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ABSTRACT 

This paper presents a hybrid multi-resolution technique for the extraction and measurement of attributes contained 
within a musical signal. Decomposing music into simpler percussive, harmonic and noise components is useful 
when detailed extraction of signal attributes is required. The key parameter of interest in this paper is that of punch. 
A methodology is explored that decomposes the musical signal using a critically sampled constant-Q filterbank of 
quadrature mirror filters (QMF) before adaptive windowed short term Fourier transforms (STFT). The proposed 
hybrid method offers accuracy in both the time and frequency domains. Following the decomposition transform 
process, attributes are analyzed. It is shown that analysis of these components may yield parameters that would be of 
use in both mixing/mastering and also audio transcription and retrieval. 

 

1. INTRODUCTION 
Music classification and information retrieval (MIR) is 
an area that benefits from the extraction of low level 
features to determine such things as, but not limited to, 
genre, BPM and musical key. Different approaches to 
obtain the features are utilized, some of which involve 
time and frequency domain transforms to achieve this.  
If the perceptual ‘punch’ attribute can be extracted as a 
feature, it can be utilized as an additional search 
criterion in MIR in addition to being a reliable 
normalization metric in music production. 
 

Previous work by the authors [4] explored the reverse 
elicitation of parameters pertaining to the sensation of 
punch. From this work subjectively graded punch 
samples were obtained. Regression analysis of the high-
level control settings chosen by the expert listeners 
revealed no significant correlation between any singular 
control setting and the resulting punch score. Therefore, 
further detailed analysis of the resultant signals is 
required. 
 
This paper describes a hybrid multi-resolution technique 
that initially decomposes the musical signal using a 
quadrature mirror filter bank (QMF) before applying a 
short time Fourier transform (STFT) to each band. By 
adopting this technique it is possible to segment the 
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signal energy into discrete bands and tune the STFT 
window size based on the frequency range of interest. 
The adoption of a hybrid system offers advantages over 
a single transform method. One such advantage is a high 
degree of resolution achieved in both the time and 
frequency domains, this is explained in section 6. 
Following the initial transform process, transient, steady 
state and residual components (TSR) are extracted. The 
method of separation presented uses iterative median 
filtering to achieve a high degree of separation into the 
TSR components. Median filtering is a technique 
utilized in image processing for edge detection and has 
been shown to give good results with low computational 
overhead when used for TSR separation. Each of the 
components is then analyzed using well-established 
spectral and time based measurements, e.g. spectral 
centroid. In addition new measurements are investigated 
which explore the relationship between each component 
part. 
 
New measures may then be utilized to model and 
objectively evaluate punch in produced music and be an 
additional metric used in MIR. The paper concludes 
with an example of how the measure can be applied in a 
music production and/or mastering environment to both 
measure dynamics in addition to identifying source 
elements within the music itself. 

2. BACKGROUND 
In music production, metering tools are often used to 
signify signal presence, level and in the case of an audio 
mastering or broadcast scenario signal loudness. It’s 
well known that the past two decades have seen a 
gradual decrease in dynamic range across a wide range 
of formats, particularly on the CD.  
 
Automatic loudness normalization by broadcasters may 
hopefully have an impact on lowering the proliferation 
of low dynamic range material being offered to the 
consumer however, there still appears to be a reluctance 
to embrace this in music production; the trend being that 
loudness level meters are simply being used to match 
loudness to ‘current’ released audio rather than to the 
proposed broadcast levels. 
This trend contradicts the artist desire of releasing music 
that possesses both dynamic range and spaciousness, all 
of which can be somewhat destroyed through ‘target’ 
driven mastering and to some degree mixing. 
 
A characteristic related to dynamics is known as 
‘punch’. A hypothesis stated by the authors in earlier 

research [4] is that punch can be described as a short 
period of significant change in power in a piece of 
music or performance. In essence, productions that do 
not possess any transient information cannot posses 
punch. Thus, punch is both related to transient change 
and the energy density at a particular moment in time 
and duration. Furthermore  dynamic change in particular 
frequency bands contribute to the overall perception of 
punch perceived by the listener and this is inherently 
affected by the overall average loudness level at that 
time [21].  
 
With this in mind, a metering tool that would aid the 
mixing and mastering engineer to gauge this perceptual 
parameter would help them to meet artist preference 
rather than a reliance on loudness alone. Indeed, further 
metering tools that are tuned to specific parameters 
within the complex musical signal may be of benefit to 
engineers and consumers alike. Some of those 
parameters are examined later in this paper.  

