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Abstract 

Introduction: As dissolution  plays an important and vital  role  in the  drug- delivery  

process of  oral  solid  dosage  forms,  it is, therefore, essential  to critically evaluate 

the parameters that can affect this process. 

Areas covered: The consumption of food as well as the physiological environment  and  

properties  of  the  gastrointestinal tract,  such as its volume  and composition of fluid,  

the fluid  hydrodynamics, properties of the intestinal membrane, drug dose and 

solubility, pKa, diffusion coefficient, permeability and particle  size, all affect  drug  

dissolution  and absorption  rate. There are several dissolution approaches that have been 

developed to address the conditions as experienced in the in vivo environment, as the 

traditional dissolution being a quality control method is not biorelevant and as such do 

not always produce meaningful data. This review also describes the development of a 

systematic way that differentiates between robust and non-robust formulations by 

varying the effects of agitation and ionic strength through the use of the automated 

United States Pharmacopeia type III Bio-Dis apparatus.  

Expert opinion: With  the improved  understanding of the physiological parameters 

that  can affect  the oral bioperformance of dosage forms, strides have, therefore, been 

made in making dissolution  testing methods more bio- logically based with  the view of 

obtaining more in vitro--in vivo correlations. 

 

Keywords: agitation rate, biodissolution, drug release, effect of food, hydrophilic matrices, 

ionic strength 

 

 



Highlights 

- Understanding all the physiological parameters can serve as a basis for designing 

dissolution testing methods and systems that can more fully represent the 

gastrointestinal  (GI) tract in humans and allow more in vitro-in vivo (IVIVC) 

correlations  to be obtained thereby improving the oral bioperformance of dosage 

forms. 

- Simulation of GI conditions is essential to adequately predict the in vivo behaviour of 

drug formulations. 

- The choice of appropriate media for in vitro tests is crucial to their ability to correctly 

forecast the food effect in pharmacokinetic studies. 

- Several methods of dissolution testing have been conducted and are still ongoing that 

seek to further understand and develop media and dissolution methods to better 

represent the in vivo conditions and to aid in the better prediction of in vivo drug 

release. 

- Systematic change of agitation method and ionic strength evaluation may be used as 

additional tools in allowing for the identification of potential fed and fasted effects on 

drug release from hydrophilic matrices in the drive for developing dissolution 

methodologies that are more relevant in helping to achieve more IVIVC. 

 

 

 

 

 



1. Introduction 

Dissolution plays a very important and critical part in the drug delivery process as 

pharmaceutical solid oral dosage forms must undergo this process in the gastrointestinal (GI) 

tract before they can be absorbed and reach the systematic circulation. An efficient 

understanding of this dissolution process allows the development of dosage forms that are 

robust and can perform well. Dissolution  testing is a quality control (QC) procedure 

employed in pharmaceutical product development and is of a great importance in the 

selection and facilitation of candidate formulations for in vitro-in vivo correlations  (IVIVC) 

[1,2]. 

Reproducible and reliable correlations between in vitro and in vivo human clinical studies 

remain a challenge to scientists due to several reasons. Human subjects for formulation 

development are almost impossible due to ethics. Extensive costs and completion of 

marketing timelines are also problematic [3]. There is, therefore, a need for developing and 

understanding in vitro drug dissolution models as they are very important. It is important to 

ensure that the developed in vitro methodology has the ability and power to predict in vivo 

characteristics. This approach serves as a valuable tool in the early stage of profiling lead 

compounds to optimise the drug products in the late stage of drug development. 

The determination of the solubility of the active pharmaceutical ingredient (API) and the drug 

products’ dissolution profile is to ensure a close link to the solubility and dissolution in vivo, 

thus enabling a predictive in vitro system for solubility and dissolution. The knowledge of in 

vitro predictive solubility and dissolution in establishing and optimising drug product 

compositions and manufacturing processes can be further used as input parameters for in-

silico modelling and simulation. This in turn helps reduce guesswork and improves the 

prediction accuracy [3]. 



Drug dissolution and absorption rate are thus dependent on properties of the physiological 

environment and properties of the drug itself with parameters such as the dimension of the GI 

tract, volume and composition of fluid, the fluid hydrodynamics, properties of the intestinal 

membrane, drug dose and solubility, pKa, diffusion coefficient, permeability and particle size 

all playing a key role [4]. In an attempt to bridge the gap between the in vitro and in vivo 

dissolution and absorption, the Biopharmaceutics Classification System provides guidance 

for predicting in vivo performances of drug substances based on the drugs solubility, 

permeability and in-vitro results from testing [5]. This review looks to summarise the 

physiological parameters that can affect drug release, discuss food effect on drug release and 

some of the dissolution methods used in trying to predict in vivo dissolution behaviour. This 

review will also look at a simple in vitro methodology developed by Asare-Addo et al. by 

varying agitation in ascending and descending sequences as a systematic process for 

potentially discriminating fasted and fed states to represent the various levels of agitation to 

mimic the fed and fasted states in man [6-10]. 

2. Physiological parameters 

In the GI tract, the small intestine comprises of the duodenum, jejunum and ileum. The large 

intestine is divided into the cecum, colon and rectum. Ritschel [11] reported that the jejunum 

and ileum had similar absorbing areas and that these areas were significantly larger than the 

other segments of the GI tract. Also, generally, there is a better absorption of drugs in the 

upper GI tract and this has to do with the significant higher surface absorbing area in the 

upper GI tract. Drug transport across the intestinal epithelium in each segment of the GI tract 

is non-uniform and tends generally to decrease as the drug moves along the GI tract. 

Absorption/permeation is what ultimately carries orally administered drugs into the intestinal 

membrane to be transferred to the bloodstream.  As drug absorbance/permeation is different 



in the different parts of the GI tract, the residence time of a drug in each segment of the GI 

tract can significantly affect the performance/absorption/permeability of an oral controlled 

dosage form. 

The GI fluid is a complex and dynamic mixture of components from a number of sources 

within the GI tract and its composition can have a huge impact on the solubility and 

dissolution of poorly soluble APIs [12]. Gastric fluid is a com- position of saliva, gastric 

secretions, dietary food and liquid and secretions from the liver [4]. The composition of the 

fluid in the upper small intestine, however, is made up of chime from the stomach, secretions 

from the liver, the pancreas and the wall of the small intestine. This fluid composition is 

affected by fluid compartmentalisation, mixing patterns, permeation through the intestinal 

wall and the transit down the intestinal tract. Physiological characteristics such as pH, bile 

salts, gastric-emptying rates, buffer species, hydrodynamics, shear rates and intestinal 

motility can significantly impact dis- solution and absorption [4,13]. The methods for the 

aspiration of gastric or intestinal fluids and characterising them are vast and well documented 

in literature. This is not covered in this review and interested readers are directed to 

Bergstrom et al. [12] and all the references therein. 

The pH in the GI tract is a function of many variables such as time, prandial condition, meal 

volume and content and the volume of secretion. This varies along the GI tract (Figure 1). 

The pH strongly influences the solubility of weak electrolytes by determining their ionisation 

states. When a pH is such that a drug is in its ionic form, the drug behaves like a strong 

electrolyte and the drugs solubility becomes usually high as compared to its non-ionised form 

[4]. Drug products with pKa values especially in the physiological range thus have dis- 

solution rates that are affected greatly by pH. Sheng et al. [14], Li et al. [15]  and 

Phaechamud and  Ritthidej [16]  have all showed this to happen for different types of dosage 

forms such as immediate and modified release. 



