Figure 3.12 The front view of the Power 1401 CED 
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Figure 3.13 The rear view of the Power 1401 

3.4.2 Software: Lab Windows TM/CVI Version 5.5 

The DAQ software was written in the programming language C and developed using National 

Instruments Lab Windows TM/CVI Version 5.5, which includes a large set of run-time libraries 

for instrument control, data acquisition and analysis (National Instrument Company, 2000). A 

graphical user interface (GUI) editor is included. The Lab Windows environment includes such 

features as automatic code generation which makes measurement much easier than traditional 

C or C++ environments. 

The DAQ software enables multiple channels of dynamic data (e.g. IAS, vibration, dynamic 

pressure, motor current, sound and temperature) to be acquired simultaneously at different 

rates and data lengths. The software package has an acquisition set-up panel with the control 

commands and status indicators listed on the screen. This allows the user to modify, for 

example, the sampling frequency and sample data length and ensure an optimal data set is 

collected for subsequent off-line analysis. 

Figure 3.14 shows the set-up screen: sampling frequency is 62.5 kHz; the data length is 

30,642 samples. Thus the time between data consecutive points was 0.4903 sec. 

Figure 3.15 shows the panel displaying the data collected for compressor monitoring. Each 

channel shows a different parameter: dynamic pressures from the low and high pressure 

cylinders, the acceleration levels on the low and high pressure cylinders, the current signal and 

the encoder signal. A trigger signal initiates data collection every time the piston passes TDC, 

so that each pulse is always measured at exactly the same crank position. This ensures 

accurate time-domain averaging. Running averages of six consecutive data segments were 

used to obtain a cleaner signal. 
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Figure 3.14 Setup screen for data acquisition 

 

Figure 3.15 Data acquisition in progress 

3.4.3 Data Management and Measurement Practice 

Figure 3.16 is a schematic diagram of the test system and shows the sensor positions. To help 

ensure good practice, a standard test procedure was developed. For each set of data, 4 files 

were collected. The same transducers were always connected to the same input ports on the 

1401PLus. Care was taken to ensure that information regarding data collection was always 

placed in the directory created for that purpose. The specific test, compressor load and fault 



THE USE OF ADVANCED SOFT COMPUTING  
FOR MACHINERY CONDITION MONITORING 

 

DEGREE OF DOCTOR OF PHILOSOPHY (PHD) Page 67 

conditions, and related files were identified by a filename structure established for that 

purpose. 

 

Figure 3.16 Schematic diagram of compressor test system 

3.5 Calibration of Instruments 

3.5.1 Pressure Transducer Calibration 

The various sensors and instruments were calibrated through the data acquisition system 

before the test was conducted. To achieve this, readings were taken by the data acquisition as 

the input signals were swept through their operating ranges, in order to calculate the gain and 

offset values for each individual signal. The GEMS-2200 in-cylinder pressure transducer was 

calibrated by applying a known pressure to the sensor and measuring the voltage from the 

charge amplifier. The dead weight system used had an accuracy of 0.1%. These figures were 

then used to calculate the gain and offset values for the transducer.  
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3.5.2 Vibration Transducer Calibration 

Generally the manufacturers follow the International code ISO/FDIS16063-21 (ISO/16063-21, 

2003) which gives the guidelines for the calibration of vibration by comparison to a reference 

transducer. The calibration procedure adopted uses a 1g sinusoidal vibration generator 

(Electro-dynamic shaker (JZK-51-SHAKER)) with varying frequency. A well-calibrated 

comparison accelerometer is used to characterise the measured responses of the 

accelerometers to be calibrated. 

The Electro-dynamic shaker, model JZK-51-SHAKER, has a wide frequency range from 

10 Hz - 2 kHz. The accelerometers were calibrated using the data acquisition system before 

the tests started. To achieve this, readings were taken by the data acquisition as the input 

signals were swept through their operating ranges, in order to calculate the gain and offset 

values for each individual signal. The difference between accelerometers readings value were 

found. These differences are due to their sensitivity difference (11.070 and 11.799 mV/ms-2 

for vibration first stage and the second stage respectively). The accuracy of the both sensors 

were determined and included in the features extraction algorithms. 

3.6 Summary  

This chapter provides the reader with a detailed description of the test facility. Facilities and 

relevant instrumentation that would be used to study the vibration, current, pressure, 

temperature are included. All the data during experiments were collected using the system 

discussed later and then analysed the experimental data in the PC on MATLAB code In general, 

the test facilities and instrumentation have been tested and proved to be sufficient for common 

RC condition monitoring and fault detection. 
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Chapter 4  

Vibration Characterisation Based on Mathematical 

Models and Numerical Studies of A reciprocating 

Compressor 

In this chapter a mathematical model is developed for the numerical simulation of the 

behaviour of the two-stage RC used in the test rig and subsequently used for characterising 

fault signatures. The model consists of a crank shaft, fluid flow and valve impact dynamics to 

detail the valve motion, the intercooler flow, in-cylinder pressure variation and belt 

transmission behaviour. Moreover, it has developed fault models to understand the changes of 

signatures under intercooler leakages, abnormal valve events and belt wears. The studies 

allow gaining in-depth understanding of the vibration responses and pave basis for develop 

effective methods for signal and data analysis in subsequent works.      

4.1 Introduction 

A number of techniques have been developed in last two decades for CM of RCs. As reviewed 

in the work  (M Elhaj, 2005) and (Mahmud, Ann, Feng, & Andrew, 2014) , most of these 

techniques are developed based on data-driven approaches. They are good at developing 

detection systems as the method can be trained with small data samples without any 

knowledge of the physics of systems. However, they generally have the problems with less 

accuracy in diagnosis and poor generalisation capability.    .   

To overcome these shortages, this study will takes into account the dynamics of the system 

with maximum degrees in developing the data driven based AI approaches. To this end, this 

chapter with examine the dynamics of the RC by a numerical simulation. It consists of 

developing the mathematic models of a two-stage compressor, simulating the dynamic 

responses in MATLAB under different fault cases and then characterising the general 

relationships between vibration sources and various fault cases. In addition, the model 

reliability, simulation implementation and key results have been also verified by experiments 

under representative operating conditions. 

4.2 Implementation  

The core part in converting the model into MATLAB codes is to decide on an appropriate 

equation solver from among a number of MATLAB options. The fourth-order Runge–Kutta 

integration algorithm (ode45) was selected for this simulation. This is the algorithm 

recommended by MATLAB and has been proved to be stable and efficient in solving non- 

stiffness differential equations. However, there are some degrees of stiffness in the valve 
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equations because of the seat impact transients, that is a single step size for the computations 

would lead either to inaccurate solutions (too large a step size for the transient period) or take 

far too long to compute (too small a step size for the more linear stage).  To take into account 

the influence of possible stiffness in the solving process, a small step-size was selected so that 

the solutions of the valve motions were stable, then for comparison, other solvers such as 

ode23s and ode15s were tested. The latter is recommended by MATLAB for solving stiff 

equations, and no significant differences were found between either of them and the results 

predicted by ode45. The numerical solution process is continued up to a time equivalent to the 

duration of 5 compressor cycles, when all of the solutions have reached steady operation. Each 

process begins at the TDC of the piston in the 1st cylinder (crank angle θ=0º), when both 

suction and discharge valves are closed and the cylinder pressure is relatively low, and finishes 

after 5 revolutions of the crankshaft, again at TDC with θ = 5 x 360º = 1800o. The logical flow 

chart of the simulation model is shown in Figure 4.1 below.  

Start Simulation by
‘’TwoCy2013.m'’

Load Motor Parameter
‘’Parameterc3hp.m’’

Assign Compressor and Belt 
Parameters

Assign Parameter for 
simulation

Solving Differentiations for 
given time interval using

‘’FourValveDynamics2013.m'’

Stop

Compressor Differentiation 
Equations

 

Figure 4.1 Flowchart of compressor simulation model  
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4.3 Dynamics of the Piston Mechanism 

4.3.1 A typical Piston Cylinder System 

Figure 4.2 and Figure 4.3 show the typical piston cylinder system of RC, the piston with length 

of con-rod 𝑙 crank and radius 𝑟. The operation of cycle begin at TDC where 𝜃 = 0° and ending 

with 𝜃 = 360° each revolution of crankshaft, which is assumed to rotate at constant angular 

speed. The crankshaft rotates driven by a prime mover and causes the con-rod to move the 

piston in the cylinder, compressing the gas which exerts a force 𝐹 directed against the motion 

of the piston (Ball, 2000). 

 

Figure 4.2 Forces due to gas pressure (M Elhaj, 2005) 

Figure 4.3 depicts the reaction to the force 𝐹 which can be resolved into components; F cos∅⁄  

acting along the con-rod and Ftan∅ acting in the 𝑍𝑌 axes. The force F cos∅⁄  induces a torque Mt 

which acts in the plane to rotate the crankshaft in a counter clockwise direction Z. 

𝑀𝑡 = [
𝐹

𝑐𝑜𝑠∅
] 𝑟𝑠𝑖𝑛(𝜃 + ∅)             Equation 4.1 
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Figure 4.3 Action of the gas pressure forces (M Elhaj, 2005) 

 

Since there is no translational movement of the crankshaft, the bearing of the crankshaft must 

exert forces 𝐹 in the ZX vertical direction and 𝐹𝑡𝑎𝑛∅ in the ZY horizontal direction. The forces 

transmitted to the stationary parts of the compressor are: 

 𝐹 upwards on the cylinder head 

 𝐹𝑡𝑎𝑛∅ to the right on the piston guide 

 𝐹 downwards on the crankshaft bearings at Z 

 𝐹𝑡𝑎𝑛∅ to the left on the crankshaft bearings at Z 

Figure 4.4 presents the simple piston and the crank arrangement, where xp is the downward 

displacement of the piston from the TDC and θ is the crank angle from the TDC. 

If the crankshaft is rotating at constant angular speed ω, then the position of piston can be 

calculated in terms of the crank angle θ. 

xp = r(1 − rcos(θ)) + lcos(θ)            Equation 4.2 

However, considering the geometry of the crankshaft and con-rod; 

lsin(∅)=rsin θ = rsin θ                      Equation 4.3 

Consequently 

cos∅ = √1 −
r2

l2
sin2θ             Equation 4.4 

By substituting Eq.(4.4) into Eq.(4.2): 

xp = r(1 − rcos(θ)) + l [1 − √
r2

l2
sin2(θ)]                    Equation 4.5 

The Eq. (4.5) can be differentiated to obtain expressions for the velocity and the acceleration 

of the piston: 
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𝑥�̇� = 𝜔 𝑟 𝑠𝑖𝑛 𝜃(1 + 𝑐𝑜𝑠 𝜃)/√1 −
𝑟2

𝑙2
𝑠𝑖𝑛2𝜃                    Equation 4.6 

 If the assumption is made that (r
2

l2
⁄ ) sin2θ ≪ 1 and this is reasonable since 𝑟 𝑙⁄ = 1

4⁄  and 

sin 2θ < 1, (unless 𝜃 = (2𝑛 + 1) then the expression for the acceleration may be written as: 

�̈�𝑝 = 𝜔2𝑟(𝑐𝑜𝑠 𝜃 +
𝑟

𝑙
𝑐𝑜𝑠 2𝜃)            Equation 4.7 

  

Figure 4.4 Diagrammatic representation of piston displacement (M Elhaj, 2005) 

4.3.2 Two Stage Piston Crank Arrangement 

The position of the piston in each cylinder of the two stage compressor is considered positive 

when it moves downward, as shown in Figure 4.5. For a Broom Wade TS-9 compressor, the 

displacement of the piston in the 1st stage lags the 2nd stage by a phase of π/2. If the initial, 

lower pressure stage is taken as the reference stage, the displacements of the pistons in the 

two stages are: 

xpL = r(1 − r cos(θ)) + l [1 − √1 −
r2

l2
sin2(θ)]                   Equation 4.8 

xpH = r (1 − r cos (θ +
π

2
)) + l [1 − √1 −

r2

l2
sin2(θ)]                   Equation 4.9 
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Figure 4.5 Simplified model of two stage air compressor (M Elhaj, 2005) 

The velocity ẋpL,H and acceleration ẍpL,H of the pistons of the low pressure and high pressure 

cylinders follow by differentiation: 

ẋpL = ω r sin θ(1 +
r

l
cos θ)/√1 −

r2

l2
sin2θ                       Equation 4.10 

ẋpH =  ω r sin( θ +
π

2
)(1 +

r

l
cos(θ +

π

2
)/√1 −

r2

l2
sin2(θ +

π

2
)                      Equation 4.11 

ẍpL = ω2r(cos θ +
r

l
cos 2θ)                     Equation 4.12 

ẍpH = ω2r(cos( θ +
r

l
) +

r

l
cos 2(θ +

π

2
)                    Equation 4.13 

4.3.3 Crank Angle Model 

According to the simplified dynamic model, the equation of crank motion can be derived 

according to Newton’s second law: 

𝐽
𝑑2𝜔𝑟

𝑑𝑡2
= 𝑇𝑒𝑚(𝑡) − 𝑇𝑝𝑚𝐿,𝐻(𝑡) − 𝑇𝑓𝐿,𝐻(𝑡)                    Equation 4.14 

Where crankshaft angular speed 𝜔 is a function of time 𝑡, 𝑗 is the equivalent inertial moment of 

the system (consisting of the reciprocating and rotating parts of the compressor, an electric 

motor and power transmission shaft or a belt connected the motor and compressor). 

𝑇𝑒𝑚(𝑡) is the driving torque from the electric motor, TpmL,H(t), is the resultant torque to the air 

pressure inside the cylinder and the unbalanced inertial force and the con-rod of the 1st and 2nd 

stages and 𝑇𝑓𝐿,𝐻(𝑡) is the friction torque of the low pressure and high pressure cylinders. 

4.3.4 Calculation of Torques 

This section indicates the mathematical expressions for the driving load torque of the power 

unit, the torque induced by the gas pressure in both cylinders, and the vertical unbalanced 

inertial force in the two-stage compressor. Yang et al (J. Yang, Pu, Wang, Zhou, & Yan, 2001) 

show the driving torque from the motor  to be: 



THE USE OF ADVANCED SOFT COMPUTING  
FOR MACHINERY CONDITION MONITORING 

 

DEGREE OF DOCTOR OF PHILOSOPHY (PHD) Page 75 

𝑇𝑒𝑚 =
𝑃𝑤

𝜔𝑠
𝐵𝑟              Equation 4.15 

Where 

𝑃𝑤   is the motor power in Watts, 

𝐵𝑟= is the belt transmission ratio 

𝜔𝑠= is the motor speed in rad/sec 

Based on the eq  𝑀𝑡 = (
𝐹

𝑐𝑜𝑠∅
) . 𝑟𝑠𝑖𝑛(𝜃 + ∅), it can be shown that the resultant torque due to the air 

pressure inside the cylinder and the reciprocating inertial force of the piston and the con-rod of 

the low pressure and high pressure cylinders is: 

𝑇𝑝𝑚𝐿 = (𝑓𝑝𝐿 + 𝑓𝑚𝐿)𝑅𝑒𝐿             Equation 4.16 

𝑇𝑝𝑚𝐻 = (𝑓𝑝𝐻 + 𝑓𝑚𝐻)𝑅𝑒𝐻             Equation 4.17 

Where: 

𝑅𝑒𝐿 = 𝑟 𝑠𝑖𝑛 𝜃 +
𝑟

2𝑙
𝑠𝑖𝑛 2𝜃/√1 −

𝑟2

𝑙2
𝑠𝑖𝑛2(𝜃)           Equation 4.18 

𝑅𝑒𝐻 = 𝑟𝑠𝑖𝑛 (𝜃 +
𝜋

2
) +

𝑟

2𝑙
𝑠𝑖𝑛2 (𝜃 +

𝜋

2
) /√1 −

𝑟2

𝑙2
𝑠𝑖𝑛2(𝜃 +

𝜋

2
)                   Equation 4.19 

Where: 

𝑓𝑝𝐿 and 𝑓𝑝𝐻 are the forces produced by the gas pressure in the lower and higher pressure 

cylinder respectively, 𝑓𝑚𝐿 and 𝑓𝑚𝐻 are the inertial  forces produced by the reciprocating mass of 

the low and high pressure cylinder respectively, 𝑟 is the crank radius, 𝑅𝑒𝐿 and 𝑅𝑒𝐻are the 

effective radius of the crankshaft for the low and high pressure cylinders respectively, and 𝑙 is 

the length of the con-rod length (J. Yang, et al., 2001). 

The force produced by the air pressure in both cylinders becomes: 

𝑓𝑚𝐿 = 𝑚𝑟𝑒𝑐𝐿�̈�𝑝𝐿              Equation 4.20 

𝑓𝑚𝐻 = 𝑚𝑟𝑒𝑐𝐻�̈�𝑝𝐻              Equation 4.21 

Where: 

ẌpL and ẌpH are vertical piston acceleration [m.sec−2] 

The RC inertial mass of both stages mrecL and mrecH are calculated from the following 

equations: 

𝑚𝑟𝑒𝑐𝐿 = 𝑚𝑝𝐿 + 0.5𝑚𝑐𝑟𝐿             Equation 4.22 

𝑚𝑟𝑒𝑐𝐻 = 𝑚𝑝𝐻 + 0.5𝑚𝑐𝑟𝐻                      Equation 4.23 

Where mcrLand mcrH are the reciprocating inertial mass of both stages, mpL.H is the piston mass 

of both cylinders and mcrL,His the con-rod mass. 

4.4 Cylinder Pressure Model 

The airflow thorough a two-stage RC is shown schematically in Figure 4.6. The airflow enters 

the intake and it is then cleaned by the air filter and passes through the 1st stage suction port 

into the 1st cylinder. After being compressed, the air passes through the 1st stage discharge 

chamber, to the intercooler, then through the second stage suction port, and into the 2nd stage 
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high pressure cylinder. The air is then compressed and passes out through the 2nd stage 

discharge chamber, and then into the storage tank. 

 

Figure 4.6 Air flow through a two-stage RC 

4.4.1 Cylinder Pressure  

The equation for the instantaneous cylinder pressure in each cylinder can be derived from the 

first law of thermodynamics (Stronach, Johnston, & Cudworth, 1984) as: 

dPCL

dt
=

1

VCL
[CiL

2 dmviL

dt
− CCL

2 dmvdL

dt
γPCL

dVCL

dt
]           Equation 4.24 

The cylinder pressure of the 2nd stage is: 

dPCH

dt
=

1

VCH
[CiH

2 dmviH

dt
− CCH

2 dmvdH

dt
γPCH

dVCH

dt
]          Equation 4.25 

Where 

VC=Cylinder volume 

dm

dt
 , Mass flow rates through the suction & discharge valves 

C =Local speed of sound=√(γRTCL,H 

R =The gas constant, 287m2s−2K−1 for air 

γ = Ratio of major specific heats for the process gas =1.4 for air 

The absolute temperature of air in the cylinder may be calculated from: 

TCL,H = TiL,H(
PCL,H

PiL,H
)
γ−1

γ              Equation 4.26 

Where  

TiL,H=Average absolute temperature of the suction air in low and high pressure cylinders 

respectively, 

PiL,H=Suction pressure to low and high pressure cylinders respectively, and 

PCL,H=The internal cylinder pressure, low and high pressure cylinders respectively. 

4.4.2 Cylinder Volume 

According to (McCarthy, 1997) the volume of the cylinder in both stages VcL,H can be 

determined using: 



THE USE OF ADVANCED SOFT COMPUTING  
FOR MACHINERY CONDITION MONITORING 

 

DEGREE OF DOCTOR OF PHILOSOPHY (PHD) Page 77 

VcL,H = VcoL,H + SPL,HXPL,H            Equation 4.27 

Where:  

VcoL,H=Clearance volume for the 1st and 2nd stages respectively 

SPL,H=Cross-sectional area of the piston,=
π

4
dL,H
2   

XPL,H = Piston displacement 

d =Piston Diameter 

The rate of change of cylinder volume 
dVCL,H

dt
 can be determined using: 

dVCL

dt
= SPL.

dXPL

dt
              Equation 4.28 

dVCH

dt
= SPH.

dXPH

dt
                       Equation 4.29 

Where: 

 
dXPL,H

dt
= The piston speed for the 1st or 2nd stage 

4.5 Mass Flow Models 

The rate of change of the cylinder pressure as given by equations (4.25) and (4.26) depends 

on the mass flow rate through the suction and discharge valves. Figure 4.7 shows the mass 

flow model. 

 

Figure 4.7 Mass flow models (Chaykosky, 2002) 

Flow rates 
dmviL,H

dt
 and 

dmvdL,H

dt
 through the suction and discharge valves, respectively, of both 

cylinders. The expressions of mass flow rates can be derived by (Daniel 1994): 

dmvd

dt
= βdCdd. Afd√2pc|Pc − Pd|            Equation 4.30 

Afd = 2π. rvd. max (xvd)             Equation 4.31  

Where: 

Afd=The maximum flow area of the discharge valve 

rvd =The discharge valve plate radius 
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max(xvd) =The maximum discharge valve plate displacement 

Cdd =The discharge coefficient 

Pd =The pressure in the discharge plenum 

Pc =The density of the air in the cylinder 

pc=The pressure in the cylinder 

βd = sign(Pc − Pd), which is +1 for normal flow and –1 for backflow 

Likewise, the mass flow rate through the suction valve is modelled as: 

dmvi

dt
= βdCdi. Afi√2pc|Pi − Pd|            Equation 4.32 

Afi = 2π. rvi . max(xvi)             Equation 4.33 

Afi =The maximum flow area indicated 

rvi =The suction valve plate radius  

max(xvi) =The maximum suction valve plate displacement 

Cdi =The suction coefficient 

Pi =The pressure in the suction plenum 

Pc =The density of the air in the cylinder 

pc=The pressure in the cylinder 

βd = sign(Pi − Pc) 

4.5.1 Suction Mass Flow Rate 

During suction the mass flow rate (mviL,H) of the air through the valve can be expressed as: 

mviL,H = βiL,HCdiL,H(x). AfiL,H√2PcL,H|P
e
iL,H − PcL,H|                   Equation 4.34 

Considering the terms in equation (4.35) in order: 

βiL,H = sign(PeiL,H − PcL,H), which are+1 for normal flow and -1 for backflow, 

CdiL,H(x) is a variable suction coefficient  

CdiL,H(x) = 0.42
xL,H

xmaxL,H
             Equation 4.35 

AfiL,H = 2π. rLH. diff is the flow area around the valve plate (where diff is the distance between the 

outer edge of the valve plate and the inner wall of the valve chamber), PcL,H is the density of 

the air in the cylinders, PeiL,H is the pressure in the suction plenum, PcL,H is the cylinder 

pressure. Figure 4.8 shows the linear relationship between the normalised valve displacement 

and the flow coefficient. 
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Figure 4.8 Variable flow coefficients for the suction and discharge valves (M Elhaj, 2005) 

PiH = PdL(
PiH

PdL
)1 γ⁄              Equation 4.36 

Where PiH,L is density of the air at intake of each cylinder, PdL is density of the air at 1st stage 

discharge, and the air density is taken as  Pi = 1.77kg/m3 

4.5.2 Discharge Mass Flow Rate 

The discharge mass flow rate is given by: 

ṁvdL,H = βdL,HCddL,H(x). AfdL,H√2PcL,H|PcL,H − PedL,H|         Equation 4.37 

Considering the terms in equation (4.37) in order: 

CddL,H(x) = is a variable discharge coefficient which accounts for the reduced flow area resulting 

from the separated flow. 

CddL,H(x) = 0.35
xL,H

xmaxL,H
             Equation 4.38 

AfdL,H = is the maximum flow area of discharge valve.  

The flow coefficients are based on those of Price (M. Elhaj, Gu, & Ball, 2004), who took 

measurements on similar valves. To allow for the possibility of backflow, the absolute value of 

the pressure drop across the valve is taken, where PedL,H is the pressure in the discharge 

plenum, 

βdL,H = sign(PcL,H − PedL,H) , which is +1 for normal flow and -1 for backflow. 

