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Abstract
Capturing and exploiting structural knowledge of
planning problems has shown to be a successful
strategy for making the planning process more ef-
ficient. Plans can be decomposed into its con-
stituent coherent subplans, called blocks, that en-
capsulate some effects and preconditions, reduc-
ing interference and thus allowing more deordering
of plans. According to the nature of blocks, they
can be straightforwardly transformed into useful
macro-operators (shortly, “macros”). Macros are
well known and widely studied kind of structural
knowledge because they can be easily encoded in
the domain model and thus exploited by standard
planning engines.
In this paper, we introduce a method, called
BLOMA, that learns domain-specific macros from
plans, decomposed into “macro-blocks” which are
extensions of blocks, utilising structural knowledge
they capture. In contrast to existing macro learn-
ing techniques, macro-blocks are often able to cap-
ture high-level activities that form a basis for useful
longer macros (i.e. those consisting of more orig-
inal operators). Our method is evaluated by using
the IPC benchmarks with state-of-the-art planning
engines, and shows considerable improvement in
many cases.

1 Introduction
Capturing and exploiting structural knowledge of planning
problems has shown to be a successful strategy for improving
efficiency of the planning process. A well-known technique
for encapsulating sequences of operators, macro-operators
(“macros”, for short), is a good example of such structural
knowledge due to possibility to encode macros in the same
format as original operators, so they can be used in a planner-
independent way. Macros date back to 1970s where they were
used, for example, in STRIPS [Fikes and Nilsson, 1971] and
REFLECT [Dawson and Siklóssy, 1977]. Korf (1985) has
shown that using macros can reduce the problem complex-
ity in some cases which gives a good motivation for their use.
Hence, many successful macro learning techniques have been
developed in recent years (see the following section).

Analysis of training plans, usually solutions of simpler
problems, is a key step in the macro learning process. To-
tally ordered plans, however, often “hide” some promising
candidates for macros, since corresponding actions are not
adjacent. Chrpa (2010) proposed a technique that as macro
candidates considered actions non-adjacent in a given plan
but adjacent in some of its permutations. Recently, a tech-
nique that decomposes plans into its constituent coherent sub-
plans, blocks [Siddiqui and Haslum, 2012], was developed,
and successfully applied in post-processing based plan qual-
ity optimisation [Siddiqui and Haslum, 2013]. Blocks can
reduce interference between actions and thus allowing more
deordering of plans, hence blocks can be exploited in the form
of macros.

In this paper, we introduce macro-blocks that extend the
blocks by considering relations between them in order to
provide more promising macro candidates. In some do-
mains, macro-blocks can capture longer subplans represent-
ing important activities. Then, we introduce a method, called
BLOMA, that from macro-blocks achieved by decomposi-
tion of training plans extracts domain-specific macros. Given
the property of macro-blocks, BLOMA can generate useful
longer macros in problems whose structure relies on repeti-
tive application of a larger sets of actions. Traditional macro
learning techniques that are based on “operator chaining” ap-
proaches (i.e. assembling operators one by one) are often not
able to find such long macros. BLOMA is evaluated by using
the IPC benchmarks with state-of-the-art planning engines,
and shows considerable improvement in many cases.

2 Related Work
Recent macro learning systems can be categorised as planner-
independent or planner-specific. The CA-ED version of
MacroFF [Botea et al., 2005] generates macros according
to several pre-defined rules (e.g., the “locality rule”) and
by exploring adjacent actions in plans. SOL-EP version of
MacroFF learns macros from training plans and uses them
for improving the performance of the FF planner [Hoffmann
and Nebel, 2001]. Marvin [Coles et al., 2007], which is built
on top of FF, combines offline and online macro generat-
ing techniques in order to escape plateaus in heuristics land-
scape. Wizard [Newton et al., 2007] learns macros by exploit-
ing genetic programming. Alhossaini and Beck (2013) pro-
posed a technique for efficient selection of problem-specific



macros from a set of macros learnt by some of the ex-
isting techniques. A more recent macro learning method,
called MUM [Chrpa et al., 2014], is based on Chrpa’s (2010)
method considering non-adjacent actions in training plans,
and exploits outer entanglements [Chrpa and McCluskey,
2012] as a heuristics for limiting the number of potential in-
stances of macros.

