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ng of ibuprofen using starch
derivatives in crystallization medium to produce
promising ibuprofen with improved
pharmaceutical performance

Ali Nokhodchi,*ab Alireza Homayouni,c Ruta Araya,d Waseem Kaialy,e Wasfy Obeidatf

and Kofi Asare-Addog

Ibuprofen exhibits poor flow, poor compaction and dissolution behaviour, and it is prone to capping after

ejection from the die. Therefore, the aim of the present research was to engineer ibuprofen crystals in the

presence of two disintegrants (starch and sodium starch glycolate) in order to improve its flow,

compactibility and dissolution behaviour simultaneously. To this end ibuprofen and different

concentrations of disintegrant (0.25 to 10% w/w in case of starch and 0.25 to 7% w/w in case of sodium

starch glycolate) were dissolved in ethanol and water respectively. The ibuprofen solution was then

added to the aqueous solutions containing the different concentrations of disintegrant. Ibuprofen

precipitated within 10 min and the crystals were separated and dried for further studies. The obtained

crystals were characterized in terms of flow, density, tablet hardness, dissolution behaviour and solid

state. The results showed most of engineered ibuprofen to have better flow with a high compactibility.

The results also showed that an increase in the concentration of starch in the crystallization medium

resulted in a reduction in the hardness of ibuprofen tablets, but this was not the case for ibuprofen

samples engineered in the presence of sodium starch glycolate. It is interesting to note that although

engineered ibuprofen showed superior dissolution as compared to untreated ibuprofen, the highest

concentration of starch (10%) or sodium starch glycolate (7%) slowed down the release remarkably due

to an increase in the viscosity of the dissolution medium around drug particles. Solid state analysis (FT-

IR, XRPD and DSC) ruled out the presence of different polymorphic forms and also any interaction

between these disintegrants and ibuprofen. In conclusion, the engineering of ibuprofen in the presence

of disintegrant showed how properties such as flow, compaction and dissolution behaviour can be

simultaneously manipulated to suit a desired application.
1. Introduction

In previous years many attempts have been used to change
the morphology of drug crystals using different crystalliza-
tion procedures. This is done in order to improve their
compression and ow properties so that they are suitable for
direct compression as this is the fastest, simplest, and least
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expensive way in manufacturing tablets. Examples of crys-
tallization procedures are spherical crystallization which
transforms crystalline drugs into agglomerated forms,1–4

crystallization from different solvents to produce different
crystal habit5–7 and incorporation of additives by co-
precipitation.8–10

Ibuprofen, 2-(4-isobutylphenyl)-propionic acid is a widely
used analgesic and antirheumatic drug. It is a drug which is well
known to exhibit poor ow properties and poor compression
ability due to its high cohesive and viscoelastic properties
respectively. A great problem in manufacturing is its high
tendency of sticking to the punches.11

Moreover ibuprofen is also known as a poor water soluble
drug. It is classied as class II according to the Bio-
pharmaceutics Classication System (BCS) which means that it
has high intestinal permeability and low water solubility.
Therefore, dissolution of ibuprofen in gastrointestinal tract is a
rate limiting factor for oral absorption and as such increasing
RSC Adv., 2015, 5, 46119–46131 | 46119
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the dissolution rate could increase the oral bioavailability of
this drug. On the other hand, rapid drug release is preferable,
especially for analgesic drugs.

Apart from acting as a disintegrating agent, starch has been
widely used as a binder and also as a diluent in oral solid dosage
formulations.12,13 Sodium starch glycolate is mainly used as a
modern super disintegrant in oral dosage forms.14 Swain et al.
(2015) used sodium starch glycolate in oral dispersible tablets to
enhance the dissolution of ibuprofen through faster disinte-
gration of tablets but no attempt was made to change the crystal
properties of the ibuprofen.15 In another study solid dispersions
of ibuprofen with starch 1500 was designed through factorial
design to enhance the dissolution rate of ibuprofen, but
stability of solid dispersions might be an issue in solid disper-
sion formulation due to the presence of amorphous structure.16

Many attempts have been made in the past to improve the
properties of ibuprofen using different crystallization tech-
niques or additives.7,17–20 An improvement of the ow charac-
teristics and the compressibility of drug crystals have been
observed, but not of dissolution at the same time, which is what
this study is aiming to do. Therefore the aim of this project is to
use a non-toxic solvent in a simple crystallization technique in
the presence of starch and sodium starch glycolate to improve
ow, hardness and dissolution of ibuprofen tablets simulta-
neously with no signicant interaction between ibuprofen and
starch derivatives. This piece of work will open up a new window
for the possibility of enhancing these three important param-
eters simultaneously.

2. Experimental
2.1. Material

Ibuprofen and sodium starch glycolate were purchased from
spectrum chemical MFG, Corp (USA), and starch from Fisher
Scientic (UK). The solvent used in this study was ethanol which
was also obtained from Fisher Scientic (UK). All solvents and
chemicals were of analytical reagent grade used as obtained.