PcL,H = PiL,H [
PcL,H

PiL,H
]

1

γ
             Equation 4.39 

Where, PcL,H is the density of the air in the cylinders, xmaxL,H is the maximum valve plate 

displacement, xL,H is the valve displacement. The two discharge valves have the same 

maximum displacement; the two suction valves have the same displacement and PiL,H is the 

density of the air in the plenum.  

PdL,H = PiL,H [
PdL,H

PiL,H
]

1

γ
             Equation 4.40 

WherePdL,H, is the density of the air in discharge valves, and PiL,H is the density of the air in the 

suction valves.  
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4.6 Model of Valve Motion 

The discharge and suction valves in a RC are similar in design with each constructed with a 

spring, a valve plate, and a chamber. RC valves normally open and close once per one 

revolution of the crankshaft. The movement of the valve plate may be described by a series of 

processes: the initial opening of the valve and movement of the valve until it impacts on the 

valve seat (M. Elhaj, et al., 2004; Kryter & Haynes; Naid, 2009). The valve plate motion prior 

to impact is assumed linear and can be approximated as a single-degree-of-freedom system, 

as shown in Figure 4.9. 

 

 

 

 

 

 

 

 

Figure 4.9 Schema of a plate valve 

4.6.1 Discharge Valve Motion 

The equation of motion of the suction valve and gas force on the valve during the rapid 

opening, described by Newton’s second law in the following equation: 

mvd
d2xvd

dt2
+ Cd

dxvd

dt
+ kdxvd = fd            Equation 4.41 

Where: 

mvd =Total mass of the discharge valve unit, = mass of valve plate plus one-third of the spring 

mass. 

fd =Force on the discharge valve plate due to the difference in pressures between the cylinder 

and discharge pressures (𝑃𝑐 and 𝑃𝑑, respectively) 

kd = Discharge valve spring stiffness, 

cd =Damping constant of the discharge valve chamber, 

dxvd

dt
 =Discharge valve velocity 

d2xvd

dt2
=Discharge valve acceleration 

xvd =Vertical displacement of discharge valve plate. 

4.6.2 Suction Valve Motion 

The equation of motion of the suction valve can be represented as: 

Seating

Valve Plate

spring

Catcher

Pc

Pi

x
v

sv
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mvs
d2xvs

dt2
+ Cd

dxvs

dt
+ ksxvs = fs            Equation 4.42 

Where: 

mvs =Total mass of the suction valve unit = mass of valve plate plus one-third of the spring 

mass. 

fs = Force on the discharge valve plate due to the difference in pressures between the cylinder 

and discharge pressures (Pc and Pd, respectively). 

ks =The suction valve spring stiffness 

Cs =The damping constant of the suction valve chamber 

dxvs

dt
= The suction valve velocity 

d2xvs

dt2
=The suction valve acceleration 

xvs =The vertical suction valve plate displacement. 

The equation of motion of the discharge valve before it impacts on the seat is as follows;  

mvdL,HẍvdL,H + CdL,HẋvdL,H + KvdL,HxvdL,H = ∑ fvdL,H         Equation 4.43 

When the valve plate hits the valve seat (valve totally open or closed) the equation of motion 

becomes: 

ṁvdL,HẍvdL,H + CcL,HẋvdL,H + KcdL,HxvdL,H = ∑ fvdL,H                  Equation 4.44 

mvdL,H= is the mass of the valve plate plus one-third of the spring mass,  

CdL,H=is the damping coefficient, 

KvdL,H=is the non-linear springs stiffness during the period when the valves are not in contact 

with the valve seats, 

KcdL,H=is the contact stiffness between seat and valve plates,  

CcL,H=is the contact damping coefficient, 

ẍvdL,H =is the valve acceleration, 

ẋvdL,H =is the valve velocity, 

xvdL,H =is the valve displacement, and 

∑ fvdL,H=is sum of the total forces acting on the valve plate.  

The displacement of the discharge valve is governed by equations (4.43, 4.44) where the force 

term on the right-hand side is given by: 

∑ fvdL,H = fvdvdL,H − fgdL,H − fdoL,H           Equation 4.45 

Where 

fgdL,H = −mgL,H, is the weight of the discharge valves  

fvdL,H=is the preset spring force (Daniel 1994; Fleming, 1989). 

The last term describes the pressure force, fvdL,H = cfdL,HSvL,H(PcL,H − fdL,H) for the discharge 

valves, where: cfdL,H, is the force coefficient, SvL,H is the slot area for a single channel, PcL,H is 

the cylinder pressure, and fdL,H is the pressure in the discharge plenum. 
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4.7 Fault Simulation 

The faults examined are leakage through the 2nd stage discharge and suction valves, 

intercooler and a loose drive belt. Simulation is used in each case to predict the signatures for 

these faults which will then be tested experimentally. The results of the simulation should also 

provide helpful guidance in examining the experimental data. 

4.7.1 Simulation of Discharge Valve Leakage 

In the simulation, a leak is modelled as additional flow through an orifice in parallel to the 

normal valve flow. It is assumed that gas will flow through the leak when a pressure difference 

exists across the leak. This will occur for the discharge and the following equation was used to 

determine the mass flow rate for gas flow through the discharge valve orifice. 

�̇�𝑐𝐻 =
1

𝑉𝑐𝐿,𝐻
[𝐶2𝑖𝐿�̇�𝑣𝑖𝑙 − 𝐶2𝑐𝐻�̇�𝑣𝑑𝐻 − 𝛾𝑃𝑐𝐻𝑣𝑐𝐻 − 𝐶2𝑖𝐻�̇�𝑖𝐻−𝐶

2
𝑐𝐻�̇�𝑑𝐻]           Equation 4.46 

�̇�𝑑𝐻 = 𝛽𝑑𝐻𝐶𝑑𝐻𝐴𝑑𝐻√2𝑃𝑐𝐻|𝑃𝑐𝐻 − 𝑃𝑑𝐿|              Equation 4.47 

Where 𝐴𝑑𝐿=the leakage flow area of the discharge valve  

𝛽𝑑𝑙,𝐻 = 𝑠𝑖𝑔𝑛(𝑃𝑑𝐿,𝐻 − 𝑃𝑐𝐿,𝐻)= the flow direction parameter: +1 for the leakage flow from the 

cylinder into discharge passage, and −1 for leakage flow from the discharge passage back into 

the cylinder.  

4.7.2 Simulation of Suction Valve Leakage 

Similarly for the suction valve the calculation is: 

�̇�𝑠𝐻 = 𝛽𝑠𝐻𝐶𝑠𝐻𝐴𝑠𝐻√2𝑃𝑐𝐻|𝑃𝑐𝐻 − 𝑃𝑠𝐿|           Equation 4.48 

Where 

𝐴𝑠𝐿=the leakage flow area of the suction valve.  

4.7.3 Simulation of Belt Transmission Dynamics 

 

 

 

 

 

 

 

 

Figure 4.10 Belt transmission systems 

𝑣𝑠 = 𝑣0(1 − 𝑠)              Equation 4.49 

𝑣0 =
1

𝐵𝑟
               Equation 4.50 

Where  

v0 =is the inverse of the transmission ratio Br 
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The transmission ratio is Br =
rc

rm
 and s= 0.001 is a suitable value for the slip coefficient (Kwon, 

Tae-Suk, Lee, Dong-Hoon, & Sul, 2005). 

Jm
dωm

dt
= Tem − Cb △ θ̇ − Kb∆θ            Equation 4.51 

Jc
dωc

dt
= (Cb △ θ̇ + Kb △ θ)/v0Tc            Equation 4.52 

Where  

∆θ = θmvs − θc              Equation 4.53 

∆θ̇ = θ̇mvs − θ̇c              Equation 4.54 

Kb=is the spring constant of the belt (Nm/rad) 

Cb=is damping constant of the belt and pulleys [Nms/rad] 

4.7.4 Simulation of Intercooler Leakage 

Assuming there is a small leakage in the intercooler of the two stage compressor then  

Ṗin =
1

Vin
[C2cLmvdl − C2iHmviH − C2inmin]              Equation 4.55 

min = βinCinAin√2Pin|Pin − P0|            Equation 4.56 

Where  

Ain = 2πrL,Hx is leakage flow area allowing gas to escape from the intercooler 

βin = sign(Pin − P0)             Equation 4.57 

4.8 Model Validation 

The model was validated by comparing the results of the simulation with experimental data. The 

measurement procedures are described subsequently. The valves motion for the high pressure 

stage of the RC is described only for different values of discharge pressure: 80, 100 and 120psi. 

4.8.1 Numerical solution procedure 

The 2nd stage piston leads that of the 1st stage by π/2 and so, initially, the piston will be 

approximately in the middle of its suction stroke, and the pressure in the 2nd stage cylinder will 

be higher than in the first. When either piston is at TDC, the volume enclosed within the 

cylinder will be equal to the relevant clearance volume, and the pressure and temperature of 

the gas within the cylinder will be assumed to be equal to the discharge gas pressure and 

temperature. By simultaneously solving the pressure equations 4.24 and 4.25 and mass flow 

rate equations for the discharge and suction valves equations 4.30 and 4.34 and using the first 

law of thermo-dynamics, the instantaneous cylinder pressure and mass of the gas inside the 

cylinder can be computed. The rate of change of cylinder volume is calculated using equations 

4.28 and 4.29. By using the valve dynamics equations 4.37, 4.42 and 4.41, the valve lift for 

the suction and discharge valves can be determined. The temperature of the gas within the 

cylinder is calculated using the equation of state, 4.26. This process is repeated for 

consecutive time intervals up to the moment the suction valve opens. The determination of the 

suction process begins with an assumed pressure within the cylinder. The valve lift is then 
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calculated for this pressure. By using the calculated valve lift, and solving the pressure 

equation 4.24 and continuity equations 4.30 and 4.31 simultaneously, the pressure and mass 

of air inside the cylinder may be calculated. This procedure is repeated until the calculated and 

assumed cylinder pressures are nearly the same. Using the equation of state, the cylinder 

temperature is calculated. The process of suction (re-expansion) continues up to the time 

when the suction valve opens. With the shutting of the suction valve, compression begins and 

the values of cylinder pressure and temperature may be determined by steps parallel to those 

used in the expansion procedure. As soon as the discharge valve opens, the discharge process 

starts. During the discharge procedure, the cylinder pressure and temperature values are 

determined using steps similar to those used in the suction process. At the end of the 

discharge cycle (TDC), the calculated cylinder pressure and temperature are compared with 

the values assumed at the start of the calculations. If there is any significant difference, the 

calculations are repeated (with the calculated end values now being the start values for the 

next cycle of calculations) until there is sufficiently good agreement between the assumed 

start and the calculated end values. The prediction of the compressor performance in terms of 

volumetric efficiency, volume flow rate and the performance ratio is achieved by computing the 

mass flow rate through suction and discharge valves together with other parameters. A 

theoretical simulation for a healthy two-stage, two cylinder, RC was carried out assuming the 

1st stage suction valve was open to atmosphere, (atmospheric pressure assumed to be 101kPa 

(14.7psi)). The 1st stage discharge pressure was 0.27MPa (40psi) (M Elhaj, 2005). The model 

assumed that during compressor operation the discharge pipe of the 1st stage was connected 

to the suction pipe of 2nd stage through the intercooler. The 2nd stage suction pressure was 

taken as 0.21MPa (32psi). The maximum discharge pressure was taken to be 0.8MPa (120psi), 

and the exhaust pipe of 2nd stage was assumed connected directly to the storage tank. To 

evaluate the effects of different storage pressures on the system, the storage tank release 

valve was set at different discharge pressures. 
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4.8.2 Physical Parameters and Constants 

The important numerical parameters needed as inputs to simulation are listed in Table 4.1 and 

Table 4.2. 

 Low Pressure Cylinder High Pressure 

Cylinder 

Piston Mass [kg] 1.78 0.89 

Piston Head Diameter [mm] 93.6 55.6 

Cylinder Bore [mm] 101.6 63.5 

Suction Pressure [kPa/psi] 100/14.7 220/32.2 

Discharge Pressure [kPa/psi] 270/39.7 816/120 

Suction temperature [oC]  21 41 

Discharge temperature [oC] 50 80 

Table 4.1 First and second stage piston and cylinder parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.2 Electrical Motor, Broom Wade TS 9-16 Compressor and Valve System Details 

A. MOTOR PARAMETERS 

Motor Speed [rpm] 1420 

Motor Power [Kw] 2.2 

B. COMPRESSOR  

Number of Cylinders 2 (90º Opposed) 

Compressor Speed [rpm] 425 

Flywheel Ratio 3:1 

Diameters of the motor pulley [cm] 12 

Diameters of the compressor  pulley [cm] 36 

Tank Capacity [litres] 272 

Piston Stroke [mm] 76.2 

Connection Rod Length [mm] 171.6 

Crank Radius [mm] 38.1 

C. VALVE SYSTEM  

Maximum Suction Valve lift [mm] 2.2 

Maximum discharge Valve lift [mm] 2.6 

Mass of Valve Plate, Low Pressure Cylinder [g] 2.3 

Mass of Valve Plate, High Pressure Cylinder [g] 2.1 

Mass of Valve Spring , Low Pressure Cylinder [g] 1.0 

Mass of Valve Spring, High Pressure Cylinder [g] 2.0 

Outer Radius Valve Plate, Low Pressure Cylinder 

[mm]  

21.0 

Outer Radius Valve Plate, High Pressure Cylinder 

[mm] 

14.0 

Inner Radius Valve Plate, Low Pressure Cylinder 

[mm] 

12.5 

Inner Radius Valve Plate, High Pressure Cylinder 

[mm] 

10.5 
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4.9 Simulation 

Dynamic models play an important role in the development of the pressure and the vibration 

based machinery diagnosis. Creating the model can be used to understand and predict fault 

signatures. The model can also be used as guidance and the same faults can then be 

introduced into the machine with the results from the model indicating which ones are 

detectable and how the recovered forces should vary.  

4.9.1 Second Stage Valve Operations 

For the piston in the 2nd stage, the higher pressure cylinder leads the first byπ 2⁄ , thus when the 

1st stage piston is at TDC, the 2nd stage suction valve will be open and the discharge valve closed. 

Figure 4.11 shows the estimated crank angles at which the discharge valve opens and closes. 

However, the time at which the discharge valve opens and closes is expected to depend 

significantly on the discharge pressure. The higher the discharge pressure, the later the valve will 

open because a higher pressure in the discharge tank will require a correspondingly higher 

pressure in the cylinder before the 2nd stage discharge valve spring opens.  

 

Figure 4.11 Predicted crankshaft angles at which the valves open and close for 2nd stage of a 

healthy compressor with discharge pressure 100psi 

Figure 4.12 is compiled from the predicted displacement of the suction and discharge valves in 

the 2nd stage of the compressor, as shown in Figure 4.12. The crank angles at which the valves 

open and close are obvious and it can be clearly seen that the suction valve is predicted to open 

at a crankshaft angle 298.1º and the discharge valve is predicted to open at an angle of 181.7º. 

The closing of the suction and discharge valves are predicted as 100.7º and 274.6º, at discharge 

pressure 100psi respectively.  
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Figure 4.12 Predicted motion of the discharge valve and suction valve for the 2nd stage of a 

healthy compressor with different discharge pressure 

4.9.2 Comparison of Measured and Simulated Signals 

Figure 4.13 shows the pressure in the 2nd stage cylinder, as measured experimentally and show 

the same pressure as predicted by the mathematical model. The measured and predicted cylinder 

pressure shows a rapid drop during re-expansion, as the piston moves down the cylinder. When 

the cylinder pressure drops sufficiently below that of the inlet manifold, the suction valve opens 

and air enters the cylinder. The pressure shows some slight initial oscillation, particularly in the 

2nd cylinder, due to suction valve flutter. The pressure fluctuation rapidly dies away and the gas 

pressure attains almost constant value during the remainder of the suction time, as the piston 

moved down the cylinder. After the suction valve closes and the piston moves up the cylinder, 

the air above it is rapidly and uniformly compressed causing a corresponding increase in the 

cylinder pressure. 

 

Figure 4.13 Predicted pressure and Experimental results in the 2nd stage cylinder of a healthy 

compressor during cycle pressure 120psi 
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Figure 4.14 shows the measured and predicted pressures for different values of the discharge 

pressure; 80, 100 and 120 psi. The maximum pressure in both cylinders increases with the 

discharge pressure. The predictions of the model are confirmed both quantitatively and 

qualitatively. Although the operational range of the compressor is specified as 80–120 psi, it was 

considered useful to use discharge pressures as low as 80 psi to test the model. 

 

Figure 4.14 Predicted cylinder pressure and measured cylinder pressure for different 

discharge pressure for base line compressor 

A more direct comparison of the pressures between the measured and predicted is shown in 

Figure 4.15. The difference that occurs during the compression and discharge processes of the 

2nd stage is considered most likely due to small error in the values assigned to the flow 

coefficients parameters used under different pressures in the equations. 

 

Figure 4.15 Direct comparison of experimental and simulated dynamic pressure signal in 2nd 

cylinder with different discharge pressure 
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Figure 4.16  Predicted motion of the discharge valve and suction valve for the 2nd stage of a 

healthy compressor at discharge pressure 100 psi 

Figure 4.17 shows the measured pressure and vibration signal from the head of the 2nd stage 

compressor cylinder for one complete period of the compressor cycle and four significant 

transient vibration responses can be seen, each consistent with a corresponding valve impact 

event: suction valve opening, suction valve closing, discharge valve opening and discharge 

valve closing and the distance between the two events is identified as valve plate bounces. 

When the TDC of the piston in the 1st stage cylinder is taken as the reference position, the 

sequence of the four events for the 2nd stage will be identified as show in Figure 4.17. It can be 

seen clearly that the opening impact of the discharge valve coincides with the largest transient 

vibration. The closing of the discharge valve as can be seen by the motion of the medium 

channel in the valve. The next transient vibration correlates with the opening of the suction 

valve as presented by the motion of the smallest channel in the valve, and the next one after 

that coincides with the suction valve closing.  
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Figure 4.17 Pressure and Vibration signals from 2nd stage cylinder head as a function of crank 

angle for a healthy compressor with discharge pressure (100psi) 

 

Figure 4.18 clearly shows how change in the discharge tank pressure affects the opening and 

closing times of the 2nd stage valves which are shown for three discharge tank pressures: 

80psi, 100psi and 120psi. Particularly striking is the change in the crankshaft angle at which 

the 2nd stage discharge valve opens with increase in discharge pressure; as expected the 

higher the tank pressure the later the valve opens. If the discharge valve closes earlier, the 

greater the discharge pressure in the storage tank. The greater the discharge pressure, the 

pressure in the cylinder must be greater to open the discharge valve, and this will require 

greater movement of the piston up the cylinder and hence a greater crank angle. See Table 

4.3. 

Discharge Pressure DVO DVC SVO SVC 

80psi 162.4 290.3 303.0 85.44 

100psi 169.6 292.4 306.0 86.63 

120psi 173.3 293.1 307.7 92.17 

Table 4.3 Showing suction and discharge valve opening and closing angles as a function of 

discharge pressure for a healthy compressor at 2nd stage 
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Figure 4.18 Measured vibration signals from 2nd stage cylinder head showing suction and 

discharge valve opening and closing angles as a function of discharge pressure, for a healthy 

compressor 

4.9.2.1 Weakened Suction Valve Spring 

A worn suction valve spring is introduced into the compressor by reducing the spring stiffness. 

The predicted results on the effects of valve displacement due to weakening the suction valve 

spring are shown in Figure 4.19. As the figure shows, the suction valve motion is affected by 

this fault; the weakening spring causes the suction valve to open slightly earlier, because a low 

pressure drop is required across the valve for opening. The most noticeable effect is the 

discharge valve opens slightly later, with higher impact velocity as the springs weaken. As 

seen in the figure, the later closing occurs because of the spring force needed to close the 

valve has been reduced. The impacts also increase in strength if the piston has reversed 

direction prior to valve closure, forcing the still open valve plate harshly into the seat.  
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Figure 4.19 Predicted motion of suction and discharge valves for the 2nd stage with suction 

valve leakage 

Figure 4.20 shows measured vibration valve impact signatures for discharge and suction valves 

opening and closing impact as a function of weakening suction springs at 2nd stage. The timing of 

the opening impact advances as weakening springs decrease in the predicted model. At the 

discharge pressure 100 psi (a healthy spring) the suction valve opens at 304.6º. For a weakened 

spring at 302.4º.The effects of a weakened 2nd stage suction valve spring on the 2nd stage 

discharge valve are shown in Figure 4.19. The discharge valve opens later due to the slightly 

lower than normal pressure in the cylinder. For a healthy spring the discharge valve opens at 

169.6º and for a weakened suction spring it opens at 170.0º. The experimental data follows the 

predicted results. This shows that for the weak spring measurements, there is good relationship 

with the model prediction. 

 

Figure 4.20 Time domain representation of vibration signal from accelerometer on the 2nd 

stage cylinder with worn spring suction valve 
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4.9.2.2 Leaky Discharge Valve 

A leaky valve is a common fault in RCs. It causes high-temperature air to be forced across the 

valve surface by differential pressure, which accelerates the deterioration of the valve system 

(including the valve spring) and reduces compressor efficiency considerably. Experimentally, a 

leaky discharge valve was simulated by drilling a small diameter hole in the valve plate for the 

2nd stage. The hole was 2.0 mm diameter, which was about 2.0% of the maximum free area of 

the valve. The leakage was introduced into the high-pressure stage where the valve works under 

much harsher conditions and a fault such as this have much greater impact on compressor 

performance. The predicted variations in valve displacements due to a leaky discharge valve are 

shown in Figure 4.21. The leak causes the discharge valve to open earlier, by the opening impact 

velocity, decreases only slightly because of pressure equalization due to the leak. The reason for 

this is that high pressure air flowing through the discharge leak raises the pressure in the 

cylinder above that which normally exists. As a result, the pressure needed to open the valve is 

reached sooner. The suction valve motion is also changed because the higher cylinder delays the 

time at which the pressure is low enough to open the valve. The final closing impact for the 

suction valve also occurs earlier. 

 

Figure 4.21  Predicted motion of suction and discharge valves for the 2nd stage with leaky 

discharge 

 

Figure 4.22 shows the trace of amplitude of the vibration detected by the accelerometer for 

the 2nd stage valves impact signatures (for discharge and suction valves opening and closing 

impact as a function of discharge leakage). The timing of the opening impact advances as 

leakage size increase in the predicted model. The experimental data follows the predicted 

trend up to a leak size. When the leakage occurs in discharge valve in the 2nd stage then, 

during the suction stroke high pressure air flows back through the discharge leak and raises 
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the pressure in the cylinder above that which would exist under healthy condition. As a result, 

the pressure needed to open the discharge valve is reached earlier. The pressure to open the 

suction is reached later because the leakage delays the time at which the pressure differential 

across the suction valve is sufficient to open the valve. With the discharge pressure 100 psi, 

the healthy second stage discharge valve opening is about 169.6º. When 2.0% leakage is 

introduced, this becomes 156.0º and the discharge valve leakage also has an effect on the 

suction valve of 2nd stage, the suction valve will open later at 308.6º and closes at 103.9º 

while in the healthy state it opens at 306.0º and close at 103.9º. 

 

Figure 4.22 Time domain representation of vibration signal from accelerometer on the 2nd 

stage cylinder with discharge valve leakage 

4.9.2.3 Intercooler leakage 

Leakages in compressor pipeline systems are also very common and are often caused by 

vibration and thermal stress. A small leakage fault was inducted into the intercooler pipe which 

connects the discharge from the 1st stage to the suction of the 2nd stage of the compressor. In 

order to create such a fault in the compressor, the nut holding the intercooler pipe onto the 

second stage was loosened, as indicated in chapter 3 (Figure 3.3). The degree of fault was 

controlled by loosening the nut a different number of turns. The more turns, the more leakage. 

In this study, one complete turn is found to produce an observable change to the performance of 

the compressor.  

