
University of Huddersfield Repository

Chrpa, Lukáš, McCluskey, T.L. and Osborne, Hugh

On the Completeness of Replacing Primitive Actions with Macro-actions and its Generalization to
Planning Operators and Macro-operators

Original Citation

Chrpa, Lukáš, McCluskey, T.L. and Osborne, Hugh (2015) On the Completeness of Replacing
Primitive Actions with Macro-actions and its Generalization to Planning Operators and Macro-
operators. AI Communications, 29 (1). pp. 163-183. ISSN 0921-7126

This version is available at http://eprints.hud.ac.uk/id/eprint/25260/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

1

On the Completeness of Replacing Primitive
Actions with Macro-actions and its
Generalization to Planning Operators and
Macro-operators

Lukáš Chrpa
Thomas Leo McCluskey
Hugh Osborne

PARK Research Group
School of Computing and Engineering
University of Huddersfield
{l.chrpa, t.l.mccluskey, h.r.osborne}@hud.ac.uk

Automated planning, which deals with the problem
of generating sequences of actions, is an emerging re-
search topic due to its potentially wide range of real-
world application domains. As well as developing and
improving planning engines, the acquisition of domain-
specific knowledge is a promising way to improve the
planning process. Domain-specific knowledge can be
encoded into the modelling language that a range
of planning engines can accept. This makes encoding
domain-specific knowledge planner-independent, and
entails reformulating the domain models and/or prob-
lem specifications. While many encouraging practi-
cal results have been derived from such reformula-
tion methods (e.g learning macro-actions), little atten-
tion has been paid to the theoretical properties such
as completeness (keeping solvability of reformulated
problems). In this paper, we focus on a special case -
removing primitive actions replaced by macro-actions.
We provide a theoretical study and come up with con-
ditions under which it is safe to remove primitive ac-
tions, so completeness of reformulation is preserved.
We extend this study also for planning operators (ac-
tions are instances of operators).

Keywords: AI planning, problem reformulation,
macro-actions, action elimination

1. Introduction

AI planning [17] deals with the problem of gen-
erating a sequence of actions in order to achieve
a desired goal situation from some initial state. In
this area (goal achievement planning) many opti-
mized planning engines [25,31] are now available
which receive as input the planning problem in
some variant of the language PDDL [16]. These
planning engines are being used as black boxes in
applications, where the interface to the engine is
the Problem and Domain Model (PDM) defined
in the language PDDL, and the solution plan gen-
erated is the output. However, it is well known
that AI planning is intractable in general (up to
PSPACE-complete) [6] but on the other hand spe-
cific PDMs can be solved very efficiently (in poly-
nomial time) [21]. Although current generic plan-
ning engines are very refined, there is no guaran-
tee that they will solve a problem in a reason-
able length of time even if the problem itself is
tractable.

An important task of a knowledge engineer is
to define PDMs in such a way that required tasks
are realistic and solvable by existing planners in an
acceptable time. Realistic PDMs can be obtained
by defining predicates and planning operators or
actions, which are instances of operators, in cor-

AI Communications

ISSN 0921-7126, IOS Press. All rights reserved

2

respondence with elementary situations or actions
of autonomous entities or robots. For example, in
the well known BlocksWorld domain [33] a pred-
icate holding(?x)1 refers to an elementary situ-
ation where a robotic hand is holding a block ?x

or a predicate on(?x,?y) refers to an elementary
situation where a block ?x is stacked on a block
?y. Similarly, an operator unstack(?x,?y) refers
to an elementary action where a robotic hand un-
stacks a block ?x from a block ?y or an operator
putdown(?x) refers to an elementary action where
a robotic hand puts a block ?x down on the ta-
ble. Even though the BlocksWorld domain is com-
putationally easy many current planning engines
will fail on particular problem instances. The rea-
son for this unwanted planners’ behavior is in the
definition of given PDMs. If the BlocksWorld do-
main is defined as indicated above then it provides
sufficient information about the environment, and
solution plans should be easily executable but, on
the other hand, such a domain does not contain
‘hidden’ heuristics explicitly (e.g. blocks can be
unstacked only from their initial positions etc.).
One general method that has been explored to al-
leviate this problem is to devise a means of refor-
mulating the input PDM by taking into account
its hidden specifics, ensuring that the reformulated
problem is much more efficiently solved than the
original. After a solution is obtained, the output
solution plan is transformed back to the original
formulation, to retain the black box property of the
planning engine. The advantage of this approach is
in its independence from planning engines: the re-
formulation effectively acts as a ‘wrapper’ around
the planning engine. Of course, any reformulation
technique must ensure that the representations of
reformulated PDMs will need the same level of ex-
pressivity as the original PDMs (e.g. if the origi-
nal PDM is represented in a STRIPS formulation,
then the reformulated PDM must be represented
in the STRIPS formulation as well).

It may be observed that in the BlocksWorld do-
main instances of the operator unstack(?x,?y)

are often followed by instances of the operator
putdown(?x). Hence, it is reasonable to assemble
these operators into a macro-operator. Creating
macro-operators [13], which encapsulate sequences
of primitive operators, is a well known approach
to reformulation which in some cases can speed

1Notation ?x denotes a variable symbol

up plan generation considerably [30,5]. Methods
have been developed where potentially unneeded
operators can be replaced by a generated macro-
operator, although in some cases this has been
found to cause reformulated solvable problems to
become unsolvable [7]. While many encouraging
practical results have been derived from such re-
formulation methods, there are still gaps in the-
ory - mostly related to completeness of given refor-
mulation techniques (i.e. problems remain solvable
after being reformulated).

Informally, reformulation schemes are pairs of
functions capturing the reformulations of both
problems and plans. Reformulation techniques
such as these are general planner-independent
techniques that often significantly improve the
planning process. In this paper, we will develop
the theoretical foundations of using combinations
of these strategies while preserving completeness.
In particular, we provide a theoretical study and
construct conditions under which it is safe to elim-
inate primitive actions and replace them by gen-
erated macro-actions. Moreover, we extend this
to planning operators and macro-operators which
makes it possible to determine completeness of
eliminating primitive operators. Properties such
as soundness and completeness on common refor-
mulation schemes - generating macro-actions and
eliminating actions - have been considered only
briefly in the past [8,10]. Here, we provide a much
deeper study bringing more detailed results, and
also identify and discuss peculiarities which may
result in ‘false negatives’, i.e., situations in which
we wrongly assume that removing primitive ac-
tions (operators) causes losing completeness. With
respect to the planner independent nature of the
PDM reformulation strategies studied, our work
can be understood as forming a theoretical frame-
work which can be used, for instance, by knowl-
edge engineers who design PDMs. In particular,
domain engineers might use some of the existing
techniques to generate macro-operators and then
apply our framework to remove some of the prim-
itive operators.

This paper is organized as follows. We begin
with discussing related work, then we define no-
tions from AI planning and graph theory which
help the reader to understand the text. We then
introduce Reformulation Schemes as a general for-
mal framework describing PDM reformulations
and using this framework we introduce Macro-

3

action and Action Eliminating Schemes followed
by a theoretical analysis of their soundness and
completeness. After that we continue with a thor-
ough theoretical analysis of situations in which,
after creating a new macro-action, we can elim-
inate primitive actions without losing complete-
ness. This is then extended in terms of investigat-
ing whether after creating a new macro-operator
we can eliminate primitive planning operators
without losing completeness. We then provide sev-
eral case studies, discuss our theoretical results
and finally make our conclusions and discuss pos-
sible directions for future work.

2. Related Work

Usefulness of macro-actions (or macro-operators)
has been widely studied in the past. The idea
of learning macro-actions dates back to 1970s
when STRIPS [15] and REFLECT [13] were de-
veloped. More recently, systems such as Wiz-
ard [30], which learns macro-actions by apply-
ing genetic programming, Macro-FF [5], which
learns macro-actions by analysing relations be-
tween static predicates, or Marvin [12], which
helps the FF planner [25] to escape local min-
ima of heuristic values during search, bring signif-
icant improvements into planning. Chrpa [7] in-
troduced another macro-operators learning sys-
tem which in contrast to others allows to remove
primitive operators which were replaced by learnt
macro-operators in training plans. A similar idea
has been used in a problem-specific system for
learning macro-operators [1]. Both systems per-
formed well which justified the rationale for re-
moving primitive operators (or actions). However,
both systems remove primitive operators in an ad-
hoc way which might cause loss of solvability of
some planning problems. These systems have been
evaluated empirically and little attention has been
paid to theory. On the other hand, there exist the-
oretical studies about the impact of macro-actions
in planning.

It is known that using macros might reduce
the complexity of the problem [27]. Jonsson [26]
presents a method for optimal planning with
macro-operators and proved tractability of the
method for several subclasses of planning problems
with acyclic causal graph. Bäckström and Jons-
son [2] studied macro-operators as a technique for

compact plan representation and undertook an in-
teresting theoretical study about their impact on
computational complexity of planning.

There are a few theoretical studies highly rele-
vant to our work. Eliminating redundant actions,
i.e., actions whose effects can be achieved by con-
secutive application of other actions, has been al-
ready studied [20]. The problem of deciding ac-
tion redundancy is PSPACE-complete, however,
some redundant actions can be determined in poly-
nomial time [20]. Haslum’s work in fact removes
macro-actions, since they are trivially redundant.
In contrast to this, we study how to remove prim-
itive actions which can be replaced by macro-
actions. Abstracting planning problems by their
reformulation can reveal their (hierarchical) struc-
tures which helps planning engines to solve plan-
ning problems much more easily [18]. A part of
this work consists of a theoretical study of ‘tun-
nel’ macro-actions. A ‘tunnel’ macro-action encap-
sulates a sequence of actions such that if the first
action of the sequence is applied, then the remain-
ing actions must be applied as well. Hence, ‘tun-
nel’ macro-actions can replace the corresponding
sequences of actions. This is a special case of what
we present in this paper. Schölz [32] introduced
a method for determining action relevance, that
guarantees optimality of solutions (in contrast to
most of existing techniques for learning macro-
operators), however, the method is applicable only
on a restricted class of planning problems (hav-
ing an acyclic causal graph). The method runs in
polynomial time on several subclasses of planning
problems. The method has been recently extended
for problems with non-acyclic causal graphs [19].

3. Preliminaries

This section is devoted to a brief introduction
of (classical) planning [17] and graph theory [29]
that is necessary to understand the paper.

Traditionally, AI planning deals with the prob-
lem of finding a sequence of actions transforming
the environment from some initial state to a de-
sired goal state. In this paper we will consider only
classical planning, i.e. planning in deterministic,
fully observable and static environments. The defi-
nitions below will formally introduce basic notions
for classical planning (set-theoretic and classical
representation).