Typical median values for the gastric pH in the fasted state ranges between 1 and 2 with pH 

values of 1.7 -- 3.3 (median of 2.5) also reported [17-24]. Dressman et al., [24] interestingly 

found that 68% of the time, gastric pH remained below pH 2 and that for 90% of the time, it 

remained below 3. Fasted pH values for the upper small intestine have been reported to range 

between 4 and 8 with typical values around 6.5 [23, 25-27]. Others have reported pH of the 

duodenum to range between 5.6 and 7 with median values of 6.3 [19,22,26,28-31]. The pH 

values ranging from 6.5 to 8 in ileum have been reported in the fasted state [32,33], whereas 

pH values for the jejunum ranging from 6.5 to 7.8 with a median value of 6.9 have been 

reported [20]. Shortly after ingesting a meal, gastric pH values have been shown to rise to 

about 6 -7 which decreases back to fasting levels again after about 1- 4 h depending on 

conditions such as meal composition, amount and pH [21]. Gastric pH in the fed state ranges 

from 2.7 to 6.4 [21,22]. Typical median values are around 5 during the later postprandial state 

for the small intestine [33,34]. Pre- treatment of a meal in the stomach means that the pH of 

the intestinal fluids is not as affected to the same extent as gastric fluids as such fed state fluid 

in the duodenum have been reported to be between 5.4 and 6.5 [12,19,21,22,28,35-37]. 

Persson et al. [38] found the pH in fed jejunal fluids to be 6.1. Buffer capacity of the GI fluid 

is also known to affect the dis- solution rate. This particularly is the case for ionisable drugs. 

The higher the buffer capacity, the more the buffer influences the pH changes at the drug--

liquid interface [39]. Fadda et al. [40] studied the solubility of two drugs with different 

physicochemical properties in luminal fluids obtained from various regions of the human GI 

tract to determine the most important luminal parameters influencing their solubility. They 

found the solubility of 5-aminosalicylic acid to significantly change down the GI tract with 

buffer capacity being the most important determinant of its solubility. They found buffer 

capacity to increases down the GI tract [40]. This was, however, from one patient suffering 

from polyposis [40]. There was a buffer capacity (mM/L/DpH) transition from 6.4 in the 



ileum to 28.6 in the ascending colon, reaching 44.4 mM/L/DpH in the trans- 

verse/descending colon. They attributed the high buffer capacity of colonic fluids to the 

presence of short-chain fatty acids (SCFAs), which predominantly consisted of acetate, 

propionate and butyrate, produced by the breakdown of carbohydrate by anaerobic 

microflora. Cummings et al. [41] measured the levels of SCFA from small bowel contents 

weighing 291 g (range = 156 -- 508 g) and large bowel contents weighing 174 g (range = 83- 

421) from six subjects after autopsy was done on average 3 h 20 min after death and showed 

a decrease to occur from the ascending colon (123 ± 12 mmol/kg) progressively to the 

transverse (117 ± 9 mmol/kg) and descending colon (80 ± 17 mmol/kg). The concentration of 

SCFA, however, appears to increase despite their decreasing levels in the large intestine as a 

result of the lower proportion of fluid in the luminal content [40]. Another explanation is that, 

the absorption of SCFA is linked to the accumulation of bicarbonate in the lumen, which is 

explained by the presence of an acetate-- bicarbonate exchange at the surface of the mucosal 

cells [40,42-44]. Three studies determined the buffer capacity of gastric fluid to range 

between 13.3 and 19.0 mM/DpH with a median value of 14.3 [12,20,22,26]. Buffer capacity 

values ranging from 2 to 13 mM/L/pH have also been reported for the small intestine in the 

fasted state [26,38]. The buffer capacity is higher in the fed state as compared to the fasted 

state for gastric (19.5 mM/pH), duodenal (24 -- 30 mM/pH)  and jejunal fluids (13.9 mM/pH) 

[12,19,22,37,38,45]. 

Reported values in the fasted for gastric osmolarity, duodenal fluids and the fluids in the 

jejunum have been reported to range between 119 and 221 mOsm with a median value of 202  

mOsm,  137  and  224  mOsm  with  a  median value of 197 mOsm and 200 and 300 mOsm 

with a median of 280  mOsm,  respectively [12,18,20,22,23,26,28,45,46].  Values in the fed 

state for gastric osmolarity are to be 388 mOsm, with duodenal fluids osmolarity ranging 

from  276  and 416 mOsm  [12,19,22,28,45].  Just like the buffer capacity, osmolarity values 



tend to be higher in the  fed state as compared to the fasted state. Jantratid et al. [47] showed 

that the osmolarity in the distal duodenum increases slightly after a meal intake during the 

first 120 min and then gradually equilibrates to isosmotic.  Clarysse et al. [28] also found 

variability in osmolality to be higher in the fed state as compared to the fasted state. They 

also found fasted state values to be hypo-osmotic or close to isosmotic with a median value of 

224mOsm/kg. They found that in fat-enriched fed states or fed states, values suggested 

hyperosmoticity during the first 3 h postprandially. 

Viscosity is quite complex due to the Newtonian or non- Newtonian behaviours of either 

simple fluids or biological fluids. For the reason of complexity, measured values of GI fluid 

viscosity for humans in the fed and fasted states are very limited [48]. Echo-planar MRI was 

used in humans to monitor the changes in a viscous meals viscosity by Marciani et al. [49] 

and they found significant reduction in the meals viscosity with time due to dilution by the 

gastric juice [49]. Viscosity is also affected by pH in addition to soluble meal content and 

concentration [4]. Test meals containing dietary fibres are administered that have viscosities 

ranging from 10 to > 10,000 cP [4,48,49]. Authors like Mudie et al., Malkki and 

Abrahamsson et al. have characterised typical meals to have viscosities ranging from 10 to 

2000 cP [4,50,51]. 

The volume of liquid in the stomach depends greatly on the amount of liquid ingested, the 

rate and amount of secretions and the rate at which it empties into the small intestine [4]. This 

has been extensively reviewed by Mudie et al. [4]. The volume of liquid in the GI tract can 

affect the amount and potentially the concentration of the dissolved drug. Kwiatek et al. [52] 

attributed a progressive decrease in initial gastric volume as a function of meal volume to a 

larger portion of liquid nutrient passing through the small intestine during a rapid early 

emptying phase. They also found a further increase in the gastric volumes due to gastric 



secretions before the volumes started to decline. They found that this increase was 

independent of caloric load and greater for smaller rather than the larger infused meals [52]. 

The hydrodynamics of the GI are partially dependent on the contractions of the stomach and 

small intestine as well as the amounts of liquids and solids present [4]. These contractions 

cause motility that propel food through the GI tract in a peristaltic motion, mixes chime 

within the GI lumen and juxtaposes chime with the brush border of the enterocytes [53]. The 

autonomic nervous system and various digestive system hormones control the contractions 

[4,53]. These contractions in the fasted state are characterised by cyclic fluctuations. This 

cyclic contractility is called the migrating motility complex (MMC). The MMC in the fed 

state is replaced by regular, tonic contractions that propel food towards the antrum and mix it 

with gastric secretions [54,55]. The GI motility can thus affect or influence gastric-emptying 

rates, mixing patterns of solids and liquids in the stomach and intestine and intestinal transit 

times. The issue of the GI hydrodynamics is quite complex and is not fully covered in this 

review and as such interested readers are referred to a review by Mudie et al. and all the 

references therein [4]. 

