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lattice, as shown in figure 4.1.

Figure 4.1: 2D triangular PC lattice with a defect.

Considering a finite lattice, where the top and bottom of the lattice shown in

figure 4.1 are covered by metal plates, the defect region hence becomes a semi-

enclosed space where EM waves can be excited. EM waves confined in the defect

region see the surrounding global lattice, which presents band gap(s) only for

TM polarised waves according to figure 2.6. Therefore, only the TM waves at

frequencies inside the band gap can be confined in the defect, other TM waves and

all the TE waves are not able to be confined, but propagate through the lattice,

as they are in the propagation bands of the lattice.

According to this frequency-selective property, PCs bring the opportunity to

make mode-control resonators that only hold specific resonant states. This is an

advantage over the conventional pillbox cavities, as a pillbox cavity with fully en-

closed boundary confines all the resonances formed by both TE and TM polarised

waves. In the application to RF generation, only the TM01-like (or monopole-like)

resonance state is needed, which is similar to E. I. Smirnova’s application to par-

ticle accelerators [4, 42]. E. I. Smirnova examined a metallic PC with a triangular

lattice and a single site defect (figure 4.2 (a)), and found that by having the rod

radius-spacing ratio r/a between 0.1 and 0.2, only a TM01-like state was confined
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in the defect (figure 4.2 (b)).

Figure 4.2: (a) A metallic PC resonator of triangular lattice with a single site
defect. (b) Normalised frequencies of band gap boundaries and TM eigen-states
versus r/a: Black solid lines show the band gap boundaries; regions under and to
the right of these lines are the band gap region. Coloured dots show the TM states
in the PC resonator. Coloured solid lines represent the frequencies of TM modes
in a pillbox cavity of radius R = a − r [4].

Applications of the theory illustrated by figure 4.2 were further verified by

Eigenmode simulations using Finite-Element-Method (FEM) codes, such as COM-

SOL [76]. The profiles of the monopole and dipole resonance states/modes in a

PC resonator of r/a = 0.16 and an equivalent pillbox cavity from COMSOL 2D

Eigenmode simulation are presented in figure 4.3, which shows the pillbox cavity
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table 4.3.

Figure 4.20: Measurement system setup using Agilent E8362B vector network
analyser.

Table 4.3: Frequencies of TM010-like states in the input and output PCs from
HFSS eigenmode simulations and network analyser measurements.

HFSS results Measurement results
input PC, f0,in (GHz) 9.54234 9.5422
output PC, f0,out (GHz) 9.53987 9.5379

Comparisons in table 4.3 show that the frequency shifts for input and output

PCs were respectively 0.14 MHz and 1.97 MHz. According to C. J. Matthews and

R. Seviour’s investigation in [52], this related to resultant differences of several

micrometers in the rod diameters and spacings, which was within the tolerance of

the fabrication.

To determine the working frequency, both the input and output PCs were

measured over their full tuning range using the Agilent E8362B vector network
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Again, measurements had negligible uncertainties caused by network analyser os-

cillations, ±5 kHz for frequency and ±0.005 for S11.

Figure 4.23: Frequency response and state selectivity of the input PC: (a) A weak
field associated with stub coupler at 9.027 GHz. (b) TM010-like state confined at
defect region at 9.532 GHz. (c) The first higher-order state at 13.17 GHz in the
propagation band. (d) Measured reflection and power leakage in comparison with
band diagram. Measured propagation band started from 12.95GHz, compared
with 12.927GHz from BandSOLVE.

Another measurement was the power leakages outside the structures at 1 mW

input power using a probe connected to an Anritsu ML2487A power meter, the

results of which were also shown in figures 4.23 and 4.24, in comparison with the

S11 curves. These were not quantitative measurements, and the probe position and

distance to the structures would vary the shape and scale of the measured curves.

Measurements were taken all around the input and output PCs, and significant

power leakages were only detected at the propagation bands, which indicated EM

waves were not able to be confined at these frequencies. At the TM010-like states

of 9.532 GHz, only very small amounts of power, about 0.0008% and 0.0028% of
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Experimental - Numerical Verification

Figure 4.27: Bead-pull measurements of Ez at the centres of defects at (a) the
input and (b) the output PCs, normalised to 1 W power, in comparison with
HFSS simulation results.

Table 4.4: List of the key design and characteristic parameters of the input and
output PCs.

Parameters input PC output PC
Rod radius (r) 1.995±0.005 mm 2.013±0.01 mm
Rod spacing (a) 12.50 mm 12.52 mm
Lattice depth (d) 3.6 mm 3.3 mm
Beam hole diameter 4 mm 4 mm
Measured resonant freq. 9.532 GHz 9.532 GHz
S11 0.004 0.135
Propagation band 12.95 GHz 12.94 GHz
QL (Loaded Q) 820 780
Qe (External Q) 1640 1382
Q0 (Unloaded/Ohmic Q) 1640 1790
Shunt impedance (Rsh) 74710 Ω 81190 Ω
Rsh/Q0 45.55 Ω 45.36 Ω
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5.3.3 Output Power at Different DC Beam Conditions

To further characterise the RF generation in the two-PC module, in order to

present a more comprehensive evaluation of velocity modulation theories in PCs,

the induced output power Poutload was measured at different DC beam voltages V0

and currents I0, to look at the effects of changing DC beam conditions.

By keeping the input bunching signal of 5 W at 9.532 GHz, Poutload was first

measured at different I0s whilst V0 was maintained at 20 kV. The results are shown

in figure 5.28 in comparison with theoretical calculation.

Figure 5.28: Measured Poutload change with I0 at Pin=5 W, f0=9.532 GHz and
V0=20 kV, in comparison with theoretical calculation.