4

Definition 3.1. A planning problem in the set-
theoretic representation is a tuple Π = (P,A, I,G)
such that:

– P is a finite set of atoms (propositions)
– I ⊆ P is the initial situation (initial state)
– G ⊆ P is the goal situation (goal state is such

a state that contains all the atoms from G)
– A is a set of actions, action a ∈ A is speci-

fied via its precondition (pre(a) ⊆ P), nega-
tive effects (eff−(a) ⊆ P) and positive effects
(eff+(a) ⊆ P)

�

Definition 3.2. Let Π = (P,A, I,G) be a plan-
ning problem. We denote SΠ ⊆ 2P as a set of
states. We say that an action a ∈ A is applica-
ble in a state s ∈ SΠ if and only if pre(a) ⊆ s.
γΠ : SΠ × A→ SΠ is a transition function, where
γΠ(s, a) = (s \ eff−(a)) ∪ eff+(a) if a is applicable
in s, otherwise γΠ(s, a) is undefined. The transi-
tion function can be generalized for sequences of
actions as follows:

γ∗Π(s, 〈〉) = s

γ∗Π(s, 〈a〉) = γΠ(s, a)

γ∗Π(s, 〈a1, a2, . . . , ak〉) = γ∗Π(γΠ(s, a1), 〈a2, . . . , ak〉)

�

Definition 3.3. A plan π is a sequence of actions
〈a1, . . . , ak〉. The length of plan π is |π| = k. Let
Π = (P,A, I,G) be a planning problem and π be
a plan. We say that π is a solution of Π if and
only if G ⊆ γ∗Π(I, π). We say that π is optimal if
|π| ≤ |π′| for every π′, a solution of Π. �

The set-theoretic representation is quite imprac-
tical due to the need to define a set of atoms
and actions individually for each problem. In
fact, atoms and actions incorporate certain objects
(e.g. at-robot2-loc4, move-robot1-loc2-loc3),
therefore every change related to objects re-
quires the modification of atoms and actions as
well. The classical representation [17], on the
other hand, instead of propositions uses predicates
(e.g. at(?robot,?loc)) and instead of actions
the classical representation defines planning op-
erators (e.g. move(?robot,?locFrom,?locTo)).
Hence predicates and planning operators do not

have to be modified if some objects are added, re-
moved or renamed (e.g. robot2 is added, robot1
is removed or loc2 is renamed to city1). There-
fore it is reasonable to distinguish between plan-
ning domains (predicates, planning operators) and
planning problems (planning domain, objects, ini-
tial and goal situation). Formal definitions follow.

Definition 3.4. A planning operator is a 4-tuple
o = (name(o), pre(o), eff−(o), eff+(o)), where
name(o), the name of the operator o, is an ex-
pression of the form name(x1, . . . , xk) where name
is called an operator symbol, x1, . . . , xk are all
the variable symbols that appear in the operator,
and name is unique. pre(o), eff−(o) and eff+(o) are
generalizations of the preconditions, negative and
positive effects of the set-theoretic action (instead
of being sets of propositions, they are sets of un-
grounded predicates). �

Definition 3.5. In the classical representation, a
planning domain is a pair Σ = (P,O) where P is
a set of predicates and O is a set of operators. A
planning problem is a tuple Π = (Σ, C, I,G) where
Σ is a planning domain, C is a set of objects (con-
stants), I is an initial situation and G is a goal
situation. �

Obtaining the set-theoretic representation of
planning problems from the classical representa-
tion is done by grounding, i.e., atoms (proposi-
tions) are obtained by applying all possible substi-
tutions from variables to constants (in C) on pred-
icates, actions are obtained from planning opera-
tors analogously.

Remark 3.6. Note that predicate grounding does
not directly provide propositions but grounded pred-
icates (all their arguments are constants). How-
ever, there is a straightforward relation between
grounded predicates and propositions.

The state space of planning problems can be
represented by a (finite) state transition system.

Definition 3.7. A state transition system is a 5-
tuple T = (S,L, T, I,G) where:

– S is a finite set of states (the state space)
– L is a finite set of labels
– T ⊆ S × L× S is a transition relation
– I ⊆ S is a set of initial states
– G ⊆ S is a set of goal states

5

We say that T has the transition (s, l, s′) if
(s, l, s′) ∈ T . �

Definition 3.8. Let Π = (P,A, I,G) be a plan-
ning problem. A state transition system TΠ repre-
senting Π is defined in the following way: TΠ =
(SΠ, A, {(s, a, s′) | s, s′ ∈ SΠ; a ∈ A; γΠ(s, a) =
s′}, {I}, {sg | sg ∈ SΠ ∧G ⊆ sg}) �

A state transition system can be represented
by a directed graph where nodes (or vertices) are
states and edges are transitions. Therefore we will
use the well-know terminology from graph theory
such as path, degree, distance etc. Note that tran-
sitions correspond to the transition function (γ)
and (partial) paths correspond to the generalized
transition function (γ∗, which can be understood
as the reflexive transitive closure of γ). Straight-
forwardly, solvability of the planning problem de-
pends on the existence of a path (sequence of tran-
sitions) from the initial state to at least one of the
goal states in the corresponding state transition
system.

Hereinafter for clarity reasons, set of states S
and (generalized) transition function γ (γ∗) will
be used without any index specifying the planning
problem when it is not necessary to distinguish
between different planning problems.

4. Reformulation Scheme

There are many ways in which PDMs can be
encoded even using the same representation (e.g.
classical representation). Some of the encodings
might be hard for planners while others might not.
For instance, Hoffmann [24] shows how problem
analysis of PDMs can shed light on how hard par-
ticular encodings of benchmark domains are. This
leads to the question of whether the encodings can
be reformulated in order to make the problem eas-
ier to solve.

For our purpose we use a theoretical frame-
work [8,10] which encapsulates characteristic prop-
erties of PDM reformulations. PDM reformulation
can be understood as a function mapping plan-
ning problems to other planning problems. Since
solutions of reformulated planning problems usu-
ally do not directly correspond to solutions of the
original problems, we also need a function that

maps plans, solutions of reformulated problems, to
plans, solutions of original problems. There are two
main properties of reformulations, namely sound-
ness (every solution of the reformulated problem
must be convertible to a valid solution of the orig-
inal problem) and completeness (besides sound-
ness, every reformulated problem must stay solv-
able if the original one is solvable). The formal def-
initions follow.

Definition 4.1. Let PROBS be a set of planning
problems. Let PLANS = {π | π is a solution of
some Π ∈ PROBS} be a set of plans. A reformu-
lation scheme for planning is a pair of functions
(probref, planref) defined in the following way:

– probref : PROBS → PROBS is a problem
reformulation function

– planref : PLANS → PLANS is a plan refor-
mulation function

The reformulation scheme (probref, planref) is
sound if for every π′ ∈ PLANS and Π ∈ PROBS
such that π′ is a solution of probref(Π), planref(π′)
is a solution of Π.

The reformulation scheme (probref, planref) is
complete if it is sound and for every solvable
Π ∈ PROBS (i.e., there is a solution of Π) it
holds that probref(Π) is also solvable. �

The whole planning process incorporating refor-
mulation schemes can be summarized in two steps
(let (probref, planref) be a reformulation scheme for
planning, Π be a planning problem and π′ be a
plan).

1. Run the planner for the reformulated problem
probref(Π)

2. If π′ is a solution of probref(Π), then return
planref(π′) as a solution of Π. Otherwise re-
turn no solution.

Using sound reformulation schemes ensures that
solutions provided by the above process are valid
solutions of original problems. Using complete re-
formulation schemes in addition ensures that if no
solution is found by the above process, then the
original problem is unsolvable.

Reformulation schemes can be composed (like
functions). We show that composition of reformu-
lation schemes does not affect soundness or com-
pleteness (originally proved in [8]).

6

Proposition 4.2. Let (probref, planref) and (probref ′,
planref ′) be sound (resp. complete) reformulation
schemes for planning. Then, (probref ′ ◦ probref,
planref ◦ planref ′) is a sound (resp. complete) re-
formulation scheme for planning.

Proof. It follows from the definition 4.1 that ap-
plying a problem reformulation function on a plan-
ning problem will result in another planning prob-
lem. Hence, clearly a reformulation scheme com-
posed by sound (complete) reformulation schemes
is sound (complete).

In general, reformulation schemes can be under-
stood as ‘black-box’ procedures which take either
a planning problem description as an input and
provide a reformulated planning problem descrip-
tion as an output, or take a plan (solving a refor-
mulated problem) as an input and reformulate the
plan back (to correspond with the original prob-
lem) as an output. It is reasonable to somehow
classify reformulation schemes. For example, the
most common and well studied kinds of reformula-
tion schemes (from the empirical perspective) are
adding macro-actions or eliminating unpromising
actions.

4.1. Macro-action Scheme

Using macro-actions (or macro-operators) in
planning is quite popular [30,5,7,28]. Macro-actions
represent sequences of actions but they are en-
coded like ‘normal‘ actions. Informally, macro-
actions represent ‘shortcuts’ in the state space.

Definition 4.3. Let a1, . . . , ak be actions. We say
that an action a1,...,k is a macro-action over the
sequence of actions 〈a1, . . . , ak〉 if a1,...,k is an ac-
tion and for every s ∈ S (in a given problem)
γ(s, a1,...,k) = γ∗(s, 〈a1, . . . , ak〉) or both are unde-
fined.

Using our theoretical framework, a macro-action
scheme can be defined as a specific reformulation
scheme as follows.

Definition 4.4. Let (macro, unfold) be a reformula-
tion scheme for planning. Let macro be a problem
reformulation function such that for every plan-
ning problem Π = 〈P,A, I,G〉 and Π′ = 〈P,A ∪
Am, I, G〉 such that macro(Π) = Π′ it is the case
that for every a1,...,k ∈ Am, a1,...,k is a macro-
action over the sequence of actions 〈a1, . . . , ak〉

with (a1, . . . , ak ∈ A). Let unfold be a plan re-
formulation function such that for every π′ and
π such that unfold(π′) = π every macro-action
(from Am) in π′ is replaced by the corresponding
sequence of primitive actions (from A) in π. Then,
we say that (macro, unfold) represents a macro-
action scheme. �

The following proposition formally proves that
a macro-action scheme is sound and complete [8].

Proposition 4.5. A macro-action scheme is a
sound and complete reformulation scheme for
planning.

Proof. Soundness of macro-action scheme straight-
forwardly derives from Definitions 4.3 and 4.4. If
a macro-action is present in a solution of the re-
formulated problem, then it is unfolded to a corre-
sponding sequence of actions in order to be a so-
lution of the original problem. This is because for
each state applying a macro-action has the same
result as applying the corresponding sequence of
actions.

Because a macro-action scheme does not remove
or modify actions defined in original problems, a
solution of the original problem is also a solution of
the reformulated problem. Hence a macro-action
scheme is complete as well.

Even though the reformulation scheme is de-
fined over the set-theoretic representation there is
a straightforward relation to the classical repre-
sentation (e.g. if a macro-operator is added into
the (classical) planning domain then in fact all its
instances (macro-actions) are added into the (set-
theoretic) planning problem).

4.2. Action Eliminating Scheme

Reformulating a PDM to eliminate unpromising
and/or unnecessary actions has been studied [20,
9]. Intuitively, eliminating actions can be under-
stood as narrowing passages in state spaces (state
transition systems) which helps solvers (planners)
to find solutions (plans) faster. Using our theoret-
ical framework action eliminating can be defined
as a specific reformulation scheme.

Definition 4.6. Let (elim, id) be a reformulation
scheme for planning. Let id : PLANS → PLANS
be a plan reformulation function defined as an
identity function (i.e. ∀π ∈ PLANS : id(π) = π).

7

Let elim : PROBS → PROBS be a problem re-
formulation function such that ∀Π,Π′ ∈ PROBS :
Π = 〈P,A, I,G〉, Π′ = 〈P,A′, I, G〉 and elim(Π) =
Π′ such that A′ ⊆ A. Then, we say that (elim, id)
represents an action eliminating scheme. �

Action eliminating schemes are sound but in-
complete [8] which is formally proved in the fol-
lowing proposition.

Proposition 4.7. An action eliminating scheme is
a sound but incomplete reformulation scheme for
planning.