Several works go in the opposite direction. Haslum and
Jonsson (2000) proposed a method that identifies and re-
moves “redundant actions” (i.e. actions whose effects can be
achieved by sequences of other actions). Areces et al. (2014)
proposed a technique for decomposing more complex opera-
tors into simpler ones.

3 Background
AI planning deals with finding a sequence of actions trans-
forming the environment from an initial state to a desired goal
state [Ghallab et al., 2004].

In the classical (STRIPS) representation the environ-
ment is described by predicates. States are defined
as sets of grounded predicates. We say that o =
(name(o), pre(o), del(o), add(o)) is a planning operator,
where name(o) = op name(x1, . . . , xk) (op name is an
unique operator name and x1, . . . xk are variable symbols (ar-
guments) appearing in the operator) and pre(o), del(o) and
add(o) are sets of (ungrounded) predicates with variables
taken only from x1, . . . xk representing o’s precondition,
delete, and add effects respectively. Actions are grounded in-
stances of planning operators. An action a is applicable in a
state s if and only if pre(a) ⊆ s. Application of a in s (if
possible) results in a state (s \ del(a)) ∪ add(a).

A planning domain model is specified by a set of predi-
cates and a set of planning operators. A planning problem
is specified via a domain model, initial state and set of goal
predicates. Given a planning problem, a plan is a sequence of
actions such that their consecutive application starting in the
initial state results in a state containing all the goal predicates.

3.1 Macro-operators
Macros can be encoded in the same way as ordinary planning
operators, but encapsulate sequences of planning operators.
This gives the technique the potential of being planner inde-
pendent. Formally, a macro oi,j is constructed by assembling
planning operators oi and oj (in that order) in the following
way (oi and oj may share some arguments)1:

• pre(oi,j) = pre(oi) ∪ (pre(oj) \ add(oi))

• del(oi,j) = (del(oi) \ add(oj)) ∪ del(oj)

• add(oi,j) = (add(oi) \ del(oj)) ∪ add(oj)

Macros can be understood as ‘shortcuts’ in the state space.
This property can be useful since by exploiting them it is
possible to reach the goals in fewer steps, or to escape local
heuristic minima. Macros, however, have often a high num-
ber of instances and thus they might considerably increase

1Longer macros, i.e., those encapsulating longer sequences of
original planning operators can be constructed by this approach iter-
atively.

the size of grounded problem representation and be mem-
ory demanding. Therefore, it is important that benefits of
macros exploitation outweigh their drawbacks. This problem
is known as the utility problem [Minton, 1988].

3.2 Outer Entanglements
Outer Entanglements are relations between planning oper-
ators and initial or goal predicates, and have been intro-
duced as a technique for eliminating potentially unneces-
sary instances of these operators [Chrpa and Barták, 2009;
Chrpa and McCluskey, 2012]. Such a technique is especially
useful for limiting the number of instances of macros [Chrpa
et al., 2014].

We say that an operator is entangled by init (resp. entan-
gled by goal) with a predicate, if there exists a plan where all
the operator’s instances require (resp., produce) instances of
the predicate that correspond to initial (resp., goal) ones.

In the BlocksWorld domain [Slaney and Thiébaux, 2001],
the operator unstack is entangled by init with the predicate
on, since unstacking blocks is necessary only from their ini-
tial positions. Similarly, the operator stack is entangled by
goal with the predicate on, since stacking blocks is necessary
only to their goal position.