Figure 5.28 presents a good match between measurements and theory, in which

the latter followed equation (3.70) and considered the beam diameter as shown in

figure 5.25. Equation (3.70) shows that the output power Poutload is a parabolic

function of the RF beam current |i|, which, according to equation (3.27), is linearly

related to the DC beam current I0, if the system is working in the linear region

and hence the space-charge forces are negligible. Therefore, Poutload should also be

a parabolic function of I0, which has been nicely shown in figure 5.28, by both the
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Figure 4. Velocity-modulated beam dynamics: (a) beam profile, velocity
modulation and charge density distribution; (b) beam transverse phase-space
plots at points A, B, C and D.

Figure 5. Proof-of-principle experimental setup and results. (a) The two-PC
module and experimental system setup. (b) Spectrum of output signal excited by
a beam of Vdc = 20 kV and Idc = 100 µA, modulated by an EM field in ML of
Pin = 2.5 W at 9.532 GHz. (c) Pout versus Pin at 9.532 GHz, at Vdc = 20 kV and
Idc = 100 µA. (d) Pout versus Idc at Vdc = 20 kV and Pin = 5 W at 9.532 GHz.
(e) Pout versus Vdc at I dc = 100 µA and Pin = 5 W at 9.532 GHz.

the beam profile, axial velocity modulation and charge density distribution at saturation. The
strength of the EM field excited by the modulated beam in the EL defect was significantly
limited by the low beam current. Hence the energy exchanged from the electron bunches to the

New Journal of Physics 14 (2012) 013014 (http://www.njp.org/)

WAVEGUIDE HARMONIC DAMPER FOR KLYSTRON AMPLIFIER*

Yoon Kang, Ali Nassiri
Argonne National Laboratory, Argonne, Illinois  60439  USA

!"#$%&'$

A waveguide harmonic damper was designed for
removing the harmonic frequency power from the
klystron amplifiers of the APS linac. Straight coaxial
probe antennas are used in a rectangular waveguide to
form a damper. A linear array of the probe antennas is
used on a narrow wall of the rectangular waveguide for
damping klystron harmonics while decoupling the
fundamental frequency in dominent TE01 mode. The
klystron harmonics can exist in the waveguide as
waveguide higher-order modes above cutoff. Computer
simulations are made to investigate the waveguide
harmonic damping characteristics of the damper.

1  INTRODUCTION
In the APS linac klystron amplifiers, the connectors

for the high-voltage connection to the ion pump were
burned by the klystron harmonics power. The metallic
tube connected to the ion pump passes the higher
frequency harmonics power, and the metal screen used to
decouple the harmonics was not very effective. Even
though more effective rf shielding may be possible, it was
not desirable for quality vacuum pumping. The tube to
the pump has a cutoff frequency higher than the
fundamental klystron frequency, but the harmonic
spectrum power, shown in Figure 1, is not attenuated
sufficiently. In the APS, five klystrons are used. Each
klystron normally delivers 5-microsecond 35-MW peak
power pulses to the accelerating structures. The average
power of harmonic spectrum in the waveguide is
estimated as several tens of watts. In order to eliminate
the heating due to the harmonic power, a damping circuit
is needed in the waveguide. The harmonic frequency
power in the output cavity of the klystron amplifier may
couple to the waveguide in the form of waveguide
higher-order modes as well as the dominant mode. The
klystron harmonic frequency power caused some problem
in the APS storage ring, so the harmonics were damped
by multiple probe antennas mounted on the narrow wall
of the waveguide. A damper design of similar function is
needed in the 2.856-GHz linac system. For this reason,
the waveguide harmonic damper designs were studied
using computer simulation.
________________
* Work supported by U.S. Department of Energy, Office
of Basic Sciences under Contract No. W-31-109-ENG-
38.

2  HARMONIC DAMPER
In the waveguide transmission line, during normal

operations, the fundamental frequency propagates as a
travelling wave to the load cavity structure that works as
a matched load. However, since the accelerating cavity
structure is a narrowband load, the harmonic frequency
spectrum may form standing wave resonances in the
waveguide between the klystron output cavity and the
cavity structure.

Figure 1.  Harmonic spectrum of 2.856-GHz klystron
amplifier output.

Figure 2 shows the waveguide harmonic damper
design employing coaxial probe antennas. A linear array
of five probe antennas is used on a narrow wall of the
rectangular waveguide for damping klystron harmonics
while decoupling the dominent TE01 mode. The rf power
for the accelerating structure from the klystron is
transmitted in the dominant TE01 mode. The harmonic
frequencies from the klystron amplifier not only exist in
the TE01 mode but also in higher-order waveguide modes.
Higher order TEmn and TMmn modes couple to the
antennas if m=odd and do not couple to the antennas if
m=even. The index n must be nonzero for both TE and
TM modes.

For the fundamental frequency, the antennas may
reflect some power without delivering power to the
matched load of the coaxial probes. The input matching
of the damper section is important for power transmission
of the fundamental frequency. Ideally, the probe antennas
do not disturb the TE01 mode at the fundamental
frequency. However, actual antennas can cause some
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Figure 4.7: The Amphenol 901-9887-RFX SMA connector.

had beam holes of 4 mm diameter.

Figure 4.8: Input PC: lattice with coupler and tuner.

The stub couplers were built by inserting the SMA connectors shown in figure

4.7 into the input and output PCs, in parallel with the rods, by a depth of half of

the lattice depths in each. In the input PC, the stub coupler replaced the rod that

was 2a away from the defect centre, which made the coupler become part of the

lattice. In the output PC, the stub coupler was placed besides the defect region,

at 14.46 mm away from the defect centre, as a small perturbation at a weak field
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Figure 4.22: Measured linear and polar S11 plots of the (a) input and (b) output
PCs tuned at 9.532 GHz.