Proof. Clearly, a solution of a reformulated prob-
lem is a solution of original one, since the origi-
nal problem consists of all actions the reformulated
problem does. However, restricting a set of actions
might make the reformulated problem unsolvable.
For example, removing all the actions while initial
state is not a goal state.

Eliminating actions which are inapplicable at
every point of the planning process (we say that
such actions are unreachable) does not affect solv-
ability of the problems, therefore, such an action
eliminating scheme is complete. Deciding action
reachability in a certain problem can be done by
setting the action precondition as a goal situation
of the problem and solving the modified problem.
Straightforwardly, deciding action reachability is
PSPACE-complete, i.e., as hard as planning itself.
Despite the high complexity many unreachable ac-
tions can be detected and pruned in a polynomial
time which is widely exploited by existing plan-
ning engines. For instance, many unreachable ac-
tions can be detected in polynomial time by ex-
ploring a Planning Graph [3]. A Planning Graph is
a structure which encapsulates all possible search
alternatives (considering a possibility of executing
actions in parallel) in the form of alternating atom
and action layers. Atom and action layers contain
atoms or actions respectively which (some of them)
may be reachable in some alternative of the plan-
ning process. Actions can interfere with each other
which may make it impossible to achieve some
atoms together. Therefore, each layer is accompa-
nied by a mutex relation determining mutual ex-
clusivity of atoms or actions (i.e. at most one of
the mutex atoms can be true in a certain layer, or
mutex actions cannot be applied simultaneously).
An i-th action layer contains all actions such that

all their precondition atoms are presented in an
i − 1-th atom layer and are non-mutex. An i-th
atom layer is determined by a union of positive ef-
fects of actions present in the i-th action layer. Ac-
tion mutexes are determined as follows: if i) an ac-
tion ai deletes positive effect or precondition atoms
of another action aj , ii) atoms in preconditions of
both actions ai and aj are mutex, then ai and aj
are mutex. Atoms are mutex if they resulted from
actions which are mutex. Expansion of a Planning
Graph starts in the 0-th atom layer consisting of all
the initial atoms. It has been shown that atom and
actions layers are monotonically increasing while
mutexes are monotonically decreasing, hence each
Planning Graph has a fixed point, i.e., atom and
action layers and mutexes remain the same after
performing an expansion step [3]. Given the fact
that the number of atoms and action is linear and
the number of mutexes is quadratic with respect
to the size of a problem, the fixed point can be
found in polynomial time.

Proposition 4.8. Let Π = (P,A, I,G) be a planning
problem. Let 〈P0, A1, P1, . . . , An, Pn〉 be a Plan-
ning Graph related to the planning problem Π and
expanded until a fixed point. Actions A \ An are
unreachable, i.e., for each a ∈ A \ An a problem
(P,A, I, pre(a)) does not have a solution.

Proof. If the Planning Graph related to Π is ex-
panded until a fixed point, then An+1 = An. In
other words, no other action can be added into
an action layer after performing an expansion step
on the n-th atom layer. We know that atom and
action layers are monotonically increasing, i.e.,
P0 ⊆ P1 ⊆ . . . ⊆ Pn and A1 ⊆ . . . ⊆ An. Hence we
can observe that for any action a ∈ A\An it holds
that pre(a) 6⊆ Pi or two or more atoms in pre(a)
are mutex in Pi for any i such that 0 ≤ i ≤ n.
Because the presence of all goal atoms which are
not mutex in some atom layer is a necessary con-
dition for existence of a solution [3], a problem
(P,A, I, pre(a)) where a ∈ A \An does not have a
solution.

According to previous proposition we can create
a complete action eliminating scheme. Planning
engines such as FF [25] eliminate unreachable ac-
tions by analysing a relaxed Planning Graph which
is created in a similar way to a ‘normal’ Planning
Graph but actions are assumed not to have nega-
tive effects. Hence a relaxed Planning Graph does

8

not contain any mutexes. Atom and action layers
in a ‘normal’ Planning Graph are subsets of corre-
sponding layers in a corresponding relaxed Plan-
ning Graph [4].

Another type of actions that can be eliminated
without affecting problem solvability are redun-
dant actions [20]. An action is redundant if there is
a sequence of actions which if applied in any state
lead to the same result as applying the redundant
action. For instance, macro-actions are trivially re-
dundant. Determining redundant actions is gener-
ally PSPACE-complete but can be polynomial if
sequences of actions ‘replacing’ redundant ones are
bounded [20].

On the other hand, an action landmark, an ac-
tion that must be present in every solution plan,
cannot be eliminated [23]. A disjunctive action
landmark is a set of actions where at least one
of the actions must be present in every solution
plan. Therefore, we cannot eliminate all actions
belonging to a disjunctive action landmark. Decid-
ing a (disjunctive) action landmark in PSPACE-
complete, although in some cases it can be decided
polynomially (e.g if there is only one action achiev-
ing a goal atom, then the action is an action land-
mark) [23].

5. Completeness of Eliminating Actions
Replaced by Macro-actions

Macro-actions encapsulate sequences of (prim-
itive) actions, i.e., a result of applying a macro-
action in some state is the same as applying a
corresponding sequence of actions in this state.
Macro-actions can be therefore understood as
‘shortcuts’ in the state-space. Adding macro-
actions into PDMs by using macro-action schemes
does not affect completeness (see Proposition 4.5).
However, adding macro-actions might result in un-
wanted symmetries where certain states can be
reached either by applying macro-actions or cor-
responding sequences of (primitive) actions. These
symmetries might negatively affect the planning
process [7]. Hence, it may be useful to remove
(primitive) actions by using action eliminating
schemes in contrast to Haslum’s work [20] where
macro-actions are removed and primitive actions
are kept. We will show that under specific condi-
tions we can remove (primitive) actions without

breaking completeness of the reformulation pro-
cess.

By using a macro-action we can directly ‘travel’
from one state to another without having to visit
the intermediate states visited by the correspond-
ing sequence of (primitive) actions. Determining
whether eliminating (some) primitive actions will
affect completeness depends, roughly speaking, on
whether the intermediate states remain reachable
or whether it becomes unnecessary to visit them.
The following definition introduces the locality of
a macro-action.

Definition 5.1. Let a1 and a2 be actions and a1,2 be
a macro-action over 〈a1, a2〉. We say that a triplet
of states (s0, s1, s2) belongs to an a1,2-locality if
and only if for a given transition function γ,
i) γ(s0, a1) = s1 or s0 = ⊥ (undefined) if there is
no state s such that γ(s, a1) = s1, and
ii) γ(s1, a2) = s2 or s2 = ⊥ if a2 is not applicable
in s1. �

To illustrate the meaning of the above defi-
nition we will use the well known BlocksWorld
domain [33] as a running example. We con-
sider the actions pickup(a) (a1) and stack(a,b)

(a2) (shown in Figure 3) and a macro-action
pickup-stack(a,b) (a1,2) over these. A possible
a1,2-locality (s0, s1,s2) can be the following (note
that there are more triplets of states in the a1,2-
locality):

s0 = {ontable(a), clear(a), ontable(b),

clear(b), handempty}

s1 = {holding(a), ontable(b), clear(b)}

s2 = {on(a, b), clear(a), ontable(b),

handempty}

The locality of a macro-action (e.g. the a1,2-
locality) is important for investigating fundamen-
tal issues that might arise after one or both prim-
itive actions (e.g. a1 and a2) are removed. Such
fundamental issues occurring when a1 or a2 is re-
moved are the following:

(I) If a1 is removed then s1 might become un-
reachable from s0.

(II) If a2 is removed then s2 might become un-
reachable from s1.

One case in which both issues (I) and (II) cannot
occur is the existence of inverse actions.

9

s0 s1
a1

a’1
s2

a2

a’2

(a)

s0

s1

s2
a1,2

a’1 a’2

(b)

Fig. 1. Replacing primitive actions a1 and a2 (a) by a macro-action a1,2 (b). Removed primitive actions are visualized by a

dotted line in (b).

s0

s1a1

s

ay

s2
a2

ax

(a)

s

s0 s1 s2

a1,2

ay
ax

(b)

s0 s1
a1

s2

a2

s

ax ay

(c)

s0

s1

s2

a1,2

s

ax

ay

(d)

s0

s1

a1

s2
a2

sa’y

a’x

(e)

s
s0

s1

s2

a1,2

a’y

a’x

(f)

s0 s1
a1

s2a2

s

a’x

a’y

(g)

s0

s1

s2

a1,2

s

a’x

a’y

(h)

Fig. 2. Replacing primitive actions a1 and a2 (a,c,e,g) by a macro-action a1,2 (b,d,f,h). (e)-(h) are symmetrical situations to
(a)-(d). Removed primitive actions are visualized by dotted lines in (b,d,f,h).

stack(a,b) =

({holding(a),clear(b)},

{holding(a),clear(b)},

{on(a,b),clear(a),handempty})

pickup(a) =

({clear(a),ontable(a),handempty},

{clear(a),ontable(a),handempty},

{holding(a)})

Fig. 3. Schema of sample BlocksWorld actions

Definition 5.2. An action a′ is an inverse of an
action a if and only if for any state s such that
pre(a) ⊆ s (a is applicable in s) and γ∗(s, 〈a, a′〉) =
s. �

If a′1, a′2 are inverse actions of a1 and a2 respec-
tively (a′1 and a′2 are also defined in the problem),
then s1 remains reachable from s0 by consecutively
applying a1,2 and a′2 and s2 is reachable from s1

by consecutively applying a′1 and a1,2 (for illus-
tration, see Figure 1). In our running example, if
there are actions putdown(a) and unstack(a,b)

reversing the effects of a1 (pickup(a)) and a2

(stack(a,b)) respectively, then s1 remains reach-
able even though a1 and a2 are removed.

The other way to avoid both issues (I) and (II)
is to ‘bypass’ s1. However, s1 might be important
if (a) it is an initial state, (b) goal state, (c) if some

action ax 6= a2 is applicable in s1 or (d) if applying
some action a′x 6= a1 leads towards s1.

If s1 is an initial state, then issue (II) becomes
relevant. Clearly, without the stack(a,b) action
there is no way to achieve on(a,b) (and the state
s2) which might be an important step in achieving
the goal.

If s1 is a goal state, then issue (I) becomes rel-
evant but it can be observed that if either s0 or
s2 is a goal state too, then there is no need for
the action a1. In our example, if a goal situation
consists of ontable(b), then we can see that even
though s1 is a goal state, s0 is a goal state as well,
so the planning process does not need to transit
from s0 to s1 because it can stop in s0.

The existence of the action ax refers to issue
(I). However, action a1 can be safely removed if
i) applying ax in s1 leads towards s0, or ii) an in-

10

termediate (s1-like) state s belonging to the a1,2-
locality can be reached by consecutive application
of some other action ay and a1, or iii) there is an-
other action ay applicable in s0 or s2 leading to-
wards the same state as ax applied in s1 (for illus-
tration, see the left part of Figure 2). In our ex-
ample, putdown(a) can be understood as ax but
its application leads towards s0 (since putdown(a)
is inverse to pickup(a)) and therefore removing
pickup(a) cannot affect the completeness. Even
though we might not transit from s0 to s1 in or-
der to make ax (putdown(a)) applicable, we can
clearly see that applying ax in s1 after visiting s0

is redundant.
Analogously, the existence of the action a′x refers

to issue (II). However, action a2 can be safely
removed if i) a′x is applicable in s2, or ii) s2

can be reached by consecutive application of a2

and some other action a′y in an intermediate (s1-
like) state s belonging to the a1,2-locality, or iii)
there is another action a′y applicable in the same
state as a′x leading towards s0 or s2 (for illus-
tration, see the right part of Figure 2). In our
example, unstack(a,b) can be understood as
the a′x action. Since unstack(a,b) is inverse to
stack(a,b), then it can be observed that in or-
der to achieve s1 unstack(a,b) must be applied
in s2. Removing stack(a,b) might result in re-
moving a transition from s1 to s2. However, the
completeness cannot be affected because after ap-
plying a′x (unstack(a,b)) in s2 in order to reach
s1 an application of a2 (stack(a,b)) in s1 leads
back towards s2 which is clearly redundant.