3. EXISTING METERING 
The current ITU loudness standard measurement 
algorithm [13] incorporates individual audio channels, 
which are independently filtered to simulate the 
sensitivity of the human ear and head diffraction effects.  
 
The power in each channel is summed to obtain the 
power in the entire signal. This power is averaged over 
the entire program to obtain a single number metric for 
the program loudness. In addition, Loudness	 Range,	
Short-term	 Loudness	 and	Momentary	 Loudness	 are	
all	offered	to	indicate	‘dynamics’	within	the	program	
material.	 	 This	 approach,	 along	 with	 other	 general	
dynamic	range	measures		consider	‘macrodynamics’.		
	
These are largely based on an integrative approach thus 
can’t really be utilized to quantify attributes such as 
punch, exists in the ‘microdynamic’ scale of the signal. 
Peak to Loudness ratio (PLR), also specified in [13] 
could be utilised to measure a degree of microdynamics 
however, the peak measure obtained in the case of an 
entire track, may not be attributable to the track as a 
whole.  
 
Fine time-scale approaches have been developed 
[14][11] however these approaches still consider the 
signal as whole when calculating Peak and average 
levels loudness levels at different resolutions. By whole, 
we mean the complete complex mix of transient, steady 
state and residual components. 
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This work is motivated by a need to separate the signal 
under test into what is considered to be steady state, 
transient and residual components, allowing individual 
analysis of each. By utilizing signal separation the true 
dynamics of the signal as a whole can analyzed whilst 
considering the effect of each component within the 
signal. What we’re considering here is the 
‘transientness’ of the signal where the peaks in the 
signal are solely related to the transient component and 
nothing else. This has advantages over an integrated 
approach whereby ‘microdynamics’ within a signal can 
be considered independently of overall loudness or 
summed peak level.   

4. SINES, TRANSIENTS & RESIDUAL  
Music can be considered to be a collection of complex 
components each with differing harmonic and non-
harmonic attributes. These components can be 
categorized as a steady state, transient and residual. 
 
Previous work has identified that the transient portion of 
a complex tone contains a great deal of information with 
respect to perceptual attributes of the source [5][6]. 
 
In addition, given the transient information is inherently 
related to defined moments of change in a piece of 
music, this information is paramount in determining a 
punch measure.  
 
The transient part of the signal can be loosely defined as 
the initial time interval in which the signal is evolving 
into its steady state. Detection of transients can be 
useful in such applications as note detection, signal 
enhancement, dynamic range control and musical 
transcription [7][8][9][10]. Various methods of transient 
detection can be employed with varying degrees of 
success depending on genre and application [7][10]. We 
outline some of these approaches in section 5. 
 
Almost all genres of music have significant transient 
content throughout as a result of differing tone onsets. 
Onsets can be considered to have differing onset rates, 
e.g. drums would result in fast onset times whilst a 
bowed instrument such as a violin may have slower 
onset times. Despite having a slow onset, it can still be 
considered as having a transient characteristic initially. 
Modification of the transient portion of a sound source 
has been shown to modify the perception of the source 
by the listener [7][10][12].   
 

Generally, transient information can be considered as 
the non-stationary components of a signal. Non-
stationary being defined as a component that has a 
degree of magnitude or phase change within a particular 
time frame. Once transients have been detected, they 
can be enhanced or removed from the signal. The latter 
would result in the steady state and residual part of the 
signal remaining. [1][2]. 
 
The steady state components of the signal are usually 
related to pitched instrumentation. It’s shown in section 
7 that analysis of this information independently can 
reveal parameters such as note length, scale and 
magnitude. 
 
Residual components can be classified as neither 
steady-state nor transient. Consider noise within a 
signal, having both random distribution of magnitude 
and phase within a time frame. The residual components 
relate therefore to the noise floor of the signal under 
test. Much in the same way that images can be de-
noised, it’s possible to de-noise audio signals resulting 
in the potential for increased clarity and to improve 
qualitative efficiency in audio compression algorithms.  