Other physiological factors include the surface tension which can affect dissolution by 

influencing the wetting of dos- age forms, bile salts and phospholipid compositions [4,12,56]. 

Surface tension values range from 31 to 45 mN/m with a median value of 36.8 in the fasted 

gastric juice, whereas similar values of ~ 30 mN/m have been reported or observed in all GI 

compartments in the fed state [17,20,22,46]. Duodenal surface tension in the fasted state is 

reported to be in the same range as that in the gastric juice. Due to secretion of bile salts from 

the gall bladder, surface tension in the jejunum tends to be lower as to that of the stomach and 

duodenum [12,20]. Higher surface tensions means decreased wetting of dosage forms [56]. 

For interested readers, the influence of bile salts, phospholipids and their compositions in the 

fed and fasted states are detailed in Bergstrom et al. [12] and all the references therein. 



  

Dissolution and absorption is also affected by the temperature of the GI fluids. The average 

GI temperature is generally considered to be 37 °C. Temperature can affect the diffusion 

coefficients of the drug and buffer species, the drug solubility and also the bulk drug 

concentration [4,57]. 

The transit or residence time of a drug in the intestinal tract is a strong determinant of 

dissolution and absorption [4]. This does affect the amount of time a drug substance has to 

dissolve and absorb in the GI tract. Factors such as gastric- emptying rate and flow rate can 

affect the transit time of a dosage form in different segments of the GI tract and this can vary 

significantly for just one individual as was found by Weitschies et al. [58]. McConnell et al. 

[59] also found variability in the transit time (1.5 - 5.4 h with a mean value of 3.2 h) for a 

single individual on eight separate occasions after 1 -1.4 mm ethylcellulose-coated pellets 

were administered. Coupe et al. [60] reported transit times of 2.2 - 5.9 h for pellets and 0.9 - 

6.2 h for 11.5 mm tablets in the small intestine. Intestinal transit time is greatly important for 

dosage forms that are not fully absorbed as a change in the contact time with the absorption 

area can result in a change of the fraction or amount of the drug absorbed. DeSesso and 

Jacobson [53] showed that although generally speaking, an increase in transit time will lead 

to an increase in the absorption of poorly or incompletely absorbed drugs, absorption can be 

decreased in cases where the transit time is prolonged owing to an inhibition of the smooth 

muscle motility due to a decrease in the agitation of the unstirred layer. Small intestinal 

transit time is more reproducible and has a range of about 3 - 4 h [1,61]. Colonic transit time, 

on the other hand, is highly variable and is typically 10 - 20 h [62-64]. 

3. Dissolution media 

An understanding of all these physiological parameters can serve as a basis for designing 

dissolution testing methods and systems that can more fully represent the GI tract in humans 



and allow more IVIVC to be obtained, thus improving the oral bioperformance of dosage 

forms [65]. Currently, none of the guidance or international pharmacopoeias describes media 

to simulate food effects. Thus, water, simulated gastric fluid (SGF) and simulated intestinal 

fluid (SIF) are still the most commonly used dissolution media. These have been described as 

early as 1955 [4]. Compendial dissolution media usually used are SGF, SIF, and water. SGF 

of the United States Pharmacopeia (USP) is the traditional medium to simulate gastric 

conditions in the fasted state. This medium has a pH of 1.2 and contains hydrochloric acid, 

sodium chloride, pepsin and water [66]. The SIF, a medium that was first described as a 

standard test solution in the USP > 50 years ago is the medium frequently used for the 

simulation of the small intestinal conditions in the fasted state [66]. The only parameter that 

has been changed is the pH of the medium. As it was assumed that the pH in the small 

intestine was very close to blood plasma, the pH of SIF was initially set at 7.5. This, however, 

was revised to pH 6.8, to match the typical measured pH values in the mid-jejunum [67]. This 

was important as the use of an in vitro medium with an unsuitably high pH would probably 

lead to false-positive results as in the cases for poorly soluble, weakly acidic drugs and 

enteric-coated dosage forms. 

For the sole purpose of simplicity, water is a medium that is widely used for QC purposes. 

Due to many formulations being intended to be ingested with a glass of water, water could be 

argued as being physiologically relevant.  As the pH of water can vary at its source and as 

water has no buffering capacity, a more biorelevant media could be appropriate [66]. It is 

important to bear in mind that all these compendial media do not take into account key 

parameters of the changing GI environment after food intake and are, therefore, not very 

useful in helping to predict food effects. It is, therefore, crucial to run dissolution tests under 

conditions that closely resemble the key parameters of human GI physiology. The addition of 

physiologically relevant dissolution media to the choice of adequate equipment and 



appropriate instrument parameters are of great importance since our knowledge of the GI 

physiology has increased over the years. This led to the development of biorelevant 

dissolution media (BDM) to simulate conditions in the stomach and small intestine before 

and after meals over the past 10 - 15 years [66]. This BDM often includes different additives 

which allow the fasted and fed states in humans to be mimicked and can range from being 

very simple to very complex [47,68]. The fasted state SGF (Table 1) containing pepsin and 

low amounts of bile salt and lecithin was developed by Vertzoni et al. [69]. This was later 

updated to better comply with physiologically measured values of osmolarity (Table 1) 

[70,71]. The fasted state simulating intestinal fluid (FaSSIF) was developed to simulate 

fasting conditions in the proximal small intestine (Table 1) [66,68].  This medium contains 

bile salts  and phospholipids (lecithin) in addition to  a stable  phosphate buffer system that 

results in a pH  representative  to values measured from the mid-duodenum to the proximal 

ileum. The bile salts and lecithin facilitate the wetting of solids and solubilisation of 

lipophilic drugs into mixed micelles, thereby considerably enhancing the dissolution of 

poorly soluble lipophilic drugs. Sodium taurocholate is a representative of bile salt in the 

media because cholic acid is one of the more prevalent bile salts in human bile [72-74]. 

