

## **University of Huddersfield Repository**

Hill, Catherine E.

Mitochondrial DNA Variation in Island Southeast Asia

### **Original Citation**

Hill, Catherine E. (2005) Mitochondrial DNA Variation in Island Southeast Asia. Doctoral thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/22331/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

## Mitochondrial DNA Variation in Island Southeast Asia

Catherine E. Hill B.Sc. (Hons), M.Sc.



Thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy

Department of Chemical and Biological Sciences, University of Huddersfield

June 2005

#### **Contents**

## List of Figures and Tables List of Abbreviations Acknowledgements Abstract

#### ADSTRAC

#### 1. Introduction 1 1.1 Mitochondrial DNA 1 1.2 Mitochondrial DNA and the Evolution of Modern Humans 2 1.3 The Origins of Modern Southeast Asians - Archaeology and 8 Linguistics 1.4 The Origins of Modern Southeast Asians – Cranial Morphology 19 1.5 The Origins of Modern Southeast Asians – Genetic Evidence 20 1.6 Malaysia and the Orang Asli 27 1.7 Island Southeast Asian Groups Investigated in this Study 32 1.8 Aims of this Study 35 2. Materials and Methods 37 2.1 Subjects 37 2.2 DNA Isolation 40 **40**<sup>≁</sup> 2.3 PCR Amplification 2.4 DNA Sequencing 41 2.5 Testing for the 9 Base Pair Deletion within the COII/tRNA<sup>Lys</sup> 43 Intergenic Region 2.6 Restriction Fragment Length Polymorphism Tests 43 2.7 Verification of the Dataset 45 2.8 Analysis 45 2.8.1 Comparative Data 45 2.8.2 Measures of Diversity 46

i

|            | 2.8.3 Principal Component Analysis                                 | 46 |
|------------|--------------------------------------------------------------------|----|
|            | 2.8.4 Tajima's <i>D</i>                                            | 47 |
|            | 2.8.5 Mismatch Distributions                                       | 47 |
|            | 2.8.6 Analysis of Molecular Variance                               | 48 |
|            | 2.8.7 Phylogeographic Analysis                                     | 49 |
| 3. Results | – Laboratory Work                                                  | 51 |
| 3.1        | DNA Sequencing                                                     | 51 |
| 3.2        | Detecting the 9 Base Pair Deletion in the COII/tRNA <sup>Lys</sup> | 54 |
|            | Intergenic Region                                                  |    |
| 3.3        | Restriction Fragment Length Polymorphism Tests                     | 55 |
| 4. Results | – Evaluation of the Dataset                                        | 62 |
| 5. Results | – Analysis                                                         | 73 |
| 5.1        | Heterozygosity                                                     | 73 |
| 5.2        | Haplogroup Ages                                                    | 75 |
| 5.3        | Haplogroup Diversity                                               | 76 |
| 5.4        | Principal Component Analysis                                       | 76 |
|            | 5.4.1 Principal Component Analysis of Island Southeast             | 76 |
|            | Asian Data                                                         | 90 |
|            | 5.4.2 Principal Component Analysis of Orang Asli Data              | 82 |
|            | Tajima's D Analysis of Dataset                                     | 84 |
| 5.0        | Mismatch Distributions                                             | 86 |
|            | 5.6.1 Mismatch Distributions of Island Southeast Asian Data        | 86 |
|            | 5.6.2 Mismatch Distributions of the Orang Asli Data                | 93 |
| 57         | 5.6.3 Dating Mismatch Distributions                                | 95 |
| 5.7        | Analysis of Molecular Variance of Island Southeast Asia            | 97 |
|            | and the Orang Asli                                                 |    |

## 6. Results – Phylogeography

| 6.1 | Complete Sequencing            | 102 |
|-----|--------------------------------|-----|
| 6.2 | Macrohaplogroup N              | 105 |
| 6.3 | Macrohaplogroup R              | 111 |
| 6.4 | Haplogroup R9                  | 129 |
| 6.5 | Macrohaplogroup M              | 140 |
| 6.6 | Unresolved M*, N* and R* Types | 163 |
|     |                                |     |

## 7. Discussion

168

100

| 7.1 Discussion of Results of Orang Asli Study                   |             |  |
|-----------------------------------------------------------------|-------------|--|
| 7.2 Discussion of Results of Island Southeast Asian Study       |             |  |
| 7.2.1 Geographic Structuring of Island Southeast Asia           |             |  |
| 7.2.2 Does an Austronesian Signature Exist in Island            | 175         |  |
| Southeast Asia?                                                 |             |  |
| 7.2.3 Rare, Indigenous Haplogroups in Island Southeast Asia     | 1 <b>78</b> |  |
| 7.2.4 Is There any Evidence of a Recent 'Out of Taiwan' Event?  | 1 <b>78</b> |  |
| 7.2.5 Evidence for a Melanesian Influence in Island             | 180         |  |
| Southeast Asia                                                  |             |  |
| 7.2.6 Evidence for an Indo-Chinese Influence in Island          | 181         |  |
| Southeast Asia                                                  |             |  |
| 7.2.7 Evidence for an Orang Asli Influence in Island            | 182         |  |
| Southeast Asia                                                  |             |  |
| 7.2.8 Evidence for Indian and European Influence in Island      | 183         |  |
| Southeast Asia                                                  |             |  |
| 7.2.9 Conclusions                                               | 184         |  |
| 7.3 Implications of this Study for the Origins of Modern Humans | 186         |  |
| 7.4 Future Work                                                 |             |  |
|                                                                 |             |  |

## References

190

## Appendices

| I   | Results of HVS – I Sequencing and Restriction Fragment     | 205 |
|-----|------------------------------------------------------------|-----|
|     | Length Polymorphism Tests                                  |     |
| II  | Results of HVS -II Sequencing, np 10310 and np 8701 Status | 248 |
| III | Table of Southeast Asian Haplotypes                        | 249 |
| IV  | Haplogroup Frequencies                                     | 280 |

## List of Tables and Figures

## Tables

| Table 1  | ble 1 Number of samples obtained from each ethnic group from the |               |
|----------|------------------------------------------------------------------|---------------|
|          | Malay Peninsula                                                  |               |
| Table 2  | Number of samples obtained from each location in Island          | 38            |
|          | Southeast Asia                                                   |               |
| Table 3  | Protocol for general PCR 41                                      |               |
| Table 4  | Protocol for sequencing PCR                                      |               |
| Table 5  | Details of RFLP tests                                            |               |
| Table 6  | Intragroup diversity in the populations under investigation      |               |
| Table 7  | Ages of haplogroups cited in the text 7                          |               |
| Table 8  | Diversity of some of the main Southeast Asian haplogroups        | 77            |
| Table 9  | Tajima's D analysis of dataset8                                  |               |
| Table 10 | Dates of population expansions seen in Southeast Asia            |               |
| Table 11 | Results of analysis of molecular variance of Island Southeast    | <del>99</del> |
|          | Asian populations and the Orang Asli                             |               |
| Table 12 | Control region variants in mtDNAs submitted to complete          | 102           |
|          | sequencing                                                       |               |
| Table 13 | Divergence of relevant haplogroups in the mtDNA coding region    | 103           |
|          | phylogeny                                                        |               |

## Figures

| Figure 1  | igure 1 Skeleton tree of mtDNA haplogroups, showing their geographic |    |
|-----------|----------------------------------------------------------------------|----|
|           | distribution                                                         |    |
| Figure 2  | Map of Southeast Asia                                                | 9  |
| Figure 3  | Map showing the locations from which samples were obtained           |    |
| Figure 4  | Chromatograph illustrating a sample without the np 16189             | 51 |
|           | transition                                                           |    |
| Figure 5  | Chromatograph illustrating the np 16189 transition                   | 52 |
| Figure 6  | Chromatograph illustrating the np 249 deletion                       | 52 |
| Figure 7  | 7 Chromatograph illustrating the presence of np 249                  |    |
| Figure 8  | Chromatograph illustrating the T to C transition at np 152           | 53 |
| Figure 9  | Chromatograph illustrating the G to A transition at np 10310         | 54 |
| Figure 10 | Chromatograph illustrating the A to G transition at np 8701          | 54 |
| Figure 11 | Agarose gel analysis of PCR products spanning the                    | 55 |
|           | COII/tRNA <sup>Lys</sup> intergenic region                           |    |
| Figure 12 | AluI RFLP analysis of PCR products spanning np 10270-10579           | 56 |
| Figure 13 | DdeI RFLP analysis of PCR products spanning np 10270-                | 57 |
|           | 10579                                                                |    |
| Figure 14 | Hinfl RFLP analysis of PCR products spanning np 9620 – 9878          | 58 |
| Figure 15 | AluI RFLP analysis of PCR products spanning np 5154 – 5480           | 59 |
| Figure 16 | Hhal RFLP analysis of PCR products spanning np 7367-7840             | 60 |
| Figure 17 | AluI RFLP analysis of PCR products spanning np 15439-15752           | 61 |
| Figure 18 | Network showing the filtered data from haplogroup D                  | 63 |
| Figure 19 | Network showing the filtered data from haplogroup B4                 | 64 |
| Figure 20 | Network showing the filtered data from haplogroup E                  | 64 |
| Figure 21 | Network showing the filtered data from haplogroup G                  | 65 |
| Figure 22 | Network showing the filtered data from paragroup N*                  | 65 |
| Figure 23 | Network showing the filtered data from paragroup M*                  | 66 |
| Figure 24 | Network showing the filtered data from haplogroup R9                 | 66 |
| Figure 25 | Network showing the filtered data from the Orang Asli samples        | 67 |
| Figure 26 | Network showing the filtered data from haplogroup B5                 | 68 |

| Figure 27 | Network showing the filtered data from haplogroup F 68         |            |  |  |
|-----------|----------------------------------------------------------------|------------|--|--|
| Figure 28 | Network showing the filtered data from haplogroup M7           |            |  |  |
| Figure 29 | Network showing the filtered data from macrohaplogroup N       |            |  |  |
| Figure 30 | Network showing the filtered data from macrohaplogroup M       |            |  |  |
| Figure 31 | Figure 31 PC1 and PC2 of Island Southeast Asian, Taiwanese and |            |  |  |
|           | Chinese data                                                   |            |  |  |
| Figure 32 | PC1 and PC3 of Island Southeast Asian, Taiwanese and           | 79         |  |  |
|           | Chinese data                                                   |            |  |  |
| Figure 33 | PC1 and PC2 of Island Southeast Asia and Taiwan                | 80         |  |  |
| Figure 34 | PC1 and PC3 of Island Southeast Asia and Taiwan                | 81         |  |  |
| Figure 35 | PC1 and PC2 of Orang Asli, Malay, Sumatran and Irian data      | 82         |  |  |
| Figure 36 | PC1 and PC2 of Orang Asli, Malay and Sumatran data             | 83         |  |  |
| Figure 37 | PC1 and PC3 of Orang Asli, Malay and Sumatran data             | 84         |  |  |
| Figure 38 | Mismatch distribution for Island Southeast Asia                | <b>8</b> 6 |  |  |
| Figure 39 | Mismatch distribution for Palu                                 |            |  |  |
| Figure 40 | Mismatch distribution for Manado                               |            |  |  |
| Figure 41 | Manado mismatch distribution without E1 and M7 samples         |            |  |  |
| Figure 42 | Ambon mismatch distribution                                    |            |  |  |
| Figure 43 | Ambon mismatch distribution without haplogroup Q samples       | 89         |  |  |
| Figure 44 | Alor mismatch distribution                                     | 90         |  |  |
| Figure 45 | Palembang mismatch distribution                                | 90         |  |  |
| Figure 46 | Medan mismatch distribution                                    | 91         |  |  |
| Figure 47 | Tengger mismatch distribution                                  | 91         |  |  |
| Figure 48 | Toraja mismatch distribution                                   | 92         |  |  |
| Figure 49 | Sulawesi mismatch distribution                                 | 92         |  |  |
| Figure 50 | Orang Asli mismatch distribution                               | 93         |  |  |
| Figure 51 | Semang mismatch distribution                                   | 94         |  |  |
| Figure 52 | Senoi mismatch distribution                                    | 94         |  |  |
| Figure 53 | Aboriginal Malay mismatch distribution                         | 95         |  |  |
| Figure 54 | Skeleton tree of Eurasian and Orang Asli haplogroups           | 101        |  |  |
| Figure 55 | Maximum likelihood tree of the Asian phylogeny                 | 104        |  |  |
| Figure 56 | re 56 Network of N21 types                                     |            |  |  |
| Figure 57 | Network of N22 types                                           | 106        |  |  |

| Figure 58 Map showing the distribution of haplogroup N9a in Southeas |                                                              | 107 |  |
|----------------------------------------------------------------------|--------------------------------------------------------------|-----|--|
|                                                                      | Asia                                                         |     |  |
| Figure 59                                                            | Network of N9a and N9a1 types                                |     |  |
| Figure 60                                                            | Map showing the distribution of haplogroup Y2 in Southeast   | 109 |  |
|                                                                      | Asia                                                         |     |  |
| Figure 61                                                            | 61 Network of Y2 types                                       |     |  |
| Figure 62                                                            | Network of B* types                                          |     |  |
| Figure 63                                                            | Unweighted network of B4* types                              |     |  |
| Figure 64                                                            | Weighted network of B4* types                                | 114 |  |
| Figure 65                                                            | Unweighted network of B4a* types                             | 115 |  |
| Figure 66                                                            | Weighted network of B4a* types                               | 116 |  |
| Figure 67                                                            | Map showing the distribution of B4 haplogroups in Southeast  | 118 |  |
|                                                                      | Asia                                                         |     |  |
| Figure 68                                                            | Map showing the distribution of the main Oceanic haplogroups | 119 |  |
| Figure 69                                                            | Network of B4a1 types                                        |     |  |
| Figure 70                                                            | Network of B4b types                                         |     |  |
| Figure 71                                                            | Network of B4c types                                         |     |  |
| Figure 72                                                            | Map showing the distribution of haplogroup B5 in Southeast   | 124 |  |
|                                                                      | Asia                                                         |     |  |
| Figure 73                                                            | Network of B5a types                                         | 125 |  |
| Figure 74                                                            | Network of B5b types                                         | 127 |  |
| Figure 75                                                            | Network of P types                                           | 128 |  |
| Figure 76                                                            | Map showing the distribution of haplogroups R9, R21 and R22  | 130 |  |
|                                                                      | in Southeast Asia                                            |     |  |
| Figure 77                                                            | Network of R22 types                                         | 131 |  |
| Figure 78                                                            | Network of R9b types                                         | 132 |  |
| Figure 79                                                            | Map showing the distribution of F haplogroups in Southeast   | 133 |  |
|                                                                      | Asia                                                         |     |  |
| Figure 80                                                            | Unweighted network of F1a* types                             | 134 |  |
| Figure 81                                                            | Weighted network of F1a* types                               | 135 |  |
| Figure 82                                                            | Network of F1a1* types                                       | 136 |  |
| Figure 83                                                            | Network of Flala types                                       | 138 |  |

| Network of F3a and F3b types                                | 139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Network of M21 types                                        | 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Network of M22 types                                        | 142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Network of M7* types                                        | 144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Map showing the distribution of M7 haplogroups in Southeast | 145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Asia                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Unweighted network of M7b*, M7b1 and M7b3 types             | 146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Weighted network of M7b*, M7b1 and M7b3 types               | 147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Network of M7c1*, M7c1a and M7c1b types                     | 149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Network of M7c1c types                                      | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Map showing the distribution of haplogroups D, E and G in   | 151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Southeast Asia                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Network of D5 types                                         | 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Network of E1* and E1b types                                | 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Network of E1a types                                        | 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Network of G* types                                         | 157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Unweighted network of G2 types                              | 158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Weighted network of G2 types                                | 159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Network of Q types                                          | 161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Unweighted network of M* types from Island Southeast Asia   | 164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| and the Malay Peninsula                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Weighted network of M* types from Island Southeast Asia and | 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| the Malay Peninsula                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Network of N* and R* types in Island Southeast Asia         | 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                             | Network of M21 types<br>Network of M22 types<br>Network of M7* types<br>Map showing the distribution of M7 haplogroups in Southeast<br>Asia<br>Unweighted network of M7b*, M7b1 and M7b3 types<br>Weighted network of M7b*, M7b1 and M7b3 types<br>Network of M7c1*, M7c1a and M7c1b types<br>Network of M7c1c types<br>Map showing the distribution of haplogroups D, E and G in<br>Southeast Asia<br>Network of D5 types<br>Network of E1* and E1b types<br>Network of E1a types<br>Network of G* types<br>Unweighted network of G2 types<br>Weighted network of G2 types<br>Unweighted network of M* types from Island Southeast Asia<br>and the Malay Peninsula |

## List of Abbreviations

| AMOVA | Analysis of molecular variance           |
|-------|------------------------------------------|
| ATP   | Adenosine triphosphate                   |
| B.C.  | Before Christ                            |
| BP    | Before present                           |
| bp    | Base pairs                               |
| CI    | Confidence interval                      |
| COII  | Cytochrome c oxidase II                  |
| CRS   | Cambridge reference sequence             |
| DNA   | Deoxyribonucleic acid                    |
| dNTP  | Deoxynucleotide triphosphate             |
| EDTA  | Ethylenediaminetetraacetic acid          |
| Hb-E  | Haemoglobin E                            |
| HVS   | Hypervariable segment                    |
| G6PD  | glucose-6-phosphate dehydrogenase        |
| kb    | Kilobase                                 |
| MRCA  | Most recent common ancestor              |
| mtDNA | Mitochondrial DNA                        |
| NaOH  | Sodium hydroxide                         |
| np    | Nucleotide position                      |
| PC    | Principal component                      |
| PCR   | Polymerase chain reaction                |
| RFLP  | Restriction fragment length polymorphism |
| RNA   | Ribonucleic acid                         |
| rRNA  | Ribosomal RNA                            |
| SE    | Standard error                           |
| SNP   | Single nucleotide polymorphism           |
| STR   | Short tandem repeat                      |
| Taq   | Thermus aquaticus                        |
| TMRCA | Time to the most recent common ancestor  |
| ТРК   | Ta-p'en-k'eng                            |
| tRNA  | Transfer RNA                             |
|       |                                          |

| UV  | Ultra-violet  |
|-----|---------------|
| v/v | volume/volume |
| w/v | weight/volume |

### Acknowledgements

I would like to thank Martin Richards and Dougie Clarke for the supervision and help they have provided throughout this research. I would also like to thank Vincent Macaulay and Antonio Torroni for the assistance they have provided with different aspects of the project.

I would also like to say thank you to my family, especially my parents and Jane, and all my friends, especially Esther, Emily, Anna, Lou, Natalie and Ruth for all their help and support and for putting up with me during the more stressful times!

THANK YOU

#### <u>Abstract</u>

It is known that Island Southeast Asia was colonised relatively early in the history of modern humans; however, it is still a matter of some debate as to whether the modern inhabitants of Island Southeast Asia are descended from these original inhabitants or are the result of some later migration. Currently, the prevailing theory in both archaeology and linguistics is that the modern inhabitants of Island Southeast Asia are largely descended from an agricultural people who originated in China and Taiwan around 6,000 years ago. From there they are thought to have migrated through the Philippines and into Eastern Island Southeast Asia around 2,500-1,500 B.C. assimilating or replacing the indigenous peoples. However, other researchers have suggested that a model of regional continuity is more suitable for Island Southeast Asia and that the modern inhabitants are the direct descendents of the original Pleistocene inhabitants. Still others have suggested that intermediate models would be more appropriate.

This study aimed to use mitochondrial DNA to test the validity of these models. A secondary aim was to look at the mitochondrial DNA of the indigenous Orang Asli groups of the Malay Peninsula in an attempt to reconstruct a picture of the early Pleistocene variation of Southeast Asia. To this end, mitochondrial DNA was obtained and sequenced from 885 individuals from various locations in Island Southeast Asia and also 259 Orang Asli individuals.

This study has demonstrated that the populations of Island Southeast Asia contain a high level of genetic diversity, including a number of novel haplogroups. Significant differences have also been found between Eastern and Western populations suggesting that they have been established long enough to become regionally specific. Most Island Southeast Asian haplogroups date to the Pleistocene or early Holocene which suggests that they are mostly indigenous to the area. Those which could have a connection to Taiwan seem too old to have been part of an 'out of Taiwan' event as it has been traditionally visualised. Only ~13% of mtDNA types (belonging to haplogroups M7c1c, D5 and Y2) could be linked to such an event suggesting that if a migration did occur it was demographically minor.

A number of novel haplogroups were also found in the Orang Asli which form strong support for the theory that that at least the Semang, if not all Orang Asli groups in part, are descended from the original Pleistocene inhabitants of the Malay Peninsula. These novel haplogroups diverge from the same set of founder types as the haplogroups found across the rest of Eurasia; that they diverge from close to the roots of these founder types suggests they are of considerable antiquity. This, along with expansion dates of  $\sim$ 60,000 obtained in this study, suggests that only a single, early 'out of Africa' event took place which led to the peopling of the rest of the world by modern humans.

# 1. Introduction

#### **1. Introduction**

The main aim of this study is to remedy the relative paucity of mitochondrial DNA (mtDNA) data on the indigenous peoples of Island Southeast Asia and the Malay Peninsula and to use this data to construct a genealogical tree for the maternal side of Southeast Asian ancestry. It should then be possible to estimate the number and timings of different colonisation events using the geographic origin of the samples and the time depth of lineages on the genealogical tree.

#### **1.1 Mitochondrial DNA**

Mitochondria are cytoplasmic organelles which are the source of ATP (and therefore energy) production in eukaryotic cells. They have their own genetic system which consists of a 16,569 base pair circular genome in humans (Anderson *et al.* 1981; Andrews *et al.* 1999) and are thought to have originated as endosymbiotic bacteria which were taken up into eukaryotic cells around 1.5 billion years ago (Margulis 1981).

The mitochondrial genome codes for a number of genes including: two rRNAs, 22 tRNAs, cytochrome c oxidase subunits I, II and III, ATPase subunit 6 and cytochrome b (Anderson *et al.* 1981). mtDNA is unusual in that there are either no or very few non-coding bases between the genes; however, the genome does include a section known as the control region (or D-loop) which is non-coding and is therefore the least conserved section of the genome (Anderson *et al.* 1981). mtDNA is also unusual in that its genetic code differs the universal vertebrate nuclear genome code: UGA codes for tryptophan instead of being a 'stop' codon, AUA codes for methionine not isoleucine, AGA and AGG are 'stop' codons instead of coding for arginine, and AUA and AUU are used as initiation codons (Anderson *et al.* 1981).

mtDNA is particularly useful for studying human origins as not only is it present in multiple copies in each cell (Clayton 1982) (making it relatively easy to extract large amounts of DNA), but it is effectively maternally inherited and therefore does not recombine, thus creating a clear maternal genealogy. Spermatozoa do contain ~50-75 mitochondria within their midpiece which enters the oocyte at fertilisation (Ankel-

Simmons and Cummins 1996). However, there appears to be a stringent process in mammalian fertilised eggs which excludes paternal mtDNAs and ensures absolute maternal inheritance (Shitara *et al.* 1998). Paternal inheritance has been detected in mice (Gyllensten *et al.* 1991); however, further study has shown that when this does occur, not enough mtDNA is leaked for it to be distributed to all tissues and it is not transmitted through the germline to the next generation (Shitara *et al.* 1998). Mitochondrial DNA also mutates at a faster rate than nuclear DNA (Brown *et al.* 1979) enabling relatively recent prehistoric events to be studied. Furthermore, these mutations accumulate at a relatively constant rate allowing demographic events to be dated (Ayala 1995).

#### 1.2 Mitochondrial DNA and the Evolution of Modern Humans

mtDNA has now been used for over 20 years in an attempt to answer questions of human origins, migrations and settlement patterns. One of the first studies in the field was that of Brown (1980) who used 18 restriction enzymes to study the mtDNA of 21 humans of different geographic and ethnic backgrounds. The results of this work suggested that the small amount of sequence heterogeneity found could have accumulated in the last 180,000-360,000 years and that modern-day humans could have evolved from a small population which existed at that time. This study also raised the possibility of population-specific restriction fragment length polymorphisms (RFLPs).

This work was elaborated on by Cann *et al.* (1987) and Vigilant *et al.* (1991) amongst others. They extended the number and geographic range of the samples studied and developed the methodology used in studying them to include sequencing of the two hypervariable segments of the control region (Vigilant *et al.* 1991). Both studies supported an age of around 200,000 years for the most recent common ancestor (MRCA) of modern-day human populations and suggested that, furthermore, this ancestor lived in Africa. The African origin was supported by the fact that, in both studies, the genealogical tree of mtDNA types consisted of one branch leading exclusively to African mtDNA types and a second leading to both African and non-African types. This led to mtDNA studies joining the controversy concerning modern human origins and added further support to the 'out of Africa' position as opposed to that of 'multiregionalism'.

Exponents of these models of modern human evolution have been debating their merits for the past few decades. According to followers of multiregionalism, *Homo erectus* (which ranged from Africa to Asia) evolved independently in each of the locations it had spread to, with gene flow occurring between the different populations leading to the gradual and parallel development from *Homo erectus* to *Homo sapiens* (Wolpoff and Thorne 1991). In contrast, the 'out of Africa' hypothesis states that modern *Homo sapiens* arose in Africa around 200,000 years ago before spreading around the rest of the world replacing the more archaic forms of man (Stringer and Andrews 1988). The proponents of both theories claim that the fossil record supports them.

Multiregionalists such as Milford Wolpoff and Alan Thorne believe that regional features can be followed through the fossil record to modern humans with no need for an influx of Africans. For example, they feel that the same features can be traced from the *Homo erectus* specimens found in Asia to the earliest known Australians of ~60,000 years ago and on to modern Australians. They also apply this theory to Europe. Over half of Neanderthals had the opening to their mandibular nerve canal covered by a broad, bony bridge, a trait which is also found in modern humans, in particular Europeans. This is seen by Wolpoff and Thorne (1991) as direct evidence that Neanderthals contributed to the modern human gene pool as this appears more likely than the trait evolving twice.

However, this hypothesis depends on the occurrence of numerous migrations and interbreeding between populations from different continents. There are no obvious parallels to this and it is hard to equate with the current existence of different species or subspecies of other animals in different regions (Ayala 1995). The alternative is the 'out of Africa' hypothesis which is now by far the dominant view and which does not require the concept of parallel evolution. This is based on the evidence that, according to some palaeontologists, late Pleistocene fossils from China resemble European and African middle Pleistocene hominids more than their "supposed local ancestors" (Stringer and Andrews 1988). Also the earliest *Homo sapiens* fossils are found in

Africa and the Levant, no Neanderthal/Homo sapiens transitional fossils have been found in Europe despite the excellent fossil record, and modern humans seem to have been present in the Levant before Neanderthals (Stringer and Andrews 1988). Work on cranial morphology has also supported the view of Neanderthals and modern humans as separate species (Ponce de Léon and Zollikofer 2001). The recent discovery of a possible new hominin species in Flores, Indonesia, is further evidence against the multiregional hypothesis. If confirmed as a new species of Homo, this hominin (known as Homo floresiensis), which lived until as recently as 18,000 years ago, must have evolved (probably from Homo erectus) without any gene exchange with other hominins and also made no contribution to the gene pool of modern Homo sapiens (Brown et al. 2004; Morwood et al. 2004).

As stated above, early mtDNA work appeared to support the 'out of Africa' model. However, these early studies suffered problems due to their lack of resolution. For example, a reanalysis of the Cann *et al.* (1987) data showed that many phylogenetic trees could be constructed which were more parsimonious than the original (Templeton 1993). Some of the more parsimonious trees contained a purely African primary branch as did the original, while others had a mixed African-Asian primary branch. The same problems were found with the Vigilant *et al.* (1991) data. This did not prove that the MRCA was non-African, or even that the new trees were the most parsimonious. It only showed that more parsimonious trees existed, and that a more complete analysis was needed. However, these problems have since been mostly overcome by the use of more extensive sample sets, combined control region sequencing with coding region RFLP typing (e.g. Torroni *et al.* 1996; Macaulay *et al.* 1999), complete mtDNA sequencing (e.g. Ingman *et al.* 2000; Herrnstadt *et al.* 2002) and the use of better phylogenetic analysis (e.g. Bandelt *et al.* 1995; Penny *et al.* 1995; Watson *et al.* 1997).

More detailed studies have confirmed the African origin of modern humans and have shown that all non-African mtDNAs form subclusters of an African clade termed L3 (Watson *et al.* 1997) which is defined by the lack of a *Hpa*I site at nucleotide position (np) 3592 relative to the Cambridge Reference Sequence (or CRS [Anderson *et al*, 1981]) and which expanded from East Africa approximately 60,000 years ago (Mountain *et al.* 1995; Watson *et al.* 1997). These non-African subclusters of L3 themselves form 'macrohaplogroups' M (defined by a transition at np 10400 and the resultant gain of an *Alu*I site at np 10397) and N (defined by a transition at np 10873 and the subsequent loss of a *Mnl*I site at np 10871) (Torroni *et al.* 1994; Quintana-Murci *et al.* 1999), haplogroups from both of which are found across Asia. The general structure of the world-wide tree has been confirmed by the use of complete mtDNA sequences, see figure 1. Ingman *et al.* (2000) used 53 complete mtDNA sequences to create a tree which is almost bifurcating and in which the three oldest clades are entirely African.

Ancient mtDNA has also been used to support the out-of-Africa hypothesis. Neanderthal mtDNAs have been shown to form a separate clade from all modern human mtDNAs. Comparison between Neanderthal and modern human mtDNA has suggested that the Neanderthals diverged from anatomically modern humans ~500,000 years ago, further undermining the multiregional hypothesis (Krings *et al.* 1997; Krings *et al.* 1999a; Ovchinnikov *et al.* 2000).

mtDNA has also been used more specifically to study the settlement processes in different continents and countries, particularly Europe and the Americas. The use of high-resolution restriction analysis showed that most mtDNA types could be classified into different haplogroups (e.g. Schurr *et al.* 1990; Ballinger *et al.* 1992; Chen *et al.* 1995; Torroni *et al.* 1996). Most of these haplogroups were, as predicted by Brown (1980), restricted to certain geographic areas. These haplogroups have since been refined by the addition of control region information (e.g. Macaulay *et al.* 1999) and, more recently, by the use of conformation-sensitive gel electrophoresis. Finnilä *et al.* (2001) used the latter technique to produce a network of European mtDNAs which, although providing many new markers for identifying haplogroups, still agreed predominantly with the earlier classifications found by restriction analysis.

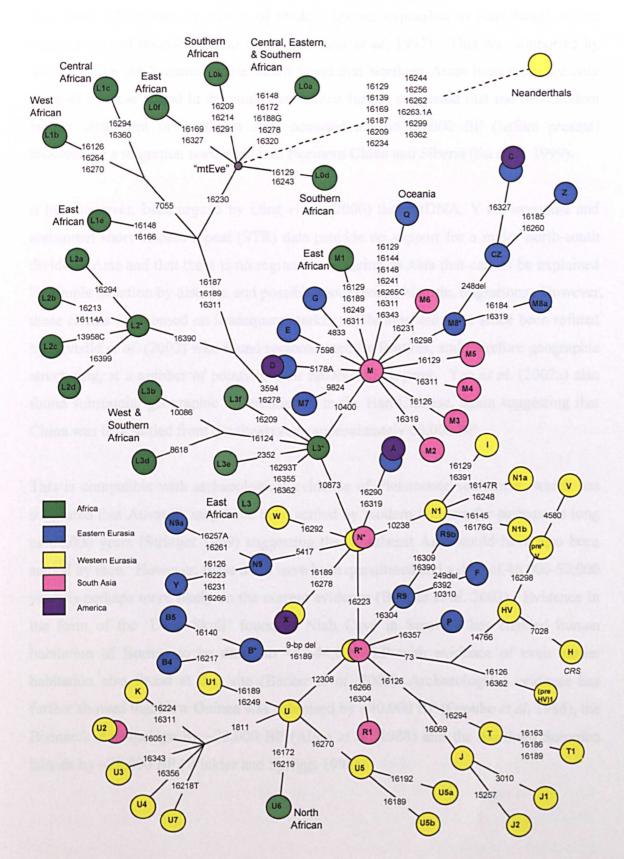



Figure 1 – Skeleton tree of mtDNA haplogroups, showing their geographic distribution (after M. Richards)

Most of the work done on Asia has so far concentrated on migration routes into China and East Asia, and also out into Polynesia. Early work on mtDNA in Asia suggested that South China was the centre of modern human expansion in Asia based on the higher levels of diversity found there (Ballinger *et al.* 1992). This was supported by work done on the Y chromosome which found that Northern Asian haplotypes are only a subset of those found in the south, and which further suggested that the first modern human settlement in Southeast Asia occurred around 60,000 BP (before present) followed by a migration northward into Northern China and Siberia (Su *et al.* 1999).

It has, however, been argued by Ding *et al.* (2000) that mtDNA, Y chromosome and autosomal short tandem repeat (STR) data provide no support for a major north-south divide in Asia and that there is no regional structuring in Asia that cannot be explained by simple isolation by distance and possibly more recent, historic, migrations. However, these claims were based on inadequate marker resolutions and have since been refuted by Kivisild *et al.* (2002) who found regional-specific features, and therefore geographic structuring, at a number of points in their mtDNA phylogeny. Yao *et al.* (2002a) also found substantial geographic differentiation in the Han Chinese, again suggesting that China was first settled from Southeast Asia approximately 60,000 BP

This is compatible with archaeological evidence of Pleistocene settlement, which has suggested that Australia may have been settled by modern humans for perhaps as long as 62,000 years (Stringer 1999) suggesting that Southeast Asia would have also been settled by then. However, these dates have been questioned and a date of 46,000-50,000 years is perhaps more likely on the current evidence (Bowler *et al.* 2003). Evidence in the form of the 'Deep Skull' found in Niah Cave in Sarawak has enabled human habitation of Borneo to be dated to ~43-44,000 B.P with evidence of even earlier habitation also found at that site (Barker *et al.* 2002). Archaeological evidence has further showed that New Guinea was colonised by ~40,000 BP (Groube *et al.* 1986), the Bismarck Archipelago by ~33,000 BP (Allen *et al.* 1988) and the Northern Solomon Islands by ~28,000 BP (Wickler and Spriggs 1998).

#### 1.3 The Origins of Modern Southeast Asians - Archaeology and Linguistics

As stated above, archaeological evidence has shown that Island Southeast Asia was colonised relatively early in the history of modern humans. However, controversy remains about whether the modern inhabitants of Island Southeast Asia are descended from these original inhabitants or are the result of some later migration. This controversy is linked to the colonisation of Polynesia as, despite this early colonisation of Southeast Asia and Melanesia, Polynesia was the last main area of the world to be colonised by humans with Easter Island being colonised by 500 A.D., Hawaii by 600 A.D. and New Zealand not until 1100 A.D. It has been suggested in the past that the Polynesians may have originated in South America (Heyerdahl 1950); however, as will be discussed later in this section, this theory is not supported by any of the archaeological, linguistic or genetic evidence. It would therefore seem obvious that these colonists would at least have had to pass through Island Southeast Asia (see figure 2 for a map of the area under discussion) if they did not originate there.

Theories concerning the history of Island Southeast Asia and the settlement of Polynesia are generally linked to the origin of the Austronesian language family. There are around 1200 Austronesian languages (www.ethnologue.com) which are spoken throughout Island Southeast Asia and Polynesia and also in coastal Melanesia and Madagascar. However, they are not spoken in highland New Guinea (where non-Austronesian, Papuan languages are spoken) or in mainland Southeast Asia (apart from in a small enclave in interior Vietnam) (www.ethnologue.com).

Austronesian languages are generally thought to be derived from languages spoken in mainland Asia. It has been suggested that they form part of an "Austro-Tai" superfamily along with the Kadai languages (spoken in Hainan and Southern China), the Hmong-Mien or Miao-Yao languages (also spoken in Southern China), and Thai (Benedict 1975). A partial 'Proto-Austro-Tai' vocabulary has also been attempted which includes words for field, plough, rice, sugarcane, cattle and canoe. If this theory is correct then it links the ancestry of the Austronesian-speakers to the Neolithic communities of Southern China. However, an alternative hypothesis links Austronesian

and Austroasiatic languages (Blust 1996b); the latter comprise the Munda languages of Eastern India and the Mon-Khmer languages of mainland Southeast Asia. Blust (1996b) suggests that the homeland of this 'Austric' superfamily was located in the Northwestern area of what is now the Yunnan province of China, where the Salween, Mekong and Yangzi rivers run parallel to each other. Blust (1995) also includes Tai-Kadai within an expanded Austric superfamily.

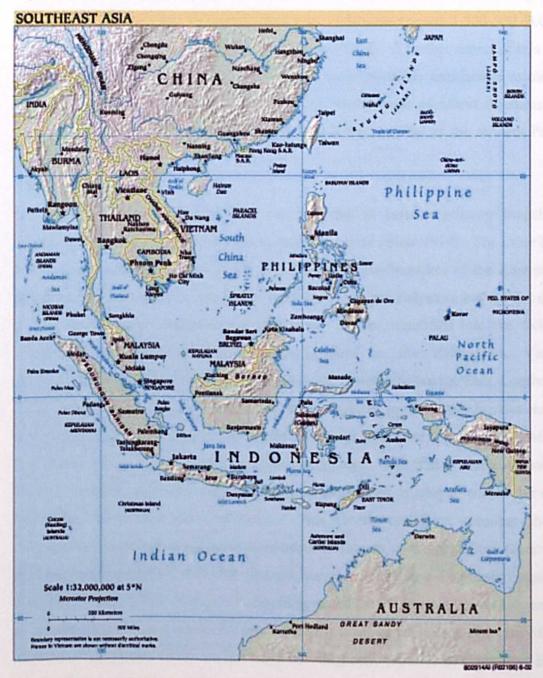



Figure 2 - Map of Southeast Asia

Map courtesy of the CIA World Factbook

One of the main theories of Island Southeast Asian and Polynesian origins is the 'out of Taiwan' model championed by the archaeologist Peter Bellwood (Bellwood 1997) and the linguist Robert Blust (1996a) This model, also known as the 'express train to Polynesia' (Diamond 1988), argues that the ancestors of the modern Austronesian speakers (including, of course, the Polynesians) were a rice-growing, agricultural people who arose on the Southern Chinese mainland and Taiwan approximately 6,000 years ago. From their original homeland, these people migrated through the Philippines and into Eastern Island Southeast Asia around 2,500-1,500 B.C. from where they moved into both Western Island Southeast Asia and Melanesia around 1,500-500 B.C. and eventually reached Polynesia starting in around 300 A.D. A further aspect of this model is that, due to their technological 'superiority', these Neolithic immigrants would have largely replaced the indigenous hunter-gatherer populations of Island Southeast Asia apart from in highland New Guinea where they have survived as the modern Papuan-speakers.

This model is derived partly from the fact that at least 9 primary branches of Austronesian are spoken only by Taiwanese aborigines (Blust 1999). The other branch is argued to be the source of all the Malayo-Polynesian branches of the Austronesian family which are spoken across Island Southeast Asia and Polynesia but are not spoken in Taiwan. Malayo-Polynesian languages are, in turn, classified into the following subgroups: Western Malayo-Polynesian (spoken in the Philippines, Vietnam, Madagascar, Peninsular Malaysia, Sumatra, Java, Borneo, Sulawesi, Bali, Lombok and Western Sumbawa), Central Malayo-Polynesian (spoken in the Lesser Sundas eastward from Eastern Sumbawa and in the Moluccas except Halmahera) and Eastern Malayo-Polynesian which is itself made up of two subgroups. The first of these is spoken in South Halmahera and West New Guinea and the second is spoken across the rest of Melanesia, Micronesia and Polynesia. This is interpreted as meaning that the Austronesian languages must have developed in Taiwan and spread from there across their current distribution with the various branches of Malayo-Polynesian separating along the voyage (Blust 1996a). It should be noted that Western Malayo-Polynesian is not characterised by any phonemic innovations; it is rather comprised of all the Malayo-Polynesian languages which do not have the diagnostic features of Central or Eastern Malayo-Polynesian (Blust 1999).

This was supported by Gray and Jordan (2000) who carried out a parsimony analysis on a linguistic dataset of Austronesian languages. To do this they converted cognate sets from 77 Austronesian languages into a binary matrix. The most parsimonious tree found in this analysis was a close fit to that expected with the 'express train' model; however many of the branches were not well supported. Also Gray and Jordan (2000) assume a Taiwanese root for their data, a Filipino root seems equally plausible. In a more recent work, Greenhill and Gray (in press) created a maximum likelihood tree with the same data which had better resolution and was better supported. This tree also appeared to support the 'express train' model, although some aspects of the branching order were not as expected. For example, the languages included from North Borneo and Brunei occurred basally next to the Taiwanese languages.

It has also been noted by Bellwood (2003) that comparisons with historical data suggest that large-scale language spread does not occur without substantial levels of colonisation. Furthermore, it has been estimated that the maximum time that shared cognates will remain in any language family is ~7,000-10,000 years (Nichols 1998); this in turn suggests an origin for the Austronesian language family sometime in the Holocene and therefore around the time of the beginnings of agriculture (Bellwood 2005). However, this date rests on a branch of linguistics known as glottochronology which assumes that languages change at a constant rate over time. This theory has been criticised on a number of points and is rejected by a number of authors (e.g. Renfrew 1987).

Bellwood (1997) also uses archaeological evidence to trace connections between the Chinese mainland, Taiwan, the Philippines and Island Southeast Asia. For example, the Ta-p'en-k'eng (TPK) culture, which began in Taiwan around 4,300 B.C., has supposed antecedents in Guangdong and Fujian on the Chinese mainland which date to 5,200-4,200 B.C. It is possible that these cultures can in turn be traced back to the Dawenkou tradition of Shandong (which dates from ~6,000 B.C. to ~2,500 B.C.) which has been found to include similar burial practices to those found in Fujian and Taiwan, and which also featured red-slipped pottery (Bellwood 2005). The TPK culture possessed

rice and foxtail millet production and also had reaping knives, spindle whorls and barkcloth beaters (Bellwood 2005).

The TPK culture was followed in Northern Taiwan by the Yüan-shan culture (2,500 B.C. until the first millennium B.C.) which has parallels with some of the early Neolithic sites found in Luzon in the Northern Philippines. For example, artefacts such as pottery earrings and slate projectile points are found in both Taiwan and the Philippines (Bellwood 1997). There is also evidence of a Neolithic trade in jade from Fengtian in Eastern Taiwan to the Philippines (Bellwood 2005). The presence of redslipped pottery and shell artefacts in the Philippines and across Island Southeast Asia has been linked by Bellwood (1997) to the prehistoric Lapita culture of Melanesia and Polynesia and is therefore seen as a further marker of Southeast Asian influence. However, Szabó and O'Connor (2004) have questioned these links, noting that shell ornaments were extremely diverse, both in morphology and mode of manufacture, across Island Southeast Asia and that many of these techniques were different from those used in the Lapita culture. Szabó and O'Connor (2004) also observe that a supposed similarity does not necessarily indicate a "familial" relationship. It could instead be due to a variety of cultural interactions such as trade and exchange, diffusion of an idea or a technology, or the persistence of an already existing culture.

It has also been suggested by Bellwood (1997) and Blust (1996a) that by reconstructing Proto-Austronesian words it is possible to demonstrate the subsistence basis of these expansions from Taiwan. To illustrate this they cite such examples as the words for rice, sugarcane, dog, pig, fowl, sky and head louse which are found in similar forms from Taiwan to Easter Island. Words such as thresh, granary, pestle, mortar and harvest which are obviously related to cultivation of grain crops can also be traced back to proto-Austronesian (Pawley 2003). However, the words for various boat-building activities and also the words for most Pacific Austronesian foods (such as breadfruit, yams, bananas, sago, betel-nuts and chicken) can only be reconstructed to Proto-Malayo-Polynesian and can therefore only be traced back as far as the Philippines at the most (Bellwood 1997). It has also been emphasised by Szabó and O'Connor (2004) that the presence of a term in a reconstructed proto-language does not indicate anything about the relative importance of the item/practice or its exclusive association with the speakers of that proto-language.

The main alternatives to the 'out-of Taiwan' model suggest that the Austronesian languages, and therefore the ancestral Polynesians, evolved somewhere in Island Southeast Asia or Melanesia. If this is the case then the modern inhabitants of Island Southeast Asia are the direct descendents of the original Pleistocene inhabitants. As stated above, Austronesian languages are now spoken throughout Island Southeast Asia and Melanesia except highland New Guinea, some parts of New Britain and New Ireland, and the New Georgia archipelago where non-Austronesian, Papuan languages are spoken (Foley 1986). These languages are also spoken, to a lesser extent, in central and eastern Timor, Alor, Pantar, Morotai and northern Halmahera (Foley 1986); these may be due to migrations within the last ~4,000 years (Pawley 2003). These Papuan languages are extremely diverse with 750 of them being present on New Guinea alone. This is mainly due to the combination of the length of human habitation on the island (~40,000 years according to the evidence of Groube *et al.* [1986]) and the physical barriers between different groups created by the difficult terrain of New Guinea (Foley 1986).

The relationship between these Papuan languages is unclear. Foley (1986) has argued that they are fragmented into around sixty separate families and that they are more appropriately termed 'non-Austronesian' languages due to their negative categorization. However, Wurm (1983) has postulated the existence of a major Trans-New Guinea phylum which comprises over 500 languages and which stretches across more than four-fifths of New Guinea and extends to Timor. He further suggests that the other Papuan languages can be classified into a further four major and six minor groups with only just over half a dozen remaining as unrelated isolates (Wurm 1983).

Dyen (1962) used lexicostatistics to argue that the highest levels of diversity within the Austronesian language family were found in the New Britain area of Melanesia and on the east coast of New Guinea. To him this suggested that the language family must have arisen there. However, this method of analysis has since been criticised as the

Austronesian languages of Melanesia and New Guinea may have become more varied due to their proximity to the Papuan languages (Blust 1995; Bellwood 2005).

It has been argued by Terrell (1981) that the geographic distribution of Austronesian and non-Austronesian speakers on New Guinea can be explained by the divergence of one source population due to "competition and displacement" rather than the arrival of a second, more-'advanced' migrating group replacing some of the indigenous inhabitants. He has also emphasised that Austronesian and Papuan speakers cannot be distinguished unambiguously on cultural grounds and that the linguistic evidence is inconclusive. The Austronesian languages of Papua New Guinea and its adjacent Melanesian islands show great lexical diversity and also have many similarities with non-Austronesian languages, these are usually attributed to borrowing but could reflect a common origin. If this is the case then it seems most likely that the diversity within both Austronesian and non-Austronesian languages has arisen within their present distribution (Terrell 1981).

More recently, Terrell (2004) has argued that the apparent dichotomy between Austronesians and Papuans can be explained by changing environmental factors. In the Late Pleistocene, most of coastal Papua New Guinea would have been uninhabitable and so once humans arrived there they would have had to move inland and would have found it difficult to keep in contact with the areas from which they had originated. At this time, due to lower sea levels, what is now New Guinea was attached by a land bridge to the north of what is now Australia. This would have created a barrier between the island groups of Wallacea in the west and the Bismarks and the Solomons in the east, thus enabling the divergence of culture, speech and physical appearance between the peoples of Southeast Asia and Wallacea and those of New Guinea and the islands to the east. However, by ~6,000 BP, sea levels had risen and created new floodplains and lagoons which would have been much better suited to human habitation. Therefore, by the mid-Holocene, New Guinea would no longer have been isolated and trade could have begun across the whole of Island Southeast Asia.