5. COMPONENT EXTRACTION 
To precisely discriminate transient, steady-state and 
residual components is not an easy task. Much work has 
been performed in this area, excellent reviews and 
tutorials on the subject are given in [15][16]. It’s 
concluded within this work that for sharp onset 
transients, the results of extraction are largely 
independent of the method chosen. It therefore makes 
sense to utilise methods that have a minimum 
processing and latency load when considering audio 
metering applications. However, when the onsets are 
softer, the complexity of the algorithm increases, a 
combination of differing techniques is suggested as 
being the most effective means of detection of all 
transients. 
 
The complexity of the algorithm should be chosen to 
best fit the application. This papers focus is that of 
audio metering therefore processing speed needs to be 
minimal and latency reduced to a minimum. For this 
paper, we do not present the detection of soft onsets 
however work on this more complex model is ongoing. 
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5.1. Fast Onset Detection 
Fitzgerald [1] proposed an efficient method of transient 
and steady state separation that utilised median filtering. 
This approach, inspired by Ono et al.[17] considers that 
transient components will be broad-band in nature with 
highly concentrated energy in time, whereas steady-
state sources are taken as discrete narrow-band 
components with smooth magnitude temporal 
behaviour. These components can be seen in 
spectrogram as vertical and horizontal ridges, 
respectively.  
 
Further investigation utilising this method was 
performed Iragaray et al.[2]. Their work incorporated 
the use of a Wiener filter stage and a Stochastic 
Spectrum Estimation (SSE) method proposed by 
Laurenti et al. [17] which replaces the median filtering 
stage of the above with an alternative non-linear filter.  
 
Through evaluation of the differing approaches with 
respect to relative performance and keeping in mind the 
need for simplicity, Fitzgeralds approach [1] was 
adopted for this paper to detect fast onsets. However the 
separation algorithm was modified to reduce spill 
between components. This modification, proposed by 
Driedger et al.[19] incorporated separation factors 
which allow for the tightening or reduction of steady-
state or transient bleed.  

6. PROPOSED METHOD 
The chosen analysis model is shown in figure 1.  It 
incorporates a filter bank in its first stage, which 
decomposes the signal into sub-bands. The advantages 
of this approach are that the subsequent processing can 
be tuned to the bandwidth of each sub-band (i.e. allow 
variable time and frequency resolution as required) and	
the sub-bands can be psycho-acoustically tuned to the 
auditory response. 
	

	

Figure 1. Analysis Model. 

	
The choice of decomposition was based on various 
factors, processing speed, possible reconstruction of the 
signal with minimal artefacts and also time alignment of 
resulting data.  
 
Initially stationary packet based wavelet decomposition 
was investigated [20]. The decomposition resulted in 
sub bands that were aligned in time and signal 
reconstruction was possible with no artefacts. However, 
this approach is highly redundant given that each 
resultant packet contains all components between 0 and 
Fs, where Fs is the sample rate of the signal under test.  
If one considers a full packet wavelet tree at the lowest 
level of decomposition, each packet contains equal 
bandwidth components of Fs/L+1, where L is the level 
of decomposition. Given that the bandwidth of interest 
varies at each decomposition level, it makes sense to 
employ down sampling at each level thus reducing the 
data storage requirements whilst also increasing the 
frequency resolution at the lowest scale.  
 
Utilising a full packet tree does have some advantages 
for signal classification [20], for example an energy 
map of wavelet packets can be computed resulting in a 
feature set of a particular sound. This feature set can 
then be compared against a library of known sets 
resulting in identification or classification of the signal 
itself. This approach could be adopted, for example, in 
the case of a bass drum to detect not only whether a 
‘hard beater’ or  ‘soft beater’ had been used, but also the 
type and size of kick drum used during recordings. 
	
For our method, a full packet tree decomposition was 
deemed unnecessary. This was due to the fact that a 
model based on auditory response requires lower 
resolution at higher frequencies so sub-bands could be 
chosen to reflect this.  A critically sampled constant-Q 
filterbank of quadrature mirror filters (QMF) was 
employed to implement the filtering process. QMF 
filters are pairs of matched but reciprocal filters that are 
symmetrical about 0.5π.  
 
Downsampling by a factor of 2 is employed after each 
QMF filter stage, thus reducing data redundancy. In 
order to keep processing overhead to a minimum, 3 
level  decomposition into 4 bands took place as shown 
in figure 2. 
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Figure 2 Multiresolution filterbank of cascaded QMF 
filters. 

	
This filtering results in four sub-bands, as shown in 
table 1. 

