
University of Huddersfield Repository

Lan, Xiangqi, Jiang, Xiang, Zeng, Wenhan and Blunt, Liam

Construct Surface Characterization System by Assembling Functional Components Dynamically

Original Citation

Lan, Xiangqi, Jiang, Xiang, Zeng, Wenhan and Blunt, Liam (2015) Construct Surface
Characterization System by Assembling Functional Components Dynamically. Procedia CIRP, 27.
pp. 198-201.

This version is available at http://eprints.hud.ac.uk/id/eprint/24749/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Available online at www.sciencedirect.com

2212-8271 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the organizing committee of 13th CIRP conference on Computer Aided Tolerancing
doi: 10.1016/j.procir.2015.04.066

 Procedia CIRP 27 (2015) 198 – 201

ScienceDirect

13th CIRP conference on Computer Aided Tolerancing

Construct surface characterization system by assembling functional
components dynamically

 Xiangqi Lan*, Xiangqian Jiang, Wenhan Zeng, Liam Blunt
EPSRC Centre for Innovative Manufacturing in Advanced Metrology,

School of Computing and Engineering, University of Huddersfield, Huddersfield, HD1 3DH, UK

* Corresponding author. Tel.: +44-01484-473538; fax: +44-01484-472161. E-mail address: XiangqiLan@gmail.com

Abstract

Surface characterization of manufactured components is regarded as an important process to figure out surface features, which
are closely related to the manufacture process and will affect their functionality. Due to the complicated computation, the actual
operations are mostly completed by the aid of surface characterization software. Nowadays, these systems are mainly exploited
by instrument companies and embedded in surface measurement instruments. Although it is convenient for users to evaluate
surfaces straightforwardly after measurement, the results are usually incomparable with those from other surface instruments
because of the different characterization systems. Moreover, the system evolution will cost too much due to the lack of flexibility
and extendibility. This paper presents a component based architecture which facilitates the system construction by assembling
functional components dynamically.

© 2015 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the organizing committee of 13th CIRP conference on Computer Aided Tolerancing.

 Keywords: Surface characterisation; component-oriented development; dynamic configuration

1. Introduction

Surface texture and its measurement are becoming more
and more critical and important in the field of high precision
engineering and nano-technology. Surface roughness is an
important factor in determining the satisfactory performance
of a workpiece, for example in tribology and coatings. Also it
has been found to be useful in machine tool monitoring [1].

It is well known that surface metrology is a rapidly
developing discipline [2]. Although many analysis algorithms
and methods have already been specified in ISO standards,
there are still some drawbacks to the present characterization
techniques with many being only appropriate for some
surfaces under certain conditions. Therefore, as a software
system in a research field, surface characterization system
needs to be updated constantly with the emergence of new
algorithms and methods. In contrast to the algorithms of a
surface characterization system, the system architecture is of
equal importance. As function modules in current surface

characterization system are tightly coupled together, it is not
conducive to the reuse of function modules and innovation of
overall system. A lot of redundant and duplicate works have
been done in present characterization systems, and they will
be done again when building a new characterization system. It
is clearly advantageous to develop a flexible system
architecture that can bring huge benefits for surface
characterization systems by easily facilitating additional
functionality.

This paper proposed a new way to establish the surface
characterization system with the improved flexibility and
extendibility. Instead of being created as a constant chunk, the
system will be constructed by assembling its functional
components at runtime. Using this approach, system
maintenance and extension becomes much easier.
Modifications or changes can be completed inside the
component itself without affecting other parts of the system,
thus the deficient or redundant component can be easily
removed from the system and new components can be

© 2015 The Authors. Published by Elsevier B.V This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the organizing committee of 13th CIRP conference on Computer Aided Tolerancing

199 Xiangqi Lan et al. / Procedia CIRP 27 (2015) 198 – 201

amended without difficulty. To implement a completely
flexible system, Object-oriented development method is
insufficient. As the successor of object-oriented software
development, component based development is adopted here
to realize such a flexible surface characterization system.

2. Component-Based Development

The component is a language-neutral, independently
implemented package of software services, delivered in an
encapsulated and replaceable container, accessed via one or
more published interfaces as shown in Fig. 1. It is not
platform constrained or application bound [3].

Provided
Interface1

Component
Provided
Interface2

Required
Interface

Fig. 1. A component with provided and required interfaces

Component-based software development can greatly
improve the development efficiency and ease the extensibility
and maintenance of large engineering software. Component-
based software applications are composed from diverse
software components. Developers and sometimes end-users
compose applications from often stand-alone components in
flexible ways to achieve a desired set of functions. Two key
aims of component technologies are to increase reusability of
software in diverse situations without code modifications, and
to enable end users to extend and reconfigure their
applications via plug and play of components. The framework
for CBA (Component-Based Architecture) consists of three
major parts: the facilities and services, the application
components, and component managers [4]. All the functions
are separated from the overall system, and implemented in the
components. The system is more like a container where each
component can run; it takes charge of the construction,
invocation and destruction of components. The event and
message map are processed by the system.