Figure 4.23 shows the predicted motion of suction and discharge valves for the 2nd stage with 

intercooler leakage. The leakage causes a distinct delay in the opening of the 2nd stage valves 

(both the discharge and the suction). The reason for this is that the cylinder pressure is lower 

than normal during the compression and suction strokes. This suggests that intercooler leakages 

can be detected from the fluctuations in the pressure waveforms. 
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Figure 4.23  Predicted motion of suction and discharge valves for the 2nd stage with 

intercooler leakage 

The changes in the signal can be explained from the compressor working mechanism. For the 1st 

stage, the change in signal due to intercooler leakage is more obvious during discharge. With 

intercooler leakage, the pressure inside the lower-pressure cylinder is significantly lower than 

that for the healthy condition. This consequently reduces the force acting to keep the 1st stage 

discharge valve closed: so that the discharge valve opens earlier than in the healthy condition. 

This causes a pressure drop compared to the healthy operation. 

For the 2nd stage cylinder the presence of an intercooler leak causes the pressure over the entire 

cycle to be lower than for the healthy case which will result in a reduction in discharge efficiency. 

The lower pressure causes a delay in the opening of both the discharge and suction valves. The 

induced fault causes a clear variation in cylinder pressure which offers the possibility of 

monitoring for a leak in the intercooler by studying the pressure traces. 
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Figure 4.24 Time domain representation of vibration signal from accelerometer on the 2nd 

stage cylinder with intercooler leakage 

Comparison of the amplitude of the vibration for a healthy compressor and one with a leaky 

intercooler can be seen in Figure 4.24. The amplitude for faulty operation is clearly less than that 

for healthy operation. Both the discharge and suction valves with intercooler leakage are delayed 

for 2nd stage opening and closing impact. At the discharge pressure 100 psi a healthy suction 

valve opens at 306.0º; for a faulty intercooler it is at 318.6º. The effects of an intercooler 

leakage on the 2nd stage discharge valve are shown in Figure 4.24. The valve opens later due to 

the slightly lower than normal pressure in the cylinder. A healthy discharge valve opens at 

169.6° and for an intercooler leakage the valve opens at 206.0º. 

4.9.2.4 Loose Transmission Belt 

The transmission belt of the compressor undertakes a highly fluctuating load in longitudinal 

direction. The load amplitude will be more than 3 times higher during the transient start-up 

process. It is likely that the amplitude during acceleration will exceed the amplitude of the 

friction force between the wheel and the belt; hence the slip will occur in this duration. The slip 

will speed up the belt wearing. In addition, the friction processes are also factors which cause 

belt deterioration. The belt will gradually become worn in surface and deteriorated internally. 

These will lead to a loose belt. Figure 4.25 shows the predicted opening and closing discharge 

and suction valves, with and without drive belt. The loose transmission belt causes a distinct 

delay in the opening of the 2nd stage valves (both the discharge and the suction). 

To simulate this belt fault, a loose belt was introduced by reducing the distance between the two 

drive pulleys from 169mm to 167mm (equivalent to a proportional change of belt length of about 

0.5%) to determine whether some corresponding changes as can be seen in Figure 4.26.  
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Figure 4.25  Predicted motion of suction and discharge valves for the 2nd stage with belt 

loosened 

The measured vibration of the 2nd stage cylinders with and without a loose drive belt is shown in 

Figure 4.26. In the 2nd stage, the loose belt also causes the opening and closing of both the 

discharge and suction valves to be delayed. This delay leads to that the instantaneous pressure 

is less with a loose belt than for the healthy condition during the compression, while the pressure 

is higher during the expansion process. This delay is produced by a slippery belt and the effect is 

a slower compressor. A healthy discharge valve opens at 169.6° and, for a loosened belt the 

valve opens at 170.3º and, the suction valve will open later at 306.6º and closes at 90.45º, 

while in the healthy state it opens at 306.0º and closes at 103.9º.  

 

Figure 4.26 Time domain representation of vibration signal from accelerometer on the 2nd 

stage cylinder with belt loosens 
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4.10 Summary  

In this chapter, the mathematical model of a RC has been developed for simulation of the 

working of a healthy operation and with different cases of predicted faults. 

Furthermore, the equations required for mechanical dynamic system modelling were introduced 

and solved numerically in a MATLAB environment to predict cylinder pressures and valve motion 

for both the pressure and vibration. 

In addition, the model was used to predict fault signatures for suction valve leakage, discharge 

valve leakage, intercooler leakage and a loose drive belt. These predicted results were compared 

with the equivalent measurements taken during the experimental tests.  
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Chapter 5  

Detection and Diagnostics of A compressor With 

Different Faults Using Conventional Vibration 

Signals 

This chapter presents the use of vibration measurement techniques for the detection of specific 

faults in the RC. These different operating conditions were recorded from the sensor mounted 

on the head of the second stage cylinder. These signals were analysed using conventional 

methods made in applications of time domain, frequency domain and envelope spectrum. 

5.1 Introduction 

The objective in this chapter is to use vibration monitoring techniques to detect faults in the 

valves of a RC in their early stages, and to use this information to protract the life of the 

compressor and protect the system from emergency shutdown. The vibration signal measured 

on the cylinder head of a compressor is, essentially, the combination of the responses to two 

main types of vibration excitation: flow induced vibration such as occurs when airflow interacts 

with valves or other parts of the system to cause periodic oscillations in the flow; and vibration 

due to, e.g., the valve plate hitting its seat when opening or closing.  

The signals were generated from the vibration analysed using conventional methods in the time, 

frequency domains and envelope spectrum to obtain a set of effective features for detecting and 

diagnosis the seeded air compressor faults. The time domain analysis leads to popular statistical 

feature parameters such as RMS, kurtosis, peak factor and skewness. The frequency domain 

analysis (standard Fourier Transform) analysis produces features including amplitudes at 

frequencies. In the same way the envelope spectrum representations of the vibration data are 

also obtained features. The set of these features is evaluated in the separation of faults under 

different conditions.   

5.2 Time Domain Analysis: Waveform Analysis 

In spectral based CM, uneven signal strength indicates the severity of a fault or an abnormal 

condition while the corresponding vibration frequency points toward the source of a problem. 

Each point located on the spectral line gives a particular amplitude value and corresponding 

frequency location along the frequency axis. In normal conditions the vibration signals only 

contain the multiples of peak frequency, yet the presence of excessive amplitude or multiple 

harmonics undoubtedly implies a fault condition.  
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Figure 5.1 shows the time domain of the output signal from an accelerometer attached to a RC 

for different fault cases. In these cases the faults introduced were substantial and the differences 

in vibration signals are easily observed.  However, difficulties with vibration monitoring can occur 

due to the presence of multiple vibration sources within the machine. The signals can combine in 

non-linear and possibly non-stationary ways. Also, many small changes could not be seen in the 

waveforms. Nevertheless, these vibration signals contain rich information of compressor health 

conditions. 

 
 

Figure 5.1 Time domain representation of vibration signal from an accelerometer on the 2nd 

stage cylinder head with different conditions at discharge pressure 100 psi 

5.3 Features Extraction 

Many possible features can be extracted from vibration signals for fault detection and 

diagnosis. This study explores the features derived from the time domain, frequency domain 

and envelope analysis, which are the most commonly used in CM.  

The features extracted from raw vibration signals are the statistical measures including root 

mean square (RMS), peak factor, lower bound, upper bound, entropy, variance, skewness, 

kurtosis, maximum value and range which are given in Equations 2.3 to 2.16.  

The other data set called the Fast Fourier Transform (FFT) was used to transform the vibration 

signal into the frequency domain from which the spectral features were obtained. Rather than 

using the spectrum from the raw data, an envelope spectrum is based for feature selection. As 

shown in Figure 5.2 envelope spectra for different cases exhibit clearly a number of discrete 
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components mainly from compressor working frequency 7.3Hz and its harmonics, up to 30 

orders; in contrast, the spectrum from raw data show continuous spectral features which 

makes it more difficult to select a small number of feature components. Nevertheless, it can be 

seen in the envelope spectra that the amplitudes vary slightly but significantly between the 

different cases of faults. However, it is still not so easy to find a simple set of features to 

separate the fault cases completely. Thus the amplitudes of these components were all taken 

as candidate features and different harmonics were used for each trial run. Thus, the resultant 

feature dataset is a (n × s) matrix (n is the number of harmonics and s number of samples). 

The example has presented 30 numbers of harmonics and 24 numbers of samples with a total 

of (30 × 192) for eight different cases.  

 

Figure 5.2 Envelope spectra of compressor vibration for healthy case and seven seeded faults 

5.3.1 Signal Strength Based Diagnosis (RMS)  

Figure 5.3 shows the RMS values of vibration signals at discharge pressure of 80 psi (0.55MPa) 
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calculated from the four segments of the waveform at different pressures. The RMS value of a 
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it does not provide information about any sudden short duration isolated peaks in the signal. 

However as far as an overall vibration level of system is concerned, RMS is a good descriptive 
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mentioned above) have approximately similar patterns and with respect to magnitude or 

symmetry of signal, there is no significant difference between them. The only difference 

between fault and healthy (baseline) signals are presence of very small peaks at various 

frequencies along the frequency (crankshaft revolution) axis. In Figure 5.3 (DVL, SVL, BL and 

SVL+DVL), the RMS values both for healthy and fault signals are approximately within 0.1 ± 

10%. In Figure 5.3 (Inr-L and Inr-L+ DVL) combine the multiple faults condition; the RMS 

value for the fault signal shows a significant increase in its strength and it almost has twice the 

value of Figure 5.3 (DVL, SVL, BL and SVL+DVL). It can be seen that most data points exceed 

the healthy signals with large deviation amplitude that implies a fault condition. Yet as an 

increase in RMS value of the fault signal only indicates an increase in overall magnitude of 

spectral line and vice versa, hence RMS analysis lacks clear information about the source of 

the fault. This argument is true and justified in multiple faults conditions Figure 5.3(Inr-L+SVL, 

Inr-L+DVL and SVL+DVL), as even though the RMS values of fault signals indicate the 

presence of fault, yet from the signal we cannot infer the source of the problem. The fault 

signal spectral line for multiple faults of intercooler and suction valve leakages shown in Figure 

5.3 (Inr-L+DVL) has quite different behaviour both in terms of RMS value and the symmetry of 

signal. The signal contains a number of peaks having RMS values ranging from 0.175- 0.20. 

The significant increase in RMS value corresponds to major out-of-balance condition due to 

accumulation of faults in the compressor system. 

 
 

Figure 5.3 Typical RMS values of vibration RC at discharge pressure 80psi (0.55MPa) 

Figure 5.4 shows the RMS values of vibration RC at discharge pressure of 120psi (0.83MPa). 

Here also we approximately have similar observations as discussed for Figure 5.3. It has been 

experimentally proven that the RMS value of vibration signals is directly proportional to the 

speed and load conditions of a machine. Since in Figure 5.3 and Figure 5.4, we only change 
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the discharged pressure conditions, hence there is no significant change in both figures and 

similar analyses of the results are applied here too for Figure 5.4. 

 

Figure 5.4 Typical RMS values of vibration RC at discharge pressure 120psi (0.83MPa) 
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values while for lower kurtosis values, the peaks become more rounded in shape (Al-Arbi, 

2012). Figure 5.5 and Figure 5.6 shows the kurtosis data for vibration signals for a RC at 

discharge pressure 80psi (0.55MPa) and 120psi (0.83MPa) respectively, under different fault 

conditions (as mentioned in previous section). From Figure 5.5 and Figure 5.6, it is obvious 

that both base line (healthy) and fault signals have isolated peaks. 
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Figure 5.5 Typical Kurtosis values of vibration RC at discharge pressure 80psi (0.55MPa) 

These isolated peaks are generally attributed to opposite phase angle along the frequency 

(crankshaft revolution) axis, i.e. where the healthy signal exhibits peakness behaviour, the 

fault signal becomes flat and vice versa. This behaviour is exactly in accordance with the 

Kurtosis feature as mentioned previously. Hence as DVL, SVL, Inr-L or combined fault 

conditions develop the relative peak or flatness in fault spectral signatures increases. In Figure 

5.6 (DVL, SVL, Inr-L, LB, Inr-L+SVL, Inr-L+DVL and SVL+DVL) for various fault conditions) 

the flatness of the signal increase as fault conditions develop. Again the Kurtosis based 

diagnosis of a fault only gives transient behaviour of a system yet it does give information 

about the source of problem (Girondin, Loudahi, Pekpe, & Cassar, 2012). 

 

Figure 5.6 Typical Kurtosis values of vibration RC at discharge pressure 120psi (0.83MPa) 
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5.3.3 Signal Strength Based Diagnosis (Peak Factor) 

The peak factor or crest factor is another parameter that can be used to have an insight of a 

system through vibration spectrum. The peak or crest factor of a spectral signal is a ratio of 

the peak level of the input signal to the RMS level. In contrast to RMS or kurtosis values that 

give an overall behaviour of a system, peak/crest factor is a useful tool to detect the discrete 

impulses above the background signal due to an impulsive vibration sources. From definition of 

peak/crest, it is obvious that as the peak levels of input signal increase, the crest factor also 

boosts up. The increase in peak level is generally attributed to an increase in vibration as the 

fault/damage grows. From Figure 5.7 and Figure 5.8 for various fault conditions such as DVL, 

SVL, Inr-L and BL faults, as it is obvious that crest levels of both healthy and fault signals 

approximately have same symmetry and similar magnitude, except few small peaks at few 

points along the spectral lines. 

 

Figure 5.7 Typical Peak factor of vibration RC at discharge pressure 80psi (0.55MPa) 
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Figure 5.8 Typical Peak factor of vibration RC at discharge pressure 120psi (0.83MPa) 

In addition to that, by changing the discharge pressure values for RCs, there is not any 

significant change in symmetry of fault and the healthy signal occurred. Only a slight decrease 

in magnitude for the fault signal has been observed. 

5.3.4 Signal Structure Based Diagnosis (Skewness) 

Similar to RMS, kurtosis and crest factor, skewness is also a statistical parameter that is used 

to analyse the fault condition of a machine exhibited through spectral signatures. From Figure 

5.9 and Figure 5.10 it is obvious that both healthy and fault conditions (single or multiple 

faults conditions as discussed in previous sections) signals have very nominal skewing or 

tailing behaviour along the spectral lines. Both healthy and fault signals exhibit small and 

medium size peaks with positive skewness (i.e. tailed right) randomly along the spectral lines. 

Studies have shown that the presence of skewness in a spectral line corresponds to the buried 

fault related features and they increase as vibration increases (Liu, Wang, Golnaraghi, & Liu, 

2008). Same analogy is true for spectral signatures given in Figure 5.9 and Figure 5.10. The 

long tailing feature is either in positive or negative direction, corresponding to the buried fault 

condition in compressor. Unfortunately, like most of other statistical parameters (RMS, 

Kurtosis, Peak/Crest etc.) skewness analysis also lacks information about the source of 

problem. 
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Figure 5.9 Typical Skewness of vibration RC at discharge pressure 80psi (0.55MPa) 

 

Figure 5.10 Typical Skewness of vibration RC at discharge pressure 120psi (0.83MPa) 

5.4 Analysis and Results of Frequency Domain (Spectrum) 

The spectral signatures of a compressor provide very useful information both in terms of 

frequency and fault conditions. The presence of a fault condition is directly linked to a 

particular frequency component and exhibited by a particular frequency signature. In Figure 

5.11 to  Figure 5.14, for a healthy condition and various single and multiple faults (as 

discussed in previous sections) spectral signatures, we observe two types of spectral features 
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obvious that most of the peaks, both for healthy and fault signals are very similar in symmetry 

and have the same peak amplitudes with few exceptions (such as 10th, 17th, 18th and 23rd) 

as shown in Figure 5.11 (DVL). Inr-L conditions (both at 80 psi and 120 psi), a shift in 

behaviour of fault spectral line, both in terms of symmetry and peak amplitude is observed. In 

Figure 5.11 (Inr-L) between 120-140 Hz frequencies very strong peaks are observed for fault 

signal along with a small increase in overall magnitude of spectral line along the frequency 

axis.  Similar shift with fewer peak values has been observed for intercooler leakage fault 

condition at 120 psi discharge pressure as shown in Figure 5.13 (Inr-L). For multiple faults 

conditions (at 80 psi and 120 psi discharge Figure 5.12 and Figure 5.14) there are mixed 

spectral patterns. In frequency ranges 20-120 Hz and 150-200Hz, both healthy and fault 

spectral signals have approximately similar symmetry and amplitude, while between 10-20Hz 

and 120-150 Hz high peaks harmonics associated with intercooler fault are observed. The 

presence of low frequency harmonics in a compressor are generally associated to the shaft 

imbalance, misalignment, eccentricity cracks or bends in the shaft or similar faults conditions 

(Zhang, Jiang, Flatley, & Hill, 2001). 

 
 

Figure 5.4 Comparison of spectra between healthy and four faults under discharge pressure 
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Figure 5.5 Comparison of spectra between healthy and three combined faults under discharge 

pressure 80psi 

 
 

Figure 5.6 Comparison of spectra between healthy and four faults under discharge pressure 
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Figure 5.7 Comparison of spectra between healthy and three combined faults under discharge 

pressure 120psi 

5.5 Analysis and Results of Envelope Spectrum 

The Envelope spectrum analysis with proper window selection is a well-known signal 

processing technique for fault detection. In the following discussion, the windows of envelope 

spectra both for healthy and faulty spectral signals have been selected between 0-200 Hz 

frequency range at discharge pressure of pressure 80 psi and 120 psi as shown in Figure 5.15 

to 5.18. Starting from Figure 5.15 (DVL) i.e. spectral signature for both healthy and DVL fault 

signal; a magnified image of spectral signature shows that there are 26 obvious harmonics. 

They are present in the selected window both for healthy and DVL fault spectral signatures. 

Comparing both healthy and faulty signatures, it is clear that there is a boost in amplitude of a 

few harmonics of fault spectral signature. These observations are summarized in Table 5.1. 

From Figure 5.15 (SVL, Int-L and BL) we have similar results as given in Table 5.2 to Table 5.4 

respectively. 

 

Frequency range Harmonics order No of peaks 

Under 40 Hz 2, 3, 5 3 

From 40Hz to 80 Hz 8, 9, 10 3 

From 80 Hz-120 Hz 12 1 

From 120 Hz-160 Hz 17,18, 19, 20 4 

From 160 Hz-200 Hz 22,23 2  Total= 13 

Table 5.1 The frequency domain with higher amplitude harmonics in DVL  
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Frequency range Harmonics order No of peaks 

Under 40 Hz 2, 4 2 

From 40Hz to 80 Hz 6, 7, 8, 10 4 

From 80 Hz-120 Hz 15 1 

From 120 Hz-160 Hz 17, 18, 19, 21 4 

From 160 Hz-200 Hz 25 1 Total= 12 

Table 5.2 The frequency domain with higher amplitude harmonics in SVL  

Frequency range Harmonics order No of peaks 

Under 40 Hz 1, 2, 3, 4 4 

From 40Hz to 80 Hz 6, 7, 8,10 4 

From 80 Hz-120 Hz 11, 12, 13, 14, 16 5 

From 120 Hz-160 Hz 17, 18, 19, 20 4 

From 160 Hz-200 Hz 22, 23, 24 3 Total= 20 

Table 5.3 The frequency domain with higher amplitude harmonics in Inr-L  

Frequency range Harmonics order No of peaks 

Under 40 Hz 1, 2, 3, 4, 5 5 

From 40Hz to 80 Hz 6, 7, 8 3 

From 80 Hz-120 Hz 11, 12, 13, 14, 16 5 

From 120 Hz-160 Hz 17, 18, 19, 20, 21 5 

From 160 Hz-200 Hz 22, 23, 24, 26 4 Total= 22 

Table 5.4 The frequency domain with higher amplitude harmonics in BL 

From the above data tables, it is shown than that compared to healthy signals signatures, 

there is a significant increase in amplitude and hence envelope of fault signals. From the data 

table it is clear that amplitude harmonics in a belt loosening fault has maximum increase in 

amplitude, while the envelope corresponding to the SVL fault harmonics has the least variation 

compared to healthy signals envelope. The difference in respective envelops corresponds to 

the buried fault conditions of the compressor.  
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Figure 5.8 Comparison of envelope spectra between healthy and four faults under discharge 

pressure 80psi 

In Figure 5.15 (DVL, SVL, Inr-L and BL) we have spectral signatures with a single fault. The 

next step is to analyse the envelope of spectral signature for combined multiple faults 

conditions as shown in Figure 5.16 (DVL, SVL and Inr-L). Similar to previous sections we have 

following data Tables 5.5 to Table 5.7 (given below) for accumulated are combined multiple 

faults condition. From the data table and spectral signatures we observe that compared to 

individual fault, the envelopes of accumulated faults have stronger variation. In contrast to 

healthy signals the multiple accumulated faults harmonics have very strong amplitude values 

(Figure 5.16 (DVL) and Figure 5.17 (SVL)). 

 

Frequency range Harmonics order No of peaks 

Under 40 Hz 1, 2, 3, 4, 5 5 

From 40Hz to 80 Hz 6, 7, 8 3 

From 80 Hz-120 Hz 11, 12, 13, 14, 15, 16 6 

From 120 Hz-160 Hz 17, 18, 19, 20, 21 5 

From 160 Hz-200 Hz 22, 23, 24, 26 4 Total=23 

Table 5.5 The frequency domain with higher amplitude harmonics in accumulated Inr-L and 

SVL  
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Frequency range Harmonics order No of peaks 

Under 40 Hz 1, 2, 3, 4, 5 5 

From 40Hz to 80 Hz 6, 7, 8, 9,10 5 

From 80 Hz-120 Hz 11, 12, 13 3 

From 120 Hz-160 Hz 17, 18, 19, 20, 21 5 

From 160 Hz-200 Hz 22, 23, 24, 25, 26 5 Total=23 

Table 5.6 The frequency domain with higher amplitude harmonics in accumulated Inr-L and 

DVL  

Frequency range Harmonics order No of peaks 

Under 40 Hz 2, 4, 5 3 

From 40Hz to 80 Hz 6, 7, 8, 10 4 

From 80 Hz-120 Hz 12, 14 2 

From 120 Hz-160 Hz 17, 18, 19, 20, 21 5 

From 160 Hz-200 Hz 22, 23, 24, 25, 26, 27 6 Total=20 

Table 5.7 The frequency domain with higher amplitude harmonics in accumulated SVL and DVL  

Based on a similar argument, if we examine the envelopes of spectral signature at a discharge 

pressure of 120 psi both for individual (Figure 5.17 (DVL, SVL, Inr-L and BL)) accumulated 

faults conditions as shown in Figure 5.17 and Figure 5.18, we have similar results (as shown in 

tables 5.8 to Table 5.14) i.e. an increase in amplitude of fault signals and corresponding 

change in symmetry of the respective envelopes are observed.  

 
 

Figure 5.9 Comparison of envelope spectra between healthy and three combined faults under 

discharge pressure 80psi 

In case of fault condition as moving parts strike, impacts are produced; these impacts 

modulate the associated impact areas frequency signals by adding energy to the signal that 
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results in an increase in amplitude and RMS value of the signal. Along with amplitude, the 

increase in amplitude modulated frequency signals also depend on the relative phase angle of 

modulated signals. In case of in phase fault signals, the modulated effect accumulates and vice 

versa. This argument justifies the symmetry of envelopes having very high peak harmonics as 

shown in Figure 5.16 (DVL, SVL) and Figure 5.18 (DVL, SVL)) and very low peak harmonics 

(Figure 5.16 (Inr-L) and Figure 5.17 (Inr-L)) values for accumulated fault conditions. The 

above discussion implies that an envelope spectrum is a good tool to measure a fault condition 

at a particular passing frequency as shown in fault spectral signatures of Figure 5.15 to Figure 

5.18. 