The above ideas are formalized and proved in
the following theorem.

Theorem 5.3. Let Π = 〈P,A, I,G〉 be a planning
problem, S be its set of states and γ be its tran-
sition function. Let a1, a2 ∈ A be actions. Let
a1,2 6∈ A be a macro-action over the sequence
〈a1, a2〉. Let A− = {a1, a2} be a set of actions.
We assume that at least one of the following con-
ditions holds for every triplet of states (s0, s1, s2)
(s0, s1, s2 ∈ S∪{⊥}) belonging to the a1,2-locality.

(1) s0 6= ⊥ and s2 6= ⊥ and there are actions
a′1, a

′
2 ∈ A \ A− such that γ(s2, a

′
2) = s1 and

γ(s1, a
′
1) = s0.

(2) All the following constraints hold.

(a) s1 6= I

(b) s0 6= ⊥ ∧ (G ⊆ s1 ⇒ (G ⊆ s0 ∨ G ⊆ s2))

(c) s0 = ⊥, or for every ax ∈ A\A− such that
γ(s1, ax) = s with s ∈ S \ {s1, s2} it is the
case that s = s0, or there is an action ay ∈
A\A− such that γ(s0, ay) = s, γ(s2, ay) =
s, or γ∗(s0, 〈a1, ax〉) = γ∗(s0, 〈ay, a1〉).

(d) s2 = ⊥, or for every a′x ∈ A \ A−
such that γ(s, a′x) = s1 with s ∈ S \
{s0, s1, s2} it is the case that there is an
action a′y ∈ A \A− such that γ(s, a′y) = s0

(s0 6= ⊥), γ(s, a′y) = s2 (s2 6= ⊥), or
γ∗(s, 〈a′x, a2〉) = γ∗(s, 〈a2, a

′
y〉).

(3) s0 = ⊥ and s2 = ⊥.

Let Π′ = 〈P, (A∪ {a1,2}) \A−, I, G〉 be a planning
problem. Then, if Π has a solution, then Π′ has a
solution as well.

Proof. The key aspect of the proof is to show that
introducing a transition from s0 to s2 and remov-
ing transitions from s0 to s1 (issue (I)) and s1 to s2

(issue (II)) does not affect solvability of the prob-
lem. In other words, we will show that s1 remains
reachable or it does not have to be visited during
the planning process. Note that γ′ (γ′∗) refers to
(generalized) transition function of the reformu-
lated problem Π′.

If condition (1) holds then neither of issues
(I) and (II) arises, because s1 remains reachable
from s0 by consecutively applying a1,2 and a′2, i.e.,
γ′∗(s0, 〈a1,2, a

′
2〉) = γ(s0, a1) = s1. Analogously,

s2 remains reachable from s1 by consecutively
applying a′1 and a1,2, i.e., γ′∗(s1, 〈a′1, a1,2〉) =
γ(s1, a2) = s2. Hence eliminating actions a1 and
a2 does not affect the solvability of the planning
problem.

Condition (2) introduces four constraints which
describe situations in which s1 can be bypassed. If
s1 has to be visited, then the absence of a transi-
tion from s1 to s2 might make the problem unsolv-
able. It might be the case if s1 is an initial state
(the planning process starts in s1), or some action
a′x 6= a1 applied in some state s leads towards s1

(i.e. γ(s, a′x) = s1). From (2a) s1 is not an initial
state. According to (2d) there are three possibili-
ties. Firstly, if s2 is undefined (s2 = ⊥), then a2 is
inapplicable in s1 and removing a2 will not have
any effect. Secondly, there is an action a′y such
that γ(s, a′y) = s0 or γ(s, a′y) = s2. Hence it holds
that either γ∗(s, 〈a′x, a2〉) = γ′∗(s, 〈a′y, a1,2〉) = s2

or γ∗(s, 〈a′x, a2〉) = γ′(s, a′y) = s2 and therefore
s2 remains reachable from s despite eliminating

11

a2 (for illustration, see Figure 2, right hand side).
Thirdly, there exists a′y such that γ∗(s, 〈a′x, a2〉) =
γ∗(s, 〈a2, a

′
y〉). From this we can derive that there

exist sp, ss ∈ S ∪ {⊥} such that (sp, s, ss) belongs
to a1,2-locality (since a2 is applicable in s). In other
words, s is an ‘s1-like’ state. According to (2a) an
‘s1-like’ state is not an inial state. Without loss of
generality we assume that the ‘non s1-like’ state
sx is visited prior visiting s. As discussed before
there exists an action (other than a2) that if ap-
plied either alone or with a1,2 after that, then ss
(γ(s, a2)) can be reached from sx without neces-
sity to apply a2. Then, a′y can be applied in ss in
order to reach s2.

If the planning process has to finish in s1 or some
action ax 6= a2 applied in s1 leads towards some
state s (i.e. γ(s1, ax) = s), then the absence of a
transition from s0 to s1 might make the problem
unsolvable. According to (2b) if s0 6= ⊥ (s0 is de-
fined) and s1 is a goal state (i.e., the planning pro-
cess might finish in that state), then s0 or s2 is a
goal state as well. Hence if s0 is a goal state, then
there is no need to apply a1 and transit to s1. If s2

is a goal state, then it is possible to apply a1,2 in s0

and transit to s2 instead of applying a1 and tran-
siting to s1. According to (2c) there are four possi-
bilities. Firstly, if s0 = ⊥, then s1 is not reachable
by applying a1, thus removing a1 has no effect.
Secondly, γ(s1, ax) = s0 (i.e., γ∗(s0, 〈a1, ax〉) =
γ′∗(s0, 〈〉) = s0). Thirdly, there is an action ay
such that γ(s0, ay) = s or γ(s2, ay) = s. Hence it
holds that either γ∗(s0, 〈a1, ax〉) = γ′(s0, ay) = s
or γ∗(s0, 〈a1, ax〉) = γ′∗(s0, 〈a1,2, ay〉) = s and
therefore s remains reachable from s0 despite
eliminating a1 (for illustration, see Figure 2, left
hand side). Fourthly, if γ∗(s0, 〈ay, a1〉) = s, then
(γ(s0, ay), s, γ(s, a2)) is also a triplet of states be-
longing to the a1,2-locality. The state s might not
be reachable if a1 is removed but according to (2b)
the planning process does not have to finish in s
and γ(s, a2) (if defined) remains reachable from s0

by consecutive applying ay and a1,2.
Condition (3) filters out irrelevant states be-

cause such states cannot be reached by applying
a1, and a2 is not applicable in them. Hence, re-
moving a1 and a2 has no effect on these states.

The above theorem addresses situations where
both primitive actions are removed. The following
corollaries directly derived from Theorem 5.3 deal
with situations in which only one of the primitive
action is removed.

Corollary 5.4. Let Π = 〈P,A, I,G〉 be a planning
problem, S be its set of states and γ be its tran-
sition function. Let a1, a2 ∈ A be actions. Let
a1,2 6∈ A be a macro-action over the sequence
〈a1, a2〉. We assume that at least one of the fol-
lowing conditions holds for every triplet of states
(s0, s1, s2) (s0, s1, s2 ∈ S ∪ {⊥}) belonging to the
a1,2-locality.

(1) s2 6= ⊥ and there is an action a′2 ∈ A such
that a′2 6= a1 and γ(s2, a

′
2) = s1.

(2) All the following constraints hold.

(a) s0 6= ⊥ ∧ (G ⊆ s1 ⇒ (G ⊆ s0 ∨ G ⊆ s2))
(b) s0 = ⊥, or for every ax ∈ A\A− such that

γ(s1, ax) = s with s ∈ S \ {s1, s2} it is the
case that s = s0, or there is an action ay ∈
A\A− such that γ(s0, ay) = s, γ(s2, ay) =
s, or γ∗(s0, 〈a1, ax〉) = γ∗(s0, 〈ay, a1〉).

(3) s0 = ⊥ and s2 = ⊥.

Let Π′ = 〈P, (A∪{a1,2})\{a1}, I, G〉 be a planning
problem. Then, if Π has a solution, then Π′ has a
solution as well.

Corollary 5.5. Let Π = 〈P,A, I,G〉 be a planning
problem, S be its set of states and γ be its tran-
sition function. Let a1, a2 ∈ A be actions. Let
a1,2 6∈ A be a macro-action over the sequence
〈a1, a2〉. We assume that at least one of the fol-
lowing conditions holds for every triplet of states
(s0, s1, s2) (s0, s1, s2 ∈ S ∪ {⊥}) belonging to the
a1,2-locality.

(1) s0 6= ⊥ and there is an action a′1 ∈ A such
that a′1 6= a2 and γ(s1, a

′
1) = s0.

(2) All the following constraints hold.

(a) s1 6= I
(b) s2 = ⊥, or for every a′x ∈ A \ A−

such that γ(s, a′x) = s1 with s ∈ S \
{s0, s1, s2} it is the case that there is an
action a′y ∈ A \A− such that γ(s, a′y) = s0

(s0 6= ⊥), γ(s, a′y) = s2 (s2 6= ⊥), or
γ∗(s, 〈a′x, a2〉) = γ∗(s, 〈a2, a

′
y〉).

(3) s0 = ⊥ and s2 = ⊥.

Let Π′ = 〈P, (A∪{a1,2})\{a2}, I, G〉 be a planning
problem. If Π has a solution, then Π′ has a solution
as well.

The previous theorem and corollaries describe
situations where only a sequence of two (prim-
itive) actions is assembled into a macro-action.
Macro-actions can be also assembled from longer

12

sequences of actions. Nevertheless, an assemblage
of longer action sequences can be decomposed into
consecutive assemblages of actions sequences of
length two. For example, let 〈a1, a2, a3 . . . , an−1, an〉
be an action sequence, then the assemblage process
can be done as follows. First, a1 and a2 are assem-
bled into a macro-action a1,2, then a1,2 and a3 are
assembled into a1,2,3 and so on until a1,2,3,...,n−1

and an are assembled into a1,2,3,...,n−1,n. In each
step we can check whether (primitive actions) can
be removed or not according to Theorem 5.3 or
the related corollaries.

If we take a look at constraints (2a-2d) pre-
sented in Theorem 5.3, then we can see that these
constraints represent limitations related to a given
planning problem. If some of the constraints are
violated for a given planning problem, then refor-
mulating this problem might help to satisfy these
constraints as described below.

(2a) — If a2 is the only action applicable in s1,
then reformulate the given problem by setting
s2 as an initial state. A solution of the refor-
mulated problem π is reformulated by adding
a2 to the front of π.

(2b) — If a1 is the only action that leads towards
s1, then reformulate the given problem by set-
ting (G\eff+(a1))∪pre(a1) as a goal situation
(G is a goal situation of the ‘original’ prob-
lem). A solution of the reformulated problem
π is reformulated by adding a1 at the end of
π.