The component is an isolated element, a member of an
external distributed composite system, and it interacts with the
system framework through a set of standard interfaces.
Components should be designed to be independent units,
much like Lego building blocks. They can be easily added to
the system, and existing components may be detached and
plugged into other systems. The services offered by
components are made public by publishing their interfaces
and contracts.

The interface is provided for components to enable
asynchronous, dynamic, and anonymous communications. It
provides proper connectivity between components and
ensures communication between components. This is crucial
to implement the dynamic connection of components rather
than a statically chained function call. The interface is not
only the bridge that connects the components and client; it
also illustrates the functions, while the component is the

function implementation. The connector is transparent to the
client who does not need knowledge of the implementation of
components.

The infrastructure for CBD (Component-Based
Development) needs three main elements: uniform design
notation, standard interfaces, and repositories [4]. The
uniform design notation ensures a consistent architectural
diagram to describe a component’s functions and properties.
This is critical to design the collaboration between
components and to ease communication between developers.
A standard interface for components allows applications in
any language on any platform to access their functions. This is
achieved by an application in binding to the component model
or IDL (Interface Definition Language). IDL is a specification
language used to describe a software component’s interface.
IDL describes an interface in a language-neutral way,
enabling communication between software components that
do not share the same programming language. Repositories
provide the runtime environment for components. Although a
component is executable, it cannot run individually. The
construction, operation and deconstruction are also managed
by the repositories.

3. System Architecture Design

3.1. Separation of Analysis Functions and System Framework

Generally whether a software system is suitable for a
certain application is determined by its functions. System
functions are of vital importance and always the concern of
the users, while the infrastructure is of little interest to the end
user. In a surface characterization system, analysis functions
such as fitting, filtering and parameters calculation are more
emphasized in comparison to the design of system
architecture. Therefore, most of present surface
characterization systems are equipped with abundant analysis
algorithms but in poor system structures. Functions are tightly
coupled with other functions or system framework, and it is
extremely difficult to maintain the whole system owing to
these complex dependent relationships between functions and
system framework.

In fact, system architecture is much more crucial for
research software systems because most attributes such as the
stability, maintainability and extensibility of a software
system are closely related to its architecture rather than
system functions [5]. However, it is impossible to design
system architecture without considering relevant system
functions, since system functions are always embedded in
system architecture and bound to the system framework.
Hence, to design and implement a flexible system architecture
is to separate system functions which are prone to change
from the system framework physically [3].

3.2. Surface characterization system architecture

According to the principle that the system should be
constructed instead of be created from scratch. System

200 Xiangqi Lan et al. / Procedia CIRP 27 (2015) 198 – 201

functions should be implemented as components, and the
global system consists of these components which are
standalone and executable entities. Generally, data importing,
fitting and filtering (or any other analysis), parameters
calculation and analysis reporting are essential tasks for a
surface characterization system. They are the representation
of surface verification operations that are used within the
surface characterization process. The surface data flow within
an ideal surface characterization system is shown in Fig. 2.

Data file Untreated
data

Fitting Filtering

Parameterisation

Processed
data

Parameters

AACF APSD ...

Screen PrinterReports

Read

Write

Visualisation

Fig. 2. Data flow within a surface characterisation system

After the measurement, surface data is initially stored in a
data file. When evaluating a surface, surface data must be
imported to the surface characterization system from a
specific file. The surface data was stored in system memory as
“untreated data”. Once imported, users can select certain
operations to process the untreated data according to the
specific requirements. As most of the output of these
operations are still surface data (though in a modified form)
with the same format as the “untreated data”, these operations
steps can be employed repeatedly. Following surface data
treatment, the “processed data” which is expected to include
the intended features such as surface roughness can be
displayed or parameterized. Finally, the analysis results can
be exported to screen, file reports, printer, etc.

3.3. Categorization of system functional components

In the proposed surface characterization system, there are
three major types of system functions: data accessing, data
processing and data displaying [6]. They comprise the
foundation of various data analysis chains. However, they
have different I/O properties and cannot be treated in a unified
way. It is required to classify them into different types, so that
system framework can use a unique method to invoke the
functional components with the same type. Furthermore, the
categorization of system functional components is the
prerequisite of the interface design, because interfaces are the
only bridge between them and the system framework.
 Data access components

Data access component implements system I/O functions.
These components provide the raw data for the system and
can acquire the measurement data from instruments in a direct
or indirect way. If a data access component directly acquires
measurement data from a particular instrument, it means that
this component is a customized component which is usually
bound to the instrument and cannot be used by other
instruments. For the sake of good reusability, the indirect way
to acquire measurement data is considered. The measurement
data file is the bridge between instruments and data access
components. As illustrated in Fig. 3, a measurement file is the
input of data access component, while a data matrix is output
for further analysis.