The measurements in figure 4.22 were taken when both the input and output

PCs were tuned to 9.532 GHz. The measurements had very small uncertainties,

which were essentially caused by the oscillations of network analyser. The mea-

sured uncertainty of frequency was ±5 kHz and the that of S11 was ±0.005, both

could be ignored.

4.4.2 Frequency Responses and State Confinements

To verify the full frequency responses of the input and output PCs, in order to ex-

amine their performances on state selectivity, the S11s were measured over a wide

frequency range from 2 GHz to 18 GHz. The measurement results were plotted in

comparison with the eigenmode simulation results from HFSS and band diagrams

calculated from BandSOLVE, as shown in figures 4.23 and 4.24 for the input and

output PCs respectively. All the results matched within the error ranges due to

fabrication uncertainties. The measured propagation bands started respectively

from 12.95 GHz and 12.94 GHz for input and output PCs, both were very compa-

rable to the computational results from BandSOLVE, 12.927 GHz and 12.969 GHz.

71
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in the defect (figure 4.2 (b)).

Figure 4.2: (a) A metallic PC resonator of triangular lattice with a single site
defect. (b) Normalised frequencies of band gap boundaries and TM eigen-states
versus r/a: Black solid lines show the band gap boundaries; regions under and to
the right of these lines are the band gap region. Coloured dots show the TM states
in the PC resonator. Coloured solid lines represent the frequencies of TM modes
in a pillbox cavity of radius R = a − r [4].

Applications of the theory illustrated by figure 4.2 were further verified by

Eigenmode simulations using Finite-Element-Method (FEM) codes, such as COM-

SOL [76]. The profiles of the monopole and dipole resonance states/modes in a

PC resonator of r/a = 0.16 and an equivalent pillbox cavity from COMSOL 2D

Eigenmode simulation are presented in figure 4.3, which shows the pillbox cavity
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Propagation Bands

and State1,out at f1,out) are both above 13 GHz and the tuners have very little

affect on them. The tuner depth “Full” for the input PC in table 4.1 means the

tuner touches the stub coupler, when the gap in-between is fully filled. Table 4.1

indicates that in this case the degenerate state doesn’t exist, as there is no coupled

defect (gap) to present the state degeneracy.

Figure 4.13: The overall tuneable range of the input and output PCs.

The band maps of the input and output lattices computed by BandSOLVE are

shown in figures 4.14 (a) and (b) respectively. The band gaps are indicated by

the shaded regions, at cut-off frequencies 12.927 GHz and 12.969 GHz only for TM

polarised waves, which agrees with the discussion in Chapter 2.

Figure 4.14: Band map of (a) the input PC and (b) the output PC, from Band-
SOLVE. The shaded regions indicate the TM band gaps.

Comparing to the results in tables 4.1 and 4.2, in both the input and output

PCs the fundamental (TM010-like) states are in their band gaps with high Q-
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r/a~0.15   —>   2.55 = wa/c  
—> a =8.67 mm 
—> r=1.3 mm

14 GHz Lattice parameters



Monopole   14        GHz

Dipole 14.229 GHz
14.230 GHz

Quad 14.733 GHz
    14.734 GHz

Sextupole  15.011 GHz

COMSOL 2D eigenmode simulation. The results are shown in figure 6.2.

Figure 6.2: Resonant states in a 6-defect PC: (a) monopole-like state, (b) and
(c) dipole-like degenerate states, (d) and (e) quadrupole-like degenerate states, (f)
sextupole-like state.

Figure 6.2 shows that the 6-defect PC presents 4 resonant states: monopole-like

(figure 6.2 (a)), dipole-like (figure 6.2 (b) and (c)), quadrupole-like (figure 6.2 (d)

and (e)) and sextupole-like (figure 6.2 (f)), ranged from the lowest frequency to

higher. The dipole-like and quadrupole-like states are degenerate, which split each

into two with the same frequency and pattern but arranged differently among the

defects. All other states are in the propagation band and are not localised in the

defects. Notice that figure 6.2 (a)-(f) present only the regions around the defects.

In fact the full lattice was set to have 6 rows of rods around the defects. According

to E. I. Smirnova’s research in [42], 3 rows of rods can produce a diffractive Q-

factor of the order of 105, which is much higher than the Ohmic Q-factor of the

order of 103. Therefore 6 rows of rods were considered to be well sufficient for EM
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COMSOL 2D eigenmode simulation. The results are shown in figure 6.2.

Figure 6.2: Resonant states in a 6-defect PC: (a) monopole-like state, (b) and
(c) dipole-like degenerate states, (d) and (e) quadrupole-like degenerate states, (f)
sextupole-like state.

Figure 6.2 shows that the 6-defect PC presents 4 resonant states: monopole-like

(figure 6.2 (a)), dipole-like (figure 6.2 (b) and (c)), quadrupole-like (figure 6.2 (d)

and (e)) and sextupole-like (figure 6.2 (f)), ranged from the lowest frequency to

higher. The dipole-like and quadrupole-like states are degenerate, which split each

into two with the same frequency and pattern but arranged differently among the

defects. All other states are in the propagation band and are not localised in the

defects. Notice that figure 6.2 (a)-(f) present only the regions around the defects.