Table 1. Measurement Frequency Bands 

Sub	band	 Frequency	Band	(kHz)	
SB3	 11.025-22.05	
SB2	 5.5123-	11.025	
SB1	 2.756	–	5.5123	
SB0	 0	–	2.756	

	
Each sub-band is then processed to give a time-
frequency representation computed using the Short-
Term Fourier Transform. 
	

€ 

S (t,k) = w(n)
n=−∞

∞

∑ s(n + tH)e− jωkn /N 		 													(1 )	

	
with t Î [0:T-1] and kÎ [0:N]. k represents the number 
of bins N/2, where N is the DFT frame size. w(n) is a 
hann window and H is the hop size. The hop size was 
chosen to enable a 50% overlap. 
	

6.1. Multiresolution Analysis 
Due to the down-sampling nature of the QMF 
filterbank, the STFT window size is actually self-
optimising with respect to the separation process. As 
outlined in section 4, strong percussive onsets tend to 
spread across the spectrum in a broadband nature, this 
spread tend to narrow in time in the upper frequency 
bands. In order to capture this information in time, a 
shorter STFT analysis window is required. On the 

contrary, with respect to the low frequencies, these 
evolve much more slowly over time and require longer 
STFT analysis windows.  
 
If one keeps the STFT frame size fixed, due to the 
signal down sampling, we are infact able to analyse the 
signal in a multi-resolution in time basis. Thus, we 
achieve a system that has good time resolution in the 
upper sub-bands and good frequency resolution in the 
lower sub-bands, which is conducive to a psycho-
acoustic model. 
 
The signal under test had sample rate of 44.1kHz. The  
chosen frame size was N=256. This resulted in fast 
computation and a hop size equating to 2.9mS. As 
outlined earlier, the same N frame size was adopted for 
each sub band, resulting in a hop sizes equating to 
5.8mS and 11.6mS respectively. The lower 2 bands 
having the same hop size. 
  
The resulting STFT coefficients are then re-combined 
into an overall multi-resolution data block, a 
spectrogram example of which is shown in Figure 3 
before being passed through the median filters. 
	

	

Figure 3. Multiresolution Spectrogram of ‘Animal’ 
example. 

6.2. Separation Of Components 
Median filtering performed across the time axis results 
in a steady-state enhanced spectrogram, in addition 
transient outliers are suppressed. Likewise, filtering 
across the frequency axis tends towards suppressing the 
steady state components and enhancing the transients. 
This can be seen in figure 4. 
 
Following the proposal [19] outlined in section 5.1,  
separation factors of 3 and 2.5 were chosen for bt and 
bss respectively. These gave good separation when 
tested on a variety of sources.  
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The binary masks utilised for component separation are 
defined as  
 

		 													(2 )	
		 													(3 )	

 
Where St & Sss are the median filtered STFT data 
blocks. Separation is achieved by applying the masks to 
the overall	multi-resolution	data	block	which	results	
in	transient	and	steady	state	data	blocks.	
	

€ 

TR(t,k) = S(t,k) *Mtr (t,k) 		 													(4 )	

€ 

SS(t,k) = S(t,k) *Mss(t,k) 		 													(5 )	
	
 
In addition, the method also enables the extraction of 
the residual components. The mask of which is defined 
as 
 

€ 

Rm (t,k) =1− [Mtr (t,k) |Mss(t,k)]		 													(6 )	
 
The residual components are then extracted as 
	

€ 

R(t,k) = Rm * S(t,k) 		 													(7 )	
 
An example of a file that has been separated is shown in 
figure 4.  

 

Figure 4. (a) Transient; (b) Steady State enhanced by 
median filtering 

6.3. Analysis Parameters 
As outlined in section 3, common metering tools used 
during the mixing and mastering consider the signal as a 
whole. Whilst being accurate for a measures such as 
absolute peak level and overall RMS, a subsequent 
calculation of dynamic range (whatever the integration 
window size) is likely to be somewhat meaningless 
other than allowing a ‘loudness driven’ metric for target 
mixing or mastering. This is due to the peak and RMS 
calculations being the sum of all the signal components, 
transient, steady state and residual. 

The primary use of integration in dynamic range 
measures is to stabilize variations caused by the 
individual component parts of the signal. This is fine as 
a representation of ‘overall’ or ‘macro’ dynamics, but 
does nothing to represent the true nature of the audio 
from a psychoacoustic perspective. E.g. During 
moments of true dynamic activity, one would expect a 
measure based on the components that relate solely to 
this activity. 
 