2.2. Preparation of ibuprofen crystals

Nine different modied crystals of ibuprofen were prepared and
labelled as Ib1 to Ib9 (Table 1). Ibuprofen was dissolved in
ethanol to produce 30% w/v solution. In all crystallization
process 10 ml of the ethanolic solution of ibuprofen (30% w/v)
was added to 100 ml of distilled water containing appropriate
amount of disintegrant (Table 1) under continuous stirring with
a magnetic stirrer at approximately 500 rpm for 20 minutes at
room temperature. The precipitated crystals from each solution
were collected aer 20 minutes by ltration under vacuum (the
pore size was 0.45 mm). The obtained crystals were spread on a
petri-dish and dried in an oven at 50 �C for 24 hours. The
obtained crystals were stored in a screw capped glass vial at
room temperature before use for further studies.

2.3. Scanning electron microscopy (SEM)

The morphology of crystals (their habit and surface features)
was examined using a scanning electron microscope (Leica
46120 | RSC Adv., 2015, 5, 46119–46131
Cambridge S360, UK) operating at 15 kV. The samples were
coated under vacuum with gold in an argon atmosphere prior to
observation.

2.4. Powder ow measurement

Flowability of the treated and untreated ibuprofen samples was
assessed by a determination of Carr's Index (CI). The CI was
calculated according to eqn (1):21,22 three grams of the samples
were gently poured into 10 ml measuring cylinders and the bulk
volume of the particles was recorded. The measuring cylinder
was tapped 100 times using a tapping machine (model, Erweka,
Germany) to achieve tapped volume. Then bulk and tapped
density was calculated using mass over the volume. The
obtained densities were incorporated into the following equa-
tion to calculate the Carr's index value.

CI ¼ tapped density� bulk density

tapped density
� 100 (1)

2.5. Particle size analysis

Particle size analysis distribution of all formulations (unground
formulations) was conducted using a Sympatec (Clausthal-
Zellerfeld, Germany) laser diffraction particle size analyzer
using the liquid method. Small amount of the ibuprofen
samples were added to an aqueous saturated ibuprofen solution
under sitting conditions and the mean particle size was calcu-
lated automatically using the soware provided.

2.6. Differential scanning calorimetry (DSC)

DSC (Mettler Toledo, Switzerland) was used to study the thermal
behaviour of all the samples. Samples of ibuprofen crystals (4–5
mg) were heated ranging from 20 to 150 �C at a scanning rate of
10 �C min�1 in crimped aluminium pans under a nitrogen gas.
The enthalpy of fusion, onset temperatures and melting points
of the samples were automatically calculated using the soware
provided (Mettler-Toledo, Switzerland).

2.7. X-ray powder diffraction (XRPD)

The XRPD patterns of untreated ibuprofen, starch, Na starch,
ibuprofen crystallized without disintegrant and ibuprofen
crystallized with the two disintegrants at different concentra-
tions were obtained using a Bruker D2 Phaser XRPD diffrac-
tometer. The samples were scanned from 5� to 55� 2q at a rate of
1.5� min�1.

2.8. Determination of the amount of disintegrant adsorbed
to ibuprofen

Ibuprofen samples (100 mg) were weighed accurately and dis-
solved in 10 ml ethanol. This was then dispersed in 1000 ml of
water, such that any drug would have dissolved and the dis-
integrant would have remained dispersed. 5 ml of the disper-
sion was then ltered through a 0.45 mm membrane lter to
separate the ibuprofen solution from the disintegrant. The
ltered samples were then analyzed spectrophotometrically at a
wavelength of 221 nm using a 2100 Perkin Elmer UV
This journal is © The Royal Society of Chemistry 2015



Table 1 Composition of the different formulations and the amount of disintegrant attached to ibuprofen crystals after crystallization

Sample Drug : disintegrant (g) Ibuprofena Starchb (w/v) Sodium starch glycolateb (w/v)
%disintegrant attachedc

(theoretical %disintegrant)

Ib1 3 : 0 10 ml — — —
Ib2 3 : 0.25 10 ml 0.25% — 0.8 (7.8)
Ib3 3 : 1 10 ml 1% — 12.2 (25)
Ib4 3 : 5 10 ml 5% — 42.9 (62.5)
Ib5 3 : 10 10 ml 10% — 70.25 (76.9)
Ib6 3 : 0.25 10 ml — 0.25% 7.9 (7.8)
Ib7 3 : 1 10 ml — 1% 16.7 (25)
Ib8 3 : 5 10 ml — 5% 18.9 (62.5)
Ib9 3 : 7 10 ml — 7% 33.29 (70)

a The amount of ibuprofen dissolved in 10 ml solvent was 3 g for all samples. b These are the percentages of disintegrants in 100 ml of the solution.
c Values in parenthesis show the theoretical %w/w of disintegrant added to the crystallization medium.
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spectrophotometer. The drug content was determined by
reference to a standard solution. The amount of disintegrant
was taken as the difference between the absorbance of the
standard and the spectrophotometrically determined absor-
bance of the sample. In addition the percentage of ibuprofen
was also determined by DSC study. For this purpose the
enthalpy of each sample was divided to enthalpy of crystallized
ibuprofen (Ib1).
2.9. Preparation of ibuprofen tablets

The compacts were prepared directly from the sieved fraction of
the ground crystals (45–250 mm) using an 8mm at-faced punch
(model MTCM-1, Globe Pharma, US). The manual tablet
compression machine, model MTCM-I, is designed for
compaction of powders into tablets one at a time. The press has
the capability to compress tablets from 1 kN to around 15 kN.
The material for each tablet was weighed (100 mg), introduced
into the die and compacted at increasing compression pres-
sures of 35, 70, 105, 140 and 175 MPa, using a single punch
press. The compaction surfaces were lubricated with 1% w/v
magnesium stearate in acetone before compaction. The
compacts were held under load for 20 seconds, ejected and
stored in screw-capped bottles for 24 hours before using, to
allow for possible hardening and elastic recovery. For compar-
ison purposes, tablets were also made from physical mixtures.
2.10. Porosity calculation

In order to calculate the total porosity of each tablet, the
dimension of tablets (diameter and thickness) were measured
using an electronic digital calliper (Fisher Scientic, UK)
immediately before hardness testing. The true density of
powders was determined using Ultrapycnometer 1000 (Quan-
tachrome Instruments, UK). Tablet porosity was then calculated
according to the following equation.