Further to this, it has also been proposed that, due to the relatively small distances between its islands, much of Melanesia would have been part of an ancient 'voyaging corridor' which stretched from mainland Southeast Asia to the end of the Solomon Islands (Irwin 1992). This would have made it possible for the indigenous peoples to learn the navigational and survival skills necessary to colonise the more distant Pacific. This 'voyaging corridor' may also have enabled trade and interaction between groups over long distances.

Terrell and Welsch (1997) have also used archaeological evidence to criticise the prevailing 'out of Taiwan' model. As stated earlier, the Lapita culture is often cited as proof of a trail of pottery styles and archaeological evidence leading back to the Philippines and Taiwan. However, Lapita pottery has only ever been found in Melanesia and Polynesia (Tonga and Samoa) and not in mainland Asia, Taiwan, the Philippines or Indonesia. In fact it is now known that the Lapita style was developed in the Bismarck Archipelago, therefore any links between Lapita assemblages in Melanesia or Polynesia can only have "generic, not specific" links to early ceramic assemblages from Indonesia (Terrell and Welsch 1997). Terrell and Welsch (1997) also argue that there is no evidence showing Lapita as a widespread and unified culture. The modern-day communities on the 700 km stretch of New Guinean coast studied by Terrell and Welsch (1997) speak 60 different languages which belong to 24 language families; despite this, their material cultures are remarkably similar. This may also have been the case in prehistory, meaning that the presence of related artefacts at Lapita sites does not automatically indicate that the people living at those sites belonged to the same "linguistic group, ethnic group or 'people'" (Terrell and Welsch 1997).

Furthermore, there appears to be no evidence that social and economic contacts between Lapita communities were any different to those which had been developing in the 'voyaging corridor' prior to this time as would perhaps be expected if a new group of people had suddenly arrived in the vicinity. It has often been claimed that the domestication of plants and animals enabled the Lapita expansions into Polynesia (Bellwood 1997). However, Terrell and Welsch (1997) suggest that Lapita subsistence was more likely based on both wild and managed food resources and that there is also no way of showing that the food-management processes seen at some Lapita sites were specific to them or if they were also found at 'non-Lapita' sites. Terrell and Welsch (1997) conclude that the Lapita culture was a product of indigenous development rather than an introduction by a foreign people and that there was possibly a cultural or social barrier which prevented it being transmitted to mainland New Guinea.

Moreover, there is evidence that the people of Melanesia had already developed ground stone, shell tool and ceramic technologies, horticulture and efficient sailing techniques before the beginnings of the Lapita culture (Allen 1996). There is also evidence that the peoples of the 'voyaging corridor' and highland New Guinea had begun to develop agriculture by 9,000 BP Furthermore there is little evidence of rice agriculture in Island Southeast Asia during the period of the putative Austronesian expansion. In two of the three sites where rice and pottery are found together during this period (Gua Sireh in Western Sarawak and Ulu Leang in Southern Sulawesi), the pottery is not of red-slipped, and therefore potentially Lapita related, design (Paz 2003). Taking this into account, and as little Oceanic agriculture has an unambiguous Asian origin, it seems unlikely that the introduction of agriculture from a extraneous source is needed to explain the expansion of the Lapita 'culture'.

Meacham (1984-1985) has also argued against an Austronesian homeland in South China. He argues that while it may be true that the Taiwanese branch of the Austronesian language family may appear to diverge first, this does not necessarily mean that the language family arose in Taiwan. Instead, he contends that the Austronesian languages may have originally had a much greater diversity, much like that seen in the Papuan languages of New Guinea today. This diversity would only have been lost as mobility and communications between groups increased. The Taiwanese languages may have maintained this early diversity if they were not part of this trend of increased mobility. Meacham (1984-1985) also emphasises the fact that there is no evidence that Austronesian languages were ever spoken on the Chinese mainland. Blust (1995), however, suggests that this may not be an issue of concern as the expansion of Han Chinese over the past ~2,000 years may have caused many languages to disappear.

Meacham (1984-1985) further asserts that there is no archaeological evidence for any population pressure in the Neolithic of South China which is generally supposed to be the catalyst for any Austronesian expansion (Bellwood 1997). This should be apparent

in a high density of archaeological sites in the relevant locales; however, the density of sites is always relatively low and even in the Bronze Age "great tracts of lowland appear to have been unoccupied" (Meacham 1984-1985). The same general cultural sequence also seems to be found along much of the coast, suggesting no significant population movements.

The archaeological sequence in Taiwan is seen by Meacham (1984-1985) as being very different from that on the mainland and to support a long period of isolation with only minor contacts. While a number of artefacts are shared between Taiwan and the mainland, they appear in extremely localized contexts in Taiwan and hundreds or thousands of years after they appear on the mainland. Unlike Bellwood (1997), Meacham (1984-1985) suggests that the TPK culture of Taiwan did not originate in China but rather came from the tropics by 5,000-4,000 B.C. or had its origins in the Pleistocene peoples of Taiwan. According to Meacham (1984-1985), the prevailing picture of Taiwanese prehistory is one of isolation.

His theory of Taiwanese prehistory can be summarised as follows: boat development would have been earlier in Greater Sundaland as it broke up into different islands, then as Sundaland broke up Taiwan would have been entered by boat from the south. Several factors suggest that Taiwan was part of 'Austronesia': lack of an Early Neolithic, the continuance of the Palaeolithic, the absence of painted pottery, the presence of horticulture but no rice cultivation, and the presence of Austronesian languages. To Meacham (1984-1985), this suggests that there was one initial migration to Taiwan from the south at some point between 10,000 B.C. and 5,000 B.C with little contact afterwards.

Solheim *et al.* (in press; personal communication) have also argued for a non-Chinese origin for Austronesian languages. They have proposed the term 'Nusantao' for the natives of Southeast Asia (including South China) who were part of a maritime trading and communications network which originated around the South Philippines and East Indonesia. From there, the Nusantao spread north through the Philippines to Southern Taiwan and South-East China at some point before 5,000 B.C. These people would have aided the development of Austronesian languages from proto-Austronesian and

17

possibly started a river trade in South China from where they introduced the TPK culture back into Taiwan. Like Meacham (1984-1985), Solheim *et al.* (in press; personal communication) suggest that at some point Taiwan became isolated, enabling a number of separate Austronesian languages to develop there.

Solheim *et al.* (in press; personal communication) propose that the Nusantao are represented in the archaeological record by a pottery culture which has been termed 'Sa Huynh-Kalanay'. This has been found in the Kalanay cave site in Masbate island in the Philippines, Sa Huynh in Vietnam (the oldest of the sites), the east coast of Thailand, Malaysia, Sarawak and Indonesia. Solheim *et al.* (in press; personal communication) also suggest that the Nusantao network spread from South-East China, through Indonesia and out to the Bismarck Archipelago; there the Sa Huynh-Kalanay pottery was incorporated into the existing Melanesian culture to create the Lapita culture.

A number of researchers have proposed an intermediate history which allows for a Neolithic migration from Taiwan but which includes more interaction with indigenous groups than is proposed by Bellwood (1997). For example, in a review of the current dates of the Neolithic transition, Spriggs (2003) has suggested that, while the spread of the Neolithic from mainland China to Taiwan and on through the Philippines to Sulawesi was relatively straightforward, the picture is not as clear from then on. It is in that area that a number of cultural changes seem to have occurred. For example, rice was the staple crop of the Taiwanese Neolithic but was replaced by root crops outside the Philippines and possibly Borneo. Therefore, Spriggs (2003) suggests that the beginnings of the Neolithic in Southern Wallacea were mainly due to the integration of incoming Neolithic groups with the indigenous pre-Neolithic populations which may have been "pre-adapted" to Neolithisation by the adoption of subsistence practices from New Guinea.

It has also been suggested that the domestic pig species which was introduced to the area east of Sulawesi was a hybrid between the common Eurasian species (*Sus scrofa*) and the indigenous Sulawesi species (*Sus celebensis*) (Groves 1981). However, this has not been supported by recent mtDNA evidence (Larson *et al.* 2005).

18

This idea of integration has been formalised by Green (1991) as part of his 'intrusion/ innovation/integration' or 'Triple-I' hypothesis. He notes that many portable, nonceramic aspects of the Lapita assemblage have no precedent in the Bismarcks, thus suggesting some level of 'intrusion' by an incoming population. However, other aspects of Lapita culture appear to have been 'integrated' into it from the indigenous cultures of the region. These include certain domesticated plants such as taro, bananas, breadfruit, sugarcane and coconuts; the obsidian exchange system also seems to have been carried over from the pre-Lapita inhabitants. Advances in sailing technology show that 'innovation' occurred once the incoming and indigenous cultures became in contact with one another.

Bulbeck et al. (2001) also emphasised continuation between the 'Mesolithic' populations of Sulawesi and Austronesian incomers from Taiwan. One of the main pre-Austronesian technologies in South Sulawesi is termed the 'Toalean' and is applied to microlithic assemblages which date from ~8,000 BP to ~1,500 BP and which include a range of stone points and blades as well as bone points and shell objects. The Toalean people appear to have had a hunting culture which included the use of spears and bows and arrows. The area over which the Toalean sites are found is roughly the same as the area in which the Austronesian, Makassar languages are spoken today. Bulbeck et al. (2001) provide a number of pieces of evidence which suggest that the Toalean huntergatherers interacted directly with the Austronesian farmers. For example, earthenware potsherds are found in late Toalean sites which suggests the use of ceramics had been adopted from the newly-arrived population. Rice and bovid bones have also been found associated with typical Toalean assemblages, suggesting they too were adopted by the indigenous peoples. In contrast, no evidence of farming sites has been found in South Sulawesi prior to ~2,000 BP which implies that (contrary to Bellwood 1997) the possession of a farming culture did not enable any Neolithic immigrants to simply supplant the indigenous hunter-gatherers (Bulbeck et al. 2001).

#### 1.4 The Origins of Modern Southeast Asians - Cranial Morphology

The analysis of cranial morphology generally involves studying a number of standard cranial measurements from a number of populations and applying multivariate statistical

analysis to ascertain the relationships between the various populations. Work on cranial morphology in Asia has suggested that populations from Island Southeast Asia cluster with those from mainland Southeast Asia and that Polynesian groups form a separate cluster between Southeast Asia and Melanesia. They do not appear to be connected with the Taiwanese and Chinese groups studied (Pietrusewsky 1997).

# 1.5 The Origins of Modern Southeast Asians – Genetic Evidence

In recent years this debate has been added to by an increasing amount of genetic data. Most of this work has concentrated on the Polynesian peoples, little work has so far been done on the potential source populations. Work on globin genes used deletions in  $\alpha$ -globin genes, which lead to forms of  $\alpha$ -thalassemia, as potential migration markers (Hill et al. 1985). The most common deletion in Vanuatu and Polynesia was found to be  $-\alpha^{3.7}$ III (a deletion of 3.7 kb between two normal  $\alpha$ -globin genes) which is also found in coastal Papua New Guinea but not, so far, in Southeast Asia, which suggests that it arose in Melanesia. It seems likely that this event happened a substantial amount of time ago as some Melanesian individuals possess a further mutation on top of the  $-\alpha^{3.7}$ III deletion, leading to Hb J Tongariki (Old *et al.* 1978). This evidence combines to suggest that, even if the ancestral Polynesians did not originate in Melanesia, they must have passed through it slowly enough to allow time for them to pick up the  $-\alpha^{3.7}$ III deletion. However, the most common deletion in coastal Papua New Guinea, which leads to a 4.2 kb deletion, is not found in Polynesia suggesting that the ancestral Polynesians may have assimilated or evolved the  $-\alpha^{3.7}$ III deletion somewhere in island Melanesia.

Early work on mtDNA in Polynesia found an extremely high level (93%) of a 9 base pair deletion in the COII/tRNA<sup>Lys</sup> intergenic region (Hertzberg *et al.* 1989) which had previously been suggested as an East Asian marker (Wrischnik *et al.* 1987) and which is now known to characterise haplogroup B (Torroni *et al.* 1992). The deletion was also found in Japan, Korea, the Philippines (Harihara *et al.* 1992), Fiji, in the Tolais of New Britain and in coastal Papua New Guinea but was absent in highland New Guinea (Hertzberg *et al.* 1989). This roughly mirrors the modern distribution of Austronesian languages and was used to suggest that the deletion could be used as a marker for the Austronesian expansions. The populations of highland Papua New Guinea would therefore be representative of the indigenous pre-Austronesian groups, an inference supported by Stoneking *et al.* (1990) who found that populations from highland Papua New Guinea had higher levels of mtDNA diversity than coastal populations and were therefore likely to be older.

Partial sequencing of the first hypervariable segment (HVS-I) of the mtDNA control region enabled Hagelberg and Clegg (1993) to identify transitions at nucleotide positions 16217, 16247 and 16261 in four modern Tahitians and also in ancient DNA from the remains of two prehistoric Polynesians (one of whom dated to 400 BP and another which was undated but pre-European) all of whom also exhibited the 9 base pair deletion. However, the 9 base pair deletion and its related substitutions were not found in earlier remains associated with the Lapita culture which is traditionally linked to the Austronesian expansions. Hagelberg and Clegg (1993) used these findings to suggest that the first inhabitants of the central Pacific originated in Melanesia and that the Lapita culture should be connected to indigenous Melanesians and not Austronesian-speaking migrants thus supporting Terrell (1981). However, these findings were hampered by a small sample size and the fact that the use of ancient DNA is fraught with difficulty and potential contamination issues (see e.g. Kolman and Tuross 2000).

The three transitions discussed above, along with a fourth transition at nucleotide position (np) 16189, are now popularly known as the 'Polynesian motif' (Redd *et al.* 1995) and are characteristic of haplogroup B4a1. They were also found in Hawaii, Samoa, Tonga and Micronesia by Lum *et al.* (1994), the ancestral sequences consisting of either transitions at np 16189, np 16217 and np 16261, or just at np 16189 and np 16217 were also found in Polynesia, Malaysia, Indonesia, China and Japan. Lum *et al.* (1994) also found a group of Polynesian and Papua New Guinean mtDNAs with transitions at np 16223, np 16241 and np 16311 and also an A to C transversion at np 16265 (now known to be characteristic of haplogroup Q), the distribution of which also supports a genetic link between Melanesia and Polynesia.

Redd et al. (1995) found haplogroup B at a frequency of 21% (22% of which had the Polynesian motif) in their samples from the Moloccas (Hiri and Ternate) and Nusa

Tenggara (Alor, Flores, Roti and Timor). They also found it at a frequency of 0% in highland Papua New Guinea, 42% in coastal Papua New Guinea (74% of which had the motif) and 100% in Samoa (79% with the motif). This data (along with an average substitution rate for the control region of  $1.142 \pm 0.333 \times 10^{-7}$  substitutions per site per year per lineage) was used to obtain an age of 58,000 years (95% confidence interval 12,000-104,000 years) for haplogroup B and one of 12,000 years (CI 900-23,000 years) for the Polynesian motif itself. Also found was a general decrease in sequence diversity from Indonesia through coastal Papua New Guinea to Samoa suggesting a sequence of successive founder events. The extreme lack of diversity in Samoa also reflects the recent nature of Polynesian colonisation. Redd *et al.* (1995) concluded that an initial population expansion carrying the deletion reached as far as Indonesia and that the final mutation of the motif (at np 16247) arose in Indonesia between 900 and 23,000 BP subsequent to which there was a final expansion out across Polynesia beginning in around 5,500 BP

Since then the Polynesian motif has been found in Vanuatu, the Cook Islands, the Marquesas and New Zealand (Sykes *et al.* 1995), Madagascar (Soodyall *et al.* 1995), the Trobriand islands near the New Guinea coast (Hagelberg *et al.* 1999), Kiribati, Nauru, Palau, the Marshall Islands and several more locations in Micronesia (Lum and Cann 2000). The motif was also found in ancient DNA extracted from the remains of 12 Easter Islanders by Hagelberg *et al.* (1994). It has, however, never been found in highland Papua New Guinea, West New Guinea (Irian Jaya) (Tommaseo-Ponzetta *et al.* 2002), Taiwan or the Philippines although the ancestral states are very common in the latter two.

Melton *et al.* (1995) again found haplogroup B at near fixation in Polynesia with the motif at 79.2%. The immediate precursor of the motif was found at its highest frequency and diversity in three Aboriginal groups of Taiwan, suggesting that this intermediate motif evolved there. Melton *et al.* (1995) suggested that their data supported the 'out of Taiwan' theory of Bellwood (1997) with the transition at np 16261 occurring in Taiwan and being carried out through the Philippines and into Island Southeast Asia around 6,000 BP The final transition at np 16247 would then have occurred somewhere in East Indonesia before the final migration eastward into

Polynesia. In this case, most modern Island Southeast Asians would be descended from these Taiwanese immigrants.

The 'out of Taiwan' theory also seemed to be supported by the data of Sykes *et al.* (1995) who again found haplogroup B at extremely high levels and extremely low diversity in Polynesia with the highest diversity in Taiwan where it had a minimum divergence estimate of 31,000 years thus suggesting an origin in Southeast Asia. However, Sykes *et al.* (1995) did draw attention to their caveat that the most common Polynesian haplotype is not found in Taiwan or the Philippines. Some Melanesian lineages were also found in Polynesia in the form of haplogroup Q, also found by Lum *et al.* (1994). This was found in all locations surveyed in Polynesia, except the Marquesas, at an overall level of 3.8% and was also found in Papua New Guinea and Vanuatu where it displays considerably higher levels of diversity and where it has a minimum divergence time of 22,000 BP suggesting it may have been introduced to Melanesia during the Pleistocene colonisation of the area.

Richards *et al.* (1998) added to the debate by performing a re-analysis of the Redd *et al.* (1995) data. Using the statistic  $\rho$  (Forster *et al.* 1996), the haplotype ancestral to the Polynesian motif was dated to approximately 30,000 years in Taiwan with the motif itself being dated to ~17,000 years in Eastern Indonesia, ~5,000 years in coastal Papua New Guinea, ~3,000 years in Samoa and ~1,000 years in the Cook Islands. All these estimates, however, did have wide 95% confidence limits and the number of samples available to date the motif in Eastern Indonesia was extremely limited. Nevertheless the results did not provide much support for the 'out of Taiwan' model. Instead they suggested that, as argued by Solheim *et al.* (in press; personal communication), the Polynesian expansion originated somewhere in Island Southeast Asia, probably somewhere between Southeastern Borneo and the Moloccas; modern Island Southeast Asians would, therefore, be descended from the original Pleistocene inhabitants.

Lum and Cann (2000) also argued in favour of Polynesian origins in Island Southeast Asia on the basis of lineage sharing – the majority of lineages they found in Remote Oceania were shared with populations from the Philippines or Indonesia but not mainland Asia. Lum *et al.* (1998) used both mtDNA and nuclear genome short tandem repeat (STR) data in an attempt to broaden the picture of Polynesian ancestry. Using principal component (PC) analysis, they were able to show differences in the clustering patterns when using mtDNA and STRs. When looking at mtDNA, they found that all their Polynesian populations clustered together, with their closest affinities being to Island and mainland Southeast Asia. However, in the STR PC map, Polynesian populations were found to be intermediate between the Asian populations and those from Papua New Guinea. Lum *et al.* (1998) contend that this supports the 'out of Taiwan' model but that the STR data shows extensive male-biased, post-colonisation gene flow. This latter is explained by the hypothesis that most post-colonisation contact (and gene flow) would have been biased in favour of the male portion of the societies who would have been in control of trade.

Y chromosome studies have also cast doubt on the 'out of Taiwan' theory. Su *et al.* (2000) found only one haplogroup (their H6 – defined by the single nucleotide polymorphism [SNP] known as M122; now referred to as haplogroup O3) shared between Taiwan and Polynesia. They also found no evidence of a Melanesian contribution to the Polynesian gene pool, and suggested an origin for the Polynesians somewhere in Island Southeast Asia. Again this implied that modern Island Southeast Asians would be descended from the original Pleistocene inhabitants; however, this study looked at a limited number of SNPs and therefore may suffer from problems of ascertainment.

Kayser *et al.* (2000) found only three Y chromosome haplogroups in the Cook Islands. One of these was defined by a mutation at position 711 of the RPS4Y gene (now known as haplogroup C), which was found at a frequency of 82% in the Cook islands, 26% in coastal Papua New Guinea, 10-15% in Eastern Indonesia and 9-12% in island Papua New Guinea. In the Cook Islands and Papua New Guinea the mutation was consistently associated with the microsatellite deletion DYS390.3; only in Indonesia was the mutation found without the deletion. The age of the deletion was estimated to be 11,500 years (albeit with large confidence intervals and using a very fast mutation rate). Kayser *et al.* (2000) used this to infer that this major Polynesian haplogroup originated in Melanesia, although an Eastern Indonesian origin seems equally likely.

The second major haplogroup found by Kayser *et al.* (2000) in the Cook Islands was haplogroup O3, defined by the SNP M122, which made up 7.1% of their sample. This haplogroup was also found at high frequencies in East and Southeast Asia and at lower levels in Melanesia but was absent in highland Papua New Guinea, therefore mirroring the distribution of the mtDNA 'Polynesian motif'. The age of the M122 mutation was estimated to be 11,100 years with an expansion signal at 6,000 years (again dated using a very fast mutation rate). It was therefore suggested that this second haplogroup represents an expansion from Southeast Asia, possibly with the Austronesian language family, in which Austronesian speakers moved slowly across Melanesia, mixing sufficiently with the indigenous inhabitants to pick up many 'Melanesian' genes.

Capelli *et al.* (2001) also found haplogroup C at high frequencies in Polynesia, as well as in Melanesia and Southeast Asia. It was also found in samples from mainland Asia, but the diversity in those samples was far lower, suggesting an origin in the south. This haplogroup was dated to more than 12,000 years indicating again that it was probably carried by the indigenous peoples of the region.

Haplogroup O3 (termed haplogroup L in their work) was also found at high frequencies in Polynesia, Island Southeast Asia and Taiwan by Capelli and colleagues; again, most of its diversity was found to be in the north. Capelli *et al.* (2001) used a neighbourjoining tree to suggest an origin in the north for haplogroup O3. This was based on the fact that chromosome types from the Ami, a Taiwanese aboriginal group, were distributed through all major groups in the tree. However, this type of analysis may not always be accurate as trees such as this do not allow ambiguities in the dataset to be visualised as would be the case with a network approach. Under the geographic origins postulated by Capelli *et al.* (2001) 93% of their Melanesian samples (which include both Papuan and Austronesian speakers) are assigned as having an indigenous, Pleistocene ancestry with an input of only 3.6% from the north. In Island Southeast Asia the contributions are 32% indigenous and 19.5% northern and in Polynesia they are 64% southern and 32% northern. Therefore over 60% of the Y chromosomes in the region as a whole have an indigenous, pre-Neolithic origin and, in Melanesia at least, the acquisition of Austronesian languages seemed to have been mainly a cultural process, at least on the paternal line of descent.

Kayser et al. (2003) looked at Y-chromosome diversity in West New Guinea (Irian Jaya), which was found to be much lower than that of other populations, including Papua New Guinea. The only populations with a comparably low level were aboriginal Taiwanese and a group from the Cook Islands. Approximately 70% of West New Guinea males were found to belong to haplogroup M\*, the main Melanesian Ychromosome type, which is also found in Eastern Indonesia. Kayser et al. (2003) dated this haplogroup to ~8,200 years with evidence of a population expansion ~4,400 years Two of the groups from the central/western highlands (the Dani and the Lani) ago. were found to be almost fixed for haplogroup C2(M208) which is also found in Papua New Guinea, the Trobriand Islands and the Cook Islands. The Melanesian haplotypes from this haplogroup were found to date to  $\sim$ 4,800 years with an expansion at  $\sim$ 1,500 years. Haplogroup C2 was found in 9% of coastal/lowland West New Guinea samples but was not found in the highlands; this haplogroup has also been found in Papua New Guinea, the Moluccas and the Nusa Tenggaras. Haplogroup K(M230) was found in two samples from West New Guinea; this haplogroup is the major haplogroup of highland Papua New Guinea and is also found in coastal Papua New Guinea, New Britain, the Moluccas and the Nusa Tenggaras.

Kayser *et al.* (2003) also found that the Y-chromosome diversity in West New Guinea was much lower than the mtDNA diversity. They suggested that this could be due to extreme patrilocality and/or polygyny, both of which are known to occur in New Guinea society. Another possible explanation is recurrent warfare which would involve the deaths of many more male than female members of a group. Kayser *et al.* (2003) proposed that the Y-chromosome haplogroups M\*, K(M230) and C2 are indigenous to Melanesia, and that haplogroups O1 and O3 are 'Austronesian'. The latter are present in Papua New Guinea (where they are more common on the coast) but not West New Guinea, thus mirroring a putative Austronesian expansion.

To complement the above work on human genetics in Island Southeast Asia and the Pacific, work has also been done on the mtDNA of the Pacific rat (Rattus exulans) (Matisso-Smith and Robins 2004). R. exulans is thought to originate in Island or peninsular Southeast Asia, and first appears in Remote Oceania associated with Lapita settlements. It is a distinct species to those introduced later by Europeans and so does Matisoo-Smith and Robins (2004) found three major not interbreed with them. haplogroups in their sample; which included ancient and modern samples from across Island Southeast Asia, Melanesia and Polynesia. One of these haplogroups was found only in the Philippines, Borneo and Sulawesi with no indication that it had ever spread east of this. The second was found from the Philippines through Halmahera and Melanesia out to the Santa Cruz islands. Matisoo-Smith and Robins (2004) suggest this could be connected with the prehistoric obsidian trade which is known to have occurred across this area. Finally, the third haplogroup was found across Polynesia and was only found elsewhere in Halmahera. Matisoo-Smith and Robins (2004) propose that this is consistent with the area of Wallacea around Halmahera being this origin of the Lapita culture, and therefore human expansions into the Pacific.

Work on the mtDNA of wild and domestic pigs has also suggested that the area around Halmahera may have been important for the dispersal of pigs into Near Oceania (Larson *et al.* 2005). The mtDNA of pigs from Halmahera, New Guinea, Vanuatu and Hawaii have been shown to form a monophyletic clade which is well separated from any other wild or domestic clusters. No connections have been found between this group and the Taiwanese wild boar, therefore providing no support for the 'out of Taiwan' hypothesis.

# 1.6 Malaysia and the Orang Asli

How is it possible for us to know what the early Pleistocene variation of Southeast Asia would have been like? This seems to be an important question to answer in light of the above arguments. The indigenous Semang groups of the Malay Peninsula are often characterised as the first inhabitants of the region and so could hold the key to answering this question.

The Malay Peninsula is home to an astonishing range of human biological diversity. The indigenous Orang Asli tribes, who make up 0.5% of the population, have traditionally been classified on the basis of language, culture, geographic location and anatomical traits (particularly hair type and skin colour) into three groups: Semang, Senoi and Aboriginal Malay (Carey 1976). Most Orang Asli speak Aslian languages which form part of the Southeast Asian branch of the Austroasiatic family. This family also includes languages spoken in North-Eastern India and Burma, Thailand, Indochina and the Nicobar Islands immediately north of Sumatra (Ruhlen 1987). The Semang speak Northern Aslian languages and live, or did until recently, in small, nomadic hunter-gatherer groups in the lowland rainforests. They resemble the Andamanese and Filipino Aeta in that they are short in stature with dark skin and woolly hair and are often classed with them as 'Negritos' (Bellwood 1997). The Senoi are traditionally swidden (slash and burn) farmers who live at higher altitudes than the Semang, speak Central Aslian languages, and are described as being taller in stature than the Semang, with lighter skin and wavy hair. The Aboriginal Malays are horticulturalists and fishers who resemble physically the Melayu Malays - the most numerous group in Peninsular Malaysia. Some Aboriginal Malay groups, such as the Semelai, speak Southern Aslian languages, while the majority, including the Temuan, speak Austronesian languages, as do the Melayu Malays.

There are a number of distinct models for the prehistory of the Malay Peninsula (Rayner and Bulbeck 2001), which differ in particular on the origins of the Senoi. The traditional 'layer-cake' view (summarised in Carey 1976) sees the three groups as being the products of three separate migrations into the peninsula. The first immigrants were thought to be the ancestors of the Semang who were perhaps also related to the colonisers of New Guinea and the Andaman Islands. The second wave brought the population ancestral to the Senoi who were argued to be related to either the Veddas of Southeast Asia or the Australian Aborigines. The Aboriginal Malays, who resemble other modern Southeast Asians, arrived in the final wave from Island Southeast Asia (Carey 1976; Fix 1995; Rayner and Bulbeck 2001).

Bellwood (1993, 1997) has used archaeological and linguistic evidence to propose that the Semang are descended from the pre-Neolithic Hoabinhian peoples who occupied the interior rainforests of the peninsula from at least 10,000 BP These would have been part of a much broader 'Australo-Melanesian' or 'Old Melanesian' substratum throughout much of Southeast Asia who were later largely displaced by Neolithic newcomers from South China/Taiwan. Archaeological evidence shows that the Hoabinhians also occupied a number of sites on the western coast but the absence of any marine items at inland sites such as Gua Cha suggests that small groups of Hoabinhians lived inland all year round. Bellwood (1993) has argued that the beginning of the Neolithic at around 1,200–2,000 B.C coincided with a dramatic cultural change in methods of burial and also introduced a wide range of artefacts which have no precedent in the Hoabinhian culture. This led him to suggest that the Senoi are descended from Hoabinhian tribes who interbred with incoming Neolithic farmers who probably originated in the Ban Kao culture of Southern and Central Thailand and also brought with them the Aslian languages currently spoken by most Orang Asli groups.

The Austronesian languages spoken by some Aboriginal Malays are closely related to the modern Malay language and to other Malay–Chamic languages of West Borneo, Sumatra and coastal Vietnam, suggesting that they represent a separate migration from Island Southeast Asia (Bellwood 1993). There is some evidence for forest clearances in Sumatra from around 2,000 B.C. but little evidence of a cultural change in the peninsula until the arrival of bronze and iron metal-working and new artifactual styles after 500 B.C. It is therefore suggested by Bellwood (1993) that the Aboriginal Malays represent the descendents of a migration from Sumatra at some point after 2,000 BP

By contrast, several models argue the case for a largely indigenous origin for the Senoi. Solheim (1980) argued that the Semang are descended from Hoabinhians who lived on the coast, and that the Senoi are descended from those who lived inland, with some subsequent admixture from the incoming Aboriginal Malays who passed to them their Neolithic culture. Rambo (1988), on the other hand, believes that the ancestors of both the Semang and Senoi lived on the coast. The first groups to inhabit the interior mountains would have been subject to new environmental and lifestyle pressures as they adapted to swidden farming, thus causing them to diverge into a distinctive group, the Senoi. The Semang evolved from the populations that remained in the lowland forests and traded forest products for tools and food. The Aboriginal Malays represent a comparatively recent migration from Indonesia who have undergone some gene flow with the Semang and Senoi. Benjamin (1985, 1996) has similarly argued the case for local continuity.

Dental, skeletal and cranial data have been used to investigate the biological affinities of the Orang Asli tribes (Bulbeck 1996, 2000; Rayner and Bulbeck 2001). Bulbeck (1996) found that both Hoabinhian and Ban Kao individuals were substantially taller than hinterland Neolithic and modern Orang Asli populations. He also used cranial evidence to suggest that the Semang and Senoi had a common origin and began diverging in the early Holocene as a result of differing selection pressures, following the adoption of agriculture and also gene flow between the Senoi and the expanding Malays. Later 'Mongoloid' genetic contributions to the Senoi led to their characteristic cranio-facial traits. Dental evidence also showed similarities between the Hoabinhians and Neolithic populations, suggesting that the latter represented an expansion of a local population. Again, some 'Mongoloid' inheritance was postulated for the Senoi (Bulbeck 2000).

More recently, Rayner and Bulbeck (2001) proposed that the Semang and New Guinea populations have retained an ancient dental morphology similar to that of Europeans and North Africans. As other Southeast Asian and Pacific populations seem to have diverged from this pattern, this supports the idea that the Semang represent the first settlers of the Malaysian Peninsula. The Aboriginal Malays closely resembled other Island Southeast Asian, Polynesian and Micronesian populations, indicating that they represent a later migration into the Peninsula, while the Senoi were intermediate between the two groups, again suggesting that they are the product of Southeast Asian influence on proto-Semang populations.

Bulbeck (2004) has recently proposed another model for the evolution of the Orang Asli. He suggests that the Hoabinhian peoples foraged along well-defined jungle trails which were disrupted by later incoming populations. In his view, the Semang are descended from groups which adapted to these reduced trails and maintained a living in the jungle. The Senoi are descended from groups which established remote farming communities in the gaps created in the Hoabinhian trails. Finally the Aboriginal Malays are descended from the groups which lived along the rivers and coasts and who were involved in the growing international trade routes.

Few studies have examined the mtDNA of Orang Asli populations. Ballinger *et al.* (1992) included samples from 32 Orang Asli (mostly Senoi) in their study. Five of their samples formed one of the few population-specific clusters in their phylogeny, a subgroup of haplogroup M defined by the gain of an *Alu*I site at np 10143. Other samples belonged to haplogroups M\*, N\*, B and F. Ballinger *et al.* (1992) suggest that their results show close similarities between the Orang Asli, the Austronesian-speaking Sabah aborigines of Northern Borneo and the inhabitants of coastal Papua New Guinea which implies that at least some of the Orang Asli could be the result of Austronesian migrations into the peninsula.

Melton *et al.* (1995) included 30 Senoi in their study. The 9 base pair deletion in the COII/tRNA<sup>Lys</sup> intergenic region which is characteristic of haplogroup B was found in 36.7% of these samples, all of these belonged to the subgroup B4a which is further characterised by a transition at np 16217. In contrast only 3% of the Orang Asli samples studied by Ballinger *et al* (1992) belonged to haplogroup B. Melton *et al.* (1995) present a neighbour-joining tree based on their haplogroup B samples which indicates that the Orang Asli samples cluster most closely with the Filipino samples followed by the Malay and Taiwanese, again suggesting a possible Austronesian influence.

Su *et al.* (1999) showed that the most frequent Y-chromosome clade in a small group of unidentified Orang Asli was haplogroup O2a (nomenclature of the Y Chromosome Consortium [2001]) a group present throughout Southeast Asia. Saha *et al.* (1995) and Gajra *et al.* (1997) used classical markers to propose that the Semai Senoi had undergone a long period of isolation. Saha *et al.* (1995) looked at red blood cell enzymes and plasma protein polymorphisms in 349 Semai Senoi. They found possible private alleles of both red cell glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase in the Senoi which suggests that they have been somewhat isolated genetically and have a long population history. This was supported by Gajra *et al.* (1997) who studied polymorphic sites on the apolipoprotein B100 gene

in 195 Semai Senoi and found a high frequency of one of the ancestral haplotypes which they suggest shows a long population history for the Orang Asli. Saha *et al.* (1995) also used genetic distance and principal component analysis to show that the Senoi cluster with Khmer and Javanese populations and have no real link with the Vedda. This supports the linguistic evidence which indicates a close relationship between the Senoi and the Mon-Khmer. The Senoi do not appear to be particularly close to the nearby Malays, Chinese and Indians which again suggests some degree of genetic isolation.

Fix (1995) used haemoglobin E (Hb-E) and ovalocytosis, both of which are thought to protect against malaria, to study the population structure of the Orang Asli. Both conditions are found in all three groups of Orang Asli albeit at different frequencies. According to Fix (1995), Hb-E appears to be a Mon-Khmer gene which again reflects the linguistic connection between the two groups. Ovalocytosis, however, occurs at high frequencies in small areas from Sulawesi to Papua New Guinea and may have been introduced into the Aboriginal Malays (in whom it is most common) through intermarriage with traders of Island Southeast Asia. It may then have passed into the Senoi and Semang via further gene flow from the Aboriginal Malays (Fix 1995; Fix 2000).

#### 1.7 Island Southeast Asian Groups Investigated in this Study

The group from **Padang** (a city in west central Sumatra) belong to the Minangkabau ethnic group. They practise Islam and speak Minangkabau which is part of the Para-Malay branch of Malayan languages and which is currently spoken by around 6.5 million people. The Malayan languages make up part of the Malayic subgroup of Sundic languages which are themselves a branch of Western Malayo-Polynesian (www.ethnologue.com). The Minangkabau economy is based upon wet-rice agriculture and dry-plot market gardening. It is possible that the Minangkabau were originally of the same ethnic group as the Malays of the Malay Peninsula and Eastern Sumatra but have become differentiated due to isolation (LeBar 1972).

The group from Medan, the capital of Northern Sumatra, belong to the Batak ethnic group. These people were relatively isolated until the  $19^{th}$  Century and even now maintain a more traditional lifestyle than many Indonesian groups (Lebar 1972). They speak one of a number of Batak languages; these languages as a whole are spoken by ~5.8 million people and belong to the Sumatran group of Sundic languages (www.ethnologue.com). Some Batak groups practise Christianity, while others practise Islam and still others practise indigenous religious beliefs. The Batak economy is predominantly based on rice agriculture (LeBar 1972).

All other Sumatran groups included in this study (from **Pekanbaru, Palembang and Bangka**), as well as the group from **Banjarmasin** in Southern Borneo, are ethnic Malays. It has been suggested, based on the high level of linguistic diversity found there, that Western Borneo is the original homeland of the Malay. From there it is thought that Malayic speakers must have spread to Southern Sumatra and eventually across to the Malay Peninsula (Adelaar 2004). Ethnic Malays are fairly widespread across Western Indonesia and tend to speak types of Local Malay which are part of the Malayan group of languages, these in turn form part of the Malayic group of the Sundic languages. Banjar Malay (the type of Local Malay spoken in Banjarmasin) is spoken by  $\sim 2.1$  million people, while Palembang Malay is spoken by  $\sim 500,000$  people. Bangka is a dialect of Malay (which in turn is a branch of Local Malay); Malay is spoken by  $\sim 10$  million people in Indonesia as a whole and  $\sim 40,000$  people in Bangka (www.ethnologue.com).

The **Tenggerese** group included in this study are one of the minority groups of Java and live on the volcanic slopes of the Tengger Mountains in East Java. Traditionally they are thought to have descended from refugees who fled the fall of the Madjapahit kingdom in the early 16<sup>th</sup> Century (LeBar 1972). Speakers of the Tenggerese language, which is part of the Javanese branch of Sundic languages, number ~500,000 (www.ethnologue.com). The Tenggerese economy is mainly based on maize agriculture and on the sale of vegetables and potatoes, they have maintained their indigenous religious beliefs and have not yet adopted Islam or Christianity (LeBar 1972).

The group from Denpasar (the capital of **Bali**) which was included in this study belong to the Balinese ethnic group. The Balinese language is part of the Bali-Sasak branch of Sundic languages and is spoken by  $\sim 3.8$  million people (www.ethnologue.com). Unlike most of Indonesia, Bali is predominantly Hindu; the economy is based on rice cultivation (LeBar 1972).

The group from **Mataram** (the capital of Lombok) belonged to the Sasak ethnic group which is the major ethnic group on the island. The Sasak language is part of the Bali-Sasak branch of the Sundic languages and is spoken by ~2.1 million people (www.ethnologue.com). The Sasak are divided up into the Waktu Telu and the Waktu Lima. The former tend to live in the more remote central and mountain villages and have maintained more of their traditional belief system than the latter who are Islamic, more numerous and tend to live in larger settlements (LeBar 1972).

The group from **Manado** in North-East Sulawesi belong to the Minhasa ethnic group. The Minhasa language (also known as Tombulu) is spoken by ~60,000 people. It forms part of the Minhasan group of languages, which in turn are one of the Sangir-Minahasan branches of Sulawesi languages; the Sulawesi languages are themselves a branch of Western Malayo-Polynesian (www.ethnologue.com). The Minhasans are mostly Christian and have a mainly rice-based economy (LeBar 1972).

The **Toraja** are the indigenous inhabitants of mountainous central Sulawesi. They speak Toraja-Sa'dan languages which are part of the Northern group of South Sulawesi languages, these in turn form part of the Sulawesi branch of Western Malayo-Polynesian (www.ethnologue.com). The group from **Palu** (the capital of central Sulawesi) can be considered to be Western Toraja (LeBar 1972) and speak Kaili. This makes up part of the Kaili-Pamona group of the West Central branch of Central Sulawesi languages, these again form part of the Sulawesi branch of Western Malayo-Polynesian (www.ethnologue.com).

Ujung Padang is also known as Makassar and is one of the major cities of South Sulawesi. The Makarrese speak the language of the same name which is spoken by  $\sim 1.6$  million people in total and which forms part of the Makassar branch of South

Sulawesi languages. As stated above, these form part of the Sulawesi branch of Western Malayo-Polynesian (www.ethnologue.com). The Makarrese are thought to be descended from Toraja groups who have been undergone admixture with later incomers, mainly from Malay and Javanese sources (LeBar 1972).

The group from **Waingapu** (the largest town in Sumba) belong to the Sumbanese ethnic group. They speak Kambera (or East Sumbanese) which has ~200,000 speakers in total. It belongs to the Bima-Sumba group of Central Malayo-Polynesian languages (www.ethnologue.com). The Sumbanese mainly practice small-scale farming and seem to have maintained their indigenous belief systems (LeBar 1972).

The group from Alor belong to the ethnic group of the same name. They speak Alorese which is spoken by ~25,000 people in total and which belongs to the Flores-Lembata group of languages. These in turn belong to the Timor branch of Central Malayo-Polynesian (www.ethnologue.com). Maize agriculture is the main subsistence basis, with pig hunting still occurring in the dry season. There is a complex trade and exchange pattern established amongst mountain villages. The Alorese have mainly maintained their indigenous belief systems (LeBar 1972).

Ambon is the capital of Maluku province (also known as the Moluccas or Spice Islands). Ambonese, which is the primary language, is spoken by ~200,000 people and is a Malay-based Creole (www.ethnologue.com).

No detailed information was available about the ethnicity of the individuals from Kota Kinabalu or the Philippines used in this study.

#### 1.8 Aims of this Study

The main aim of this study is to use mtDNA variation to try to clarify some of the issues discussed in the above sections. As discussed in section 1.5, much work has been done on the mtDNA of Polynesians; however, there is currently not much data on the potential source populations in Island Southeast Asia. Mitochondrial DNA has therefore been obtained from a number of populations from across Indonesia which should enable any potential indigenous and Taiwanese maternal markers to be identified. As discussed in section 1.6, it should also be possible to use mtDNA from the Orang Asli groups of peninsular Malaysia to study the late Pleistocene variation of Southeast Asia.

The main laboratory techniques which will be used in this project are: the polymerase chain reaction (PCR), DNA sequencing and restriction fragment length polymorphism (RFLP) analysis. More specifically, PCR will be used to amplify HVS-I in all samples which will then be sequenced and aligned to the CRS to identify any mutations. If necessary, RFLP analysis, coding region and HVS-II sequencing will then be used to clarify haplogroup status.

The resulting data will be analysed in a number of ways in order to elucidate the picture of Island Southeast Asian ancestry. Principal component analysis will be used to visualise the distance between each population. Analysis of molecular variance (AMOVA) will be used to look for significant differences between the different groups studied in both the Malay Peninsula and Island Southeast Asia. Tajima's D will be used to detect any potential population expansions. These will also be visualised using mismatch distributions. Finally, phylogenetic networks will be constructed for each haplogroup which will enable phylogeographic analysis to be carried out. This data will be used to infer the timing of dispersal and expansion events in Southeast Asia and will be compared to the models for Southeast Asian ancestry discussed in the previous sections.

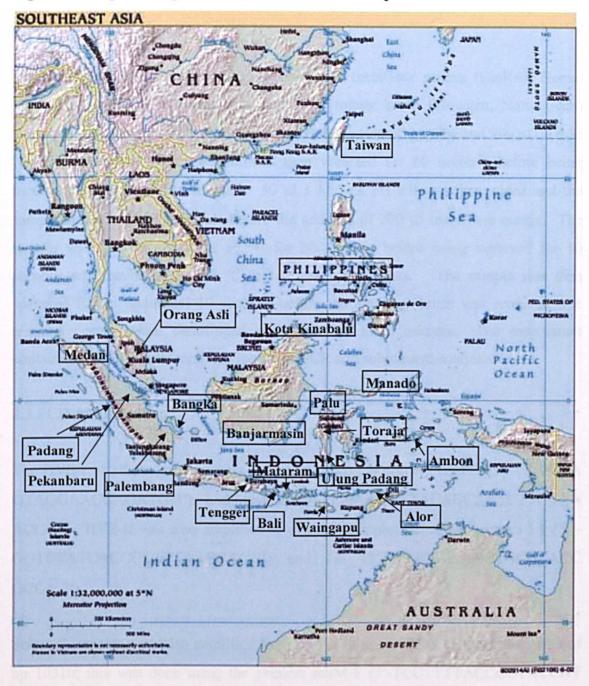
# 2. Materials and Methods

# 2. Materials and Methods

All chemicals and reagents were obtained from Sigma Aldrich (Poole, Dorset) except where stated.

# 2.1 Subjects

Buccal cells were obtained from 259 individuals from the Malay Peninsula using cytological brushes (Flowgen, Nottingham) after obtaining informed consent. 885 anonymous unlinked DNA samples were also obtained by Professor ASM Sofro from across Island Southeast Asia. The study was passed by ethical panels in both the UK and Malaysia, and formally approved by the relevant administrative bodies at both local and national level. The number of samples obtained from each locale/ethnic group is shown in tables 1 and 2. These locations can be seen on the map in figure 3.


| Table 1 – Number of samples | obtained | from | each | ethnic | group | from | the | Malay |
|-----------------------------|----------|------|------|--------|-------|------|-----|-------|
| Peninsula                   |          |      |      |        |       |      |     |       |

|              | Ethnic Group | Number of Samples |
|--------------|--------------|-------------------|
| Semang       |              |                   |
| •            | Jahai        | 50                |
| •            | Mendriq      | 31                |
| ٠            | Batek        | 29                |
|              | Total        | 110               |
| Senoi        |              |                   |
| •            | Temiar       | 51                |
| •            | Semai        | 1                 |
|              | Total        | 52                |
| Aborigin     | al Malay     |                   |
| •            | Semelai      | 60                |
| •            | Temuan       | 32                |
| ٠            | Jakun        | 2                 |
|              | Total        | 94                |
| Melayu Malay |              | 3                 |

# Table 2 - Number of samples obtained from each location in Island Southeast Asia

|           | Location                 | Number of Samples |
|-----------|--------------------------|-------------------|
| Sumatra   |                          |                   |
| •         | Padang (sample code PAD) | 24                |
| •         | Medan (MED)              | 42                |
| •         | Pekanbaru (PEK)          | 52                |
| •         | Palembang (PLB)          | 28                |
| •         | Bangka (BGK)             | 34                |
| -         |                          |                   |
|           | Total                    | 180               |
| Java      | ······                   |                   |
| •         | Tengger (TGR)            | 36                |
| Borneo    | Kata Kinakalu (KK)       | 68                |
| •         | Kota Kinabalu (KK)       | 89                |
| •         | Banjarmasin (BAN)        | 07                |
|           | Total                    | 157               |
| Bali<br>• | Denpasar (BAL)           | 65                |
| Lombok    |                          |                   |
| •         | Mataram (MTR)            | 44                |
| Sulawesi  |                          |                   |
| ٠         | Ujung Padang (UJP)       | 46                |
| •         | Toraja (TOR)             | 64                |
| ٠         | Palu (PAL)               | 38                |
| ٠         | Manado (MND)             | 89                |
|           | Total                    | 237               |
| Sumba     |                          | 60                |
| •         | Waingapu (WAI)           | 50                |
| Ambon (A  | MB)                      | 43                |
| Alor (AL  | D)                       | 45                |
| Taiwanes  | e Aboriginals            |                   |
| •         | Bunun (BUN)              | 8                 |
| •         | Paiwan (PAI)             | 1                 |
|           | Total                    | 9                 |
| Philippin | es (FIL)                 | 19                |

Figure 3 – Map showing the locations from which samples were obtained



DNA was extracted from the Island Southeast Asian samples at the MRC Molecular Haematology Unit in Oxford. All post-extraction work on these samples was performed by myself. 90% of the Orang Asli samples were extracted at the University of Huddersfield by Will Meehan and James Blackburn, around 10% of the RFLP tests were carried out by Mike Ward as part of a final year project. The remainder of the extractions and RFLP tests were performed by myself.