Frequency range Harmonics order No of peaks 

Under 40 Hz 3, 6 2 

From 40Hz to 80 Hz 8, 9, 10, 11  4 

From 80 Hz-120 Hz 15, 16, 17 3 

From 120 Hz-160 Hz 19, 20 2 

From 160 Hz-200 Hz 22, 23 2 Total=13 

Table 5.8 The frequency domain with higher amplitude harmonics in DVL at 120 psi 

Frequency range Harmonics order No of peaks 

Under 40 Hz 2, 4 2 

From 40Hz to 80 Hz 5, 6, 7,  9, 10  5 

From 80 Hz-120 Hz 11, 12, 13, 14, 15 5 

From 120 Hz-160 Hz 16, 17, 18, 19, 20 5 

From 160 Hz-200 Hz 21, 22, 23, 24, 25, 26 6 Total=23 

Table 5.9 The frequency domain with higher amplitude harmonics in SVL at 120 psi 

Frequency range Harmonics order No of peaks 

Under 40 Hz 2, 3, 4, 5 4 

From 40Hz to 80 Hz 7,  9, 10  3 

From 80 Hz-120 Hz 11, 12, 13, 14, 15 5 

From 120 Hz-160 Hz 16, 17, 18, 19, 20 5 

From 160 Hz-200 Hz 21, 22, 23, 24, 25, 5 Total=22 

Table 5.10 The frequency domain with higher amplitude harmonics in Inr-L at 120 psi 

Frequency range Harmonics order No of peaks 

Under 40 Hz 1, 2, 3, 4, 5, 7, 8 , 9, 10 9 

From 40Hz to 80 Hz 11, 12, 13, 14, 15, 16, 17, 18, 20  9 

From 80 Hz-120 Hz 21, 22, 23, 24, 25, 26, 27, 28, 29 9 

From 120 Hz-160 Hz 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 10 

From 160 Hz-200 Hz 40, 41, 43, 45, 46, 48 6 Total=44 

Table 5.11 The frequency domain with higher amplitude harmonics in LB at 120 psi 
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Frequency range Harmonics order No of peaks 

Under 40 Hz 1, 2, 3, 4, 5, 7, 8 , 9, 10, 11 9 

From 40Hz to 80 Hz 11, 12, 13, 14, 15, 16, 17, 18, 21  9 

From 80 Hz-120 Hz 23, 24, 25, 26, 27, 28, 29, 30 31 9 

From 120 Hz-160 Hz 32, 33, 34, 35, 36, 37, 39, 41 8 

From 160 Hz-200 Hz 42, 44, 45, 46, 47, 49 6 Total=41 

Table 5.12 The frequency domain with higher amplitude harmonics in Inr-L and SVL at 120 psi 

Frequency range Harmonics order No of peaks 

Under 40 Hz 1, 2, 3, 4, 5,  5 

From 40Hz to 80 Hz 6, 7, 8, 9, 10  5 

From 80 Hz-120 Hz 11, 12, 13, 14, 15, 16 6 

From 120 Hz-160 Hz 18, 19, 20, 21, 22 5 

From 160 Hz-200 Hz 23, 24, 25, 26, 27 6 Total=27 

Table 5.13 The frequency domain with higher amplitude harmonics in Inr-L and DVL at 120 psi 

Frequency range Harmonics order No of peaks 

Under 40 Hz 2, 4, 5 3 

From 40Hz to 80 Hz 6, 8, 10 3 

From 80 Hz-120 Hz 12, 13, 14 3 

From 120 Hz-160 Hz 17, 19, 20 3 

From 160 Hz-200 Hz 21, 23, 24, 26 4 Total=16 

Table 5.14 The frequency domain with higher amplitude harmonics in Inr-L and SVL at 120 psi 
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Figure 5.10 Comparison envelope spectrums for healthy and four different faults for RC at 

discharge pressure 120psi 

 

Figure 5.11 Comparison envelope spectrums for healthy and three combined faults for a RC at 

discharge pressure 120psi 

5.6 Summary  

The test results show that this envelope spectrum signal processing technique is an effective 

RC fault detection method, which is particularly useful for non-stationary feature extraction 
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and analysis. The presented envelope spectrum analysis technique in this chapter is to achieve 

the fourth research objective in Section 1.4. (To develop a more effective signal processing 

technique for feature extraction in RC fault detection). 
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Chapter 6  

Condition Monitoring and Fault Diagnosis Using 

Artificial Intelligence Techniques and Principal 

Component Analysis 

To extract effective CM information from non-stationary vibration signals that result from a 

number of nonlinear effects in RCs and noises, three typical AI based classification techniques: 

NNs, SVMs and RVMs are overviewed first. Then new approaches of combining them with key 

AI optimisation technique are introduced: GAs to enhance their classification performances in 

terms of effective feature selection, efficient model training and accurate classification. In 

addition, conventional statistical techniques are applied where PCA is investigated. 

6.1 Introduction 

Due to the complex dynamic mechanisms and wide operating conditions of the RCs, vibration 

signals exhibit highly nonlinear and nonstationary characteristics. In addition, there always 

exist various measurement noises in the measured vibration signals. Therefore, it is difficult to 

find effective techniques such spectrum analysis, envelop analysis and time domain statistics 

that can be used to achieve the condition of the compressor effectively, which motivate the 

search for new techniques.  

AI techniques are useful for determining the relationship data with input variables, of 

applications where conventional method such as statistics are too complicated or not valid. 

Non-linear systems are an example of applications which can be evaluated by AI techniques, 

and which are difficult or impossible to analyse with conventional techniques. 

The value of AI can be understood by comparing it with natural human intelligence as follows 

(Wang, 2003); 

AI is more permanent, natural intelligence is perishable from a commercial standpoint since 

specialists leave their place of employment or forget information. AI, however, is permanent as 

long as the computer systems and programs remain unchanged. 

AI offers ease of duplication and dissemination. Transferring knowledge from one person to 

another usually requires a long process of apprenticeship; even so, expertise can never be 

duplicated completely. 

AI being a computer technology is consistent and thorough. Natural intelligence is erratic 

because people are unpredictable, they do not perform consistently. 

AI can be documented. Decisions or conclusions made by a computer system can be more 

easily documented by tracing the activities of the system. Natural intelligence is difficult to 

reproduce, for example, a person may reach a conclusion but at some later date may be 
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unable to re-create the reasoning process that led to that conclusion or to even recall the 

assumption that were a part of the decision. 

The CM and fault diagnosis of rotary machinery have moved in recent years from traditional 

techniques to AI techniques (Filippetti, Franceschini, Tassoni, & Vas, 2000). AI techniques, 

such as ES, FLS, ANN, GA and SVM have been applied in fault diagnosis of very complex time 

varying and non-linear system, where accurate mathematical models or conventional data 

analysis methods are difficult to be built. These techniques use association, reasoning and 

decision making processes as would the human brain in solving complicated diagnostic 

problems. AI techniques are good candidates for the automation of the rotary machinery 

diagnostic procedures (Awadallah & Morcos, 2003). 

The general problem with AI techniques is that a large number of parameters have to be set 

adequately in order to obtain acceptable results. However, there are no clear rules how to set 

these parameters. Yet these parameters determine the success of the training and eventual AI 

applications. 

In addition, AI techniques usually give good indication on the fault types but provide little 

explanation on the mechanisms of physical system. It means that the locations and natures of 

faults cannot be determined.  

The contribution of this research is to improve the performance of AI approaches. This chapter 

investigates the development of a novel approaches that combine GA with PNN, SVM and RVM. 

The GA is an efficient tool to identify the large number of parameters associated with these 

techniques.  

Different types of vibration features are examined using these novel combined approaches. 

The resulted optimal features are then correlated to different types of faults.  

In addition, a conventional multivariate technique: PCA has also been investigated using the 

time domain vibration features for detection and diagnosis from a RC. Furthermore, the studies 

of Q-contributions and D-contribution have applied to determine suitable features which allow 

full classification of different simulated faults. The exploration of PCA based methods because 

they not previously been used for RC fault CM. Moreover the results from PCA will serve as the 

benchmarks for evaluating that of AI techniques. 

6.2 Neural Networks for Fault Classification  

The use of neural networks presents the possibility of reducing or altogether eliminating the 

need for complex mathematical systems that warrant the usage of large resources and time. 

Data is typically obtained for neural networks on a real time basis and can then be analysed 

using time series techniques. The resulting power spectral densities provide the amorphous 

basis that can be utilised in any given form for the application of neural network systems later. 

The power spectral densities are obtained through the application of Fast Fourier Transforms 

(FFTs). A back propagation method is often used in any neural network in order to allow 

machine learning to occur. This also allows the construction of a fault diagnosis system using 
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neural network methods alone (Asakura, Kobayasi, Hayashi, & Xu, 1997). Mindful that neural 

networks require only one major input from the machine i.e. vibration patterns but these 

patterns are often composed of wide ranging frequencies and the resulting vibration signals 

are also wide ended. This is also provided under Shannon’s sampling theorem whereby 

vibration monitoring for fault diagnosis requires a consistently high sampling rate. In turn this 

means that sample sizes are often large and there is superfluous data available leading to high 

dimensionality. In order to deal with this situation, there is often a need for extensive pre-

processing before actual ANNs are applied for fault diagnosis (Rafiee, Arvani, Harifi, & Sadeghi, 

2007). 

6.2.1 Theory of Neural Networks 

A neural network can be seen akin to a biological neural network that interconnects neurons in 

order to form a complex learning and interaction mechanism. NNs employed for applications 

such as CM and fault diagnosis are pronounced as ANNs. The basic layout of the network is 

analogous to any biological neural network where there are distinct levels and layers of 

neurons between the inputs and the outputs. The number of layers and their arrangements of 

neurons as well as the inputs and outputs tend to determine the complexity of the overall 

neural network model. The basic contention behind a neural network is to employ a 

connectionist approach to solving real world problems by allowing the neural network to 

interact and learn as it develops. The overall structure of the neural network never remains 

consistent and tends to evolve as the neural network learns new things (Montavon, Orr, & 

Muller, 2012). 

In the simplest terms, a neural network can be seen as the composition of various 

mathematical functions that can be defined from the input X to the output Y as: 

f: X → Y 

In this case, the distribution could be over X or over both X and Y combined. In addition to the 

representation using functions, it must be taken to note that these functions may be 

subservient to rules that allow for learning. In addition, a neural network model is composed of 

a set of such functions that map the input to the output. These functions and the set of such 

functions could be acquired by varying the various inputs and outputs to see how the overall 

neural network model reacts. Moreover, the connection between various nodes could also be 

varied for investigation along with the number of nodes in addition to other parameters that 

may be exclusive to each neural network model (Iovine, 2012). 

One of the more important parts of the ANN framework are the network itself that connects 

the various nodes / neurons together. Unlike other simpler networks, the elements / neurons 

in a neural network have weighted connections to each other than keep on changing as the 

neural network learns new things. The simplest neural network can be seen as being 

composed of three distinct layers that are connected by a network of neurons. The outermost 

layer is composed of neurons that accept inputs only and move them to the second layer of 
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neurons. Commonly, the second layer of neurons is also known as the hidden layer since the 

arrangement of this layer is not completely known. The second layer of neurons is followed by 

a third layer of neurons that act as the outputs of the neural network system. 

Diagrammatically, this situation can be represented as: 
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Figure 6.1 Representation of a typical simple neural network (X. He, Hua, Lin, & Liu, 2011) 

It must be taken to note that when more complex neural networks are considered, the second 

layer shown in the diagram above would consist of many levels. The number of levels and their 

arrangement would in turn determine the overall complexity of the neural network being 

considered. 

In order to describe neural networks in detail, mathematical functions are relied upon. Any 

neuron’s network function tends to depend on other functions which in turn depend on other 

functions. The dependencies between various functions allow for the creation of a network 

structure. A typical neural network structure can be represented mathematically in the form: 

f(x) = K(∑wigi(x))             Equation 6.1 

Where: 

𝑥 is the input variable 

𝑓(𝑥) is the output function 

𝑔𝑖(𝑥) is a function in the hidden layer that depends on other functions 

𝑤𝑖(𝑥) is the weight of 𝑔𝑖(𝑥) 
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𝐾 is the activation function 

In terms of complex neural networks, the function 𝑔𝑖(𝑥) could depend on the function ℎ𝑖(𝑥) with 

its own weight(s) and ℎ𝑖(𝑥) could depend on a number of other functions with different 

weights. Typically, neural networks can be either feed forward or recurrent depending on how 

the networks are arranged (Miller, 2012). 

6.2.2 A Probabilistic Neural Network  

One application of neural networks has been PNNs that are essentially feed forward neural 

networks that are composed of a pattern layer in addition to the other layers in a neural 

network. A PNN relies on inputs that have no pattern associated to themselves. Initial 

development in PNN came from Specht who developed a high efficiency PNN that was used to 

deal with classification problems (Specht, 1988). The basic contention of a PNN is to produce 

approximations as means of estimating the probability density function related to the various 

categories found in any classification problem. PNNs are derived from ANNs using the Bayes 

Decision Theory as a basis, which provides for a probabilistic approach to emerge. It is 

common to utilised supervised training with PNNs in order to aid the development of 

probability density functions that are used in the pattern layer. The utilisation of PNNs offers 

the distinct advantages of rapid training, an innate parallel arrangement that provides for 

simpler convergence as well as inherent flexibility that allows the removal and addition of 

training samples without a need for wide ranging retraining efforts (Gorunescu, Gorunescu, El-

Darzi, Gorunescu, & K., 2005). 

The input layer of a PNN is followed by the pattern layer and then the category layer. The PNN 

relies on the difference between the input vector and the training input in order to compute the 

closeness of the input vector to the training input vector. On the other hand, the second layer 

of the PNN tends to add together the various inputs to produce the probabilities of each 

connection taking place. The produced probabilities are then screened through a transfer 

function that tends to classify the greatest probability from the rest. The highest probability is 

then assigned “1” while the rest of the probabilities are assigned “0” to identify what possibility 

is likelier to occur than the others. 

6.2.3 PNN Architecture and Theory of Operation 

The PNN is essentially a feed forward type of ANN. The simplest and basic implementation of a 

PNN bases itself on nonparametric probability density functions as well as Bayes’ classification 

rule. The model method of training for PNNs is based on a single pass through all of the 

provided training data sets. The faster movement through all of the available data sets tends 

to make the PNN faster to train compared to other neural network possibilities although it does 

require more memory to accommodate the larger set of training patterns and their data sets. 

The evolution of cheaper and more effective computer memory over the decades has meant 

that larger data storage is of little concern when implementing PNNs nowadays (Tripathy, 
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Maheshwar, & Verma, 2010). PNNs are four layered feed-forward neural networks that are 

designed to be capable of estimating the most suitable classifier. It is common to utilise a 

Gaussian activation function such that the classified pattern is placed in either one region with 

an output of “1” or in another region with a classification of “0”. There are no third possibilities 

in a PNN output function. Moreover, PNNs are not related in any form or manner to the normal 

distribution method. A typical PNN is shown in the diagram below: 
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OUTPUT 
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Figure 6.2 Typical PNN structure (Tripathy, et al., 2010) 

PNN operates in a non-linear fashion and operates with non-parametric methods as a pattern 

recognition algorithm. A PNN tends to define a probability density function for the various data 

classes using information gathered from the training sets as well as based on the kernel width. 

The outputs of any PNN can be seen as Bayesian probabilities which classify that the inputs are 

members of the output classes with some given probability. Any PNN is therefore based 

exclusively on the Bayes classification technique  and can be expressed mathematically as 

(Masters, 1995): 

ℎ𝑖𝑐𝑖𝑓𝑖(𝑥) > ℎ𝑗𝑐𝑗𝑓𝑗(𝑥)             Equation 6.2 

Where: 

ℎ𝑖 and ℎ𝑗 are the preceding probabilities 

𝑐𝑖 and 𝑐𝑗 are the costs of improper classification 

𝑓𝑖 and 𝑓𝑗 are the probability density functions 

In any PNN, the preceding probabilities are unknown since it is hard to determine if the input 

sample would be from the training set data used to evolve the subject PNN. The best possible 

approach to this problem is to utilise the training set data to estimate such probabilities. This 

form of evaluation is based on Parzen’s method of probability density function estimation 

(Shaffer, Rose-Pehrsson, & McGill, 1999). 
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6.2.4 Classification Theory of PNN 

Classification is one of the central tenets of PNNs. This scheme allows PNNs to operate and 

learn faster than other types of ANNs. Moreover, classification provides for the centralised 

scheme that converts the inputs to the outputs based on learning from the training sets. 

Classification can be understood better if it is looked into from a mathematical perspective for 

any typical PNN. 

If a vector 𝑥 is considered such that it has m dimensions for the input of a PNN, let us assume 

that it could be classified into either of two categories. These categories can be classified 

better as C1 and 𝐶2 such that there can be no other category where the vector 𝑥 could be 

classified. In a similar manner, the probability density functions for the categories 𝐶1 and 𝐶2 

could be labelled as 𝐹1(𝑥) and 𝐹2(x). In such a case, 𝐿1 would represent the cost function or the 

loss linked to improperly classifying the input vector for category 𝐶1. On the other hand, 𝐿2 

would represent the cost function or the loss linked to improperly classifying the input vector 

for category C2. Similarly, 𝑃1 would be the prior probability that x belongs to the category 𝐶1. 

Conversely, 𝑃2would be the prior probability that x belongs to the category 𝐶2. 

Implementing the Bayes decision rule, it could be surmised that x could only belong to the 

category 𝐶1 if: 

F1(x)

F2(x)
>

L1P2

L2P1
                  Equation 6.3 

Alternatively, 𝑥 could only belong to the category 𝐶2 if: 

F2(x)

F1(x)
>

L1P2

L2P1
                  Equation 6.4 

It is also worth mentioning that for a number of different cases of PNNs, the prior probability 

as well as the loss function are either equal or are nearly equal. Using this condition on the 

classification mechanisms presented above makes it clear that classification depends in large 

part on probability density functions exclusively. Hence, it could be surmised that probability 

density functions derived from the training patterns can be utilised with success to classify 

input vectors for a given PNN (Goh, 2002). 

The Parzen window technique is used in PNNs in order to estimate the class dependent 

probability functions. Attentive that such estimate are non-parametric in nature. The class 

dependent probability functions created in this manner are then further used for classification 

in any of the classification categories present using the Bayes decision rule. This technique 

allows the determination of whether an input vector pattern could be classified into one of the 

provided categories. This information is then further combined with the relative occurrence of 

each category so that the PNN can select the category that most likely espouses the provided 

input vector pattern. It must be taken to note that Bayes decision rule as well as Parzen 

window applications have been used for decades and are well established so as not to leave 

out any doubt. Mathematically, the Parzen window estimate for the probability distribution 

function for the category 𝐶1 can be expressed as(Goh, 2002): 
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 𝐹1(𝑥) =
1

(2𝑠)
𝑚

2
𝑊𝑚𝑛

∑ 𝑒𝑥𝑝 [
−(𝑥−𝑥𝑗)

𝑇
(𝑥−𝑥𝑗)

2𝑤2 ]

𝑛

𝑛=1

                                Equation 6.5 

Where: 

𝑛 are the various data training sets used 

𝑚 is the dimension of the input vector 𝑥 

𝑗 is the pattern being utilised 

𝑊 is the smoothing parameter being utilised 

With reference to the basic architecture of a PNN above, the first layer is the input layer which 

is composed of 𝑚 different input variables that make up the input vector 𝑥. Neurons present in 

the first layer act to distribute the various inputs of the vector 𝑥 to the second layer. The 

second layer, known better as the pattern layer, has as many neurons as are present in the 

input layer. These patterns in the pattern layer are represented better by each neuron being 

present for each input of the input layer. Neurons present in this layer are assigned various 

weights that depend on the various training sets utilised. The summation of the Parzen window 

estimate’s exponential terms is carried out by the summation layer which has a lower number 

of neurons when compared to the previous layer. Instead, the summation layer is composed of 

as many neutrons as there are categories since each neuron tends to represent each category. 

It is important to note that summation layer connections are essentially limited at 1 so that the 

outputs from the pattern layer are summated together only. These values are then carried into 

the final output layer that has only one neuron element that performs the classification. The 

neuron in the output layer of the PNN tends to provide a binary value resulting from the 

probability density function with the greatest output value. In essence, the highest value 

obtained through this mechanism provides the optimal classification that the PNN can provide 

for the input pattern (Bolat & Yildirim, 2003). 

6.3 SVMs for Fault Classification 

Learning requires that errors be reduced utilising either better equipped training sets or using 

more structured statistical approaches. The SVM method is essentially a statistical technique 

that relies on producing a robust statistical learning method from statistical theory. The 

structural risk minimisation offered by the SVM approach relies essentially on minimisation of 

the error’s upper bound limits (Boser, Guyon, & Vapnik, 1992; Cortes & Vapnik, 1995; V. N. 

Vapnik, 1995). One of the biggest advantages offered by SVM is that it can handle a large 

number of features with ease since the training for SVM approaches is carried out to facilitate 

such handling. The training of SVM techniques ensures that the dimensions of the available 

vectors do not impact the SVM performance in any significant way at all. Traditional 

classification methods do not offer this advantage and are instead affected in terms of their 

performance when dealing with large feature sets. The application of SVM to exhaustive 

classification problems has been preferred over other methods given the efficiency and speed 

offered by SVM when compared to other methods. In turn, this particular characteristic of 
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SVMs tends to make them more suited to fault classification problems since there are large 

feature sets that must be searched and processed in order to produce the required results. The 

apt application of SVM ensures that the processing does not omit any features or faults that 

would cause a false diagnosis (A. Widodo & Yang, 2007). 

In a similar manner, the SVM approach also boasts better generalisation characteristics than 

other methods used for fault diagnosis with large feature sets. The inherent nature of the SVM 

approach ensures that the improper classification of features is minimised to the most optimal 

using training data sets. In contrast, the more conventional approaches to learning require 

that the amount of error be minimised on the data set instead of on the learning technique 

itself (Cristianini & Shawe-Taylor, 2000). 

In describing the SVM emphasis is on the engineering and physics. If required, details of the 

mathematical methods can be found in, e.g. (Z. Chen & X . Lian, 2010; Gunn, 1998; A. 

Widodo, Yang, B-S. , 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 Classification of binary classes using SVM 

Consider Figure 6.3, showing only two kinds of training samples:  and ■ . Where  represents 

healthy and ■  represents faulty. H is the classifier hyperplane dividing the two groups of 

samples; x1 and x2, are the data points closest to H; H1 and H2 are parallel to H and pass 

through x1 and x2 respectively. Consider a planar classification task where, optimally, the set 

of vectors should be separated by the hyperplane without error. The distance separating the 

closest points of the two classes (distance between H1 and H2) is defined as the margin 

(Chapelle, Haffner, & Vapnik, 1999). The task is to maximize the margin (minimise the error 

bound) to give best performance. Note that this problem is linear. 

In standard form the separating hyperplane must satisfy the following constraints: 

𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏) ≥ 1         𝑖 = 1,2, … , 𝑛           Equation 6.6 
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Where: 𝑥𝑖 is the set of training samples, 𝑤. 𝑥𝑖 is the dot product, 𝑛 is the number of samples, 𝑏 

is a scalar measure of the distance of H2 from the origin, and 𝑤 is the normal vector to the 

hyperplane. Here the samples are assumed be in only one of two classes: healthy or faulty. 

For the healthy class 𝑦𝑖 = +1 , and faulty class, 𝑦𝑖 = −1. 

However, in most real situations such an ideal hyperplane does not exist. To find the optimum 

solution the standard technique is to relax the constraints on (8.1) by introducing a slack 

variable, 𝜉𝑖 ≥ 0. This slack variable is said to represent the noise in the system. The solution to 

this problem requires the application of advanced but relatively well-known mathematical 

techniques. The calculation is converted into the equivalent Lagrangian dual problem and the 

learning task is reduced to minimising the primal Lagrangian with respect to 𝑤 and 𝑏: 

𝐿(𝑤, 𝑏, ∝) = 1

2
‖𝑤‖2+∑ ∝𝑖𝑦𝑖(𝑤.𝑥𝑖+𝑏)

𝑛
1=1                   Equation 6.7 

Where ∝𝑖 are Lagrangian multipliers. 

Finding the optimal values for αi allows w to be expressed in terms of ∝𝑖 which allows the 

solution of (6.7) to be found. The optimal values for ∝𝑖 give the decision function: 

f(x) = sgn(∑ ∝i yi (xi. xj + b))                               Equation 6.8 

This section refers to a linear problem in which the training samples,  and ■ , were separable 

both in the original input space and in the feature space (hyperspace). However, with multiple 

dimensions, the features in the original input space will not normally be separable. 