In fact the full lattice was set to have 6 rows of rods around the defects. According

to E. I. Smirnova’s research in [42], 3 rows of rods can produce a diffractive Q-

factor of the order of 105, which is much higher than the Ohmic Q-factor of the

order of 103. Therefore 6 rows of rods were considered to be well sufficient for EM
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Multi-defect lattice

where en=exp(2πni/6) is the nth root of unity for n = 1, 2, · · ·6. Therefore the

resonant frequency ωn of the nth resonant state E⃗n is calculated to be

ωn = ωd

√

1 + 2 cos(
2πn

6
)β1 + 2 cos(

2πn

3
)β2 + (−1)nβ3 (6.16)

Equation (6.16) indicates that in the 6 resonant states for n = 1, 2, · · ·6, two

of them are degenerate (n = 1, 5 and n = 2, 4 respectively) and two of them are

non-degenerate (n = 3 and n = 6). This agrees with the COMSOL 2D eigenmode

simulation results shown in figure 6.2.

Figure 6.3: Effects of r/a in the 6-defect PC: (a) resonant states and propagation
band, (b) unconfined higher-order state and (c) confined higher-order state.

Having theoretically analysed the split of resonant states, the 6-defect PCs

were also numerically studied to obtain the full understanding of lattice effects.

The first numerical study was to see the effect of the PC rod radius-spacing ratio
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the filling-up time, to provide a higher acceleration gradient. Therefore, instead

of the two-PC system shown in figure 6.27, a multi-PC (with several intermediate

PCs between the input and output PCs) system may be necessary to improve the

gain.

For a system driven to the saturation condition by electron beams of V0 =

200 kV, a high acceleration gradient of 32 MV/m can be obtained at the central

defect over the 2 cm gap. This gradient is associated with a peak surface electric

field 46.8 MV/m around the central beam hole edge (figure 6.29 (a)) and a peak

surface magnetic field 120.2 kA/m at the inner sides of the inner-most rods (figure

6.29 (b)), shown by HFSS eigenmode simulation.

Figure 6.29: Distributions of (a) electric field and (b) magnetic field at the inner
surface of the 7-defect PC.

Experimental studies of breakdown in the 7-defect PC are beyond the scope

of this thesis. However, it is worth pointing out at this stage that according

to the investigation presented in [102], breakdowns in single defect metallic PCs

are dominated by the large pulsed heating produced by the high peak surface

magnetic fields at the inner edge of the inner-most rods. The 7-defect PC has a

peak magnetic-electric field ratio of 0.00218 A/V, which is significantly lower than

the field ratio 0.00429 A/V for the PC acceleration structure presented in [102].

This indicates that the breakdown in the 7-defect PC is less dominated by the

peak surface magnetic field. Experimental investigations of breakdown, together

with transient response of fields in the 7-defect PC are expected in future research.
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Figure 6.9: The FFT of the axial electric fields excited by one electron bunch in
one of the 6 defects.

A further analysis in VORPAL was taken by sending one electron bunch of the

same profile into each defect at the same time, i.e. all the bunches were in phase.

In this case the FFT spectrum presented only the monopole-like state, as shown in

figure 6.10. When the electron bunches were tuned to have 180◦ phase difference

between any adjacent two, the FFT spectrum presented only the sextupole-like

state, as shown in figure 6.11. This means even though all the resonant states can

be physically excited, as they are all at different phases, only the one synchronous

to the phase of the electron beams can be effectively excited. Therefore, to further

develope a 6-beam 2-PC klystron, a matched resonant state in the input PC is

essential, to velocity-modulate electron beams of the right phase.

Figure 6.10: The FFT of the axial electric fields excited by one electron bunch in
each defect of the 6-defect PC at the same time.
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Figure 6.11: The FFT of the axial electric fields excited by one electron bunch in
each defect of the 6-defect PC, with 180◦ phase difference between any adjacent
two bunches.

Furthermore, the sensitivities of the resonant states excitation were examined

by comparing the excitations from a bunch train in each defect containing 5 in-

phase bunches and 5 bunches with 1% random disorder. The FFTs of the fields

excited in the 6-defect PC by the synchronous and disordered bunches from VOR-

PAL PIC simulations were plotted together for comparison. Comparisons for the

monopole-like and sextupole-like states are presented in figures 6.12 (a) and (b),

respectively.

Figure 6.12: Comparisons of the FFTs of the fields excited by 5 synchronous
and 1% disordered bunches in each defect for (a) the monopole-like and (b) the
sextupole-like states.

Figure 6.12 shows that none of the monopole-like and sextupole-like states

distinguishes the excitations from the synchronous and 1% disordered bunch trains.

This indicates that disorder in bunches up to 1% has negligible effects on the
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COMSOL 2D eigenmode simulation. The results are shown in figure 6.2.

Figure 6.2: Resonant states in a 6-defect PC: (a) monopole-like state, (b) and
(c) dipole-like degenerate states, (d) and (e) quadrupole-like degenerate states, (f)
sextupole-like state.

Figure 6.2 shows that the 6-defect PC presents 4 resonant states: monopole-like

(figure 6.2 (a)), dipole-like (figure 6.2 (b) and (c)), quadrupole-like (figure 6.2 (d)

and (e)) and sextupole-like (figure 6.2 (f)), ranged from the lowest frequency to

higher. The dipole-like and quadrupole-like states are degenerate, which split each

into two with the same frequency and pattern but arranged differently among the

defects. All other states are in the propagation band and are not localised in the

defects. Notice that figure 6.2 (a)-(f) present only the regions around the defects.

In fact the full lattice was set to have 6 rows of rods around the defects. According

to E. I. Smirnova’s research in [42], 3 rows of rods can produce a diffractive Q-

factor of the order of 105, which is much higher than the Ohmic Q-factor of the

order of 103. Therefore 6 rows of rods were considered to be well sufficient for EM
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Figure 6.11: The FFT of the axial electric fields excited by one electron bunch in
each defect of the 6-defect PC, with 180◦ phase difference between any adjacent
two bunches.