(2c) — The absence of an ay action in the given
planning problem can be resolved by adding
a macro-action over a sequence 〈a1, ax〉.

(2d) — The absence of an a′y action in the given
planning problem can be resolved by adding
a macro-action over a sequence 〈a′x, a2〉.

Theorem 5.3 and the related corollaries, how-
ever, can identify only ‘positive situations’, i.e.,
situations where (primitive) actions can be re-
moved without losing completeness of the given
reformulation scheme. Hence some situations can
be wrongly classified as ‘negative situations’. On
the other hand, even the ‘false negative situations’
might be very useful for an expert who creates
PDMs. Since the expert might know why some of
the constraints are violated, he/she might then ap-
ply, for instance, some of the suggested reformula-
tions. Also, the expert might realize that, for ex-
ample, an action ax applicable in s1 is not neces-

sary for a given class of planning problems and,
hence, despite violating constraint (2c) the primi-
tive actions can be safely removed as well.

6. Completeness of Eliminating Planning
Operators Replaced by Macro-operators

Using planning operators instead of actions in
PDMs is more practical because only one domain
model is necessary for a number of planning prob-
lems related to a specific environment (e.g. the
BlocksWorld domain). Macro-actions are in this
case replaced by their generalized form — macro-
operators. Macro-operators are defined over se-
quences of (primitive) planning operators analo-
gously to the definition of macro-actions. Notice
that we will use a construct in form pΘ, where
p might stand for a planning operator, an un-
grounded (set of) predicate(s), and Θ is a substitu-
tion from variable symbols to terms (variable sym-
bols or constants), which represents “applying a
substitution Θ on p”.

Definition 6.1. Let o1, . . . , ok be planning opera-
tors. We say that o1,...,k is a macro-operator over
the sequence of operators 〈o1, . . . , ok〉 if o1,...,k is
a planning operator and for every s ∈ S (in a
given problem) and every grounded substitution Θ
it holds that γ(s, o1,...,kΘ) = γ∗(s, 〈o1Θ, . . . , okΘ〉)
or both are undefined. �

Notice that the definition of macro-operators
is implicit. It can be easily found in literature
how macro-operators are constructed including
“inequality constraints” preventing substituting a
same constant for two or more variables where nec-
essary [7].

6.1. State Templates

A problem of completeness of eliminating (prim-
itive) planning operators which are being re-
placed by a macro-operator can be handled by
using Theorem 5.3 (or its corollaries) but every
macro-operator’s instance and its corresponding
sequence of (primitive) instances of operators must
be checked individually. This is exacerbated by the
fact that even for a single macro-action (and its
corresponding pair of primitive actions) all triplets
of states belonging to a macro-action’s locality
(see Definition 5.1) must be checked. This leads

13

to a combinatorial explosion of possibilities that
must be checked which may be practically un-
computable. On the other hand, we can easily
see that there are many similarities in the struc-
tures of instances of macro-operators, correspond-
ing (primitive) instances of operators and triplets
of states belonging to the corresponding local-
ity. It is sufficient to focus on specific predicates
in these states which are characteristic for given
macro-operators and corresponding primitive op-
erators. For example, we can see that after apply-
ing an instance of the operator pickup(?x) pred-
icate holding(?x) must be true and predicates
handempty and clear(?x) cannot be true. Hence,
we can capture some characteristics of states which
can be reached after applying an instance of the
operator pickup(?x). For this purpose we define
state templates consisting of sets of (ungrounded)
predicates that must be or cannot be present in
a specific class of states. For set operations (e.g.
inclusion, intersection) that will be used in the
following text it is essential to determine equality
of (ungrounded) predicates. Predicates are consid-
ered as equal only if they have the same name
and their arguments have the same names and the
same order (e.g. on(?x,?y) is considered as equal
only to on(?x,?y) and not equal, for instance,
to on(?v,?w) or on(?x,?z)). This is directly re-
lated to definitions of planning operators (Defini-
tion 3.4) where their arguments (variable symbols)
are used in definitions of predicates forming op-
erators’ preconditions or effects. For the planning
process we do not need to distinguish between ar-
guments of different operators but when we gen-
erate macro-operators such a distinction becomes
necessary. This is because sequences of (primi-
tive) operators which are assembled into macro-
operators usually reflect some sorts of activities.
For instance, in the BlocksWorld domain we can
have two (primitive) operators unstack(?x,?y),
which unstacks a block ?x (?x is a variable symbol
and can be instantiated by concrete objects) from
a block ?y, and stack(?v,?w), which stacks a
block ?v on a block ?w. Assembling these operators
into a macro-operator reflects an activity of mov-
ing a block from one stack to another. Straight-
forwardly, the first arguments of the unstack and
stack operators must be the same while the sec-
ond arguments must differ. Therefore, arguments
of one of the operators must be renamed (e.g.
stack(?v,?w) → stack(?x,?w)).

Definition 6.2. We say that S = (S+, S−) is a
state template where S+ and S− are sets of pred-
icates such that S+ ∩ S− = ∅. S+ denotes a set of
predicates that S must contain, while S− denotes
a set of predicates that S cannot contain.
We say that a state template S′ is a variant of a
state template S if and only if there is a substitu-
tion Θ such that S′ = SΘ.
We say that a state s satisfies a state template S
if and only if there is a (grounded) substitution Θ
such that s ⊇ S+Θ and s ∩ S−Θ = ∅. �

An idea of generalizing Theorem 5.3 and its
corollaries is based on considering planning op-
erators rather than actions and state templates
rather than states. Having planning operators o1

and o2 as generalized forms of the actions a1 and
a2, triplets of states s0, s1 and s2 belonging to the
a1,2-locality (a1,2 is a macro-action over a1 and
a2) need to be generalized to triplets of state tem-
plates.

In our running example, for the pickup(?x)

and stack(?x,?y) operators (?x is the same for
both operators) we can determine a triplet of
state templates relevant to situations before apply-
ing pickup(?x) (S0), after applying pickup(?x)

and before applying stack(?x,?y) (S1), and af-
ter applying stack(?x,?y) (S2). S0 must contain
all the predicates in pickup(?x)’s precondition
(i.e. clear(?x), ontable(?x), handempty) and,
moreover, predicates required by stack(?x,?y)

that are not achieved by pickup(?x) (clear(?y)
in this case). S1 must contain pickup(?x)’s pos-
itive effects (i.e. holding(?x)) and all the pred-
icates S0 contains which are not deleted by
pickup(?x) (i.e. clear(?y)). S1 cannot contain
predicates deleted by pickup(?x) (i.e. clear(?x),
ontable(?x), handempty). S2 must contain the
positive effects of stack(?x,?y) (i.e. on(?x,?y),
handempty,clear(?x)) and all the predicates S1

contains which are not deleted by stack(?x,?y)

(no such predicate exists in this case). S2 can-
not contain predicates deleted by stack(?x,?y)

(i.e. holding(?x),clear(?y)) as well as predi-
cates S1 cannot contain which are not added by
stack(?x,?y) (i.e. ontable(?x)). The triplet of
states (S0, S1, S2) then captures situations where
pickup(?x) can be followed by stack(?x,?y). A
different situation occurs if stack(?x,?y) can-
not be applied after pickup(?x). In this case, S0

and S1 cannot contain clear(?y) (instead of must
contain) and S2 is undefined.

14

S+
0

S+
0 ⊇ pre(o1)

S+
0 ⊇ pre(o2) \ eff+(o1)

S−0

S−0 = ∅

S+
1

S+
1 ⊇ eff+(o1)

S+
1 ⊇ pre(o1) \ eff−(o1)

S+
1 ⊇ pre(o2)

S−1

S−1 ⊇ eff−(o1)

S+
2

S+
2 ⊇ eff+(o2)

S+
2 ⊇ (pre(o2) ∪ eff+(o1)) \ eff−(o2)

S+
2 ⊇ pre(o1) \ (eff−(o1) ∪ eff−(o2))

S−2

S−2 ⊇ eff−(o2)

S−2 ⊇ eff−(o1) \ eff+(o2)

Fig. 4. A triplet of state templates referring to the situation where o1 is applicable in S0 and o2 is applicable in S1.

S+
0

S+
0 ⊇ pre(o1)

S−0

S−0 ∩ (pre(o2) \ eff+(o1)) \ pre(o1) 6= ∅

S+
1

S+
1 ⊇ eff+(o1)

S+
1 ⊇ pre(o1) \ eff−(o1)

S−1

S−1 ⊇ eff−(o1)

S−1 ⊇ S
−
0

Fig. 5. A triplet of state templates referring to the situation where o1 is applicable in S0 but o2 is not applicable in S1. Hence,

S2 = ⊥.

S+
1

S+
1 ⊇ pre(o2)

S−1

S−1 ∩ (eff+(o1) ∪ (pre(o1) \ eff−(o1)) 6= ∅

S+
2

S+
2 ⊇ eff+(o2)

S+
2 ⊇ pre(o2) \ eff−(o2)

S−2

S−2 ⊇ eff−(o2)

S−2 ⊇ S
−
1 \ eff+(o2)

Fig. 6. A triplet of state templates referring to the situation where o2 is applicable in S1 but S1 cannot be reached by applying
o1. Hence, S0 = ⊥.

15

Inspired by the example we can provide a gen-
eral form of triplets of state templates S0, S1 and
S2 capturing situations related to consecutive ap-
plication of operators o1 and o2 and a macro-
operator o1,2 assembled from them. The expres-
sions depicted in Figure 4 define the conditions for
a triplet of state templates S0, S1, S2 such that ap-
plying o1 in S0 results in S1 and applying o2 in
S1 results in S2. The expressions depicted in Fig-
ure 5 define the conditions for a triplet of state
templates S0, S1, S2 = ⊥ such that applying o1 in
S0 results in S1 but o2 is not applicable in S1. The
expressions depicted in Figure 6 define the condi-
tions for a triplet of state templates S0 = ⊥, S1, S2

such that applying o2 in S1 results in S2 but S1

cannot be obtained by applying o1. It will later
be proved in Lemmas 6.3, 6.4 and 6.5 that these
triplets of state templates are satisfied by all the
triplets of states belonging to the a1,2-locality for
any o1,2’s instance a1,2.

Lemma 6.3. Let o1 and o2 be planning operators
and S0, S1 and S2 be state templates as defined in
Figure 4. For any actions a1, a2 such that a1 =
o1Θ and a2 = o2Θ (Θ is a grounded substitution)
and for any triplet of states s0 6= ⊥, s1 6= ⊥, s2 6=
⊥ belonging to the a1,2-locality (a1,2 is a macro-
action over a1 and a2) it holds that s0 satisfies S0,
s1 satisfies S1 and s2 satisfies S2.