# **2.2 DNA Isolation**

DNA was extracted from buccal cells using the InstaGene matrix (BioRad, Hemel Hempstead) and the following protocol: the cytology brush (Flowgen, Nottingham) containing the sample of buccal cells was placed in a microfuge tube and 500  $\mu$ l 50 mM NaOH added to it. The sample was then vortexed for 60 seconds before being incubated at 95 °C for 10 minutes. 50  $\mu$ l 1 M Tris pH 8.0 was then added and the sample vortexed for 30 seconds before the addition of 200  $\mu$ l InstaGene matrix. The sample was then incubated at 56 °C for 30 minutes before being vortexed for 10 seconds and incubated at 100 °C for a further 8 minutes. The sample was then vortexed for an additional 10 seconds before the cytology brush was removed; the remaining sample was centrifuged at 12,000 rpm for 3 minutes. The supernatant containing the DNA was removed for use in PCR and subsequent analyses.

#### 2.3 PCR Amplification

The HVS-I of all the samples was amplified using the primers conH1 (5'- CCTGAA GTAGGAACCAGATG-3') and conL1 (5'-TCAAAGCTTACACCAGTCTTGTAA ACC-3'). HVS-II was also amplified in selected samples using the primers L4 (5' - GGTCTATCACCCTATTAACCAC-3') and H4 (5'-CTGTTAAAAGTGCATACC GCCA-3').

Selected samples were also amplified from np 10270 to np 10579 to check the status of np 10310; this was done using the primers mitM-F (5'-TCCTTTTACCCCTACCAT GAG-3') and mitM-R (5'-ATTATTCCTTCTAGGCATAGTAG-3'). Other samples were amplified from np 8196 to np 9163 to check the status of np 8701; this was done using the primers mitB-F (5'-ACAGTTTCATGCCCATCGTC-3') and mitWK-R (5'-CCTAGCCATGGCCATCC-3'). The conditions shown in table 3 were used when amplifying all these sections, and when amplifying the other fragments described in sections 2.5 and 2.6.

# Table 3 – Protocol for general PCR

| Reagent                                                                                                                               |                         | Final Concentration                          |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------|--|--|--|
| DNA template (diluted 1/10)<br>Each dNTP<br>Each primer<br>10 x PCR buffer (including 15 mM MgCl <sub>2</sub> )<br>Taq DNA Polymerase |                         | 1 μl<br>125 μM<br>0.2 μM<br>1 x<br>1 unit    |  |  |  |
| Final Volume                                                                                                                          |                         | 25 μl                                        |  |  |  |
|                                                                                                                                       | Temperature             | Time                                         |  |  |  |
| Initial Denaturation                                                                                                                  | 94 °C                   | 4 minutes                                    |  |  |  |
| Denaturation<br>Annealing<br>Extension                                                                                                | 94 °C<br>53 °C<br>72 °C | 1 minute<br>1 minute<br>1 minute<br>1 minute |  |  |  |
| Final Extension                                                                                                                       | 72 °C                   | 8 minutes                                    |  |  |  |

The PCR products were electrophoresed for 15 minutes at 100 V on a 1.5% w/v agarose gel in 1 x Tris borate EDTA buffer (89 mM Tris borate, pH approx. 8.3, containing 2 mM EDTA). The gel was stained in a  $1\mu g/ml$  ethidium bromide solution and visualised on an ultra-violet (UV) transilluminator.

# 2.4 DNA Sequencing

PCR products were purified using QIAquick PCR purification columns (Qiagen, Crawley, West Sussex). The Orang Asli samples and those from Medan and Pekanbaru were sequenced by the University of Dundee sequencing service using an ABI 3700 capillary sequencer. These samples were aligned to the Cambridge Reference Sequence (Anderson *et al.* 1981) using the SeqEd (Accelrys Inc, Cambridge) and Chromas 1.62 (http://www.technelysium.com.au/chromas.html) programs. All other samples were sequenced by myself using a Beckman-Coulter CEQ8000 sequencer. Purified PCR products were reamplified using the relevant forward or reverse primer and the mastermix (known as 'Quickstart') provided by Beckman-Coulter which contains DNA

polymerase, pyrophosphatase, buffer, dNTPs and dye terminators. This was done under the conditions shown in table 4.

| Reagent                                                | ······································ |                             |
|--------------------------------------------------------|----------------------------------------|-----------------------------|
| Purified PCR product<br>Primer<br>Quickstart mastermix |                                        | ~ 50 ng<br>3.2 pmol<br>4 µl |
| Final volume                                           |                                        | 20 µl                       |
|                                                        |                                        |                             |
|                                                        | Temperature                            | Time                        |
| Denaturation                                           | 96 °C                                  | 20 seconds                  |
| Annealing                                              | 50 °C                                  | 20 seconds $>$ 35 cycles    |
| Extension                                              | 60 °C                                  | 4 minutes                   |
|                                                        |                                        |                             |

# Table 4 – Protocol for sequencing PCR

The PCR products were then treated in the following way to precipitate out the DNA:  $2 \mu l 3 M$  sodium acetate,  $2 \mu l 100 \text{ mM}$  EDTA,  $1 \mu l$  glycogen and  $60 \mu l 95\%$  v/v ethanol were added to each sample, samples were then centrifuged at 13,000 x g for 15 minutes at 4 °C. The supernatant was removed and 200  $\mu l$  70% v/v ethanol added before the samples were centrifuged at 13,000 x g for 2 minutes at 4 °C. Again, the supernatant was removed and a further 200  $\mu l$  70% v/v ethanol added before a second centrifugation at 13,000 x g for 2 minutes at 4 °C. The supernatant was removed and the samples dried until all ethanol was removed. 40  $\mu l$  of the 'Sample Loading Solution' provided by Beckman-Coulter was then added before transferring the samples to a 96-well plate for sequencing. Samples were aligned to the CRS (Anderson *et al.* 1981) using the software provided on the CEQ8000.

# 2.5 Testing for the 9 Base Pair Deletion within the COII/tRNA<sup>Lys</sup> Intergenic Region

The 9bp deletion which is characteristic of haplogroup B was detected by PCR amplification with the primers mitB-F (5'-ACAGTTTCATGCCCATCGTC-3') and mitB-R (5'-ATGCTAAGTTAGCTTTACAG-3'), these amplify the region from np 8196 to np 8316 (Wrischnik *et al.* 1987). PCR products were run on a 3% w/v agarose gel in 1 x Tris borate EDTA buffer (89 mM Tris borate, pH approx. 8.3, containing 2 mM EDTA) for at least 30 minutes at 80 V. The gel was stained in a 1µg/ml ethidium bromide solution and visualised on a UV transilluminator. The PCR products amplified from mtDNAs carrying the deletion form 112 bp fragments while the PCR products from mtDNAs without the deletion form 121 bp fragments.

#### 2.6 Restriction Fragment Length Polymorphism Tests

RFLP screening was used to resolve haplogroup status in hierarchical fashion as follows: haplogroup M (+10397 *AluI*, +10394 *DdeI*), N (-10397 *AluI*, -10394 *DdeI*), M7 (+9824 *Hin*fI), D (-5176 *AluI*), E (-7598 *HhaI*), G (+4830 *HhaI*), P (+15606 *AluI*), M15 (-9052 *HhaI*), M16 (+5351 *HhaI*), M17 (+10054 *Hin*fI), M18 (+10143 *AluI*), U (+12308 *Hin*fI), I (+10032 *AluI*). M15, M16, M17 and M18 were identified from Ballinger *et al.* (1992). NB. '+' means the gain of a restriction site whereas '-' means the loss of a restriction site.

The samples were amplified using the relevant primers (shown in table 5) and the conditions shown in table 3. The PCR products were electrophoresed for 15 minutes at 100 V on a 1.5% w/v agarose gel in 1 x Tris borate EDTA buffer (89 mM Tris borate, pH approx. 8.3, containing 2 mM EDTA). The gel was stained in a 1 $\mu$ g/ml ethidium bromide solution and visualised on a UV transilluminator. Successful PCR products were then digested with the relevant restriction enzyme (New England Biolabs, Hitchin, Hertfordshire) (see table 5).

#### Positive Negative Digest Primers Region Enzyme Amplified Used Result Result mitM-F = 5'-TCCTTTTACCCC np 10270 -One band of 310 Μ Alul Bands of 179 bp TACCATGAG-3 np 10579 and 131 bp bp mitM-R = 5'-ATTATTCCTTCT AGGCATAGTAG-3 Bands of 181 bp, As M As M Ddel Bands of 222 bp Ν and 87 bp 87 bp and 41 bp mitM7-F = 5 -CGCATCAGG AGTATCAATCACC-3` mitM7-R = 5`-TATTAGTTG np 9620 – Bands of 132 bp, Bands of 132 bp Hinfl **M7** np 9878 72 bp and 54 bp and 126 bp GCGGATGAAGC-3` mitD-F = 5'-CTACTATCTCGC ACCTG-3 np 5154 -One band of 326 Bands of 304 bp AluI D mitD-R = 3'-TAGGAGTAG and 22 bp np 5480 bp CGTGGTAA-3` mitE-F = 5'-CTCCATAAACCT GGAGTG-3 One band of 473 Bands of 242 bp np 7367 – Hhal E mitE-R = 5'-GTAAAGGAT np 7840 and 231 bp bp GCGTAGGGATG-3 mitGV-F = 5 -GGAGCTTAA ACCCCCTTA-3 Bands of 505 bp One band of 608 G np 4326 – Hhal mitGV-R = 5'-GGATAAGAT np 4934 and 103 bp bp TGAGAGAGT G-3 mitP-F = 5'-CTTACTTCTCTT CCTTCTCTCC-3 One band of 313 Bands of 167 bp np 15439 – Alu Ρ mitP-R = 5 - TTAGAATGA np 15752 and 146 bp bp GGAGGTCTGCGGC-3` mitWK-F = 5'-CCTAGCCAT GGCCATCC-3 One band of 317 Bands of 206 bp Hhal M15 np 8846 – mitWK-R = 5`-GGCTTACTA and 111 bp np 9163 bp GAAGTGTGAAAA C-3` mitD-F = 5 - CTACTATCTCGC ACCTG-3 One band of 326 np 5154 — Hhal Bands of 197 bp **M16** mitD-R = 3'-TAGGAGTACGT np 5480 and 129 bp bp GGTAA-3` mitSM-F = 5`-CTGTATGTC TCCATCTAT TG -3 Bands of 263 bp One band of 357 Hinf1 np 9960 — M17 miSM-R = 3'-TTAGTGGCA and 94 bp np 10317 bp GGTTAGTTGTT -3 M18 |As M17 Bands of 183 bp, Bands of 272 bp AluI As M17 89 bp and 85 bp and 85 bp mitU-F = 5'-CTCAACCCC GACATCATTACC-3 One band of 234

np 12104 -

np 12338

np 9909 --

np 10107

U

I

mitU-R = 5'-ATTACTTTTATT

TGGAGTTGCACCAAGATT-3 mitI-F = 5'-TTCGAAGCCGCC

mitI-R = 5'-GTAGTAAGGCTA

GCCTGATACTGG-3

GGAGGGTG-3

Hinfl

Alul

Bands of 204 bp

Bands of 123 bp

bp

bp

One band of 198

and 30 bp

and 75 bp

# Table 5 – Details of RFLP tests

This was done by incubating the following at 37 °C for 2 hours:

| DNA sample<br>Restriction enzyme<br>Buffer | 5 - 8.5 μl (depending on brightness of band)<br>0.5 μl<br>1 μl |
|--------------------------------------------|----------------------------------------------------------------|
| Total                                      | 10 µl                                                          |

Most digests were then run on 1.5% w/v agarose gels for at least 30 minutes before staining and visualising as before. The only exceptions were the tests for haplogroups M7, D and U which were run on 3% w/v agarose gels.

# 2.7 Verification of the Dataset

All sequence traces were read by two people to ensure accuracy of reading. The results were compared to the existing worldwide database (Martin Richards, personal communication) and, where possible, included in the existing scheme of worldwide haplogroups. Any unusual mutations, such as transversions or transitions at sites with a low relative mutation rate were rechecked. The data from each haplogroup was run through the programme 'netmat' (courtesy of Vincent Macaulay, University of Glasgow) and all sites between np 16051 and np 16365 which undergo transitions at least as fast as the average transitional rate were filtered out. A median network of the remaining sites was drawn using Network 4.1 (http://www.fluxus-engineering.com/sharenet.htm). Any mutations which led to reticulations in the networks were rechecked and the dataset amended if necessary.

# 2.8 Analysis

# 2.8.1 Comparative Data

Comparative data has been taken from the literature, and mostly comprises HVS-I sequence data, often with only the 9-bp deletion in the COII/tRNA<sup>Lys</sup> region included (the data of Yao *et al.* 2002a, Yao *et al* 2002c and Kivisild *et al.* 2002 excluded). HVS-I data alone cannot always be resolved clearly into mtDNA haplogroups and was therefore not included in the PC analyses, although in many cases sufficient motif

information is present to include them in phylogenetic analyses of particular haplogroups or subclades. The data used included samples from: Thailand, Malaysia, Taiwanese aboriginals, the Philippines, Sabah, East Indonesia, Papua New Guinea, Pacific islanders, the Nicobars, Taiwanese Han, Hong Kong Han, China, Japan, Mongolia, Korea, Central Asia, and unpublished data from Singapore and Irian Jaya (Betty *et al.* 1996; Comas *et al.* 1998; Fucharoen *et al.* 2001; Hertzberg *et al.* 1989; Horai and Hayasaka 1990; Horai *et al.* 1996; Kivisild *et al.* 2002; Kolman *et al.* 1996; Lee *et al.* 1997; Lum *et al.* 1998; Melton *et al.* 1998; Nishimaki *et al.* 1999; Oota *et al.* 2001; Pfeiffer *et al.* 1998; Prasad *et al.* 2001; Qian *et al.* 2001; Redd *et al.* 1995; Seo *et al.* 1998; Sykes *et al.* 1995; Yao *et al.* 2000; Yao *et al.* 2002a; Yao *et al.* 2002b; Yao *et al.* 2002c; Zainuddin and Goodwin 2004; Martin Richards, pers. comm.; Peter Forster, pers. comm.).

#### 2.8.2 Measures of Diversity

Intragroup heterozygosity was calculated as  $1 - \sum_{i} x_{i}$ , where  $x_{i}$  is the relative frequency of the *i*th haplotype (Torroni *et al.* 2001). This was calculated for the region between np 16090 and np 16365.

Haplogroup diversity was calculated using  $\rho$ , which is defined as the average number of sites which differ between a set of sequences and their common ancestor (Forster *et al.* 1996; Saillard *et al.* 2000). This was calculated using a mutation rate of one transition every 20,180 years in the region from np 16090 to np 16365.

#### 2.8.3 Principal Component Analysis

Principal component analysis was used to visualise the distance between each population. This was performed using the programme POPSTR (courtesy of Henry Harpending, University of Utah). The analysis was performed on the following combinations of data:

• All data from Island Southeast Asia found in this study along with the Chinese data of Kivisild et al. (2002), Yao et al. (2000), Yao et al. (2002a),

Yao et al. (2002b), Yao et al. (2002c), the Taiwanese data of Tajima et al. (2003) and Melton et al. (1998) which has also been elaborated on in this study, and unpublished data from the Philippines (Martin Richards, personal communication).

- All data from Island Southeast Asia, Taiwan and the Philippines.
- All Orang Asli and Sumatran data from this study along with unpublished data from Irian Jaya (Martin Richards, personal communication) and the Malay data of Zainuddin and Goodwin (2004).
- All Orang Asli and Sumatran data from this study along with the Malay data of Zainuddin and Goodwin (2004).

For each cycle of principal component analysis performed, a second analysis was carried out to plot the contribution of each haplogroup to each principal component.

# **2.8.4 Tajima's** *D*

Tajima's D (Tajima 1989) is a test of selective neutrality which can also be used to detect population expansions. It compares the number of segregating sites (S) to  $\pi$  (nucleotide diversity). Under neutrality these should be equal and therefore D should equal zero. If a system departs from neutrality then D becomes either positive or negative; a significantly negative result can also indicate that a population expansion has occurred. Tajima's D was calculated for all populations using the programme DnaSP (http://www.ub.es/dnasp/).

# 2.8.5 Mismatch Distributions

Mismatch distributions also enable population expansions to be detected. They are constructed from a matrix of pairwise distances; the mismatch distribution is a histogram plotting the number of pairwise differences against their respective frequencies. The shape of the distribution gives insights into the population's history in that a smooth, bell-shaped distribution indicates a population expansion while a ragged, multimodal distribution indicates constant population size (Rogers and Harpending 1992). The raggedness statistic (r) is used to quantify the shape of the distribution – the lower r is, the smoother the distribution. r is defined as the sum of the squared difference between neighbouring peaks in the distribution. Mismatch distributions were constructed using DnaSP (http://www.ub.es/dnasp/) which was also used to calculate r.

Any expansions found in the mismatch distributions were dated using the statistic  $\tau$ .  $\tau = 2ut$ , where t is time in generations,  $\tau$  measures time in units of 1 / 2u generations, and u is the mutation rate of the total region of DNA being studied (Rogers and Harpending 1992).

# 2.8.6 Analysis of Molecular Variance

Analysis of molecular variance (or AMOVA) enables population diversity to be calculated for different hierarchic levels: among groups, among populations within groups, and within populations (Excoffier *et al.* 1992). AMOVA takes into account both haplotype frequencies and the genetic distance between haplotypes.

Successive cycles of AMOVA were performed on the following groups constructed from the dataset (significance was calculated using 1000 permutations):

- All Island Southeast Asian populations compared to each other.
- Eastern Island Southeast Asian populations (those from Mataram, Ujung Padang, Toraja, Palu, Manado, Waingapu, Ambon and Alor) compared to those from West of the Wallace line (Pekanbaru, Medan, Padang, Palembang, Bangka, Tengger, Banjarmasin, Kota Kinabalu and Bali).
- Eastern groups (Ujung Padang, Toraja, Palu, Manado, Waingapu, Ambon and Alor) compared to those from central (Tengger, Banjarmasin, Kota Kinabalu, Bali and Mataram) and Western (Pekanbaru, Medan, Padang, Palembang and Bangka) areas.
- Groups speaking Western Malayo-Polynesian languages compared to those speaking Central Malayo-Polynesian languages and the population from Ambon who speak a Malay-based Creole.
- A second language-based analysis with the Ambonese included in the Western Malayo-Polynesian group.

- All Orang Asli groups compared to each other.
- Orang Asli groups compared to those from Island Southeast Asia.

Matrices of pairwise  $F_{ST}$  values were also constructed to analyse the differences between individual Orang Asli and Island Southeast Asian populations.

All above analyses were performed using Arlequin (Schneider et al. 2000).

# 2.8.7 Phylogeographic Analysis

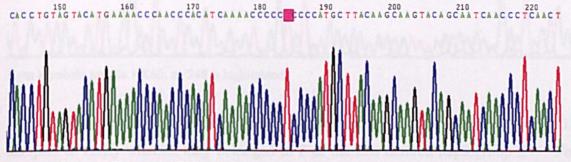
A phylogeographic approach was used to study the distribution of mitochondrial DNA lineages within haplogroups. This integrates the genetic data with its geographic distribution. Examining the geographic distribution of lineages in a network often enables conclusions to be made about prehistoric migrations and other demographic events (see e.g. Macaulay *et al.* 1999 and Torroni *et al.* 2001).

To do this each haplogroup was studied individually. For each haplogroup a reduced median network was constructed manually and verified using the program Network 4.1 (http://www.fluxus-engineering.com/sharenet.htm). In each network, the size of a node is proportional to the number of samples it represents. If there is an incompatibility between two or more samples, this is shown as a reticulation in the network. These can range from 4-cycles which are used to represent incompatibilities between four sequence types to cubes which can show incompatibilities between up to eight sequence types. In a reticulation, the nucleotide pair at which a parallel mutation occurs is included on only one of the relevant branches.

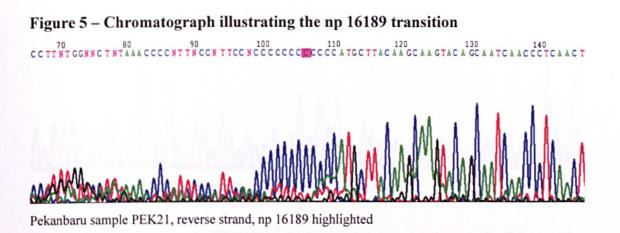
Each haplogroup was dated as a whole using the statistic  $\rho$ , which was described above, again this was calculated using a mutation rate of one transition every 20,180 years in the region from np 16090 to np 16365. If the network was very reticulated then nucleotide positions 16093, 16129, 16189, 16223, 16311 and 16362 were downweighted by one-fifth to try to resolve the network. The geographic distribution of lineages over the network was examined and any subclades within its distribution which were specific to Island Southeast Asia were also dated. It is obviously of interest to

calculate the ages of certain haplogroups in different locations; therefore, where there was sufficient data, haplogroups were dated separately in South China, Taiwan, the Philippines and Island Southeast Asia (and also, in certain cases, in Thailand and Papua New Guinea).

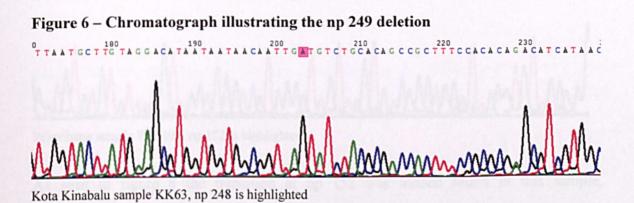
# 3. Results – Laboratory Work


#### 3. Results - Laboratory Work

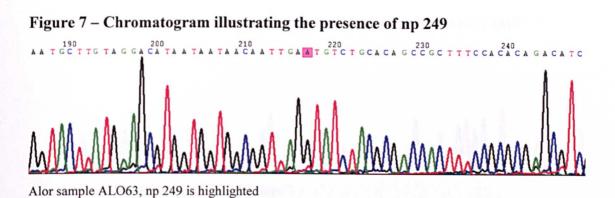
#### 3.1 DNA Sequencing


As stated in section 2.1, 1144 samples were sequenced and/or restriction tested during this study. The HVS-I of all samples was sequenced as described in section 2.3 and was aligned to the CRS (Anderson *et al.* 1981) using either the SeqEd and Chromas 1.62 programs (Orang Asli, Medan and Pekanbaru samples) or using the software provided on the Beckman Coulter CEQ8000 (all other samples).

Roughly 10% of the samples were resequenced to act as checks/controls. For most of the samples sequenced ( $\sim$ 70%) it was only necessary to sequence the forward strand of HVS-I. However, the remaining  $\sim$ 30% of the samples possessed a transition at np 16189 (the defining HVS-I mutation in haplogroup B but also found in other haplogroups) which causes the sequencing trace to be unreadable after this point (see figures 4 and 5), meaning that the reverse strand also needed to be sequenced.


#### Figure 4 - Chromatograph illustrating a sample without the np 16189 transition




Orang Asli sample 38A, np 16189 highlighted



Other areas of the mitochondrial genome were also sequenced in certain samples. Figure 6 shows a section of the second hypervariable region (HVS-II) of sample KK63, sequenced to look for the deletion of an adenine at np 249. This deletion was indeed found and thus the sample was confirmed as belonging to haplogroup C.



The deletion at np 249 is also characteristic of haplogroup F and so was sequenced in 12 samples to verify whether they belonged to F or the less derived haplogroup R9. For example, sample ALO63 was found to lack the deletion at np 249 and so was assigned to haplogroup R9 (figure 7).



The HVS-II of one sample (PLB108) which was thought to belong to haplogroup Z was also sequenced. Haplogroup Z shares the deletion at np 249 with haplogroup C and has

a further transition at np 152 (figure 8).

Figure 8 - Chromatogram illustrating the T to C transition at np 152 90 140 15 140 15 140 15

Palembang sample PLB108, np 152 is highlighted

As seen in figure 8 the transition at np 152 was indeed found in this sample, demonstrating that it does belong to haplogroup Z.

The segment from np 10270 to np 10579 was also sequenced in three samples to look for the presence of a transition at np 10310 which is also characteristic of haplogroup F (see figure 9). This section of chromatogram highlights the presence of the np 10310 transition in sample MND54 which therefore belongs to haplogroup F.

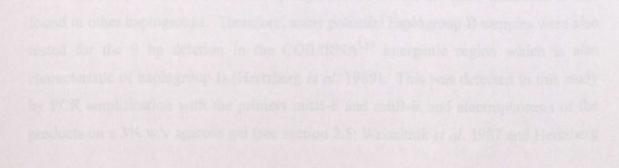
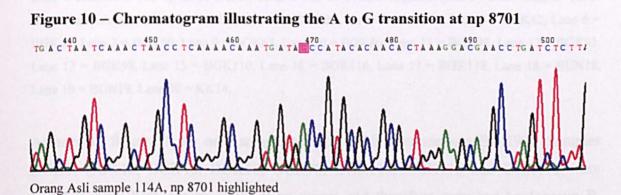
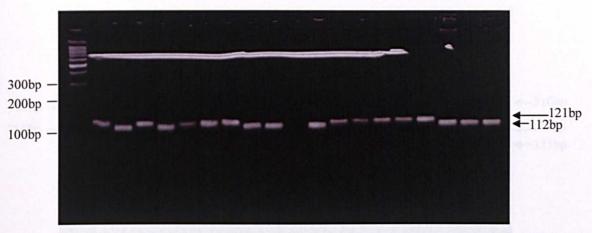




Figure 9 – Chromatogram illustrating the G to A transition at np 10310 c TACCATGAGCCC<sup>40</sup> ACAAACAAC<sup>50</sup> ACCCTACCA<sup>60</sup> TATAGT TA<sup>70</sup> GTCATCCCT<sup>80</sup> TATTAAT

Manado sample MND54, np 10310 highlighted


Finally, the stretch between np 8196 and np 9184 was sequenced in a further three samples (Orang Asli samples: 114A, 115A and 122B) which were thought to belong to a previously unknown branch of macrohaplogroup N. This showed that they all have a transition at np 8701 relative to the CRS, and therefore have the ancestral state at that position (figure 10). They could therefore be a one-step ancestor of macrohaplogroup N but are more likely to represent a reversion at np 8701 as has also been found in the data set of Fuku *et al.* (2002).



## 3.2 Detecting the 9 Base Pair Deletion in the COII/tRNA<sup>Lys</sup> Intergenic Region

As discussed in section 3.1, haplogroup B is defined by a transition at np 16189. However, as np 16189 has a relatively high mutation rate, the same transition is also found in other haplogroups. Therefore, some potential haplogroup B samples were also tested for the 9 bp deletion in the COII/tRNA<sup>Lys</sup> intergenic region which is also characteristic of haplogroup B (Hertzberg *et al.* 1989). This was detected in this study by PCR amplification with the primers mitB-F and mitB-R and electrophoresis of the products on a 3% w/v agarose gel (see section 2.5; Wrischnik *et al.* 1987 and Hertzberg *et al.* 1989). In this process, the mtDNAs hosting the deletion form 112 bp fragments while mtDNAs without this deletion form 121 bp fragments (see figure 11).

# Figure 11 – Agarose gel analysis of PCR products spanning the COII/tRNA<sup>Lys</sup> intergenic region



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Lane 1 contains a 100 bp DNA ladder, lanes 8 and 14 contain negative (non-B) DNA samples (from Czech individuals). Lane 2 = BGK5, Lane 3 = BGK30, Lane 4 = BGK40, Lane 5 = BGK42, Lane 6 = BGK46, Lane 7 = BGK50, Lane 9 = BGK65, Lane 10 = BGK86, Lane 11 = BGK92, Lane 12 = BGK93, Lane 13 = BGK98, Lane 15 = BGK110, Lane 16 = BGK116, Lane 17 = BGK118, Lane 18 = BUN18, Lane 19 = BUN19, Lane 20 = KK24.

As seen in figure 11 the only sample to fail in this instance was BGK92. Samples BGK5, BGK40, BGK46, BGK50, BGK98, BGK110, BGK116 and BGK118 were found to have both copies of the 9 bp repeat and therefore were not haplogroup B. However, samples BGK30, BGK42, BGK65, BGK86, BGK93, BUN18, BUN19 and KK24 did have the 9 bp deletion and were therefore confirmed as belonging to haplogroup B.

### 3.3 Restriction Fragment Length Polymorphism Tests

RFLP screening was also used to resolve haplogroup status. As described section 2.6, this was done in a hierarchical fashion. The samples were first checked for their M and N status (M = +10397 AluI + 10394 DdeI, N = -10397 AluI - 10394 DdeI), and any further tests carried out depended on this result (NB. '+' means the gain of a restriction

site and '-' means the loss of a site). As seen in figure 12, digestion of the M fragment with *Alu*I gives one band of 310 bp if the sample is N and two fragments of 131 bp and 179 bp if it is M.



# Figure 12 – AluI RFLP analysis of PCR products spanning np 10270 – 10579

Lane 1 = 100 bp ladder, Lane 2 = AMB77, Lane 3 = AMB94, Lane 4 = BAL6, Lane 5 = BAL7, Lane 6 = BAL8, Lane 7 = BAL10, Lane 8 = BAL12, Lane 9 = BAL15, Lane 10 = BAL16, Lane 11 = BAL18, Lane 12 = BAL21, Lane 13 = BAL31, Lane 14 = BAL35, Lane 15 = BAL38, Lane 16 = BAL43, Lane 17 = BAL47, Lane 18 = BAL50, Lane 19 = BAL51, Lane 20 = BAL52.

As seen above, samples AMB77, AMB94, BAL6, BAL7, BAL8, BAL10, BAL12, BAL15, BAL16, BAL18, BAL21, BAL35, BAL38, BAL47 and BAL52 have bands at 131 bp and 179 bp and are therefore M. However, samples BAL31, BAL43, BAL50 and BAL51 have only one band at 310 bp and are therefore macrohaplogroup N.

The results of most *Alu*I digests were verified by digesting the same sample fragment with *Dde*I. As seen in figure 13, this digestion gives bands of 181 bp, 87 bp and 41 bp in M samples and bands of 222 bp and 87 bp in N samples.

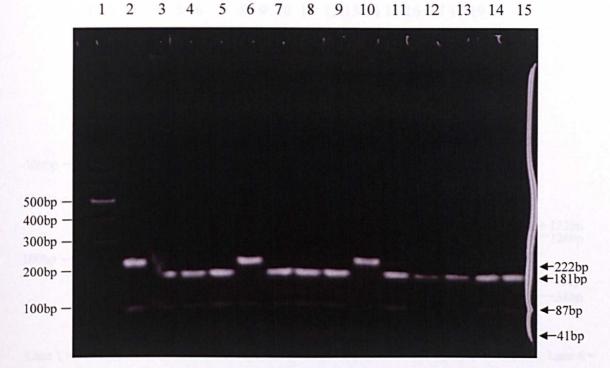
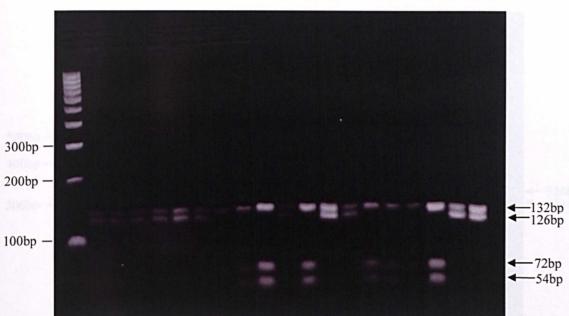




Figure 13 – DdeI RFLP analysis of PCR products spanning np 10270 – 10579

Lane 1 = 100 bp ladder, Lane 2 = BAL13, Lane 3 = BAL19, Lane 4 = BAL30, Lane 5 = BAL33, Lane 6 = BAL34, Lane 7 = BAL60, Lane 8 = BAL63, Lane 9 = BAL65, Lane 10 = BAL80, Lane 11 = BGK25, Lane 12 = BGK45, Lane 13 = BGK78, Lane 14 = BGK111, Lane 15 = PAD31.

As seen above, samples BAL19, BAL30, BAL33, BAL60, BAL63, BAL65, BGK25, BGK45, BGK78, BGK111 and PAD31 had a band at 181 bp and therefore belonged to macrohaplogroup M. On the other hand, samples BAL13, BAL34 and BAL80 had a band at 222 bp, these samples are therefore part of macrohaplogroup N.

Samples which were found to belong to macrohaplogroup M were further tested to assign them at the haplogroup level; some of these are illustrated below. Haplogroup M7 is defined by the gain of a *Hin*fI site at np 9824; relevant samples were amplified between np 9620 and np 9878 in order to study this site. As there is also a *Hin*fI site at np 9752, non-M7 samples have bands of 126 bp and 132 bp while M7 samples give bands at 54 bp, 72 bp and 132 bp (see figure 14).



#### Figure 14 – HinfI RFLP analysis of PCR products spanning np 9620 - 9878

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Lane 1 = 100 bp ladder, Lane 2 = KK148, Lane 3 = KK149, Lane 4 = KK151, Lane 5 = KK154, Lane 6 = KK157, Lane 7 = KK167, Lane 8 = KK169, Lane 9 = KK172, Lane 10 = KK174, Lane 11 = KK178, Lane 12 = MND4, Lane 13 = MND11, Lane 14 = MND12, Lane 15 = MND33, Lane 16 = MND38, Lane 17 = MND39, Lane 18 = MND43, Lane 19 = MND52, Lane 20 = MND55.

As seen here samples KK169, KK172, KK174, MND4, MND33, MND38, MND39 and MND43 do belong to haplogroup M7 while samples KK148, KK149, KK151, KK154, KK157, KK167, KK178, MND11, MND12, MND52 and MND55 do not.

Samples were also tested for their *Alu*I status at np 5176; loss of an *Alu*I site at this position is characteristic of haplogroup D. To evaluate this position, samples were amplified between np 5154 and np 5480. Samples belonging to haplogroup D have a single band of 326 bp whereas non-D samples have two bands of 22 bp and 304 bp (see figure 15).




Figure 15 - AluI RFLP analysis of PCR products spanning np 5154 - 5480

Lane 1 = 100 bp ladder, Lane 2 = KK157, Lane 3 = KK161, Lane 4 = KK167, Lane 5 = KK169, Lane 6 = positive control known to be haplogroup D, Lane 7 = KK171, Lane 8 = KK172, Lane9 = KK174, Lane 10 = MND1, Lane 11 = positive control known to be haplogroup D, Lane 12 = MND5, Lane 13 = MND11, Lane 15 = MND16.

As seen above, samples KK161, MND1 and MND5 have the band at 326 bp and are therefore haplogroup D. However, samples KK157, KK167, KK169, KK171, KK172, KK174, MND11 and MND16 have the band at 304 bp and therefore do not belong to haplogroup D. The band at 22bp is too small to be seen on the gel.

To test whether samples belonged to haplogroup E, they were amplified between np 7367 and np 7840 and digested with *Hha*I. Haplogroup E is defined by the loss of a *Hha*I site at np 7598 and so has a single band of 473 bp, non-E samples have two bands at 231 bp and 242 bp (see figure 16).



Figure 16 – HhaI RFLP analysis of PCR products spanning np 7367 – 7840

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Lane 1 = 100 bp ladder, Lane 2 = PAD100, Lane 3 = PAD94, Lane 4 = PAD112, Lane 5 = PAL30, Lane 6 = PAL36, Lane 7 = PAL37, Lane 8 = PAL39, Lane 9 = PAL54, Lane 10 = PAL59, Lane 11 = PAL95, Lane 12 = PAL99, Lane 13 = PAL108, Lane 14 = PAL155, Lane 15 = PAL166, Lane 16 = PLB10, Lane 17 = PLB19, Lane 18 = PLB47, Lane 19 = PLB58, Lane 20 = PLB63.

As seen above, samples PAD94, PAD112, PAL39, PAL54, PAL95, PAL99, PAL166 and PLB58 have the band at 473 bp and are therefore E. However, samples PAD100, PAL30, PAL36, PAL37, PAL59, PAL108, PAL155, PLB10, PLB19, PLB47 and PLB63 do not belong to haplogroup E. The bands at 242 bp and 231 bp have not been fully separated due to the poor resolution of the gel.

Some samples from macrohaplogroup N were tested for their *Alu*I status at np 15606, the gain of an *Alu*I site at this position is diagnostic of haplogroup P (see figure 17). When digested, haplogroup P samples have bands of 146 bp and 167 bp whereas non-P samples have only a single band at 313 bp.



## Figure 17 – AluI RFLP analysis of PCR products spanning np 15439 – 15752

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Lane 1 = 100 bp ladder, Lane 2 = ALO1, Lane 3 = ALO115, Lane 4 = AMB25, Lane 5 = AMB50, Lane 6 = BAL13, Lane 7 = BAL34, Lane 8 = BAL51, Lane 9 = BAL65, Lane 10 = BAL80, Lane 11 = BGK25, Lane 12 = BGK26, Lane 13 = BGK78, Lane 14 = BGK111, Lane 15 = MND9, Lane 16 = MND11, Lane 17 = MND79, Lane 18 = MND84, Lane 19 = MND97, Lane 20 = MTR122.

In the example above, samples MND9, MND11 and MND97 have the two smaller bands and are therefore haplogroup P. All the other samples (ALO1, ALO115, AMB25, AMB50, BAL13, BAL34, BAL51, BAL65, BAL80, BGK25, BGK26, BGK78, BGK111, MND79, MND84 AND MTR122) were not digested and therefore do not form part of haplogroup P.

# 4. Results – Evaluation of the Dataset

#### 4. Results - Evaluation of the Dataset

As stated in section 2.1, 1144 samples were sequenced / RFLP typed as part of this study. Obviously such a substantial data set needs to be checked to verify the authenticity of the sequences. This is highlighted by the high level of mistakes which have made their way into the literature. These can usually be identified in an excess of transversions/indels or the sharing of unusual mutations between several haplogroups/lineages. For example, the data set of Lee *et al.* (1997) displays a great excess of transversions, most of which are unique in the literature. One of their samples in fact shows three such transversions. This suggests that most of these mutations are artefactual, possibly due to phantom mutations (e.g. systematic appearances of false mutations which may be due to biochemical problems) or base shifts due to mis-scoring (Bandelt *et al.* 2001).

Mistakes such as these have led to unnecessary confusion about the occurrence of recombination in mtDNA. For example, Hagelberg *et al.* (1999) claimed to have found evidence of mtDNA recombination in a population from the island of Nguna in Vanuatu. They appeared to have found a rare transition at np 16076 in five separate mtDNA lineages from the same island – including what are now defined as haplogroups B4a1, P and Q. As there is no evidence that np 16076 is hypervariable, they postulated that mtDNA recombination was the only explanation for their results and that it must happen relatively often to explain the frequency of this mutation in their results. However, these mysterious results were in fact a consequence of a ten nucleotide shift in the Nguna sequences relative to the reference sequence; the transitions at np 16076 were in fact transitions at the much more variable np 16086, meaning that the recombination conclusion was "no longer tenable for these data" (Hagelberg *et al.* 2000).

Therefore it is important to check a data set thoroughly before utilising it in any further analysis. The most obvious way to start is to ensure that the all sequence data are read by two people and then to attempt to fit the results into the scheme of existing haplogroups. In this study, this was done by comparing the new data with the existing worldwide database and identifying the occurrence of haplogroup-specific mutations. Networks were drawn by hand and any unusual mutations, particularly at sites with a low relative mutation rate, were rechecked with the original sequence data. Any unusual transversions were also rechecked.

Another method used to check the validity of the data set is to filter out any frequent mutations and use a (quasi-)median network to visualise incompatibilities (Bandelt *et al.* 2002). In this study, each major haplogroup (plus macrohaplogroups M and N as a whole) was analysed individually, by using the methods of Bandelt *et al.* (2002), and the programme 'netmat' (courtesy of Vincent Macaulay, University of Glasgow). This process filters out the sites between np 16051 and np 16365 which undergo transitions at least as fast as the average transitional rate. A network of the remaining sites was drawn using Network 4.1 (Shareware Phylogenetic Software Website).

The following haplogroups gave perfect trees (i.e. no homoplasy in the filtered data): B4, D, E, G, M21, N9, N\*, M\*, P, Q and R9; some of these are shown in figures 18-24. This suggests that no major errors were made in collecting at least the results for these haplogroups.

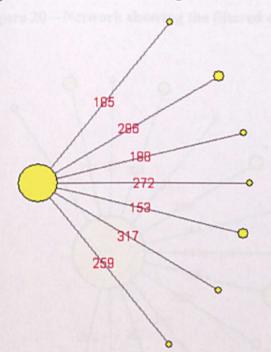



Figure 18 - Network showing the filtered data from haplogroup D

Figure 19 – Network showing the filtered data from haplogroup B4

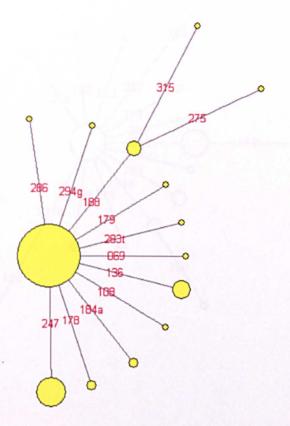
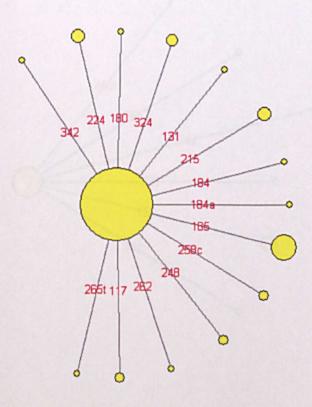




Figure 20 – Network showing the filtered data from haplogroup E





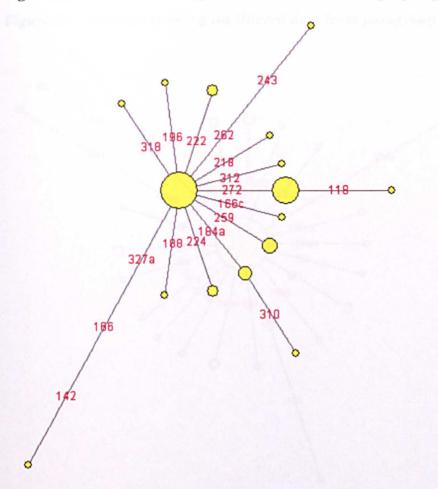
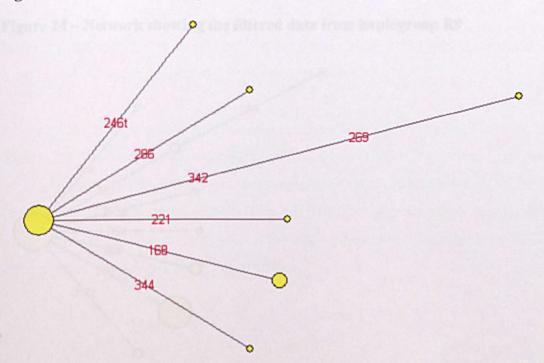
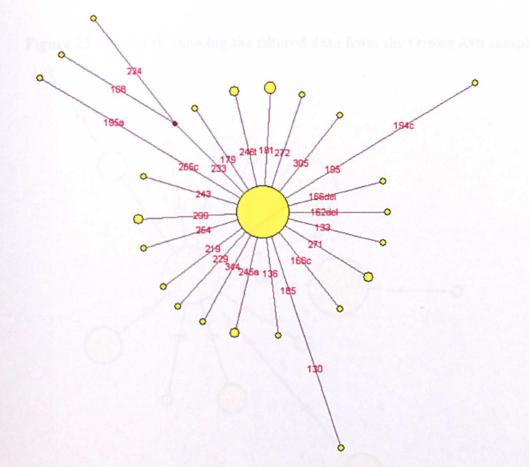
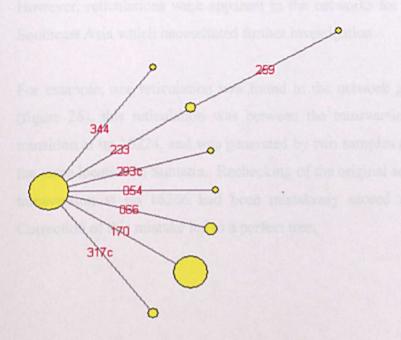
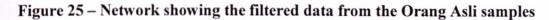




Figure 22 – Network showing the filtered data from paragroup N\*



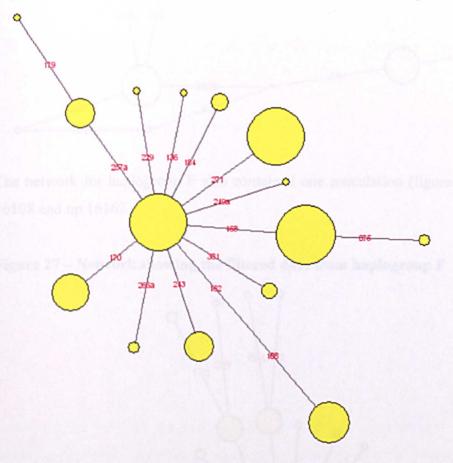
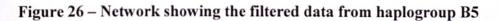
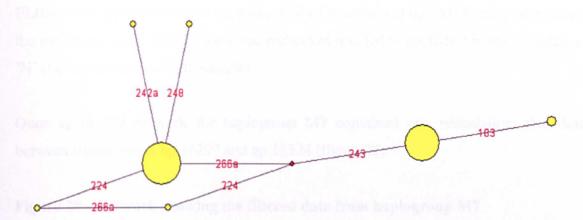


Figure 23 – Network showing the filtered data from paragroup M\*

Figure 24 - Network showing the filtered data from haplogroup R9



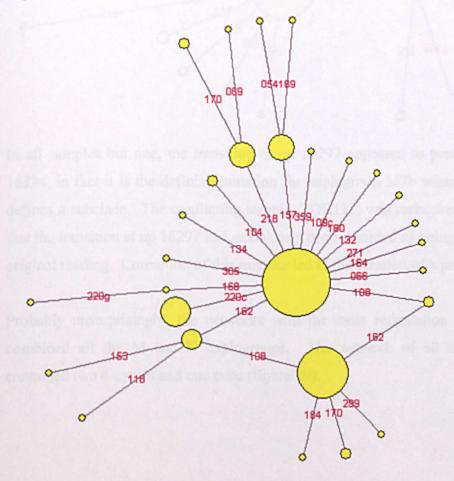

A network was also constructed of the Orang Asli data which again gave a perfect tree (figure 25).