Tablet porosity ¼

2
6641�

�
tablet weight

tablet volume

�

true density of powder

3
775�100 (2)
This journal is © The Royal Society of Chemistry 2015
2.11. Crushing strength and capping tendency of tablets

Tablets diameter and thickness was measured rst using a
digital micrometer (Fisher Scientic, UK) and recorded. The
crushing strength of tablets was determined from the force
required to fracture the compacts on a motorized tablet hard-
ness tester (Dr SCHLEUNIGER Tablet tester 8M). A minimum of
3 tablets were selected for hardness measurements. Tablets
were assessed visually for capping by observation of the nal
tablets for horizontal striations. For comparison purposes, a
hardness test was also conducted for physical mixtures.

2.12. Dissolution studies

A USP dissolution test apparatus no. 2 (rotating paddle
method, Erweka, Germany) was used to monitor the dissolu-
tion proles of the tablets made from the different samples. All
tablets used were 100 mg in weight. The dissolution medium
was 900 ml of phosphate buffer (pH 7.2) equilibrated to 37 �
0.5 �C and the paddles rotating at 50 rpm. Samples were taken
at predetermined intervals using a peristaltic pump and
assayed for drug content by a UV spectrophotometer at 221 nm.
Each sample was determined in triplicate. Dissolution studies
were only conducted for the compacts produced at 105
MPa only.

3. Results and discussion

It should be kept in mind in the present manuscript the
percentages of disintegrant mentioned in the gures or tables
are the percentages that are dissolved in the 100 ml crystalli-
zation medium not the percentages of disintegrant attached to
ibuprofen samples aer crystallization and drying (see Table 1
for more details).

3.1. Scanning electron microscopy (SEM)

As morphology of drug particles do have an impact on micro-
metric properties and dissolution behaviour, the morphology of
the engineered ibuprofen samples was investigated using SEM.

It has already been shown that the crystal habit of ibuprofen
depends on crystallization conditions such as the type of
RSC Adv., 2015, 5, 46119–46131 | 46121



Fig. 1 SEM images of (a) ibuprofen, (b) Na starch glycolate, (c) maize starch, and ibuprofen crystallized in the presence of (d) 0% disintegrant, (e)
0.25% starch, (f) 1% starch, (g) 5% starch, (h) 10% starch, (i) 0.25% Na starch, (j) 1% starch, (k) 5% Na starch, (l) 7% Na starch (scale on each graph is
100 mm).
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solvent and the presence of additives.23–26 The common crystal
form of ibuprofen (Fig. 1) appears as ne acicular crystals with
high cohesion tendency (Fig. 1a), which is reected in its
obvious poor ow which is discussed later. Starch and sodium
starch glycolate showed almost similar morphology (rounded
shape with smooth surfaces, Fig. 1b and c respectively). When
ibuprofen was crystallized in the absence of any disintegrant, a
different morphology was obtained with the crystals having
rough surfaces comprising of at-shaped ibuprofen particles
sticking together to make bigger particles (Fig. 1d). Similar at-
shaped particles for ibuprofen were also reported when
ibuprofen was crystallized in the presence of 5% PEG 8000.23
Table 2 Powder properties obtained of the different ibuprofen formula

Formulation

Powder properties

True density
(g cm�3) Bulk density (g cm�3)

Pure Ib 1.14 � 0.05 0.22 � 0.08
Ib1 1.10 � 0.06 0.46 � 0.09
Ib2 1.17 � 0.05 0.46 � 0.05
Ib3 1.18 � 0.09 0.43 � 0.03
Ib4 1.33 � 0.08 0.38 � 0.02
Ib5 1.40 � 0.07 0.38 � 0.03
Ib6 1.17 � 0.05 0.43 � 0.05
Ib7 1.19 � 0.09 0.43 � 0.04
Ib8 1.42 � 0.02 0.40 � 0.04
Ib9 1.45 � 0.04 0.36 � 0.01

46122 | RSC Adv., 2015, 5, 46119–46131
The presence of starch in the crystallization medium showed
similar surfaces to ibuprofen crystallized in the absence of
disintegrant but with lots of starch particles adhered to
ibuprofen surfaces particularly at high concentration of starch
(Fig. 1f–h). The presence of sodium starch glycolate in the
crystallization medium changed the surface of the obtained
particles. The presence of sodium starch glycolate particles on
particle surfaces are not clearly seen (Fig. 1i–l). It was observed
that ibuprofen particles crystallized in the presence of 7%
sodium starch glycolate (Fig. 1l) were fairly large with stiff
surfaces.
tion