Outer entanglements have been used as a reformulation
technique, as they can be directly encoded into a domain and
problem model. The way outer entanglements are encoded
is inspired by one of their properties: given a static predicate
ps

2, an operator o is entangled by init with ps if and only if
ps ∈ pre(o) [Chrpa and Barták, 2009]. Operators involved
in the outer entanglement relation with a non-static predicate
are modified by putting a “static twin” of the predicate into
the precondition. Instances of the “static twin” corresponding
with initial or goal instances of the predicate are added into
the initial state. For detailed description of the reformulation
approach, see [Chrpa and McCluskey, 2012]

3.3 Plan Deordering and Block Decomposition
A partially ordered plan (POP) is a tuple (A,≺), where A
is the set of plan actions and ≺ is a strict partial order on
A. ≺+ denotes the transitive closure of ≺. A lineariza-
tion of (A,≺) is a total ordering of the actions in A that
respects ≺. A POP provides a compact representation for
multiple linearizations. We assume that every ordering con-
straint, ai ≺ aj , in (A,≺) must have at least one nec-
essary reason, denoted by Re(ai ≺ aj), for not violating
ai ≺ aj . Violating ai ≺ aj causes an action precondition
to be unsatisfied before its execution in some linearizations
of (A,≺). Necessary reasons (with respect to an atom m) are
of four types: PC(m) (producer–consumer of m), CD(m)
(consumer–deleter of m), DP(m) (deleter–producer of m),
and DK(m) (deleter–knight of m). Note that an ordering
constraint can have several associated reasons of the same
type but referring to different atoms. PC(m) ∈ Re(ai ≺ aj)
states that ai produces an atom m that aj consumes. This
relation is usually called a causal link from ai to aj for m
[McAllester and Rosenblitt, 1991], and denoted by a triple
〈ai,m, aj〉. A causal link 〈ai,m, aj〉 is threatened if there is

2A predicate is static if not present in effects of any operator



any possibility of m being deleted and there is no producer
to reproduce it before the execution of aj . CD(m) states that
aj deletes an atom m that ai consumes. Therefore, unless
aj is ordered after ai, m could be unsatisfied before the exe-
cution of ai in some linearizations of (A,≺). DP(m) states
that ai deletes an atom m that aj produces, and that is con-
sumed by some action ak with aj ≺ ak. Therefore, unless ai
is ordered before aj , m could be unsatisfied before the exe-
cution of ak in some linearizations of (A,≺). Note that it is
not necessary to order a producer and deleter if no step that
may occur after the producer in the plan depends on the pro-
duced atom. Finally, DK(m) states that ai deletes an atom m
that aj produces, and ai threats a causal link 〈ax,m, ay〉 in
some linearizations of (A,≺) unless ai is ordered before aj .
Hence, aj acts as a white knight to 〈ax,m, ay〉.

The validity of a POP can be defined in two equivalent
ways: (1) a POP is valid iff every linearisation of its actions
is a valid sequential plan, under the usual STRIPS execution
semantics; and (2) a POP is valid if every action precondition
is supported by an unthreatened causal link.

A block [Siddiqui and Haslum, 2012] is a constituent co-
herent subplan, i.e., a subset of actions, that must not be in-
terleaved with actions outside the block.

Definition 1. Let (A,≺) be a partially ordered plan. A block
w.r.t. ≺ is a subset b ⊂ A of actions such that for any two
actions a, a′ ∈ b, there exists no action a′′ ∈ (A − b) such
that a ≺+ a′′ ≺+ a′.

Blocks, like ordinary actions, have preconditions, add, and
delete effects that are a subset of the union of those of its
constituent actions. This enables blocks encapsulating some
effects and preconditions, reducing interference, and thus al-
lowing more deordering of plans.

A decomposition of a plan into blocks is recursive, i.e., a
block can be wholly contained in another. However, blocks
cannot be partially overlapping. The semantics of a partially
ordered block decomposed plan is defined by restricting its
linearisations (for which it must be valid) to those that respect
the block decomposition, i.e., that do not interleave actions
from disjoint blocks.

Deordering converts a sequential plan into a POP, but
the conventional deordering approach restricts the deordering
to only the cases where individual actions are independent
and thus non-interfering. Block deordering [Siddiqui and
Haslum, 2012] eliminates that restriction by forming blocks
which allows to remove some ordering constraints. It en-
ables deordering in many cases where it is impossible in the
standard interpretation of plans. Maximising such deordering
helps to exhibit the plan structure more clearly.