However, reticulations were apparent in the networks for other haplogroups in Island Southeast Asia which necessitated further investigation.


For example, one reticulation was found in the network generated for haplogroup B5 (figure 26), this reticulation was between the transversion to A at np 16266 and a transition at np 16224, and was generated by two samples (PEK116 and PEK119) from the same location in Sumatra. Rechecking of the original sequence data showed that the transversion at np 16266 had been mistakenly scored as a transition in PEK119. Correction of this mistake led to a perfect tree.





The network for haplogroup F also contained one reticulation (figure 27), between np 16108 and np 16162.





These transitions define haplogroups F1a1a and F1a1 respectively, samples PLB31 and PLB56 both appeared to have the more derived transition at np 16108 but were missing the earlier one at np 16162. This was rechecked and led to np 16162 being recorded as 'N' (i.e. unreadable) in both samples.

Once again, the network for haplogroup M7 contained one reticulation, this time between transitions at np 16297 and np 16324 (figure 28).

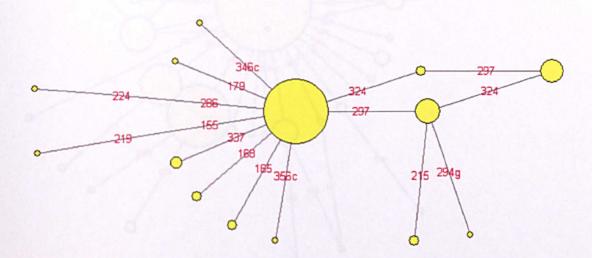
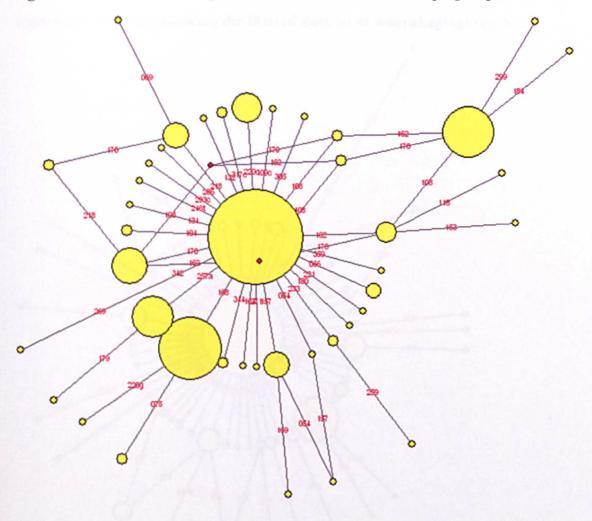
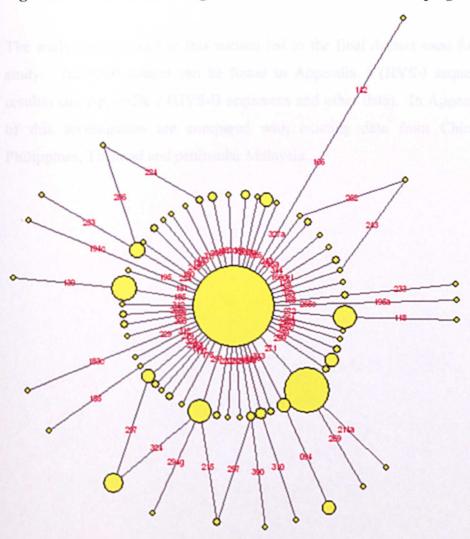




Figure 28 - Network showing the filtered data from haplogroup M7

In all samples but one, the transition at np 16297 appeared to precede the one at np 16324, in fact it is the defining mutation for haplogroup M7b whereas np 16324 only defines a subclade. The conflicting sample, TOR111, was rechecked and it was found that the transition at np 16297 had mistakenly been recorded as being at np 16294 in the original reading. Correction of this mistake led to the creation of a perfect tree.

Probably unsurprisingly, the networks with the most reticulation were those which combined all the M and N haplogroups. The network of all the N haplogroups contained two 4-cycles and one cube (figure 29).






One of the 4-cycles was between np 16054 and np 16157, rechecking this led to both ALO58 and ALO64 being re-classified as 'N' at 16054. The second 4-cycle and the cube were generated by the 16108-16162 reticulation which was dealt with in 'F' above, and also by the presence of a transition at np 16170 in both F\* (PEK7) and F1a1a (PLB44 and PLB45). The existence of these transitions was verified by rechecking the original sequence data and it was also found in MED8 (a match for PEK7) which was missed when analysing the sequences the first time. Transitions at np 16170 have also been found by other studies in haplogroups H, K, L1, L2 and L3 (Vigilant *et al.* 1991; Watson *et al.* 1997; Parson *et al.* 1998; Krings *et al.* 1999b) providing further support for their occurrence on different backgrounds.

The network of all the M haplogroups contained four 4-cycles (figure 30).

Figure 30 - Network showing the filtered data from macrohaplogroup M



The first of these was between np 16243 and np 16262, investigation of which led to the correction of the sequence for MND30 from a transition at np 16262 to one at np 16261. The second 4-cycle was between np 16224 and np 16286. Examination of the sequences containing one or both of these mutations led to the discovery that a transition at np 16287 in MND84 had been mistakenly classified as being at np 16286. The final two 4-cycles were generated by transitions at np 16215, np 16297 and np 16324. In this case (apart from the mistake which led to the reticulation in the M7 network which was dealt with above) the occurrence of these transitions was verified by rechecking the original sequences. Therefore, in the Island Southeast Asian sample, both np 16215 and np 16324 are found in both haplogroup E1 and haplogroup M7b/M7b1. However, both mutations have also been found in other European, Asian

and African haplogroups (e.g. Richards *et al.* 1996; Watson *et al.* 1997; Yao *et al.* 2000) suggesting again that they are true, recurrent mutations.

The analysis performed in this section led to the final dataset used for the rest of the study. The final dataset can be found in Appendix 1 (HVS-I sequences and RFLP results) and Appendix 2 (HVS-II sequences and other data). In Appendix 3 the results of this investigation are compared with existing data from China, Taiwan, the Philippines, Thailand and peninsular Malaysia.

# 5. Results – Analysis

## 5. Results – Analysis

#### 5.1 Heterozygosity

From even a cursory look at the sequence data found in this study (see Appendix I), it seems clear that the Island Southeast Asian populations studied have retained much more diversity than the Orang Asli groups. This was confirmed using a measure of heterozygosity (as detailed in section 2.8.2) to quantify the intragroup divergence (table 6).

As seen in table 6, the least diverse group are the Mendriq Semang (heterozygosity = 0.543) which is explained by the fact that over 84% of their sequences belong to haplogroup M21a, most of which are a single haplotype. By contrast the most diverse group of the Orang Asli are the Temuan (heterozygosity = 0.889). This difference is maintained in the divergence of the three Orang Asli groups as a whole: the Semang are the least diverse (heterozygosity = 0.768), the Aboriginal Malays the most (heterozygosity = 0.899), with the Senoi in between (heterozygosity = 0.803).

The least diverse of the Island Southeast Asian populations is the one from Tengger in Java (heterozygosity = 0.904). This is probably due to the fact that haplogroups F1a, M\* and the putative M10 each make up approximately 20% of the population. However, even that Island Southeast Asian population is more variable than the most diverse Orang Asli group. This can be most likely explained by the fact that all the Island populations have been consistently larger over long periods of time and so will have undergone less drift than the Orang Asli groups.

|                                     | Sample size<br>(n) | Heterozygosity<br>$(1 - \Sigma_i x_i^2)$ |
|-------------------------------------|--------------------|------------------------------------------|
| Batek                               | 29                 | 0.675                                    |
| Jahai                               | 50                 | 0.561                                    |
| Mendriq                             | 31                 | 0.543                                    |
| Total Semang                        | 110                | 0.768                                    |
| Temiar                              | 51                 | 0.780                                    |
| Total Senoi <sup>1</sup>            | 52                 | 0.803                                    |
| Semelai                             | 60                 | 0.851                                    |
| Temuan                              | 32                 | 0.889                                    |
| Total Aboriginal Malay <sup>2</sup> | 94                 | 0.899                                    |
| Medan                               | 42                 | 0.959                                    |
| Pekanbaru                           | 52                 | 0.952                                    |
| Padang                              | 24                 | 0.939                                    |
| Palembang                           | 28                 | 0.940                                    |
| Bangka                              | 34                 | 0.951                                    |
| Total Sumatra                       | 180                | 0.982                                    |
| Java – Tengger                      | 36                 | 0.904                                    |
| Banjarmasin                         | 89                 | 0.979                                    |
| Kota Kinabalu                       | 68                 | 0.968                                    |
| Total Borneo                        | 157                | 0.984                                    |
| Manadao                             | 89                 | 0.944                                    |
| Palu                                | 38                 | 0.943                                    |
| Ujung Padang                        | 46                 | 0.955                                    |
| Toraja                              | 64                 | 0.939                                    |
| Total Sulawesi                      | 237                | 0.961                                    |
| Bali – Denpasar                     | 65                 | 0.976                                    |
| Lombok – Mataram                    | 44                 | 0.963                                    |
| Sumba – Waingapu                    | 50                 | 0.956                                    |
| Alor                                | 45                 | 0.959                                    |
| Ambon                               | 43                 | 0.951                                    |

# Table 6 – Intragroup diversity in the populations under investigation

<sup>1</sup> Includes 1 Semai Senoi

<sup>2</sup> Includes 2 Jakun Aboriginal Malay

The ages of most haplogroups/subhaplogroups were calculated using the statistic  $\rho$  (Forster *et al.* 1996) and are shown in table 7 where they are placed in order according to age. As can be seen in the table, the vast majority of haplogroups date to the Pleistocene.

| Age range             | Haplogroup             | Age (years) | Standard      |
|-----------------------|------------------------|-------------|---------------|
|                       |                        |             | Error (years) |
| Over 38,000 years     | M21                    | 57,000      | 6,700         |
|                       | R9b                    | 50,700      | 20,100        |
|                       | N21                    | 43,000      | 25,000        |
|                       | N9a                    | 38,100      | 11,200        |
| 30,000 - 38,000 years | Q                      | 37,500      | 7,800         |
|                       | B4c                    | 37,500      | 15,600        |
|                       | В5Ъ                    | 35,000      | 11,800        |
|                       | F3b                    | 34,000      | 13,300        |
|                       | B4                     | 33,600      | 8,600         |
|                       | M22                    | 31,700      | 20,600        |
|                       | P – 176-266 cluster    | 30,300      | 12,000        |
| 22,000 - 27,000 years | B4b                    | 27,000      | 6,100         |
|                       | Flal                   | 26,100      | 13,700        |
|                       | M7c1                   | 25,700      | 14,500        |
|                       | B4a                    | 25,200      | 6,800         |
|                       | M7c1a                  | 24,500      | 9,700         |
|                       | D5                     | 24,000      | 9,500         |
|                       | E1                     | 23,900      | 10,000        |
|                       | B4* - 147 cluster      | 22,700      | 16,000        |
|                       | B5b – 111 cluster      | 22,600      | 8,600         |
| 12,000 - 18,000 years | B5a                    | 17,300      | 3,900         |
|                       | B4c – 335 cluster      | 17,100      | 4,800         |
|                       | M7* - ISE Asian branch | 16,800      | 6,300         |
|                       | R9b – 192-288 cluster  | 16,500      | 10,200        |
|                       | M7b3                   | 15,400      | 5,900         |
|                       | D5 – 311 cluster       | 12,600      | 5,600         |
|                       | R22                    | 12,500      | 5,200         |
| 5,000 – 10,000 years  | Flala                  | 9,200       | 2,800         |
|                       | Ela                    | 8,700       | 2,700         |
|                       | D5 – 092-148 cluster   | 8,000       | 3,300         |
|                       | Elb                    | 7,300       | 3,200         |
|                       | B4a1                   | 7,300       | 2,700         |
|                       | M7c1c                  | 6,000       | 1,600         |
|                       | M7c1b                  | 5,500       | 3,200         |
|                       | N9a1 – 294 cluster     | 5,500       | 2,600         |
| Under 5,000 years     | F1a – 294 cluster      | 4,300       | 1,900         |
| -                     | Y2                     | 3,600       | 1,400         |

# Table 7 – Ages of haplogroups cited in the text

## **5.3 Haplogroup Diversity**

The diversity and ages of some of the main Southeast Asian haplogroups was also calculated using  $\rho$ , see table 8.

As seen in table 8, haplogroups B4a, B4c1, B5b, F1a1a and N9a are most diverse in China. Conversely, haplogroup B5a is most diverse in Thailand while D5 is most diverse in Indonesia and E1a is most diverse amongst Taiwanese aboriginals. Haplogroup M7c1c exhibits approximately the same levels of diversity in Borneo and amongst Taiwanese aboriginals

## **5.4 Principal Component Analysis**

## 5.4.1 Principal Component Analysis of Island Southeast Asian Data

Principal component analysis is a useful way of representing high-dimensional data in two or three dimensions by means of projection, and of estimating the amount of variance which is represented by each principal component. These are extracted one after another and each contains as much of the remaining variation as possible.

A principal component analysis was carried out on haplogroup frequencies from all the populations from Island Southeast Asia, as well as the Chinese data of Kivisild *et al.* (2002), Yao *et al.* (2000), Yao *et al.* (2002a), Yao *et al.* (2002b), Yao *et al.* (2002c), the Taiwanese data of Tajima *et al.* (2003) and Melton *et al.* (1998) which has also been elaborated on in this study, and unpublished data from the Philippines (Martin Richards, personal communication). As shown in figure 31, the first principal component accounts for 20.2% of the variation and separates the Chinese groups from all the other populations; the groups from Northern China are the most extreme outliers.

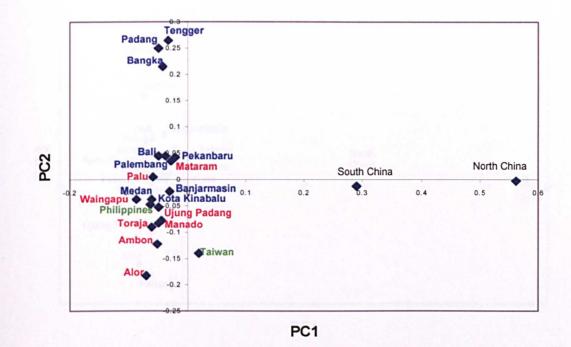
|                                         | Sample<br>size (n) | ρ    | Age              | σ         | Age SE |
|-----------------------------------------|--------------------|------|------------------|-----------|--------|
| B4a – South China                       | 30                 | 2.38 | 48,000           | 0.72      | 14,500 |
| B4a – Aboriginal Taiwanese              | 46                 | 1.34 | 27,000           | 0.51      | 10,300 |
| B4a – Thailand                          | 13                 | 2.31 | 46,600           | 0.67      | 13,500 |
| B4a - Papua New Guinea                  | 23                 | 1.16 | 23,400           | 0.74      | 14,900 |
| B4a – Indonesia                         | 55                 | 0.73 | 14,800           | 0.64      | 6,900  |
|                                         |                    |      |                  |           |        |
| B4a1 – Indonesia                        | 26                 | 0.28 | 5,700            | 0.13      | 2,600  |
| B4a1 – Papua New Guinea                 | 22                 | 0.29 | 5,900            | 0.12      | 2,400  |
|                                         |                    |      |                  | <u></u>   |        |
| B4c1 – South China                      | 7                  | 2.29 | 46,200           | 0.83      | 16,700 |
| B4c1 – Aboriginal Taiwanese             | 11                 | 0.82 | 16,500           | 0.47      | 9,500  |
| B4c1 – Indonesia                        | 29                 | 1.50 | 30,300           | 0.91      | 18,400 |
| Dea Couth China                         | 26                 | 0.65 | 12 100           | 0.24      | 1 000  |
| B5a – South China                       | 26<br>16           | 0.65 | 13,100<br>10,100 | 0.24 0.29 | 4,800  |
| B5a – Aboriginal Taiwanese              | <u> </u>           |      | 12,100           | 0.29      | 5,700  |
| B5a – Malay Peninsula<br>B5a – Thailand | 12                 | 0.60 |                  | 0.28      | 6,700  |
|                                         | 27                 | 1.11 | 22,400<br>9,500  | 0.33      | 3,200  |
| B5a – Indonesia                         | 34                 | 0.47 | 9,300            | 0.10      | 3,200  |
| B5b – China                             | 10                 | 2.10 | 42,400           | 0.79      | 15,900 |
| B5b – Indonesia                         | 15                 | 0.47 | 9,500            | 0.27      | 5,500  |
|                                         |                    |      | +                |           |        |
| Flala – South China                     | 20                 | 0.60 | 12,100           | 0.22      | 4,400  |
| Flala – Thailand                        | 22                 | 0.14 | 2,800            | 0.08      | 1,600  |
| Flala – Malay Peninsula                 | 37                 | 0.45 | 9,100            | 0.22      | 4,400  |
| Flala – Indonesia                       | 28                 | 0.36 | 7,300            | 0.13      | 2,600  |
|                                         |                    |      |                  |           |        |
| N9a – China                             | 16                 | 1.81 | 36,500           | 0.54      | 10,900 |
| N9a – Aboriginal Taiwanese              | 5                  | 1.60 | 32,300           | 0.69      | 13,900 |
| N9a – Malay Peninsula                   | 19                 | 0.21 | 4,200            | 0.13      | 2,600  |
| N9a – Indonesia                         | 10                 | 1.10 | 22,200           | 0.69      | 13,900 |
|                                         |                    |      | 15100            |           | (100   |
| D5 – China                              | 20                 | 0.80 | 16,100           | 0.30      | 6,100  |
| D5 – Aboriginal Taiwanese               | 8                  | 0.88 | 17,800           | 0.41      | 8,300  |
| D5 – Indonesia                          | 26                 | 1.62 | 32,700           | 0.84      | 17,000 |
| Ela – Aboriginal Taiwanese              | 15                 | 1.00 | 20,200           | 0.45      | 9,100  |
| Ela – Philippines                       | 6                  | 0.67 | 13,500           | 0.33      | 6,700  |
| E1a – Indonesia                         | 71                 | 0.37 | 7,500            | 0.15      | 3,000  |
| Ela – Borneo                            | 14                 | 0.79 | 15,900           | 0.58      | 11,700 |
| Ela – Sulawesi                          | 41                 | 0.24 | 4,800            | 0.10      | 2,000  |
|                                         |                    |      |                  |           |        |
| M7c1c - Aboriginal Taiwanese            | 11                 | 0.91 | 18,400           | 0.53      | 10,700 |
| M7c1c – Indonesia                       | 75                 | 0.39 | 7,900            | 0.11      | 2,200  |
| M7c1c – Borneo                          | 12                 | 0.92 | 18,600           | 0.46      | 9,300  |
| M7c1c – Sumatra                         | 16                 | 0.31 | 6,300            | 0.17      | 3,400  |
| M7c1c – Sulawesi                        | 26                 | 0.27 | 5,500            | 0.15      | 2,000  |

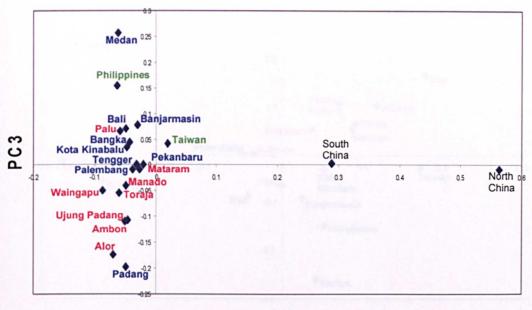
## Table 8 – Diversity of some of the main Southeast Asian haplogroups

 $\rho$  is the average number of sites which differ between a set of sequences and their common ancestor.

Age =  $\rho$  / mutation rate

 $\sigma$  = standard error





Figure 31 - PC1 and PC2 of Island Southeast Asian, Taiwanese and Chinese data.

Populations in blue are found west of the Wallace line, those in red are east of the Wallace line and the Taiwanese and Filipinos are in green. PC1 = 20.2%, PC2 = 12.8%

PC2 (12.8%) separates the populations from Tengger, Padang and Bangka from all the other groups. In PC2, the Chinese fell within the variation found in most of the Island Southeast Asian populations. This was also the case in PC3, see figure 32. PC3 (9.4%) is a broadly west - east axis, with the exception of the population from Padang which is found at the opposite extreme to most of the other Western populations, possibly due to its high levels of haplogroup B\*.

As the Chinese groups were strong outliers in PC1 they were excluded from further analyses to gain greater clarity for the other data.





PC1

Colour coding as in figure 31. PC1 = 20.2%, PC3 = 9.4%

The second analysis (figure 33) shows the first principal component (16.6%) to be a Sumatra/Java – Taiwan/Alor axis. In particular, the populations from Tengger, Bangka and Padang are again separated from all other groups. For each cycle of principal component analysis performed, a second analysis was carried out to plot the contribution of each haplogroup to each principal component. In this case, this demonstrated that the separation of the Sumatran and Javanese populations is due to the high levels of haplogroup B\* in Padang and the putative haplogroup M10 clade in Tengger and Bangka. The less dramatic separation at the other pole seems to be due to the high levels of haplogroup F\* in Taiwan and haplogroup Q in Alor.

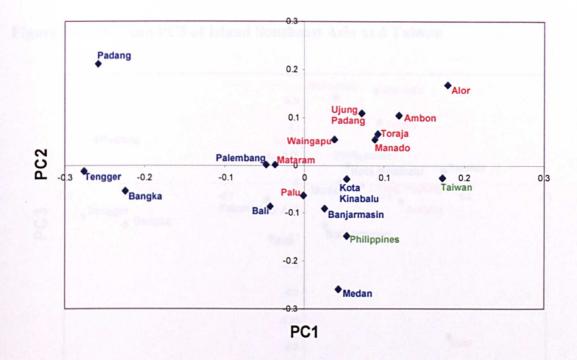



Figure 33 - PC1 and PC2 of Island Southeast Asia and Taiwan.

Colour coding as in figure 31. PC1 = 16.6%. PC2 = 11.8%

The second principal component (11.8%) is roughly east-west, with Medan at one extreme and Alor at the other; again Padang is the main exception. Medan is separated due to its relatively high levels of haplogroup Y2, while Alor is present at the other extreme because it contains elevated amounts of haplogroup Q.

The east – west patterning becomes more obvious when both principal components are considered together. Almost all the eastern populations are grouped together in one corner, the only exceptions being Mataram and Palu. In the case of the Mataram population this is perhaps not surprising as it is found so close to the Wallace line, and therefore the Western populations. The Palu population is unusual due to the much reduced level of haplogroup B types found there; it is also one of the few Eastern populations to contain any of haplogroups N9a1 and Y2 which could be due to recent arrivals from the west or north. In this east – west patterning, the Taiwanese groups can be seen to be slightly separate. However, the Filipino group is definitely found in the western part of the distribution.

As can be seen in figure 34, the east – west patterning is less obvious when PC1 and PC3 are plotted together.

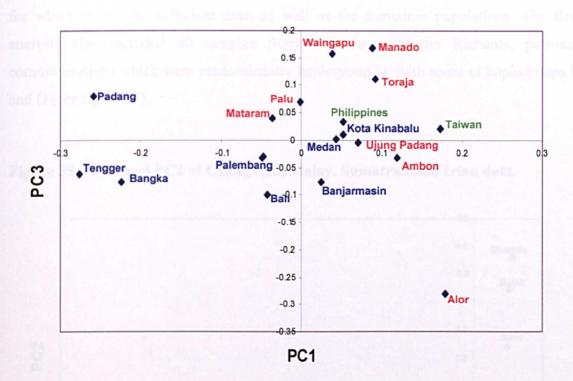
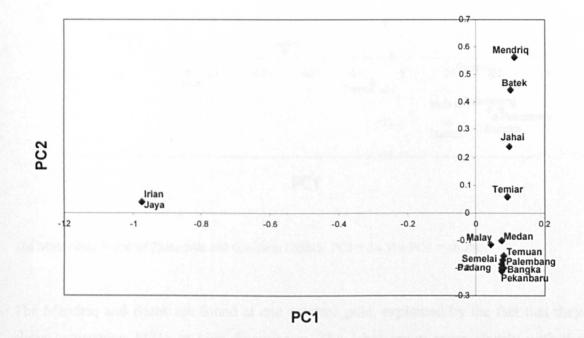



Figure 34 - PC1 and PC3 of Island Southeast Asia and Taiwan

Colour coding as in figure 31. PC1 = 16.6%, PC3 = 10.1%

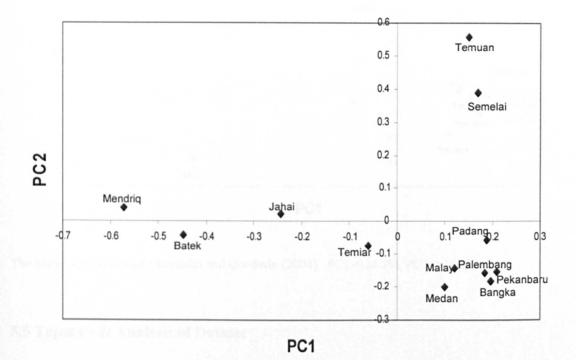

PC3 (10.1%) separates the group from Alor from all the other populations, again due to its high levels of haplogroup Q. Again the people of Mataram and Palu group with the Western populations; as, in this analysis, do the people of Waingapu.

Despite the relative lack of resolution seen in the last analysis, a definite east-west pattern can be seen across Island Southeast Asia. This suggests geographic structuring and that the population history of Island Southeast Asia cannot be simply explained by a population replacement.

### 5.4.2 Principal Component Analysis of Orang Asli Data

A principal component analysis was carried out on all of the Orang Asli ethnic groups for which there was sufficient data, as well as the Sumatran populations. The first analysis also included 40 samples from Irian Jaya (Martin Richards, personal communication) which were predominantly haplogroup Q, with some of haplogroups P and D (see figure 35).



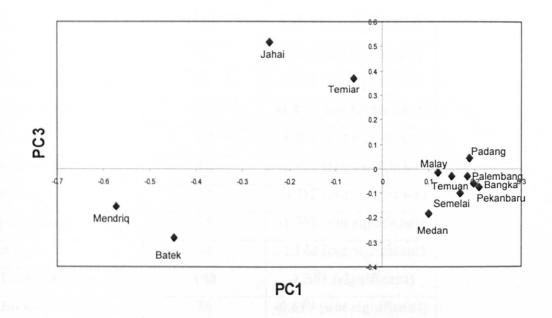



The Malay data is that of Zainuddin and Goodwin (2004). PC1 = 23.8%, PC2 = 18.8%

In PC2, which accounted for 18.8% of the variation, the Irianese fell between the Senoi and the group from Medan, with the Semang at one extreme and the Sumatrans (with the exception of those from Medan) and Aboriginal Malay at the other. However, they were a strong outlier for PC1 (23.8%), and so were excluded from further analyses to gain greater resolution within Southeast Asia.

The second analysis (figure 36) shows PC1 (representing 24.3% of the variation) to be a Semang - Aboriginal Malay/Sumatra axis with the Senoi in the middle.






The Malay data is that of Zainuddin and Goodwin (2004). PC1 = 24.3%, PC2 = 18.2%

The Mendriq and Batek are found at one extreme pole, explained by the fact that they share haplogroup M21a at high frequencies. The Jahai group more closely with the Temiar as they share haplogroup R21, while the Aboriginal Malays are found at the opposite pole with the Sumatran and Malay groups. PC2 (18.2%) separates the Temuan and Semelai from all other populations due to their high levels of haplogroups R9b and N21.

PC3 (16.6%) separates out the Jahai and the Temiar from all the other groups, again due to their sharing of haplogroups R21 and F1a1a (figure 37).

#### Figure 37 – PC1 and PC3 of Orang Asli, Malay and Sumatran data



The Malay data is that of Zainuddin and Goodwin (2004). PC1 = 24.3%, PC3 = 16.6%

#### 5.5 Tajima's D Analysis of Dataset

Tajima's D is a statistic which is used to test for demographic effects or selection processes. It compares two estimates of  $\theta$  (the expected level of diversity in a population under neutral evolution): S (based on the number of segregating sites) and  $\pi$ (nucleotide diversity). Under neutrality, these different estimates of  $\theta$  should be equal and therefore Tajima's D should equal zero. If Tajima's D is found to be significantly positive, this indicates balancing selection or population subdivision; a significantly negative result signifies positive selection or population growth (Tajima 1989). The results of this test on the current dataset are shown in table 9.

| ſ                              | Sample size<br>(n) | Tajima's D               |
|--------------------------------|--------------------|--------------------------|
| Semang                         | 110                | 1.677 (not significant)  |
| Senoi                          | 52                 | 0.310 (not significant)  |
| Aboriginal Malay               | 94                 | -0.631 (not significant) |
| Total Orang Asli               | 256                | -0.327 (not significant) |
| Medan                          | 42                 | -1.582 (not significant) |
| Pekanbaru                      | 52                 | -1.397 (not significant) |
| Padang                         | 24                 | -0.912 (not significant) |
| Palembang                      | 28                 | -1.097 (not significant) |
| Bangka                         | 34                 | -1.148 (not significant) |
| Total Sumatra                  | 180                | -1.801 (significant)     |
| Java – Tengger                 | 36                 | -0.619 (not significant) |
| Banjarmasin                    | 89                 | -1.644 (not significant) |
| Kota Kinabalu                  | 68                 | -1.703 (not significant) |
| Total Borneo                   | 157                | -1.746 (not significant) |
| Manadao                        | 89                 | -1.879 (significant)     |
| Palu                           | 38                 | -1.779 (not significant) |
| Ujung Padang                   | 46                 | -1.453 (not significant) |
| Toraja                         | 64                 | -0.973 (not significant) |
| Total Sulawesi                 | 237                | -1.903 (significant)     |
| <b>Bali</b> – Denpasar         | 65                 | -1.679 (not significant) |
| Lombok – Mataram               | 44                 | -1.402 (not significant) |
| Sumba – Waingapu               | 50                 | -1.461 (not significant) |
| Alor                           | 45                 | -0.919 (not significant) |
| Ambon                          | 43                 | -0.937 (not significant) |
| Total Island<br>Southeast Asia | 857                | -1.955 (significant)     |

# Table 9 – Tajima's D analysis of dataset

As seen in table 9, the results for all populations apart from the Semang and Senoi were negative, although only one of the individual populations was significantly so.

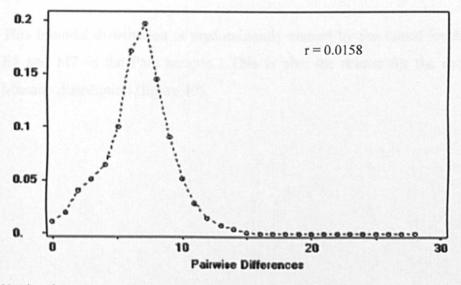
However, the result for the whole of Island Southeast Asia and also Sulawesi and Sumatra were also significantly negative. This is most likely to be due to a population expansion.

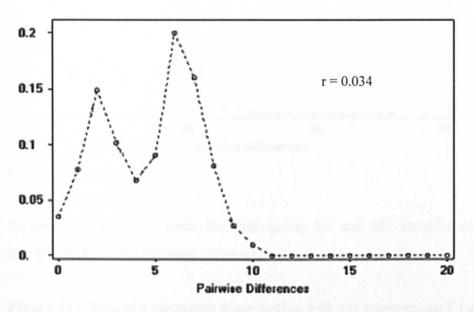
#### **5.6 Mismatch Distributions**

## 5.6.1 Mismatch Distributions of Island Southeast Asian Data

Mismatch distributions, or distributions of pairwise differences, are another way of measuring diversity and visualising demographic events. The shape of these distributions can be used to infer events in the population's history. For example, a smooth, bell-shaped distribution indicates a population expansion while a ragged, multimodal distribution indicates constant population size (Rogers and Harpending 1992).

As seen in figure 38, the mismatch distribution for Island Southeast Asia as a whole is bell-shaped which, as stated above, is indicative of a population expansion.

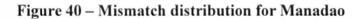


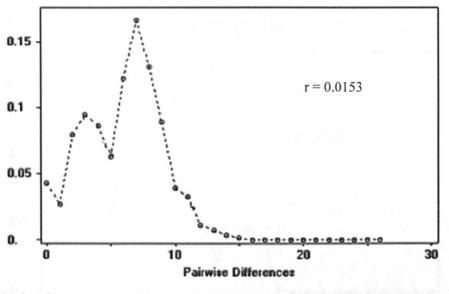


Figure 38 - Mismatch distribution for Island Southeast Asia

Y axis = frequency

The mismatch distributions for Bali, Banjarmasin, Bangka, Kota Kinabalu, Mataram, Padang, Pekanbaru, Ujung Padang and Waingapu (as well as those for Sumatra and

Borneo as a whole) were found to be almost identical to that for Island Southeast Asia thus also indicating population expansions (data not shown).

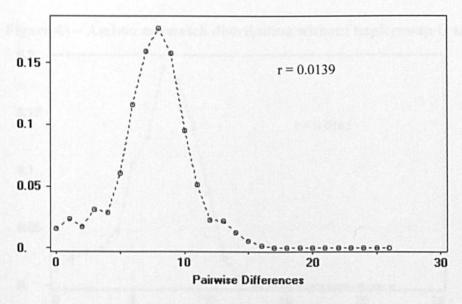

However, the mismatch distributions for Palu and Manadao were found to be bimodal (see figures 39 and 40).






This bimodal distribution is predominantly caused by the raised levels of haplogroups E1 and M7 in the Palu sample. This is also the reason for the second peak in the Manado distribution (figure 40).

Y axis = frequency






Y axis = frequency

As seen in figure 41, when the haplogroup E1 and M7 samples are removed, the Manado distribution becomes unimodal.

## Figure 41 – Manado mismatch distribution without haplogroup E1 and M7 samples



Y axis = frequency

The mismatch distribution for Ambon also has a second, subsidiary, peak (see figure 42).

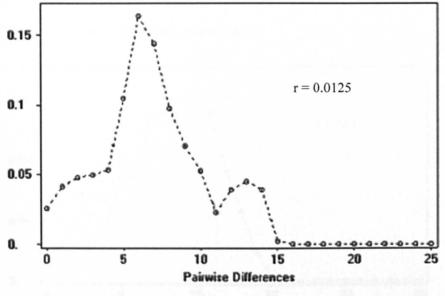



Figure 42 – Ambon mismatch distribution

In this case, this is caused by the high frequency of the Melanesian haplogroup Q in the Ambon sample. As seen in figure 43, the distribution becomes unimodal when the haplogroup Q samples are removed.

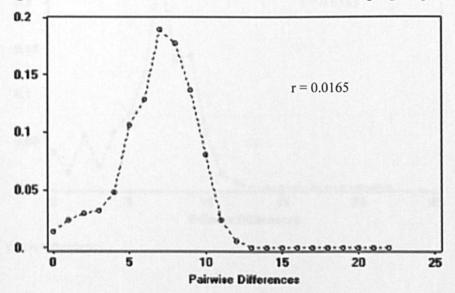
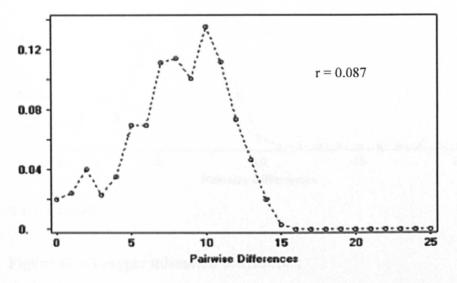
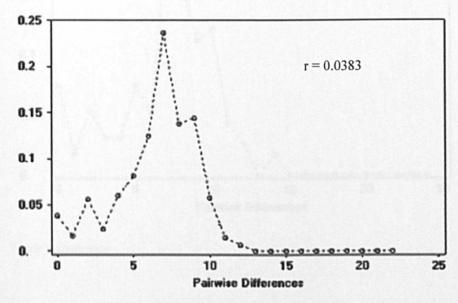



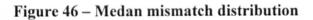

Figure 43 - Ambon mismatch distribution without haplogroup Q samples

Y axis = frequency

Y axis = frequency


Furthermore, the mismatch distributions for Alor, Palembang, Medan, Tengger, Toraja and Sulawesi as a whole were found to be substantially more ragged than the distribution for all of Island Southeast Asia (see figures 44-49)





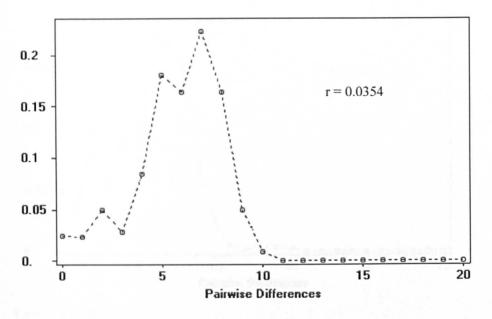
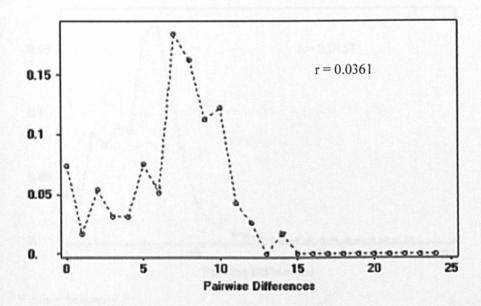


Y axis = frequency

Figure 45 – Palembang mismatch distribution




Y axis = frequency





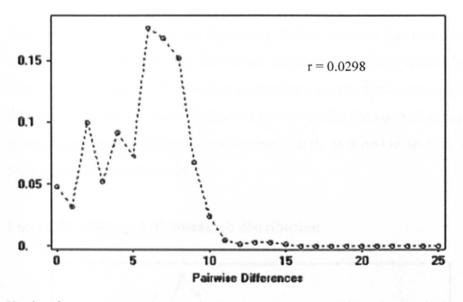
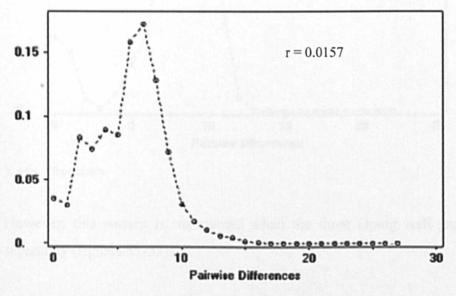

Y axis = frequency

Figure 47 – Tengger mismatch distribution



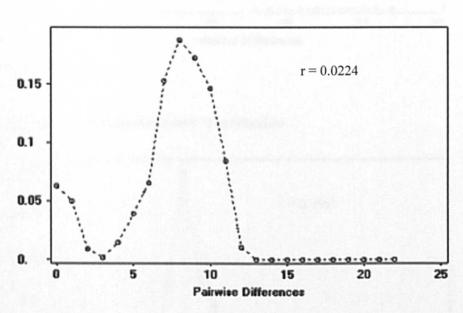

Y axis = frequency

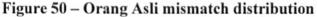




Y axis = frequency

Figure 49 - Sulawesi mismatch distribution

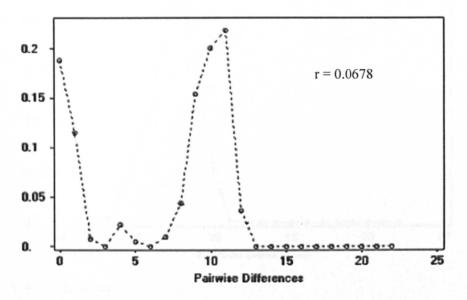




Y axis = frequency

The varying patterns of the mismatch distributions across Island Southeast Asia are possible evidence of differences in the demographic histories of the populations. The bimodal and ragged distributions seem to be particularly common in Sulawesi and could be the result of two separate expansions or the fusion of two disparate populations.

#### 5.6.2 Mismatch Distributions of the Orang Asli Data

The mismatch distribution for the Orang Asli as a whole has one main peak similar to that seen in the distribution for Island Southeast Asia but it also has a second peak which could be the result of a second, more recent, expansion (see figure 50). However, this is not compatible with the known history of the Orang Asli groups which has seen them much reduced in size in recent times which, as stated in section 5.1, can be seen in their much reduced diversity.






Y axis = frequency

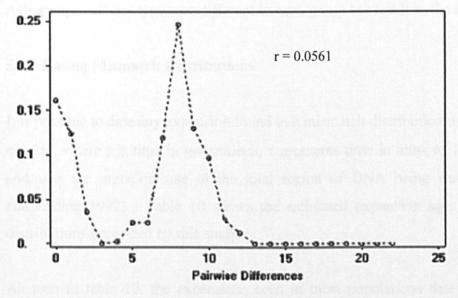

However, this pattern is maintained when the three Orang Asli groups are analysed separately (figures 51-53).

Figure 51 – Semang mismatch distribution



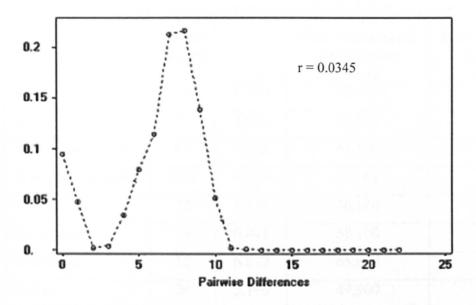

Y axis = frequency

Figure 52 – Senoi mismatch distribution



Y axis = frequency





Y axis = frequency

This pattern is most likely to be due to the fact that, because of the extensive drift which has occurred, two distinct sequence types have come to predominate in all three Orang Asli groups. These types are different in each group but result in the same effect.

#### 5.6.3 Dating Mismatch Distributions

It is possible to date any expansion found in a mismatch distribution using the statistic  $\tau$ .  $\tau = 2ut$ , where t is time in generations,  $\tau$  measures time in units of 1 / 2u generations, and u is the mutation rate of the total region of DNA being studied (Rogers and Harpending 1992). Table 10 shows the estimated expansion ages of the mismatch distributions generated by this study.

As seen in table 10, the expansions seen in most populations date to approximately 60,000 years. This agrees with dates found from mismatch distributions in other studies of demographic patterns in human mtDNA (e.g. Rogers and Harpending 1992; Yao *et al.* 2002b); and also with the dates postulated for an out-of-Africa expansion (Mountain *et al.* 1995; Watson *et al.* 1997). Some of the populations in this study gave more recent expansion dates; however, these were the populations with bimodal or more ragged distributions and so the results should be treated with caution.

| Population                     | Sample<br>size (n) | τ     | Date of mismatch<br>distribution<br>(years) <sup>1</sup> | Date of mismatch<br>distribution<br>(years) <sup>2</sup> |
|--------------------------------|--------------------|-------|----------------------------------------------------------|----------------------------------------------------------|
| Semang                         | 110                | 3.186 | 30,600                                                   | 28,400                                                   |
| Senoi                          | 52                 | 2.922 | 28,100                                                   | 26,100                                                   |
| Aboriginal Malay               | 94                 | 5.002 | 48,100                                                   | 44,700                                                   |
| Total Orang Asli               | 256                | 6.028 | 57,961                                                   | 53,821                                                   |
| Medan                          | 42                 | 5.838 | 56,100                                                   | 52,100                                                   |
| Palembang                      | 28                 | 6.041 | 58,100                                                   | 53,900                                                   |
| Pekanbaru                      | 52                 | 6.832 | 65,600                                                   | 61,000                                                   |
| Padang                         | 24                 | 5.196 | 49,900                                                   | 46,000                                                   |
| Bangka                         | 34                 | 6.561 | 63,100                                                   | 58,600                                                   |
| Total Sumatra                  | 180                | 6.567 | 63,100                                                   | 58,700                                                   |
| Java - Tengger                 | 36                 | 4.929 | 47,400                                                   | 44,000                                                   |
| Banjarmasin                    | 89                 | 6.738 | 64,800                                                   | 60,200                                                   |
| Kota Kinabalu                  | 68                 | 6.135 | 59,000                                                   | 54,800                                                   |
| Total Borneo                   | 157                | 6.579 | 63,300                                                   | 58,700                                                   |
| Ujung Padang                   | 46                 | 4.942 | 47,500                                                   | 44,100                                                   |
| Toraja                         | 64                 | 4.294 | 41,300                                                   | 38,300                                                   |
| Palu                           | 38                 | 3.536 | 34,000                                                   | 31,600                                                   |
| Manado                         | 89                 | 4.231 | 40,700                                                   | 37,800                                                   |
| Total Sulawesi                 | 237                | 4.399 | 42,300                                                   | 39,300                                                   |
| Bali - Denpasar                | 65                 | 6.824 | 65,600                                                   | 60,200                                                   |
| Lombok - Mataram               | 44                 | 6.242 | 60,000                                                   | 55,700                                                   |
| Sumba - Waingapu               | 50                 | 6.553 | 63,000                                                   | 58,500                                                   |
| Alor                           | 45                 | 6.389 | 61,400                                                   | 57,000                                                   |
| Ambon                          | 43                 | 4.648 | 44,700                                                   | 41,500                                                   |
| Total Island<br>Southeast Asia | 857                | 6.587 | 63,300                                                   | 58,800                                                   |

Table 10 – Dates of population expansions seen in Southeast Asia

<sup>1</sup>Using divergence rate of 33%/nucleotide/Myr (Ward et al. 1991)

<sup>2</sup>Using divergence rate of 36%/nucleotide/Myr (Forster et al. 1996)

#### 5.7 Analysis of Molecular Variance of Island Southeast Asia and the Orang Asli

Analysis of molecular variance (or AMOVA) enables population diversity to be calculated for different hierarchic levels: among groups, among populations within groups, and within populations (Excoffier *et al.* 1992). It is therefore possible to use it to group populations into different combinations to see which, if any, have significant differences in variation.

In all of the analyses performed on the current dataset (shown in table 11), the genetic variation within each group was always much higher than the variation between groups. When all 17 Island Southeast Asian populations were grouped together, only 1.31% of the variation was found to be between the populations; however, this value was still highly significant (P < 0.00001).

Significant differences were also found when the populations were split into two groups according to their position relative to the Wallace line. The variation between the Western populations (Pekanbaru, Medan, Padang, Palembang, Bangka, Tengger, Banjarmasin, Kota Kinabalu and Bali) and the Eastern populations (Mataram, Ujung Padang, Toraja, Palu, Manado, Waingapu, Ambon and Alor) was 0.17% (P = 0.01857). This difference was even more significant when a central group was separated out. The variation between the Western (Pekanbaru, Medan, Padang, Palembang and Bangka), Central (Tengger, Banjarmasin, Kota Kinabalu, Bali and Mataram) and Eastern groups (Ujung Padang, Toraja, Palu, Manado, Waingapu, Ambon and Alor) was 0.26% (P = 0.00391).