Tapped density
(g cm�3) Carr's index (%) Hausner ratio

0.31 � 0.04 29.7 � 0.5 1.42 � 0.09
0.51 � 0.05 9.8 � 1.0 1.11 � 0.10
0.50 � 0.06 8.0 � 0.9 1.09 � 0.09
0.50 � 0.02 14.0 � 0.1 1.16 � 0.04
0.53 � 0.02 28.3 � 0.1 1.39 � 0.04
0.50 � 0.03 24.0 � 0.1 1.32 � 0.03
0.50 � 0.01 14.0 � 0.1 1.16 � 0.02
0.52 � 0.05 17.3 � 1.0 1.21 � 0.11
0.51 � 0.06 21.6 � 1.0 1.23 � 0.10
0.50 � 0.02 28.0 � 0.1 1.39 � 0.03

This journal is © The Royal Society of Chemistry 2015
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3.2. Density and owability

Powder density and owability are closely related parameters
because particles that are denser generally show better ow
tendency.27 The Hausner ratio and the Carr's index have been
widely used to estimate the ow properties of powders.
According to Carr's index a value between 5–15%, 12–16%, 18–
21%, and 23–28% indicates excellent, good, fair, and poor ow
properties of the material, respectively.

Table 2 shows that the true density of crystallized ibuprofen
in the presence of additives is higher than the true density of
ibuprofen in the absence of additives. This is due to the pres-
ence of starch and sodium starch glycolate with higher true
density in the samples as the true density of starch (1.48 g cm�3)
and sodium starch glycolate (1.56 is g cm�3) is higher than the
true density of ibuprofen (1.10 g cm�3) crystallized in the
absence of disintegrants (see Tables 2 and 3).

Comparing the owability (Carr's index value) of the various
recrystallized samples (Table 2) showed that ibuprofen samples
recrystallized in the presence of low concentration of dis-
integrants (starch 0.25% (Ib2) and 1% (Ib3), sodium starch
glycolate 0.25% (Ib6) and 1% (Ib7)) had lower Carr's index
compared to those samples crystallized in the presence of high
concentration of disintegrants (5% above). These CI values are
also less than the CI value of untreated ibuprofen (CI of 29.7%).
Such a decrease in CI indicates that there were great improve-
ments in ow and packing ability of the powder mass in
comparison to the commercial ibuprofen powder. This could be
due to the existence of less elongated particles compared to the
untreated ibuprofen which is obvious from SEM micrographs
(Fig. 1). The changes in ow should be discussed under the
context of the effect of particle size and shape. The ow prop-
erties of dissimilar materials with the same particle size have
been investigated using permeability and shear cell28 indicating
particle shape might have signicant effects on powder ow.
Recently Fu et al.29 carried out an extensive study on the effect of
particle shape and size on the ow behaviour of various lactose
powders. They showed that two lactose samples with identical
shapes (SpheroLac® 100 and InhaLac® 230) but different
particle sizes showed different Carr's index values. The lowest
Carr's index (better owability) was for Spherolac 100 reecting
Table 3 Particle size distribution for various ibuprofen samples

Sample

Particle size (mm)

X10% X50% X90%

Span
(X90% � X10%)/X50%

Pure ibuprofen 48.1 131.7 435.6 2.90
Ib1 35.4 134.5 504.7 3.49
Ib2 55.2 257.8 708.3 2.53
Ib3 40.6 196.3 443.7 2.05
Ib4 42.8 170.9 348.4 1.79
Ib5 25.8 138.0 337.1 2.25
Ib6 47.4 245.8 654.6 2.47
Ib7 27.9 121.5 379.2 1.82
Ib8 29.2 107.7 225.0 1.82
Ib9 30.9 113.5 237.9 3.49

This journal is © The Royal Society of Chemistry 2015
its more efficient particle packing when in a conditioned and
low stress state, due to having larger particle size and lower
cohesivity. They also showed that two lactose samples with
similar particle size distribution but different particle shape
(SpheroLac® 100 and FlowLac® 100) showed less efficient
packing for Spherolac 100 due to its irregular shape as
compared to FlowLac®. The shear properties of 8 different
powders, which varied in particle size and shape using an
annular shear cell was also reported.30 They showed that needle
shaped particles exhibited high angle of internal friction
leading to poor ow. The above information can be applied to
the engineered ibuprofen samples as discussed in the manu-
script. It is generally believed that the owability of powders
decreases as the shapes of particles become more irregular.30 It
can be noted that generally as the amount of disintegrant in the
samples increases owability seems to decrease. For example
when starch concentration was increased from 1% (Ib3) to 5%
(Ib4) the Carr's index also increased from 14% to 28.3%. Simi-
larly when sodium starch glycolate concentration increased
from 1% (Ib7) to 5% (Ib8) CI increased from 17.3% to 21.6%.
The results generally showed that high concentration of dis-
integrant is not in the favour of good ow for the engineered
ibuprofen powder. The improved owability observed from the
results may also be due to the higher bulk densities observed for
the modied ibuprofen samples (Table 2) being in the range of
0.36–0.46 g cm�3 compared to 0.22 g cm�3 for untreated
ibuprofen. Recently Jallo et al.31 made an attempt to enhance
the bulk density of pharmaceutical powders by dry coating to
modify the surface of the particles in order to improve the ow.
They showed that the coated particles showed higher bulk
density and their ow moved from a poorer to a better ow
classication. Ibuprofen engineered in the absence of any dis-
integrant also showed lower CI which is an indication of
excellent ow which could be due to the rounded shape of these
particles. Hausner ratio also conrmed a similar pattern where
untreated ibuprofen showed the highest Hausner's ratio (1.42).
According to Wells32 a Hausner ratio value of less than 1.20 is
indicative of good owability of the material, whereas a value of
1.5 or higher suggests a poor ow display by the material. It can
be concluded that engineering ibuprofen particles in absence or
presence of low concentration of disintegrant enhances the ow
properties of ibuprofen powders.
3.3. Particle size analysis