FaSSIF was updated in 2008 by changing the buffer to maleic acid to comply with the pH of 

the fasted and fed state (Table 1) [13,47,68]. As the ideal, medium representing initial gastric 

conditions in the fed state should have similar nutritional and physicochemical properties to 

that of a meal, for example, the standard breakfast recommended by the US FDA (1 English 

muffin with butter, 1 fried egg, 1 slice of cheese, 1 slice Canadian bacon, 1 serving of hash 

browned (fried shredded) potatoes, 6 ounces of orange juice, 8 ounces of whole milk, 

carbohy- drate 73 g, 292 kcal, 1222 kJ, 45% of calories, protein 29 g, 116  kcal, 485  kJ, 18%  

of  calories, fat  27  g,  240  kcal, 1004 kJ, 37% of calories) [75] to study the effects of food in 

BA and bioequivalence studies and both standardised homogenised  cows’ milk with a fat 



content of 3.5% (whole milk) and Ensure® Plus have a similar composition to a breakfast 

meal with respect to  the ratio of carbohydrate:fat:protein, they are used to simulate fed state 

gastric conditions. Drug release or dissolution in the proximal part of the small intestine is 

highly dependent on the drug being dosed in either in the fed or fasted state [66]. After 

ingesting a meal, there are changes that occur in both the hydrodynamics and the intraluminal 

volume. The pH  of the chyme after a solid meal is lower than the intestinal fluid pH in the 

fasted state, whereas  buffer   capacity   and   osmolality  show   sharp increases [66,76]. The 

secretion of bile is also a factor as well as interactions with the drug and ingested components 

[66]. The fed state simulating intestinal fluid (Table 1) is used to help reflect conditions after 

food ingestion in the upper small intestine [66,68]. This BDM often has a substantial impact 

on the apparent solubility of molecules with solvation limited solubility. That is to say, the 

poor water interactions of some molecules are improved through wetting and solubilisation 

by additives such as surfactants and/or lipids [77]. Other media developed and used include 

the Copenhagen fasted and fed media in which the pH is kept constant and the male- ate is 

used as a buffering component (Table 1) [78-80]. Studying the dissolution rate in different 

BDM and using the different experimental results obtained to select compounds to advance 

further development is one way to speed up the assessment of in vivo performance.  The use 

of a ‘snapshot medium’ as pro- posed by Jantratid et al. to simulate both gastric and intestinal 

fluids during different stages after a meal consumption has some potential drawbacks, 

including several ‘snapshot’ dissolution media being needed to reflect changes in the aspirate 

compositions during  digestion in  the  small intestine [47]. Despite these drawbacks, they 

make dissolution testing more physiologically relevant and can be used in  predicting 

formulation performance and food effects in vivo [47,81,82]. 

 

 



4. Effect of food on drug relelase 

The various types of available oral extended-release (ER) dosage forms pose a challenge in 

being able to accurately predict their in-vivo behaviour. An ideal oral ER dosage form should 

be one that provides a consistent drug release over the entire dosing interval, regardless of 

administration in relation to food intake. It is widely known that substituting one ER 

formulation for another or administering the same formulation under varying dosing 

conditions (e.g., fasted vs fed state) can have unexpected results. Resultant effects from this 

range from ‘dose-dumping’ to sub-therapeutic plasma levels [83-85]. 

Most oral controlled-release formulations are designed to release all drugs within 12 - 18 h, 

because oral dosage forms are removed from the GI tract usually after a day. The presence of 

food in the stomach tends to delay gastric emptying. In the fasted state, MMC greatly 

regulates gastric-emptying rate, whereas in the fed state, gastric emptying is influenced by 

low-amplitude contractions as well as pyloric resistance and duodenal feedback mechanisms 

[4]. There is a variation in the volume of liquid in various compartments of the GI tract and 

between individuals. This variation also occurs with time, prandial state, the amount of liquid 

ingested, the volume of gastric and pancreatic secretions, gastric-emptying rate, intestinal 

transit time and uptake and efflux of liquids along the GI membrane [4]. Postprandially 

speaking, gastric emptying is largely dependent on meal size and composition [54]. MMC 

can be interrupted when nutrient liquids or solid meals are ingested due to a feedback 

mechanism in the duodenum. A study by Dressman showed a 25% glucose solution to empty 

in 75 min [54]. An examination of the ratio of the initial postprandial liquid volume in the 

stomach to the volume of the infused meal (nutrient drink) by Kwiatek et al. [52] found a 

decrease in the postprandial liquid volume in the stomach to occur as a function of the 

infused meal volumes (ratios of 1.25, 0.95, 0.92, and 0.83 for 200, 400, 600 and 800 ml meal 

volumes, respectively).  The same authors also showed that in the later postprandial period, 



when gastric emptying was at a steady rate, both meal volume and calorie load affected the 

rate of gastric emptying, with the rising or increasing the meal volume producing a 

significant increase in gastric emptying (p < 0.001) and rising or increasing calorie load being 

associated with a significant decline in gastric emptying (p < 0.001) [52]. A summarisation 

by Dressman [54] of the typical solid-meal half time in humans found them to range from 70 

to 130 min [54]. Among different foods also, carbohydrates and proteins tend to be emptied 

from the stomach in < 1 h [11]. 

As food intake triggers several secretions in the small intestine, the composition of the fed 

and fasted state intestinal fluids can vary greatly. The differences in bioavailability when drug 

is administered in fed state versus the fasted state could be partly attributed to this 

compositional difference of the fed and fasted intestinal fluids [4]. This is as a result of 

interactions which may occur between the oral formulation of the drug and the food 

administered [86-90]. 

After a meal, the gastric-emptying rates for liquids and sol- ids are much slower in 

comparison to fasting conditions [91]. This is true also when drug is taken after food 

consumption. This is evident by the reduction in plasma peak concentration which now tends 

to occur at later times and also an increment in lag times in plasma concentration-time 

profiles. In cases where a rapid onset is required or high peaks are needed to reach a 

therapeutic effect, this reduction in the absorption of drug could be critical or fatal [92]. 

Abrahamsson et al. showed nifedipine’s dosage form to erode faster in the GI tract 

postprandially when compared under fasting conditions. Felodipine’s dosage form, on the 

other hand, was hardly affected [93,94]. The physical and physiochemical factors tested with 

values obtained were pH (2.3 - 6.8), ionic strength (0.08 - 0.2 M), surface tension (41 - 72 

mN/m), osmolarity (190 - 600 mOsM) and viscosity (1 - 280 mPas). It was observed that 

these values were within the limits or ranges of previous work done [23,95]. The different 



variations produced by the factorial design used in this study affected the erosion rates of the 

dosage forms of the two drugs. However, it was nifedipine that was greatly affected. It was 

also noted that an increase in urea and hydroxypropyl methylcellulose (HPMC) had no effect 

on felodipine but had substantial effect on nifedipine. Other factors such as pH, salt 

concentration and the use of surfactant, although causing erosion to a minor degree was 

disregarded together with the use of urea (as the osmolarity controlling agent) and HPMC (as 

the hydrophilic matrix former) as the explanation for prandial effects. This was because the 

administration of nifedipine after a meal enhanced the erosion of the drug’s dosage form [87]. 

Another potential reason for a slower absorption with food could be the effects on the drug 

dissolution from a solid dosage form. This was, for example, suggested as the cause of a food 

effect obtained for a tablet formulation, whereas no food effect was obtained for an oral 

solution in a paracetamol bioavailability study [96]. As these unwanted side effects may 

result in severe risks for the patients, it is thus highly important to be able to forecast the in 

vivo release rates under various dosing conditions using in vitro data. However, for some 

lipophilic drugs, co-administration with a meal has been shown to increase bioavailability as 

compared to the fasted state. Work done by Sunesen et al. [97]  showed that the 

bioavailability  of the poorly soluble drug danazol was threefold higher when taken with a 

meal high in lipid content as compared with 200 ml of water. Leyden [98] showed the oral 

bioavailability of tetracycline hydrochloride to be negatively affected due to the chelation of 

the drug with food components. The enhanced solubilising capacity of the intestinal fluids 

due to bile and pancreatic secretions and the presence of exogenous lipid products are 

attributed to the increased bioavailability for some drugs in the fed sate [45]. Food intake can 

influence the following: rate of drug release from the dosage forms, the rate of drug 

absorption, the amount of drug absorbed or all of these three simultaneously [99]. The 

intraluminal content, which itself is at least partly determined by the size and the composition 



of the co-administered meal, can also affect the rate of drug release from various ER 

formulations.  ‘Positive’ and ‘negative’ food effects can result depending on the type of 

dosage form and the intraluminal conditions. 