However, no significant difference was found when the groups were separated according to language. Most of the populations studied speak Western Malayo-Polynesian languages; however, those from Alor and Waingapu speak Central Malayo-Polynesian languages and the Ambonese speak a Malay-based Creole. No significant difference was found when the populations were divided along the above lines (language analysis 1 in table 11), the variation between groups was 0.07% (P = 0.29396). Equally, no significant difference was found when the Ambonese were

included with the Western Malayo-Polynesian groups (on the basis that Malay is a Western Malayo-Polynesian language, shown as language analysis 2 in table 11), the inter-group variation was then found to be 0.06% (P = 0.28928).

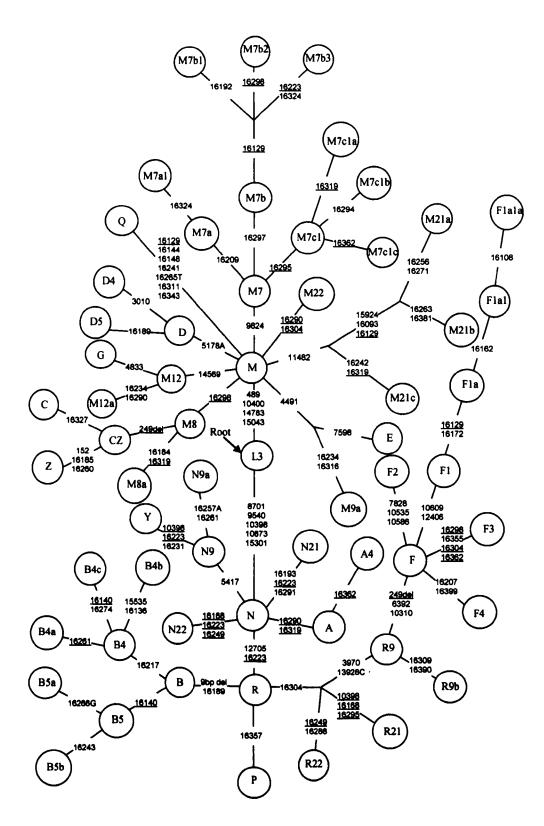
When the Orang Asli groups were analysed by themselves, 13.01% of the variation was found to be between the groups (P < 0.00001). Pairwise  $F_{ST}$  values showed the greatest difference to be between the Aboriginal Malay and the Semang ( $F_{ST} = 0.13702$ ); however, the values for all combinations of the three groups were significantly different. When the Orang Asli groups were compared to those from Island Southeast Asia, 2.95% of the variation was found to be between the two groups (P = 0.01156).

Pairwise  $F_{ST}$  values showed most combinations of Island Southeast Asian groups to be significantly different from each other; however, the  $F_{ST}$  values were not as high as those for the Orang Asli. In particular, the populations from Kota Kinabalu, Mataram and Tengger are significantly different from all other groups. The population from Tengger seems to be the most different, possibly due to its high levels of haplogroup M10 which is absent in most other populations. Other particularly different combinations are: Ambon and Palembang ( $F_{ST} = 0.026$ ), Ambon and Waingapu ( $F_{ST} =$ 0.020), Manado and Medan ( $F_{ST} = 0.024$ ), Manado and Pekanbaru ( $F_{ST} = 0.020$ ), Medan and Palembang ( $F_{ST} = 0.024$ ), and Palembang and Pekanbaru ( $F_{ST} = 0.021$ ). This emphasises the distinct differences which can be found across island locations, in this case Sumatra.

# Table 11 – Results of analysis of molecular variance of Island Southeast Asian populations and the Orang Asli

|                                        | % of      | Significance                      |
|----------------------------------------|-----------|-----------------------------------|
|                                        | Variation |                                   |
| All Island Southeast Asian populations |           |                                   |
| Among populations                      | 1.31      | Significant (P < 0.00001)         |
| Within populations                     | 98.69     |                                   |
|                                        |           |                                   |
| East vs. West                          |           |                                   |
| Among groups                           | 0.17      | Significant ( $P = 0.01857$ )     |
| Among populations within groups        | 1.22      | Significant (P < 0.00001)         |
| Within populations                     | 98.61     | Significant (P < 0.00001)         |
|                                        |           |                                   |
| East vs. West vs. Central              |           |                                   |
| Among groups                           | 0.26      | Significant ( $P = 0.00391$ )     |
| Among populations within groups        | 1.13      | Significant (P < 0.00001)         |
| Within populations                     | 98.61     | Significant (P < 0.00001)         |
|                                        |           |                                   |
| Language analysis 1                    |           |                                   |
| Among groups                           | 0.07      | Not significant $(P = 0.29396)$   |
| Among populations within groups        | 1.29      | Significant (P < 0.00001)         |
| Within populations                     | 98.64     | Significant (P < 0.00001)         |
|                                        |           |                                   |
| Language analysis 2                    |           |                                   |
| Among groups                           | 0.06      | Not significant ( $P = 0.28928$ ) |
| Among populations within groups        | 1.3       | Significant (P < 0.00001)         |
| Within populations                     | 98.64     | Significant (P < 0.00001)         |
|                                        |           |                                   |
| All Orang Asli populations             |           |                                   |
| Among populations                      | 13.01     | Significant (P < 0.00001)         |
| Within populations                     | 86.99     |                                   |
|                                        | 1         |                                   |
| Orang Asli vs. Island Southeast Asia   |           |                                   |
| Among groups                           | 2.95      | Significant (P = 0.01156)         |
| Among populations within groups        | 3.12      | Significant (P < 0.00001)         |
| Within populations                     | 93.93     | Significant (P < 0.00001)         |

## 6. Results – Phylogeography


#### 6. Results - Phylogeography

As described in section 1.2 the root of all Eurasian mtDNA haplogroups is found in the African haplogroup L3 (Watson *et al.* 1997) which is defined by the lack of a *HpaI* site at np 3592 relative to the Cambridge Reference sequence (CRS [Anderson *et al.* 1981]) and which expanded from East Africa (possibly Ethiopia [Kivisild *et al.* 2004]) approximately 60,000 years ago (Mountain *et al.* 1995; Watson *et al.* 1997). The non-African subclusters of L3 themselves form 'macrohaplogroups' M (defined by a transition at np 10400 and the resultant gain of an *AluI* site at np 10397) and N (defined by a transition at np 10873 and the subsequent loss of a *MnI* site at np 10871) (Torroni *et al.* 1994; Quintana-Murci *et al.* 1999). One of the branches of N forms another macrohaplogroups (Macaulay *et al.* 1999).

The mtDNA phylogeny has grown ever more complex over the past decade or so with the discovery of more and more haplogroups and subhaplogroups. The branches of macrohaplogroup M which are of most relevance to this study are as follows: haplogroup C (Torroni *et al.* 1992), haplogroup D (Torroni *et al.* 1992), haplogroup E (Torroni *et al.* 1994), haplogroup G (Torroni *et al.* 1994), haplogroup M7 (Kivisild *et al.* 2002), haplogroup Q (Forster *et al.* 2001) and haplogroup Z (Schurr *et al.* 1999). The branches of macrohaplogroup N which are of most relevance are: haplogroup A (Torroni *et al.* 1992), haplogroup N9 (Kivisild *et al.* 2002) and haplogroup Y (Schurr *et al.* 1999). The most relevant branches of macrohaplogroup R are: haplogroup B (Torroni *et al.* 1992), haplogroup F (Torroni *et al.* 1994) and haplogroup P (Forster *et al.* 2001).

Several new haplogroups are defined for the first time in this study: M21 (including subgroups M21a, M21b and M21c), M22, N21, N22, N9a1, R9b, R21, R22, F3a and E1b. They are discussed further in later sections of this chapter. The phylogenetic relationships between the main known East Eurasian haplogroups and those found in Southeast Asia are shown in figure 54.





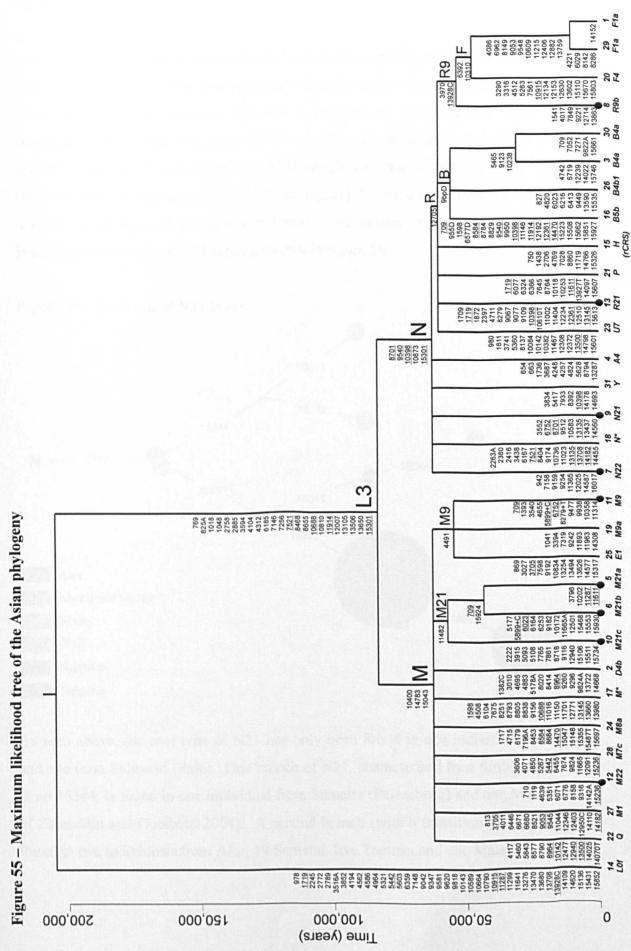
#### 6.1 Complete Sequencing

A number of samples (8 Orang Asli and one *Melayu* Malay) which were partly sequenced (i.e. HVS-I and HVS-II) in this study were completely sequenced by Antonio Torroni (University of Pavia) and colleagues; the results of this were used by Vincent Macaulay (University of Glasgow) to create a maximum likelihood tree of the Asian phylogeny. Four other Asian mtDNAs (Cambodian, Chinese Han, Bougainville Nan and Chinese Tujia) and one Ugandan were also completely sequenced. The control region variants for these samples are shown in table 12.

| ID | Source       | Haplo- | Variants in 16024–16569                                   | Variants in 1–576                       |
|----|--------------|--------|-----------------------------------------------------------|-----------------------------------------|
|    |              | group  |                                                           | (263 315+C in addition)                 |
| 1  | Cambodia     | Flala  | 108 129 162 172 304 311 519                               | 73 249d 309+C 522d 523d                 |
| 2  | China        | D4b    | 223 224 291 319 362 519                                   | 73 194 309+C 489 522d 523d              |
| 3  | Bougainville | B4a    | 182d 183d 189 217 247 261 311 519                         | 73 146 309+CC 522d 523d                 |
| 4  | China        | A      | 209 214 223 290 319 362                                   | 64 73 152 235 309+C 522d<br>523d        |
| 5  | Batek        | M21a   | 93 129 223 256 271 362                                    | 73 152 309+C 489                        |
| 6  | Jahai        | M21b   | 93 129 223 263 381 519                                    | 73 315+C 489                            |
| 7  | Temuan       | N22    | 75 168 223 249                                            | 73 150 291+TA                           |
| 8  | Semelai      | R9b    | 86 170 223 288 304 309 390                                | 73 143 152 183 309+C 522d<br>523d 573+C |
| 9  | Semelai      | N21    | 193 291 519                                               | 73 150 195 337d                         |
| 10 | Semelai      | M21c   | 223 242 319 519                                           | 73 200 204 309+CC 489                   |
| 11 | Melayu       | M9     | 136 217 223 319 381                                       | 73 94 173 204 482 489                   |
| 12 | Temuan       | M22    | 93 184 223 290 304 519                                    | 73 489                                  |
| 13 | Batek        | R21    | 168 295 304                                               | 73 146 152 195 199 249                  |
| 14 | Uganda       | LOf    | 129 169 172 173 187 189 223 23<br>239 278 311 327 368 519 | 0143 146 152 185 189 247                |

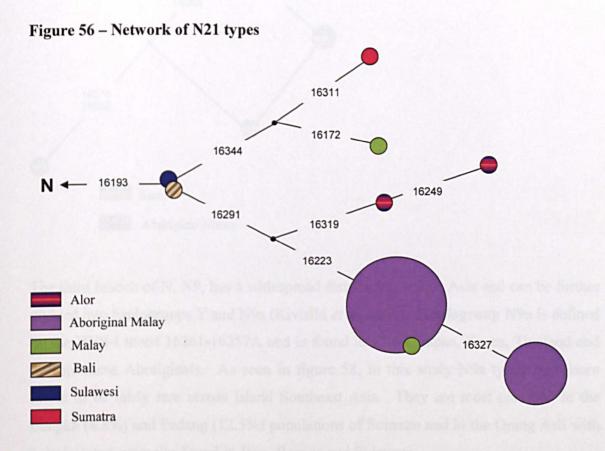
Table 12 - Control region variants in mtDNAs submitted to complete sequencing

Seventeen sequences from the literature (Andrews et al. 1999; Shin et al. 2000; Ingman et al. 2000; Maca-Meyer et al. 2001; Herrnstadt et al. 2002; Mishmar et al. 2003)


which represent deep-rooting lineages within the Asian phylogeny were also added to the above samples to create the maximum likelihood tree seen in figure 55. Two chimpanzee sequences (Horai *et al.* 1995) were used to root the whole tree. Ages of some of the major haplogroups, and the MRCA were calculated from this phylogeny, see table 13. This used a coding region mutation rate estimate of  $1.26 \times 10^{-8}$  which was calibrated on the basis of a human-chimpanzee split at 6.5 million years.

| Haplogroup     | TMRCA [one SE]      | TMRCA [one SE]   |
|----------------|---------------------|------------------|
|                | (substitutions per  | (years)          |
|                | site)               |                  |
| L (all humans) | 0.002578 [0.000278] | 204,700 [22,100] |
| L3             | 0.001052 [0.000106] | 83,500 [8,400]   |
| M              | 0.000792 [0.000066] | 62,900 [5,200]   |
| M9             | 0.000691 [0.000091] | 54,900 [7,200]   |
| M21            | 0.000718 [0.000084] | 57,000 [6,700]   |
| M21a'b         | 0.000553 [0.000105] | 43,900 [8,300]   |
| N              | 0.000791 [0.000063] | 62,800 [5,000]   |
| R              | 0.000760 [0.000060] | 60,300 [4,800]   |
| R9             | 0.000669 [0.000073] | 53,100 [5,800]   |
| F              | 0.000600 [0.000077] | 47,600 [6,100]   |
| Fla            | 0.000135 [0.000057] | 10,700 [4,500]   |
| В              | 0.000704 [0.000071] | 55,900 [5,600]   |
| B4a            | 0.000398 [0.000106] | 31,600 [8,400]   |

 Table 13 - Divergence of relevant haplogroups in the mtDNA coding region


 phylogeny

As shown above, the MRCA was dated to ~200,000 years which is similar to the estimate of Mishmar *et al.* (2003) but somewhat older than that of Ingman *et al.* (2000). Haplogroup L3 was dated to ~83,000 years with M and N both having ages of ~63,000 years. Haplogroup R appears to have diverged from N soon afterwards at ~60,000 years. This suggests an 'out of Africa' event between ~60,000 and ~100,000 years ago (Macaulay *et al.* 2005). The ages of all haplogroups mentioned in the text were summarised in table 7 in section 5.2 where they are placed according to their age. The vast majority of haplogroups date to the Pleistocene thus suggesting a greater age for much of the Island Southeast Asian population than is often cited.



#### 6.2 Macrohaplogroup N

Macrohaplogroup N has 5 main branches in East Asia, two of which were found for the first time in this study. The first of these, which has been termed **haplogroup N21**, has been found in Island Southeast Asia and in both groups of Aboriginal Malay. It is characterised by a transition at np 16193; complete sequence analysis has also shown that N21 types lack the transition at np 8701 which characterises other N types. It could therefore be a one-step ancestor of macrohaplogroup N, but is more likely to represent a reversion at np 8701, as has also been found in the dataset of Fuku *et al* (2002). The branching relationship of N21 types is shown in figure 56.



As seen above, the root type of N21 has only been found in one individual from Bali and one from Sulawesi (Palu). One branch of N21, characterised by a further transition at np 16344, is found in one individual from Sumatra (Palembang) and one Malay (data of Zainuddin and Goodwin 2004). A second branch (with a transition at np 16291) is found in two individuals from Alor, 19 Semelai, five Temuan and one Malay. The second new branch of N found by this study has been termed **haplogroup N22** and is defined by the HVS-I motif 16168-16223-16249. It is even less common than N21 with the root type being only found in two Temuan. Derived types are found in two more Temuan and in four individuals from Sumba (figure 57).

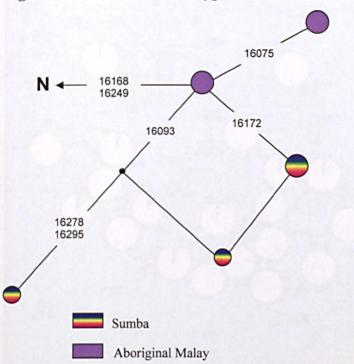
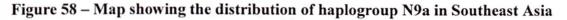
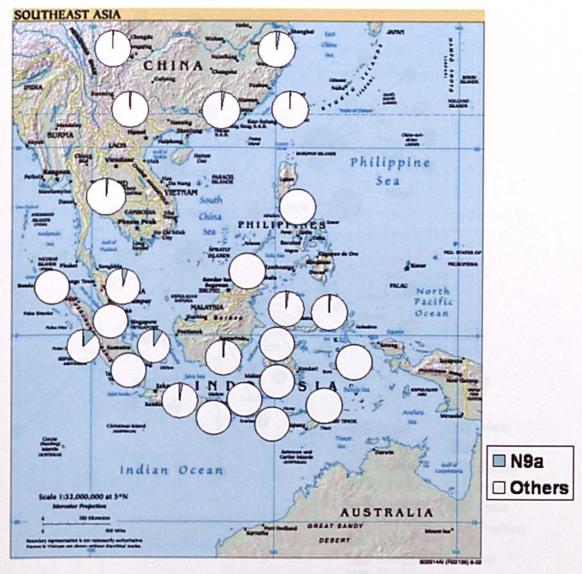
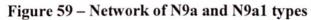
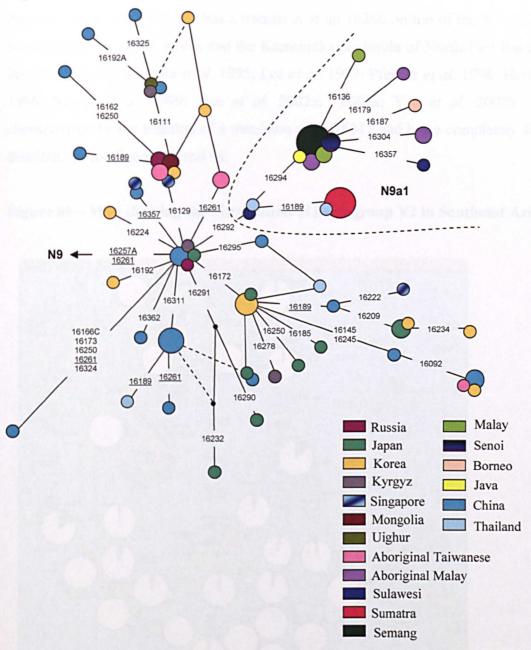




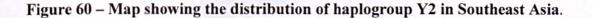

Figure 57 – Network of N22 types

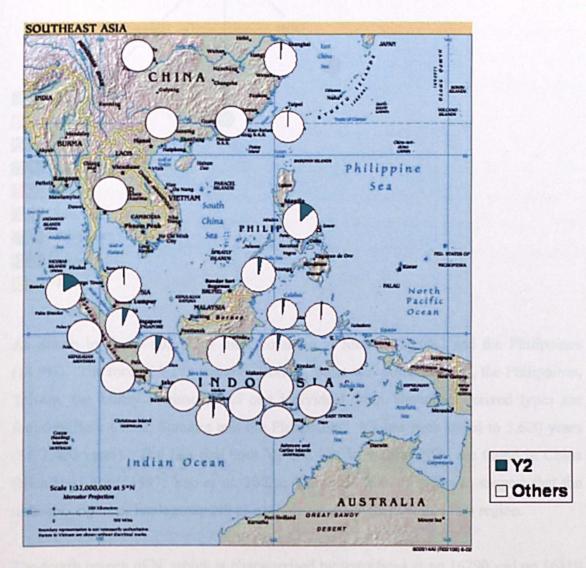

The third branch of N, N9, has a widespread distribution across Asia and can be further divided into haplogroups Y and N9a (Kivisild *et al.* 2002). Haplogroup N9a is defined by the HVS-I motif 16261-16257A and is found in China, Japan, Korea, Thailand and in Taiwanese Aboriginals. As seen in figure 58, in this study N9a types have been found to be fairly rare across Island Southeast Asia. They are most common in the Bangka (8.8%) and Padang (12.5%) populations of Sumatra and in the Orang Asli with only isolated examples found in Java, Borneo and Sulawesi.



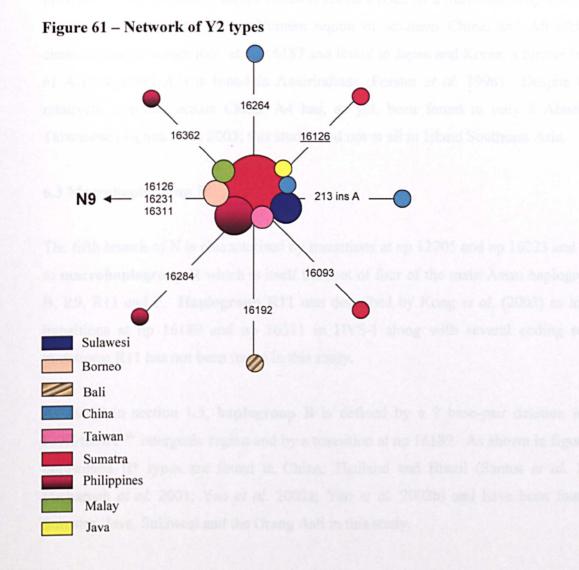



All maps courtesy of the CIA World Factbook. Haplogroup frequency data can be found in Appendix IV.


A network of N9a types is shown in figure 59. As seen here, the root type of N9a is found in China, Japan, Russia and in the Kyrgyz people of Central Asia; more diverse types are common in China, Japan and Korea. N9a as a whole dates to 38,100 years (SE 11,200 years). All the N9a mtDNA types found in Island Southeast Asia and the Orang Asli belong to a subclade (termed N9a1) which is defined by a transition at np 16292.







The root type of N9a1 is found in Thailand and Sulawesi. All the N9a1 types found in Sumatra (3 from Bangka and 3 from Padang) and one type from Thailand form a branch of this subclade which also has a transition at np 16189. The main branch of N9a1, with the addition of a transition at np 16294, has been dated to 5,500 years (SE 2,600 years) and is found in the Orang Asli, Sulawesi, Java and Borneo.

The second branch of N9 is **haplogroup Y** (HVS-I motif 16126-16231) which itself is divided into Y1 and Y2. Y1 has a transition at np 16266 on top of the Y motif and is found mainly in Japan, Korea and the Kamchatka peninsula of North-East Russia with low levels in China (Oota *et al.* 1995; Lee *et al.* 1997; Pfeiffer *et al.* 1998; Horai *et al.* 1996; Schurr *et al.* 1999; Yao *et al.* 2002a; 2002a; Yao *et al.* 2002b. Y2 is characterised by the addition of a transition at np 16311 and has a completely different distribution, see figures 60 and 61.





Haplogroup frequency data can be found in Appendix IV



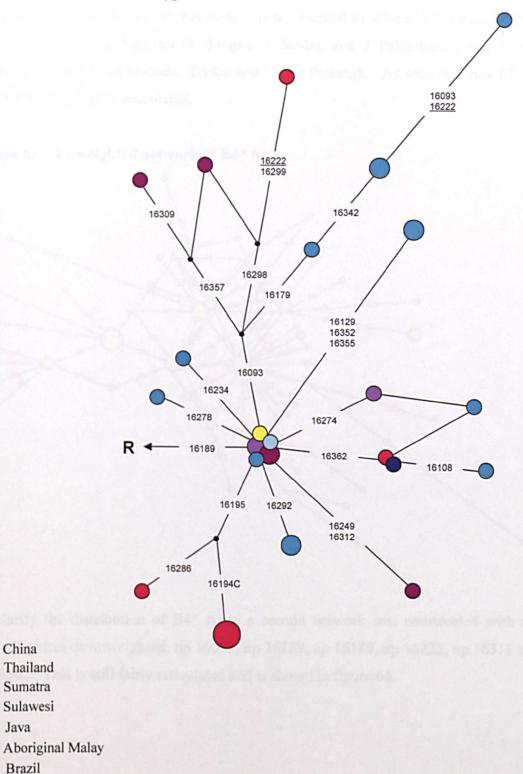
As shown in figure 60, Y2 is most common in Medan (16.6%) and the Philippines (14.9%). The root of Y2 is found in Borneo, Sulawesi, Sumatra, Java, the Philippines, Taiwan, the Malay Peninsula and one individual from Shanghai; derived types are found in Bali, China, Sumatra and the Philippines. Y2 has been dated to 3,600 years (SE 1,400 years). The fact that both Y1 and Y2, as well as N9a, are found in China (Nishimaki *et al.* 1997; Yao *et al.* 2002a; Yao *et al.* 2002b) seems to suggest that the ultimate origins of haplogroup N9 as a whole lie somewhere within that region.

The fourth branch of N, which is characterised by transitions at np 16290 and np 16319 in HVS-I and by a number of mutations in the coding region (see Kivisild *et al.* 2002), is designated **haplogroup A** and is common across China, Japan and Korea (Lee *et al.* 1997; Nishimaki *et al.* 1999; Yao *et al.* 2002a; Yao *et al.* 2002b). Two branches of A

have been found in East Asia; A4 which is characterised by a transition at np 16362 and is found predominantly in the Yunnan region of southern China, and A5 which is characterised by a transition at np 16187 and found in Japan and Korea; a further branch of A (designated A2) is found in Amerindians (Forster *et al.* 1996). Despite being relatively common across China, A4 has, as yet, been found in only 5 Aboriginal Taiwanese (Tajima *et al.* 2003; this study) and not at all in Island Southeast Asia.

#### 6.3 Macrohaplogroup R

The fifth branch of N is characterised by transitions at np 12705 and np 16223 and leads to **macrohaplogroup R** which is itself the root of four of the main Asian haplogroups: B, R9, R11 and P. **Haplogroup R11** was described by Kong *et al.* (2003) as having transitions at np 16189 and np 16311 in HVS-I along with several coding region mutations; R11 has not been found in this study.


As stated in section 1.5, **haplogroup B** is defined by a 9 base-pair deletion in the COII/tRNA<sup>Lys</sup> intergenic region and by a transition at np 16189. As shown in figure 62, unresolved B\* types are found in China, Thailand and Brazil (Santos *et al.* 1996; Fucharoen *et al.* 2001; Yao *et al.* 2002a; Yao *et al.* 2002b) and have been found in Sumatra, Java, Sulawesi and the Orang Asli in this study.

Of the B\* types found in this study, five Sumatrans form a cluster defined by a transition at np 16195. One of these, from Padang, has an additional transition at np 16286 while the other four (3 from Padang and 1 from Pekanbaru) have a transversion from A to C at np 16194.

### Figure 62 – Network of B\* types

China Thailand Sumatra Sulawesi Java

Brazil



**B4** is further defined by a transition at np 16217 and is widespread across East Asia and into the Pacific (e.g. Lum *et al.* 1998; Pfeiffer *et al.* 1998; Kivisild *et al.* 2002; Yao *et al.* 2002; Yao *et al.* 2002b. In this study it is represented by 4 types from Bali, 10 from Banjarmasin, 4 from Sumatra (1 Bangka, 1 Medan and 2 Palembang), and 3 from Sulawesi (1 each from Manado, Toraja and Ujung Padang). As seen in figure 63, the B4\* network is highly reticulated.

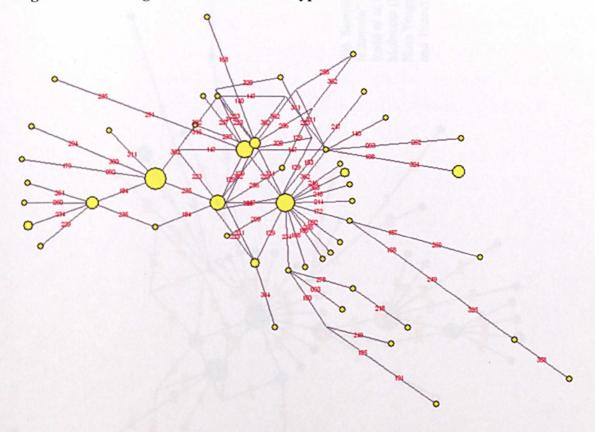
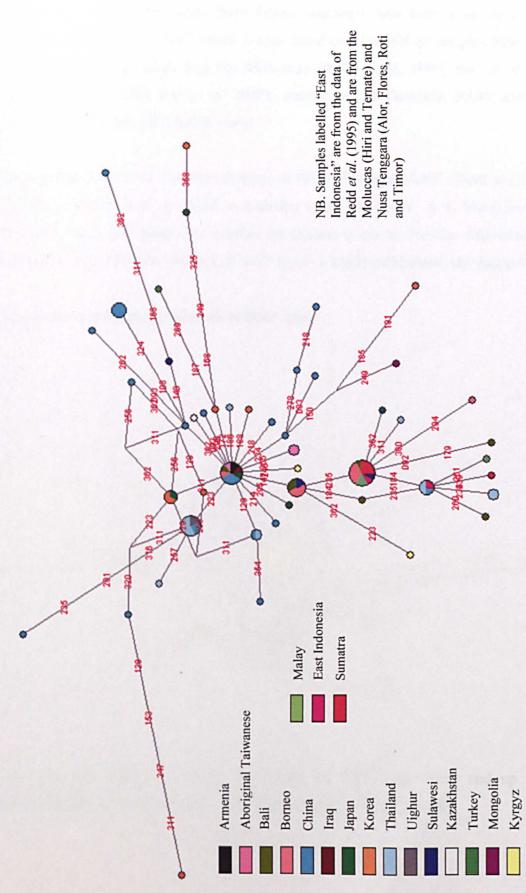
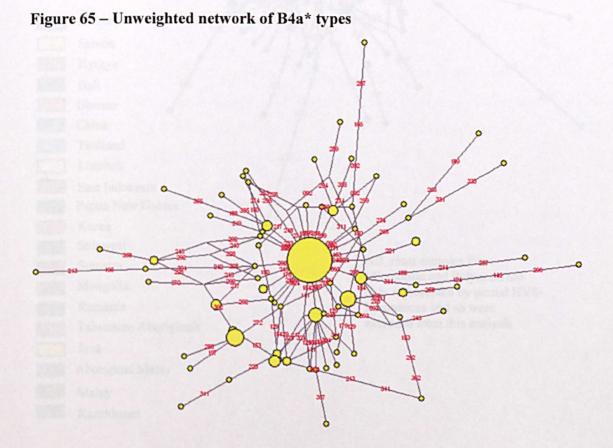
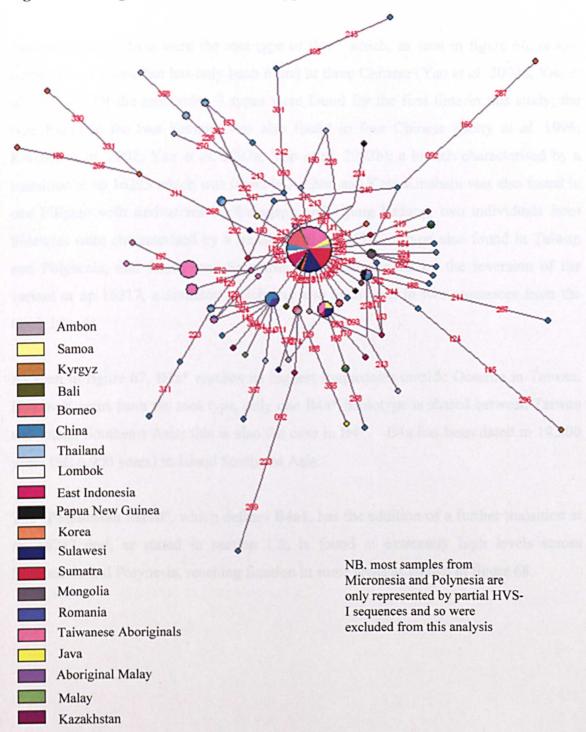




Figure 63 – Unweighted network of B4\* types


To clarify the distribution of B4\* types a second network was constructed with the following sites downweighted: np 16093, np 16129, np 16189, np 16223, np 16311 and np 16362. This is still fairly reticulated and is shown in figure 64.






As seen above, B4\* types are most common in China (especially Yunnan province) and are also common in Korea and Thailand. B4 dates to 33,600 years (SE 8,600 years). The majority of the B4\* types from Island Southeast Asia form a subclade with a further transition at np 16147 which is also found in a handful of samples from China, Thailand, Malaysia, Japan and the Moluccas (Redd *et al.* 1995; Seo *et al.* 1998; Fucharoen *et al.* 2001; Yao *et al.* 2002b; Zainuddin and Goodwin 2004), and which dates to 22,700 years (SE 16,000 years)

**Haplogroup B4a** is the one-step ancestor of the 'Polynesian Motif' (Redd *et al.* 1995) and has a transition at np 16261 in addition to the B4 motif. It is found in China, Thailand, Japan and Korea but reaches its highest levels in Taiwan, Micronesia and Polynesia. Like B4\*, the network of B4a\* types is highly reticulated, see figure 65.



Even with np 16093, np 16129, np 16189, np 16223, np 16311 and np 16362 downweighted, the B4a\* network is still very reticulated, see figure 66.





In this study, B4a\* types were found in the following: 4 samples from Ambon, 1 from Bali, 7 from Banjarmasin, 5 from Kota Kinabalu, 3 from Manado, 2 from Mataram, 2 from Padang, 8 from Pekanbaru, 1 from Palembang, 4 from Toraja, 5 from Ujung

Padang and 1 from Waingapu. The highest frequency of B4a\* (15.4%) was seen in Pekanbaru. B4a\* was also found in two Semelai.

Just over half of these were the root type of B4a\* which, as seen in figure 66, is also common in Taiwan, but has only been found in three Chinese (Yao *et al.* 2002a; Yao *et al.* 2002b). Of the remainder, 7 types were found for the first time in this study; the type found in the two Semelai was also found in four Chinese (Betty *et al.* 1996; Kivisild *et al.* 2002; Yao *et al.* 2002a; Yao *et al.* 2002b); a branch characterised by a transition at np 16223 which was found in Ambon and Kota Kinabalu was also found in one Filipino with derivatives in Waingapu and Ujung Padang; two individuals from Sulawesi were characterised by a transition at np 16217, a situation which has also been seen in two sequences from the Cook Islands.

As seen in figure 67, B4a\* reaches its highest frequencies outside Oceania in Taiwan. However, apart from the root type, only one B4a\* haplotype is shared between Taiwan and Island Southeast Asia; this is also the case in B4\*. B4a has been dated to 14,800 years (SE 6,900 years) in Island Southeast Asia.

The 'Polynesian Motif', which defines B4a1, has the addition of a further transition at np 16247 and, as stated in section 1.5, is found at extremely high levels across Micronesia and Polynesia, reaching fixation in some areas as shown in figure 68.

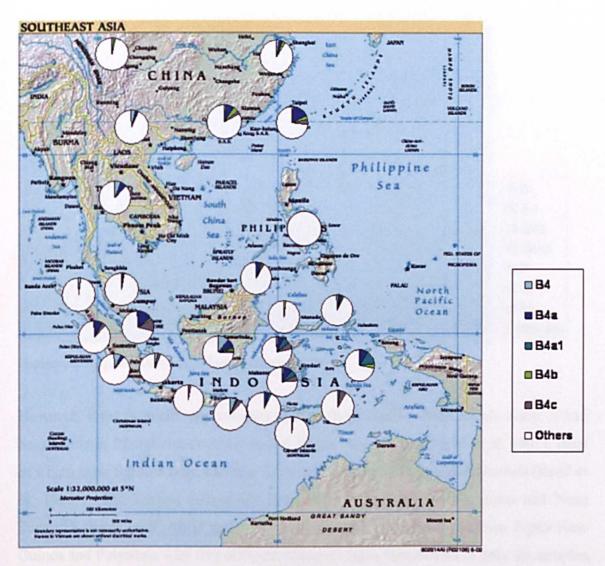
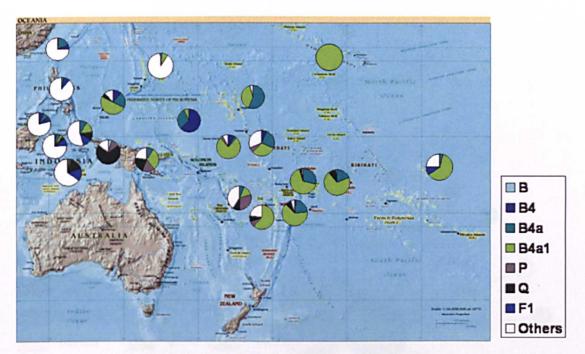
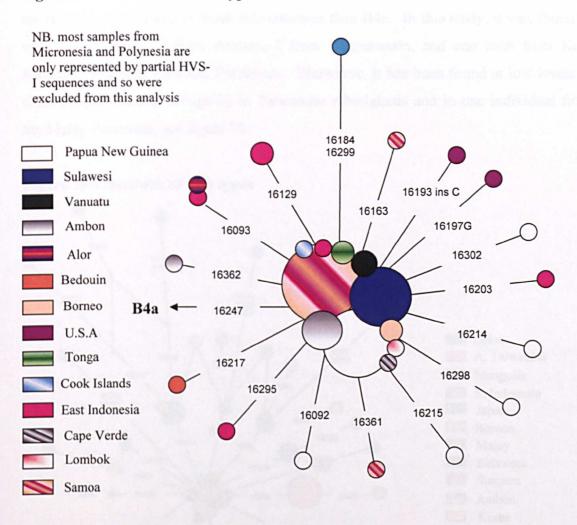




Figure 67 – Map showing the distribution of B4 haplogroups in Southeast Asia

Haplogroup frequency data can be found in Appendix IV

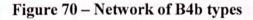
Figure 68 – Map showing the distribution of the main Oceanic haplogroups

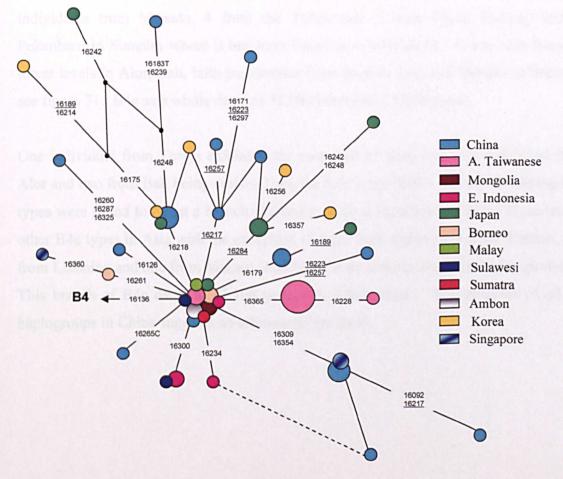



Haplogroup frequency data can be found in Appendix IV

However, B4a1 is much less common outside these areas. Prior to this study, it had been found in 22 individuals from coastal Papua New Guinea (Redd *et al.* 1995), most of which were the root type, and also in six individuals from Eastern Indonesia (Redd *et al.* 1995). The Eastern Indonesian individuals were from the Moluccas and Nusa Tenggara (Redd *et al.* 1995) and were much more diverse than those from Papua New Guinea and Polynesia with five different sequence types represented in only six samples, only one of which was the root type. Other than this, B4a1 has only been found in one individual from Liaoning province in Northeastern China, two African Americans, one individual from Cape Verde and possibly one from a Bedouin individual (Di Rienzo *et al.* 1991; Handt *et al.* 1998; Brehm *et al.* 2002; Yao *et al.* 2002a).

In this study, despite the extensive sampling across Island Southeast Asia, only 19 individuals were found to belong to haplogroup B4a1. These were found in the following locations: 1 from Alor (representing 2% of the population), 6 from Ambon (14%), 2 from Banjarmasin (2%), 1 from Lombok (2%), 1 from Manado (1%), 5 from the Toraja (8%) and 3 from Ujung Padang (6.5%). Therefore, B4a1 is not found


further west than Southeastern Borneo and Lombok and is most common in the Moluccas.

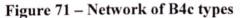

#### Figure 69 – Network of B4a1 types

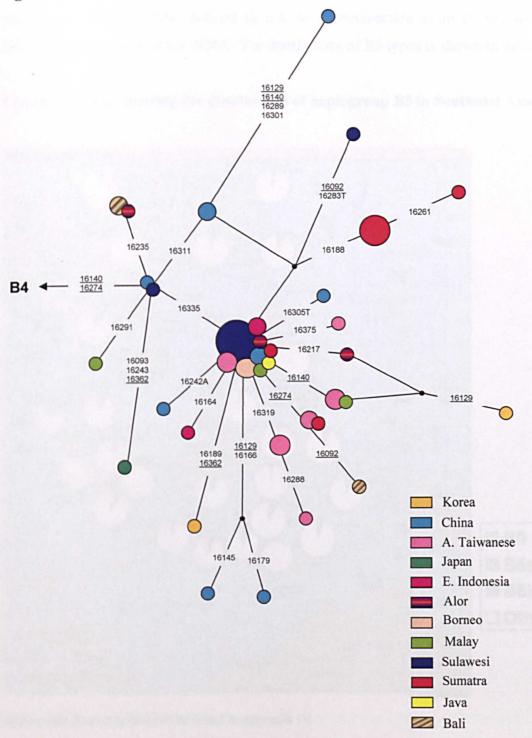


In contrast to the high diversity found in Eastern Indonesia by Redd *et al.* (1995), all but two of these were the root type. The root type is particularly common in Sulawesi where it is found in 9 individuals; in contrast, no derived types are found in Sulawesi which suggests that these could be the result of a recent migration. The derived types found in Island Southeast Asia were both one-step derivatives. One of these was found in Ambon and had an additional transition at np 16362. The second derived type found in Island Southeast Asia had an additional transition at np 16093 and was found in Alor, this type was also found in the data of Redd *et al.* (1995). A network of B4a1 types is shown in figure 69. B4a1 dates to 5,700 years (SE 2,700 years) in Island Southeast Asia. However, when the samples from Sulawesi are removed the age increases to 8,800 years (SE 4,200 years)

There are two other branches of B4. **Haplogroup B4b** is characterised by a transition at np 16136 in HVS-I and is much less common than B4a. In this study, it was found in only 8 individuals: 2 from Ambon, 2 from Banjarmasin, and one each from Kota Kinabalu, Manado, Palu and Pekanbaru. Elsewhere, it has been found at low levels in China, Japan, Korea, Mongolia, in Taiwanese Aboriginals and in one individual from the Malay Peninsula, see figure 70.

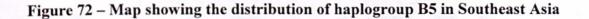


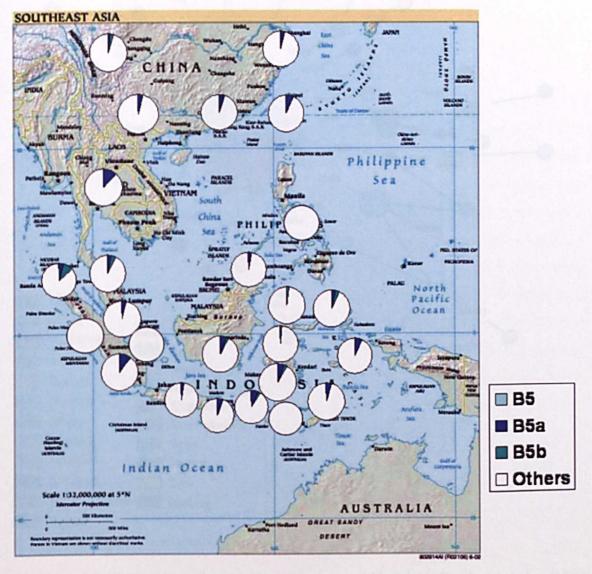




Of the B4b mtDNAs found in Island Southeast Asia, 6 were the root type with the other two being one-step derivatives. Of these, one found in Banjarmasin also had a transition at np 16261 (a further one-step derivative of this type has been found in Singapore); the other was found in Palu and also contained a transition at np 16300, this

type was found in three of the Eastern Indonesian individuals studied by Redd *et al.* (1995). B4b dates to 27,000 years (SE 6,100 years) overall and to 8,400 years (SE 5,600 years) in Island Southeast Asia

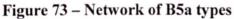
**Haplogroup B4c** is characterised by transitions at np 16140 and np 16274 in HVS-I and, again, is less common than B4a. Prior to this study, it had only been found at relatively low levels in China, Taiwan, the Malay Peninsula, Eastern Indonesia, and in one individual from Japan (Redd *et al.* 1995; Seo *et al.* 1998; Kivisild *et al.* 2002; Yao *et al.* 2002a; Tajima *et al.* 2003; Zainuddin and Goodwin 2004). Just under half of all known B4c mtDNAs have been found in Island Southeast Asia during the course of this study. Specifically, B4c is most common in Sulawesi (where it has been found in 2 individuals from Manado, 4 from the Toraja and 3 from Ujung Padang) and in Pekanbaru in Sumatra where it has been found in 6 individuals. It was also found at lower levels in Alor, Bali, both populations from Borneo, Java and Bangka in Sumatra, see figure 71. B4c as a whole dates to 35,700 years (SE 15,600 years).

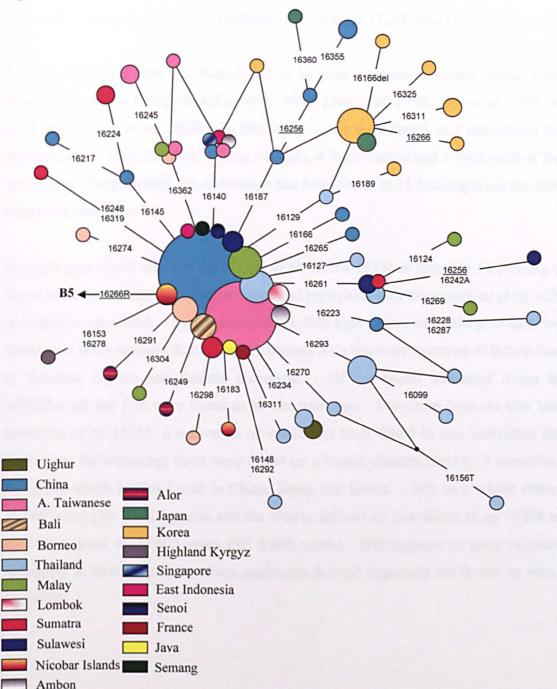

One individual from Toraja exhibited the root type of B4c, with one individual from Alor and two from Bali being derived from the root at np 16235. All the remaining B4c types were found to be on a branch characterised by a transition at np 16335, as are all other B4c types in Asia with the exception of three from China (one from Yunnan, one from Liaoning and one from Macau), one from Japan and one from the Malay peninsula. This branch of B4c dates to 17,100 years (SE 4,800 years). The presence of all B4 haplogroups in China suggests an ultimate origin there.