Nevertheless a suitable choice of a so-called kernel function to be used in the decision function 

will separate the features in hyperspace. 

f(x) = sgn(∑ ∝i yi (φ(xi). φ(xj) + b))                              Equation 6.9 

The importance of this is that the analysis performed in hyperspace becomes linear. The kernel 

function is written 𝐾(𝑥𝑖 . 𝑥𝑗) = 𝜑(𝑥𝑖). 𝜑(𝑥𝑗). There are now standard kernel functions and this work 

uses the very popular polynomial function (Z. Chen & X. Lian, 2010):  

K(xi. xj) = (xi. xj + 1)
P

                              Equation 6.10 

The SVMs algorithm was designed to separate two classes as binary classifiers. In the real 

problem, however, we find more than two classes for examples: in fault diagnosis of RCs there 

are a number of faults (see chapter 3) as mechanical approaches that address a multi class 

problem as a single ‘all together’ optimisation problem exist (Weston, Watkins, & 1999), but 

are computationally much more expensive than solving several binary problems. Therefore, a 

variety of techniques for decomposition of the multi-class strategy into several binary using 

SVMs as binary classifiers have been proposed, and several widely used are given below: 

 

 One-Against-All (OAA) 

 
The SVM multi class classification was implemented early for OAA approach. The flowchart of 

working process of this model is shown in Figure 6.4. The construction of k SVM models where 

k is the number of classes. The 𝑖th SVM is trained with all of data examples in the 𝑖th class with 

negative labels and positive labels. Thus 𝑙  training data (𝑥1, 𝑦1), … (𝑥𝑙 , 𝑦𝑙), where (𝑥𝑖) ∈ 𝑅𝑛 ,  
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Figure 6.4 Flow chart of working process of multi-class SVM-OAA 

𝑖 = 1… , 𝑙 and 𝑦𝑖 ∈ [1, … , 𝑙] is the class of 𝑥𝑖, the 𝑖th SVM solve the following problem (A. Widodo & 

Yang, 2007): 

1

2
‖Wi‖

2
+ C∑ ξj

i(Wi)Tl
i=1                    Equation 6.11 

(Wi)Tϕ(xj) + bi ≥ 1 − ξj
i    if y = 1           Equation 6.12 

(Wi)Tϕ(xj) + bi ≤ − 1 + ξj
i    if y ≠ 1                 Equation 6.13 

ξj
i ≥ 0,  j = 1… , l                    Equation 6.14 

Where the training data 𝑥𝑖 is mapped to a higher-dimensional space by function 𝜙 and 𝐶, is the 

penalty parameter.  

Minimizing Equation (6.11) means we would like to maximize 2/‖𝑊𝑖‖|, the margin between two 

groups of data.  

When data is not separable, there is a penalty term ∑ 𝜉𝑗
𝑖𝑙

𝑖=1  , which can reduce the number of 

training errors. 

 One-Against-One  

 
Another approach for multi class SVM is called (OAO). In this model, for 𝑘 classes will result in 

k[k − 1]/2 binary classifiers as shown in the flowchart in Figure 6.5. In this method the number 

of classifiers is larger than the number of (OAA). For training the data from the 𝑖th and the 𝑗th 

classes it is solved as following: 

1

2
‖Wij‖

2
+ C∑ ξt

ij
(Wi)Tt                        Equation 6.15 
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(Wij)Tϕ(xt) + bij ≥ 1 − ξt
ij

    if yt = i                             Equation 6.16 

(Wij)Tϕ(xt) + bij ≤ − 1 + ξt
ij

    if yt = j                  Equation 6.17 

ξjt
ij
≥ 0,   j = 1… , l                Equation 6.18 

Once the classifiers are created. It tested by some of the strategies to make a decision. One of 

these strategies if sign (𝑊𝑖𝑗)𝑇𝜙(𝑥𝑡) + 𝑏𝑖𝑗 states 𝑥 is in the 𝑖th class, then the vote for 𝑖th class is 

added by one. If not, then x is predicted in the class using the largest vote and the 𝑗th is 

added by one. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 Flow chart of working process of multi-class SVM-OAO 

6.4 RVMs for Fault Classification 

RVM has also been used for classification. Consider a two-class problem with training points X =

[x1, … xN] and corresponding class labels t = [t1, … tN]  with ti = [0,1]. Based on the Bernoulli 

distribution, the likelihood (the target conditional distribution) is expressed as: 

p(t\W) = ∏ σ((y(xi)))
tiN

i=1 [1 − σ((y(xi)))]
1−ti                  Equation 6.19 

where σ(y) is the sigmoid function: 

σ(y(X)) =
1

1+exp (−y(x))
                       Equation 6.20 

Unlike the regression case, however, the marginal likelihood p(t\α) can no longer be obtained 

analytically by integrating the weights from “(1)”, an iterative producer has to be used (D. G. 

Tzikas, Wei, Likas, Yang, & Galatsanos, 2006). 
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Let αi
∗ denote the maximum a posterior (MAP) estimate of the hyper parameterαi. The MAP 

estimate for the weights, WMAP, can be obtained by maximising the posterior distribution of the 

class labels given the input vectors. 

J(w1, …wN) = ∑ log p(ti \wi) + ∑ log p(wi\αi
∗)N

i=1
N
i=1                Equation 6.21 

The first summation term denotes the likelihood of class labels and the second term denotes 

the prior parameters, wi. In the resulting solution, only those samples associated with non-zero 

coefficients wi (relevance vectors) will contribute to the decision function. 

The gradient of the objective function J with respect to w is: 

∇J = −A∗W−φT(f − t)                   Equation 6.22 

whereby f = [σ(y(x1))…σ(y(xN))]
T, matrix φ has elements ∅i,j = K(xi, xj).  

The Hessian of J is: H = ∇2(J) = −(φTBφ + A∗)         Equation 6.23 

where B = diag(β1, … βN) is a diagonal matrix β1 = σ(y(βxi))[1 − σ(y(βxi))]. 

The posterior is approximated around WMAP by a Gaussian approximation with covariance  

∑−H\WMAP
−1                    Equation 6.24 

and mean: μ = ∑φT Bt            Equation 6.25 

6.5 GA Based Classification and Feature Selection 

6.5.1 GA based Optimisation 

When using ANNs, mindful that the processing mechanism relies on comparing the current 

provided input to the vast array of possibilities that have been used as the learning data sets. 

It is not always possible to utilise the large array of possibilities, although it is still required 

(Sen, 2001). For example, for a rotating mechanical system, a large number of features are 

required in order to allow for a robust fault determination scheme to operate. However 

limitations, in terms of both availability of computational resources as well as available time, 

force the usage of a set of features that are representative of the entire set of features. The 

representative set of features need to be chosen with care so as to make them comprehensive 

enough for usage yet compact enough for consuming an optimised amount of computational 

resources and time. A holistic solution cannot be used for neural networks since the options 

are too many and the amount of resources and time are typically limited. The feature selection 

process to be used must be brief yet comprehensive enough whilst retaining the original 

purpose behind the neural network implementation (Saxena & Saad, 2006). 

In order to retain the original intent behind the neural network, to speed up the computation 

required and to optimise the final outputs, GAs are used. Real time and practical applications 

of neural networks require implementing a large number of possibilities that cannot be 

captured in demanding and practical situations. The application of GAs to ANNs has been 

successfully demonstrated for a number of different applications. In essence, GAs serve as the 

classifiers required to simplify and optimise the practical operation of ANNs. The application of 

GAs to neural networks using a reduced set of characteristic features has provided highly 
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optimised results. It must also be mentioned that the application of GAs to ANNs has also 

required the usage of optimised parameters for ANNs since it aids the performance of the 

overall classification of required and desired features (L. B. Jack & Nandi, 2000; Samanta, 

2004). 

Conventionally the application of choosing optimal feature sets has relied on two major 

optimisation methods namely gradient based searches that rely on calculus methods and 

dynamic programming (Tang, Man, Kwong, & He, 1996). Dynamic programming may be more 

effective than gradient based searches but are still not practicable enough for use with neural 

networks given the large amounts of data to be processed. GAs allows the simplified solution 

of problems with a high dimensional character such as those present when choosing between a 

large numbers of varying features. The exhaustive set of features for vibration monitoring and 

fault diagnosis would consist of features that have no relation to fault diagnosis and are hence 

not required. One possible solution for this situation is to utilise allied methods to reduce the 

problem’s dimensionality, such as the utilisation of principal component analysis (PCA) as well 

as other similar methods (Vlachos, Domeniconi, Gunopulos, & Kollios, 2002). 

6.5.2 GA based Classification 

A GA is a search technique used in computing to find a solution in optimization problems 

(Tang, et al., 1996). It applies the principles of evolution found in nature to the problem of 

finding an optimal solution. In a "GA”, the problem is usually encoded in a series of bit strings 

that are manipulated by the algorithm. Based on the process of GA optimisation, a feature 

selection scheme for fault classification can be conducted based on a process as following:  

 Chromosome Encoding 

A binary chromosomal representation is adopted for the problem in this work. The length of 

the chromosome depends on the number of inputs features to the AI appoach required in the 

solution set. For both first and second simulations tested with features from time domain and 

envelope spectrum, the number ranged between 10 and 20. 

 The Creation of an Initial Population 

The initial generation was generated with randomly selected features, each of which has a 

numerical value. The maximum number is determined by the size of the feature space 

available. When computation starts, the number is put into binary form more easily allow the 

generation of a new population of the parameters and performing GA operations. 

 The Fitness Evaluation 

At this step in the development of the NN model, and calculation of the classification error in 

the objective function, the binary form is translated back to decimal numbers. The objective 

function is defined as: 

Err = ∑ (ti − t̅i)
2         N max

i=1             Equation 6.26 

Where t̅i is the predicted class by PNN and ti is the labelled class. N max is the size of the 

dataset. The program terminates when Err is equal to or less than the set minimal level, or 
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when it becomes equal to the maximum generation number (N gen) set in the computational 

code developed for the study. 

 The Selection Operation 

This is the operation whereby the process is guided towards ever-better solutions by the GA. 

Different algorithms can be used to select the best individual values from the estimated 

population, such as: Roulette wheel selection, Tournament selection, Remainder selection and 

Uniform selection. Tournament selection has been used in this experiment as it is efficient and 

easy to implement. In tournament selection method, n individuals are selected randomly from 

the larger population, and the selected individuals compete against each other. The individual 

with the highest fitness wins and will be included as one of the next generation population. The 

number of individuals competing in each tournament is referred to as tournament size. 

Tournament selection also gives a chance to all individuals to be selected and thus it preserves 

diversity, although keeping diversity may degrade the convergence speed. 
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Figure 6.6 Selection strategies with tournament mechanism 

In this example, the tournament size Ts is set to three, which mean three chromosomes 

competing with each other. Only the best chromosome among them is selected to reproduce. 

In tournament selection, larger values of tournament size lead to higher expected loss of 

diversity (Blickle & Thiele, 1995; Razali & Geraghty; Whitley, 1989). The larger tournament 

size means that a smaller portion of the population actually contributes to genetic diversity, 

making the search increasingly greedy in nature. There might be two factors that lead to the 

loss of diversity in regular tournament selection; some individuals might not get sampled to 

participate in a tournament at all while other individuals might not be selected for the 

intermediate population because they have lost a tournament. 

 The Crossover Operation 

This stage produces the next generation by using a simulated mating process. This is 

performed by two parents creating offspring which consist of genetic material from both 

parents. This operation combines features of existing solutions in an attempt to create a better 
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solution. For example, elements of existing solutions can be combined in a crossover operation 

as shown: 

Parent 1 0 1 1 0 1 0 1 0 1 0 

 

Parent 2 1 0 1 1 1 1 0 1 0 0 

 

Offspring 1 0 1 1 1 1 1 0 1 0 0 

 

Offspring 2 1 0 1 0 1 0 1 0 1 0 

The probability of the crossover was assumed to be 0.80 in this experiment. 

 The Mutation Operation 

Once the children are generated during crossover, the mutation operator is applied to each 

child. Each gene has a user-specified mutation probability of being mutated. In this experiment 

the initial probability of mutation was 0.01, this was sometimes increased and/or decreased 

randomly to fit. Again the location of mutation was randomly determined every time.  

After 

crossover 

0 1 1 1 1 1 0 1 0 0 

After 

mutation 

0 0 1 1 1 1 0 1 0 0 

 

After 

crossover 

1 0 1 0 1 0 1 0 1 0 

After 

mutation 

1 1 1 0 1 0 1 0 1 0 

6.5.3 GA-ANN 

The initial weight values and thresholds of PNN are optimized based on GA. The optimal 

solution is acquired from the whole searching space of GA to generate the initial weight values 

and thresholds for PNN. The search is then conducted in negative gradient direction in PNN to 

reach the target value. PNN optimization based on GA flowchart is shown in Figure. 6.7.  

1) Determine the topological structure of PNN, including the numbers of layer and 

hidden nodes.  

2) Decode according to the scope of each value, decoded chromosomes are the 

initial weight values and thresholds of the PNN.  

3) Conduct selection, crossover and mutation; adopt the corresponding operator to 

calculate the next generation.  

4)  Calculate the fitness value. 

5)  If the fitness value is larger than the previous set value, then the genetic 

operation is stopped. If not, repeat phase (3) while the individual with the 

largest fitness value is chosen as the initial weight values and thresholds of the 

PNN.  
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6) Substitute the initial weight values and thresholds into PNN and conduct its 

process to calculate the model error. The iteration is terminated when model 

error meets the demand of set value. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 Figure 6.7 Flow chart of PNN optimization based on GA (GA-PNN) 

6.5.4 GA-SVM 

The selection of the SVM parameters plays an important role in the performance of SVM. To 

design an effective SVM model, values of parameters in SVM have to be chosen carefully in 

advance (Awadalla, Abdien, Rashad, Ahmed, & Al Abri, 2014; Chou, Wu, & Chen, 2010). The 

SVM with RBF includes the following parameters: 

A. Regularization parameter 𝐶, which determines the trade-off cost between minimizing 

the training error and minimizing the complexity of the model  (Guarnaccia & Neri, 

2013; Volos & Neri, 2012); 

B. Parameter sigma (𝜎) of the kernel function which defines the non-linear mapping from 

the input space to some high-dimensional feature space, which constructs a non-linear 

decision hyper surface in an input space; 

C.  Parameter ξ is non-negative slack variables and provides the minimum training error. 
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In this study, GA is used to determine the optimal values of C, σ and ε that assure highest 

predictive accuracy and generalization ability simultaneously. The proposed model is named 

SVM-GA. Since three parameters should be optimized, the chromosome should comprise three 

parts, C, σ and ξ as shown in Figure 6.8, where the binary coding system was used to represent 

it. 

𝑏𝑐
1 ...𝑏𝑐

𝑗
... 𝑏𝑐

𝑛𝑐 𝑏σ
1 ...𝑏σ

𝑘... 𝑏σ
𝑛σ 𝑏𝜉

1 …𝑏𝜉
𝑙 … 𝑏ξ

nξ
 

Figure 6.8 The chromosome comprises three parts 𝑪,𝝈and 𝛏 

6.5.5 GA-RVM 

A GA-based parameter method was used to automatically obtain the optimal features of the 

RVM classifier. The classification rate of the training data is the fitness function of the GA. 

Therefore, the optimum features are achieved when a minimum error is detected by the 

classifier to complete the generation. Also for the GA-RVM-OAO method, the population size is 

considered to be equal to 20. The initial range is taken to be within [0, 2] for all individuals. 

6.6 PCA based Detection and Diagnosis 

A primary objective of PCA is for dimensionality reduction or data compression to achieve 

efficient data analysis. To this end, PCA results in a new smaller subset of variables with 

minimal loss of information, compared with the original data. Based on this unique 

characteristic, PCA is used for the classification of different cases with the new subset of 

variables and hence early identification of abnormalities in the data structure, i.e. detection of 

faults. 

The PCA creates a covariance matrix (or correlation matrix) by transforming the original 

correlated variables into a new set of uncorrelated variables. Let the variables describing the 

machine being investigated be the m–dimensional data set: X =  x1, x2, x3, … xm, the PCA 

decomposes the observation vector, X, into a set of new directions P as (J. F MacGregor & T 

Kourti, 1995): 

X = TPT = t1P1
T + t2P2

T +⋯+ tmPm
T = ∑ tiPi

Tm
i=1                 Equation 6.27 

Where Pi is an eigenvector of the covariance matrix of X. P is defined as the principal 

component loading matrix and T is defined to be the score matrix of the principal components 

(PCs).  

The loading matrix helps identify which of the variables contribute most to individual PCs, 

whilst the score provides information on sample clustering and identifies transitions between 

different operating conditions.  

The expectation with PCA is that the original variables are sufficiently well correlated that only 

a relatively small number of the new variables (PCs) account for most of the variance. In this 

case no essential information is lost by using only the first few PCs for further analysis and 

equation (6.27) can be expressed as (Wise & Gallagher, 1996): 
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X = TPT + E = ∑ tipi
T + Ek

i=1                    Equation 6.28  

where E represents a residual error matrix. For example, if only the first three PCs represent a 

sufficiently large part of the total variance, E will be calculated by: 

E = X − [t1p1
T + t2p2

T + t3p3
T]                   Equation 6.29 

Therefore, by evaluating the amplitude of 𝐸, fault detection can be implemented. If the system 

is normal, 𝐸 is small, whereas it becomes large if the system is faulty. 

However, in certain applications such as process monitoring, when a plant malfunctions, 

original variables have minimal impact on the first few PCs, but dominate the higher orders. 

Thus in process engineering, use of these higher order components may be needed to provide 

the necessary diagnostic information (J. F MacGregor & T Kourti, 1995). In this way E can be 

very useful to measure these changes. 

6.6.1 PCA Model Based Detection 

PCA based fault detection is usually based on two detection indices: Hotelling’s T2 statistic and 

Q  statistic. 

Hotelling’s T2statistic is a measure of the major variation of measurement variation and 

detects new data if the variation in the latent variables is greater than the variation explained 

by the model or baseline condition. For a new measurement feature vector x, the T2 statistic 

detection can be found from: 

T2 = xTPλ−1PTx ≤ Tα
2                    Equation 6.30 

Where the 100(1 − α)% control limit for Tα
2 is calculated by means of a F-distribution as (J.F 

MacGregor & T Kourti, 1995): 

Tα
2 =

k(m−1)

m−k
F(k,m − 1; α)            Equation 6.31 

Where F(k,m − 1; α) is an F-distribution with k and (m − 1) degrees of freedom, with chosen level 

of significance α, k is the number of PC vectors retained in the PCA model, and m is the number 

of samples used to develop the model. The Q statistic, also represented as SPE, is the squared 

prediction error. It is a measure of goodness of fit of the new sample to the model. The 

Q  statistic based detection can be done by: 

SPE = ‖(I − PP2)x‖2 ≤ Qα            Equation 6.32 

The 100(1 − α)% control upper limit Qα (Kourti & MacGregor, 1996) is: 

Qα = θ1 [
h0cα√2θ2

θ1
+ 1 +

θ2h0(h0−1)

θ1
2 ]

1

h0
                  Equation 6.33 

Where:  

θi = ∑ λj
im

j=a+1                     Equation 6.34 

h0 = 1 −
2θ1θ3

3θ2
2                        Equation 6.35 
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6.6.2 Contribution Plots of 𝑻𝟐 and 𝑸 Statistic 

Once an abnormal factor has been detected using the T2 or SPE, it is important to diagnose the 

event to find its cause. The contribution of the measurement variable and time periods to the 

deviation observed in the Q and T2 statistics can be used to help suggest an assignable cause. 

The Q-contribution plot, which is a bar graph representing Q residual contribution (the 

significance of each variable on the index) versus variable numbers for certain sample, can be 

used to diagnose the fault. When the T2 or SPE breaks the threshold, the contribution of the 

individual variables to the T2 or SPE can be identified, and the variable making a large 

contribution to the T2 or SPE is indicated to be the potential fault source. In general, the Q-

contribution plot helps to reduce the possible fault.  
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Figure 6.9 Flowchart diagram of fault diagnosis processing 

Figure 6.9 the flowchart diagram shows that once a fault is successfully detected, the source of 

the fault can be identified and isolated. Using the distributions, confidence limits for the two 

statistics can be obtained. For the monitoring of new batches, the process data of the new 

batch  𝑋𝑛𝑒𝑤(𝐽𝐾 × 1) is projected onto the model. 

cj(Tk
2) = tnew,k

T Sk
−1[xnew,kjPj

T]T                      Equation 6.36 

Where 𝑐𝑗(𝑇𝑘
2) is the contribution of the 𝑗𝑡ℎ variable to 𝑇𝑘

2, 𝑥𝑛𝑒𝑤,𝑘𝑗 is the 𝑗𝑡ℎ element of  xnew,kj(JX1), 

and Pj
Tis the 𝑗𝑡ℎ row of the loadings matrix 𝑃(𝐽𝑋𝑅).  
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The contribution 𝑐𝑗(𝑄𝑘) of process variable 𝑗 at time k to the 𝑄 statistic can be calculated as 

following: 

cj(Qk) = ekj
2                 Equation 6.37 

where 𝑒𝑘𝑗 is the 𝑗𝑡ℎ variable of 𝑥𝑛𝑒𝑤,𝑘 (Lee, Yoo, & Lee, 2004). 

6.7 Summary  

In this chapter, AI techniques, ANN, SVM, and RVM, are proposed to use to classify machine 

conditions. Features are first extracted from machine raw vibration data using envelope 

spectrum, and then the dimension of the features will reduce by GA. With the selected 

features, ANN, SVM, and RVM classification models are built to classify different machine 

conditions. In addition, this work proposes an approach to face the fault detection using 

statistical techniques, concretely, PCA. Data are collected from the test rig for normal 

conditions in order to calculate the PCA model and the thresholds of the T2 and Q statistics, 

used in order to detect the faults. Finally, the contributions of the 𝑄-plot and 𝐷- plot, will 

present in a way which allows it to use with any latent variable component or regression model 

to detect a specific progress variable to find effective features for fault classification and 

identify the variables related to the faults.  
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Chapter 7  

Features Selection and Fault Classification of A 

Reciprocating Compressor Using A Genetic 

Algorithm and A Probabilistic Neural Network 

In this chapter, a healthy case and seven different fault classification schemes were tested to 

determine the optimal scheme for use. Testing with a PNN classifier using features in the time 

domain returned the poorest results with correct classification rates of 43% only. Comparably, 

a PNN classifier using harmonic components from envelope analysis provided better results 

with the peak classification rate going up to 100% with 30 input features. In contrast, when 

GA-PNN classifiers based on features in the time domain were used, the best classification rate 

achieved was only 48% with 10 input features. Next, GA-PNNs with features from envelope 

analysis were used that provided a highest classification rate of 99% with 110 input features. 

Also the GA optimized the features for both PNN in time domain and envelope spectrum. 

Finally, system verification from time domain and envelope analysis was carried out to ensure 

the robustness of the system in use. 

7.1 Introduction 

The main contribution of this work is to develop novel approach that combines GA with PNN; 

the fault classification has been achieved using a PNN approach. The application of features 

from both time-domain analysis and envelope spectrum in CM is investigated through the 

approach. The selection of input features and the classifier parameters are optimized using a 

GA-based approach. The feature from both time-domain analysis and envelope spectrum are 

used to distinguish between normal and defective RC. 

The vibration signals were collected from the accelerometers on the two-stage, single-acting 

Broom Wade TS9 RC, which has its two cylinders in the form of a “V” (see Figure 3.5 in 

Chapter 3), and which delivers compressed air at up to 0.8 MPa (120 psi) to a horizontal air 

receiver tank with a maximum working pressure of about 1.38MPa (200psi), and was then 

sampled at rate of 55.56 kHz (this enables the high frequencies associated transient events to 

be collected); the data length is set at 118833 samples. The time duration of data points = 

number of samples ÷ sampling frequency so the real time duration of the samples is 2.14 sec. 

these operations repeated 3 times for 12 different discharge pressure. The each segment of 

data includes more than four working cycles of the compressor. 
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7.2 PNN for Classification 

For each given vector in the input datasets, the corresponding  target vector was created in a 

second matrix to have the same size as the data vector and containing the values 

1,2,3,4,5,6,7, and 8 corresponding to healthy and faulty elements in the data vector 

respectively, used during the PNNs training. This then gave, for the time domain a (1×1920) 

and Envelope spectrum is (1×192) matrix containing the target data. These are all the input 

information assembled to train the PNNs. 