Furthermore, the sensitivities of the resonant states excitation were examined

by comparing the excitations from a bunch train in each defect containing 5 in-

phase bunches and 5 bunches with 1% random disorder. The FFTs of the fields

excited in the 6-defect PC by the synchronous and disordered bunches from VOR-

PAL PIC simulations were plotted together for comparison. Comparisons for the

monopole-like and sextupole-like states are presented in figures 6.12 (a) and (b),

respectively.

Figure 6.12: Comparisons of the FFTs of the fields excited by 5 synchronous
and 1% disordered bunches in each defect for (a) the monopole-like and (b) the
sextupole-like states.

Figure 6.12 shows that none of the monopole-like and sextupole-like states

distinguishes the excitations from the synchronous and 1% disordered bunch trains.

This indicates that disorder in bunches up to 1% has negligible effects on the
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in the FFT spectrum.

Figure 6.9: The FFT of the axial electric fields excited by one electron bunch in
one of the 6 defects.

A further analysis in VORPAL was taken by sending one electron bunch of the

same profile into each defect at the same time, i.e. all the bunches were in phase.

In this case the FFT spectrum presented only the monopole-like state, as shown in

figure 6.10. When the electron bunches were tuned to have 180◦ phase difference

between any adjacent two, the FFT spectrum presented only the sextupole-like

state, as shown in figure 6.11. This means even though all the resonant states can

be physically excited, as they are all at different phases, only the one synchronous

to the phase of the electron beams can be effectively excited. Therefore, to further

develope a 6-beam 2-PC klystron, a matched resonant state in the input PC is

essential, to velocity-modulate electron beams of the right phase.

Figure 6.10: The FFT of the axial electric fields excited by one electron bunch in
each defect of the 6-defect PC at the same time.
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Figure 6.6: Split of resonant states in the first 6 coupled-defect schemes of 6-defect
PCs at r/a = 0.1652.

Figure 6.7: Change of coupling strengths (β1, β2 and β3) between defects with lbb
in a 6-defect metallic PC with a = 34.5 mm.
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Figure 6.6: Split of resonant states in the first 6 coupled-defect schemes of 6-defect
PCs at r/a = 0.1652.

Figure 6.7: Change of coupling strengths (β1, β2 and β3) between defects with lbb
in a 6-defect metallic PC with a = 34.5 mm.
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Figure 6.4: Change of coupling strengths (β1, β2 and β3) between defects with r/a
in a 6-defect metallic PC with a = 34.5 mm.

significantly higher values than β2 and β3, which indicates that the closest neigh-

bour defect has the most dominant coupling effects. Couplings between defects

are very sensitive to r/a and are significantly weakened by increasing r/a, as seen

from the significant drop in all the three βs in figure 6.4.

Besides the r/a, another factor that affects the split of resonant states is the

adjacent defect centre-to-centre spacing, which is also referred as the adjacent

electron beam centre-to-centre spacing (lbb) for the multi-beam klystrons presented

in the next section. A 6-defect PC based on triangular lattice of fixed lattice

constant a has discrete values for lbb measured in terms of a, according to different

coupled-defect schemes. The coupled-defect schemes of 6-defect PCs based on the

first 6 lbbs:
√

3a, 2a,
√

7a, 3a, 2
√

3a and 4a, for a fixed r/a, are shown in figure

6.5 (a)-(f) respectively. In figure 6.5, adjacent defects are marked by a red line

connection from centre to centre. This makes a red hexagon in each PC, with the

side length lbb for each case.

The splits of resonant states in the 6 metallic PCs shown in figure 6.5 were

assessed in COMSOL 2D eigenmode simulations at fixed r/a=0.1652. The results
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FIG. 2: The eÆect of disorder in radius, separation and both
applied to the whole structure. The fundamental resonant
frequency is shown against disorder magnitude for 1%, 5%,
and 10% disorder. For each case of radius, separation and
both, the data is plotted laterally displaced for clarity. The
markers show the mean resonant frequency averaged over 30
structures. The vertical error bars show one standard devi-
ation from the mean. The horizontal line indicates the base
frequency.

der to both, can be seen as approximately equal to the
sum of the separate variations in position and radius. In
terms of absolute variation, where a 5% variation in ra-
dius (ª 0.1mm) is approximately equal to a 1% variation
in position (ª 0.1mm), we can see that the eÆect on the
resonant frequency is approximately equal in both cases.

Although the mean resonant frequency remains fairly
constant and close to that of the base structure, we note
that for some structures increasing disorder causes the
resonant frequency to significantly deviate from the base
value. To understand this behaviour we analysed the ef-
fect on the resonant frequency of altering the position
and radius of individual rods. Starting with the ring of
the innermost rods, closest to the centre of the struc-
ture (labeled ring 1), each rod is systematically moved
by 10%, 5%, and 1% of its’ initial separation a into and
out from the centre. This process was then applied to
the rods in the second and third rings of rods from the
centre. It was finally extended to the rods of the outer
rings but was found to have a negligible eÆect (less than
0.001%).

Figure 3 shows the results of this examination. We
can immediately see that the eÆect of moving the rods of
ring 1, dominates over the other rings. As the rods are
moved into the centre the resonant frequency increases,
while moving the rods away from the centre results in a
decrease in the resonant frequency. This is the case for
the rods of all rings, although the further out the ring,
the lesser the eÆect it has upon the resonant frequency.
This behaviour can be understood in terms of perturba-
tion to the cavity geometry as discussed in reference 19.