The block deordering procedure [Siddiqui and Haslum,
2012] automatically finds a block decomposition of a plan
that maximises deordering of a partially ordered plan. This
procedure works in a check-and-remove fashion: Firstly, it
checks the reasons (PC,CD,DP, and DK) behind every nec-
essary ordering ai ≺ aj within the current plan structure, and
forms two blocks bi and bj with the initial element ai and
aj respectively. Then the blocks gradually expand in oppo-
site directions picking steps one after another from the plan
structure until those reasons (and newly added reasons) be-

Figure 1: A sequential plan and its block deordering. Prece-
dences are labelled with their reasons: producer–consumer
(i.e., a causal link), denoted PC(p); deleter–producer, de-
noted DP(p); and consumer–deleter, denoted CD(p).

hind the ordering no longer exist (due to the encapsulation
within the blocks) or the expansion has reached the bound-
ary. If no reason is left at the end, the ordering is removed
as well, and this process is repeated until all the necessary
orderings have been checked or the allotted time is up. As
a simple example, Figure 1(i) shows a sequential plan for a
small BlocksWorld problem. This plan cannot be deordered
into a conventional POP, because each action in plan has a
reason to be ordered next to another. Block deordering, how-
ever, is able to break the ordering (a2 ≺ a3) by removing the
only reason PC(handempty) based on the formation of two
blocks b1 and b2 as shown in (ii). Neither of the two blocks
delete or add the atom “handempty” (though it is a precon-
dition of both). This removes the interference between them,
and allows the two blocks to be executed in any order but
not in an iterleaving way. Therefore, the possible linearisa-
tions of the block decomposed partially ordered plan are only
(a1, a2, a3, a4) and (a3, a4, a1, a2).

The nature of blocks is very similar to macros. Since block
deordering tends to produce blocks that localise interactions
between actions as much as possible, they often capture some
coherent activities that can form a basis for useful macros. In
addition, the block deordering algorithm returns also a jus-
tification for correctness of the block ordering, by labelling
ordering constraints with their reasons (as mentioned above).

4 Macro-block Formulation
We extend the blocks to macro-blocks by considering differ-
ent relations between them (as defined below) in order to pro-
vide larger subplans revealing important structural properties
that often capture more complex activities that are frequently
used in plans (e.g. mixing a cocktail and cleaning the shaker
afterwards – as observed in the Barman domain).

Having a block deordered plan, we define relations of im-
mediate predecessor and immediate successor of a block. Or-
dering between blocks is determined by any of the neces-
sary reasons (PC,CD,DP, and DK) as stated in Section 3.3.
Let IP(b) be a set of blocks being ordered immediately be-
fore b with respect to the transitively reduced ordering. Also,
let IS(b) be a set of blocks that are ordered immediately af-



Algorithm 1 Computing extended blocks.
1: Bext ← Bbasic
2: while ∃bi, bj ∈ Bext : IP(bj) = {bi}, IS(bi) = {bj} do
3: Bext ← Bext ∪ {bi · bj} \ {bi, bj}
4: end while

ter b with respect to the transitively reduced ordering. The
causal followers of a producer ap with respect to an atom
m, CF〈m,ap〉, are a set of actions {ap, aj , ..., ak} \ {aI, aG}
(aI and aG are special “init” and “goal” actions respec-
tively, where aI produces initial atoms, and aG consumes
the goal atoms) such that {〈ap,m, aj〉, ..., 〈ap,m, ak〉} are
the causal links. For example, the atom m = (holding A)
in the block deordered plan of Figure 1 is associated with
one causal link: 〈a1,m, a2〉, which form the causal fol-
lowers CF〈(holding A),a1〉 = {a1, a2}. The causal follower
blocks involve a set of blocks related to the given causal link
rather than a set of actions. In particular, the causal fol-
lower blocks for an atom m and its producer ap are defined
as CFB〈m,ap〉 = {b | b ∈ B, CF〈m,ap〉∩ b 6= ∅} (B is a set of
blocks). For example, the causal follower blocks of the atom
m = (holding A) and its producer a1 in the block deordered
plan of Figure 1, are CFB〈(holding A),a1〉 = 〈{b1}〉, since all
the actions of CF〈(holding A),a1〉 are captured by the block b1.