Table 3 shows the average range of particle size for various
engineered ibuprofen samples. Taking X50% (50% undersize of
the particles) as a parameter for comparing the particle size of
the samples, it can be seen that the average particle size has
increased in comparison to the untreated ibuprofen sample. It
is interesting to note that the presence of starch increased the
average particle size compared to ibuprofen sample crystallized
in the absence of starch. However, further increases in the
concentration of starch decreased the X50% and also the span
value decreased accordingly (Table 3). This indicates that the
presence of starch produced smaller span values which are an
indication of narrower particle size distributions (Table 3). It
RSC Adv., 2015, 5, 46119–46131 | 46123
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can be seen that an increase in the concentration of dis-
integrant generally leads to a reduction in crystal size (compare
Ib2 with Ib5 and Ib6 with Ib9). Reported studies have suggested
that adsorption of polymers on the surface of nuclei leads to the
formation of a diffusional boundary layer, which inhibits
nucleation and growth, resulting in smaller crystal size.33 This
however was not the case here as these disintegrants could act
as binders34 and stick ibuprofen particles together to make
ibuprofen–disintegrant granules. This could be themain reason
for the presence of bigger particles in the presence of 0.25%
disintegrants compared to the particle size of ibuprofen crys-
tallized in the absence disintegrant (Table 3). In addition it was
also observed that ibuprofen samples crystallized in absence of
disintegrant (Ib1) were fragile and under the particle size
measurement process are highly likely broken down to smaller
particles when they are being stirred for the particle size
measurement leading to a wider particle size distribution then a
higher span value (Table 3). A reduction in the particle size with
increasing disintegrant concentration could be due to the
presence of individual excess of disintegrant particles in the
samples which do not take part in making ibuprofen granules
(SEM images showed that disintegrants have very smaller
particles compared to ibuprofen granules). The presence of
separate disintegrant particles is obvious in some of SEM
images (Fig. 1). This is supported by the presence of bimodal
particle size distribution where the rst peak is an indication of
separate disintegrant particles which do not take part in making
Fig. 2 Particle size distribution of ibuprofen sample crystallized in the p

46124 | RSC Adv., 2015, 5, 46119–46131
ibuprofen granules (Fig. 2). In case of ibuprofen samples crys-
tallized in the presence of sodium starch glycolate, a general,
similar pattern was obtained, where bigger particles were
observed when the concentration of sodium starch glycolate
was low (Ib6 and Ib7). These results can be correlated well with
CI values as larger particles have small surface area then less
van der Waals forces and better ow.

Table 3 also shows that the presence of disintegrants in
crystallization medium produced narrower particle distribution
(smaller value of span indicates narrower particle size distri-
bution). It has been investigated that ne particles having high
surface to mass ratios are more cohesive than coarser particles,
which results in inappropriate ow properties.35

3.4. Mechanical properties of modied ibuprofen crystals

Good compactibility and compressibility are essential proper-
ties of directly compressible crystals. Compactibility of samples
was evaluated based on the hardness of the tablets compressed
at different compaction pressures. Fig. 3 shows the effect of two
disintegrants in the crystallization medium of ibuprofen on the
hardness of ibuprofen tablets when compressed at different
compaction pressures. It can be seen from Fig. 3 that the
compaction pressure played a major role on the mechanical
strength of all ibuprofen tablets. Results showed that in most
cases the hardness of tablets increased as the compression
loads increased until a certain value was reached, aer which a
higher compression load resulted in a reduction in hardness of
resence of 10% starch.

This journal is © The Royal Society of Chemistry 2015
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tablets (Fig. 3). For example, when compression pressure was
increased from 105 to 140 MPa the hardness of ibuprofen
tablets made from crystallized ibuprofen in absence of starch
and in the presence of 0.25% starch was reduced from 50 to 42
N and from 45 to 38 N respectively. In some cases a similar
pattern was obtained when ibuprofen samples crystallized in
the presence of different concentration of sodium starch gly-
colate was compressed at different pressures (Fig. 3B).