Through component separation it’s possible to measure 
elements within the complex musical signal either 
individually or grouped. The hypothesis being that this 
approach will give a more accurate objective 
representation of listener perception.  
Our first measure of interest is the Transient to Steady 
State ratio. Considering the hypothesis outlined in 
section 2 that punch perception is related to transient 
change, the energy density at a particular moment in 
time and the overall loudness, this measure considers all 
three.  
 
In this paper, the component power of each component 
is calculated as a summation of each frequency bin for 
every STFT hop. 
 
Should the steady state component power be significant 
at the timeframe of measurement, the transient 
components will inevitably be somewhat masked by the 
steady state components resulting in overall punch 
perception being affected. Conversely, should there be 
minimal steady state component, the transient 
component has the potential to increase punch 
perception and itself, will not be masked. 
 
In addition, it should be possible to measure the steady 
state signal prior to the detected transient, thus 
determining the potential for masking.  
 
 
The parameter is given as 
 

€ 

TSR(t) = 10 * log[TR (t) /SS (t)] 		 													(8 )	
 
where TR & SS are the sum of the k magnitude bins of 
the transient and steady state components respectively. 
An additional parameter is also measured which takes 
into account the residual component, as follows 
 

€ 

[TSR + R ](t) = 10 * log[TR(t) /[ SS(t) | R (t )]] 		 											(9 )	
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This parameter can be likened to a dynamic range 
measurement in the presence of a signal i.e. with no 
noise gating present. The level of noise or residual 
component is expected to affect the punch perception in 
addition to clarity within a complex mix. 
 
Further to these parameters, spectral centroid measures 
were taken on a frame by frame basis of the transient 
and steady state components. Equation 8 shows just the 
transient component centroid measure, where f(n) is the 
bin centre frequency. 
 

€ 

SCtr(t,k) =
f (n)TR(n,k)

n=−∞

∞
∑

TR(n,k)
n=−∞

∞
∑

		 													(10 )	

 
Considering the spectral centroid of a complex mix of 
components, one would expect the measure to vary 
wildly and thus its use is somewhat limited for audio 
classification or mix/mastering purposes. It’s expected 
that focusing the measure on isolated components may 
yield a more useful metric. All the measures utilized are 
summarized in table 2. 
 

Table 2. Measurements proposed 

Parameter	 Description	
TSR	 Transient	to	Steady	State	

Ratio	(dB)	
TSR+R	 Transient	to	Steady	State	

Ratio	+	Residual	(dB)	
SCtr		 Spectral	centroid	of	

transient	frame	(Hz)	
SCss	 Spectral	centroid	of	

steady	state	frame	(Hz)	

 
A raised-cosine (Half Hanning) filter was applied which 
further approximates to the integration present in the 
auditory response. A window size of approximately 
100mS was chosen for this. Plots in section 7 that have 
this filter applied are shown as ‘Smoothed’.  

7. PRELIMINARY RESULTS 
The sound sample under test was a 44.1kHz WAV file  
of Def Leppard’s song “Animal”. The sample was 
converted to mono and normalized prior to 
measurement. The opening bars of the song were the 
point of measure. 

Following the separation and filtering processes, the 
measures described in section 6.3 were obtained. The 
key measures of interest are included here. All plots 
show the ‘n * 2.9mS’ timeframe along the ‘x’ axis 
where n is the STFT timeframe block.  
 
With respect to Figure 6, which shows the power 
summation of the transient components over time, one 
can clearly see the effectiveness of the transient 
separation. Each peak corresponds with either a kick, 
snare or palm muted guitar chord. If this measure were 
utilized for onset detection for drum transcription, the 
latter palm muted onset could be removed simply by the 
introduction of an ‘onset detection threshold’. 
 
A further enhancement to this can be obtained by 
utilizing the spectral centroid of the transient component 
which is shown in Figure 7(a). Fluctuation in peaks 
correspond to the nature of the audio under test, namely, 
the pattern KSKSKSK, where K and S represent Kick 
and Snare respectively. Therefore, unlike the centroid 
measure of the entire signal, Figure 7(b), the measure 
could be useful in discriminating between percussive 
sources now that the centroid is independent of the 
steady state and residual colouration. The spectral 
centroid measure of the steady state component, Figure 
7(c), reveals the ascending nature of the frequency 
components resulting from the pitch bending guitar part 
present on every quarter note. Again, this is in contrast 
to the centroid measure of the entire mix, which reveals 
very little. 
 