FIG. 3: Considering the rods in the base structure as arranged
in rings of rods around the defect region, the innermost ring
labeled ring 1. This graph shows the fundamental resonant
frequency achieved by moving all rods in a specific ring in and
out by various percentages relative to the base structure. The
horizontal line indicates the base frequency.

Inward perturbations raise the resonant frequency and
outward perturbations decrease the resonant frequency,
so as the rods of ring 1 are moved in towards the centre of
the structure the volume of the defect region decreases,
this naturally results in a higher resonant frequency of
the structure. As the rods are moved out, away from
the centre, the larger volume results in the observed fre-
quency decrease. As the size of the perturbation increases
so does the relative shift in resonant frequency.

With this in mind, when considering disorder applied
around the defect region, as disorder increases the spread
in resonant frequencies of the structure increases, as seen
in figure 2. This argument would imply that the mean
frequency should be equal to the resonant frequency of
the base structure. To develop this argument further a
random disorder introduced into each individual ring was
investigated and we can start to consider how disorder in
each ring of rods contributes to the performance of the
entire structure. This analysis was done by introducing
disorder separately to each ring in turn. 10%, 5%, and 1%
disorder is introduced to rod position, radius and both.
In each case all other rods are kept in the base configu-
ration. The results of this analysis are shown in figure
4. Even with a 10% disorder the eÆects of this disorder
in rings three, four and five were found to be negligible,
so for clarity are not presented here. For disorders of
1% and 5% the mean only varies slightly from the base
structure, whereas for a 10% disorder the variation of the
mean from the base structure is quite marked. This is in
agreement with the results shown in figure 2 but conflict
with the arguments surrounding figure 3. To investigate
this further we examined the frequency of each structure
with 10% disorder to both. We found that out of the

Effects of Disorder on the Frequency and Field of Photonic Crystal Cavity Resonators.. / Matthews, C.; Seviour, Rebecca. 
In: Applied Physics B: Lasers and Optics, Vol. 94, No. 3, 03.2009, p. 381-388
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inhibit performance.

II. METHODOLOGY

The most commonly used type of PBG lattice in high
power microwave applications is the 2-Dimensional (2D)
triangular lattice of metal rods with separation a and
radius r. In this paper the central rod is removed to
create a defect in the band gap, forming the site of the
cavity resonator. Figure 1 shows the ideal PBG struc-
ture, considered in this paper. The base structure is
the ideal case consisting of rods with identical separation
a = 0.0124m and identical radius r = 0.00186m. The
resonator formed by removing the central rod has a res-
onant frequency (or ‘base frequency’ f0) of 9.4072 GHz.
Any changes in the rod separation or radius are made in
relation to this base structure. As a comparison, the base
structure was also modeled using MAFIA, with an agree-
ment with the COMSOL determined base frequency to
the 8th decimal place. Any higher order modes are re-
stricted to the edges of the structure.

FIG. 1: Ideal Base PBG Structure, consisting of Perfectly
Electrically Conducting (PEC) rods surrounded by a PEC
wall. Removal of the central rod localises a single EM mode
at f0 = 9.0472GHz. All rods have a radius of 0.00186m and
a seperation of 0.0124m. The contours show the extent of the
electric field of the mode.

Disorder was introduced to the structure by adding ±
a random number between 0-15%, 0-10%, 0-5%, or 0-1%,
of the initial parameters a and r, to each individual rod.
Depending which parameter this disorder is applied to,
it has the eÆect of altering the position, radius or ‘both’,
meaning a combination of both the position and radius,
of each rod. The random number used was taken from a
uniform distribution pseudo-random number generator.
This eÆectively introduces a white noise error to the di-
mensions of the PBG structure.

Focusing on the example of the position of the rods
with a 10% disorder applied to the whole structure, 30
diÆerent random configurations of the structure were gen-
erated. Each disordered structure was processed to find
the resonant frequency and the peak electric field at the
centre of the structure. The results from these 30 dis-
ordered structures were then averaged to give a mean

value of the resonant frequency and peak electric field
for a structure with 10% disorder to the position of the
rods. This process was then repeated for diÆerent per-
centage disorders applied to the position, radius or both.
The analysis was then extended to more specific cases.

The resonant frequency of each PBG structure was cal-
culated using the commercially available finite element
package COMSOL Multiphysics. This software was used
to find the eigenmodes of each structure, using an auto-
matic mesh refining technique to ensure accuracy of the
solution.

To determine the peak electric field, simulations were
performed using a finite-diÆerence time-domain (FDTD)
method24, with a freely available software package with
subpixel smoothing for increased accuracy25. Each dis-
ordered structure was excited with a point source of fre-
quency 9.4072GHz (the resonant frequency of the ideal
structure). For each disordered structure the source was
allowed to run for the 20 RF cycles, it was then switched
oÆ and the simulation was then left to run for 20 RF
cycles. The electric field was then recorded for next 20
RF cycles. Analysis of the recorded peak electric field
at each cycle shows a small variation due to the finite
spatial and temporal resolution of the FDTD technique.
By increasing the resolution, this variation was reduced
to between 1-2% between all 20 cycles. The value of the
peak electric field taken for each disordered structure is
the mean value of the peak field during the last set of 20
RF cycles.

III. RESONANT FREQUENCY

To explore how disorder eÆects the resonant frequency
of the PBG structure the finite element package COM-
SOL Multiphysics was used to determine the eigenmodes
of various disordered PBG structures. Results are com-
pared to the resonant frequency of the base structure of
figure 1.