Proof. It can be seen that s0 ⊇ pre(a1) (other-
wise a1 is not applicable in s0 and γ(s0, a1) is un-
defined) and also s0 ⊇ pre(a2) \ eff+(a1) because
pre(a2) ⊆ s1 = γ(s0, a1) = (s0\eff−(a1))∪eff+(a1)
which says that atoms needed by a2 which are
not added by a1 must already be present in s0.
Generalizing this (i.e., using operators o1, o2 in-
stead of actions a1, a2) gives that s0 satisfies S0.
Because a2 is applicable in s1 and s1 is a re-
sult of applying a1 in s0, s1 ⊇ pre(a2) ∪ eff+(a1)
and s1 ∩ eff−(a1) = ∅. Also atoms which must be
present in s0 and are not removed by a1 must be
present in s1, i.e., s1 ⊃ pre(a1) \ eff−(a1) (and
s1 ⊃ pre(a2)\(eff+(a1)∪eff−(a1)) which is covered
by s1 ⊇ pre(a2)). Generalizing this gives us that s1

satisfies S1. Because s2 is a result of applying a2 in
s1, s2 ⊇ eff+(a2)and s2∩eff−(a2) = ∅. Analogously
to the previous case, atoms present in s1 which are
not removed by a2 must be present in s2 as well,
i.e., s2 ⊃ ((pre(a1)\eff−(a1))∪pre(a2)∪eff+(a1))\
eff−(a2) (including atoms which are ‘transferred’
from s0 to s1). Moreover, atoms which are re-

moved by a1 and therefore are not present in s1

are not present in s2 as well unless a2 added them,
i.e., s2 ∩ eff−(a1) \ eff+(a2) = ∅. Generalizing this
straightforwardly leads to the fact that s2 satisfies
S2.

Lemma 6.4. Let o1 and o2 be planning operators
and S0, S1 be state templates as defined in Fig-
ure 5. For any actions a1, a2 such that a1 = o1Θ
and a2 = o2Θ (Θ is a grounded substitution) and
for any triplet of states s0 6= ⊥, s1 6= ⊥, s2 = ⊥ be-
longing to the a1,2-locality (a1,2 is a macro-action
over a1 and a2) it holds that s0 satisfies S0 and s1

satisfies S1.

Proof. Following the proof of Lemma 6.3 we will
point out only the differences. Since no instance
of o2 is applicable in any state s1 we can see that
S1 must not contain all the predicates present
in the precondition of o2. S1 must contain predi-
cates which result from applying o1, i.e., eff+(o1)∪
(pre(o1) \ eff−(o1)). Clearly, S0 must contain all
the predicates present in the precondition of o1. If
predicates (at least one) from (pre(o2)\ eff+(o1))\
pre(o1) are present in S−0 , then applying any in-
stance of o1 in s0 (satisfying S0) will not create
them, i.e., these predicates are present in S−1 as
well. Given this we can see that S1 does not consist
of all the predicates needed by o2.

Lemma 6.5. Let o1 and o2 be planning operators
and S1, S2 be state templates as defined in Fig-
ure 6. For any actions a1, a2 such that a1 = o1Θ
and a2 = o2Θ (Θ is a grounded substitution) and
for any triplet of states s0 = ⊥, s1 6= ⊥, s2 6= ⊥ be-
longing to the a1,2-locality (a1,2 is a macro-action
over a1 and a2) it holds that s1 satisfies S1 and s2

satisfies S2.

Proof. Following the proof of Lemma 6.3 we will
point out only the differences. It can be seen that
S1 must contain all the predicates present in the
precondition of o2 but must not contain all pred-
icates in eff+(o1) ∪ (pre(o1) \ eff−(o1)) (otherwise
there might exist a state in which an instance of o1

is applicable in order to obtain a state satisfying
S1). Predicates present in S−1 are ‘transferred’ to
S−2 unless added by o2.

The above three lemmas say that state tem-
plates (as defined in Figures 4, 5 and 6) encapsu-
late all the triplets of states belonging to the lo-

16

cality of any macro-operator’s instance. Situations
where S0 or S2 is undefined might not occur if
the operators o1 and o2 have certain properties.
Recalling the last example, we can observe that
stack(?x,?y) requires all the predicates which
must be true after applying pickup(?x). There-
fore, there cannot exist a state in which an in-
stance of stack(?x,?y) is applicable but cannot
be reached by any instance of pickup(?x). So,
S0 cannot be undefined in this case. Similarly, we
can observe that unstack(?x,?y) achieves all the
predicates required by putdown(?x). Hence, S2

cannot be undefined in this case. This idea is for-
malized in the following proposition.

Proposition 6.6. Let o1 and o2 be planning oper-
ators and Θ be an ungrounded substitution. The
following statements hold:

i) If pre(o2Θ) ⊆ eff+(o1) ∪ (pre(o1) \ eff−(o1)),
then for any state s0 and action a1, an in-
stance of o1 such that a1 is applicable in s0,
it holds that there is an action a2, an instance
of o2 such that a2 is applicable in γ(s0, a1).

ii) If pre(o2Θ) ⊇ eff+(o1) ∪ (pre(o1) \ eff−(o1)),
then for any state s1 and action a2, an in-
stance of o2 such that a2 is applicable in s1,
it holds that there is a state s0 and action a1,
an instance of o1 such that γ(s0, a1) = s1.

Proof. In situation i) for every state s0 and ac-
tion a1 (an instance of o1) applicable in s0, we
are looking for an action a2 (an instance of o2)
such that γ(s0, a1) ⊇ pre(a2). Straightforwardly,
pre(a1) ⊆ s0 and γ(s0, a1) ⊇ eff+(a1) ∪ (pre(a1) \
eff−(a1)). From the assumption we can easily show
that there is an instance of o2, an action a2,
such that pre(a2) ⊆ eff+(a1)∪ (pre(a1) \ eff−(a1)).
Hence, γ(s0, a1) ⊇ pre(a2), i.e., a2 is applicable in
γ(s0, a1).

In situation ii) for every state s1 and action
a2 (an instance of o2) applicable in s1, we are
looking for an action a1 (an instance of o1) and
a state s0 such that γ(s0, a1) = s1. Straightfor-
wardly, pre(a2) ⊆ s1. s1 is a result of application
of an instance of o1, an action a1, in some state s0

if and only if s1 ⊇ eff+(a1) ∪ (pre(a1) \ eff−(a1)).
Also, s0 = (s1 \ eff+(a1))∪ eff−(a1)) which implies
pre(a1) ⊆ s0. From the assumption we can easily
show that there is an instance of o1, an action a1,
such that pre(a2) ⊇ eff+(a1)∪ (pre(a1) \ eff−(a1)).
Hence, for every s1 and a2 applicable in s1 there
exist s0 and a1 such that γ(s0, a1) = s1.

6.2. Identifying Redundancy of Primitive
Operators

We have to consider situations described by
triplet of state templates S0, S1, S2 (Figure 4),
S0, S1,⊥ (Figure 5) if condition i) from Proposi-
tion 6.6 is not met and ⊥, S1, S2 (Figure 6) if con-
dition ii) from Proposition 6.6 is not met. Check-
ing conditions (1) and (2a)-(2d) of Theorem 5.3
is done in a generalized way, that is, by taking
state templates and planning operators into ac-
count rather than states and actions. Note that
corollaries of Theorem 5.3 can be generalized anal-
ogously. This is thoroughly discussed in the follow-
ing paragraphs.

Condition (1) in Theorem 5.3, which refers to
the fact that the existence of actions a′1 and a′2
reversing the effects of the actions a1 and a2 is
a sufficient condition for removing a1 and a2 af-
ter the macro-action a1,2 is added. In other words,
the actions a′1 and a′2 are inverse to the actions a1

and a2. This can be generalized to planning op-
erators where we say that operators are inverse if
all their corresponding instances are inverse. The
formal definition follows.

Definition 6.7. An operator o′ is an inverse of an
operator o if and only if for any grounded substi-
tution Θ, o′Θ is an inverse of oΘ. �

Intuitively, good candidates for inverse actions
(or operators) are these which have interchanged
positive and negative effects (i.e., eff+(a) =
eff−(a′) and eff−(a) = eff+(a′)). However, there
are issues which can prevent these actions from be-
ing inverse, which has been also discussed in [34].
The issues that can prevent a′ from being an in-
verse of a are as follows.

(1) There is a state s such that pre(a′) 6⊆ γ(s, a)
(2) There is a state s such that eff−(a) 6⊆ s
(3) There is a state s such that eff+(a) ∩ s 6= ∅

Issue (1) says that in some situation a′ may not
be applicable in a state resulting from applying
a in s. This issue can be avoided if pre(a′) ⊆
eff+(a) ∪ (pre(a) \ eff−(a)) because atoms needed
for a′ are either added by a or must be present in
any state where a is applicable and not removed
by a. Issue (2) reflects the situation where some
atoms which a removes are no longer in s. Consec-
utive application of a and a′ therefore results in
a state which is a superset to s (already missing

17

atoms are added by a′). This issue can be avoided
if pre(a) ⊇ eff−(a). Issue (3) reflects the situation
where some atoms which a adds are already in s.
Consecutive application of a and a′ therefore re-
sults in a state which is a subset to s (already
existing atoms in s are removed by a′). This is-
sue can be avoided by introducing negative pre-
conditions, which is beyond set-theoretic or classi-
cal representation of planning problems, or it must
be proved that for every state s reachable from an
initial state in a given planning problem it holds
that pre(a) ⊆ s→ eff+(a)∩ s = ∅. Finding inverse
operators is done analogously.

In our case, finding inverse operators for the
operators o1 and o2 is a sufficient condition for
their removal if they are assembled into a macro-
operator o1,2. Detecting interchanged positive and
negative effects and determining whether issues
(1) and (2) are avoided is easy. However, deter-
mining whether issue (3) is avoided might be in-
tractable in general. On the other hand, in some
cases it can be determined in polynomial time by
using FastDownward translation tool from PDDL
ta SAS [22] or by exploring mutexes in Planning
Graphs [14].

If we cannot satisfy (generalized) condition (1)
of Theorem 5.3, i.e., we cannot find inverse oper-
ators to o1 and o2, then we have to proceed to
(generalized) Condition (2) of Theorem 5.3 which
is divided into four sub-conditions (2a-2d).

Generalizing sub-condition (2a) of Theorem 5.3
can easily be determined by checking whether an
initial state I of a given problem satisfies S1.

Generalizing sub-condition (2b) of Theorem 5.3
can be done as follows. A goal situation G of a
given problem can be easily encoded as a state
template Gt = (G, ∅) which is satisfied by all
goal states, i.e., states in which all goal atoms are
present. Let sat(St) be a set of states which satisfy
a state template St, formally:

sat(St) = {s | s satisfies St}

sat(Gt) ∩ sat(S1) is a set of states which are goal
states and states satisfying S1. To ensure the gen-
eralized condition (2b) of Theorem 5.3 it must hold
that (a1, a2 are instances of o1, o2 respectively):

∀s ∈ sat(Gt) ∩ sat(S1) ∃s′ ∈ sat(S0) ∩ sat(Gt) :
γ(s′, a1) = s or γ(s, a2) ∈ sat(S2) ∩ sat(Gt)

Because it is not reasonable to check this for ev-
ery state it is sufficient to focus on specific substi-
tutions as discussed in the following text. Clearly,
it holds the following:

G ∩ S−1 Θ 6= ∅ → sat(Gt) ∩ sat(S1Θ) = ∅

G ∩ S+
1 Θ = ∅ → ∀s ∈ sat(Gt) ∩ sat(S1Θ) :

∃s′ ∈ sat(S0Θ) ∩ sat(Gt)

(G ∩ S−1 Θ = ∅ ∧ G ∩ S+
1 Θ 6= ∅) ∧

∧(S+
0 Θ ⊇ G ∩ S+

1 Θ ∨ S−2 Θ ∩G = ∅)

The middle expression holds because only atoms in
S+

1 Θ might not be present in states satisfying S0Θ
(and S−0 = ∅). The last expression says that if goal
atoms present in S+

1 Θ are also in S+
0 Θ, then any

state s satisfying S0Θ is a goal state even if appli-
cation of an instance of o1 in s results also in a goal
state (satisfying S1Θ) because goal atoms possibly
(but not necessarily) added by the instance of o1

were already present in s. Similarly, if a state s′

satisfying S1Θ is a goal state, then a state result-
ing from application of an instance of o2 in s′ is a
goal state unless the instance of o2 removed some
goal atoms (but in this case S−2 Θ ∩G 6= ∅).