The data sets have an equal number of samples from normal and faulty RC conditions. Both 

the data set and target vector were divided into two subsets of equal size by taking every 

other vector values, of which one was for training the PNN and the other for testing the trained 

network. In particular, it is implemented in following: 

Two data sets were therefore created. In the first dataset from the time domain was divided 

into two equal subsets. For the training the PNNs giving a training set of (10×960) were used 

and the rest (10×960) were used for testing. The second from the envelope was also divided 

into two equal subsets. For the training the PNNs giving a training set of (30×96) were used 

and the rest (30×96) were used for testing. Then, the data was simulated and the spread 

parameter of the PNN is identified to be 0.04 by a trial and error procedure. Finally, viewing 

the classifications results by plotting the figures with different features in both the time and 

envelope spectrum. Figure 7.1 shows a flow diagram of the PNN procedure.  
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Figure 7.1 Flow diagram of the proposed procedure 
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7.3 GA Implementation and Simulation 

The proposed feature selection scheme is evaluated based on the vibration dataset from the 

RC test rig in Section 5.1 to 5.3. Also, a MATLAB program is developed to implement PNN and 

GA. The features from signal waveform, spectrum and envelope spectrum for classification are 

investigated through the use of PNN, GA and their combination as following. 

In the fitness function the same procedure described in section 6.5.2 is repeated in this part 

for testing the trained network. However, the spread parameter σ of the PNN has been 

optimised by GA automatically when GA feature selection is involved.  

GA has been used to select the optimal features that related to a particular classifier and 

simultaneously find the optimal spread value of PNN. GA chromosome for this feature selection 

is a binary chromosome, the length of which is based on the number of features available for 

selection and the range of the spread parameter of PNN. Typically the chromosome ranges 

from 10 to 20. Multipoint crossover is implemented with the locations of the crossover points 

determined randomly. The population is made to crossover after they were paired according to 

their fitness. After that the chromosomes are sorted in the order of decreasing fitness values. 

The fitness function is the minimum of error in classifying the eight classes represented by 

values 1 for healthy, 2 for fault 1, 3 for fault 2, 4 for fault 3, 5 for fault 4, 6 for fault 5, 7 for 

fault 6 and 8 for fault 7. Mutation is a multipoint bit-flip mutation based on a pre-specified 

probability of 0.1. The location of mutation is randomly set in every mutation. 

Obviously in this approach, after a new generation of offspring was obtained, the fitness 

function of all parents and offspring was evaluated and the ones with the highest fitness were 

carried forward to the next generation.  

7.4 PNN and GA-PNN Results and Discussions 

For comparison, four sets of PNNs have been studied to evaluate the effectiveness of different 

types of features and GA feature selection. The first one is the time domain feature based 

PNN; the second one is the envelope spectrum feature based PNN; the third one is the time 

domain feature based PNN with GA feature selection; and the fourth is the envelope spectrum 

feature based PNN with GA feature selection. 

7.4.1 Performance of PNNs without GA Feature Selection 

7.4.1.1 Performance of PNN Classifier using Features in the Time-

domain 

A total of ten input features were employed to provide a correct classification rate of 43% as 

shown in the table provided below. Even with the use of a high number of input features 

(n=10), the correct classification rate remained low. 
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Number of input 

features 
Features name 

Correct 

rate 
Sigma 

10 
Max, Range, UB, LB, Kurtosis, Variance, Peak 

factor, Skewness, Kurtosis, Entropy 
43 0.04 

Table 7.1 Performance of PNN classifier with different feature combinations from the time 

domain 

7.4.1.2 Performance of PNN Classifier using Harmonic Components 

from the Envelope Spectrum 

For PNN classification through the envelope spectrum, differing sets of input features were 

used, ranging between 10 and 110 input features that were derived from peak values at shaft 

frequency and its high order harmonics in the spectrum of envelope signals.  

Number of input 

features 
Correct rate 

10 92% 

20 98% 

30 100% 

40 99% 

50 93% 

70 93% 

90 93% 

110 83% 

Table 7.2 Performance of PNN classifier with different feature combinations from the envelope 

spectrum with sigma=1 

 

Table 7.2 shows that the maximum correct classification rate achieved is 100% with the first 

30 input features whereas the lowest classification rate is as low as 83% from the first 100 

input features. It is notable that as the number of input features increases beyond 30, the 

correct classification rate tends to decrease. The signal to noise ratio from the harmonic peaks 

in the frequency spectrum is low enough to warrant incoherent feature selection at higher 

numbers of input features. This is detailed in the table below along with Figure 7.2 and 7.3 

depicting PNN classifiers with 10 and 30 input features respectively. 
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Figure 7.2 PNN classifier with 10 input harmonics  

 

Figure 7.3 PNN classifier with 30 input harmonics 

In addition, Table 7.3 depicts the effect of varying the sigma as the number of input features is 

kept constant. When only 30 input features are utilised, as in the Table 7.3, changes in the 

sigma value lead to corresponding changes in the correct classification rate. The variation in 

the correct classification rate with sigma sees a rapid increase followed by relative stabilisation 

and then a decrease. This indicates that the sigma value needs to be optimised for the use 

since various sigma values can trigger increases or decreases from the optimal value. 
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Sigma Correct rate 

0.05 79% 

0.09 98% 

0.2 98% 

0.5 99% 

0.9 100% 

1.02 100% 

1.05 99% 

1.1 99% 

1.3 97% 

Table 7.3 Performance of PNN classifier with input 30 feature combinations from the envelope 

spectrum and different sigma values  

7.4.2 Performance of PNNs with GA Feature Selection 

In order to investigate the performance of PNNs with GA feature selection, investigation was 

carried out using features in the time domain as well as features from the envelope spectrum. 

It is noteworthy that the sigma for classification and feature selection was generated for these 

runs through GA to obtain optimal values. The intention behind GA application was to establish 

the efficacy of each system’s application to GA feature selection and to compare current results 

to previous findings. 

7.4.2.1 Performance of GA-PNNs based on Features in the Time 

Domain 

Table 7.4 below depicts the classification results obtained using PNN with feature selection 

using GA with a high mutation rate (0.01) and a high crossover (10). For this case a 

combination of 5, 6, 7 and 10 features was utilised with the GA selection so as to achieve the 

best possible correct classification rate. For instance, using five selection features (n=5), it was 

discovered that the combination of Maximum, Kurtosis, Variance, Kurtosis and Entropy 

provided the best correct classification rate. It is notable from the results that using as many 

as ten features provided only slight improvements in the correct classification rate that rose 

from a low of 45% to a high of 48%. 
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Run 

NO 

Selected 

features 
Feature name 

Correct 

rate (%) 

Minimum 

fitness 
Sigma 

1 7 
Max, Range, UB, LB, Kurtosis, 

Skewness, Entropy 
47 0.5278 0.45 

2 6 
LB, Variance, Skewness, Kurtosis, 

Entropy 
47 0.526 0.46 

3 10 

Max, Range, UB, LB, Kurtosis, 

Variance, Peakfactor, Skewness, 

Kurtosis, Entropy 

48 0.5182 0.67 

4 6 
UB, LB, Kurtosis, Skewness, Kurtosis, 

Entropy 
46 0.5356 0.55 

5 5 
Max, Kurtosis, Variance, Kurtosis, 

Entropy 
45 0.5451 0.34 

Table 7.4 Performance of GA-PNN classifier time domain feature selection  

(mutation rate 0.01), Generation 30, population 24, crossover 10, chromosome 10 

 

Figure 7.4 Minimum and mean fitness function with GA-PNN features selection from the time 

domain (Run 2) 
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Figure 7.5 Fitness function value and GA-PNN features selection from the time domain (Run 2) 

 

Figure 7.6 Minimum and mean fitness function with GA-PNN features selection from the time 

domain (Run 4) 
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Figure 7.7 Fitness value and GA-PNN features selection from the time domain (Run 4) 

The mean fitness value and the minimum fitness value for run 2 (n=6, correct classification 

rate=47%) and run 4 (n=6, correct classification rate 46%) are shown in Figure 7.4 to Figure 

7.7 above respectively. Mindful that a total of 10 features were used for each run but the GA 

opted the selected features to provide the best classification rates. Run 2 displays a stable 

mean fitness value with local minima available in the minimum fitness values. In comparison, 

run 4 displays a stable mean fitness value while the minimum fitness value tends to be stable 

initially, but then tends to display fluctuations as immediate minima and maxima. It is 

observed that GA was not able to select the number of features probably due to the small 

number of input variables. Although, it selected specific features such as kurtosis and entropy 

in each run with different input variables.  

Table 7.5 below depicts the classification results obtained using PNN with feature selection 

using GA with a low mutation rate (0.001) and a low crossover (4). For this case a combination 

of 5, 6 and 7 features was utilised with the GA selection so as to achieve the best possible 

correct classification rate. The best correct classification rate achieved was still 48% using 

either 5 or 6 features while the lowest correct classification rate remained at 46% using all the 

other combinations. The default input features remained 10 and it was up to the GA to 

decipher the best possible classification rates through GA selection. Again, the GA was not able 

to optimise the features to ideally number, but it could determine the good features which 

repeated in each run such as LB, kurtosis and entropy. 
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Run 

NO 

Selected 

features 
Feature name 

Correct 

rate (%) 

Minimum 

fitness 
Sigma 

1 5 
LB, Kurtosis, Peakfactor, Skewness, 

Entropy 
48 0.5191 0.43 

2 6 
UB, LB, Kurtosis, Variance, Peakfactor, 

Entropy 
48 0.5226 0.44 

3 7 
Max, Range, UB, LB, Peakfactor, 

Kurtosis, Entropy 
46 0.5373 0.53 

4 6 
Range, LB, Kurtosis, Variance, 

Skewness, Entropy 
46 0.5399 0.22 

5 5 
LB, Peakfactor, Skewness, Kurtosis, 

Entropy 
46 0.5356 0.58 

 

Table 7.5 Performance of GA-PNN classifier time domain feature selection  

(mutation rate 0.001), Generation 30, population 24, crossover 4, chromosome 10 

 

Figure 7.8 Minimum and mean fitness function with GA-PNN features selection from the time 

domain (Run 1) 
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Figure 7.9 Fitness value and GA-PNN features selection from the time domain (Run 1) 

 

 

Figure 7.10 Minimum and mean fitness function with GA-PNN features selection from the time 

domain (Run 5) 
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Figure 7.11 Fitness value and GA-PNN features selection from the time domain (Run 5) 

The mean fitness value and the minimum fitness value for run 1 (n=5, correct classification 

rate=48%) and run 5 (n=5, correct classification rate 46%) are shown in Figure 7.8 to Figure 

7.11 above respectively. Run 1 displays a stable mean fitness value with the presence of 

sizable fluctuation in the minimum fitness values. In comparison, run 5 displays a stable mean 

fitness value while the minimum fitness value tends to be stable initially but then tends to 

display fluctuations as a local minimum. 

This behaviour is comparable to the use of high mutation rates and high crossover when the 

results were similar. The significant variation of the mutation rate and crossover seem to have 

little effect on the fitness of the generation during GA selection. 

7.4.2.2 Performance of GA-PNNs with Features from the Envelope 

Spectrum 

Table 7.6 below depicts the classification results obtained using PNN with feature selection 

using GA with a high mutation rate (0.7) and a high crossover (10). For this harmonic orders 

were selected from peaks in the frequency spectrum from the harmonics of the compressor’s 

working frequency. The results in the table below show fluctuation in the achievement of 

correct classification rates with the highest correct classification rate of 99% (n=110) and the 

lowest correct classification rate of 93% (n=10). Sigma for the current runs was obtained 

through GA optimisation alone. Another noteworthy observation is the achievement of high 

correct classification rates following n=30 and higher. 
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No of 

input 

features 

Harmonic order selected Fitness Sigma Correct 

rate 

10 2,3,4,5,6,7,8,10 0.0729 1.12 93% 

20 2,3,6,7,8,9,12,14,20 0.0625 0.69 94% 

30 1,2,4,6,7,8,9,10,11,12,13,14,15,16,18,20,23,25,26,27,29 0.0313 1.26 97% 

40 1,2,3,4,5,6,7,9,14,16,17,20,26,28,29,31,32,33,34,35,36,38,40 0.0417 2.1 96% 

50 3,5,6,8,10,11,12,13,17,18,20,22,26,28,29,30,31,35,37,39,40,42,

45,47,50 

0.0625 2.14 94% 

70 2,3,4,5,6,8,9,10,15,20,21,22,23,27,30,32,33,36,37,39,40,41,43,

45,46,48,49,50,52,53,57,59,61,63,64,65,67,68,69,70 

0.0208 0.92 98% 

90 7,9,15,16,17,18,19,20,21,24,26,27,28,30,35,36,37,39,40,41,47,

48,49,51,52,53,55,57,58,60,61,62,63,66,68,69,70,71,72,75,79,8

1,82,84,85,86,88 

0.0313 2.83 97% 

110 2,6,8,9,10,14,15,16,17,19,20,24,25,33,35,37,38,39,40,42,46,48,

50,51,52,55,58,61,65,66,68,69,70,75,76,78,79,80,81,82,83,85,8

6,87,88,89,90,92,93,94,95,98,99,102,103,106,108 

0.0104 3.91 99% 

120 2,5,6,7,8,9,11,12,13,14,15,17,18,20,22,23,24,25,26,27,2

8,33,36,38,39,40,43,44,45,46,47,48,52,53,59,69,7,79,80,

81,82,83,84,85,86,87,89,91,93,94,95,96,99,100,101,105,

107,108,113,114,115,116,117 

0.0208 4.39 98% 

Table 7.6 Performance of GA-PNN classifier using features in the envelope spectrum, 

generation no=30, population=40,crossovor=10,mutation=0.7 

 

Figure 7.12 Minimum and Mean fitness function with GA-PNN features selection from the 

envelope spectrum with 10 input harmonics 
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Figure 7.13 Fitness value and GA-PNN features selection from the envelope spectrum with 10 

input harmonics 

 

Figure 7.14 Minimum and mean fitness function with GA-PNN features selection from the 

envelope spectrum with 50 input harmonics 
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Figure 7.15 Fitness value and GA-PNN features selection from the envelope spectrum with 50 

input harmonics 

 

Figure 7.16 Minimum and mean fitness function with GA-PNN features selection from the 

envelope spectrum with 90 input harmonics 
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Figure 7.17 Fitness value and GA-PNN features selection from the envelope spectrum with 90 

input harmonics 

Comparison of the fitness values against generation in Figure 7.12 to Figure 7.14 above depict 

relative stability in the minimum fitness value compared to the mean fitness values. Figure 

7.12 shows rapidly decreasing and then stabilised minimum and mean fitness values (n=10) 

while Figure 7.13 shows fluctuating mean fitness values with relatively stable minimum fitness 

values with a local maximum towards the end (n=50). In contrast, Figure 7.14 depicts a 

constantly fluctuating mean fitness value while the minimum fitness values are completely 

stable (n=90). This indicates that as the number of input features is increased, the minimum 

fitness values tend to stabilise while the mean fitness values tend to fluctuate a lot. Moreover, 

it should be noted that a significant reduction of the number of features is achieved by GA 

optimisation. As depicted in Table 7.4 and shown in Figure 7.13, Figure 7.15 and Figure 7.17, 

an input harmonics set of 10, 50 and 90 variables to features subsets with less than half 

features in all PNNs training. Moreover, the features selected in each run with different input 

harmonics can be seen. This will allows the online implementation of PNN to be more efficient. 

Table 7.7 below depicts the classification results obtained using PNN with feature selection 

using GA with a low mutation rate (0.001) and a low crossover (2). The results in the table 

below show fluctuation in the achievement of correct classification rates with the highest 

correct classification rate of 99% (n=90) and the lowest correct classification rate of 92% 

(n=10). Comparable to before, high correct classification rates were achieved after n=20 with 

an exception at n=50. 
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No of 

input 
features 

Harmonic order 

Selected 
Fitness Sigma 

Correct 

rate 

10 2,3,4,6,7,8,10 0.0833 0.79 92% 

20 1,3,4,5,6,7,8,11,12,13,15,20 0.0625 0.62 97% 

30 1,2,4,8,9,10,11,13,14,20,21,22,23,25,26,27,28,29 0.0313 0.89 96% 

40 
3,4,6,7,8,9,10,12,13,14,15,18,20,23,26,28,29,30,35, 

38,40 
0.0208 1.37 98% 

50 
2,3,4,6,9,10,12,13,15,16,17,20,21,22,23,25,26,27,28,

29,30,31,32,35,36,37,38,45,46,48 
0.0729 1.02 93% 

70 
1,2,4,5,6,7,9,11,13,15,18,20,22,24,25,28,29,30,36, 

39,40,41,42,43,46,48,50,54,56,57,59,62,64,66,68,69 
0.0208 2.9 98% 

90 

1,3,5,7,10,11,14,15,17,18,19,20,23,24,26,27,28,34,3

5,36,37,39,40,42,44,45,48,52,53,55,56,59,60,63,66, 

67,69,72,78,79,80,81,82,83,84,90 

0.0104 2.64 99% 

110 

2,6,7,11,12,13,19,22,23,27,28,30,31,34,37,38,41,42, 

44,46,48,53,54,55,57,63,65,66,74,77,78,79,81,82,83,

84,85,86,87,89,90,96,99,102,106,107,110 

0.0208 2.61 98% 

120 

4,5,6,7,9,11,12,13,15,17,18,20,21,23,24,25,28,29,31,

35,36,37,38,40,42,44,46,47,50,52,53,54,56,57,58,61,

62,66,67,69,71,72,74,75,76,77,78,81,83,84,88,91,92,

94,96,97,98,102,105,107,109,110,111,113,116,117, 

118,119,120 

0.0208 3.83 98% 

Table 7.7 Performance of GA-PNN classifier using features in the envelope spectrum, 

Generation no=30, population=40,crossovor=2,mutation=0.001 

 

 
 

Figure 7.18 Minimum and mean fitness function with GA-PNN features from the envelope 

spectrum with 40 input harmonics 
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Figure 7.19 Fitness value and GA-PNN features selection from the envelope spectrum with 40 

input harmonics 

 

 
 

Figure 7.20 Minimum and mean fitness function with GA-PNN features selection from the 

envelope spectrum with 70 input harmonics 
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Figure 7.21 Fitness value and GA-PNN features selection from the envelope spectrum with 70 

input harmonics 

 

 
 

Figure 7.22 Minimum and mean fitness function with GA-PNN features selection from envelope 

spectrum with 120 input harmonics 
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Figure 7.23 Fitness value and GA-PNN features selection from the envelope spectrum with 120 

input harmonics 

Comparison of the fitness values against generation in Figure 7.18, Figure 7.20 and Figure 

7.22 above depict convergence between the minimum and the mean fitness values. Figure 

7.19 shows a gradual convergence between minimum and mean fitness values over generation 

(n=40) unlike Figure 7.20 where the convergence is late and the mean fitness values tend to 

fluctuate a lot before convergence (n=70). In comparison, Figure 7.22 depicts relatively 

gradual convergence between the mean and minimum fitness values with one local maximum 

for each (n=120). In addition, the number of features selected in this case seems the same 

features selected in previous case with different parameters.  

7.4.3 GA System Verification with Feature from Time domain and 

Envelope Spectrum 

In order to verify the robustness of the tested systems, GA system verification was carried out 

for both time domain and envelope spectrum. The concept is that any one input feature can 

produce a classification when tested with the desired system. For time domain with GA, feature 

10 (entropy) was provided to the system in order to ascertain system response. Figure 7.24 

below depicts the situation when entropy is provided as an input to the system allowing correct 

classification of fault and selected via GA as seen in Figure 7.25 below. 
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Figure 7.24 PNN feature extraction via PNN and time domain 

 
 

Figure 7.25 GA-PNN features selection from the time domain 
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This proves that the system being used for both time domain and envelope spectrum with GA-

PNN feature selection is robust and is performing as expected. 

 

Figure 7.26 PNN feature extraction via PNN and envelope spectrum 

 

 Figure 7.27 Fitness value with GA-PNN features selection from the envelope spectrum with 30 

input harmonics 
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tends to indicate that GA needs to be run a few times to discover a convergent behavior for 

the system being studied. The system needs to be such that it need not be quick enough to 

end up with a local minimum and not slow enough to make optimal solution achievement a 

great challenge. In essence, this also indicates that the results need to fluctuate over several 

generations before a stable character is reached. 

The features used in this study have been selected to produce significant separation. Features 

that were not selected tended to produce poor separation. For instance, peak value was not 

selected since it is not truly representative as there is large variance between various data 

sets. However, when RMS is selected, it is representative since the variance between data sets 

is sizable yet not too significant. 

However, full classification could not be reached since the information or the candidate 

features are not sufficient enough to produce a full separation. Moreover, some of the data 

presents outliers that are hard to classify resulting in lack of full classification. 

On another note, it is clear from the results of the current study that time domain GA-PNN 

feature selection is far inferior to GA-PNN feature selection through envelope spectrum. The 

best correct classification rate achieved through the former is only 48% compared to 99% for 

the latter. This speaks volumes for the efficacy of classification, achieved through either 

system. More research needs to be conducted in GA-PNN feature selection through envelope 

spectrum in order to deal with surfacing issues such as full classification achievement. 

7.6 Summary  

It has been conclusively shown that GA results will tend to vary as the parameters in use are 

varied. Hence, GA needs to be run at least a few times before a stable output can be achieved. 

Typically, results require fluctuation over a few generations to ensure a stable character. 

Moreover, the study used only features that could provide significant separation in order to 

reduce any erroneous classifications. On another note, a full classification could not be 

achieved given that the features in use could not generate full separation and because outliers 

caused classification problems. The results of the study conclusively indicate that GA-PNN 

feature selection through Envelope analysis is far superior to all other methods tested 

especially methods relying on time domain feature selection. 
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Chapter 8  

Fault Identification and Diagnosis for Reciprocating 

Compressors Based on Support Vector Machined 

and Genetic Algorithms 

This chapter focuses on the development of an advanced signal classifier for a RC using 

vibration signals. SVM have been applied, trained and tested for feature extraction and fault 

classification.  

The results show that the model behaves well, and classification rate accuracy is up to 100% 

for binary classes. However, the SVMs for multi classification using features from the envelope 

spectrum returned 86.49% correct classification rate from two input features as the maximum 

rate from various input features. In contrast, when GA-SVM classifiers based on features in the 

envelope spectrum were used, the best classification rate achieved was 88% with 18, 20 and 

25 input features. Also the GA optimized the features for SVM in envelope spectrum and the 

results show that one feature has been selected from 18, 20 and 25 input features and 10 

features from 40 input features. Finally, it discusses how compressor faults could be detected 

and diagnosed using those approaches. 

8.1 Introduction 

In this study SVMs have been applied to a real compressor with single and multiple faults. It 

has been claimed that SVMs have four important advantages over the more traditional ANN.  

First and most important, is that SVM training uses the powerful mathematical technique of 

global optimized solutions and so has largely eliminated a major irritant of ANNs: convergence 

to local maxima and minima (Rychetsky, 2001). Second the simple geometric interpretation 

available for SVMs has proved very useful in extending its application to new areas and 

theoretically can give a sparse solution – that is the solution for the lowest number of entries 

(V. Vapnik, 1999). Third, during training, the SVM uses structural risk minimization which 

permits the software designer to allow for sparseness of data and which can lead to a better 

performance for SVMs than ANNs (Ghate, 2009). Fourthly, it has become clear that SVM is 

relatively very efficient when dealing with large classification problems (very large feature 

spaces), because the process of linearization means that the number of dimensions is less 

important with SVMs than with conventional classifiers (A. Widodo, Yang, B-S. , 2007). 