A loss of the integrity of matrices or coatings (i.e., devices that control drug release of ER 

dosage forms) results from positive food effects. This can represent a great risk for the 

patient, especially in cases when a large amount of the dose is dumped within a short period 

of time [100,101]. Fats, high concentrations of bile components and pH changes [101,102] 

are typical triggers for increased drug-release rates. These same factors can cause negative 

food effects for reasons such as adsorption of food contents, a decrease in luminal diffusivity 

due to an increase in viscosity in the upper GI tract and changes in the absorption rate due to 

food-induced changes in GI motility and passage time along the GI tract [103,104]. 

Abrahamsson et al. [92] investigated if food components, as represented by a 

multicomponent nutritional drink for tube feeding, could affect tablet disintegration of 

standard tablets in vitro as well as in vivo. They found that tablet disintegration was delayed 

between 5 min and > 1 h in the simulated gastric fed medium as compared to a simple buffer. 

They found this effect was dependent on the tablet composition [66]. On administering 

nutritional drinks to three Labradors, a similar delay in tablet disintegration was also found in 

vivo as observed by removing the tablet from the stomach at different times through a gastric 

fistula. This delay in tablet disintegration appeared to be caused by a precipitation of a film, 

mainly consisting of protein, on the tablet surface as indicated by disintegration studies with 

pure nutrients. The drug dissolution of a soluble compound, metoprolol tartrate, from a 

standard tablet was also strongly delayed in the simulated fed medium. Lentz [90] has also 

reviewed some of the current methods for predicting human food effect. 



Other factors which may also affect the rate at which a drug is released from its hydrophilic 

gel matrix may include the formulation composition [105-108], the physiochemical 

properties of the drug and polymer [109-114] and the processing and compaction conditions 

[115-117]. All these factors can influence the choice of the polymer viscosity and chemistry 

used. 

An ideal ER product should demonstrate complete bioavailability, minimal fluctuations in 

drug concentration at steady state, reproducibility of release characteristics independent of 

food and minimal diurnal variation. In vitro dissolution studies under simulated fasting and 

fed conditions is one approach to get better understanding of the potential for food 

interactions  on  dissolution of immediate release formulations. In addition, establishment of 

in vivo predictive in   vitro   methods   is   importance   in developing new products as well as 

in evaluating changes of compositions and manufacturing procedures. 

5. Dissolution apparatuses 

Drug molecules are required to be present in a dissolved form in order for them to be 

transported across biological membranes. The process by which this happens is known as 

dissolution. Dissolution can, thus, be defined as process enabling drug molecules to leave its 

solid phase to enter into solution [118]. The first proposed basic transport-controlled model 

for solid dissolution was made by Noyes and Whitney in 1897 in which they suggested that 

when surface area is constant, the dissolution rate is proportional to the difference between 

solubility and the bulk solution concentration [119]. This is depicted as Equation 1. 

solubility and the bulk solution concentration [119]. This is depicted as Equation 1.  

dM

dt
=

DA

h
× (Cs − Cb)                                                      Equation 1 



                                                                                           

Where;     

dM/dt = rate of dissolution (mg/s) 

D = diffusion coefficient (cm
2
/s) 

h = thickness of the diffusion layer (cm) 

A= surface layer of drug particles (cm
2
) 

Cs = Saturated concentration of drug in the diffusion layer (mg/ml) 

Cb = concentration of drug in the bulk fluid at time t (mg/ml) 

The above equation can be affected by properties of the drug substance, drug product and GI 

tract, as discussed previously. Dissolution testing is a QC procedure employed in 

pharmaceutical product development to assist in the selection of a candidate formulation. In 

research, the dissolution testing method helps detect the influence of critical manufacturing 

variables such as the effect of binders, mixing, granulation, coating, excipients, comparative 

studies of different formulations, IVIVC and  possibly as an in  vivo surrogate under strictly 

defined conditions. It is, therefore, apparent that sensitive and reproducible dissolution data 

derived from physicochemically and hydrodynamically defined conditions are necessary in 

order to compare various in vitro dissolution data and to be able to use such results as a 

surrogate for possible in  vivo bioavailability,  bioequivalence  testing and IVIVC [1,2,120-

130]. 

The four types of compendial dissolution apparatuses used for testing the oral dosage forms 

include the USP I (basket) and the USP II (paddle) apparatuses which can be successfully 

used for QC purposes, such as lot-to-lot quality testing [65]. These methods, however, are not 



physiologically relevant as they use large volume of media (500 - 1000 ml), enable the use of 

one dissolution medium at a time and have hydrodynamics that do not resemble the GI tract 

[51,65]. Several studies have investigated the flow pattern of the dissolution apparatuses USP 

I (basket) and USP II (paddle) at various speeds by using computational fluid dynamics 

[131]. However, the hydrodynamics of these systems are far from that calculated for the 

human stomach [132]. In fact, the drug dissolution from a solid formulation is greatly 

influenced by fluid flow and mechanical forces, and this must be taken into account when 

designing an in vitro method which aims to predict the in vivo behaviour of a formulation 

[133]. It has been shown in some studies that the complex hydrodynamics and three- 

dimensional fluid flow pattern produced by the USP paddle apparatus within different regions 

of the dissolution vessel varies significantly with a relatively more stagnant region at the 

bottom portion of the vessel [134,135]. 

Strides have been made in making dissolution testing methods more biologically based. This 

shows the significant progress that has been  made  since the  first compendial dissolution test 

(USP I apparatus) was introduced in 1970 Consequently, to mimic and more closely reflect 

the possible in vivo dosage form surface exposure, have reliable dissolution data and be able 

to discriminate between release behaviour of various modified release formulations, it is 

therefore important that we gain a better understanding of the role of hydrodynamics in 

relation to delivery system and release mechanisms necessary for the development of 

alternative dissolution methods [136, 137]. The other two compendial dissolution apparatuses 

are the USP III (reciprocating cylinder, Bio-Dis) and IV (flow-through cell) which offer the 

advantages of determining release from the dosage form under various, consecutive 

conditions simulating the GI physiology. The release experiments performed with Bio-Dis 

and flow-through cell can be set up with a series of dissolution media in one single run, thus 

making it possible to mimic the “history” of the dosage form as it passes through the GI tract 



and to generate an IVIVC on an a priori basis [65, 82, 138, 139]. The USP III apparatus 

provides a means of stepping through different buffers and has been reported to be a very 

useful technique for extended release dosage forms [138-140]. The Reynolds number is a 

non-dimensional parameter in fluid dynamics which provides an estimate of the ratio of fluid 

inertia (or flow acceleration) to frictional force in the flow around a dosage form [51,140]. 

The hydrodynamic conditions generated in a USP II apparatus can be compared to the 

expected in vivo hydrodynamics  by using the Reynolds number and the Reynolds numbers 

for bulk flow in the USP II apparatus are around 2000 [141] which is significantly greater 

than the physiological range (0.1 - 30) as suggested by Abrahamsson et al. [51,140]. 