Data Access
Components

Data Import/Export

Surface data file
Surface topography

9.98mm
9.98mm

0.00

1.53mm

Fig. 3. Function chart of Data Access Components

 Data process Components
Surface analysis and characterization is a sequential

procedure of several operations. Every operation in the chain
of an operator, such as fitting, filtering and parameter
calculation, can be encapsulated as a data process component.
Some data manipulations such as data transformation and data
arithmetic also belong to data process components. Data
process components are a “black box” which is invisible for
clients who use this component. As importing data to be
processed, a data process component carry out certain
operation on the input data and then output the processed data.
What is the input and output data are much more critical than
how to do the operation. Fig. 4 is an example of Robust
Gaussian filtering component which extracts the high
frequency band of original surface data.

Fig. 4. Function chat of Data Process Components

 Data Display Components
Although the data display component seems to have no

relationship with surface characterization process, it is helpful
to have an intuitive sense of surface data and explicit
understanding of each analysis procedure. Both the input data
and output data of each process component need to be
displayed by certain display component. Fortunately, three

201 Xiangqi Lan et al. / Procedia CIRP 27 (2015) 198 – 201

dimensional graphics display is no longer a barrier as the
development of computer graphical technology. Both
OpenGL and DirectX can provide a perfect view of real
objects, and many implementation details have been omitted.
Fig. 5 is the interface of a 3D display component which is
implemented by utilizing OpenGL technology.

Fig. 5. Data Display Components―3D Display Component

4. Dynamical assembling

In the flexible structure, interfaces acts as a common
protocol that every part of the system has to comply with, and
they indicate all the interactions among those independent
parts. System functions can be recognized by the system
framework via their interfaces [7]. Hence, the system
becomes much easier to maintain and extend. Any
modifications within one part will not affect other parts of the
software system. Moreover, it is possible to add new function
elements without any change to the original system even
when it is running.

The invocation of system functional components is
performed according to their interfaces which are determined
by their types. In the proposed system architecture, there are
three types of system functional components, and they are
invoked in different ways within the system framework.
System functional components of the same type have to
implement the same interface so that they can be invoked in
the same way. Among these interfaces, SSObject is the
foundational interface for the whole system, and every
functional component has to realize this interface otherwise it
cannot be added to system environment and be executed
correctly. The SSObject interface is defined as below:

//Interface of all external function components
 public interface SSObject
 {
 bool OnRegister();
 bool UnRegister();
 }

The first method OnRegister is to register some basic

component attributes, such as Name, Type, Path and so forth
to the configuration database. This happens when adding a
new system functional component to the system. Similarly,

another dual method UnRegister is used to deregister
functional components when the functional component is
removed from the characterization system.

In addition, every functional component has to realize its
own interface. Otherwise, it cannot be recognized as the
correct type of functional components. To sum up the
proposed system framework can invoke a functional
component via its interfaces at any time. The components are
absolutely separated from each other. Obviously, it is
allowable to change the quantity of system functional
components without altering the system architecture and
affecting other parts. It also implies that there is no need to
rebuild and redeployment whole system when adding or
removing system functions and it is desirable for the proposed
expandable system. Meanwhile, the whole system is divided
into many small individual parts which are much easier to
maintain than a single large software system.

5. Conclusion

Surface characterization technology is undergoing
tremendous innovation and various creative methods are
being employed to evaluate surfaces. A traditional way to
extend current characterization system is to integrate new
methods to it with system modifications. As a consequence,
the whole system becomes increasingly large and complex.
Components based development technology aims to construct
software systems by gluing loosely coupled components. The
complexity of whole system is determined by component
types, rather than component quantities. In this
characterization system, file formats, analysis algorithms and
display methods are three mutable system functions.
Therefore, three kinds of components are classified to
implement these functions respectively. These components
are recognized as additional parts of whole system, and they
can be added, substituted or removed without affecting other
parts. Besides system developers, any end users also have the
right to extend system functions. They can develop their own
function components according to their specific requirement
as long as such components have implemented pre-defined
interfaces.

References

[1] Whitehouse, D.J., Surface metrology. Measurement Science and
Technology, 1997. 8(9): p. 955–972.

[2] Jiang, X., et al., Paradigm shifts in surface metrology. Part I. Historical
philosophy. Proceedings of the Royal Society A: Mathematical, Physical
and Engineering Science, 2007. 463(2085): p. 2049-2070.

[3] McInnis, K. and S. Technologist, Component-based development. The
concepts, technology and methodology. Castek Software Factory, 2000.

[4] McArthur, K., H. Saiedian, and M. Zand, An evaluation of the impact of
component-based architectures on software reusability. Information and
Software Technology, 2002. 44(6): p. 351-359.

[5] Shaw, M. and D. Garlan, Software architecture: perspectives on an
emerging discipline. 1996.

[6] X. Lan, X. Jiang., L. Blunt, and S. Xiao, Building a Flexible Surface
Characterisation System Architecture.

[7] Ferron, J.R., et al. A flexible software architecture for tokamak discharge
control systems. 1995.