Generalizing sub-condition (2c) of Theorem 5.3
can be done as follows. Applicability of an operator
ox 6= o2 in S1 means in general that some instance
of ox is applicable in some state from sat(S1). If ox
is inverse to o1, then it is easy since it corresponds
to the first condition in (2c) (Theorem 5.3). Oth-
erwise, it is sufficient to consider an (ungrounded)
substitution Θ such that

pre(oxΘ) ∩ S−1 = ∅ ∧ (pre(oxΘ) ∩ S+
1 6= ∅

Application of ox in S1 results in a state tem-
plate S which is constructed analogously to S2. If
S is a variant of S1 or S2, then generalized (2c)
of Theorem 5.3 is trivially satisfied. Otherwise, we
have to find an operator oy 6= o1, o2 such that

(pre(oyΘ) ⊆ S+
0 ∧

∧ pre(oyΘ) ∩ S−0 = ∅)) ∨
∨ (pre(oyΘ) ⊆ S+

2 ∧ pre(oyΘ) ∩ S−2 = ∅)
is essential because otherwise there is no guaran-
tee that instances of oy are applicable either in
states satisfying S0 or S2. Application of oy in ei-
ther S0 or S2 results in a state template S′ which
is also constructed analogously to S2. If S′+ ⊇ S+

and S′− ⊆ S− then it can be observed that for

18

each instance of ox an instance of oy can be found
which corresponds to the second condition in (2c)
(Theorem 5.3). For the third part of (2c) oy must
be applicable in S0 and consecutive application of
oy and o1 results in S′, where it must hold that
S′+ ⊇ S+ and S′− ⊆ S−.

Generalizing sub-condition (2d) of Theorem 5.3
can be done as follows. Determining whether an
application of an operator o′x 6= o1, o2 may lead
towards S1 is generally dependent on whether an
application of some instance of o′x leads towards
some state from sat(S1). It is sufficient to consider
an (ungrounded) substitution Θ such that

eff+(o′xΘ) ∩ S−1 = ∅ ∧ eff−(o′xΘ) ∩ S+
1 = ∅

In other words, o′x cannot add predicates that can-
not be in a state satisfying S1 and similarly o′x
cannot remove predicates that must be in a state
satisfying S1. Let S be a state template in which
o′x is applicable. If applying o′x results in S1 then
it must hold that

S+ ⊇ pre(o′xΘ) ∪ (S+
1 \ eff+(o′xΘ)) ∧

∧ S− ⊇ S−1 \ eff−(o′xΘ)

If S is a variant of S0, S1 or S2, then general-
ized (2d) of Theorem 5.3 is trivially satisfied. If
not, one possibility is to find an operator o′y which
is certainly applicable in S and certainly leads to-
wards S0 or S2. It must hold that pre(o′yΘ) ⊆ S+.
For a state template S′ obtained as a result of ap-
plying o′y in S (S′ is constructed analogously as

S2) it must hold that S′+ ⊇ S+
2 and S′− ⊆ S−2 or

similarly for S0 (note that S−0 = ∅, i.e., S′− = ∅ as
well which implies eff−(o′y) = ∅, which is very un-
common). The existence of such an o′y corresponds
to the first part of (2d) (Theorem 5.3). Another
possibility is to check whether o2 is applicable in S
which is if eff+(o′xΘ) ∩ pre(o2) = ∅. Then, if there
is o′y such that consecutive application of o2 and

o′y results in S′ such that S′+ ⊇ S2 and S′− ⊆ S−2 ,
then the second part of (2d) (Theorem 5.3) is sat-
isfied.

If some of conditions (2a-2d) are not satisfied
then we can, of course, also consider reformula-
tions discussed in Section 5. These reformulations
are slightly modified in terms of creating macro-
operators instead of macro-actions (if (2c) or (2d)
are violated).

6.3. The Approach

Here, we summarize how our theoretical frame-
work can be applied. We assume that a macro-
operator o1,2 is learnt by some of the existing tech-
niques, or constructed by hand. Along with o1,2 we
need to know which arguments the primitive op-
erators o1 and o2 share. Apart this input we also
need a corresponding PDM. The output is a de-
cision whether we can safely remove o1, or o2 or
both.

1. By checking whether the conditions of Propo-
sition 6.6 hold identify whether S0 and/or S2

can be undefined.

2. Identify inverse operators to o1 and o2.

3. If generalized (1) of Theorem 5.3 is satisfied,
then terminate (o1 and o2 can be safely re-
moved).

4. Check whether generalized (2a)-(2d) Theo-
rem 5.3 are satisfied. If so, terminate (o1 and
o2 can be safely removed).

5. If generalized (1) of Corollary 5.4 or 5.5 re-
spectively is satisfied, then terminate (o1 or
o2 respectively can be safely removed).

6. Check whether generalized (2b),(2c) Theo-
rem 5.3 (corresponding to (2a),(2b) of Corol-
lary 5.4) are satisfied. If so, terminate (o1 can
be safely removed).

7. Check whether generalized (2a),(2d) Theo-
rem 5.3 (corresponding to (2a),(2b) of Corol-
lary 5.5) are satisfied. If so, terminate (o2 can
be safely removed).

8. Terminate (neither o1 nor o2 can be safely re-
moved).

7. Case Studies

This section demonstrates how our theoretical
framework can be applied. For this purpose, we
have selected some domains from the learning
track of the seventh International Planning Com-
petition2, namely BlocksWorld (our running ex-
ample), Gripper, Rovers and Depots.

2http://www.plg.inf.uc3m.es/ipc2011-learning

19

stack(?x,?y) =

({holding(?x),clear(?y)},

{holding(?x),clear(?y)},

{on(?x,?y),clear(?x),handempty})

unstack(?x,?y) =

({on(?x,?y),clear(?x),handempty},

{on(?x,?y),clear(?x),handempty},

{holding(?x),clear(?y)})

pickup(?x) =

({clear(?x),ontable(?x),handempty},

{clear(?x),ontable(?x),handempty},

{holding(?x)})

putdown(?x) =

({holding(?x)},

{holding(?x)},

{clear(?x),ontable(?x),handempty})

Fig. 7. Schema of BlocksWorld planning operators

7.1. BlocksWorld

BlocksWorld [33] is a well known and stud-
ied planning domain. Definitions of planning op-
erators are depicted in Figure 7 (note that no-
tation ‘?x’ represents a free variable x). Creat-
ing macro-operators is useful in this domain and,
moreover, removing primitive operators brings fur-
ther improvement [7]. We will show how to use our
approach to determine completeness of removing
primitive operators.

After a macro-operator pickup-stack(?x,?y)

is created one may ask whether it is safe to
remove the primitive operators pickup(?x) and
stack(?x,?y). It can be observed that a situa-
tion ⊥, S1, S2 (Figure 6) cannot occur because con-
dition ii) of Proposition 6.6 is met. For a situa-
tion S0, S1, S2 (Figure 4) it is sufficient to find in-
verse operators (Condition (1) of Theorem 5.3).
It can be seen that putdown(?x) is inverse to
pickup(?x), however, an instance of holding(?x)
must not be present in a state where a correspond-
ing instance of pickup(?x) is applicable. It can
easily be observed that no reachable state contains
both handempty and any instance of holding(?x),
hence no instance of holding(?x) is present in a
state in which pickup(?x) is applicable. Analo-
gously, we can find out that unstack(?x,?y) is an
inverse of stack(?x,?y). For a situation S0, S1,⊥
we can find out that Conditions (2a) and (2b) of
Theorem 5.3 are met if an initial state or goal sit-
uation of a given problem does not consist of an
instance of holding(?x). Condition (2c) of The-
orem 5.3 is also met because only putdown(?x)

is applicable in S1 (except stack(?x,?y)) which
is inverse to pickup(?x) as we showed before
and therefore its application leads towards S0. In
summary, the primitive operators pickup(?x) and
stack(?x,?y) can be removed unless an instance

of holding(?x) is present in the initial state or
goal situation.

A macro-operator unstack-putdown(?x,?y) is
then created and, again, one may ask whether it
is safe to remove the corresponding primitive op-
erators (i.e. unstack(?x,?y) and putdown(?x)).
It can be observed that a situation S0, S1,⊥ (Fig-
ure 5) cannot occur because condition i) of Propo-
sition 6.6 is met. Because no other operator can
achieve or be applicable in S1 (remember that
pickup(?x) and stack(?x,?y) were removed af-
ter pickup-stack(?x,?y) has been created) con-
ditions (2c) and (2d) of Theorem 5.3) are met.
By analyzing both S0, S1, S2 and ⊥, S1, S2 situ-
ations we can observe that according to condi-
tions (2a) and (2b) of Theorem 5.3) an instance
of holding(?x) must not be present in the initial
or goal situation in order to ensure that remov-
ing the primitive operators unstack(?x,?y) and
putdown(?x) will not affect the completeness.

7.2. Gripper

In the Gripper domain, a group of robots, each
with two grippers, transports the balls from their
initial to their goal locations. There are three op-
erators, namely move (moves the robot between lo-
cations), pick (the robot picks up the ball with a
gripper in a given location) and drop (the robot
drops the ball in a given location).

After a macro-operator move-drop is created
one may ask whether it is safe to remove the primi-
tive operators move and drop. We can observe that
S0 6= ⊥ because condition ii) of Proposition 6.6 is
met. There is no inverse operator to move other
than move or drop (in fact move can be inverse
to itself), so we cannot apply generalized Condi-
tion (1) of Theorem 5.3. However, we can observe
that we cannot satisfy generalized Condition (2c)
of Theorem 5.3. The pick operator is the ox oper-

20

ator which is applicable in S1. There is no oy op-
erator (unless we introduce move-pick), and move

and pick cannot be performed in arbitrary order
(if the same robot is involved). On the other hand,
we can observe that we can fulfill generalized Con-
dition (1) of Corollary 5.5, since S0 6= ⊥ and move

is its own inverse operator (different than drop).
Hence, drop can be safely removed from the do-
main model.

After that a macro-operator pick-move-drop is
created and one may ask whether it is safe to re-
move pick and move-drop. We can observe that
both conditions i) and ii) of Proposition 6.6 are
met, therefore, S0 6= ⊥ and S2 6= ⊥ (only an
S0, S1, S2 situation can occur). Clearly, there are
no other operators inverse to pick and move-drop.
If no robot carries any ball initially, or it is not
required for a robot to carry a ball as a goal,
then generalized (2a) and (2b) of Theorem 5.3 are
satisfied. Application of move in a state template
S can lead to S1, however, it can be easily ob-
served that S is a variant of S1. Similarly, move
can be applied in S1 and results in a state tem-
plate which is its variant. Therefore, generalized
(2c) and (2d) of Theorem 5.3 are satisfied. Hence,
pick and move-drop can be safely removed form
the domain model.

7.3. Rovers

In the Rovers domain, a group of rovers with
different sets of equipment collects data about dif-
ferent types of phenomena and communicate the
data back to the lander. Three operators (out of 9)
are of our interest, namely calibrate (calibrates
a camera on a rover), take-image (a rover gets an
image of the phenomenon by the camera in a given
location) and navigate (moves the rover between
locations).