With reference to Figure 5 showing the transient to 
steady state component ratio with and without the 
presence of the residual, one can see that the measure of 
dynamics is greatly increased. In the case of the non-
residual calculation the peaks average around -5 to 10 
dB whereas when the residual is considered the 
associated levels fall to between -12 to -22 dB. 
 
One can clearly see the dynamics of the signal, created 
by the transient components. Of note is the addition of 
peaks present at 75 block intervals. These are as a result 
of the small power peaks in Figure 6 at the 
corresponding points in time. These peaks are due to a 
palm-muted guitar adding an additional percussive 
element to the arrangement. Ordinarily, this would not 
be visible when using standard integration based 
metering but their inclusion to the arrangement does add 
an additional punch element that should be considered. 
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Figure 5 (a) TSR and (b) TSR+R vs. Time. 

 

Figure 6 Transient Power Summation vs. Time. 

 

 

 

 

Figure 7 Spectral Centroid Measures of (a) Transient (b) 
Overall and (c) Steady State component. 

 
 
 
 
 
 
 



Fenton et al. Hybrid Multi-resolution Analysis of ‘Punch’ 
 

AES 138th Convention, Warsaw, Poland, 2015 May 7–10 
Page 9 of 10 

If the mix were such that the steady state components 
were made much louder, thus masking the transient 
elements somewhat, it could be expected to see the 
peaks shown in Figure 5(a) & (b) reducing accordingly.  
In the case of a piece of music without a strong 
percussive element, the transient components will be a 
result of the note onsets of other instrumentation. The 
measure of TSR+R would be an applicable measure in 
this instance. 
 
Considering a well mixed track, whereby the sound 
sources had been mixed effectively with minimal 
masking should reveal good transient power that will 
allow a high TSR to be achieved, and thus the perceived 
punch to be greater.  
 
With the residual extracted, it should be possible to 
effectively de-noise a piece of audio much in the same 
way that an image is processed. By examining the 
residual and suppressing elements that may constitute 
unwanted noisy components the resultant could be then 
utilized to recompose a noise free signal. However, the 
residual may contain important information that can’t be 
discounted completely, e.g. the median filtering 
approach adopted tends to leave some of the lower level 
transient tails within the residual, an addition to the 
model could be employed to re-assign these tails to the 
transient component block. 
 
In addition, distortion may have been added to certain 
instruments to enhance timbre, these artifacts may well 
appear in the residual component and therefore may be 
deemed ‘important’ as far adding to the overall texture 
of a music track. 

8. FURTHER WORK 
The inclusion of a soft onset detection mechanism 
should yield additional components that would be 
included with in the transient data block. The authors 
have explored the use of the both phase deviation and 
weighted phase algorithms however, whilst effective in 
detecting the softer transients, they were too susceptible 
to noise, noise such as that introduced by distorted 
guitars being one such issue. A model utilizing the 
Euclidian distance is currently being explored.  
 
The model utilizes 4 sub-bands. A more elaborate and 
natural extension to this could be the implementation of 
a full auditory filterbank as proposed in [22] whereby 
TSR analysis could take place close to that of a natural 
hearing response. 

Due to a sub-band approach being adopted it is possible 
to tune the size of the median filters further to enhance 
the source separation. As each band has different time 
and frequency resolution at the sub band level, different 
values of median filter length should lead to more 
optimal separation. For example, it was noted with the 
model adopted, that the median filter applied across the 
vertical (frequency axis), tended to favour the higher 
frequencies rather than the lower ones, a larger median 
filter length improved this. In [19], different filter sizes 
in addition to DFT frame sizes are explored and this 
should prove very useful in progression of this research.  
 
The model yields the possibility to perceptually weight 
the transient and steady state frequency bands. 
Considering that lower centroid components may 
perceptually exhibit more punch to the listener, the TSR 
measure could be weighted accordingly.  
 
Subjective tests are planned with a panel of expert 
listeners. The listening test will attempt to evaluate the 
effectiveness of the TSR measure against punch 
perception across differing audio samples.  

9. CONCLUSION 
A hybrid multiresolution model has been proposed that 
decomposes an audio signal into its component parts. 
It’s shown that analysis of these components may yield 
parameters that could be of use in both 
mixing/mastering and also audio transcription and 
retrieval. 
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