Let Bbasic be the set of blocks acquired by applying the
block deordering approach. Extended blocks Bext are gen-
erated iteratively from the basic blocks as depicted in Algo-
rithm 1. In other words, extended blocks encapsulate non-
branching subsequences of blocks, and therefore, can better
capture some non-trivial activities. It should be noted that if
no deordering is possible, Bext will consist of a single (ex-
tended) block encapsulating the whole plan.

Macro-blocks are constructed according to the following
eight rules we have specified. Each rule is applied over both
sets of basic (Bbasic) and extended blocks (Bext). The macro-
block construction rules are as follows:

R1 : 〈b〉 R5 : 〈R4,R2〉
R2 : 〈IP(b), b〉 R6 : 〈R4,R3〉
R3 : 〈b, IS(b)〉 R7 : 〈R4,R4〉
R4 : 〈IP(b), b, IS(b)〉 R8 : CFB〈m,ap〉

The above rules can be divided into three groups, namely
the primary rules (R1 to R4), the secondary rules (R5 to
R7), and the causal rule (R8). Applied to all blocks in
Bbasic ∪ Bext, the primary, secondary, and causal rules can
produce duplicates; of course, only unique macro-blocks are
kept. The primary rules generate macro-blocks considering
basic and extended blocks and their immediate predecessors
and successors. Secondary rules chain exactly two macro-
blocks generated by primary rules. The causal rule (R8) con-
structs macro-blocks based on causal links, specifically for
each atom m and its producer ap. These macro-blocks are
not limited to any fixed length. The resultant macro-block,
after applying any rule, may not capture some intermediate
blocks, i.e., blocks that are ordered in between. Assume that
IS(bx) = IP(by) = {bp, bq}, and bp and bq are unordered.
Applying R4 over bp results in a set of blocks that do not con-
tain the intermediately placed block bq . We incorporate the

Algorithm 2 The high-level design of BLOMA

1: Π← GenerateTrainingPlans()
2: B ← GenerateMacroBlocks(Π)
3: M ← ExtractMacros(B)
4: EnhanceDomain(M )
5: Π← GenerateTrainingPlans()
6: FilterMacros(Π)
7: LearnEntanglements(Π)

intermediate blocks after applying each rule, i.e., bq will be
considered in a macro-block constructed from bp by applying
R4. If intermediate blocks are not considered, then macro-
blocks do not represent consistent subplans.

5 Generating Macros from Macro-Blocks
Blocks aim to remove some of the ordering constraints (see

Section 3.3), and thus reduce some interference between ac-
tions. Extended blocks put together blocks that have “no
other alternative”, in other words, blocks that are strictly con-
secutive in block deordered plans. Extended blocks are thus
supposed to capture larger activities (e.g. shaking a cock-
tail and cleaning the shaker). Macro-blocks encapsulate both
basic and extended blocks and relations between them. Con-
sidering relations between these blocks is somewhat related
to the “chaining” approaches utilised by most of the existing
macro learning techniques. In short, macro-blocks thus cap-
ture structural knowledge in form of coherent subplans that
frequently occur in plans. These subplans can be linearised
and thus can be exploited in the form of macros.

Algorithm 2 depicts the high-level implementation of
BLOMA. Firstly, given a set of training planning problems
(simpler but not trivial), training plans are generated. Then,
BLOMA processes the training plans and generates macro-
blocks as described in Section 4. Macro-blocks that consist
of more than one action are linearised and then assembled
into macros as described in Section 3.1. Macros that ap-
pear frequently in macro-blocks are added into the domain
model. Then, training plans are re-generated using the macro
enhanced domain model. Macros that do not appear or appear
infrequently in the re-generated training plans are filtered out.
In fact, we let the planner “decide” which macros are useful
for it. The same strategy was used by MacroFF [Botea et al.,
2005]. As a final step of BLOMA macro-specific entangle-
ments (i.e. those where only macros are involved) are learnt.
Entanglements are learnt by checking whether for each opera-
tor and related predicates the entanglement conditions are sat-
isfied in all the training plans. Some error rate (typically 10%)
is allowed. For details, see [Chrpa and McCluskey, 2012]. As
MUM does [Chrpa et al., 2014] BLOMA uses entanglements
for efficient pruning of unnecessary instances of macros.