Although, there are no reported values describing the Reynolds numbers for bulk flow in the 

USP III apparatus, Jantratid et al. [47] reported the hydrodynamics produced by the USP III 

to be more favourable than those produced by the USP II apparatus when correlating the 

performance of lipid-based  dosage forms in the fed-state stomach. The USP IV apparatus is 

reported to provide hydrodynamic conditions with a Reynolds number < 30 close to those 

suggested for the in vivo range and can be used in assessing the performance of ER dosage 

forms in response to changing pH or different biorelevant media [140,142]. 

Numerous other in-vitro test methodologies have been developed by scientists in an attempt 

to understand and replicate the complicated processes of in vivo drug dissolution. Authors 

such as Carino et al. [143], Gao et al. [144] and Gu et al. [145] have developed dissolution 

apparatuses that better capture aspects of the physiological environment as compared to the 

USP tests. For example, Gu et al. modified the conventional six-vessel USP dissolution 

system to a multi- compartment dissolution system to include a ‘gastric’ compartment, an 

‘intestinal’ compartment, an ‘absorption’ compartment and a reservoir to simulate the 

dissolution and absorption in the GI tract [145]. Carino et al. developed an automated 

artificial stomach-duodenum model to simulate dog physiology in the fasted state [143]. By 



doing so, they obtained excellent estimations of the relative bioavailability of carbamazepine 

crystal forms. Gao et al. also developed a fast, easy to use and material sparing in vitro dual 

pH-dilution method aimed at mimicking the physiologically relevant pH, dilution volumes 

and residence times experienced by a drug formulation during GI transit in rats [144]. This 

dynamic process provides a better representation of the transit of the drug formulation 

through the GI tract, which more closely captures the kinetic aspects of the actual in vivo 

drug release process. Garbacz et al. have also showed diclofenac and nifedipine drug 

dissolution profiles to be predicted using a dissolution apparatus that mimics in vivo physical 

stresses [146,147]. Kostewicz et al. [148] also developed a two-compartmental apparatus 

using a peristaltic pump using fasted and fed state-simulated media.   Their   sampling was 

performed manually with a syringe filtration step and a high- performance liquid 

chromatography analysis. Dilution of the duodenal medium by the inflowing gastric medium 

was, however, left unaddressed. Also, pH was also not raised back to the original value as it 

was maintained only by the action of the contained buffer. In the second apparatus, however, 

pH, volume and the composition of the duodenal fluid were all left without intervention 

[65,148]. Psachoulias et al. [149] presented an improved method, where although a gastric 

and a duodenal compartment were used, the dilution of the duodenal fluid which was the 

FaSSIF V2 plus was compensated by an inflow of a concentrated medium from a third vessel. 

The dynamic gastric model as developed by the Institute of Food Research in Norwich, UK, 

which consists of two sections simulating   the   fundus   and   antrum,   has   been   used   by 

Vardakou et al. [150,151] and Mercuri et al. [152] in comparison to the compendial methods 

of dissolution to try and predict in vivo performance of oral formulations. This machine is 

also capable of processing homogenised meals and a duodenal compartment can also be 

added to the experimental process allowing this model to be a so far, unsurpassed artificial 

model of the stomach [65,153-155]. Several authors have also used a multi-compartmental 



artificial GI system known as the TIM-1 which was developed by the TNO Nutrition and 

Food Research Centre in Zeist, The Netherlands, to try and establish a more accurate 

prediction of in vivo performance [156-159]. The TIM-1 consists of four interconnected 

compartments of the stomach, duodenum, jejunum and ileum that allow the simulation of the 

GI tract [65].  This apparatus maintains successive transport of chyme through its different 

compartments and ensures peristaltic movement, thus allowing the simulation of the physical 

forces applied in GI track [65,160]. Despite the TIM-1 model being full representative of the 

dynamic dissolution approach, its complexity means that there are laborious preparations and 

manipulations during experimentation, higher demands  on maintenance than in the case of 

simpler instruments and long time is needed for one experiment (~ 1 whole day) and 

experiments can be quite costly [65]. These different dissolution models and several others, 

as reviewed by McAllister [140,] as such provide skilful approaches with the aim of reducing 

the number of experiments conducted in-vivo. 

Drug release from oral ER hydrophilic tablet matrix formulations are governed by drug 

diffusion and/or erosion depending on the drug’s solubility through the gel layer [161-164]. 

Factors that can affect the properties of the gel layer include the physiochemical properties of 

the drug and polymer, formulation composition, processing conditions and the environmental 

variables such as the characteristics of the GI fluids [106-110,114,115,165,166]. Two major 

properties of the GI fluids are ionic strength and pH [91,95,166]. These two proper- ties vary 

greatly along the GI tract under fasted and fed conditions [91,95,166]. These factors may 

affect the rate at which a drug is released from its hydrophilic gel matrix [6-10,165,167,168]. 

Mu et al.  [166] investigated the influence of physiological variables, such as pH and ionic 

strength, on drug release from a polysaccharide matrix for controlled release and found pH to 

influence drug release from both extragranular and intra- granular  heterodisperse  

polysaccharide-based controlled release system. This was especially the case for drug release 



in the acidic media of pH ranging between 1.2 and 2.5 [166]. They also found that there were 

no significant differences in drug release in pH between 4.5 and 7.5 [166]. By using MRI to 

understand swelling dynamics of hydrophilic polymers that affect drug release at different pH 

and ionic strength, Mikac et al. [169] found the position of the swelling front of the matrix 

tablet to be the same, independent of the different xanthan gel structures formed under 

different conditions of pH and ionic strength. The position of the erosion front, however, was 

strongly dependent on pH and ionic strength, as reflected in different thicknesses of the gel 

layers that were obtained [169]. Kavanagh and Corrigan [170] observed the wet weight 

(reflecting swelling with time) versus time profiles of K100LV HPMC  polymer to have large 

differences  due to the media of various ionic strengths used (buffer, saline, acid and  

deionised water). The time to attain maximum wet weight tended to increase (from ~ 2 to 6 h) 

with increasing ionic strength of the medium and the erosion rate also decreased [170]. There 

was much of a less effect on HPMC K15M which is a higher molecular weight polymer. As a 

result of the polymer being non-ionic, it was concluded that the pH of the media used did not 

correspond or correlate with the observed effects. It was also observed that the dissolution 

medium uptake decreased linearly as ionic strength for all the HPMC polymers (K100LV, 

K4M and K15M) were increased. They also observed that at the same ionic strength and 

agitation (rpm), the erosion of the wet weight of the HPMC polymer K100LV in phosphate 

buffer was slightly lower than its erosion in saline. The reasoning behind this was attributed 

to the presence of both sodium and phosphate ions and their ability to greatly dehydrate more 

than if it was sodium ions present only [171]. It can, thus, be concluded that the ionic 

composition of the medium used can have an effect on the swelling and erosion behaviour of 

HPMC matrices, despite them being non-ionic polymers [172]. 