However, it has also been pointed out that SVMs have a number of less satisfactory features: 

limited speed both in training and testing, extensive memory requirements, the solutions while 

geometrically simple can be algebraically complex, and the design of SVMs is not yet anywhere 

near optimal (Suykens, 2003). 
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The SVM is a binary classifier it compares only two things at a time (Wei, 2002). This means 

that if there are N items to be compared there will N ∗ (N − 1)/2 comparisons. Thus, in a real 

situation there will usually be will huge number of comparisons to be made. This is made 

worse by the parallel necessity to miss nothing of consequence when taking measurements 

and to ensure all possible useful features are recorded. But not all features are equally 

informative about the condition of the machine, and to increase the speed and accuracy of the 

classifier feature selection and extraction should be limited to those features useful for 

classification (Ghate, 2009; A. Widodo, Yang, B-S. , 2007). 

This work makes use of SVM for fault diagnosis of a RC. SVM is initially developed for binary 

classification. Several techniques have been proposed for the SVM classifier to be extended to 

multiclass problems. Amongst them, the method: OVA have been used. A major improvement 

of the SVM performance can be achieved by the proper selection of the classifier parameters. 

To obtain the optimal parameter values for the SVM classifiers, the GA, as a well-known 

optimization solver is used. The result indicated improved classification performance.  

8.2 SVM and GA-SVM Results and Discussion 

8.2.1 Binary Classification 

According to the different faults on the RC, these can be divided into seven types which are 

discharge valve leakage, suction valve leakage, inter cooler leakage, loose belt, discharge 

valve leakage and suction valve leakage combined fault, Suction valve leakage with Inter 

Cooler Leakage combined fault and discharge valve leakage with inter cooler leakage combined 

fault respectively. Because SVM is a binary classifier which differentiates two types of things at 

time. In this part of the work the SVM classifier was constructed using the one-versus-all 

method to detect the fault only by the trained model with healthy condition and faulty 

condition for each iteration with optimal parameters. The performance and accuracy rate of the 

classifier model is then verified subsequently. 

Table 8.1 presents classification results for binary class fault detection obtained with the SVMs 

using features extracted from the envelope spectrum. There were a number of peaks in the 

envelope spectrum and each one was a possible feature. In each table there is a column 

headed “number of features”, the 2, 10, 15 or 120. The table includes performance of the SVM 

classifier with a binary class using features from the envelope spectrum. 
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No of input Harmonics 

from the Envelope 

spectrum 

Classification success rate  

binary class 

2 100% 

7 100% 

15 100% 

20 100% 

30 100% 

45 100% 

50 100% 

60 100% 

75 100% 

85 100% 

100 100% 

120 100% 

Table 8.1 Performance of SVM classifier: features from the envelope spectrum, binary 

classification 

The results show in the Figure 8.1 that SVM classifier model has the ability to separate healthy 

class from other classes with 100% classification with two input features. SVM classifier has 

accuracy and good generalisation performance with high classification accuracy on all classes 

with different number of input features. 
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Figure 8.1 SVM binary classifier: Healthy class and other different condition classes with two 

input features from the envelope spectrum 
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Figure 8.2 Classification Accuracy with Error Criterion for SVM binary classifier 

8.2.2 Multi Class Classification 

The results of this study which tested the “OAA” strategy with the classical decision making 

and can be shown in Table 8.2. The table shows results for the success rate of the SVM when 

using data from the envelope spectrum of the vibration signal when the problem was to 

identify the presence of eight cases which include the base line and seven faults. The SVM was 

most successful in providing successful classification with small numbers of input harmonics 

features, about two, and after reaching a maximum at about two features the success rate 

then decreases as more features were added. However, it is clear that the success rate of the 

SVM for this particular problem appears not to reach 100% accuracy rate. The classification 

error is determined by using ratio of correct classification and on the whole of training as 

showing in Figure 8.3. 

No of input Harmonics from 

the Envelope spectrum 

Classification success rate % 

Multiple class 

2 86.49% 

7 82.50% 

15 79.69% 

20 78.91% 

30 78.75% 

45 76.96% 

50 76.41% 

60 75.70% 

Table 8.2 Results obtained with the “OAA” strategy on the SVM multi classifier 
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Figure 8.3 Classification Accuracy with Error Criterion for SVM multi classifier with two input 

features 

8.3 GA-SVM Feature Selection 

In this section, we describe the hybrid GA-SVM algorithm for carrying out the feature selection 

and classification. The GA model designed both for discovering the optimal features and for 

final features selection and classification. The SVM based classifier is used to ensure the fitness 

evaluation of each candidate feature subset. 

Simple operations of the GA optimisation procedure are described in chapter seven at section 

8.3. For the envelope spectrum the parameters of the GA were varied. The population size 

used was 40, and the number of generations was either 30 with mutation value of 0.01, see 

Table 8.3.  

Using features from the envelope spectrum with GA optimization a classification success rate 

of 100% was not achieved. Interestingly, with a small number of harmonics it appears that can 

play an important role in successful classification of a fault, e.g. the highest accuracy rate 

classifications use harmonics between 20 and 30 (440Hz and 506Hz, respectively). 
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Total no of 

input features 

No of 

selection 

features 

Harmonic order 

selected 

Classification 

rate 

Fitness 

Value 

18 1 17 88.0% 0.1328 

20 1 14 88.0% 0.1250 

25 1 22 88.0% 0.1250 

30 8 6,13,15,24, 

25,26,28,29 

83.0% 0.1664 

40 10 13,16,17,21,22,28,29,

33,34,38 

83.3% 0.1711 

Table 8.3 Performance of GA-SVM classifier 

It can be seen from Table 8.3, that there are multiple solutions to the given problem. For 

example it can be seen that a classification rate of 88% is achievable using 18, 20 and 25 

harmonics. With these input harmonics the GA selected one feature differently when the 

numbers of harmonics are different. 

The result also shows the SVM is unsuccessful when larger numbers of features are used, but 

the number of features increase selected with larger numbers of input harmonics such as the 

classification rate was 83.30% with 40 harmonics and GA selected 10 features as be seen in 

Table 8.3. 

 

Figure 8.4 Feature selections with 18 input harmonics 
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Figure 8.5 Feature selections with 30 input harmonics 

Figure 8.4 and Figure 8.5 show the optimization procedure for selected steps of the features 

procedure. The graphs are a plot of the best and mean fitness values for the population as a 

function of the number of generation the population has evolved. Figure 8.6 and Figure 8.7 

show the features selection with highest fitness function when the procedure is terminated.  

 

Figure 8.6 Fitness function and feature selection procedure with 18 input harmonics 
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Figure 8.7 Fitness function and feature selection procedure with 30 input harmonics 

8.4 Summary  

SVM is a popular machine learning technique with a very high generalization capacity. 

Although SVMs are trained by a small data set, they can scan a very wide region. They are fast 

algorithms and do not need complex processes. In this study, the SVM classifier, when used 

with features extracted from the envelope spectrum for binary classes, gave a success rate of 

100%. Briefly, the use of SVMs for binary classes as a powerful tool for fault detection is 

presented. Moreover, the performance of SVM has been found to be substantially better with 

the OAA strategy. With multiple classes the performance of the SVM classifier was satisfactory. 

The best success rate (88.00%) was achieved using harmonics between 18 and 25 of the 

peaks in the envelope spectrum.  

The results show the potential application of GAs for the selection of effective features in 

machine condition detection. 
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Chapter 9  

Fault Diagnosis of Reciprocating Compressors Using 

Relevance Vector Machines with A Genetic 

Algorithm Based on Vibration Data 

This chapter begins by identifying the problem by comparing the results from SVM and RVM for 

fault classification. Then, it develops a one-against-one scheme with GA feature optimisation 

for applying this binary classifier to the compressors data, and examines the harmonics 

selected for classification to find the accuracy of the classifier in association with the physical 

supports. Finally, the performance of the multiclass multi-kernel mRVM is also explored for 

obtaining more efficient fault classification. 

9.1 Introduction 

ANNs, SVM are the popular classification methods (Shieh & Yang, 2008) . ANNs have the 

strong ability of non-linear mappings. The ANNs has been the most frequently used in the 

classification. However, the ANN has low training speed and is easy to produce local 

extremum. SVM is based on structural risk minimization principle, which is superior to 

empirical risk minimization principle used by ANNs. RVM is a kind of improved SVM, which 

incorporates probabilistic output and has a comparable generalization performance (Lima, 

Coelho, & Chagas, 2009). In order to improve the classification and select the optimal features 

which extracted from vibration envelope spectrum from RC; the performance of RVM, GA is 

applied to gain the suitable training parameters of RVM. Thus, a novel classification and 

feature selection method based on GA-RVM is discussed in the chapter.  

9.2 RVM and GA-RVM Results and Discussion 

As can be seen from Figure 9.1 and Figure 9.2 they are classifying samples of the same 

problem, the SVM has selected 24 important samples that lie on the class boundaries while the 

RVM has selected only 4 samples which are prototypical of the class they represent. 
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Figure 9.1 SVM binary classifier: Healthy class and DVL with two input features 

 

Figure 9.2 RVMs binary classifier: Healthy class and DVL with two input features 
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the SVM, yet provides a full predictive distribution, and also requires dramatically fewer kernel 

functions so that they consume much less test time which is the more important consideration 

in practice, such as on-line fault detection (D. Tzikas, Likas, & Galatsanos, 2007). 
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Classes Class Description 

H Healthy 

DVL Discharge Valve leakage 

SVL Suction Valve leakage 

LB Loose Drive Belt 

IL Intercooler Leakage 

DVL+SVL Discharge Valve leakage with Suction Valve leakage combined fault 

SVL+IL Suction Valve leakage with Intercooler combined fault 

DVL+IL Discharge Valve leakage with Intercooler combined fault 

Table 9.1 Fault Situation in the Condition Process 

Based on previous studies, the harmonics of compressor operation frequencies obtained from 

envelope spectra are the most effective features for differentiating between the cases. So the 

same harmonic components are adopted for RVM based classification. 

A preliminary application of the RVM algorithm from M E Tipping (A. Tipping & Faul, 2002; M. 

E. Tipping, 2001) has found that the algorithms are not stable when the feature size (number 

of harmonics) is larger than 16. In particular, there are often errors with ill conditioned Hessian 

matrices due to poor conditioning of numbers in the dataset. In addition, a previous study has  

identified that the 1st harmonic component performs less well in separating the cases (Ahmed, 

Smith, Gu, & Ball, 2014). Therefore, only the harmonic components from 2 to 15 are used in a 

RVM application. 

80 samples per case were collected, covering the rated operating pressure range from 70psi to 

120psi (4.83 to 6.90 bar). In total the data matrix is 15x80x8. For RVM training a random 

sample of 40 is selected from each class. The remaining 40 data values being used to validate 

the trained RVMs. 

In addition, OAO binary classifiers are used for the multiclass classification because the 

training sets are smaller and the problems to be learned are usually easier. Since the classes 

have less overlap if k is large and we need to evaluate the k(k—1)/2 classifiers, then the 

resulting system may be slower than the corresponding one-against-all RVMs (B.-S. Yang, 

Han, & Hwang, 2005). 

For instance in this study, if k = 8, one needs to train 28 binary classifiers rather than 8 

classifiers as in the method above. Although training time increases, the individual problems 

that need to be trained are significantly smaller. Furthermore, if the training algorithm scales 

are super linearly with the training set size, it is possible to save processing time. This is 

related to the runtime execution speed. To classify a test pattern all 28 binary classifiers need 

evaluating and classifying according to the classes which get the highest number of votes. A 

vote for a given class is defined as a classifier putting the pattern into that class. The individual 

classifiers, however, are usually smaller in size (they have fewer RVs) than they would be in 

the one-against-all approach. 
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9.2.1 RVM without GA Feature Selection 

In this section classification results are presented from the straight use of RVMs without 

feature selection. However, as RVM is virtually a binary classifier, usually two classification 

schemes are adopted to perform multiclass problems. The first one is OAO and the second one 

is OAA. According previous research OAO outperforms OAA in that it can be trained more 

efficiently and can subsequently obtain better classification results (V. Jain, G. Pillai, & I. 

Gupta, 2011; B.-S. Yang, T. Han, et al., 2005). Therefore, this study only examines the 

performance of OAO. 

The classification performances of the RVM based on OAO scheme (OAO-RVM) is shown in 

Figure 9.3 to examine the further performance the results is also presented in Table 9.2. 

Class no Cases Input Harmonics Classification Rate (%) 

Overall Overall 2-15 95.95 
𝐶1 Healthy 2-15 90.00 
𝐶2 DVL 2-15 100.00 
𝐶3 SVL 2-15 97.50 
𝐶4 LB 2-15 95.00 
𝐶5 IL 2-15 95.00 
𝐶6 DVL+SVL 2-15 100.00 
𝐶7 SVL+IL 2-15 90.00 
𝐶8 DVL+IL 2-15 100.00 

Table 9.2 Average classification rates of the trained classifiers 

 

Figure 9.3 RVM–OAO Classification rates of different cases 

Figure 9.3 shows the performances of RVM classification rate on extracted features of vibration 

signal (%) of RVM-OAO using Gaussian kernel for testing datasets for different classes. An 

overall accuracy of 95.95% was achieved using the technique developed. 
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Figure 9.4 Misclassification rate of OAO 

The errors occurred in classification of data between Class 1, Class 3, class 4, class 5 and 7 

because these classes are close to each other, some of them having the same fault 

characteristic(s) as shown in Figure 9.4 and demonstrated in Table 9.3 with the 0% to 10% 

average error range. It is confirmed that the suggested RVM-OAO algorithm has high 

classification accuracy with small failure in some cases.  

Class no Cases Misclassification 

classes 

No of 

misclassification 

Samples 

Misclassifica

tion Rate 

(%) 

1 Healthy IL, SVL 4 10 

2 DVL - 0 0 

3 SVL Healthy 1 2.5 

4 LB DVL+SVL 2 5 

5 IL Healthy 2 5 

6 DVL+SVL - 0 0 

7 SVL+IL DVL+SVL 4 10 

8 DVL+IL - 0 0 

Table 9.3 Misclassification between classes 

9.2.2 RVM with GA Feature Selection 

A GA-based parameter method was used to automatically obtain the optimal features of the 

RVM classifier. The classification rate of the training data is the fitness function of the GA. 

Therefore, the optimum features are achieved when a minimum error is detected by the 

classifier or complete the generation. Also for the GA-RVM-OAO method, the population size is 

considered to be equal to 20. The initial range is taken to be within [0, 2] for all individuals. 
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In this section, two kinds of experiments were carried out. The first one had as objective the 

classification rate of accuracy. And the second had as an objective the output of feature 

selection subset with a high rate of classification.  

Figure 9.5 shows the results of GA classification performance. It is remarkable the influence of 

the classification using GA-RVM-OAO approach, with an accuracy rate close to 97%. 

 

Figure 9.5 RVM–OAO classification rates of different cases based on GA-based parameter 

selections  

Moreover, it should be noted that a significant reduction of the number of features is achieved 

by GA optimisation. As shown in Figure 9.6, an initial set of 15 variables is reduced to features 

subsets with no more than 10 features in all RVMs training. This allows the online 

implementation of RVM to be more efficient. 

Furthermore, the relation between the final feature subset selected and the classifier used in 

the fitness function is also taken into account. Best results are achieved when using the same 

function in the classifier as in the feature selection and classification stage. 
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Figure 9.6 Features selection with GA-RVM  

As shown in Figure 9.7, the proposed indexing method makes use of a knowledge-base, 

consisting of relations between features and concept classes. The relationships are not 

necessarily trivial, thus the key of this method lies in acquiring distinction. This figure 

demonstrates empirically that the set of relevant features is individual for each class. Indeed 

whilst there are features shared by all the classes there are other features which are entirely 

absent from a class. In particular, feature 11 is not selected for class 1, feature 12 is not used 

in class 2 while features 5, 11 and 13 are not selected in class number 6. On the other hand all 

classes utilise feature 10. 

 

Figure 9.7 Relating features with classes 

Figure 9.8 shows the mutual information between each feature and diagnosis. The estimation 

is based upon all available cases of the dataset. Clearly, features 4, and 7 stand out as the 
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most informative ones for the diagnosis of the RC, accounting for 85% and 80% of the total 

selected, respectively. Features 3, 8, 9, 10 and 14 are reasonably predictive of RC diagnosis 

with 70%. The remaining features number 2, 6, 11, 12 and 15 showed close to chance 

behaviour and ranged between 20% and 30%. 

 

Figure 9.8 Performance of GA- OAO-RVMs for different number of selected features 

Class 

No 

Features 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 

𝐶1 1 5 5 2 4 4 5 5 3 0 1 4 3 2 

𝐶2 1 5 6 2 1 7 5 7 6 3 0 2 5 4 

𝐶3 3 4 6 3 2 6 5 3 5 2 2 4 3 2 

𝐶4 2 3 4 4 2 6 2 4 5 3 2 4 3 1 

𝐶5 2 6 6 1 1 6 6 4 6 2 3 1 6 6 

𝐶6 1 7 5 0 2 5 5 7 5 0 1 0 7 5 

𝐶7 0 5 7 2 1 6 6 6 5 2 0 2 5 5 

𝐶8 2 5 5 2 1 6 6 4 5 2 1 3 4 3 

Table 9.4 Relating features with classes 

From Table 9.4, it is apparent that the RVM-OAO based on GA techniques selected features 

very different from the ones selected in each case. The different selections affected the 

diagnosis performance to achieve separation of the classes. The RVM training utilised two 

important features 4 and 7: selected based on GA for all classes separation as the following 

subsets as displayed in Table 9.5. 
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Class Features uses 
𝐶1 3,4,6,7,8,9,13 
𝐶2 3,4,7,8,9,14 
𝐶3 3,4,7,8,10,13 
𝐶4 4,5,7,9,10,13 
𝐶5 3,4,7,8,9,14,15 
𝐶6 3,4,7,8,8,10,14 
𝐶7 3,4,7,8,9,10,14,15 
𝐶8 3,4,7,8,9,10,14 

Table 9.5 The most features using in each class 

9.2.3 Multi-class Relevance Vector Machine Classification 

To evaluate the performance of mRVM in classifying compressor vibration data, the mRVM 

model was trained for four classes of samples: healthy, intercooler leakage, discharge valve 

leakage with intercooler leakage combined fault and suction valve leakage with discharge valve 

leakage combined fault with two input parameters to the model. The generalisation 

performance and accuracy rate of the classifier model was then verified. The classification 

results of mRVM in Figure 9.9 shows that a mRVM classifier model with two input harmonics 

has good generalisation performance and high classification accuracy with low error. See Table 

9.6. 

State 

Number 

of 

Samples 

 

Correct 

classification 

 

Accuracy 

 

Error 

Rate 

 

Healthy 40 40 100%  

0.0125% IL 40 40 100% 

SVL+IL 40 39 97.5% 

ICL+DVL 40 39 97.5% 

Overall  98.75%  

Table 9.6 Classification results for four classes with two harmonics 

 

Similarly, this approach has also been applied for the defect diagnostics for more than 4-class 

cases, considering multiple defects with different numbers of input harmonics that ranged 

between 2 to 15 as explained in section 9.2.1. 
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Figure 9.9 Classification results using mRVM four classes with two input harmonics 

Classes Harmonic 

Orders 

 

Accuracy 

 

Error 

Rate 

 

1,4,6,7 4-15 98.75% 0.0125 

1,4,5,7,8 4-15 86% 0.160 

1,2,4,5,7,8 2-15 73.75% 0.2625 

1,2,3,4,5 2-15 77.0% 0.23 

1,2,3,4,5,6 2-15 50.84% 0.4917 

1,2,3,4,5,6,7 2-15 59.29% 0.4071 

1-8 4,5,6,10,15 24.16 % 0.3969 

1-8 2-15 50% 0.50 

Table 9.7 Classification results for different classes with different harmonics order 

Table 9.7 shows results for the mRVM. The harmonic peaks in the spectral analysis provided a 

total of 14 possible features for use in classification of the seeded faults, the number of peaks 

in the spectrum which are used for classification. The first column refers to the number of 

input cases. The second column represents the number of features, ranging between 2 to 15. 

For example, 12 features are tested in the first row (between 4-15) and the peaks which gave 

the best classification rate were chosen. The correct classification rate was 98.75%, but as the 

number of features decreased the classification rate dropped quite sharply. The classification 

rates were 24.16%, obtained with 5 features and 8 cases as shown in row 7. This is due to the 

bad scaling of the type-II ML procedure with respect to the number of classes (Damoulas, 

Ying, Girolami, & Campbell, 2008; Ioannis Psorakis, Theodoros Damoulas, & Mark A Girolami, 

2010b) and the dimensionality of the Hessian required for the Laplace approximation (Bishop, 

2006; Psorakis, et al., 2010b). 

Looking at Figure 9.9 it can be seen that some faults are easier to identify than others using 

the mRVM. For example there are large boundaries for healthy, intercooler leakage, discharge 
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valve leakage with intercooler leakage combined fault and suction valve leakage with discharge 

valve leakage combined fault so those four faults could be identified relatively easily. However, 

as the requirement is that the four faults be correctly identified, a relatively large number of 

peaks are required for high classification rates. Moreover, the algorithm is very sensitive in 

that it can only accept a restricted number of harmonics as discussed previously, and needs to 

improve in future work. 

9.3 Summary  

A procedure is presented for the detection and diagnosis of RCs using RVMs-OAO classifiers 

and RVMs-OAO with GA-based feature selection from the envelope spectrum of vibration 

signals. The selection of input features and the appropriate classifier parameters have been 

optimised using a GA-based approach.  

The characteristics of vibration signals, obtained under normal operation and operation with 

various defects have been investigated. The classification accuracy of RVMs with GA was better 

than that of RVMs without GA. For RVMs without GA selection 95.95% classification success 

was achieved in overall test cases. The classification accuracy was 96.875% with selected 

features using GA. The results show the potential application of GAs for feature selection. This 

also opens up the potential use of optimised features and classifier parameters for real-time 

implementation leading to possible development of an automated machine CM and diagnostic 

system. 

Table 9.4 and 9.5 summarise the importance of features 4 and 7 in explaining behaviour in all 

cases, each time being used predominantly more than any other features. As previously 

discussed, mRVMs have the capability to produce reliable classification rates through both 

reduced sample and computational times. The high importance of the two features 4 and 7 is 

ably demonstrated in Figure 9.9 where the four classes (C1, C5, C7 and C8) have a combined 

classification rate of 98.75% using these two features alone. Also, 100% classification success 

was achieved in the single fault cases. 

Other features would seem to have particular relevance to a given fault being used repeatedly 

in that faults presence. For example, feature 9 has a strong association with the DVL cases, 

whilst the SVL relies heavily on features 8 and 10. The intercooler leak obviously emulates 

some of the characteristics of the other faults and in addition to the ‘base’ features (4 and 7) 

utilises the SVL set (8 and 10) along with features 3, 14 and 15. 
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Chapter 10  

Fault Detection and Diagnosis Using Principal 

Component Analysis of Vibration Data From A 

Reciprocating Compressor 

This chapter begins by developed the PCA model from the baseline. Then, it discusses how 

compressor faults could be detected using Q and T2 Statistics. Finally, it is describing analytical 

techniques for fault diagnosis by using contributions plots. 

10.1 Introduction 

In CM, one problem is how to use huge databases of process measurements containing 

information about the state of the process. These real time databases are multivariate in 

nature i.e., many different variables are measured and recorded on a frequent basis, but with 

no further processing can be characterized as data rich but information poor. 

PCA is a basic method in the framework of the multivariate analysis techniques. It has been 

successfully used in numerous areas including data compression, feature extraction, image 

processing, pattern recognition, signal analysis, and process monitoring. 

The novelty of this work is used the PCA as an approach for feature space dimensionality 

reduction from vibration time domains statistical parameters and for detection the faults by 

using the T2or SPE from the PCs model using the baseline. Moreover, the contributions of the Q-

plot and D-plot were applied in a way which allows it to be used with any latent variable 

component or regression model to find effective features for fault classification. 