Generally, poor compactibility of powders could be due to a
poor or lack of plastic deformation during compaction or lower
elastic moduli of powders which is accompanied by high elastic
recovery. When the pressure is removed the stored elastic
energy is released which leads to a volume expansion of the
particles and the tablet. This in turn can break (or weaken) the
bonds between particles (at atomic distances) formed during
the compaction process which leads to an increase in the
porosity of tablets and reduction in the tablet hardness.36 The
authors believe that in the present study at optimum compac-
tion pressure, the tablets can retain their integrity much better
(low tablet porosity) compared to the tablets compressed at high
pressures. For example the porosity of tablets made from
Fig. 3 Hardness–pressure profiles of various engineered ibuprofen
tablets in presence of starch (A) and sodium starch glycolate (B).
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crystallized ibuprofen without any additives was 22.0� 1.2, 17.2
� 2.1 and 20.0 � 1.1% at compaction pressures of 35, 105 and
175 MPa respectively. This indicates that the maximum hard-
ness was obtained when the porosity was the least. Similar
patterns were observed for ibuprofen samples crystallized in the
presence of 5 and 10% starch. The tablet porosities for 5%
starch samples were 30.1 � 1.0, 25.4 � 1.4 and 35.5 � 1.5% and
for the 10% starch samples it was 37.1� 0.9, 32.0� 1.8 and 36.2
� 2.1% at compaction pressures of 35, 105 and 175 MPa
respectively. A similar conclusion was reported for caffeine
tablets where the tensile strength of caffeine tablets compressed
at low pressure was much higher than those tablets compressed
at very high pressures.37 A reduction in the mechanical strength
of tablets could be due to high elastic deformation which is a
common sign of over-compaction. The reduced tablet hardness
of some formulations in the present study suggest that the
detrimental effect of porosity as a result of elastic recovery on
tablet mechanical strength may have outplayed the bonding
strength acquired due to elevated pressures. It has been
reported that these alterations in hardness of tablets with
compaction load changes could be due to changes in the elas-
ticity of starch and sodium starch glycolate which changes the
bonding between particles under compaction.38

Fig. 3 also showed that in most cases treated ibuprofen
samples (with or without disintegrant) showed higher
mechanical strength compared to untreated ibuprofen samples
particularly in case of ibuprofen engineered without the
Fig. 4 The effect of %disintegrant (starch (A) and sodium starch gly-
colate (B)) used in the crystallization medium on hardness of ibuprofen
tablets.
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presence of additives. But the presence of additives is essential
to get improved dissolution which is discussed later in the
dissolution section. In order to have a better visualization of the
effect of concentration of disintegrant on hardness of ibuprofen
tablets the concentration of disintegrant used in the crystalli-
zation medium versus hardness was plotted (Fig. 4). It can be
seen from Fig. 4A that as the concentration of starch in the
crystallization medium increases the hardness seems to
decrease remarkably. The tablets made from the samples Ib4
and Ib5 (starch 5% and 10% w/v respectively) were very weak
under any compaction pressure used in the present study
(Fig. 4A) which might be due to poor bonding properties of
starch which tends to increase capping leading to very poor
mechanical strength particularly at high concentration of
starch.39 This was not the case for ibuprofen samples crystal-
lized in the presence of sodium starch glycolate. It has been
reported that Na starch glycolate was successfully used in direct
compaction formulations.40 It is obvious from SEM images in
the cases of 5 and 10% starch that the surface of the ibuprofen
crystals were covered mostly by starch particles and as such
during the compaction process, bonding occurs only between
starch particles (Fig. 1) which are weaker than the bonding
between ibuprofen–starch particles. It has been reported that
this bonding between starch–starch particles is weak which
could be the main reason for the poor mechanical strength of
Fig. 5 Comparing hardness–pressure profiles between crystallized
ibuprofen and their physical mixture counterparts (SSG ¼ sodium
starch glycolate; PM ¼ physical mixture; Ibu ¼ ibuprofen).

46126 | RSC Adv., 2015, 5, 46119–46131
tablets obtained for these two formulations when high
concentration of starch was used.39

In case of sodium starch glycolate less sensitivity of the
hardness of ibuprofen tablets against the concentration of
sodium starch glycolate was observed (Fig. 4B). It was inter-
esting to note that at high compaction pressures (140 and 175
MPa), higher concentration of sodium starch glycolate
produced harder tablets. This might be due to the better com-
pactibility of sodium starch glycolate in comparison with
starch. The higher hardness values of the tablets are indicative
of stronger interparticulate bonding between the agglomerates
compared to the untreated crystals.

For a better comparison between untreated ibuprofen and
treated ibuprofen in the presence of disintegrants, physical
mixtures of ibuprofen–disintegrant which have identical
composition to the treated samples were prepared (only 0.25
and 1% disintegrants were prepared as higher concentration of
starch 5 and 10% gave tablets with very poor mechanical
strength). The hardness values of the physical mixtures and
treated ibuprofen–starch were shown in Fig. 5A. The results
showed that in most cases treated samples in absence or
Fig. 6 Dissolution profiles of various crystallized ibuprofen from
tablets made at 105 MPa compaction pressure ((A) samples containing
starch and (B) samples containing sodium starch glycolate).

This journal is © The Royal Society of Chemistry 2015



Fig. 7 Comparing the dissolution profiles of crystallized ibuprofen and
their physical mixture counterparts compressed at 105 MPa (PM ¼
physical mixture; Ib2 and Ib3 contained 0.25 and 1% starch in their
crystallization medium respectively).
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presence of additives showed better mechanical strength
compared to their counterpart physical mixtures. It has been
reported that poor compactibility of drug crystals can be
attributed to the presence of crystal faces that give poor adhe-
sion to other crystals and the absence of the faces that are
required for optimal adhesion.7 Here, for the ibuprofen crystals,
the relative abundance of the different faces within the crystals
was modied. This can affect the interparticulate bonding
between these crystals, resulting in different compression
properties.