Asare-Addo et al. [6] introduced a simple method to differentiate between robust and non-

robust or poor formulations. They evaluated the influence of agitation in *ascending and 



**descending sequences as a systematic method of development  process to  potentially 

discriminate between fed and fasted states (*ascending order of agitation: agitation was 

increased by 5 dips/min [dpm] every time the cylinder containing the dosage form moved 

from one vial to the other. Thus, in pH 1.2 the agitation was 5 dpm, in pH 2.2 it was10 dpm, 

in pH 5.8 it was 15 dpm, in pH 6.8 it was 20 dpm, in pH  7.2 it was 25 dpm and in pH  7.5 it 

was 30 dpm. **Descending order of agitation: agitation was decreased by 5 dpm every time 

the cylinder containing the dosage form moved from one vial to the other. Thus, in pH 1.2 the 

agitation was 30 dpm, in pH 2.2 it was 25 dpm, in pH 5.8 it was 20 dpm, in pH 6.8 it was 15 

dpm, in pH 7.2 it was 10 dpm and in pH 7.5 it was 5 dpm). Theophylline ER matrices 

containing hypromellose (HPMC K chemistry) were evaluated in media with a pH range of 

1.2 -- 7.5, using an automated USP III apparatus (Table 2). 

The results showed K15M and K100M HPMC tablet matrices withstood  the extremities of 

agitation with similarity values ranging from 51 to 82 (Table 3). The uses of diltiazem 

hydrochloride and  hydrochlorothiazide also  showed agitation in ascending and descending 

forms for the K100M tablet matrices again to be resilient to such extreme agitations (f2 = 51 - 

93, unpublished data) (Table 3). The authors then likened the various levels of agitations to 

the effects of different food components exerting its effects [6]. Abrahamsson et al. [92] 

showed the disintegration of a tablet with strong food effects to happen in the presence of 

single components of food in the following order: fat emulsion (F) > carbohydrate (C) > 

protein (P). A combination of all three components of food delayed the disintegration time by 

33 min showing that the type and com- position of a meal to have critical effects on tablet 

disintegration as a result of food interactions [92]. Asare-Addo et al. [6] likened these 

different food components to the differing agitation rates applied to the HPMC matrices 

tested, suggesting that the fastest drug release profiles be attributed to the fat emulsion diet 

and the slowest to the combination of the three components of food. The same authors 



developed the methodology further to include the effects of ionic strength. Ionic strength was 

studied over the range of 0 -- 0.4 M [166]. Theophylline blended with HPMC K4M, K15M 

and K100M all proved resilient at all the ionic strengths tested (f2 = 56 - 80) [8]. The poor 

solubility of the hydrochlorothiazide meant even the low viscosity HPMC K100LV tablet 

matrices also exhibited resilience against the varying ionic strengths [9]. The incorporation of 

diltiazem hydrochloride meant dissimilarity occurred even with the highest viscous HPMC 

K100M matrix tablets (Figure 2D) [9]. This was due to the cationic nature of the drug. As the 

tablet matrix moves from vial to vial a change in the hydration properties of the gel and thus a 

difference in the total solubility of the ionised and the non-ionised forms of the drug occurs. 

With a drug pKa of 7.7, it is important to note that the additional salt to increase ionic 

strength and those in the buffers potentially affects the ionisation constant thereby exerting a 

strong ionic effect on the diltiazem HCl dissolution as seen in Figure 2. For example, at an 

ionic strength of 0.001 M, morphine’s pKa values were determined to be 8.13 ± 0.01 and 

9.46 ± 0.01, whereas at ionic strengths of 0.15 M morphine pKa values were determined to be 

8.17 ± 0.01 and 9.26 ± 0.01 at 25 C [173,174]. The varying ionic strengths were likened to 

low salt content and high salt content of food. K100M HPMC tablet matrices had the lowest 

drug release rate for all three model drugs and produced a strong gel layer suggesting high 

viscosity grades to perhaps be the best candidates for producing controlled release profiles 

that are less affected by food [7]. 

6. Conclusion 

An understanding of all the physiological parameters can serve as a basis for designing 

dissolution testing methods and systems that can more fully represent the GI tract in humans 

and allow more IVIVC to be obtained, thus improving the oral bioperformance of dosage 

forms. Simulation of GI conditions is essential to adequately predict the in vivo behaviour of 

drug formulations. To reduce the size and number of human studies required to identify a 



drug product with appropriate performance in both the fed and fasted states, it is 

advantageous to be able to pre-screen formulations in vitro. The choice of appropriate media 

for such in vitro tests is crucial for their ability to correctly forecast the food effect in 

pharmacokinetic studies. Several methods of dissolution testing have been conducted and are 

still ongoing that seek to further understand and develop media and dissolution methods to 

better represent the in vivo conditions and to aid in the better prediction of in vivo drug 

release. 

The rationale behind the developed methodology of varying agitation in ascending and 

descending sequences using the USP III apparatus as a systematic process for potentially dis- 

criminating fasted and fed states was to represent the various levels of agitation to mimic the 

fed and fasted states in humans. Where the effect of ionic strength and pH of dissolution 

media on the model drugs’ release from hypromellose matrix tablets were investigated, the 

evaluation of ionic strength showed that though this method could be an additional tool in 

allowing for foods with differing salt contents to be screened, considerations should also be 

given to the nature of the drug used. This was the case with the cationic drug diltiazem HCl. 

It was noticed that an increase in the ionic strength of the media used brought about a 

decrease in the drugs release. This, however, was not the case for the theophylline and 

hydrochlorothiazide tablet matrices. The resilient nature of the produced gel layer around the 

higher molecular HPMC tablet matrices indicates that these polymers might be the best 

candidates for producing release profiles less affected by potential food effects. Systematic 

change of agitation method and ionic strength evaluation may be used as additional tools in 

allowing for the identification of potential fed and fasted effects on drug release from 

hydrophilic matrices in the drive for developing dissolution methodologies that are more 

relevant in helping to achieve more IVIVC. 

7. Expert opinion 



To reduce the size and number of human studies required for identifying a drug product with 

appropriate performance in both the fed and fasted states, it is advantageous to be able to pre-

screen formulations in vitro. The choice of appropriate media for such in vitro tests is, 

therefore, crucial in their ability to correctly forecast the food effect in pharmacokinetic 

studies. With the improved understanding of all the physiological parameters that can affect 

the oral bioperformance of dosage forms, strides have, therefore, been made in making 

dissolution testing methods more biologically based with the view of obtaining more IVIVC. 

These dynamic dissolution systems are often expensive and can be time-consuming. The 

rationale behind the developed methodology of varying agitation in  *ascending and 

**descending  sequences using the USP apparatus III as a systematic process for potentially 

discriminating fasted and fed states to represent the various levels of agitation to  mimic the  

fed and  fasted states  in humans presents a cost-effective way of conducting these tests. 