Whether a macro candidate or macro is “frequent” is deter-
mined relatively. Let f b(m) be a number of occurrences of
a macro candidate m in the set of macro-blocks B. Then, a
macro candidate m ∈ M (M is the set of macros) is con-
sidered as frequent if f b(m) ≥ pb maxx∈M f b(x), where
0 < pb ≤ 1. Similarly, let fp(o) be a number of occur-
rences of an operator or macro o in macro enhanced train-



ing plans Π. Then, a macro m is considered as frequent if
fp(m) ≥ pp maxx∈O fp(x), where 0 < pp ≤ 1 and O is
a set of operators (including macros) defined in the planning
domain. Clearly, setting pb, pp too high might cause filtering
some useful macros out, while setting them too low might
cause keeping useless macros.

Using basic blocks leads to generating a subset of macros
that can be generated by using extended blocks, which often
results in failing to generate any macro. Although exploiting
extended blocks yields to a relatively small number of con-
sidered macro candidates, they often provide a basis for good
quality macros. This is because extended blocks often cap-
ture complex single activities. Such macros are usually not
generated by “chaining-based” approaches. Macro-blocks,
on the other hand, provide a larger number of suitable macro
candidates than extended blocks, since R2-R8 allow weaker
forms of block chaining. R2-R8 in fact incorporate a variant
of “chaining” approaches which might lead into generating
similar macros as the existing techniques do.

Following the above observations, BLOMA works in a two-
phased way. Initially, BLOMA tries to generate macros from
extended blocks. If no macro is generated, then BLOMA uses
macro-blocks to generate macros.

6 Experimental Analysis
We experimentally evaluated BLOMA in order to demon-
strate how it improves against the original and MUM en-
hanced domain and problem models. We used all the domains
from the learning track of IPC-7. The results are analysed in
terms of providing insights into possible impact of generated
macros to the planning process.

6.1 Learning
We generated 6 training problems for each domain. The train-
ing problems were rather simple but not trivial, so the plan
length was mostly within 40-80 steps. For learning, we have
used 4 state-of-the-art planners that accommodate various
planning techniques: LAMA [Richter and Westphal, 2010],
MpC [Rintanen, 2014], Probe [Lipovetzky et al., 2014] and
Mercury [Katz and Hoffmann, 2014]. For each domain, we
considered that planner that generated the best quality (short-
est) training plans. One plan was considered per each training
problem. The parameters pb and pp were both set to 0.5. The
learning process took from couple of seconds to couple of
minutes, where generating training plans consume the major-
ity of the learning time.

6.2 Comparison
We use IPC score as defined in the learning track of IPC-
7 [Coles et al., 2012]. For an encoding e of a prob-
lem p, IPC(p, e) is 0 if p is unsolved in e, and 1/(1 +
log10(Tp,e/T

∗
p )), where Tp,e is the CPU-time needed to solve

p in e and T ∗p is the smallest CPU-time needed to solve p
in any considered encodings, otherwise. As in the learning
track, the time limit was 15 minutes per problem. All the
experiments were run on Intel Xeon 2.53 Ghz with 2GB of
RAM, CentOS 6.5. Apart of the four planners considered
for learning, we also used Yahsp3 [Vidal, 2014] and Bfs-
f [Lipovetzky et al., 2014].