A second branch major of B, **B5**, is defined by a transition at np 16140 in HVS-I and another at np 10398 in the coding region. As yet, only three putative B5\* types have


been found, one in the Nicobar Islands, one in the Yami group of Taiwan and one in Java (unpublished data of Peter Forster, University of Cambridge). All others belong to one of two branches: **B5a**, defined by a C to A transversion at np 16266, and **B5b**, defined by a transition at np 16243. The distribution of B5 types is shown in figure 72.

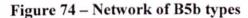


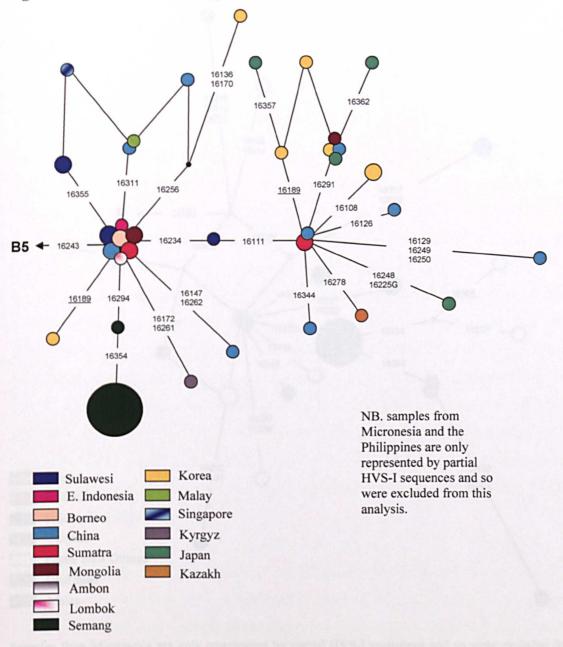



Haplogroup frequency data can be found in Appendix IV

**B5a** is the more common of the two and is most prevalent in China, Taiwan and Thailand. It has also been found in Japan, Korea, the Nicobar Islands and the Malay Peninsula. A network of B5a types is shown in figure 73.

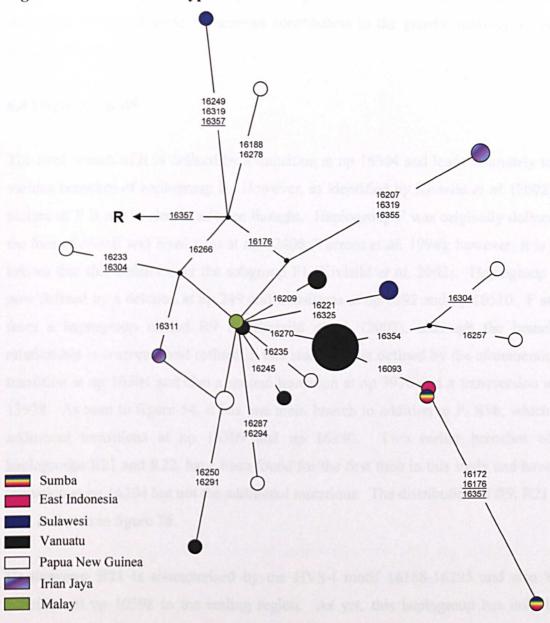






In this study, B5a has been found to be fairly common in Island Southeast Asia. It has been found in: 2 individuals from Alor, 3 from Ambon, 4 from Bali, 3 from Lombok, 6 from Banjarmasin, 2 from Kota Kinabalu, 1 from Java, 3 from Manado, 3 from Ujung Padang, 2 from Medan, 3 from Palembang and 2 from Pekanbaru. It has also been found in one Semang and one Senoi from the Malay Peninsula. The root of B5a is most

common in China and Taiwan, suggesting an origin there. However, as shown in section 5.3, it is more diverse in Thailand. B5a dates to 17,300 years (SE 3,900 years).

Prior to this study, **B5b** had been found to be most common in China, Japan, Korea, Micronesia and the Philippines (Lee *et al*. 1997; Lum *et al*. 1998; Seo *et al*. 1998; Yao *et al*. 2002a; Yao *et al*. 2002b. In this study, it has been found in 2 individuals from Banjarmasin, 1 from Lombok, 3 from Manado, 4 from Medan and 1 from each of Palu, Toraja and Ujung Padang. In addition, it has been found in 15 Semang from the Malay Peninsula, see figure 74.


A single type which also has the HVS I motif 16294-16354 is found in 14 Semang (12 Batek and 2 Mendriq); its immediate ancestral type (with only the transition at np 16294) is present in one Batek. The common Batek B5b type seems most likely to have been introduced fairly recently from Island Southeast Asia since the root type of B5b is found in Sumatra, Borneo and Eastern Indonesia. Of the Island Southeast Asian B5b mtDNAs, all but five were found to be the root type. Two from Manado also had a transition at np 16355, a derivative of which has been found in one individual from Singapore; the remaining three were found on a branch characterised by a transition at np 16234 which is also found in China, Japan and Korea. B5b as a whole dates to 35,000 years (SE 11,800 years) and the cluster defined by transitions at np 16234 and np 16111 dates to 22,600 years (SE 8,600 years). B5b appears to have originated ultimately in Northeast Asia, where numerous derived sequences are found, as seen in figure 74.





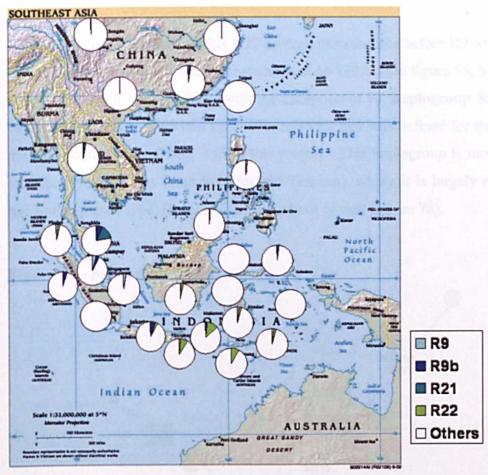
The second branch of R is characterised by a transition at np 16357 and is designated **haplogroup P**. It is a predominantly Melanesian and Micronesian haplogroup with more diversity being found in the former suggesting an origin there. The distribution of haplogroup P is shown in figure 75.

#### Figure 75 – Network of P types



Samples from Micronesia are only represented by partial HVS-I sequences and so were excluded from this analysis.

As seen in figure 75, haplogroup P was also found in one Indonesian individual by Redd *et al.* (1995) and has been found in a further five in this study. All but one of these (three of whom were from Manado and two from Sumba) belonged to a branch of P characterised by transitions at np 16176 and np 16266 which is relatively common in Papua New Guinea and Vanuatu but which is not found in Micronesia. This branch has


been dated to 30,300 years (SE 12,000 years). It seems almost certain that P is an indigenous Melanesian haplogroup so its presence in the sample studied here is indicative of at least some Melanesian contribution to the genetic make-up of Island Southeast Asia.

### 6.4 Haplogroup R9

The final branch of R is defined by a transition at np 16304 and leads ultimately to the various branches of haplogroup F. However, as identified by Kivisild *et al.* (2002) the picture of F is not as simple as once thought. Haplogroup F was originally defined by the loss of *Hinc*II and *Hpa*I sites at np 12406 (Torroni *et al.* 1994); however, it is now known that this defines only the subgroup F1 (Kivisild *et al.* 2002). Haplogroup F is now defined by a deletion at np 249 and transitions at np 6392 and np 10310. F stems from a haplogroup named R9 by Kivisild *et al.* (2002), although the branching relationship is corrected and refined in this study. R9 is defined by the aforementioned transition at np 16304 and also a second transition at np 3970 and a transversion at np 13928. As seen in figure 54, it has one main branch in addition to F, R9b, which has additional transitions at np 16309 and np 16390. Two earlier branches of R, haplogroups R21 and R22, have been found for the first time in this study and have the transition at np 16304 but not the additional mutations. The distribution of R9, R21 and R22 is shown in figure 76.

**Haplogroup R21** is characterised by the HVS-I motif 16168-16295 and also by a transition at np 10398 in the coding region. As yet, this haplogroup has only been found in the Jahai and Mendriq Semang and the Temiar Senoi, most of whom share a single sequence type. Two instances of this haplogroup can also be found in the Malay data of Zainuddin and Goodwin (2004). There are no obvious neighbouring types, suggesting that this clade may be indigenous to the Semang/Senoi, and may represent a component of deep Pleistocene ancestry within the Malay Peninsula.

Figure 76 – Map showing the distribution of haplogroups R9, R21 and R22 in Southeast Asia



Haplogroup frequency data can be found in Appendix IV

The second new haplogroup has been termed **haplogroup R22** and is defined by the HVS-I motif 16249-16288. Some types also have a transition at np 16390, suggesting that they may be related to R9b types, but the branching relationship is unclear at present. R22 has been found in 5 individuals from Bali, 5 from Lombok, 4 from Sumba, 2 from Banjarmasin and 1 each from Alor, Medan, Ujung Padang, Kota Kinabalu and Java. R22 has also been found in three individuals from the Nicobar Islands (Prasad *et al.* 2001) and in two individuals from Thailand (Yao *et al.* 2002b). The branching relationship of R22 types is shown in figure 77.

The origins of R22 are unclear. The most derived types are seen in Thailand and the Nicobars; however, it is far more common in Bali and Nusa Tenggara and the root type

is only found in Lombok and Alor. This suggests that it could be a possible indigenous marker for that area. R22 dates to 12,500 years (SE 5,200 years).

As stated above, R21 and possibly R22 diverge from the tree before R9 which is defined by a transition at np 3970 and a transversion at np 13928 (see figure 55; Macaulay *et al.* 2005). The main branch of R9 (with the exception of F), **haplogroup R9b**, is defined by transitions at np 16309 and np 16390 in HVS-I and was defined for the first time by the work done on the Orang Asli in this project. This haplogroup is most common in the Aboriginal Malays (both Semelai and Temuan), where it is largely represented by just one sequence type, found frequently in both groups (figure 78).

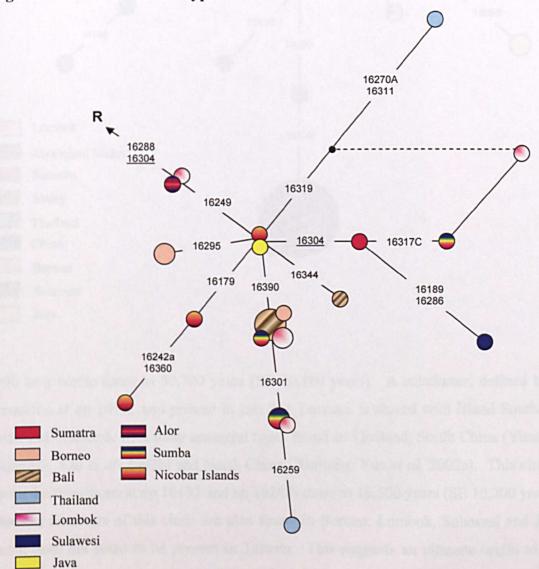
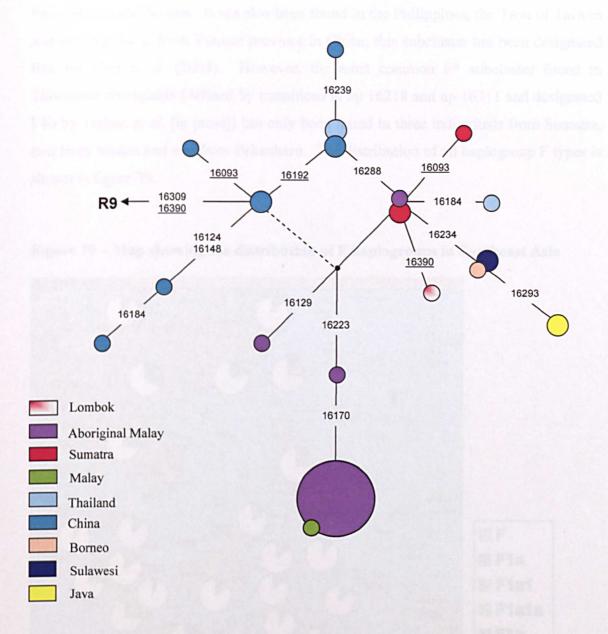




Figure 77 – Network of R22 types





R9b as a whole dates to 50,700 years (SE 20,100 years). A subcluster, defined by a transition at np 16192 and present in just one Temuan, is shared with Island Southeast Asia and Thailand, with more ancestral types found in Thailand, South China (Yunnan, Guangxi: Yao *et al.* 2002b) and North China (Xinjiang: Yao *et al.* 2002a). This cluster (with the transitions at np 16192 and np 16288) dates to 16,500 years (SE 10,200 years). Derived members of this clade are also found in Borneo, Lombok, Sulawesi and Java but it does not seem to be present in Taiwan. This suggests an ultimate origin to the north, on the Asian mainland, possibly via Sumatra.

The main  $F^*$  subcluster found in Island Southeast Asia is defined by the addition of transitions at np 16157 and np 16256 and is found in Alor, Kota Kinabalu, Manado, Palu, Medan and Sumba. It has also been found in the Philippines, the Tsou of Taiwan and one individual from Yunnan province in China; this subcluster has been designated R9c by Wen *et al.* (2004). However, the most common F\* subcluster found in Taiwanese aboriginals (defined by transitions at np 16218 and np 16311 and designated F4b by Trejaut *et al.* [in press]) has only been found in three individuals from Sumatra, two from Medan and one from Pekanbaru. The distribution of all haplogroup F types is shown in figure 79.

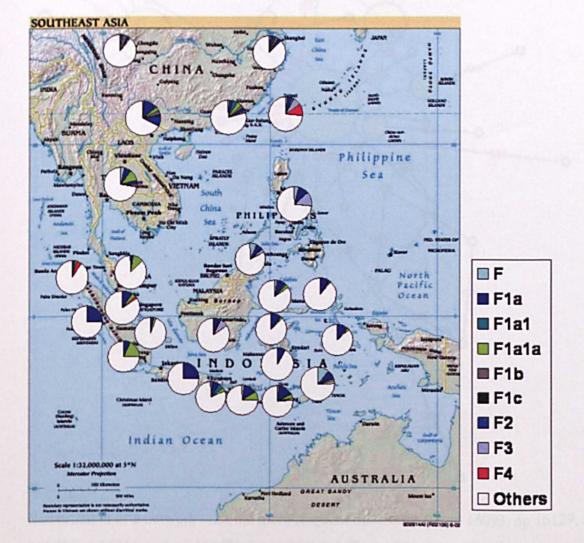
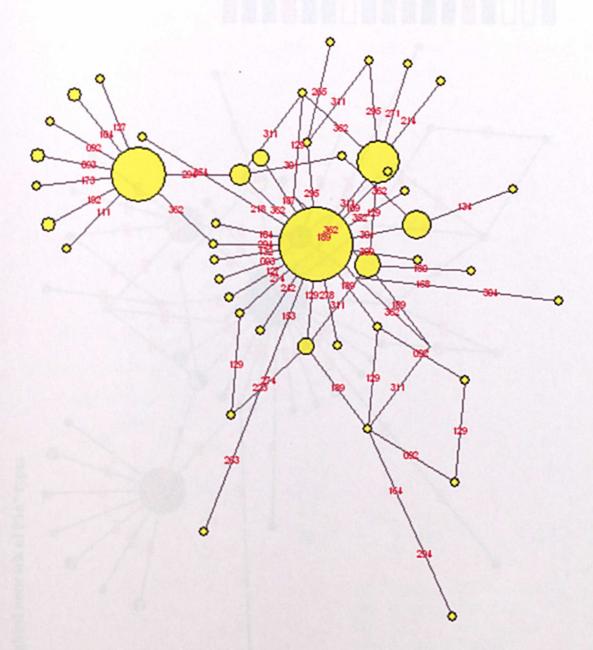




Figure 79 - Map showing the distribution of F haplogroups in Southeast Asia

Haplogroup frequency data can be found in Appendix IV

As stated above, **haplogroup F1** is defined by transitions at np 10609 and np 12406, **haplogroup F1a** is further defined by transitions at np 16129 and np 16172. The network of F1a\* types is very reticulated and is shown in figure 80.

Figure 80 - Unweighted network of F1a\* types



Construction of a network with the more frequent transitions (at np 16093, np 16129, np 16189, np 16311 and np 16362) downweighted (figure 81) shows that the root type of F1a is most common in China (mainly Yunnan province).

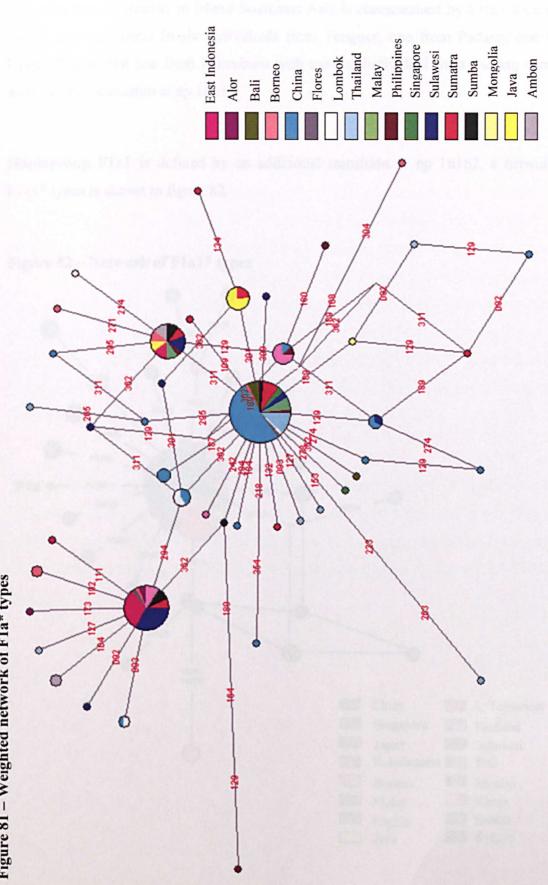
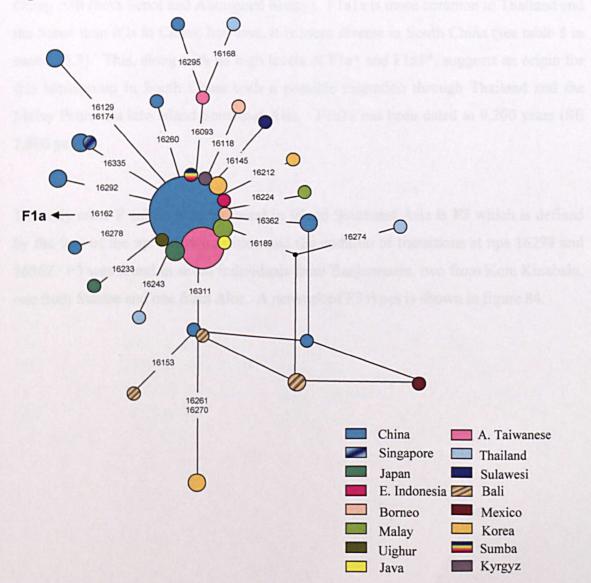
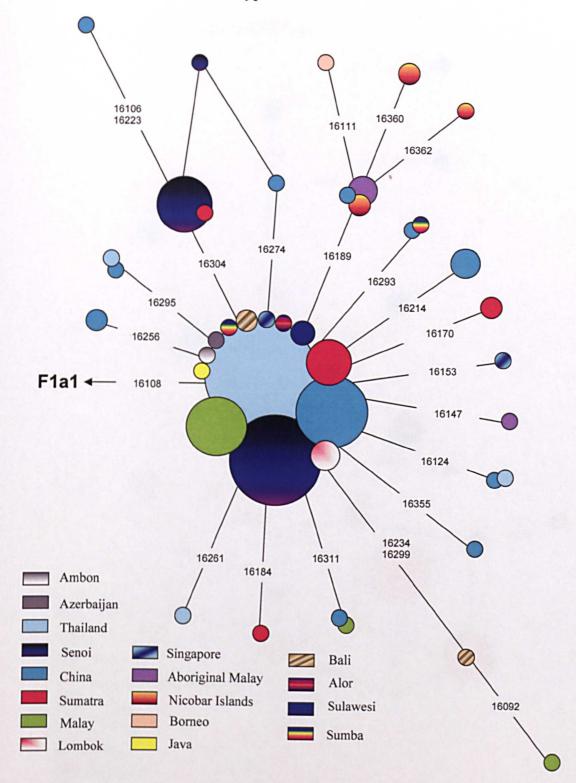


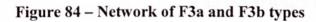

Figure 81 - Weighted network of F1a\* types

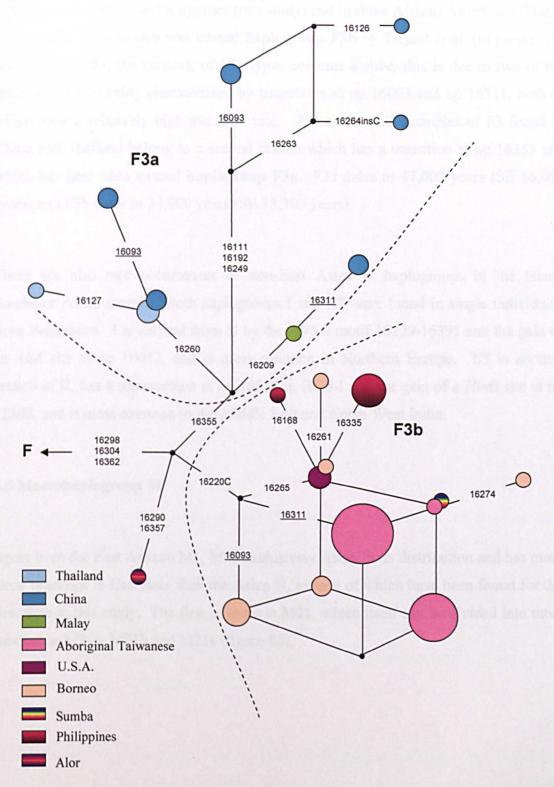
As seen in figure 81, most Island Southeast Asian types are found on a branch characterised by a transition at np 16294 which dates to 4,300 years (SE 1,900 years). A second branch specific to Island Southeast Asia is characterised by a transition at np 16301 and was found in six individuals from Tengger, one from Padang, one from Ujung Padang and one from Pekanbaru with another individual from Padang carrying an additional transition at np 16134.

**Haplogroup F1a1** is defined by an additional transition at np 16162, a network of F1a1\* types is shown in figure 82.





Figure 82 - Network of F1a1\* types


As seen in figure 82, F1a1\* is also most common in South China; the root type is also relatively common amongst Taiwanese Aboriginals. F1a1\* is less common in Island Southeast Asia than F1a\*, the root type is only found in four individuals (including one from the data of Redd *et al.* [1995] and one from the unpublished data of Peter Forster [personal communication]). Derivatives are, however, found in Borneo, Sulawesi and Bali. F1a1 dates to 26,000 years (SE 13,700 years).


**Haplogroup F1a1a** is further defined by a transition at np 16108, a network of F1a1a types is shown in figure 83. The root type of F1a1a is most common in Thailand, China and the Senoi; it is also relatively common across Island Southeast Asia, particularly in Sumatra. Derivative types are also found in Sumatra, Bali, Sumba, Borneo and the Orang Asli (both Senoi and Aboriginal Malay). F1a1a is more common in Thailand and the Senoi than it is in China; however, it is more diverse in South China (see table 8 in section 5.3). This, along with its high levels of F1a\* and F1a1\*, suggests an origin for this haplogroup in South China with a possible migration through Thailand and the Malay Peninsula into Island Southeast Asia. F1a1a has been dated to 9,200 years (SE 2,800 years).

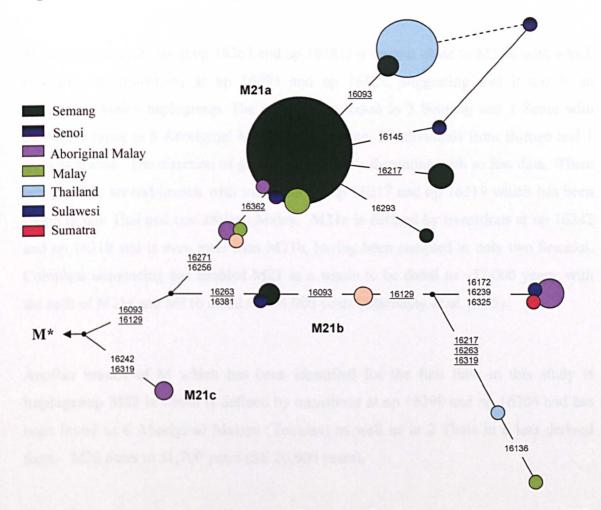
The only other F subclade to be found in Island Southeast Asia is F3 which is defined by the loss of the np 16304 transition and the addition of transitions at nps 16298 and 16362. F3 was found in seven individuals from Banjarmasin, two from Kota Kinabalu, one from Sumba and one from Alor. A network of F3 types is shown in figure 84.

# Figure 83 - Network of F1a1a types








All but one of the sequence types from Island Southeast Asia were found to have a transversion from A to C at np 16220 which has only been found elsewhere in Taiwan (Tajima *et al.* 2003), the Philippines (this study) and in three African Americans (Handt *et al.* 1998). This branch was termed **haplogroup F3b** by Trejaut *et al.* (in press). As seen in figure 84, the network of F3b types contains a cube, this is due to two of the branches of F3b being characterised by transitions at np 16093 and np 16311, both of which have a relatively high mutation rate. In contrast, all examples of F3 found in China and Thailand belong to a second branch which has a transition at np 16355 and which has here been termed **haplogroup F3a**. F3a dates to 47,000 years (SE 16,000 years) and F3b dates to 34,000 years (SE 13,300 years).

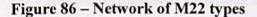
There are also rare occurrences of non-East Asian N haplogroups in the Island Southeast Asian sample. Both haplogroups I and U7 were found in single individuals from Pekanbaru. I is derived from N by the HVS-I motif 16129-16391 and the gain of an *Alu*I site at np 10032, and is most common in Northern Europe. U7 is another branch of R, has a transversion at np 16318 in HVS-I and the gain of a *Hin*fI site at np 12308, and is most common in the Middle East and North-West India.

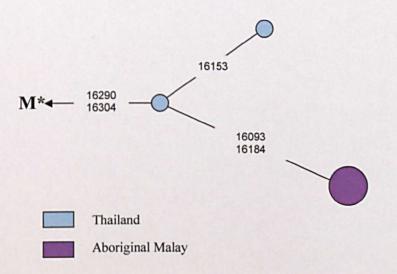
## 6.5 Macrohaplogroup M

Apart from the East African M1, M is exclusively Asian in its distribution and has more basal branches in East Asia than the Asian N, several of which have been found for the first time in this study. The first of these is **M21**, which itself can be divided into three subclades: M21a, M21b and M21c (figure 85).

#### Figure 85 – Network of M21 types




The most common of these subclades, **M21a**, is defined by transitions at nps 16093, 16129, 16256, and 16271 and is common in the Orang Asli (reaching its highest levels at 84% in the Mendriq), the only other non-Malaysian people known to possess it at high frequencies are the Sakai Semang of southern Thailand (data of Fucharoen *et al.* 2001) which suggests that it is an indigenous Semang haplogroup; note that the M21a types found in the Fucharoen *et al.* (2001) data were mischaracterised by Tanaka *et al.* (2004) as belonging to haplogroup D4a.

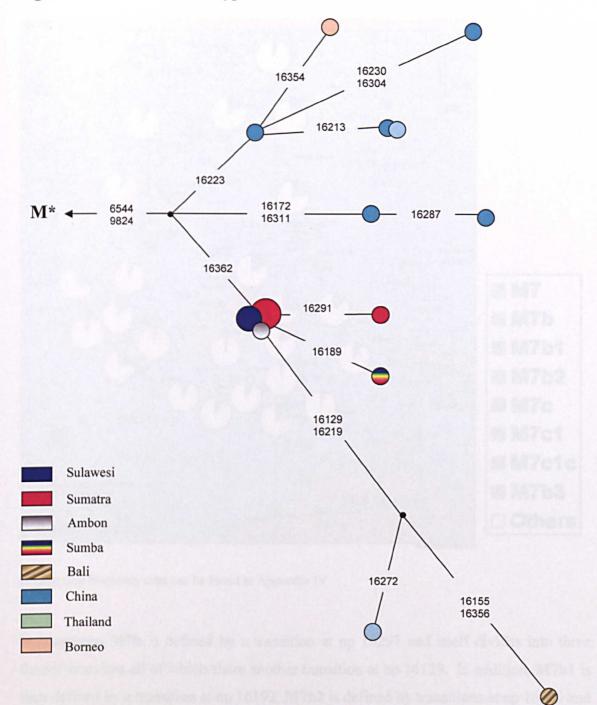

The root type of M21a has only been found in two Aboriginal Malays, one Malay (data of Zainuddin and Goodwin 2004) and one individual from Banjarmasin, most likely suggesting gene flow from the Semang or Senoi into these groups. The most common type (which also has a transition at np 16362) was found in 38 Semang, 4 Malays (data

of Zainuddin and Goodwin 2004), 1 Senoi and 1 Aboriginal Malay. Derivatives of the most prevalent type are found in 16 Thais, 8 Semang and 2 Senoi.

**M21b** (with transitions at np 16263 and np 16381) is a sister clade to M21a, with which it shares the transitions at np 16093 and np 16129, suggesting that it too is an indigenous Malay haplogroup. The root type is found in 3 Semang and 1 Senoi with derivative types in 5 Aboriginal Malays, 1 Sumatran, 2 individuals from Borneo and 1 from Sulawesi. The direction of gene flow is hard to determine with so few data. There is a possible second branch with transitions at np 16217 and np 16319 which has been found in one Thai and one *Melayu* Malay. **M21c** is defined by transitions at np 16242 and np 16319 and is even rarer than M21b, having been sampled in only two Semelai. Complete sequencing has enabled M21 as a whole to be dated to ~57,000 years, with the split of M21a and M21b dated to ~44,000 years (Macaulay *et al.* 2005).

Another branch of M which has been identified for the first time in this study is **haplogroup M22** is which is defined by transitions at np 16290 and np 16304 and has been found in 6 Aboriginal Malays (Temuan) as well as in 2 Thais in a less derived form. M22 dates to 31,700 years (SE 20,600 years).





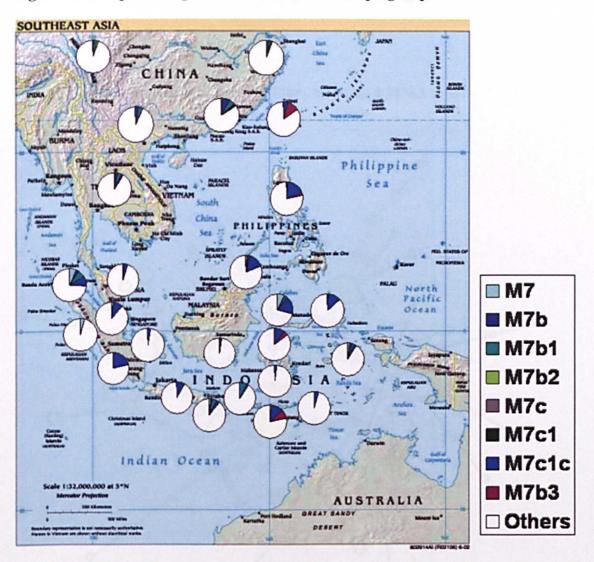

One of the most common Asian haplogroups is M7 which is found throughout China, Korea, Japan, Island Southeast Asia and Micronesia. M7 is characterised by transitions at np 6455 and np 9824, the latter being recognised by the gain of a *Hin*fI site. M7\* types are relatively uncommon, having only been found in China and Thailand prior to this study. In this study they have been found in one individual from Bali, 1 from Padang, 3 from Medan, 1 from Pekanbaru, 3 from Palu, 1 from Ambon, 1 from Kota Kinabalu and 1 from Waingapu. A network of M7\* types is shown in figure 87.

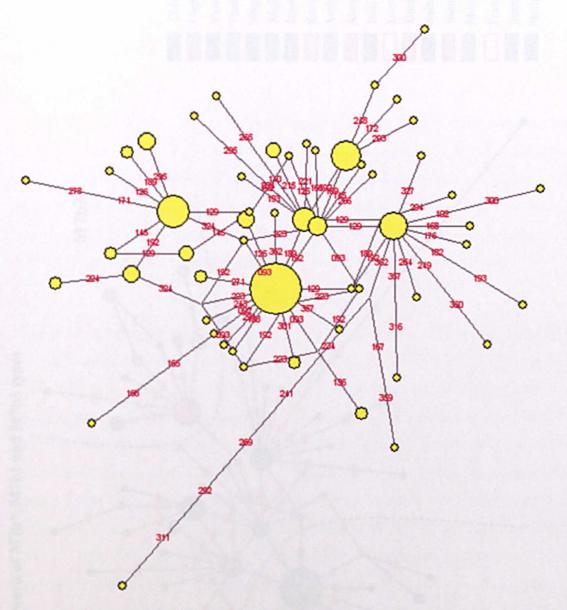
As seen in figure 87 all but one of the Island Southeast Asian M7\* samples are found on one branch which is characterised by a transition at np 16362. The only other sample found in this cluster is one from Thailand (Fucharoen *et al.* 2001). This cluster dates to 16,800 years (SE 6,300 years). All M7\* types found in China are found on another two main branches along with another sample from Thailand and the one found in Kota Kinabalu.

M7 can be divided into three further branches: M7a, M7b and M7c (Kivisild *et al.* 2002). **M7a** is a Northeast Asian haplogroup which is defined by a transition at np 16209 and has been found exclusively in Japan and Korea with only one exception in the Philippines. However, M7b and M7c have much more widespread distributions (see figure 88).



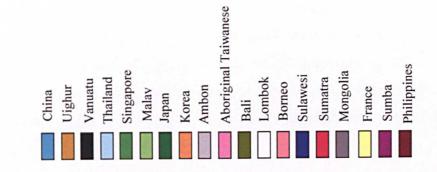


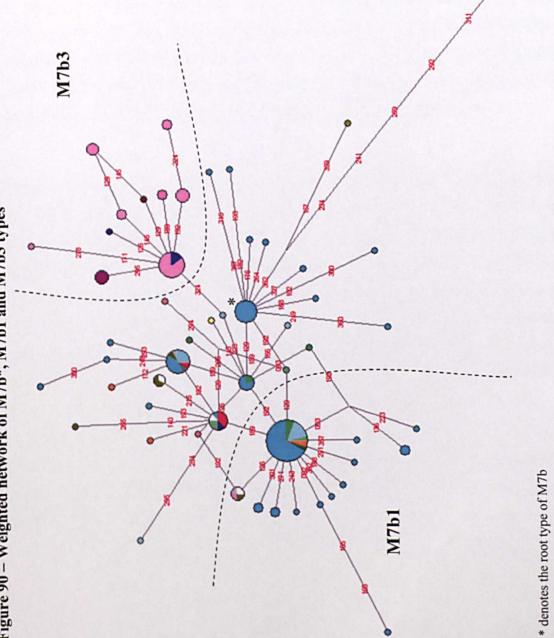




Figure 88 – Map showing the distribution of M7 haplogroups in Southeast Asia

Haplogroup frequency data can be found in Appendix IV

Haplogroup M7b is defined by a transition at np 16297 and itself divides into three further branches all of which share another transition at np 16129. In addition, M7b1 is then defined by a transition at np 16192, M7b2 is defined by transitions at np 16189 and np 16298 (Kivisild *et al.* 2002) and M7b3 is defined by the loss of the transition at np 16223 and the addition of a transition at np 16324 (Yao *et al.* 2004). M7b2 is, like M7a, an almost exclusively Northeast Asian haplogroup with almost all examples being found in Japan and Korea (Horai *et al.* 1996; Lee *et al.* 1997; Lum *et al.* 1998; Seo *et al.* 1998; Nishimaki *et al.* 1999), the only exceptions being five individuals from across China (Nishimaki *et al.* 1999; Yao *et al.* 2002a). However, M7b\*, M7b1 and M7b3 are

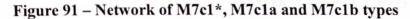

more widespread. The network of these M7b types is highly reticulated, as seen in figure 89.

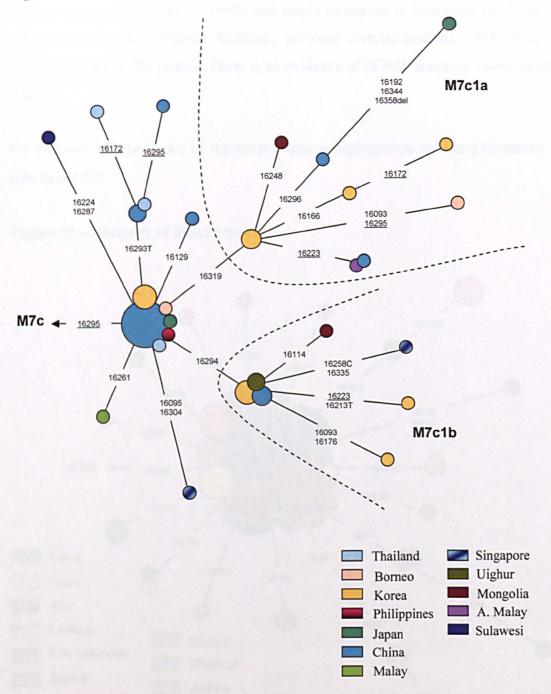

## Figure 89 – Unweighted network of M7b\*, M7b1 and M7b3 types



The network is still fairly reticulated even with np 16093, np 16129, np 16189, np 16223, np 16311 and np 16362 downweighted, see figure 90.





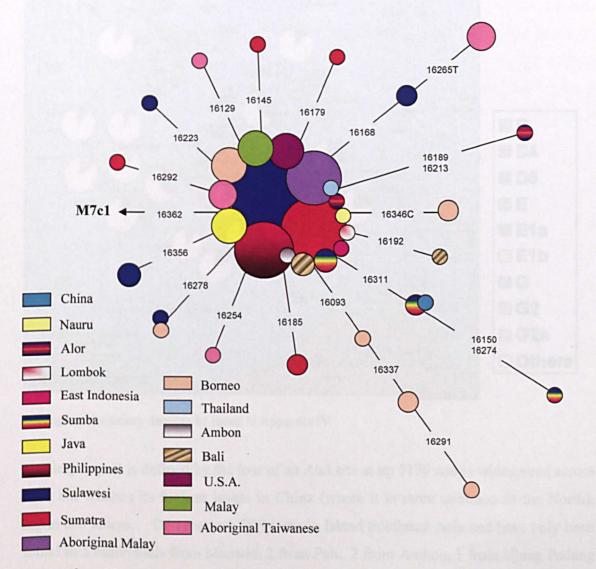




M7b is most common in China (Kivisild *et al.* 2002; Yao *et al.* 2002a; Yao *et al.* 2002b), suggesting a root there. It is also relatively common in Taiwanese aboriginals and has been found in Singapore, the Philippines, Thailand and in one individual from Vanuatu. This study has shown M7b to be found at low levels across Island Southeast Asia; it is most common in Sumba, where the same derived M7b3 type was found in four individuals. M7b3 is mainly found elsewhere in Taiwanese aboriginals but has also been found in three individuals from Toraja and one from the Philippines. M7b3 dates to 15,400 years (SE 5,900 years).

M7b\* and M7b1 types are also found in Island Southeast Asia. M7b\* types are found in single individuals from Ambon, Bali, Banjarmasin, Kota Kinabalu and Medan. M7b1 reaches its highest frequency in Island Southeast Asia in Bali and Medan where it is found in three individuals. However, the root type is not found in Island Southeast Asia. M7b1 is found in China, Thailand, the *Melayu* Malays, Korea and Japan. The root of M7b1 is most common in southern China suggesting an origin there.

The most widespread subclade of M7 is **haplogroup M7c**, and in particular M7c1. M7c is characterized by transitions at np 146 and np 199 in HVS-II and M7c1 is further defined by a transition at np 16295 in HVS-I. M7c1 then is further divided into M7c1a which also has a transition at np 16319, M7c1b which has a transition at np 16294 and M7c1c which has a transition at np 16362. M7c1\* is most common in China (Kivisild *et al.* 2002; Yao *et al.* 2002a; Yao *et al.* 2002b) but is also found, at lower levels, in Japan, Korea, the Philippines, Singapore, the Malay Peninsula and Thailand (Horai *et al.* 1996; Lee *et al.* 1997; Seo *et al.* 1998; Fucharoen *et al.* 2001; Zainuddin and Goodwin 2004; Martin Richards, personal communication). As shown in figure 91, the only derivative example of M7c1\* found in this study was from Manado, this type has not been found elsewhere. However, the root type of M7c1 has previously been found in one individual from Kota Kinabalu (Sykes *et al.* 1995). M7c1 dates to 25,700 years (SE 14,500 years).

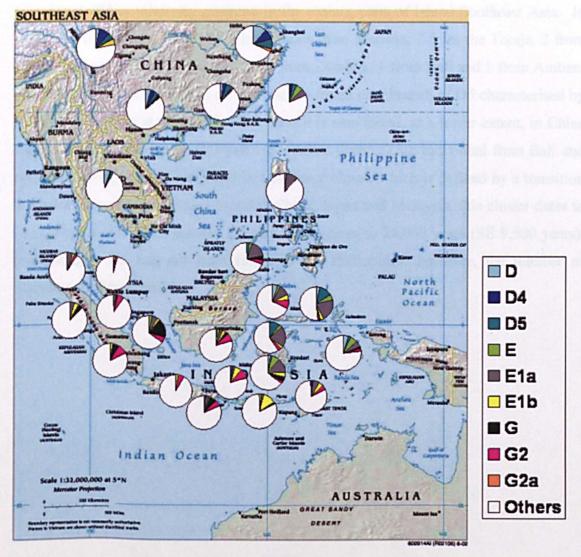





As shown in figure 91, M7c1a is quite rare and reaches its highest levels in Korea (Horai *et al.* 1996; Lee *et al.* 1997; Pfeiffer *et al.* 1998). In this study, only two derived examples of M7c1a have been found – one in Borneo which is not found elsewhere and one in an Aboriginal Malay (Semelai) which is also found in an individual from Wuhan

in China (Yao *et al.* 2002a). M7c1a dates to 24,500 years (SE 9,700 years). M7c1b is even rarer and is found mainly in Korea (Lee *et al.* 1997) with two examples in the Uighur people (Comas *et al.* 1998) and single examples in Mongolia (Kolman *et al.* 1996) and Singapore (Martin Richards, personal communication). M7c1b dates to 5,500 years (SE 3,200 years). There is no evidence of M7c1b reaching Island Southeast Asia.

By contrast, **M7c1c** is one of the most common haplogroups in Island Southeast Asia (see figure 92).

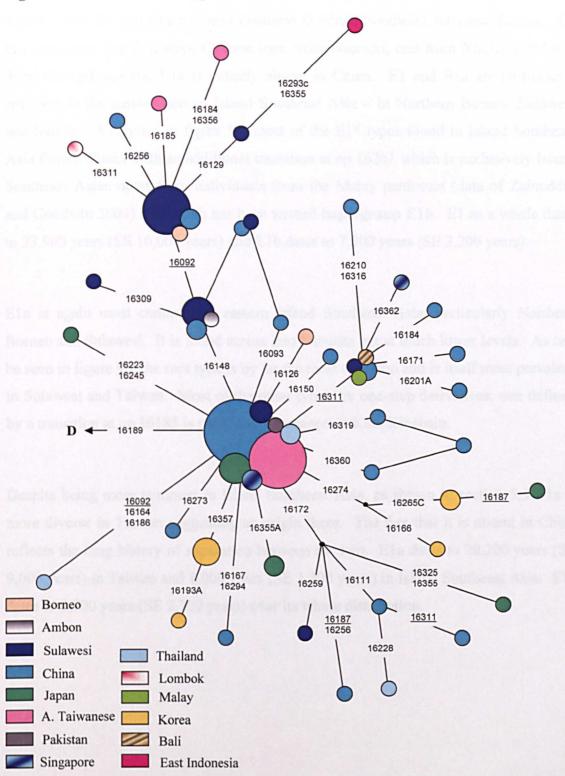





Samples from Micronesia are only represented by partial HVS-I sequences and so were excluded from this analysis.

The other major M clades found in Island Southeast Asia are **haplogroups D**, **E** and **G**. The distribution of these haplogroups is shown in figure 93.

# Figure 93 – Map showing the distribution of haplogroups D, E and G in Southeast Asia



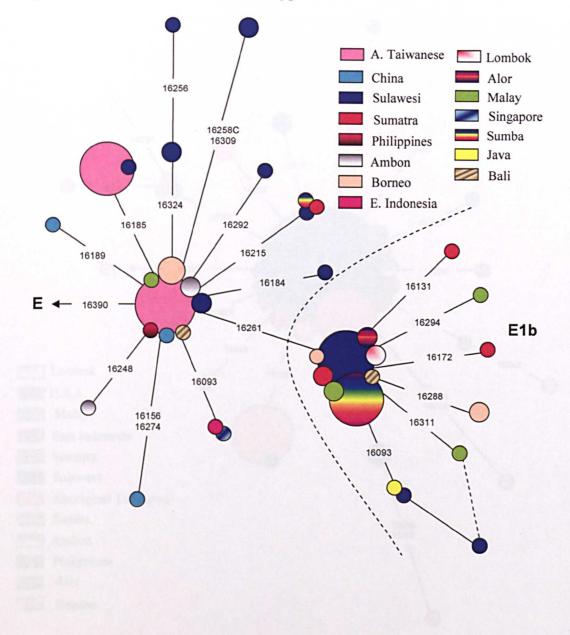

Haplogroup frequency data can be found in Appendix IV

**Haplogroup D** is defined by the loss of an *Alu*I site at np 5176 and is widespread across Asia but reaches its highest levels in China (where it is more common in the North), Japan and Korea. D\* types are fairly rare in Island Southeast Asia and have only been found in 3 individuals from Manado, 2 from Palu, 2 from Ambon, 1 from Ujung Padang and 1 from Banjarmasin. There are two main branches of D in East Asia – D4 and D5. **D4** is characterised by three transitions in the coding region (at nps 3010, 8414 and 14668) and splits into **D4a**, characterised by a further transition at np 16129, and **D4b**, which also has a transition at np 16319. Only one derived D4a type has been found in this study, which belonged to one individual from Alor and which has also been found in one individual from the indigenous Saisat group of Taiwan.