It is known that there is a high affinity of the ibuprofen
powder to stick to the tablet punches.11 The common crystals
stick to the punches due to its high cohesivity. A sticking to the
punches was not observed for ibuprofen that was crystallized in
the presence of starch or sodium starch glycolate. This indicates
that differences concerning the surface structure of the crystals
occur during the employed crystallization process. Previous
research has shown that adhesion of ibuprofen formulated with
29.5% lactose monohydrate (Tablettose®) to the tablet punches
during tableting is inuenced by the type of tooling used and
the type and level of lubricant in the formulation.41 The adhe-
sion of ibuprofen to the upper punch was determined by
removing the upper punch and dissolving the powders stuck to
the punch in ethanol aer each compaction. The amount of
ibuprofen in the solution was spectrophotometrically deter-
mined. Roberts et al.41 showed that all ibuprofen formulations
adhered to the punches with the highest being around 8 mg
mm�2, whereas this was not the case for the recrystallized
ibuprofen in the absence and presence of starch derivatives
used in the present study and there was no need to incorporate
a direct compression ller such as Tablettose®. This may be
accredited to a change in the interaction between the punch
face and particle surface as a result of the different morphology
obtained following recrystallization as compared to untreated
ibuprofen.
3.5. Dissolution studies

Dissolution behaviour of all ibuprofen samples are shown in
Fig. 6. It is obvious from Fig. 6A that ibuprofen crystallized in
the presence of 1 and 5% starch showed superior dissolution
Table 4 DSC and assay data obtained for various formulationsa

Formulation Peak (�C) Enthalpy (J g�1)
%Ib (obtained
from UV)

Pure ibuprofen 78.97 � 0.23 119.8 � 19.4 100
Ib1 77.59 � 0.09 113.9 � 1.6 99.4 � 1.9
Ib2 77.63 � 0.03 114.7 � 0.5 99.2 � 0.1
Ib3 77.57 � 0.07 103.2 � 1.5 87.8 � 3.1
Ib4 77.12 � 0.25 53.1 � 0.1 57.1 � 7.5
Ib5 76.35 � 0.07 29.2 � 3.3 29.8 � 2.7
Ib6 77.59 � 0.14 110.2 � 2.3 92.1 � 2.4
Ib7 77.66 � 0.03 100.3 � 2.2 83.3 � 0.2
Ib8 77.76 � 0.22 92.5 � 0.2 81.1 � 1.2
Ib9 77.85 � 0.23 71.2 � 1.8 66.6 � 4.5

a Values are represented as mean SD, n ¼ 3.
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compared to ibuprofen samples crystallized in the presence of
0.25% and 10% starch in the crystallization medium. It was
observed that the low concentration of starch was not sufficient
to disintegrate ibuprofen tablets thus leading to a slow disso-
lution prole (only 0.8% w/w starch associated with ibuprofen
particles when the ratio of ibuprofen : starch in the crystalliza-
tion medium was 3 : 0.25 w/w). In the case of the highest
Fig. 8 DSC traces (a) Na starch glycolate, (b) maize starch, (c)
untreated ibuprofen, and ibuprofen crystallized in presence of (d) 0%
disintegrant, (e) 0.25% starch, (f) 1% starch, (g) 5% starch, (h) 10% starch
(the mentioned percentages are the percentage of disintegrants in the
crystallization medium).
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concentration of starch (ibuprofen : starch 3 : 10 w/w; theoret-
ically contains 76.9% starch) used in the crystallization
medium, it was shown that aer crystallization this sample
contains around 70% starch therefore, during the dissolution
process, the presence of such high concentrations of starch
around ibuprofen particles generates a very viscose solution
around ibuprofen particles leading to a slow penetration of
dissolution media into the tablet hence poor dissolution.
Similar conclusion was suggested by Homayouni et al. when
PVP and soloplus were used to improve the dissolution of
celocoxib.42,43

Table 1 shows that in the case of sodium starch glycolate,
more disintegrant attached to ibuprofen particles compared to
starch when the ratio of ibuprofen : disintegrant was 3 : 0.25 w/
w (this formulations contained around 8% sodium starch gly-
colate) (Table 4) therefore faster dissolution was expected for
this formulation (Fig. 6A). But, as more Na starch glycolate was
incorporated, the dissolution rate became slower due to the
formation of a very viscose gel around ibuprofen particles
during the dissolution process making it difficult for the
dissolution medium to penetrate into the tablet or granules
Fig. 9 FT-IR of some of crystallized ibuprofen samples and the excipien
starch glycolate).
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thereby retarding the diffusion of the drug solution from the
tablet to the dissolution medium. Similar ndings were found
and reported for methylprednisolone and phenylbutazone
when high concentration of sodium starch glycolate was
incorporated in their tableting formulations.44 For example at
very high concentration of disintegrant (ibupro-
fen : disintegrant 3 : 7 w/w; contains 70% disintegrant) during
the crystallization process around 33% Na starch glycolate will
be associated with the ibuprofen particles which is high enough
to make a viscose gel around the particles (see Tables 1 and 4).