Coverage ∆ IPC
O M B M B

Barman
Lama 0 - 30 - +30.0
Mercury 23 - 30 - +9.8
MpC 0 - 0 - 0.0
Probe 3 - 22 - +19.7
Yahsp 0 - 11 - +11.0
Bfs-f 30 - 30 - -6.5

BlocksWorld
Lama 23 - 25 - +3.3
Mercury 19 - 8 - -11.1
MpC 0 - 0 - 0.0
Probe 24 - 25 - +3.5
Yahsp 28 - 22 - -7.5
Bfs-f 0 - 10 - +10.0

Depots
Lama 0 2 2 +2.0 +2.0
Mercury 0 0 0 0.0 0.0
MpC 18 24 24 +8.6 +8.6
Probe 30 30 30 +4.2 +4.2
Yahsp 21 20 20 +1.0 +1.0
Bfs-f 4 21 21 +17.8 +17.8

Gripper
Lama 0 30 30 +30.0 +30.0
Mercury 0 4 4 +4.0 +4.0
MpC 0 0 0 0.0 0.0
Probe 0 5 5 +5.0 +5.0
Yahsp 0 0 0 0.0 0.0
Bfs-f 0 0 0 0.0 0.0

Parking
Lama 3 - 0 - -3.0
Mercury 6 - 3 - -3.1
MpC 5 - 0 - -5.0
Probe 3 - 4 - +1.2
Yahsp 0 - 4 - +4.0
Bfs-f 5 - 5 - -0.9

Rovers
Lama 27 29 25 +3.6 -3.3
Mercury 24 26 29 +6.7 +9.5
MpC 5 5 5 -0.1 0.0
Probe 28 27 19 -1.0 -11.9
Yahsp 30 30 30 +0.6 -0.4
Bfs-f 0 0 0 0.0 0.0

Satellite
Lama 3 26 18 +23.7 +15.7
Mercury 19 11 13 -10.7 -9.2
MpC 1 0 0 -1.0 -1.0
Probe 0 2 0 +2.0 0.0
Yahsp 16 27 16 +4.7 -6.8
Bfs-f 0 0 0 0.0 0.0

Spanner
Lama 0 0 - 0.0 -
Mercury 0 0 - 0.0 -
MpC 30 30 - +1.7 -
Probe 0 0 - 0.0 -
Yahsp 0 0 - 0.0 -
Bfs-f 0 0 - 0.0 -

TPP
Lama 16 15 17 -2.0 +1.0
Mercury 19 16 20 -4.0 +2.7
MpC 9 11 20 +2.0 +14.0
Probe 12 14 17 +2.2 +7.1
Yahsp 30 30 30 -0.7 +0.4
Bfs-f 15 15 8 -0.7 -8.3

Table 1: Comparison between original (O), MUM (M) and
BLOMA (B) on the IPC-7 learning track domains. ”-” stands
for “no macros found”. ∆ IPC stands for a difference of IPC
score of the original and the corresponding macro enhanced
encodings.



Table 1 presents the results of BLOMA in comparison
to the original problem encodings and macros generated by
MUM. BLOMA and MUM generated the same sets of macros
in Depots and Gripper. By exploiting extended blocks,
macros have been generated in Barman, BW, Rovers and TPP.
In Spanner, no macro has been generated. Positive results
have been achieved in Barman, Depots, Gripper and TPP. In
the rest of domains the results were rather mixed.

Mixed results point to the fact that different planning tech-
niques have often a different “response” to macros. This ob-
servation is, of course, not very surprising. Macros are often
not supportive if the original problems are solved quickly (in
a few seconds) since macros are more demanding in the pre-
processing stage. Letting a planner learn macros for itself is,
however, occasionally helpful, although in the Satellite do-
main, MpC learnt a good macro for itself. On the other hand,
when training plans are of poor quality, generated macros are
very poor as well. For example, in TPP, Probe learnt a very
poor macro.

In Barman, the success of BLOMA rests in finding an 8-
step long macro that captures an important activity – shaking
a cocktail, pouring it into a shot and cleaning the shaker after-
wards. In Gripper, BLOMA (as well as MUM) found a useful
3-step long macro that directly delivers an object from its ini-
tial to its goal location. In other domains, BLOMA found only
2-step macros capturing only partial activities (e.g. loading a
truck). In TPP, BLOMA generated a “recursive” macro drive-
drive that a bit surprisingly contributed considerably to MpC
and Probe’s performance.