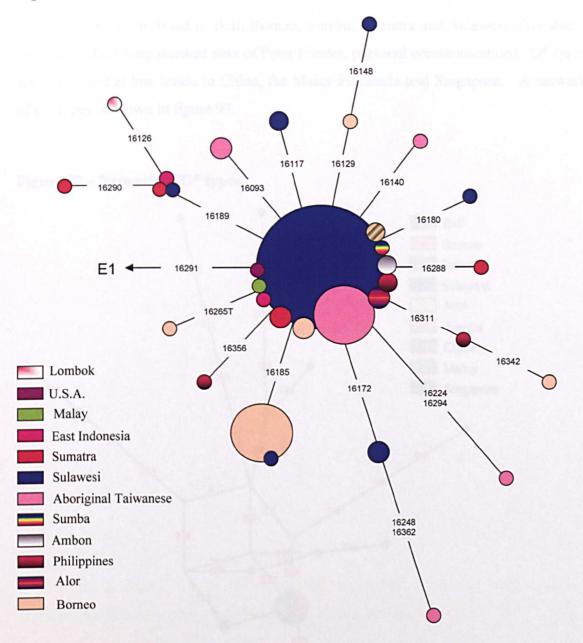
In contrast, **D5** is relatively common in the eastern parts of Island Southeast Asia. In this study it has been found in 11 individuals from Manado, 7 from the Toraja, 2 from Ujung Padang, 2 from Kota Kinabalu, 1 from Lombok, 1 from Bali and 1 from Ambon. As shown in figure 94, almost all of these are found on a branch of D5 characterised by a further transition at np 16148. This branch is also found, at a lesser extent, in China and Taiwan and dates to 8,000 years (SE 3,300 years). One individual from Bali and one from Ujung Padang are found in a different cluster which is defined by a transition at np 16311 and which is also found in China, Japan and Malaysia, this cluster dates to 12,600 years (SE 5,600 years). D5 as a whole dates to 24,000 years (SE 9,500 years). Interestingly, D5 has not been found in the Philippines; however, the number of Filipinos studied is smaller.






**Haplogroup E** is a branch of haplogroup M9 which is defined by a transition at np ; E is further characterised by another transition at np 7598 which leads to the loss

of a *Hha*I site. In addition, E1 has a transition at np 16390 and E1a has another at np 16291. Both E1 and E1a are most common in Island Southeast Asia and Taiwan. E1 has only been found in three Chinese (one from Guangxi, one from Xinjiang and one from Guangdong) and E1a is entirely absent in China. E1 and E1a are particularly common in the eastern part of Island Southeast Asia – in Northern Borneo, Sulawesi and Sumba. As shown in figure 95, most of the E1\* types found in Island Southeast Asia form a cluster with an additional transition at np 16261 which is exclusively Island Southeast Asia apart from individuals from the Malay peninsula (data of Zainuddin and Goodwin 2004) and which has been termed **haplogroup E1b**. E1 as a whole dates to 23,900 years (SE 10,000 years) and E1b dates to 7,300 years (SE 3,200 years).


E1a is again most common in eastern Island Southeast Asia, particularly Northern Borneo and Sulawesi. It is found across into Sumatra but at much lower levels. As can be seen in figure 96, the root type is by far the most common and is itself most prevalent in Sulawesi and Taiwan. Most of the other types are one-step derivatives; one defined by a transition at np 16185 is particularly common in Kota Kinabalu.

Despite being more common in Island Southeast Asia, as shown in section 5.3 E1a is more diverse in Taiwan suggesting an origin there. The fact that it is absent in China reflects the long history of separation between the two. E1a dates to 20,200 years (SE 9,000 years) in Taiwan and 8,000 years (SE 3,200 years) in Island Southeast Asia. E1a dates to 8,700 years (SE 2,700 years) over its whole distribution.

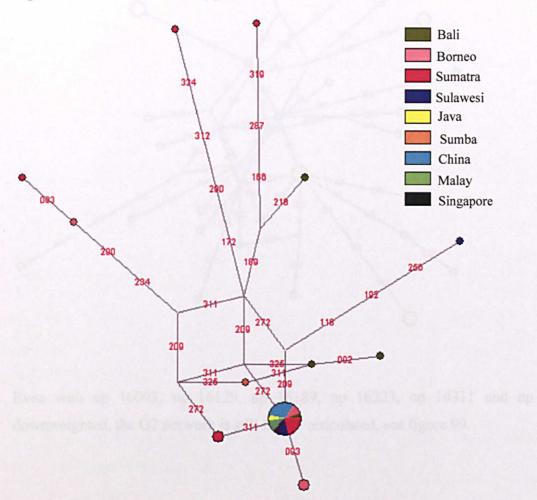
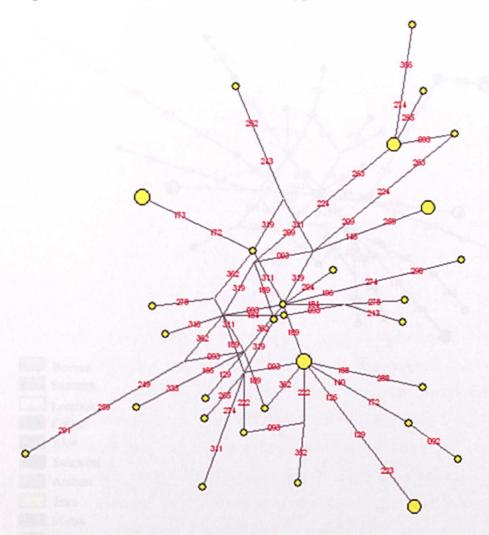
## Figure 95 – Network of E1\* and E1b types

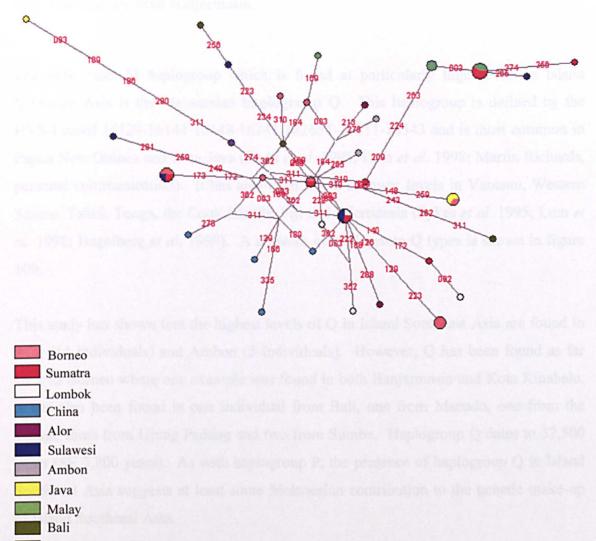


Happeneren G. a defined by Happeneren of a Photosis in op 48.11 and hap done make branches GI (defined by presidents at up 1200, up 15313) and up 15497). G3 (defined by transitions at up 3003 and up 12503) and G3 (defined by a brandion at up 16274) there et al. 2003. Some of the applepress G press found in this study most blood presses at al. 2003. Some of the applepress G press found in this study most blood presses at al. 2003. Some of the applepress G press found in this study most blood press at al. 2003. Some of the applepress G press found in this study most blood connects between G1 press lands in the Kamedasta pressmals of North-East Russia connects and a 1996; however, this woold be a propriate result as G1 types have not been some a sector the landverse types in the to propriate result as G1 types have not



**Haplogroup G** is defined by the gain of a *Hha*I site at np 4831 and has three main branches **G1** (defined by transitions at np 8200, np 15323 and np 15497), **G2** (defined by transitions at np 5601 and np 13563) and **G3** (defined by a transition at np 16274) (Kong *et al.* 2003). Some of the haplogroup G types found in this study most closely resemble haplogroup G1 types found in the Kamchatka peninsula of North-East Russia (Schurr *et al.* 1999); however, this would be a surprising result as G1 types have not been found in any of the intervening regions. Therefore, until complete sequencing has been used to resolve this issue, these samples will be treated as G\* types.  $G^*$  types have been found in Bali, Borneo, Sumba, Sumatra and Sulawesi (this study) and also in Java (unpublished data of Peter Forster, personal communication).  $G^*$  types are also found at low levels in China, the Malay Peninsula and Singapore. A network of  $G^*$  types is shown in figure 97.



Figure 97 – Network of G\* types

Haplotypes from the subclade **G2** are also found in Island Southeast Asia. G2 is also found, albeit at low levels, in China and the Malay Peninsula and has also been found in one Aboriginal Malay (Temuan). As seen in figure 98, the network of G2 types is highly reticulated.



Even with np 16093, np 16129, np 16189, np 16223, np 16311 and np 16362 downweighted, the G2 network is still highly reticulated, see figure 99.

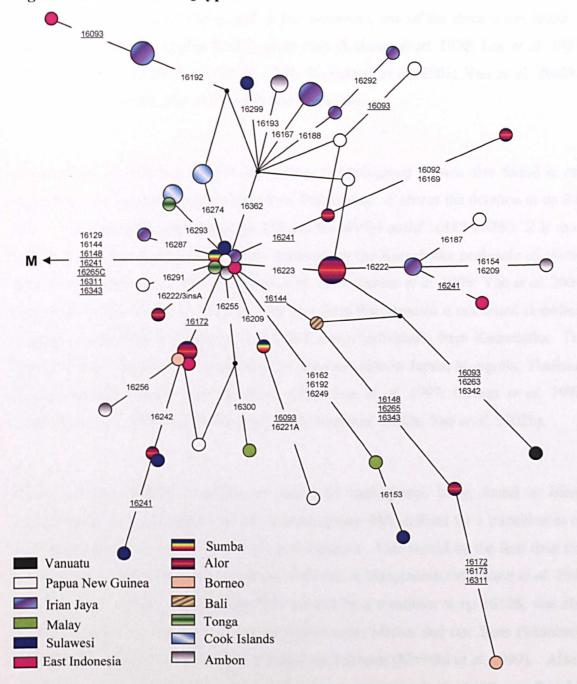
Human of a war originally believed to be a principal branch of manuhaplogroup M coverver it has now been substanted by haplogroup M12 which is characterised by a manifold in op 14569 and which includes all the branches of haplogroup G and another branch known as M12a (Keng et al. 2002). M12a is characterised by manifold in its 16234 and an 16260 and has been found at low levels in South Ubig. The land



Aboriginal Malay

G2 is most common in Sumatra and Southern Borneo; however, more derived G2a types are common in China (not shown).

Haplogroup G was originally believed to be a principal branch of macrohaplogroup M; however, it has now been subsumed by **haplogroup M12** which is characterised by a transition at np 14569 and which includes all the branches of haplogroup G and another branch known as **M12a** (Kong *et al.* 2003). M12a is characterised by transitions at np 16234 and np 16290 and has been found at low levels in South China, Thailand,


Vietnam and the Malay Peninsula. In this study it has been found in one individual from Bali and one from Banjarmasin.

The only other M haplogroup which is found at particularly high levels in Island Southeast Asia is the Melanesian **haplogroup Q**. This haplogroup is defined by the HVS-I motif 16129-16144-16148-16241-16265T-16311-16343 and is most common in Papua New Guinea and Irian Jaya (Redd *et al.* 1995; Lum *et al.* 1998; Martin Richards, personal communication). It has also been found at lower levels in Vanuatu, Western Samoa, Tahiti, Tonga, the Cook Islands, Fiji and Micronesia (Sykes *et al.* 1995; Lum *et al.* 1998; Hagelberg *et al.* 1999). A network of haplogroup Q types is shown in figure 100.

This study has shown that the highest levels of Q in Island Southeast Asia are found in Alor (14 individuals) and Ambon (5 individuals). However, Q has been found as far west as Borneo where one example was found in both Banjarmasin and Kota Kinabalu. It has also been found in one individual from Bali, one from Manado, one from the Toraja, three from Ujung Padang and two from Sumba. Haplogroup Q dates to 37,500 years (SE 7,800 years). As with haplogroup P, the presence of haplogroup Q in Island Southeast Asia suggests at least some Melanesian contribution to the genetic make-up of Island Southeast Asia.

There are also possible representatives of **haplogroup M10** in Island Southeast Asia, found in seven individuals from Java and five from Bangka. All these individuals have transitions at np 16223, np 16311 and np 16357 which are shared with most other known M10 types and around half of them match an M10 sample from Guangxi in China (Yao *et al.* 2002b). Apart from these, M10 has only been found in 8 other individuals from China (Yao *et al.* 2002a; Yao *et al.*2002b). Interestingly, all but one of the possible M10 types from Java and Bangka have lost the *Alu*I site at np 10397.

Figure 100 – Network of Q types



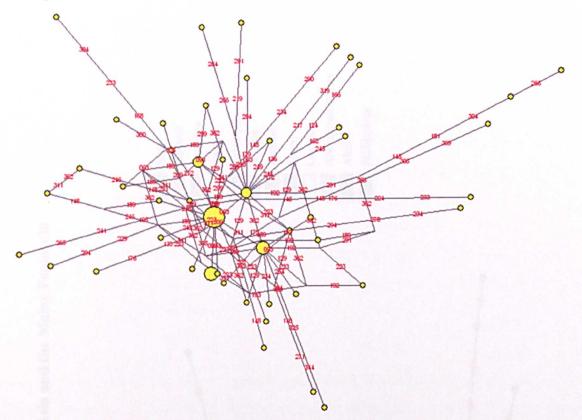
Most samples from Polynesia and Micronesia are only represented by partial HVS-I sequences and so were excluded from this analysis.

There are also a small number of minor M haplogroups found in the Island Southeast Asian sample. For example, **haplogroup** C (characterised by a deletion at np 249 and a transition at np 16327) was found in two individuals from Kota Kinabalu, and one from

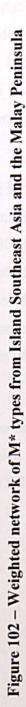
each of Lombok, Java and Ujung Padang. Haplogroup C is most common in China (where it is found from Xinjiang in the north to Yunnan and Guangxi in the south), the Kamchatka peninsula of Russia, and in the Americas; one of the three types found in Island Southeast Asia is also found across Asia (Kolman *et al.* 1996; Lee *et al.* 1997; Nishimaki *et al.* 1999; Schurr *et al.* 1999; Fucharoen *et al.* 2001; Yao *et al.* 2002b), whereas the other two have not been found elsewhere.

**Haplogroup Z**, which is a sister haplogroup to haplogroup C, was also found in one individual from Banjarmasin and one from Palembang. Z shares the deletion at np 249 with C but also has a transition at np 152 and the HVS-I motif 16185-16260. Z is most common in China and Northern Asia – particularly the Kamchatka peninsula of North-East Russia (Lee *et al.* 1997; Nishimaki *et al.* 1999; Schurr *et al.* 1999: Yao *et al.* 2000; Yao *et al.* 2002a; Yao *et al.* 2002b). The type from Banjarmasin is not found elsewhere although a one-step derivative of it is found in two individuals from Kamchatka. The type found in Palembang is found across China and also in Japan, Mongolia, Thailand, Korea and Kazakhstan (Kolman *et al.* 1996; Lee *et al.* 1997; Comas *et al.* 1998; Nishimaki *et al.* 1999; Fucharoen *et al.* 2001; Yao *et al.* 2002a; Yao *et al.* 2002b).

There are also possible instances of Indian M haplogroups being found in Island Southeast Asia. A possible example of **haplogroup M5**, defined by a transition at np 16129, was found in one individual from Pekanbaru. This would be the first time this haplogroup has been found outside India, Pakistan or Bangladesh (Mountain *et al.* 1995; Kivisild *et al.* 1999). **Haplogroup M3**, defined by a transition at np 16126, was also found in Sumatra – this time in one individual from Medan and one from Pekanbaru. Again, M3 is only found elsewhere in India and Pakistan (Kivisild *et al.* 1999). Also a possible example of **haplogroup M2**, defined by a transition at np 16319, was found in another individual from Medan, once again M2 is only found elsewhere in India (Mountain *et al.* 1995). These could be the result of historical migrations from the Indian subcontinent.


## 6.6 Unresolved M\*, N\* and R\* types

The remaining samples are classified as either  $M^*$ ,  $N^*$  or  $R^*$  as they possess the relevant restriction sites but cannot be further categorized into one of the subclades of M, N or R. Of the three, the M\* types are more common and make up 6% of the sample as a whole. M\* types are most common in Java (17%) but are also relatively frequent in Bangka (15%), Bali (14%), Mataram (14%), Palu (11%), Medan (10%) and Banjarmasin (10%).


Of the M\* types, most are found only once in the dataset, the main exceptions to this have a combination of transitions at the following nucleotide positions: 16093, 16223, 16311 and 16362. As these positions mutate comparatively frequently it is impossible to say for certain that these M\* types are related without employing complete sequencing. However, the four mutations are found together in only four individuals from Java and one from Banjarmasin (elsewhere they have only been found on an M\* background in one Taiwanese Han individual) which suggests they form a separate clade.

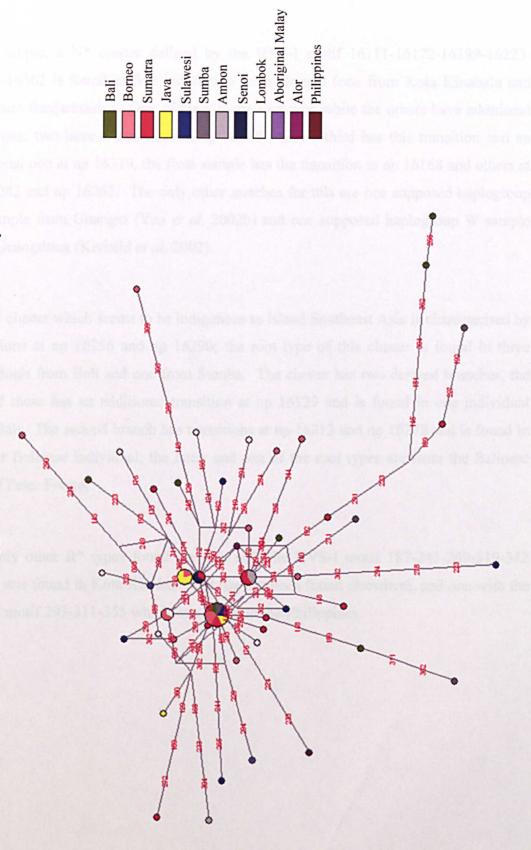

There is also a rare possible clade with the HVS-I motif 16145-16181-16192-16223-16291-16304 which has been found in two individuals from Bali, it has also been found in one Malay (data of Zainuddin and Goodwin 2004). The network of M\* types is extremely reticulated, see figure 101.

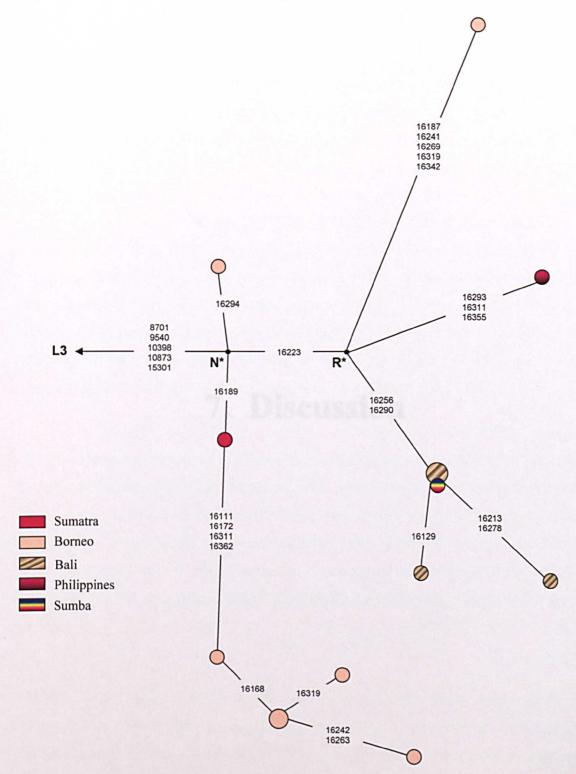
Figure 101 – Unweighted network of M\* types from Island Southeast Asia and the Malay Peninsula



Even with the more frequent transitions (at np 16093, np 16129, np 16189, np 16311 and np 16362) downweighted, the M\* network is still highly reticulated (see figure 102).






N\* and R\* types are less frequent in the dataset than M\* types, making up only 1% and 0.6% of the dataset respectively. They are most frequent in Bali where they make up 4.5% of the population. Again there appear to be a couple of rare clusters that are specific to Island Southeast Asia, see figure 103.

For example, a N\* cluster defined by the HVS-I motif 16111-16172-16189-16223-16311-16362 is found in five individuals from Borneo (one from Kota Kinabalu and four from Banjarmasin). One of these is the root type while the others have additional mutations; two have a transition at np 16168 while a third has this transition and an additional one at np 16319, the final sample has the transition at np 16168 and others at np 16242 and np 16263. The only other matches for this are one supposed haplogroup D5 sample from Guangxi (Yao *et al.* 2002b) and one supposed haplogroup W sample from Guangdong (Kivisild *et al.* 2002).

An R\* cluster which seems to be indigenous to Island Southeast Asia is characterised by transitions at np 16256 and np 16290; the root type of this cluster is found in three individuals from Bali and one from Sumba. The cluster has two derived branches, the first of these has an additional transition at np 16129 and is found in one individual from Bali. The second branch has transitions at np 16213 and np 16278 and is found in another Balinese individual; the latter and one of the root types are from the Balinese data of Peter Forster.

The only other R\* types found are one with the HVS-I motif 187-241-269-319-342 which was found in Kota Kinabalu and has not been found elsewhere, and one with the HVS-I motif 293-311-355 which was found in the Philippines.





## 7. Discussion

## 7. Discussion

#### 7.1 Discussion of Results of Orang Asli Study

All three groups of Orang Asli (especially the Semang and, to a lesser extent, the Senoi) have been subject to relatively high levels of genetic drift, as shown by the non-starlike topologies of the haplogroup networks and the elevation of a small number of sequence types to very high frequencies (see Appendix I). This is not unexpected given their extremely small group sizes. In particular the Semang groups as a whole consist only of around 2,000 individuals (Bellwood 1993) and perhaps as few as 1,300 (Carey 1976). The Senoi and Aboriginal Malays are more extensive and consist of approximately 25,500 and 19,000 individuals respectively (Carey 1976). It also appears that the Orang Asli have been isolated for a substantial amount of time. This is evident in the number of 'new' haplogroups which have been found in the course of this investigation e.g. M21, M22, N21, N22 and R21, most of which are found predominantly, if not exclusively, in the Orang Asli (see Appendix I, figures 56-57 and 85-86).

The three groups are strikingly different in their haplogroup composition. The Mendriq and Batek Semang are rather similar to each other, although interestingly the Jahai Semang appear closer to the Temiar Senoi than to the two other sampled Semang groups. The two sampled Aboriginal Malay groups, the Semelai and the Temuan, are also rather similar to each other - at least as similar as are the Sumatran groups sampled, who resemble the Aboriginal Malays much more closely than they do the other Orang Asli groups.

There is strong evidence for an indigenous origin within the Malay Peninsula for the Semang. The predominant Semang haplogroup, M21a, is found in all three sampled Malay Semang groups, but elsewhere in only a few Senoi, Aboriginal Malays, and *Melayu* Malays, in one individual from Borneo and in the Semang of Southern Thailand (Fucharoen *et al.* 2001). Distinct sequence types (including the root type in the Semelai only) occur in all of the Orang Asli groups, suggesting that the drift has been relatively

recent and that fragments of the pre-existing diversity have survived in all of the Orang Asli groups. The sister clade M21b is much rarer but is also found in all three groups as well as in Borneo, Sumatra and Sulawesi and is possibly related to sequences found in Thailand (see figure 85). Complete sequencing has shown that M21 as a whole dates to  $\sim$ 57,000 years, with the split of M21a and M21b dated to  $\sim$ 44,000 years (Macaulay *et al.* 2005).

The second major Semang haplogroup is R21 which appears predominantly as a signature of the Jahai Semang (62%) and the Temiar Senoi (37%). It is present in all of the sampled Semang groups, the ancestral type is found only in one Batek, and there are no closely related lineages found anywhere else in the world (see Appendices I and III). R21 may therefore, like M21a, represent an ancient Semang clade that has been retained in the Temiar Senoi. The distribution contrasts with that of B5b in the Orang Asli, which is restricted largely to the Batek Semang, suggesting a much more recent intrusion, probably from Island Southeast Asia (see figure 74).

The Semang therefore appear to represent the descendants of the indigenous peoples of the Peninsula, who have experienced some minor subsequent gene flow from outside, probably in the recent past. However, the three Semang groups are somewhat different to each other in their haplogroup distributions, and the Jahai in particular resemble the Temiar rather more than they do the other Semang groups. None of them resemble the Andamanese (who have mainly Asian Subcontinental mtDNAs: Endicott *et al.* 2003), suggesting that the term 'Negrito' should not be used to imply an over-simplified genetic history of these peoples. The lack of the main Semang mtDNA clades in other populations is consistent with the theory that the origins of these people lie deep in the Pleistocene (Bellwood 1993; Bellwood 1997). This is supported by the early dates calculated for these haplogroups and the fact that they lie near the roots of macrohaplogroups M and R.

Only 2% of the Temiar Senoi sample was found to belong to haplogroup B, which is in sharp contrast to the 37% found in the Semai Senoi by Melton *et al.* (1995). This

suggests that, like the Semang, the different Senoi groups might actually have quite different genetic compositions. Aside from R21, referred to above, the most common haplogroup in the Senoi is F1a1a, which was found in 43% of individuals and which occurs predominantly elsewhere in Thailand and China, although it is found at lower levels across Island Southeast Asia (see figures 79 and 83). F1a1a is most diverse in South China and dates to 9,200 years (see tables 7 - 8). This suggests that almost half of the maternal lineages of the Senoi can be traced back to an origin in Indo-China at some point within the last 9,000 years or so. This is consistent with the view of Bellwood (1993) that the Neolithic was brought into peninsular Malaysia by Ban Kao groups from Southern and Central Thailand who interbred with some groups ancestral to the Semang to create the ancestral mix of the Senoi.

N9a1 may also represent Neolithic input into the ancestors of the Senoi, as its root type has been found in Thailand and Vietnam (see figure 59). However, it is also found in Sulawesi and the clade as a whole is also found in the Semang, the Aboriginal Malays and other locations in Island Southeast Asia.

The two Aboriginal Malay groups, the Semelai and Temuan, have very different haplogroup distributions from both the Semang and the Senoi, and mainly carry the novel haplogroups R9b (26%) and N21 (25%). As seen in their heterozygosity values (see table 6), they show higher levels of diversity than either the Semang or the Senoi, and show some similarities to Island Southeast Asians, with whom they cluster in the PC plot (see figures 36 - 37). The Temuan are also closer linguistically to Island Southeast Asians as they speak an Austronesian language; the Semelai, however, speak a branch of Southern Aslian. R9b is present in both the Semelai and Temuan and has drifted onto just one main type, with a few more ancestral types to suggest a former higher diversity (see figure 78). Related types are found in Sumatra, Borneo, Sulawesi, Java, Lombok, Thailand and China. The Chinese data (Yao *et al.* 2002a; Yao *et al* 2002b) indicate a small but diverse collection of types, all but one of which are from South China (Yunnan and Guangxi), suggesting a likely origin there; however, its route into the Malay Peninsula remains unclear due to reticulation in the HVS-I network; this may be resolved by complete sequencing. A southern route from China through

Thailand and the Malay Peninsula to Island Southeast Asia is possible. However, the presence of Island Southeast Asian samples deeper in the tree suggests that R9b may have been introduced to the Malay Peninsula from Sumatra. Unfortunately it is difficult to be certain due to the relative scarcity of R9b types and the amount of drift which has occurred in the Aboriginal Malays.

N21 is also found in both the Aboriginal Malays and in Island Southeast Asia. The root type of N21 is only found in single individuals from Bali and Sulawesi. However, individuals from the Malay Peninsula are found on both branches of N21 (see figure 56). One branch has been found in Sumatra and in the Malay data of Zainuddin and Goodwin (2004) while the other is found in Alor and is raised to high levels in the Aboriginal Malays. It seems likely that N21 is a rare, indigenous Island Southeast Asian haplogroup which was introduced into the Malay peninsula from Sumatra and which has been raised to high levels in the Aboriginal Malays due to drift.

The only other haplogroup found in Aboriginal Malays but in no other Orang Asli group is M7c1c, which is found only in the Aslian-speaking Semelai. As M7c1c is otherwise almost exclusively Austronesian (see figure 92), this suggests either gene flow from an Austronesian-speaking group, or that the Semelai originally spoke an Austronesian language and have only adopted an Aslian language fairly recently. Other haplogroups found in the Aboriginal Malays include M21a, M21b, F1a1a and N9a1, probably indicating gene flow from the Semang and/or Senoi. Two Semelai belonged to B4a\* which was found in 36.7% of the Semai Senoi samples studied by Melton *et al.* (1995), and so could also be due to gene flow from the Senoi. However, this haplogroup is widespread over much of Southeast and East Asia (see figure 66). N22 and M22 were also found but are restricted to the Temuan. N22 has only been found elsewhere in Sumba; the origins of this clade are unclear (see figure 57). M22 is also found in Thailand, and probably represents introgression from the north (see figure 86).

The origins of the Aboriginal Malays are the least clear of the three Orang Asli groups. However, they do contain a definite Island Southeast Asian component. There is, furthermore, a small component deriving from the Semang/Senoi. However, there is only a very small potential Taiwanese component, represented by M7c1c, which makes up 8.5% of the Aboriginal Malay sample. The principal component analysis indicates that the Aboriginal Malays fall closest to the Sumatrans in the first two components (amounting to 43% of the variation), but the direction of exchange is unclear (see figure 36). Again, substantial differences can be seen between the two Aboriginal Malay groups, with N22, N9al and M22 mainly found in the Temuan and M7c1a and B4a\* restricted to the Semelai. This suggests that, as with the Semang and the Senoi, the tripartite classifications are an oversimplification. Thus, while the crude classification does have some biological meaning, there is also substantial internal diversity within the three groups.

In some respects, the mtDNA results from Malaysia support the view of Orang Asli history suggested by Bellwood (1993). The Semang may represent descendants of the first modern human migrants to the peninsula and have retained ancestral links with the Senoi. The three Semang groups studied are, however, rather different and the Jahai in particular are very different on the maternal side from the Batek and Mendriq, most likely as a result of intermarriage with the Temiar. The Senoi themselves seem to be a product of immigrants from Indo-China and the pre-existing ancestors of the Semang. The immigrants may have introduced the Austro-Asiatic language family to the Peninsula, along with swidden agriculture, about 4,000 years ago. The origins of the Aboriginal Malays are unclear but definitely include some Island Southeast Asian influence. Like the other groups of Orang Asli, they too appear to have a complex origin, and there is no clear evidence in the mtDNA data of an ancestry for these people in Taiwan.

These results would appear to rule out the more extreme 'local evolutionary' models for Orang Asli ethnogenesis. However, a more complex model such as that proposed by Rayner and Bulbeck (2001) stands up well in the light of the mtDNA data. Such a model would incorporate some local evolution for all three groups, from at least the early Holocene onwards, but also allow for some immigration—from the north, affecting the gene pool of the Senoi, and from the east, affecting the Aboriginal Malays. Interestingly though, complicating factors such as the close links between the Jahai and the Temiar do not seem to have been recognised by any of the models proposed in the past.

#### 7.2 Discussion of Results of Island Southeast Asian Study

In contrast to the Orang Asli groups of peninsular Malaysia, the various populations of Island Southeast Asia have a high level of genetic diversity. This can be seen in the high levels of heterozygosity maintained in all groups (see table 6). Even the least diverse Island Southeast Asian group (that from Tengger in Java) is more diverse than the most variable Orang Asli group (see table 6). This diversity is maintained across the Island Southeast Asian sample when taken as a whole. The sample contains 48 different haplogroups or subhaplogroups; of these 48, only 4 (M\*, M7c1c, E1a and F1a\*) are found in more than 5% of the samples. Nineteen haplogroups are each found in less than 1% of the population. This high level of diversity suggests that the Island Southeast Asian groups have been of relatively large size over long periods of time and so have not been as susceptible to genetic drift as the Orang Asli groups. Eleven haplogroups (D4a, F1b, G3, I, M2, M3, M5, M7c1\*, M7c1a, U7 and Z) are represented in the dataset by only one or two individuals; these may provide evidence of relatively recent gene flow from other locations. This seems particularly likely in the cases of haplogroups I (which is mainly Northern European), U7 (found in the Middle East and the Indian subcontinent), M2, M3 and M5 (all most common in the Indian subcontinent).

## 7.2.1 Geographic Structuring of Island Southeast Asia

As discussed in the background to this investigation, it has often been suggested that modern Island Southeast Asians are the descendents of Neolithic immigrants from Taiwan who largely replaced the indigenous hunter-gatherer populations due to their technological 'superiority' (Diamond 1988; Bellwood 1997). If this was the case, then it might be expected that the modern populations of Island Southeast Asia would be relatively similar to each other as they would be descended from the same Taiwanese founder types. However, a number of analyses conducted in the course of this investigation suggest that the picture is not that simple. For example, the principal component analysis carried out on the data showed east-west patterning in principal components one and two (which accounted for 28.4% of the variation; see figure 33). In this analysis, most of the Eastern groups can be seen to cluster together, the only exceptions being the groups from Mataram and Palu. In the case of Mataram this is not particularly surprising as it lies almost on the boundary between west and east (which I have divided at the Wallace line). Palu is more unusual as it definitely lies within the Eastern part of Island Southeast Asia. However, it does have some Western characteristics in that it is one of the few locations in the east to contain any of haplogroups Y2, N9a1 or G2. It is probably for this reason that it is found closer to the Western populations in the principal component analysis. This east-west patterning suggests that geographic structuring occurs across Island Southeast Asia.

This geographic structuring was confirmed by carrying out an AMOVA test in which the Island Southeast Asian populations were found to be significantly different from each other (see table 11). Furthermore, when the groups were divided into Eastern and Western groups (according to their position relative to the Wallace line) significant differences were found between the two. The difference was even more significant when a central group (representing Java, Borneo, Bali and Lombok) was also separated out. This suggests that the Eastern and Western populations have, at least to some extent, different demographic histories and have perhaps been influenced by different external groups.

However, no significant differences were found when the groups were separated according to language (see table 11). This could suggest that the linguistic and genetic histories of the groups do not correlate. However, all but three of the groups studied speak Western Malayo-Polynesian languages; this bias may have influenced the results. Perhaps if more Central or Eastern Malayo-Polynesian speaking groups had been included in the study, a more significant difference may have been found.

Pairwise  $F_{ST}$  values confirmed that most individual Island Southeast Asian populations are significantly different from each other (see section 5.7). They also demonstrated that significant differences are even found across individual islands. For example, in Sumatra the populations from Medan, Palembang and Pekanbaru are all significantly different to each other.

The sheer amount of variation and geographic differentiation present in Island Southeast Asia suggests that invoking an influx of Taiwanese immigrants who induced an almost complete population replacement may be too simplistic an argument. If this did occur, the incoming group must have been relatively large to maintain so much variation within it, yet the differences found between populations would seem to imply a history of small populations and genetic drift or founder effects.

#### 7.2.2 Does an Austronesian Signature Exist in Island Southeast Asia?

As discussed in section 1.5, it has previously been claimed that haplogroup B4a1 represents an Austronesian 'signature' due to its high frequency in Polynesia and the presence of ancestral types in Taiwanese aboriginals (e.g. Redd *et al* 1995; Melton *et al.* 1995; Sykes *et al.* 1995). However, the people of Polynesia are unusual due to their relatively recent ancestry and the numerous founder events which have occurred during their history. Because of this, certain haplogroups, particularly B4a1, are raised to extremely high frequencies in Polynesian groups, which may not be representative of the rest of the Austronesian-speaking world.

This is confirmed by the fact that B4a1 has been found to be relatively rare in this study, making up only 2.1% of the population as a whole and reaching a high of 14% in Ambon (see figures 67 and 69). Furthermore, B4a1 is absent across much of Island Southeast Asia and is not found further west than Southeastern Borneo. If any single haplogroup can be argued to be an Austronesian 'signature', M7c1c seems like a much more plausible candidate. M7c1c has been found in all locations studied in this investigation and is the third most common haplogroup in Indonesia making up 8.1% of the whole sample. It is also found in Taiwanese aboriginals, the Philippines, Micronesia and in one individual from Fiji (see figure 92).

M7c1c has been found in a small number of non-Austronesian speakers: 1 from the Guangxi province of Southern China, 8 Semelai, 1 Thai and 5 African Americans (see

figure 92). However, all but one of these belong to the root type and so can probably be ascribed to recent gene flow or perhaps language shift in the case of the Semelai. The only exception is the individual from Guangxi. The latter is a one-step derivative of the root type and is shared with two individuals from Sumba. A third Sumbanese individual is derived from this type by another two transitions suggesting that this branch originated in Island Southeast Asia. M7c1c is most diverse in Taiwan and Northern Borneo which suggests an origin in that region. Furthermore, its starlike phylogeny indicates that it has undergone a population expansion into East and West Indonesia. This, along with the fact that M7c1\* is found in China and its date of ~6,000 years (SE 1,600 years) means that M7c1c could have been part of an 'out of Taiwan' event. However, it could also have been part of a mid-Holocene dispersal centred on Borneo.

Several other haplogroups have similar distributions and expansion ages. For example, haplogroup E1 (including E1a and E1b) is almost entirely restricted to Austronesian-speaking areas; it has only been found elsewhere in three individuals from China, one from Singapore and in one African American (see figures 95 – 96). E1 is also relatively common in Island Southeast Asia, being found in just over 14% of the population. Like M7c1c, E1a is most diverse in Taiwan and Borneo (see table 8); however, a number of diverse E1\* types are found in Sulawesi. E1 as a whole dates to 23,900 years (SE 10,000 years), E1a dates to 8,700 years (SE 2,700 years) and E1b dates to 7,300 years (SE 3,200 years), see table 7. The age of E1, and its almost complete absence in any other locations, suggests that it is indigenous to Island Southeast Asia and Taiwan. The lack of E1 types in China emphasises the long history of separation between China and Taiwan, although ultimately a mainland origin is indicated by the distribution of its ancestral haplogroup, M9.

Haplogroup F3b makes up 1.7% of the dataset and is also only found in Taiwan, the Philippines and Borneo (with the exception of one individual from Sumba and three African Americans) and dates to 34,000 years (SE 13,300 years), see figure 84 and table 7. Again, this haplogroup seems to have originated somewhere around that area. M7b3 is another rare haplogroup which is restricted to Taiwan and Island Southeast

Asia, in this case the Philippines, Sulawesi and Sumba (see figure 90). M7b3 dates to 15,400 years (SE 5,900 years), see table 7.

As discussed above, B4a1 has a quite different geographic distribution to M7c1c, E1, F3b and M7b3 as it is relatively rare in Island Southeast Asia, yet reaches extremely high frequencies in Polynesia and Micronesia. Within Island Southeast Asia it is most common in Sulawesi; however, the only haplotype found in Sulawesi is the root type, these may therefore be the result of a recent expansion into that area (see figure 69). B4a1 seems likely to have arisen in the eastern area of Indonesia which is where it is most diverse. When the types found in Sulawesi are removed, B4a1 dates to 8,800 years (SE 4,200 years) in Island Southeast Asia. Therefore, despite the differences in the geographic distribution of B4a1 and those of the haplogroups discussed above, it also seems to have originated too early to have been part of an 'out of Taiwan' event as it is traditionally visualised.

All the haplogroups discussed above are found predominantly in Austronesian-speaking peoples, yet (with the possible exception of M7c1c) they seem to be too old to fit in with the 'out of Taiwan' theory proposed by Bellwood (1997) amongst others. Bellwood (1997) suggests dates of 3,500-4,500 years ago for Taiwanese immigrants to arrive in Eastern Island Southeast Asia, and he only sees an expansion out from this This, therefore, leaves a large gap central area occurring after 3,500 years ago. between the theoretical dates and the dates obtained for the 'Austronesian' haplogroups. Many of the dates obtained in this project have large confidence intervals (see table 7). However, the dates do seem to support each other. If only one of these 'Austronesian' haplogroups dated too early for a potential 'out of Taiwan' event then it could be seen as questionable. However, as a number of them appear to be too old then the argument is strengthened. As it is, this data seems more supportive of an argument such as that of Solheim et al. (in press; personal communication) or Meacham (1984-1985) who envisaged a network of trade and movement across Island Southeast Asia through the Philippines and into Taiwan.

## 7.2.3 Rare Indigenous Haplogroups in Island Southeast Asia

There are rare instances of other indigenous haplogroups in the dataset. For example, there is a rare branch of R which is characterised by transitions at np 16256 and np 16290 and which is only found in five individuals from Bali and one from Sumba (see figure 103). There is no evidence for this cluster being found anywhere outside Island Southeast Asia which suggests it is indigenous to the area.

An indigenous Island Southeast Asian origin for haplogroup N21 also seems most likely on the current evidence. The root type is only found in Bali and Sulawesi and individuals from Island Southeast Asia are found on both branches (see figure 56). It seems probable that N21 was passed into the Aboriginal Malays from Sumatra. One of the branches of N21 is found in one Sumatran and one Malay, this branch may also have originally been present in the Aboriginal Malays but subsequently been lost to drift.

Haplogroup R22 may also have originated in Island Southeast Asia although this is more difficult to determine. It is most common in Bali, Lombok and Sumba, and the root type is only found in Lombok and Alor. However, some of the most derived types are found in Thailand and the Nicobar Islands (see figure 77). Unfortunately the direction of gene flow is impossible to determine from the current dataset.

## 7.2.4 Is There any Evidence of a Recent 'Out of Taiwan' Event?

Unfortunately, like the Orang Asli, the Aboriginal groups of Taiwan have undergone large amounts of genetic drift which makes it difficult to assess their earlier diversity. As discussed above, it is possible that M7c1c entered Island Southeast Asia via Taiwan. Are any other haplogroups plausible 'out of Taiwan' candidates?

Haplogroup B4a\* makes up 4.8% of the Island Southeast Asian sample. It is found in most areas but is most common in Sumatra. B4a seems to have its ultimate origins in China as many diverse types are found there; however, it is most common in Taiwan and is also found in the Philippines (see figure 66). It is difficult to be certain because

of the high level of reticulation seen in the network of B4a\* types, but a passage through Taiwan into Island Southeast Asia does seem most likely on the current evidence.

Haplogroup B4c (which makes up 3% of the Island Southeast Asian sample) is another possible candidate that could have been carried into Island Southeast Asia from Taiwan. The root type of B4c is only found in China and Sulawesi; however, the branch characterised by a transition at np 16335 (which is most common in Island Southeast Asia) is found in Taiwan (see figure 71). This branch is also more diverse in Taiwan than in Island Southeast Asia, suggesting that it too could have been part of a migration from Taiwan.

Haplogroup B5a may also represent some Taiwanese input into Island Southeast Asia. B5a makes up 4% of the Island Southeast Asian sample, but is most common in China and Taiwan (see figure 73). There are also shared types between Island Southeast Asia and Taiwan. B5a is not found in the Philippines; however, the amount of data available from the Philippines is much smaller than that available for the other areas in question so this may simply be due to insufficient sampling.

However, despite their potential Taiwanese ancestry, B4a<sup>\*</sup>, B4c and B5a all seem to be too old to be part of a traditional 'out of Taiwan' event. B4a dates to ~25,000 years, B4c dates to ~13,000 years in Island Southeast Asia and B5a dates to ~9,500 years in Island Southeast Asia (see tables 7 - 8). Therefore, like E1, F3b and perhaps M7c1c, they seem to have been present in Island Southeast Asia for too long to have been part of a relatively recent expansion of farmers.

The only other haplogroups which it seems plausible to ascribe to such a migration event are D5 and Y2. The root type of D5 is most common in China and Taiwan and is also found in a few individuals from Island Southeast Asia. However, most Island Southeast Asian samples lie on a branch which is characterised by transitions at np 16148 and np 16092 and which dates to ~4,000 years in Island Southeast Asia (see figure 94). The root type of this branch is not found in Taiwan, but two derived types are found there suggesting the root type may have been lost due to drift. D5 is not found in the Philippines but once again this may be due to insufficient sampling.

Haplogroup Y2 may illustrate another aspect of a Taiwanese migration event. Bellwood (1997) has suggested that once the Taiwanese immigrants reached the Philippines and Sulawesi, the migration would then have separated into two distinct directions - one east across the Moluccas and into island Melanesia, and the other west into Borneo and Sumatra. The distribution of Y2 fits quite well to this western branch. It is found in Taiwan, the Philippines, Sulawesi, Sumatra, Bali and Java but in none of the eastern groups studied (see figures 60 - 61). It also dates to 3,600 years (see table 7) which fits well with Bellwood's dates for this western branch.

## 7.2.5 Evidence for a Melanesian Influence in Island Southeast Asia

As discussed in the background to this investigation, the main Melanesian haplogroups are known as P and Q and are thought to represent the indigenous Pleistocene inhabitants of Melanesia (Forster *et al.* 2001). Haplogroup Q has also been found in Polynesia and has been cited as evidence of at least some Melanesian contribution to the genetic make-up of modern Polynesians (Lum *et al.* 1994; Sykes *et al.* 1995).

In this study, both 'Melanesian' haplogroups have also been found in Island Southeast Asia. However, they are both relatively rare, making up  $\sim$ 4% of the sample as a whole. Haplogroup P is particularly rare and has only been found in three individuals from Manado in Sulawesi and two individuals from Sumba (see figure 75). Haplogroup Q, in contrast, makes up 3.1% of the sample as a whole and is found from Ambon to Borneo. It is, however, most common in the easternmost locations studied, and is particularly common in Alor where it makes up 29% of the sample (see figure 97).

This suggests that there has been a definite Melanesian contribution to the populations of Island Southeast Asia. This seems to have been largest in the east, nearest to New Guinea. That the contribution is highest in Alor should not be particularly surprising, as a number of Alorese groups speak Papuan languages, thus suggesting a linguistic connection to the indigenous groups of Melanesia (Pawley 2003; www.ethnologue.com). It is unclear whether this represents an ancient or recent Melanesian influence in Island Southeast Asia. It is possible that it demonstrates a connection between the peoples of Melanesia and Eastern Island Southeast Asia which dates back to the Pleistocene. However, it has been suggested that the Papuan-speakers in central and eastern Timor, Alor, Pantar, Morotai and northern Halmahera may be the result of migrations within the last ~4,000 years (Pawley 2003). The Melanesian contribution found in this dataset could therefore be the result of such migrations.

#### 7.2.6 Evidence for an Indo-Chinese Influence in Island Southeast Asia

There is also evidence of an Indo-Chinese influence in Island Southeast Asia; this is most obvious in the form of haplogroup Flala. As discussed in section 7.1, Flala is most diverse in South China and dates to 9,200 years. However, it is most common in Thailand and in the Senoi and is consistent with a Neolithic link between Thailand and the indigenous groups of peninsular Malaysia.