Initially, we considered disorder applied to position,
radius and both for all rods in the structure. Disorder of
10%, 5%, and 1% of the initial parameters a and r was
investigated. For each case, 30 disordered structures were
considered and averaged as outlined above. The eÆects
of a random disorder applied to the whole structure are
shown in figure 2. The resonant frequency is plotted
against the percentage disorder for position, radius and
both. The mean value of the resonant frequency for each
disorder (1%, 5%, 10%) is shown by the plotted marker.
The solid line indicates the resonant frequency of the
ideal base structure, f0, and the vertical bars show one
standard deviation from the mean.

The results show for disorders of 1% and 5%, the mean
only varies slightly from the base frequency. We note that
for a 10% disorder, the variation of the mean from the
base frequency is about 1%. In terms of percentage dis-
order, separation has a larger eÆect than radius. While
the eÆect on the resonant frequency of applying disor-

a =8.67 mm —> ± 80 micros 
r=1.3 mm —> ± 50 micros 

14 GHz   ~ ± 29.7 MHz      [although standard CnC has ± 5 Micro accuracy]

http://www.research.lancs.ac.uk/portal/en/publications/effects-of-disorder-on-the-frequency-and-field-of-photonic-crystal-cavity-resonators(e0a1ed51-1125-4461-90c1-4d702590b74a).html
http://www.research.lancs.ac.uk/portal/en/people/rebecca-seviour(bda1651f-325c-4d2d-9f06-b066eb27ce88).html


strong electric fields.

Figure 6.16: S11 curve and polar plot of the 6-defect PC with central rod coupler
from HFSS.

The central rod coupler needs to be optimised for using in a klystron. For a

klystron with high power electron beams, the coupling is largely dependent with

the beam-loading effects. The presence of electron beams introduces extra power

losses and hence imposes considerably low beam-loading Q-factors (as discussed in

Section 3.4.4). Sufficiently strong electron beams can also slightly shift the reso-

nant frequencies. Therefore, the coupling conditions can be significantly changed.

An optimised coupling with beam-loading can often be seen as over-coupled in

cold tests (without the beam), which means the central rod coupled 6-defect PC

can be used in a 6-beam klystron with very high perveance beams. However, for

medium or low perveance beams, the over-coupled PC still needs to be tuned down

to a certain extent to optimise the coupling. In this section, the coupling is still

optimised without beam-loading, as a study of the tuneability of the 6-defect PC.

As the PC is strongly over-coupled, optimisation of the coupling focused on

reducing the electric fields seen by the coupler, whilst maintaining the symmetry

of the lattice. One efficient method to achieve this is to introduce 6 additional

rods, with equal distance to the central rod coupler and lined with the inner ring

of lattice rods. The radius of the additional rods (rs) and the distance to the
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Output Coupling

uniformity of the lattice. The design of a coax with 50 Ω characteristic impedance

followed [94], in which the characteristic impedance Z0 of the coaxial cable is

related to the radii of the inner conductor (r) and the outer conductor (R) by

Z0 =
1

2π

√

µ

ϵ
ln

R

r

≈
138 Ω
√

ϵr
log10

R

r
(6.27)

where ϵr is the relative permittivity of the medium filled between the inner and

outer conductors.

Following equation (6.27), Z0=50 Ω is obtained for R/r=2.3, if the medium

between the inner and outer conductors is vacuum (i.e. ϵr=1). This design is used

for all the structures presented in this chapter.

Considering the symmetry of the lattice, the rod at the centre of the lattice

was chosen to act as a coax stub coupler, as shown in figure 6.14.

Figure 6.14: The 6-defect PC with the central rod made as coax coupler that
couples to the monopole-like state.

In figure 6.14, the stub coupler equally matches each defect and hence couples

to EM waves in each defect at the same time. This makes the coupler couple
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- Looks promising 
- Preliminary work shows coupler is feasible at 14 GHz 
- good input coupling 
- good stability 
- with stand high voltages  

To do: 
- Wide lattice investigation  
- Improve output coupling 
- Improve modelling 
- Thermal modelling 
- Investigate HOM exploiting (band-width) 
- Investigate fabrication techniques 

- Cold-press extruded rods into a base 
- Al mandrel, plate, acid etch away 
- hollow rod for water cooling 

- Cold test 
- Consider transistor integration 

- way forward ?   [need effort (and money), phd or post-doc?] 
- STFC-case [next round may] 
- EPSRC [low probability of success] 
- TSB ?

Overview
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Why are they useful?

X Engineer dispersion relation

¾ Normal parabolic dispersion curve 
only gives point interactions

¾ maximise interaction between 
wave and beam

X Metamaterials cause an arbitrary 
phase shift 

¾ Reduced size/weight of vacuum 
devices

¾ Size independent of 𝜆 – depends on 
the macroscopic properties of the 
structure

Aimée Hopper - University of Huddersfield - aimee.hopper@hud.ac.uk
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Wave Energy Amplification in a Metamaterial based Traveling Wave Structure

Y. S. Tan and R. Seviour
Dept. Physics,

Lancaster University,
LA1 4YB UK.

(Dated: March 30, 2010)

We consider the interaction between a particle beam and a propagating electromagnetic wave
in the presence of a metamaterial. We show that the introduction of a metamaterial gives rise to
a novel dispersion curve which determines a unique wave particle relationship, via the frequency
dependence of the metamaterial and the novel ability of metamaterials to exhibit simultaneous
negative permittivity and permeability. Using a modified form of Madey’s theorem we find that the
novel dispersion of the metamaterial leads to a amplification of the EM wave power.