For better comparison of the dissolution performance of
crystallized ibuprofen in the presence of disintegrants, further
dissolution tests were carried out only on starch samples as this
disintegrant is themost commonly used disintegrant and also it
is very cheap. To this end two ratios of ibuprofen : starch
(3 : 0.25 and 3 : 1 w/w) were selected and their physical mixture
counterparts were prepared (exactly the same composition as
crystallized samples). Crystallized ibuprofen in the presence of
starch (1% formulation) showed a remarkably faster dissolution
as compared to its physical mixture counterpart (Fig. 6).
Ibuprofen crystallized with a low concentration of starch
ts used in the crystallization medium (Ibu ¼ ibuprofen; SSG ¼ sodium

This journal is © The Royal Society of Chemistry 2015
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(0.25%) did not show any signicant difference with its physical
mixture counterpart (Fig. 7).
3.6. Differential scanning calorimetry (DSC)

DSC can be used to determine the polymorphic composition of
pharmaceutical powders, if two or more polymorphs are
present. As it was shown in Fig. 8 all samples, irrespective of
disintegrant type and concentration, showed a sharp melting
point (single exothermic peak) which indicates that the modi-
ed ibuprofen samples are isomorphic with the starting mate-
rial (ibuprofen). The results showed that there was no
signicant difference between melting points of untreated
ibuprofen sample 78 �C and agglomerated samples ranging
from 77.12 to 77.85 �C (P > 0.05) (Table 4). These results are in
agreement with previous reports indicating that ibuprofen
Fig. 10 XRPD of various ibuprofen crystallized in the presence and abse
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exists as a stable crystalline solid exhibiting a typical melting
range of 75–77 �C.7

Table 4 shows a slight reduction in the enthalpy of ibuprofen
crystallized in the absence of disintegrant (Ib1) compared to
untreated samples which could be due to differences in their
particle sizes. These changes in DSC data may be an effect of
crystal size (crystal habit) and the amount of disintegrant con-
tained in the sample.6,45 A signicant reduction in enthalpy of
the treated samples in the presence of disintegrant is due to the
presence of disintegrant in the samples. These enthalpies can
be well correlated to the amount of disintegrant associated with
the samples aer crystallization (Table 4). A reduction in the
enthalpy of crystals has been reported for other drugs as the
presence of dissolved impurities (additives) may change the rate
of crystallization and crystal habit by adsorbing the surface-
active agents to the nuclei or growing crystals.46
nce of starch (A) and sodium starch glycolate (B).
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The assay results presented in Table 4 show that the value of
ibuprofen assay is higher than expected value. This indicates that
during the crystallization process some of the disintegrants were
lost leading to high contribution of ibuprofen in the samples.
3.7. FT-IR

The FT-IR spectra of ibuprofen showed characteristic peaks at
1710 cm�1 and 2920 cm�1 due to carbonyl and hydroxyl
stretching respectively (Fig. 9). These characteristic peaks
appeared in all FT-IR spectra of crystallized ibuprofen samples
indicating no changes in molecular level of ibuprofen when it is
recrystallized in the presence of sodium starch glycolate (as
ibuprofen–starch samples showed the same pattern, thus, their
FT-IR spectrum were not included). The DSC results also
conrmed that the chemical structure had not changed.
Therefore the procedure used for the preparation of modied
ibuprofen crystals involved only physical interactions of
particulate materials, rather than chemical interactions.
Comparison of FT-IR spectrum of original drug with that of
crystallized ibuprofen did not reveal any distinctive changes.
Both original and crystallized ibuprofen powders showed
identical FT-IR spectra. All samples exhibited the same char-
acteristic crystal intensity peaks and excluded any amorphous
form.

To conrm the above ndings XRPD was carried out on all
samples including pure ibuprofen and disintegrants used in the
present study (Fig. 10). It has been reported that ibuprofen
characteristics peaks are in 2q of around 16, 20 and 22.47 These
peaks are shown in Fig. 10 using black arrows. All XRPD shown
(except pure starch and sodium starch glycolate) in Fig. 10a and
b contained all these three diagnostic peaks showing the crys-
talline nature of the ibuprofen in these formulations. The
smaller intensity of the samples crystallized in the presence of
additives could be due to amorphous nature of starch and
sodium starch glycolate associated with the ibuprofen. In case
of ibuprofen crystallized in absence of additives the difference
in the relative intensity of the peaks is due either to the variation
of the crystal habit, because the relative abundance of the
planes exposed to X-ray source is altered, or to differences in the
size of the crystals.
4. Conclusion

Ibuprofen was successfully engineered in the absence and
presence of two disintegrants namely; starch and Na starch
glycolate. The crystallisation process changed the morphology
of the ibuprofen crystals. DSC and FT-IR analysis however
showed that all interactions were on the physical level and not
chemically induced. There were no polymorphic changes either
to the ibuprofen with Na starch glycolate improving the
compaction properties of the ibuprofen especially at high
pressures. Although, ibuprofen crystallized in the presence of
Na starch glycolate produced harder tablets compared to the
samples recrystallized in the presence starch, tablets made from
the crystallized ibuprofen without any additives exhibited the
highest tablet hardness. Dissolution properties were
46130 | RSC Adv., 2015, 5, 46119–46131
signicantly improved for ibuprofen crystallised in both 1 or 5%
starch and 0.25–5% Na starch glycolate. The highest concen-
tration (10% starch and 7% Na starch glycolate) of disintegrant
proved detrimental to dissolution due the formation of a
viscous layer around the ibuprofen particles thereby slowing
down dissolution. The engineering of ibuprofen thus proved
benecial in reducing the sticking on punches and improving
compaction and dissolution behaviour.
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