Apart from Barman, we identified other domains, namely
Scanalyzer, Storage and the IPC-2 version of Gripper, where
BLOMA found longer macros. Most problems from these do-
mains (all problems in the IPC-2 Gripper domain) are easy to
solve, that is, the planners needed at most a few seconds. With
higher pre-processing requirements for macros, there is no
space for improvement, although the performance was rarely
considerably worse. In Storage, the learnt macro helped
Probe to solve 7 more problems, Bfs-f and LAMA to solve
2 more problems, however, the macro caused MpC to solve
6 less problems. In Scanalyzer, the learnt macro was spe-
cific for “2-cycle problems” [Helmert and Lasinger, 2010].
While considering the macro, MpC solved 1 more problem
and Mercury has better performance on harder problems. On
the contrary, Bfs-f solved 1 less problem.

6.3 Discussion
As discussed before, BLOMA is particularly useful in do-
mains where longer macros capturing important activities
can be identified. Traditional “chaining-based” approaches
(e.g. MUM) often fail in these occasions. In other domains,
BLOMA performs with mixed results.

Number of instances of macros might cause issues with
memory consumption as well as might make pre-processing
more difficult. A typical example is the Parking domain that
represents a combinatorial problem of re-arranging cars in a
parking lot. Therefore, macros despite being frequently used
in plans might have detrimental effect on performance. From
this perspective, approaches such as MUM that consider only
macros with a relatively small number of instances are effi-

cient. However, as showed in this paper, they are not able
to generate longer macros that despite a larger number of in-
stances can be very beneficial.

On the other hand, we have observed that in some cases
macros have arguments that are not necessary to be kept ex-
plicitly, so the number of instances might be reduced consid-
erably. In particular, if a state of some object remains the
same, i.e., no predicates containing this object are added or
deleted, then it is not necessary to keep this object as an ar-
gument of the macro. For example, having a macro that rep-
resents an activity of delivering a package by a truck and re-
turning the truck to the place of package’s origin. The truck
in fact does not change its state after applying the macro. Of
course, some truck must be in the place of package’s origin
which has to be reflected in macro’s precondition. It can be
done by using existential quantifiers. Although they are sup-
ported in PDDL, many planning engines do not support such
a feature.

Impact of particular macros depends on a planning tech-
nique exploiting them. In Depots, macros bypass situations
where a crate is held by a hoist. It is well known that a
hoist can hold at most one crate at time, however, delete-
relaxed heuristics ignores such a constraint which might lead
into having many local minima in heuristic landscape [Hoff-
mann, 2011]. Macros that reduce the complexity of Planning
Graph (e.g. smaller number of layers, less mutexes) seem
to be beneficial for techniques such as those incorporated in
MpC as observed in Depots and TPP. We believe that clas-
sifying macros according to their features will be helpful for
selecting planner-specific macros that will be tailored for a
given planning technique.

7 Conclusions
In this paper, we presented BLOMA that learns planner-
independent macros from macro-blocks, which can be ex-
tracted from training plans, encapsulating constituent coher-
ent subplans. Such an approach is beneficial especially for
domains (e.g. Barman), where an important activity repeat-
edly applied in plans can be encapsulated by (longer) macros.
We have shown empirically that BLOMA can considerably
improve the performance in many cases.

There are two major limitations. Firstly, a higher num-
ber of macros’ instances might be detrimental to the plan-
ning process. However, all the arguments of macros do not
have to be always explicitly defined. To address this we
have to use existential quantifiers in macros’ preconditions,
however, such a feature is not widely supported by planning
engines. Alternatively, we might learn HTN methods rather
than macros. Secondly, some macros are not supportive for
certain planning techniques (e.g. they might “jump” into lo-
cal heuristics minima). Hence, classifying macros according
to their features might reveal what kind of macros has posi-
tive/negative impact on certain planning techniques.
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