PACS numbers:

I. INTRODUCTION

Metamaterials are artificial macroscopic composites
with a periodic cellular structure which produce two or
more responses not available in nature in response to a
specific excitation [1]. In this paper we focus on a class of
metamaterials with negative permittivity and permeabil-
ity, termed ”Double NeGative materials” (DNG). Vese-
lago [2] showed that a DNG material can control the
phase of the EM field to give an effective negative index
of refraction, achieved by the DNG presenting a relatively
high opposing EM field. Realization of DNG materials
has been achieved using two different techniques; a lat-
tice of split-ring resonators and thin wires [3], and loaded
transmission lines [4–7]. These metamaterials have been
used to construct a range of novel microwave devices such
as antennas [6–8], phase-shifters [9, 10], couplers [11, 12],
broadband/compact power-dividers [13] and other de-
vices such as beam steerers, modulators, band-pass filters
and lenses.

In this paper we consider the application of metama-
terials to Traveling Wave Tubes (TWT). The TWT pro-
posed in the 1940’s by Kompfner [14] remains the driving
technology for many applications ranging from commu-
nications to radar. The principle of the TWT is to am-
plify an applied EM wave of a specific frequency. This is
achieved by passing the EM wave through a Slow Wave
Structure (SWS) simultaneously with an electron beam,
such that wave and beam pass through the structure with
similar velocities, for the EM wave this is determined by
the dispersion relationship of the SWS . The interaction
between electron beam and EM field results in an energy
transfer from beam to wave. To date three papers [16–18]
have considered metamaterials in TWTs, all used meta-
materials to line the side of the structure to minimise
losses and increase efficiency. We consider the case where
the metamaterial forms part of the SWS. The basis of our
structure is a Folded Waveguide (FWTWT) with a meta-
material inset, as shown in figure 1, where a TE01 wave
propagates along the waveguide. We introduce metama-
terial at the interaction region between beam and wave,
controlling the FWTWT dispersion relationship via the

FIG. 1: The traveling wave structure considered here, con-
sisting of a folded waveguide with a metamaterial insert, the
electron beam passes through the middle of the structure.

metamaterial, to define a unique beam-wave interaction,
triggering a novel gain-frequency phenomena.

II. METHODOLOGY

For effective energy transfer between beam and EM
wave the phase velocity (determined by the dispersion)
of the wave must approximately match the velocity of
the electron beam. In the conventional FWTWT this
is achieved via the periodicity of the folded waveguide
[19] to slow down the wave, generating Spatial Harmon-
ics Wave Components (SHWC) parallel to the beam.
The SHWC interact with the beam resulting in energy
transfer. By a superposition of the spatial harmonics
(E⃗m(x, y)) the field parallel to the beam can be expressed
by Floquets theorem [20] as;

E⃗(z) =
∞
∑

m=−∞

E⃗m(x, y)e−iβmz,βm = β +
2mπ

p
(1)
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To ensure that the phase of the EM field is the same at
each point where wave and beam interact, the wave takes
the long path around the folded wave guide, hence the
period in the beam frame of reference is half the geomet-
rical period of the structure shown in figure1. This phase
shift results in a propagation constant β [21]:

β = β0

(

1 +
h

p

)

+
π

p
= ωt = ω(p/ve) (2)

β0 = c−1
√

ω2
− ω2

c (3)

ω is the frequency of the incident EM wave, ωc is the
waveguide cutoff frequency, p and h are the period and
height of the structure, and β0 is the TE01 rectangular
waveguide propagation constant. This form of equation
2 ensures that wave arrives at the interaction region with
the same phase as previously seen by the beam. Using
equations 1 and 2 we can derive the dispersion relation-
ship for the mth SHWC;

ω =

√

ω2
c +

c2

(1 + h/p)2

(

βm −

2mπ + π

p

)2

(4)

For the conventional TWT the dispersion relation-
ship and hence the phase velocity (ω/β) is solely defined
through the physical dimensions of the structure. We
now consider the effect caused by inserting a metama-
terial, of length ∆h into the waveguide at the point of
interaction between wave and beam. In a macroscopic
medium the interaction with an electromagnetic wave is
described through the constitutive relationships;

D̂ = ϵ0Ê + P = ϵÊ
B̂ = µ0Ĥ +M = µĤ

(5)

where D̂ and B̂ are the averaged electric and magnetic
flux density, Ê and Ĥ are the averaged electric and mag-
netic field, P is the averaged polarization (electric dipole
moment density), and M is the averaged magnetization
(magnetic dipole moment density). ϵ and µ the permit-
tivity and permeability of the material define how the
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(5)

where D̂ and B̂ are the averaged electric and magnetic
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FIG. 4: Increase in EM power due to interaction with an
electron beam, for different electron beam energies.

gain-frequency characteristics, compared to the con-
ventional FWTWT where the characteristics de-
pend on the waveguide dimensions. Figure 4, the
change in power between wave and beam, shows that as
the accelerating potential is increased the frequency at
which maximum energy exchange is achieved is shifting
towards lower frequency. Although we note that even
for large differences in accelerating voltage the frequency
shift is small, this offers a precise way to tune the fre-
quency of operation.

The disadvantages are that the design is bandwidth
limited, and highly dependent on the metamaterial used.
Inherent ohmic losses associate with the MM are unavoid-
able. Future work in this area is to consider the use of a
MM which offers a broadband of negative behavior, and
a full discussion on the derivation of equation[15].
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Smith technique

𝛼 =
1 − 𝑆ଵଵଶ + 𝑆ଶଵଶ

2𝑆ଶଵ

𝑛 =
1
𝑘𝑑

coshିଵ(𝛼)

𝑧 = −
1 + 𝑠ଵଵ ଶ − 𝑠ଶଵଶ

1 − 𝑠ଵଵ ଶ − 𝑠ଶଵଶ

𝜖 = 𝑛/𝑧

𝜇 = 𝑛𝑧
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