After a macro-operator calibrate-take-image
is created one may ask whether it is safe to
remove the primitive operators calibrate and
take-image. We can observe that S0 6= ⊥ because
condition ii) of Proposition 6.6 is met. There are no
inverse operators to calibrate and take-image,
so generalized condition (1) of Theorem 5.3 is not
satisfied. If no rover has its camera initially cali-
brated, or no rover is required to have its camera
calibrated as a goal, then generalized (2a) and (2b)
of Theorem 5.3 are satisfied. We can observe that
navigate can be applied in S1 (the ox operator),

or its application might lead to S1 (the o′y oper-
ator). However, it can be easily observed that in
both cases we can find the oy (o′y) operator which
is a variant of navigate such that consecutive ap-
plication of oy and calibrate will have the same
result as applying ox in S1, and consecutive ap-
plication of take-image and o′y will result in S2.
So generalized (2c) and (2d) of Theorem 5.3 are
satisfied. Hence, calibrate and take-image can
be safely removed form the domain model.

7.4. Depots

The Depots domain is a combination of BlocksWorld
and Logistics. There are five operators, namely
lift (lift a crate from a stack), load (loads a lifted
crate to a truck), unload (unloads a crate from the
truck), drop (drops a crate to the stack), drive
(moves the truck between locations).

After a macro-operator lift-load is created
one may ask whether it is safe to remove the primi-
tive operators lift and load. We can observe that
S0 6= ⊥ because condition ii) of Proposition 6.6
is met. Although, there are inverse operators to
lift and load (drop and unload respectively), we
cannot apply generalized (1) of Theorem 5.3 be-
cause S2 might be undefined. We may observe that
generalized (2c) of Theorem 5.3 is not satisfied,
since drop is the ox operator that is not necessar-
ily inverse to lift (the crate can be stacked on
another stack in the same locations) and no corre-
sponding oy operator exists (unless we introduce a
lift-drop macro-operator). We can at least sat-
isfy generalized (1) of Corollary 5.5, so load can
be safely removed.

We can see lift cannot be safely removed ac-
cording to our theoretical framework, although in-
tuitively it can. The reason is that it might be the
case that S2 = ⊥. This can happen only if no truck
is present in the environment which is usually not
the case.

8. Discussion

Section 6.2 describes how Theorem 5.3 and its
corollaries can be generalized for the purposes of
determining whether (primitive) operators from
which a macro-operator is assembled can be re-
moved. State templates provide a good abstrac-
tion of the state space, so we believe that we are in

21

certain cases able to determine completeness of re-
moving (primitive) operators in polynomial time.
However, there are some peculiarities which may
often result in incorrect decisions about the in-
completeness of removing primitive operators, i.e.,
so called ‘false negatives’. An example of ‘false
negative’ is shown in the previous section (the
Depots domain example). Also, using state tem-
plates as defined before might result in checking
the triplets of states that in fact do not belong
to any macro-action locality. Also, determining an
existence of o′y leading towards state templates S0

or S2 (generalized condition (2d) of Theorem 5.3)
is strong thus it is practically almost impossible to
say whether o′y leads towards S0 unless o′y has no
negative effect. On the other hand, state templates
can be refined by incorporating additional knowl-
edge about the domain model, for instance, mu-
tex predicates that can be derived from Planning
Graph [14].

Our framework should be very useful for an ex-
pert who models PDMs. Although there is a pos-
sibility of ‘false negatives’, knowing which condi-
tions are violated and how can be very informa-
tive for an expert who can perform further anal-
ysis which can confirm or refute concerns related
to a potential loss of completeness after removing
primitive operators. Removing primitive operators
after a new macro-operator is generated has shown
to be a very good strategy [7], although Chrpa’s
approach is incomplete in general. Ensuring com-
pleteness of such a strategy should be very helpful,
especially for real-world applications.

Whereas our framework is designed to be used
after a macro-operator is generated by any of ex-
isting techniques (e.g. Macro-FF [5]), we believe
that it might be useful also as a part of some
macro-operator learning technique. In particular,
such a technique can benefit from being focused on
replacing primitive operators by macro-operators,
since other techniques mainly consider different
criteria (e.g. frequency of “macro-operator candi-
dates” in training plans).

9. Conclusions and Future Work

In this paper, using a theoretical study, we
have identified when it is safe (i.e. without losing
completeness) to remove (some) primitive actions
from which a macro-action is created. This study

has been extended to planning operators (gener-
alized actions). For this purpose we have defined
a theoretical framework introducing reformulation
schemes as pairs of functions where one reformu-
lates planning problems and the other one refor-
mulates solutions of reformulated problems back
to be solutions of the original planning problems.
Two main reformulation schemes, namely macro-
action and action eliminating schemes, have been
discussed in detail summarizing relevant theoreti-
cal results.

Although this paper provides a purely theoret-
ical study, outcomes of this papers can be use-
ful in practice. As indicated earlier in the text
the approach for determining whether primitive
planning operators can be removed after a cor-
responding macro-operator is added, should be a
useful tool for experts who model planning tasks.
It might be the case that general criteria for ensur-
ing completeness might be too strong and there-
fore ‘false negatives’ can occur. On the other hand,
our approach can clearly point to which criteria
are not satisfied and why. An expert can then ex-
plore whether failing to satisfy these criteria has an
impact on completeness in a particular situation.

As discussed in Section 8 our theoretical frame-
work can be useful as a component of a macro-
operator generating technique. We believe that
knowing which primitive operators can be safely
removed can be very beneficial for learning useful
macro-operators.

Our future work will also involve studying some
other (less common) reformulation schemes, for
illustration see [18,11]. Discovering more (com-
plete) reformulation schemes which may improve
performance of planning engines would be useful.
Also, we believe that studying various reformula-
tion schemes can bring an impact to planning task
modelling (by experts) as we indicated in this pa-
per.

Acknowledgements
The research was funded by the UK EPSRC

Autonomous and Intelligent Systems Programme
(grant no. EP/J011991/1).

References

[1] M. A. Alhossaini and J. C. Beck. Instance-specific re-

modelling of planning domains by adding macros and
removing operators. In Proceedings of SARA, pages

16–24, 2013.

22

[2] C. Bäckström and P. Jonsson. Algorithms and limits

for compact plan representations. Journal Artificial

Intelligence Research (JAIR), 44:141–177, 2012.

[3] A. Blum and M. Furst. Fast planning through planning
graph analysis. Artificial Intelligence, 90(1-2):281–300,

1997.

[4] B. Bonet and H. Geffner. Planning as heuristic search.

Artificial Intelligence, 129:5–33, 2001.

[5] A. Botea, M. Enzenberger, M. Müller, and J. Schaef-

fer. Macro-FF: Improving AI Planning with Automat-
ically Learned Macro-Operators. Journal of Artificial

Intelligence Research (JAIR), 24:581–621, 2005.

[6] T. Bylander. The computational complexity of propo-

sitional STRIPS planning. Artificial Intelligence,
69:165–204, 1994.

[7] L. Chrpa. Generation of macro-operators via inves-

tigation of action dependencies in plans. Knowledge

Engineering Review, 25(3):281–297, 2010.

[8] L. Chrpa. Theoretical aspects of using learning tech-
niques for problem reformulation in classical planning.

In Proceedings of PlanSIG, pages 23–30, 2011.

[9] L. Chrpa and R. Barták. Reformulating planning prob-

lems by eliminating unpromising actions. In Proceed-
ings of SARA, pages 50–57, 2009.

[10] L. Chrpa, T. L. McCluskey, and H. Osborne. Reformu-

lating planning problems: A theoretical point of view.

In Proceedings of FLAIRS, pages 14–19, 2012.

[11] L. Chrpa, M. Vallati, and T. L. McCluskey. Deter-
mining linearity of optimal plans by operator schema

analysis. In Proceedings of SARA, pages 34–41, 2013.

[12] A. Coles and A. Smith. Marvin: A heuristic search

planner with online macro-action learning. Journal
Artificial Intelligence Research (JAIR), 28:119–156,

2007.

[13] C. Dawson and L. Siklóssy. The role of preprocessing

in problem solving systems. In Proceedings of IJCAI,
pages 465–471, 1977.

[14] F. Dvořák, D. Toropila, and R. Barták. Towards AI

planning efficiency: Finite-domain state variable refor-

mulation. In Proceedings of SARA, pages 50–56, 2013.

[15] R. Fikes and N. J. Nilsson. STRIPS: a new approach to
the application of theorem proving to problem solving.

Artificial Intelligence, 2(3/4):189–208, 1971.

[16] M. Ghallab, C. K. Isi, S. Penberthy, D. E. Smith,

Y. Sun, and D. Weld. PDDL - The Planning Domain
Definition Language. Technical report, 1998.

[17] M. Ghallab, D. Nau, and P. Traverso. Automated plan-
ning, theory and practice. Morgan Kaufmann Publish-

ers, 2004.

[18] P. Haslum. Reducing accidental complexity in plan-
ning problems. In Proceedings of IJCAI, pages 1898–
1903, 2007.

[19] P. Haslum, M. Helmert, and A. Jonsson. Safe, strong,

and tractable relevance analysis for planning. In Pro-

ceedings of ICAPS, pages 317–321, 2013.

[20] P. Haslum and P. Jonsson. Planning with reduced op-
erator sets. In Proceedings of AIPS, pages 150–158,

2000.

[21] M. Helmert. Complexity results for standard bench-
mark domains in planning. Artificial Intelligence,

143(2):219–262, 2003.

[22] M. Helmert. The fast downward planning system.

Journal of Artificial Intelligence Research (JAIR),
26:191–246, 2006.

[23] M. Helmert and C. Domshlak. Landmarks, critical

paths and abstractions: What’s the difference anyway?

In Proceedings of ICAPS, pages 162–169, 2009.

[24] J. Hoffmann. Analyzing Search Topology Without

Running Any Search: On the Connection Between
Causal Graphs and h+. Journal of Artificial Intelli-

gence Research (JAIR), 41:155–229, 2011.

[25] J. Hoffmann and B. Nebel. The FF planning system:

Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research (JAIR), 14:253–302,

2001.

[26] A. Jonsson. The role of macros in tractable plan-

ning. Journal Artificial Intelligence Research (JAIR),
36:471–511, 2009.

[27] R. Korf. Macro-operators: A weak method for learning.
Artificial Intelligence, 26(1):35–77, 1985.

[28] T. L. McCluskey and J. M. Porteous. Engineering and

compiling planning domain models to promote validity

and efficiency. Artificial Intelligence, 95(1):1–65, 1997.

[29] K. Mehlhorn. Data Structures and Algorithms 2:

Graph Algorithms and NP-Completeness. Springer-
Verlag, 1984.

[30] M. A. H. Newton, J. Levine, M. Fox, and D. Long.

Learning macro-actions for arbitrary planners and do-

mains. In Proceedings of ICAPS, pages 256–263, 2007.

[31] S. Richter and M. Westphal. The LAMA plan-
ner: guiding cost-based anytime planning with land-

marks. Journal Artificial Intelligence Research

(JAIR), 39:127–177, 2010.

[32] U. Scholz. Reducing planning problems by path reduc-

tion. PhD thesis, Darmstadt University of Technology,
2004.

[33] J. Slaney and S. Thiébaux. Blocks world revisited.

Artificial Intelligence, 125(1-2):119–153, 2001.

[34] G. Wickler. Using planning domain features to

facilitate knowledge engineering. In Workshop of
Knowledge Engineering for Planning and Scheduling
(KEPS), 2011.