However, the biggest challenge is that further work is needed to understand which food 

components represent which levels of agitation. With  the several dissolution testing methods 

being conducted and are still ongoing, it is hoped that a further understanding and 

development of media and dissolution methods that better allows to represent the in vivo 

conditions and to aid in the better prediction of in vivo drug release can be developed. 
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Figure 1. (a) pH measured in fasted gastric, duodenal and jejunal fluids. (b) pH in fed gastric, 

duodenal and jejunal fluids. Box-whisker plots show minimum and maximum values, as well 

as 25, 50 and 75 percentile. The cross indicates the mean value. Each data point represents a 

group of participants (n = 1–10 coloured red, n = 11–20 coloured blue, and n > 20 coloured 

green) as reported in one publication (Figure adapted from ref [12])  
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Figure 2. The influence of media ionic strength on diltiazem HCl release in pH 1.2 – 7.5 

(please refer to table 1 for actual pH values) from HPMC matrices a. K100LV b. K4M c. 
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K15M d. K100M. Standard deviations smaller than the symbol size were not shown on the 

graphs (Adapted from ref [36]). The original buffers used in the experimentation of “pH 

media” have different ionic concentration strength levels. These ranged from 0.05 to 

0.14 M. The use of sodium chloride at the 0.2 and 0.4 M ionic concentration strength levels 

in addition to the “pH media” meant that the actual ionic concentration strength at the 

0.2 M level ranged between 0.25 and 0.34 M and for the 0.4 M ranged between 0.45 and 

0.54 M [ref 7]. 

Adapted from [36] 

HCl:Hydrochloric acid 

 

 

 

 

 

 

 

 

 

 



Table 1. Biorelevant simulation of conditions in the fasted and fed stomachs (Table modified 

from ref [12]) 

 FaSSGF
a
 

FaSSGF-

V2
b
 

FeSSGF
c
 FaSSIF

d
 

FaSSIF-

V2
b
 

Copenhagen 

Fasted
e
 

FeSSIF
d
 

FaSSIF-

V2
b
 

Copenhagen 

Fed
e
 

pH 1.6 1.6 5 6.5 6.5 6.5 5 5.8 6.5 

Buffer Capacity 

(mM/pH) 
– – 25 10 10 – 75 25 – 

Buffer type HCl HCl Acetate KH2PO4 
Maleic 

Acid 

Trizma 

Maleate 
Acetate 

Maleic 

Acid 

Trizma 

Maleate 

Osmolarity 

(mOsm) 
120.7 186.9 400 270 180 270 635 390 Varies 

Surface tension 

(mN/m) 
42.6 42.6 

 

45.5 – – 46.3 40.45 
 

Particle size – 

  

– – – – – – 

BS (mM) 80µM 80 µM – 3 3 2.5 15 10 5–20 

PL (mM) 20 µM 20 µM – 0.75 0.2 0.625 3.75 2 1.25–5 

BS/PL 4 4 
 

4 15 4 4 5 4 

MO (mM) – – 
 

– – – – 5 0–10 

OA (mM) – – 

 

– – – – 0.8 0–45 

Pepsin (mg/mL) 0.1 0.1 – – – – – – – 

Long life milk 

buffer ratio 
– – 1:1 – – – – – – 

FaSSGF - Fasted state simulated gastric fluid; FaSSGF-V2 - Fasted state simulated gastric 

fluid version 2; FeSSGF - Fed state simulated gastric fluid; BS - Bile salt; PL - phospholipid; 

HCl - hydrochloric acid. FaSSIF - fasted state simulated intestinal fluid; FeSSIF - fed state 

simulated intestinal fluid; BS - bile salt; PL - phospholipid; MO - mono-olein; OA - oleic 

acid. 

a Vertzoni et al. ref [69]; b Vertzoni et al. ref [70]; c Jantratid et al. ref [47]; d Galia et al., 

[68]; e Kleberg et al. ref [80] 

Table modified from [12] 

 



Table 2 Agitations applied during dissolution testing of theophylline K100LV, K4M, K15M 

and K100M formulations using an automated USP Apparatus III (Table adapted from ref 

[6]). 

Media pH  Agitation (dpm) 

1.2 5 10 15 20 30 5* 30
**

 

2.2 5 10 15 20 30 10 25 

5.8 5 10 15 20 30 15 20 

6.8 5 10 15 20 30 20 15 

7.2 5 10 15 20 30 25 10 

7.5 5 10 15 20 30 30 5 

*Ascending order of agitation; agitation was increased by 5 dpm every time the cylinder 

containing the drug moved from one vial to the other. Thus, in pH 1.2 agitation was 5 dpm, in 

pH 2.2 - 10 dpm, in pH 5.8 - 15 dpm, in pH 6.8 - 20 dpm, in pH 7.2 - 25 dpm and in pH 7.5 - 

30 dpm. 
**

Descending order of agitation; agitation was decreased by 5 dpm every time the 

cylinder containing the drug moved from one vial to the other. Thus, in pH 1.2 agitation was 

30 dpm, in pH 2.2 - 25 dpm, in pH 5.8 - 20 dpm, in pH 6.8 - 15 dpm, in pH 7.2 - 10 dpm and 

in pH 7.5 - 5 dpm. 

Table adapted from [6] 

Dpm: dips per minute 

USP: United States Pharmacopeia 

 

 

 

 



Table 3. The amount of the drug released (%) where, at what time and similarity when 

increasing or decreasing the agitations during the dissolution test. Similarity factor was 

calculated using the drug release profile obtained at 10 dpm as the reference standard. 

                                                Theophylline formulation 

Formulation   K100LV K4M K15M K100M 

Agitation (dpm)   5-30 30-5 5-30 30-5 5-30 30-5 5-30 30-5 

Drug released Amount (%) 100 100 64 84 46 51 38 49 

  Medium pH 7.2 2.2 7.5 7.5 7.5 7.5 7.5 7.5 

  Time (min) 280 120 310 310 310 310 310 310 

Similarity factor (f2) 51 - 55 42 63 76 82 51 

  

 

Diltiazem hydrochloride formulation 

Formulation   K100LV K4M K15M K100M 

Agitation (dpm)   5-30 30-5 5-30 30-5 5-30 30-5 5-30 30-5 

Drug released Amount (%) 100 100 100 100 86 91 74 76 

  Medium pH 2.2 2.2 7.5 7.2 7.5 7.5 7.5 7.5 

  Time (min) 120 120 310 280 310 310 310 310 

Similarity factor (f2) - - 76 41 89 47 93 60 

  

 

Hydrochlorothiazide formulation 

Formulation   K100LV K4M K15M K100M 

Agitation (dpm)   5-30 30-5 5-30 30-5 5-30 30-5 5-30 30-5 

Drug released Amount (%) 86 83 55 64 44 54 27 36 

  Medium pH 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 

  Time (min) 310 310 310 310 310 310 310 310 

Similarity factor (f2) 61 43 69 44 74 43 81 51 

A depiction of (-) means it was not possible to calculate similarity value. 5-30 depicts the 

ascending order of agitation where agitation was increased by 5 dpm every time the cylinder 



containing the drug moved from one vial to the other. Thus, in pH 1.2 agitation was 5 dpm, in 

pH 2.2 - 10 dpm, in pH 5.8 - 15 dpm, in pH 6.8 - 20 dpm, in pH 7.2 - 25 dpm and in pH 7.5 - 

30 dpm. 30-5 depicts the descending order of agitation where agitation was decreased by 

5 dpm every time the cylinder containing the drug moved from one vial to the other. Thus, in 

pH 1.2 agitation was 30 dpm, in pH 2.2 - 25 dpm, in pH 5.8 - 20 dpm, in pH 6.8 - 15 dpm, in 

pH 7.2 - 10 dpm and in pH 7.5 - 5 dpm. The time and medium pH show the time in min at 

which the drug release was completed for each matrix formulation. 

Dpm: dips per minute 

 

 

 