10.2 PCA Results and Discussion 

10.2.1 PCA Model Development 

Figure 10.1 shows the relative variance of the fourteen variables selected for PCA. It also 

shows that seven of these accounts for 99% of the variance, and this means that the subspace 

composed of those seven PCs contain enough information on the variation of the original 

features for it to be sufficient to detect the faults in the RC. The obtained PCA model could be 

used to check for new measurement data and fault detection. In order to detect the fault, 

confidence limits must be determined according to equations: 6.31 and 6.33. 

T2  Confidence limit=12.4106 

Q Confidence limit= 0.1976  
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Figure 10.1 PCA selections 

10.2.2 PCA Model Based Detection 

From Figure 10.2 it can be seen that most of both T2 and SPE are within the thresholds but 

there are three occasions, at samples 2, 30, 45, at which the threshold is exceeded. This can 

be due to the non-stationary behaviour of the vibration signal and the ability of PCA to detect 

the changes which are acceptable from statistical analysis, but means the confidence level has 

to be selected appropriately. 

 

Figure 10.2 PCA model evaluation 
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On the Q-chart with the leaky discharge valve in Figure 10.3, there are some points at which 

the control limit is exceeded, and these indicate false alarms. However, the  T2 statistics 

detected a fault at the same points as shown in Figure 10.3, which shows too many contents 

reflected by the latent PCs and indicate the presence of a fault. 

 

Figure 10.3 Discharge valve leakage detection by 𝐓𝟐 and 𝐐 statistics 

The performance of the Q method with the leaky suction valve is shown in Figure 10.4. It can 

be seen that the SPE value exceeds the threshold value many times which indicates the 

occurrence of major faults while the T2 method crossed the control limits fewer times as can be 

seen from the Figure 10.4. 

 

Figure 10.4 Suction valve leakage detection by 𝐓𝟐 and 𝐐 statistics 
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The result in Figure 10.5 shows the Q and T2 statistics for the intercooler leakage fault, and the 

values at which the threshold is crossed can be clearly seen in both plots but with larger 

deviation amplitude in the T2 method. 

 

Figure 10.5 Intercooler detection by 𝐓𝟐 and 𝐐 statistics 
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results obtained, it can be seen that the T2-statistic values cross the threshold many times with 

high amplitudes, which indicates the occurrence of the major faults whereas the SPE statistic 
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Figure 10.6 Loose belt detection by 𝐓𝟐 and 𝐐 statistics 
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It can be seen that with the T2 method there are a number of occasions which exceed the 

threshold. Similarly the Q statistics clearly shown the SPE plot crossed the threshold a large 

number of times, indicating the occurrence of major faults. This confirms the ability of the T2 

method to detect combined faults. 

 

Figure 10.7 Combined discharge valve leakage and suction valve leakage detection by 𝐓𝟐 and 𝐐 

statistics 

For combined suction valve leakage and intercooler leakage, both T2 and Q statistics detected 

the faults as shown in Figure 10.8, where it can be clearly seen that many data points exceed 
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Figure 10.8 Combined suction valve leakage and intercooler leakage detection by 𝐓𝟐 and 𝐐 

statistics 
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From the Figure 10.9, the combined discharge valve leakage and intercooler leakage provide 

many data points that exceed the threshold for the both T2 and Q statistics and hence indicate 

the presence of severe faults. 

 

Figure 10.9 Combined discharge valve leakage and intercooler leakage detection by 𝐓𝟐 and 𝐐 

statistics 
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Number Feature Name Case 

Symbol 

Case Name 

1 Max H Healthy 

2 Amplitude Mean DVL Discharge Valve leakage 

3 RMS SVL Suction Valve leakage 

4 Peak Factor BL Loose Drive Belt 

5 Skewness IL Intercooler Leakage 

6 Kurtosis DVL+SVL Discharge Valve leakage with Suction 

Valve leakage combined fault 

7 Entropy SVL+IL Suction Valve leakage with Intercooler 

combined fault 

8 Range DVL+IL Discharge Valve leakage with Intercooler 

combined fault 

9 Inter  Range  

10 Clearance Factor 

11 Histogram Lower 

Bound 

12 Histogram Higher 

Bound 

13 Normal Negative log-

liklihood value 

14 Weibull Negative log-

likilihood value 

Table 10.1 Key to Symbols 

 

Figure 10.10 Q contribution charts for 8 cases based on PCA model 
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Bound, Weibull Negative Log-likelihood Value and Normal Log-likelihood Value. The first test 

used the two features one at a time, and the feature that gave the largest minimum Euclidean 

distance value between the two classes were Clearance Factor and Histogram Lower Bound, 

with the distance 0.038706 between the suction valve leakage and the discharge valve leakage 

with the suction valve leakage combined fault. It also recorded that the largest maximum 

Euclidean distance value with this case is 0.36295 between the loose drive belt fault and 

suction valve leakage with the intercooler leakage combined fault. The second test combined 

the three features at a time and here the features Amplitude Mean, Range and Clearance 

Factor gave the largest minimum Euclidean distance value between the two classes. 

By selecting four features from fourteen, the best results (0.075514) were obtained from the 

combination features of Amplitude Mean, Range, Clearance Factor and Normal Negative log-

likelihood value. The minimum of Euclidean distance value between the two classes increased 

when additional features were added until when using all fourteen features the largest 

minimum Euclidean distance value between the two classes is 0.090919. 

 

No of 

input 

features  

Feature 

number 

largest 

minimum 

Euclidean 

distance 

value 

between 

two classes 

Classes names 

 

largest 

maximum 

Euclidean 

distance 

value 

between 

Two 

classes 

Classes 

names 

 

2 10,11 0.038706 SVL,DVL+SVL 0.36295 LB,SVL+IL 

3 2,8,10 0.049672 LB,IC 0.336 H,SVL+IL 

4 2,8,10,13 0.075514 H,IL 0.34664 H,SVL+IL 

5 2,8,10,11,13 0.085061 SVL+IL,DVL+IL 0.37783 LB,SVL+IL 

6 2,8,10,11,12,13 0.086911 H,IL 0.37819 LB,SVL+IL 

14 1-14 0.090919 H,IL 0.38552 LB,SVL+IL 

Table 10.2 Performance of the best Euclidian distances with different feature combinations 

As can be seen from the previous table, the variables contributing most significantly to the Q-

statistic with different combinations are Clearance Factor and Histogram Lower Bound because 

they are have high amplitude and these features were repeated for different combinations of 

features and achieved the largest minimum Euclidean distance value between the classes. This 

also shows that these features are sensitive to change in each case. See Figure 10.11.  
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Figure 10.11 Overall Q contribution charts for 8 cases based on PCA model 
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information obtained from the contribution plots is useful for investigating the cause of the 

fault. 
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We can therefore represent the faults as combinations of variables. Figure 10.13 and Figure 

10.14 present a way to achieve separation between the normal operation and operation with 

any of the given faults with the optimal distances between classes. It provides the best 

combination of variables, with which to detect faults most effectively.  

 

Figure 10.13 Q contribution Fault classifications based on feature clearance factor and 

histogram lower bound combination 

 

 

Figure 10.14 Q contribution Fault classifications based on features mean, range and clearance 

factor combinations 
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10.2.3.2 Contribution Plots 𝑫 Statistic 

The contribution plots for T2 can be used to help identify a signature of a particular fault as can 

be shown in Figure 10.15. One can see that certain variables have large contribution, i.e. large 

deviation from normal process behaviour, and can be associated with a particular fault. 

The figure shows the D contributions plots for the fourteen features of eight conditions cases. 

We can conclude that all the variables are contributing. The variables that had high deviations 

were mostly variables Amplitude Mean, Peak Factor, Kurtosis, Entropy, Inter Range, Clearance 

Factor, Normal Negative log-likelihood value and Weibull Negative log-likelihood value. On the 

other hand, the reset of variables contributed significantly to the dissimilarity.  

 

Figure 10.15 D contribution charts for 8 cases based on PCA model 
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No of 
input 

features  

Feature 
number 

largest 
minimum 
Euclidean 
distance 

value 
between two 

classes 

Classes names largest maximum 
Euclidean distance 

value between 
Two classes 

Classes 
names 

2 2,4 0.89144 LB, DVL+SVL 14.14.8228 LB, SVL+IL 

3 3,4,9 0.79031 LB, DVL+SVL 14.8675 LB, SVL+IL 

4 4,8,9,11 0.89755 LB, DVL+SVL 14.8288 LB, SVL+IL 

5 1,2,3,4,9 0.96775 LB, DVL+SVL 14.8997 LB, SVL+IL 

6 1,2,3,4,9,11 1.0224 LB, DVL+SVL 14.9025 LB, SVL+IL 

7 1,2,3,4,5,9,

11 

2.2865 LB, DVL+SVL 15.1242 LB, SVL+IL 

8 1,2,3,4,5,6,

9,11 

2.6909 H, DVL+SVL 15.3336 LB, SVL+IL 

9 1,2,3,4,5,6,

7,9,11 

2.7044 H, DVL+SVL 15.3367 LB, SVL+IL 

10 1,2,3,4,5,6,

7,8,9,11 

2.7853 H, DVL+SVL 15.3415 LB, SVL+IL 

11 1-11 2.8025 H, DVL+SVL 15.6214 LB, SVL+IL 

12 1-12 2.8101   H, DVL,SVL 15.649 LB, SVL+IL 

13 1-13 2.8104 H, DVL+SVL 15.6491 LB, SVL+IL 

14 1-14 2.8672 H, DVL+SVL 15.7084 LB, SVL+IL 

Table 10.3 Performance of the best Euclidian distances with different feature combinations 

As can be seen from the previous table that the variables contributing most significantly to the 

D-contribution with two features combinations are Amplitude Mean and Peak Factor because 

they have high amplitude and these combined features were repeated for different 

combinations of features and achieved the largest minimum Euclidean distance value from 

different two features combinations between the classes also showing that these features are 

sensitive for change for each cases. See Figure 10.16. 

 

Figure 10.16 Overall D contribution charts for 8 cases based on PCA model 
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As can be seen from the Figure 10.17 the features Amplitude Mean and Peak Factor show large 

differences between cases. The figure shows that variable Amplitude Mean contributes most to 

the discharge valve leakage fault and the loose drive belt fault. Variable Peak Factor also 

recorded the highest contribution for the combined suction valve leakage with discharge valve 

leakage fault and suction valve leakage fault. Thus, the information obtained from the 

contribution plots is useful for investigating the cause of the fault. 

 

Figure 10.17 𝑫 contribution charts for fault classification based on features Amplitude Mean 

and Peak Factor 
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Figure 10.18 D contribution Fault classifications based on feature Mean and Peak factor 

combination 

 

Figure 10.19 D contribution Fault classifications based on features RMS, Peak factor and inter 

range combinations 
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contributions of the Q-plot and D-plot, were presented in a way which allows it to be used with 

any latent variable component or regression model to detect a specific progress variable, the 

variables related to the faults are identified. Intention is to find effective features for fault 

classification. In the same time the Euclidean distances were used to calculate the optimal 

distances between the classes. 

The Q-contributions show that two particular variables - Clearance Factor and Normal Negative 

log-likelihood value - gave the largest values of the minimum difference between different 

cases, whereas the variables Amplitude Mean and Peak Factor were higher contributions for D-

plots, thus these were used to detect and differentiate the given faults. 

The performance of the PCA improved considerably when using features extracted from the 

time domain. It did not outperform the PCA using features extracted from envelope spectrum 

in the fault diagnosis due to noise and the PCA procedure needs to be improved. 

The previous method is useful in fault location and understanding the fault impacts through the 

identified variables for process time. This proposed procedure will be applied with data 

measured from a real batch process involving multi-stages and phases for RC.  
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Chapter 11  

Conclusion and Plan for Future Work 

In this chapter, the author presents his conclusions on the CM of RCs using AI approaches and 

PCA method with vibration data. Finally, it describes the contributions to knowledge made by 

this research and makes recommendations for future work. 

11.1 Conclusions  

Although several techniques have been reported in the literature for RCs fault detection and 

diagnosis, it is still challenging to implement a reliable CM system for real-world industrial 

applications due to the complex structure and the often poor operating conditions of these 

compressors. Failures often occur which can have severe consequences. To find a technique 

which can accurately monitor and diagnosis the condition of the compressor is becoming 

increasingly important to avoid system and machine failure, and so improve general reliability 

and uptime. Although, the vibration signal of a RC in a single service cycle are contains non-

linear characteristics (e.g. due to the impacts resulting from the movement of the suction and 

discharge valves). The theme of this thesis is to develop a novel intelligent system to tackle 

these related challenges. The strategy is to develop more robust techniques at each processing 

stage to improve the CM reliability. 

This work presented an approach for RC fault detection and diagnosis in time domain, 

frequency domain, envelope spectrum vibration analysis, and AI field using NNs, SVM, RVM, 

GAs techniques and PCA method see Figure 11.1. 
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Figure 11.1 Conclusion of thesis work 

The results obtained in this project have revealed that it can be concluded that: 

Conclusion 1: An available RC was integrated with additional sensors and used as a test 

facility for experimental measurements required for the development of the key parameters for 
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compressor condition evaluation. A hardware signal conditioning and data acquisition program 

was designed and implemented. 

Conclusion 2: Seven typical compressor common faults types are investigated. Discharge 

valve leakage causes a small increase of modulation due to a higher cylinder pressure in the 

second stage whereas the intercooler leakage causes a small decrease in the modulation due 

to a lower cylinder pressure in both stages. However, belt looseness results in significant 

reduction of the modulation because of belt slippage and damping effects. In addition, three 

more combined faults were created on the test rig: discharge valve leakage with intercooler 

leakage combined fault, suction valve leakage with intercooler leakage combined fault and 

discharge valve leakage with suction valve leakage combined fault. Correspondingly, these 

different faults introduce local increase, local decrease and global changes to the vibration 

valve motion and hence are representative to different compressor faults.  

Conclusion 3: The mathematical model of the two-stage RC developed as part of this project 

has been tested against the experimental rig for a number of operating conditions. As seen in 

Section 4.9.2 the 1st stage and 2nd stage healthy valve operation shows that is good qualitative 

and reasonable quantitative between the model predictions of the crank angle at which the 

suction and discharge valves open and close, and corresponding measured vibration signals 

from the head of the 2nd  stage cylinder.  

Conclusion 4: Examination of vibration signals under different operating conditions has shown 

that the signals are very complex and there is an enormous amount of unknown information 

associated with the waveform of the signals. The difference in amplitudes of the signals was 

due to different operating conditions and limited information could be extracted from the 

vibration waveform. Results from the vibration waveform showed that faults in the RC are 

difficult to detect using this approach.  

Conclusion 5: Most statistical parameters were applied in the RC with different conditions. 

The statistical analysis based on RMS has the ability to detect the compressor defects at 

intercooler leakage and the combination faults that include the intercooler faults for different 

discharge pressure. Comparison of the peak factor, kurtosis and skewness values of a given 

vibration signal with values determined using vibrations from a healthy compressor and faulty 

compressor could not detect the presence defect with different discharge pressure.  

Conclusion 6: The results obtained demonstrate the capacity of vibration analysis for the 

detection of RC faults. It is concluded that vibration analysis can be used as a reliable 

technique to identify the health status of the RC driven by the valve motions.  

Conclusion 7: The Envelope spectrum method can be used more reliably in fault detections 

than time domain analysis and frequency domains are more sensitive to fault detection. The 



THE USE OF ADVANCED SOFT COMPUTING  
FOR MACHINERY CONDITION MONITORING 

 

DEGREE OF DOCTOR OF PHILOSOPHY (PHD) Page 200 

results in Figures 5.15 to 5.18 showed that the use of such analyses can enhance the ability to 

differentiate between healthy and faulty RC patterns in envelope spectra under certain RC 

operating conditions.  

Conclusion 8: Features from the time domain and envelope spectrum were extracted from 

vibration signals, for separating different healthy conditions of the RC. It was shown that PNNs 

together with the envelope spectrum features are suited for CM of a RC. One major drawback 

of the use of single valued statistical and spectral measures is that they produce a large 

number of features and in general only a subset of those components generated are used for 

classification.  

The PNN using the combination of root mean square, peak factor, lower bound, upper bound, 

entropy, variance, skewness, kurtosis, maximum value and range from the time domain gives 

a classification rate of 43.0%. With envelope spectrum analysis a successful classification rate 

of 100% has been achieved, which is superior but it requires 30 harmonic peaks in the 

spectrum, which indicates that the envelope spectrum feature is more useful for classification. 

The GAs approach based on the concept of dominance was developed for optimal feature 

selection. It is shown that GA is well suited to feature selection as it can produce a diverse set 

of solutions with differing performance versus complexity trade-off characteristics in a single 

population. The spread parameter of the PNN was also optimised via GA. With GA-PNN 

approach, the success rate of using the time domain feature is very low, only 48% correct 

classification. However, in the envelope spectrum the success rate is uniformly high. 

Especially, with 30 input harmonics it reaches 100% successful classification. 

It thus can be stated that the application of GA with features from the time domain optimised 

the number of input features with high correct classification than PNN without GA. On the other 

hand, the PNN approach with envelope spectrum was tested with a large number of inputs and 

very good results were achieved. It was demonstrated that a GA is capable of selecting a 

subset of less than half the inputs from a set of 120 features that allow the ANN to perform 

with 99% accuracy. Moreover, it is concluded that features from the envelope spectrum are 

the optimal features for classifying the healthy and faulty conditions of RCs. 

Conclusion 9: The SVM was developed and shown capable of detecting the designated faults 

and distinguishing different types of faults.  In this study, the SVM classifier when used with 

features extracted from the envelope spectrum for binary classes gave a success rate of 

100%. Briefly, the use of SVMs for binary classes as a powerful tool for fault detection is 

presented. Moreover, the performance of SVM has been found to be substantially better with 

the OAA strategy. With multiple classes the performance of the SVM classifier was satisfied. 

The best success rate (88.00%) was achieved using harmonics between 18 and 25 of the 
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peaks in the envelope spectrum. The results show the potential application of GAs for selection 

of features in machine condition detection. 

Conclusion 10: Two procedures of new RC fault detection and diagnosis methods based on 

RVM of vibration data are proposed in this research. The first procedure is presented for 

detection of RC condition using RVMs-OAO classifiers from envelope spectrum vibration signals 

and the selection of input features and the appropriate classifier parameters have been 

optimised using RVMs-OAO based on GAs approach. 

The second procedure is to implement the direct multi-class mRVMs algorithms of RC fault 

detection and diagnosis from envelope spectrum vibration data. Both procedures of RVMs are 

viewed as classifier and features selection respectively. 

The RVM develops an OAO scheme with GA feature optimisation for applying this binary 

classifier to the compressor’s data, and examines the harmonics selected for classification to 

find the insight of the classifier in association with the physical supports. In addition, the 

performance of the multiclass multi-kernel mRVM is also explored for obtaining more efficient 

fault classification. The accuracy of both techniques is discussed individually to determine the 

optimum fault classifier. The results show that the models behave well, and the classification 

accuracy rate is up to 97% for both algorithms. 

Conclusion 11: The PCA model approaches demonstrated allow the detection of single and 

hybrid faults in a two stage RC. The model developed from baseline consists of the seven most 

important PCs which explain nearly 99% of the variances from 14 original vibration features 

extracted from the statistical time domain.  

The presence of faults can be detected by comparing the T 2and Q values from fault features 

from the time domain of vibration signals with the corresponding thresholds developed based 

on baseline data. However, the Q statistic produces a better detection for the most faults cases 

investigated, showing it more suitable for fault detection. Moreover, the contributions of the Q-

plot and D- plot, were presented in a way which allows it to be used with any latent variable 

component or regression model to detect a specific progress variable, the variables related to 

the faults are identified. The intention is to find effective features for fault classification. In the 

same time the Euclidean distances were used to calculate the optimal distances between the 

classes.  

The Q-contributions show that two particular variables Clearance Factor and Normal Negative 

log-liklihood value gave the largest values of the minimum difference between different cases, 

whereas the variables Amplitude Mean and Peak Factor were higher contributions for D-plots, 

thus these were used to detect and differentiate the given faults. 



THE USE OF ADVANCED SOFT COMPUTING  
FOR MACHINERY CONDITION MONITORING 

 

DEGREE OF DOCTOR OF PHILOSOPHY (PHD) Page 202 

Conclusion 12: The PCA clearly performed better than the AI approaches when diagnosing 

the faults using features extracted from the time-domain. 

11.2 Summary of Contributions 

The work conducted by the author and described by this thesis included several aspects that 

were novel and not previously implemented by other researchers or practitioners. A summary 

of these contributions is given below: 

Contribution 1: The author believes that the application of vibration for detection and 

diagnosis of RC with separate and combination faults (e.g. discharge valve leakage, suction of 

valve leakage, loose drive belt, intercooler leakage and different combination faults such as 

discharge valve leakage combined with suction valve leakage, discharge valve leakage 

combined with intercooler leakage and suction valve leakage combined with intercooler 

leakage) is novel. No work has been found in the literature that describes the use of multiple 

faults for CM of multi-stage RCs using vibration data, either experimentally or using a 

mathematical model.  

Contribution 2: The application of a mathematical model for a two-stage RC has not 

previously been used for RC faults CM with different faults.  

Contribution 3: The author believes that the use of envelope spectrum techniques for the 

analysis of the vibration for a RC monitoring for CM is novel as no reports in the literature have 

been found of using envelope for fault detection and fault diagnoses for RCs.  

Contribution 4: The author introduced an effective features selection using PNN technique 

and GAs and also optimised spread parameter of the PNN features, which has not formerly 

been employed for RC fault monitoring using vibration. 

Contribution 5: The author of this research believes that the research work in this thesis is 

the first work to find the optimal features and high accuracy rate for classification with eight 

different conditions classes for the RC from vibration data using hybrid techniques, which 

optimise the SVM with GAs for training process. 

Contribution 6: There are no previous reports in the literature of the use of the RVM with 

binary and multi classes via GAs to find the optimal features and the high accuracy rate for 

classification from the vibration envelope features extraction of a RC. In addition, the mRVM 

direct was applied for first time to find the optimal features and calculate the classification rate 

for the vibration data from RC. 

Contribution 7: The application of the PCA model has investigated using the time domain 

vibration features for detection and diagnosis from a multi stage RC with base line data sets 

and seven different faults can be detected by comparing the values from the features of fault 
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vibration signals with corresponding thresholds developed from baseline data. However, the Q-

statistic T2-statistic procedure produces a better detection as it can separate the seven faults 

completely. Furthermore, a study of Q-contributions and D-contribution have found and 

determined the original features which allow full classification of different simulated faults. This 

study has not previously been used for RC fault CM.  

11.3 Recommendations for Future Work 

This section lists recommendations for further work on the research: 

Recommendation 1: It is recommended that further academic research should be conducted 

into the effective utilisation of envelope features to detect vibration faults in RCs. 

Recommendation 2: Further investigations using the vibration in a RC could be extended as 

a fault detection capability for other faults including the piston system, transmission system 

and the driving electrical motor. These faults could also include both first and second stages of 

the RC. 

Recommendation 3: Data sets could be extracted from more than one sensor which would 

be mounted in different positions: these could be two accelerometers mounted at 900 to each 

other, or an accelerometer with e.g. a microphone for airborne sound or an encoder for 

instantaneous angular speed.  

Recommendation 4: To develop equations for the determination of suction and discharge 

conditions when the compressor is operated with different combined faults. 

Recommendation 5: It is recommended that further academic research to extract features 

from the time-frequency domain can be used as inputs into computational intelligence, as 

studied in this thesis.  

Recommendation 6: The proposed RC fault detection techniques and decision-making 

schemes will be applied to other mechanical systems such as bearing, gearboxes and engines. 

Recommendation 7: Implement the developed monitoring tools for real-world industrial 

monitoring applications, so as to improve production quality and to reduce costs. 

Recommendation 8: Development of fault diagnoses depending on AI technologies. There 

are a range of different types of AI techniques such as fuzzy logic; fuzzy neural networks and 

that could have a role in developing better-quality vibration diagnostic systems with highly 

developed sensitivity, dependability and automation. 

Recommendation 9: It is recommended that further academic research to select the kernel 

width with GAs to ensure the ability to obtain the optimal value.   
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