However, F1a1a is also found at lower levels across Island Southeast Asia and makes up 2.6% of the sample as a whole. It is not found in Taiwan, the Philippines or Northern Borneo so there is no evidence of a Taiwanese link between China and Island Southeast Asia (see figure 83). It is most common in Palembang where it makes up 17% of the sample (see figure 79). Palembang was the centre of the Srivijaya kingdom which reached its height between the 7<sup>th</sup> and 13<sup>th</sup> Centuries and which controlled the trade routes through the straits of Malacca. It is thought that the Malay languages may have been introduced into the peninsula by such maritime empires in Sumatra (Adelaar 2004). It is therefore tempting to think that the high levels of F1a1a in Palembang could have been introduced from the Malay Peninsula via these trade routes.

It is possible that haplogroup N9a1 could also have been introduced into Island Southeast Asia from Indo-China. The root type of N9a1 is only found in one individual from Palu, one from Thailand and two from Vietnam (however, the latter are only represented by partial HVS-I sequences). N9a1 is most common in the Malay Peninsula where it is found in all three groups of Orang Asli as well as in *Melayu* Malays (see figure 59). It is rarer than F1a1a, being found in only 1.1% of the Island Southeast Asian sample, but is still most common in Sumatra. Its scarcity makes it difficult to be certain, but an Indo-Chinese origin for N9a1 does seem most likely on the current evidence.

It is also possible that haplogroup B4\* may have been introduced to Island Southeast Asia from Indo-China. Almost all examples of B4\* found to date in Island Southeast Asia belong to a branch which is characterised by transitions at np 16147 and np 16235. Outside Island Southeast Asia, this branch has only been found in three individuals from the Malay Peninsula, five from Thailand, one from South China, one from Japan and one from Central Asia (see figure 64). The absence of this branch in Taiwan and the Philippines suggests that a Western entry point into Island Southeast Asia is more likely. If F1a1a, N9a1 and B4\* are all considered to be Indo-Chinese haplogroups, this means that around 6% of the Island Southeast Asian gene pool is derived from sources in Indo-China.

## 7.2.7 Evidence for an Orang Asli Influence in Island Southeast Asia

There is some evidence of gene flow from the Orang Asli into Island Southeast Asia. As discussed in section 7.1, the newly discovered haplogroups M21a, M21b and M21c seem to represent an indigenous presence in the Malay Peninsula. Both M21a and M21b are found in Island Southeast Asia, albeit at a very low level. The root type of M21a has been found in one individual from Banjarmasin and M21b has been found in two further individuals from Banjarmasin, one from Medan and one from Manado (see figure 85).

Haplogroup R9b is also found in Island Southeast Asia and the Orang Asli, in this case the Aboriginal Malays (see figure 78). As discussed in section 7.1, it is difficult to clarify the history of this haplogroup due to its relative rarity and the amount of drift which has occurred in the Aboriginal Malays. Its ultimate origins seem to lie in China but from there it is difficult to tell whether it travelled through Thailand and the Malay Peninsula into Island Southeast Asia, or whether it was passed to the Aboriginal Malays from Sumatra. However, there is definitely no evidence of it being present in Taiwan, the Philippines or anywhere east of Lombok.

The origins of the novel haplogroup N22 are also obscure. It is very rare, being found in only 8 individuals: 4 from Sumba and 4 Aboriginal Malays (all Temuan). The root type is only found in two Aboriginal Malays, one branch is only found in two more Aboriginal Malays while a second branch is found only in Sumba (see figure 57). It is impossible to discern the direction of movement from the present data; however, there is no evidence of a Taiwanese origin.

## 7.2.8 Evidence for Indian and European Influence in Island Southeast Asia

Despite the long period of European influence in Island Southeast Asia, only one example of a European haplogroup has been found in this investigation. Specifically, one individual from Pekanbaru in Sumatra was found to belong to haplogroup I. This haplogroup is predominantly found in Northern Europe. The lack of any other evidence for European admixture suggests that the long period of colonialism did not substantially alter the indigenous gene pool.

There is also some evidence of a small genetic contribution from the Indian subcontinent to Island Southeast Asia. Another individual from Pekanbaru belonged to haplogroup U7 which is mainly found in India and the Middle East. The specific haplotype seen in Pekanbaru matches one found in the Andhra Pradesh region of Eastern India. There are also another four possible Indian haplotypes in Sumatra: one belonging to haplogroup M2, two belonging to haplogroup M3 and one belonging to haplogroup M5. This is the first time these haplogroups have been found outside the Indian subcontinent. There is archaeological evidence of Indian trade contact with Island Southeast Asia from ~2,000 BP (Ardika and Bellwood 1991) and there is also evidence from ancient DNA of Indian traders being present in Bali at around the same time (Lansing *et al.* 2004). No Indian haplogroups have been found in the Balinese sample included in this study, but these rare haplotypes found in Sumatra are probably a result of such contact.

#### 7.2.9 Conclusions

One of the clearest results of this investigation is that the history of Island Southeast Asia is much too complex to be explained by any simple model. The sheer amount of variation present suggests that a simple migration and replacement model is far too crude to explain the data. However, the data do suggest that some migratory events have taken place, but not from only one direction, and that they have simply added more variation to that already present.

One of the most striking things about the dataset is the fact that the Aboriginal Taiwanese seem to have much more in common with individuals from Island Southeast Asia rather than China, as can be seen in chapter 6. There is little evidence of a link from China through Taiwan to Island Southeast Asia as would be predicted by the 'out of Taiwan' model of Bellwood (1997). The only haplogroups which seem to fit in any way with this model are D5, Y2 and possibly M7c1c.

As discussed in sections 7.2.2 and 7.2.4, most of the other haplogroups which have any links to Taiwan seem to be too old to be linked to a traditional Neolithic 'out of South China via Taiwan' event. Most of the haplogroups which are predominantly, if not exclusively, found in Austronesian speakers (such as M7c1c, E1, F3b and M7b3) are most diverse in Borneo and Taiwan suggesting an origin somewhere in that region. Of these, E1 definitely does not seem to have any recent roots in China, emphasising the level of separation between China and Taiwan. B4a1 also seems to have originated in Island Southeast Asia, albeit further towards the east, and again seems to be too old to be explained via the conventional 'out of Taiwan' hypothesis. Other indigenous haplogroups such as N21 and the rare branches of R, plus possibly R22, R9b, and N22 have also persisted into modern times. Indigenous Y chromosome haplogroups were also found to be common in Island Southeast Asia by Su *et al.* (2000) and Kayser *et al.* (2000).

There is some evidence of a possible migration from Taiwan which could be represented by haplogroups M7c1c, D5 and Y2; however, this only accounts for  $\sim$ 13%

of the current dataset. This is somewhat similar to the results found for the Y chromosome by Capelli *et al.* (2001) who found that only ~19.5% of their Island Southeast Asian sample could be accounted for by potential Taiwanese haplogroups (haplogroup O3). However, Kayser *et al.* (2003) suggest that haplogroup O1 is also 'Austronesian' which would increase the frequency of potential Taiwanese haplogroups. Nevertheless, my results suggest that if any Neolithic migration did occur, it would seem that it was demographically minor and that the immigrants integrated into the resident population rather than replacing it. Influences from Thailand, the Malay Peninsula and Melanesia have also been found in this investigation, all of which decrease further the likelihood that a simple 'out of Taiwan' migration can be used to explain the prehistory of Island Southeast Asia.

Instead the current dataset seems to support the work of Solheim et al. (in press; personal communication) who have proposed greater connections between Island Southeast Asia and Taiwan than between Taiwan and China. The results may also suggest large-scale dispersals after flooding events which would be associated with the end of the ice age in Southeast Asia, this has previously been suggested by Oppenheimer (1998). The dataset also supports the idea of a 'voyaging corridor' within Island Southeast Asia (Terrell and Welsch 1987; Irwin 1992) which would have allowed more contact between the islands than is often allowed for. This may be seen in the distribution of haplogroup B4a1 which extends west to Sulawesi and Borneo, east towards New Guinea and the Pacific, and also across to Madagascar. A further implication of this is that it would tend to suggest that the Austronesian language family more likely arose outside China; possibly in the area around North Borneo, the Philippines and Taiwan. This is perhaps in conflict with the prevailing wisdom but has also been suggested by Solheim et al. (in press; personal communication) and Meacham (1984-1985), both of whom proposed that the high levels of linguistic diversity found in Taiwan could have been caused by isolation rather than the languages developing there.

However, it is possible that the Austronesian languages could have been spread from Taiwan by a small elite. This would explain the fact that the most diverse branches of Austronesian are only found in Taiwan and also the lack of an obvious major Neolithic contribution to the genetic makeup of Island Southeast Asia. If this did occur then there must have been a strong mechanism operating in favour of language replacement as the amount of variation found in Island Southeast Asia, most of which seems to date to the Pleistocene, suggests that most of the modern inhabitants are descended from people who had been living in the area long before the occurrence of any potential 'farming' migration.

## 7.3 Implications of this Study for the Origins of Modern Humans

The complete sequencing work which was done as an extension to this project enabled the most recent common ancestor of modern humans to be dated to  $\sim 200,000$  years. This is similar to the estimate of Mishmar *et al.* (2003) but somewhat older than that of Ingman *et al.* (2000) and provides further support to the 'out of Africa' theory as opposed to that of multiregionalism.

The route which these early humans took out of Africa has been a matter of some debate. Certain groups have suggested a relatively late expansion (~45,000 years) via the Levant (Cordaux and Stoneking 2003; Prugnolle *et al.* 2005) while other groups have suggested an earlier (~60,000 years), southern route through East Africa and along the coast towards Southeast Asia (Quintana-Murci *et al.* 1999) and yet other groups have suggested two separate out of Africa events: one early southern route which occurred 59,000-69,000 years ago and a second later route through the Levant at around 39,000-52,000 years ago (Maca-Meyer *et al.* 2001). The answer to this question can be clarified by the work done on this project.

Most of the mismatch distributions constructed for the current dataset gave expansion dates of ~60,000 years. This was roughly in agreement with the dates obtained from complete sequencing for macrohaplogroups M (~63,000 years), N (also ~63,000 years) and R (~60,000 years). These dates all suggest an early out of Africa event which must have occurred sometime prior to ~60,000 BP

As discussed both above and in the background section, there is much evidence (both archaeological and now genetic) that at least the Semang, if not all Orang Asli groups in

part, are descended from the original Pleistocene inhabitants of the Malay Peninsula. A number of novel haplogroups have been discovered in the Orang Asli; however, these diverge from the same set of founder types (M, N and R) as the rest of Eurasia. These new haplogroups all diverge from close to the roots of these macrohaplogroups which suggests they are of considerable antiquity. This is at least partly confirmed by the dating of M21 to ~57,000 years by complete sequencing.

The fact that the Orang Asli groups descend from the same few founder types as all other non-African populations studied to date strongly suggests that only a single 'out of Africa' event took place. That M, N and R all date to ~60,000 years implies that they were all part of this single process which took place at some point around that time. Furthermore, both the position of the newly discovered Orang Asli haplogroups so close to the root of the tree, and the results of a founder analysis on Eurasian and Australasian mtDNAs which gave arrival dates of ~66,000 years in India, ~64,500 years in China and ~63,000 years in Australasia (Macaulay *et al.* 2005) confirms that the out of Africa dispersal must have continued extremely rapidly along a southern, coastal route to Southeast Asia.

#### 7.4 Future Work

This study has filled in many of the gaps which were previously present in the mtDNA coverage of Southeast Asia; however, a number of areas still remain to be explored. For example, the only samples from Borneo which were available for this study were from individuals living in two of the large coastal cities (Kota Kinabalu in Sabah and Banjarmasin in Kalimantan). Therefore, the whole of interior Borneo has not yet been studied. This could prove to be an extremely fruitful area for study as a large amount of variation has been found in the two locations which were included in the current dataset. If more locations could be included in any further work then they could help identify any prehistoric migrations which may have been centred on Borneo.

It would also be useful to study more individuals from various locations within the Philippines. This area is crucial for examining the 'out of Taiwan' hypothesis; however, for this study less than 50 samples were available from the whole country. It could also

be interesting to study more individuals from Java. Only 36 Tenggerese were included in this study and they are probably not particularly representative of the island as a whole. It might be helpful to be able to compare the mtDNAs of these individuals to some obtained from the ethnic Javanese who make up the majority of the island's population.

To increase the accuracy of the distribution and age estimates of certain haplogroups, in particular B4a1, it may also be worthwhile to study more locations in Eastern Indonesia and coastal Papua New Guinea. Despite the extensive sampling of Island Southeast Asia in this study, it is still unclear where haplogroup B4a1 originated, this may be clarified by increased sampling of Eastern Indonesia. The island of Flores in Eastern Indonesia may be especially interesting in light of the discovery of a new hominin species, *Homo floresiensis*, which has been made there recently (Brown *et al.* 2004; Morwood *et al.* 2004). It may also be particularly constructive to study the island of Halmahera in the Moloccas as it has been suggested from studies of both rat and pig mtDNA that it was in that area that the Lapita culture originated (Matisoo-Smith and Robins 2004; Larson *et al.* 2005).

It would also be helpful to employ complete mtDNA sequencing to clarify some of the issues raised by this study. For example, due to ambiguity in the HVS-I network, it is currently unclear whether haplogroup R9b entered Island Southeast Asia from the Malay Peninsula or whether it was introduced into the Malay Peninsula from Sumatra. This could be clarified by complete sequencing. Complete sequencing may also help refine the network of haplogroup R22 and show how it relates to haplogroup R9b. Complete sequencing is also needed to clarify the position of the G\* types found in this study.

It would also be valuable to sequence the complete mtDNA genome of some of the  $M^*$ ,  $N^*$  and  $R^*$  types found in this study. This would be particularly helpful in the case of the  $M^*$  types as they make up a relatively large portion of the dataset and it is currently difficult to see how they relate to each other due to the extremely high levels of reticulation seen within the network.

Finally, complete sequencing could also help to refine some of the dating done in this study. Increased precision could be particularly useful for haplogroups B4a1, M7c1c, E1, F3b, D5 and Y2 as it could help to further test the traditional models of Island Southeast Asian ancestry and to work out what percentage, if any, of the modern populations of Island Southeast Asia can be described as being descendents of a putative Neolithic 'out of Taiwan' migration.

# References

## **References**

- Adelaar KA (2004) Where does Malay come from? Twenty years of discussions about homeland, migrations and classifications. *Bijdragen tot de Taal-, Land-en Volkenkunde* 160:1-30
- Allen J, Gosden C, Jones R, White JP (1988) Pleistocene dates for the human occupation of New Ireland, North Melanesia. *Nature* 331:707-709
- Allen J (1996) The Pre-Austronesian settlement of Island Melanesia: implications for Lapita archaeology. In: Prehistoric Settlement of the Pacific (ed. WH Goodenough) pp 11-27. American Philosophical Society, Philadelphia.
- Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. *Nature* 290:457-465
- Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N (1999) Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. *Nature Genetics* 23:147
- Ankel-Simons F, Cummins JM (1996) Misconceptions about mitochondria and mammalian fertilization: implications for theories on human evolution. Proceedings of the National Academy of Sciences USA 93:13859-13863
- Ardika IW, Bellwood P (1991) Sembiran: The beginnings of Indian contact with Bali. Antiquity 65:221-232
- Ayala FJ (1995) The myth of Eve: molecular biology and human origins. Science 270:1930-1936
- Ballinger SW, Schurr TG, Torroni A, Gan YY, Hodge JA, Hassan K, Chen K-H, Wallace DC (1992) Southeast Asian mitochondrial DNA analysis reveals genetic continuity of ancient mongoloid migrations. *Genetics* **130**:139-152
- Bandelt H-J, Forster P, Sykes BC, Richards M (1995) Mitochondrial portraits of human populations using median networks. *Genetics* 141:743-753
- Bandelt H-J, Lahermo P, Richards M, Macaulay V (2001) Detecting errors in mtDNA data by phylogenetic analysis. *International Journal of Legal Medicine* 115:64-69
- Bandelt H-J, Quintana-Murci L, Salas A, Macaulay V (2002) The fingerprint of phantom mutations in mitochondrial DNA data. *American Journal of Human Genetics* **71**:1150–1160

- Barker G, Barton H, Beavitt P, Bird M, Daly P, Doherty C, Gilbertson D, Hunt C, Krigbaum J, Lewis H, Manser J, McLaren S, Paz V, Piper P, Pyatt B, Rabett R, Reynolds T, Rose J, Rushworth G, Stephens M (2002) Prehistoric foragers and farmers in South-East Asia: renewed investigations at Niah Cave, Sarawak. Proceedings of the Prehistoric Society 68:147-164
- Bellwood P (1993) Cultural and biological differentiation in Peninsular Malaysia: the last 10,000 years. Asian Perspectives 32:37-60
- Bellwood P (1997) Prehistory of the Indo-Malaysian archipelago. University of Hawai'i Press, Honolulu
- Bellwood P (2003) Farmers, foragers, languages, genes: the genesis of agricultural societies. In: Examining the farming/language dispersal hypothesis (eds. P Bellwood, C Renfrew) pp 17-28. McDonald Institute for Archaeological Research, Cambridge
- Bellwood P (2005) First farmers, the origins of agricultural societies. Blackwell Publishing, Oxford
- Benedict G (1975) Austro-Thai language and culture. HRAF press, New Haven
- Benjamin G (1985) In the long term: Three themes in Malaysian cultural ecology. In: Cultural values and human ecology in Southeast Asia (eds. KL Hutterer, AT Rambo and G Lovelace). Michigan University Press, Ann Arbor, Michigan
- Benjamin G (1996) Issues in the ethnology of Padang. In: Pembangunan Arkeologi Pelancongan Negeri Pahang (eds. A Rahman and AH Khairuddin). Perbadanan Muzium Negeri Kelantan, Kota Bharu
- Betty DJ, Chin-Atkins AN, Croft L, Straml M, Esteal S (1996) Multiple independent origins of the COII/tRNALys intergenic 9-bp mtDNA deletion in aboriginal Australians. *American Journal of Human Genetics* 58:428-433
- Blust R (1995) The prehistory of the Austronesian-speaking peoples: a view from language. Journal of World Prehistory 9:453-510
- Blust R (1996a) Austronesian culture history: the window of language. In: Prehistoric Settlement of the Pacific (ed. WH Goodenough) pp 28-35. American Philosophical Society, Philadelphia.
- Blust R (1996b) Beyond the Austronesian homeland: The Austric hypothesis and its implications for archaeology. In: Prehistoric Settlement of the Pacific (ed. WH Goodenough) pp 117-140. American Philosophical Society, Philadelphia.
- Blust R (1999) Subgrouping, circularity and extinction: some issues in Austronesian comparative linguistics. In: Selected papers from the Eighth International Conference on Austronesian linguistics (eds. E Zeitoun and PJ Li). Academia Sinica, Taipei, Taiwan

- Bowler JM, Johnston H, Olley JM, Prescott JR, Roberts RG, Shawcross W, Spooner NA (2003) New ages for human occupation and climatic change at Lake Mungo, Australia. Nature 421:837-840
- Brehm A, Pereira L, Bandelt H-J, Prata MJ, Amorim A (2002) Mitochondrial portrait of the Cabo Verde archipelago: the Senegambian outpost of Atlantic slave trade. Annals of Human Genetics 60:49-60
- Brown P, Sutikna T, Morwood MJ, Soejono RP, Jatmiko, Saptomo EW, Due RA (2004) A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia. *Nature* **431**:1055-1061
- Brown WM, George M, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences USA 76:1967-1971
- Brown WM (1980) Polymorphism in mitochondrial DNA of humans as revealed by restriction endonuclease analysis. *Proceedings of the National Academy of Sciences* USA 77:3605-3609
- Bulbeck D (1996) Holocene biological evolution of the Malay Peninsula aborigines (Orang Asli). Perspectives in Human Biology 2:37-61
- Bulbeck D (2000) Dental morphology at Gua Cha, West Malaysia, and the implications for "Sundadonty". *Indo-Pacific Prehistory Association Bulletin* **19**:17-41
- Bulbeck D, Pasqua M, Di Lello A (2001) Culture history of the Toalean of South Sulawesi, Indonesia. Asian Perspectives 39:71-108
- Bulbeck D (2004) Indigenous traditions and exogenous influences in the early history of Peninsular Malaysia. In: Southeast Asia from prehistory to history (eds I Glover and P Bellwood). Routledge Curzon, London and New York.
- Cann RL, Stoneking M, Wilson AC (1987) Mitochondrial DNA and human evolution. Nature 325:31-36
- Capelli C, Wilson JF, Richards M, Stumpf MPH, Gratrix F, Oppenheimer S, Underhill P, Pascali VL, Ko T-M, Goldstein DB (2001) A predominantly indigenous paternal heritage for the Austronesian-speaking peoples of insular Southeast Asia and Oceania. American Journal of Human Genetics 68:432-443
- Carey I (1976) Orang Asli: the aboriginal tribes of peninsular Malaysia. Oxford University Press, Kuala Lumpur.
- Chen YS, Torroni A, Excoffier L, Santachiara-Benerecetti AS, Wallace DC (1995) Analysis of mtDNA variation in Africa reveals the most ancient of all human continent-specific haplogroups. *American Journal of Human Genetics* **57**:133-149

Chromas website: http://www.technelysium.com.au/chromas.html Accessed 07/07/04

CIA "The World Factbook" website: http://www.cia.gov/cia/publications/factbook/docs/refmaps.html Accessed 17/10/04

Clayton DA (1982) Replication of animal mitochondrial DNA. Cell 28:693-705

- Comas D, Calafell F, Mateu E, Pérez-Lezaun A, Bosch E, Martínez-Arias R, Clarimon J, Facchini F, Fiori G, Luiselli D, Pettener D, Bertranpetit J (1998) Trading genes along the Silk Road: mtDNA sequences and the origin of central Asian populations. *American Journal of Human Genetics* 63:1824-1838
- Cordaux R, Stoneking M (2003) South Asia, the Andamanese, and the genetic evidence for an "early" human dispersal out of Africa. *American Journal of Human Genetics* 72:1586-1590

Diamond JM (1988) Express train to Polynesia. Nature 336:307-308

- Ding YC, Wooding S, Harpending HC, Chi H-C, Li H-P, Fu Y-X, Pang J-F, Yao Y-G, Xiang Yu J-G, Moyzis R, Zhang Y-P (2000) Population structure and history in East Asia. *Proceedings of the National Academy of Sciences USA* **97**:14003-14006
- Di Rienzo A, Wilson AC (1991) Branching pattern in the evolutionary tree for human mitochondrial DNA. Proceedings of the National Academy of Sciences USA 88:1597-1601

DnaSP website: http://www.ub.es/dnasp/ Accessed 03/11/04

- Dyen I (1962) The lexicostatistical classification of the Malayopolynesian languages. Language 38:38-46
- Endicott P, Gilbert TMP, Stringer C, Lalueza-Fox C, Willerslev E, Hansen AJ, Cooper A (2003) The genetic origins of the Andaman islanders. *American Journal of Human Genetics* 72:178–184

Ethnologue website: http://www.ethnologue.com Accessed 20/03/05

Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. *Genetics* 131:479-491

- Finnilä S, Lehtonen MS, Majamaa K (2001) Phylogenetic network for European mtDNA. American Journal of Human Genetics 68:1475-1484
- Fix AG (1995) Malayan paleosociology. Implications for the patterns of genetic variation among the Orang Asli. American Anthropologist 97:313-323
- Fix AG (2000) Genes, language, and ethnic groups: reconstructing Orang Asli prehistory. *Indo-Pacific Prehistory Association Bulletin* **19**:11-16
- Foley WA (1986) The Papuan languages of New Guinea. Cambridge University Press, Cambridge
- Forster P, Harding R, Torroni A, Bandelt H-J (1996) Origin and evolution of Native American mtDNA variation: a reappraisal. *American Journal of Human Genetics* 59:935-945
- Forster P, Torroni A, Renfrew C, Röhl A (2001) Phylogenetic star contraction applied to Asian and Papuan mtDNA evolution. *Molecular Biology and Evolution* 18:1864-1881
- Fucharoen G, Fucharoen S, Horai S (2001) Mitochondrial DNA polymorphisms in Thailand. Journal of Human Genetics 46:115-125
- Fuku N, Oshida Y, Takeyasu T, Guo L-J, Kurata M, Yamada Y, Sato Y, Tanaka M (2002) Mitochondrial ATPase subunit 6 and cytochrome b gene polymorphisms in young obese adults. Biochemical and Biophysical Research Communications 290:1199-1205
- Gajra B, Candlish JK, Heng CK, Mak, JW, Saha N (1997) Genotype associations among seven apolipoprotein B polymorphisms in a population of Orang Asli of western Malaysia. *Human Biology* **69**:629-640
- Gray RD, Jordan FM (2000) Language trees support the express-train sequence of Austronesian expansion. *Nature* **405**:1052-1055
- Green RC (1991) The Lapita cultural complex: current evidence and proposed models. Bulletin of the Indo-Pacific Prehistory Association 11:295-305
- Greenhill SJ, Gray RD (In Press) Testing population dispersal hypotheses: Pacific settlement, phylogenetic trees and Austronesian languages. In: The Evolution of Cultural Diversity: Phylogenetic Approaches (eds. R Mace, C Holden, S Shennan) UCL Press
- Groube L, Chappell J, Muke J, Price D (1986) A 40,000 year old human occupation site at Huon peninsula, Papua New Guinea. *Nature* 324:453-455
- Groves CP (1981) Ancestors for the pigs: taxonomy and phylogeny of the genus Sus. Technical Bulletin 3, Department of Prehistory, Australian National University, Canberra

- Gyllensten U, Wharton D, Josefsson A, Wilson AC (1991) Paternal inheritance of mitochondrial DNA in mice. *Nature* 352:255-257
- Hagelberg E, Clegg JB (1993) Genetic polymorphisms in prehistoric Pacific islanders determined by analysis of ancient bone DNA. Proceedings of the Royal Society of London Series B 252:163-170
- Hagelberg E, Quevedo S, Turbon D, Clegg JB (1994) DNA from ancient Easter Islanders. *Nature* 369:25-26
- Hagelberg E, Goldman N, Liò P, Whelan S, Schiefenhövel W, Clegg JB, Bowden DK (1999) Evidence for mitochondrial DNA recombination in a human population of island Melanesia. Proceedings of the Royal Society of London Series B 266:485-492
- Hagelberg E, Goldman N, Liò P, Whelan S, Schiefenhövel W, Clegg JB, Bowden DK (2000) Evidence for mitochondrial DNA recombination in a human population of island Melanesia: correction. Proceedings of the Royal Society of London Series B 267:1595-1596
- Handt O, Meyer S, von Haeseler A (1998) Compilation of human mtDNA control region sequences. *Nucleic Acids Research* 26:126-129
- Harihara S, Mirai M, Suutou Y, Shimizu K, Omoto K (1992) Frequency of a 9-bp deletion in the mitochondrial DNA among Asian populations. *Human Biology* 64:161-166
- Herrnstadt C, Elson JL, Fahy E, Preston G, Turnbull DM, Anderson C, Ghosh SS, Olefsky JM, Beal MF, Davis RE, Howell N (2002) Reduced-median-network analysis of complete mitochondrial DNA coding-region sequences of the major African, Asian and European haplogroups. *American Journal of Human Genetics* 70:1152-1171
- Hertzberg M, Mickleson KNP, Serjeantson SW, Prior JF, Trent RJ (1989) An Asianspecific 9-bp deletion of mitochondrial DNA is frequently found in Polynesians. *American Journal of Human Genetics* 44:504-510
- Heyerdahl T (1950) Kontiki: across the Pacific by raft. Rand McNally, Chicago
- Hill AVS, Bowden DK, Trent RJ, Higgs DR, Oppenheimer SJ, Thein SL, Mickleson KNP, Weatherall DJ, Clegg JB (1985) Melanesians and Polynesians share a unique α-thalassemia mutation. *American Journal of Human Genetics* 37:571-580
- Horai S, Hayasaka K (1990) Intraspecific nucleotide sequence differences in the major noncoding region of human mitochondrial DNA. American Journal of Human Genetics 46:828-842

- Horai S, Hayasaka K, Kondo R, Tsugane K, Takahata N (1995) Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs. *Proceedings of the National Academy of Sciences USA* **92**:532-536
- Horai S, Murayama K, Hayasaka K, Matsubayashi S, Hattori Y, Fucharoen G, Harihara S, Park KS, Omoto K, Pan I-H (1996) mtDNA polymorphism in East Asian populations, with special reference to the peopling of Japan. *American Journal of Human Genetics* **59**:579-590
- Ingman M, Kaessmann H, Pääbo S, Gyllensten U (2000) Mitochondrial genome variation and the origin of modern humans. *Nature* **408**:708-713
- Irwin G (1992) The prehistoric expansion and colonisation of the Pacific. Cambridge University Press, Cambridge
- Kayser M, Brauer S, Weiss G, Underhill PA, Roewer L, Schiefenhövel W, Stoneking M (2000) Melanesian origin of Polynesian Y chromosomes. *Current Biology* 10:1237-1246
- Kayser M, Brauer S, Weiss G, Schiefenhövel W, Underhill P, Shen P, Oefner P, Tommaseo-Ponzetta M, Stoneking M (2003) Reduced Y-chromosome, but not mitochondrial DNA, diversity in Human Populations from West New Guinea. *American Journal of Human Genetics* 72:281-302
- Kivisild T, Bamshad MJ, Kaldma K, Metspalu M, Metspalu E, Reidla M, Laos S, Parik J, Watkins WS, Dixon ME, Papiha SS, Mastana SS, Mir MR, Ferak V, Villems R (1999) Deep common ancestry of Indian and western-Eurasian mitochondrial DNA lineages. Current Biology 9:1331-1334
- Kivisild T, Tolk H-V, Parik J, Wang Y, Papiha SS, Bandelt H-J, Villems R (2002) The emerging limbs and twigs of the East Asian mtDNA tree. *Molecular Biology and Evolution* 19:1737-1751
- Kivisild T, Reidla M, Metspalu E, Rosa A, Brehm A, Pennarun E, Parik J, Geberhiwot T, Usanga E, Villems R (2004) Ethiopian mitochondrial DNA heritage: tracking gene flow across and around the Gate of Tears. American Journal of Human Genetics 75:752-770
- Kolman C, Sambuughin N, Bermingham E (1996) Mitochondrial DNA analysis of Mongolian populations and implications for the origin of New World founders. Genetics 142:1321-1334
- Kolman CJ, Tuross N (2000) Ancient DNA analysis of human populations. American Journal of Physical Anthropology 111:5-23
- Kong Q-P, Yao Y-G, Sun C, Bandelt H-J, Zhu C-L, Zhang Y-P (2003) Phylogeny of East Asian mitochondrial DNA lineages inferred from complete sequences. *American Journal of Human Genetics* 73:671-676

- Krings M, Stone A, Schmitz RW, Krainitzki H, Stoneking M, Pääbo S (1997) Neandertal DNA sequences and the origin of modern humans. *Cell* **90**:19-30
- Krings M, Geisert H, Schmitz RW, Krainitzki H, Pääbo S (1999a) DNA sequence of the mitochondrial hypervariable region II from the Neandertal type specimen. Proceedings of the National Academy of Sciences USA 96:5581-5585
- Krings M, Salem AH, Bauer K, Geisert H, Malek AK, Chaix L, Simon C, Welsby D, Di Rienzo A, Utermann G, Sajantila A, Pääbo S, Stoneking M (1999b) mtDNA Analysis of Nile River Valley Populations: A Genetic Corridor or a Barrier to Migration? *American Journal of Human Genetics* 64:1166-1176
- Lansing JS, Redd AJ, Karafet TM, Watkins J, Ardika IW, Surata SPK, Schoenfelder JS, Campbell M, Merriwether AM, Hammer MF (2004) An Indian trader in ancient Bali? *Antiquity* 78:287-293
- Larson G, Dobney K, Albarella U, Fang M, Matisoo-Smith E, Robins J, Lowden S, Finlayson H, Brand T, Willerslev E, Rowley-Conwy P, Andersson L, Cooper A (2005) Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. *Science* 307:1618-1621
- Lee SD, Shin CH, Kim KB, Lee YS, Lee JB (1997) Sequence variation of mitochondrial DNA control region in Koreans. Forensic Science International 87:99-116
- LeBar FM (1972) Ethnic groups of insular Southeast Asia Volume 1: Indonesia, Andaman Islands and Madagascar. Human Relations Area Files Press, New Haven.
- Lum JK, Rickards O, Ching C and Cann RL (1994) Polynesian mitochondrial DNAs reveal three deep lineage clusters. *Human Biology* **66**:567-590.
- Lum JK, Cann RL, Martinson JJ, Jorde LB (1998) Mitochondrial and nuclear genetics relationships among Pacific island and Asian populations. *American Journal of Human Genetics* 63:613-624
- Lum JK, Cann RL (2000) mtDNA lineage analyses: origins and migrations of Micronesians and Polynesians. American Journal of Physical Anthropology 113:151-168
- Maca-Meyer N, González AM, Larruga JM, Flores C, Cabrera VM (2001) Major genomic mitochondrial lineages delineate early human expansions. *BMC Genetics* 2:13
- Macaulay V, Richards M, Hickey E, Vega E, Cruciani F, Guida V, Scozzari R, Bonné-Tamir B, Sykes B, Torroni A (1999) The emerging tree of West Eurasian mtDNAs: a synthesis of control-region sequences and RFLPs. American Journal of Human Genetics 64:232-249

- Macaulay V, Hill C, Achilli A, Rengo C, Clarke D, Meehan W, Blackburn J, Semino O, Scozzari R, Cruciani F, Taha A, Shaari NK, Raja JM, Ismail P, Zainuddin Z, Goodwin W, Bulbeck D, Bandelt H-J. Oppenheimer S, Torroni A, Richards M (2005) Single, rapid coastal settlement of Asia revealed by analysis of complete mitochondrial genomes. *Science* 308:1034-1036
- Margulis L (1981) Symbiosis in cell evolution: life and its environment on the early Earth. W.H. Freeman & Co., New York
- Matisoo-Smith E, Robins JH (2004) Origins and dispersals of Pacific peoples: evidence from mtDNA phylogenies of the Pacific rat. *Proceedings of the National Academy* of Sciences USA 101:9167-9172
- Meacham W (1984-1985) On the improbability of Austronesian origins in South China. Asian Perspectives 26:89-105
- Melton T, Peterson R, Redd AJ, Saha N, Sofro ASM, Martinson J, Stoneking M (1995) Polynesian genetic affinities with Southeast Asian populations as identified by mtDNA analysis. *American Journal of Human Genetics* **57**:403-414
- Melton T, Clifford S, Martinson J, Batzer M, Stoneking M (1998) Genetic evidence for the proto-Austronesian homeland in Asia: mtDNA and nuclear DNA variation in Taiwanese aboriginal tribes. *American Journal of Human Genetics* 63:1807-1823
- Mishmar D, Ruiz-Pesini E, Golik P, Macaulay V, Clark AG, Hosseini S, Brandon M, Easley K, Chen E, Brown MD, Sukernik RI, Olckers A, Wallace DC (2003) Natural selection shaped regional mtDNA variation in humans. *Proceedings of the National Academy of Sciences USA* 100:171-176
- Morwood MJ, Soejono RP, Roberts RG, Sutikna T, Turnet CSM, Westaway KE, Rink WJ, Zhao J-X, van den Bergh GD, Due RA, Hobbs DR, Moore MW, Bird MI, Fifield LK (2004) Archaeology and age of a new hominin from Flores in eastern Indonesia. *Nature* **431**:1087-1091
- Mountain JL, Herbert JM, Bhattacharyya S, Underhill PA, Ottolenghi C, Gadgil M, Cavalli-Sforza LL (1995) Demographic history of India and mtDNA-sequence diversity. *American Journal of Human Genetics* **56**:979-992

Network website:

http://www.fluxus-engineering.com/sharenet.htm Accessed 08/01/05

- Nichols J (1998) The origin and dispersal of languages: linguistic evidence. In: The Origin and Diversification of Language (eds. NG Jablonski and LC Aiello) pp 127-170. Memoirs of the California Academy of Sciences 24
- Nishimaki Y, Sato K, Fang L, Ma M, Hasekura H, Boettcher B (1999) Sequence polymorphism in the HV1 region in Japanese and Chinese. Legal Medicine 1:238-249

- Old JM, Clegg JB, Weatherall DJ, Booth PB (1978) Haemoglobin J Tongariki is associated with  $\alpha$  thalassemia. *Nature* 273:319-320
- Oota H, Saitou N, Matsushita T, Ueda S (1995) A genetic study of 2,000-year-old human remains from Japan using mitochondrial DNA sequences. *American Journal of Physical Anthropology* **98**:133-145
- Oota H, Kurosaki K, Pookajorn S, Ishida T, Ueda S (2001) Genetic study of the Palaeolithic and Neolithic Southeast Asians. *Human Biology* **73**:225-231
- Oppenheimer S (1998) Eden in the east: the drowned continent of Southeast Asia. Weidenfeld & Nicolson, London
- Ovchinnikov IV, Götherstöm A, Romanova GP, Kharitonov VM, Lidén K, Goodwin W (2000) Molecular analysis of Neanderthal DNA from the northern Caucasus. *Nature* **404**:490-493
- Parson W, Parsons TJ, Scheithauer R, Holland MM (1998) Population data for 101 Austrian Caucasian mitochondrial DNA d-loop sequences: Application of mtDNA sequence analysis to a forensic case. International Journal of Legal Medicine 111:124-132
- Pawley A (2003) The Austronesian dispersal: languages, technology and people. In: Examining the farming/language dispersal hypothesis (eds. P Bellwood and C Renfrew) pp 251-273. McDonald Institute for Archaeological Research, Cambridge,
- Paz V (2003) Island Southeast Asia: spread or friction zone? In: Examining the farming/language dispersal hypothesis (eds. P Bellwood and C Renfrew) pp 275-285. McDonald Institute for Archaeological Research, Cambridge
- Penny D, Steel M, Waddell PJ, Hendy MD (1995) Improved analyses of human mtDNA sequences support a resent African origin for Homo Sapiens. Molecular Biology and Evolution 12:863-882
- Pfeiffer H, Steighner R, Fisher R, Mörnstad H, Yoon CL, Holland MM (1998) Mitochondrial DNA extraction and typing from isolated dentin - experimental evaluation in a Korean population. *International Journal of Legal Medicine* 111:309-313
- Pietrusewsky M (1997) The people of Ban Chiang: an early Bronze Age site in Northeast Thailand. Indo-Pacific Prehistory Association Bulletin 16, The Chiang Mai papers: 119-147
- Ponce de León MS, Zollikofer CPE (2001) Neanderthal cranial ontogeny and its implications for late hominid diversity. *Nature* **412**:534-538

- Prasad BVR, Ricker CE, Watkins WS, Dixon ME, Rao BB, Naidu JM, Jorde LB, Bamshad M (2001) Mitochondrial DNA variation in Nicobarese Islanders. *Human Biology* 73:715-725
- Prugnolle F, Manica A, Balloux F (2005) Geography predicts neutral genetic diversity of human populations. *Current Biology* **15**:R159-R160
- Qian YP, Chu Z-T, Dai Q, Wei C-D, Chu YJ, Tajima A, Horai S (2001) Mitochondrial DNA polymorphism in Yunnan nationalities in China. *Journal of Human Genetics* **46**:211-220
- Quintana-Murci L, Semino O, Bandelt H-J, Passarino G, McElreavey K, Santachiara-Benerecetti AS (1999) Genetic evidence for an early exit of *Homo sapiens sapiens* from Africa through eastern Africa. *Nature Genetics* 23:437-441
- Rambo AT (1988) Why are the Semang? In: Ethnic diversity and the control of natural resources in Southeast Asia (eds. AT Rambo, K Gillogly and KL Hutterer) pp19-35. Michigan papers on South and Southeast Asia, Ann Arbor
- Rayner D, Bulbeck D (2001) Dental morphology of the "Orang Asli" aborigines of the Malay Peninsula. In: Causes and effects of human variation (ed. M Henneberg). Australasian Society for Human Biology: Adelaide.
- Redd AJ, Takezaki N, Sherry ST, McGarvey ST, Sofro ASM, Stoneking M (1995) Evolutionary history of the COII/tRNA(Lys) intergenic 9-base-pair deletion in human mitochondrial DNAs from the Pacific. *Molecular Biology and Evolution* 12:604-615
- Renfrew C (1987) Archaeology and Language: The Puzzle of Indo-European Origins. Cambridge University Press, Cambridge.
- Richards M, Corte-Real H, Forster P, Macaulay V, Wilkinson-Herbots H, Demaine A, Papiha S, Hedges R, Bandelt HJ, Sykes B (1996) Paleolithic and Neolithic lineages in the European mitochondrial gene pool. *American Journal of Human Genetics* 59:185-203
- Richards M, Oppenheimer S, Sykes B (1998) mtDNA suggests Polynesian origins in Eastern Indonesia. American Journal of Human Genetics 63:1234-1236
- Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. *Molecular Biology and Evolution* **9**:552-569
- Ruhlen M (1987) A guide to the world's languages. Volume 1: Classification. Edward Arnold, London
- Saha N, Mak JW, Tay JSH, Liu Y, Tan JAMA, Low PS, Singh M (1995) Population genetic study among the Orang Asli (Semai Senoi) of Malaysia: Malayan aborigines. *Human Biology* 67:37-57

- Saillard J, Forster P, Lynnerup N, Bandelt H-J, Nørby S (2000) mtDNA variation among Greenland Eskimos: the edge of the Beringian Expansion. *American Journal* of Human Genetics 67:718-726
- Santos SE, Ribeiro-Dos-Santos AK, Meyer D, Zago MA (1996) Multiple founder haplotypes of mitochondrial DNA in Amerindians revealed by RFLP and sequencing. *Annals of Human Genetics* **60**:305-319
- Schneider, S., Roessli, D., and Excoffier, L. (2000) Arlequin: A software for population genetics data analysis. Ver 2.000. Genetics and Biometry Lab, Dept. of Anthropology, University of Geneva.
- Schurr TG, Ballinger SW, Gan YY, Hodge JA, Merriwether DA, Lawrence DN, Knowler WC, Weiss KM, Wallace DC (1990) Amerindian mitochondrial DNAs have rare Asian mutations at high frequencies, suggesting they are derived from four primary maternal lineages. *American Journal of Human Genetics* **46**:613-623
- Schurr TG, Sukernik RI, Starikovskaya YB, Wallace DC (1999) Mitochondrial DNA variation in Koryaks and Itel'men: population replacement in the Okhotsk Sea – Bering Sea region during the Neolithic. American Journal of Physical Anthropology 108:1-39
- Seo Y, Stradmann-Bellinghausen B, Rittner C, Takahama K, Schneider PM (1998) Sequence polymorphism of mitochondrial DNA control region in Japanese. Forensic Science International 97:155-164
- Shin WS, Tanaka M, Suzuki J, Hemmi C, Toyo-oka T (2000) A novel homoplasmic mutation in mtDNA with a single evolutionary origin as a risk factor for cardiomyopathy. *American Journal of Human Genetics* **67**:1617-1620
- Shitara H, Hayashi J-I, Takahama S, Kaneda H, Yonekawa H (1998) Maternal inheritance of mouse mtDNA in interspecific hybrids: segregation of the leaked paternal mtDNA followed by the prevention of subsequent paternal leakage. *Genetics* 148:851-857
- Solheim WGII (1980) Searching for the origins of the Orang Asli. Federation Museums Journal 25:61-75
- Solheim WGII, Bulbeck D, Flavel A (in press). The Nusantao Trading and Communication Network. Diliman, Quezon City: Archaeological Studies Program, University of the Philippines
- Soodyall H, Jenkins T, Stoneking M (1995) 'Polynesian' mtDNA in the Malagasy. Nature Genetics 10:377-378
- Spriggs M (2003) Chronology of the Neolithic transition in Island Southeast Asia and the western pacific: a view from 2003. The Review of Archaeology 24:57-80

- Stoneking M, Jorde LB, Bhatia K, Wilson AC (1990) Geographic variation in human mitochondrial DNA from Papua New Guinea. *Genetics* **124**:717-733
- Stringer CB, Andrews P (1988) Genetic and fossil evidence for the origin of modern humans. Science 239:1263-1268

Stringer C (1999) Has Australia backdated the human revolution? Antiquity 73:876-879

- Su B, Xiao J, Underhill P, Deka R, Zhang W, Akey J, Huang W, Shen D, Lu D, Luo J, Chu J, Tan J, Shen P, Davis R, Cavalli-Sforza L, Chakraborty R, Xiong M, Du R, Oefner P, Chen Z, Jin L (1999) Y-chromosome evidence for a northward migration of modern humans into eastern Asia during the last ice age. *American Journal of Human Genetics* 65:1718-1724
- Su B, Jin L, Underhill P, Martinson J, Saha N, McGarvey ST, Shriver MD, Chu J, Oefner P, Chakraborty R, Deka R (2000) Polynesian origins: insights from the Y chromosome. *Proceedings of the National Academy of Sciences USA* 97:8225-8228
- Sykes B, Leiboff A, Low-Beer J, Tetzner S, Richards M (1995) The Origins of the Polynesians: an interpretation from mitochondrial lineage analysis. *American Journal of Human Genetics* 57:1463-1475
- Szabó K, O'Connor S (2004) Migration and complexity in Holocene Island Southeast Asia. *World Archaeology* **36**:621-628
- Tajima A, Sun C-S, Pan I-H, Ishida T, Saitou N, Horai S (2003) Mitochondrial DNA polymorphisms in nine aboriginal groups of Taiwan: implications for the population history of aboriginal Taiwanese. *Human Genetics* **113**:24-33
- Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. *Genetics* 123:585-595
- Tanaka M, Cabrera VM, González AM, Larruga JM, Takeyasu T, Fuku N, Guo L-J, Hirose R, Fujita Y, Kurata M, Shinoda K, Umetsu K, Yamada Y, Oshida Y, Sato Y, Hattori N, Mizuno Y, Arai Y, Hirose N, Ohta S, Ogawa O, Tanaka Y, Kawamori R, Shamoto-Nagai M, Maruyama W, Shimokata H, Suzuki R, Shimodaira H (2004) Mitochondrial genome variation in Eastern Asia and the peopling of Japan. Genome Research 14:1832-1850
- Templeton AR (1993) The "Eve" hypotheses: a genetic critique and reanalysis. American Anthropologist 95:51-72
- Terrell J (1981) Linguistics and the peopling of the Pacific islands. Journal of the Polynesian Society 90:225-258
- Terrell JE (2004) The 'sleeping giant' hypothesis and New Guinea's place in the prehistory of Greater Near Oceania. *World Archaeology* **36**:601-609

- Terrell JE, Welsch RL (1997) Lapita and the temporal geography of prehistory. Antiquity 71:548-572
- Tommaseo-Ponzetta M, Attimonelli M, De Robertis M, Tanzariello F, Saccone C (2002) Mitochondrial DNA variability of West New Guinea populations. *American Journal* of Physical Anthropology 117:49-67
- Torroni A, Schurr TG, Yang C-C, Szathmary EJE, Williams RC, Schanfield MS, Troup GA, Knowler WC, Lawrence DN, Weiss KM, Wallace DC (1992) Native American mitochondrial DNA analysis indicates that the Amerind and Nadene populations were founded by two independent migrations. *Genetics* **130**:153-162
- Torroni A, Miller JA, Moore LG, Zamudio S, Zhuang J, Droma T, Wallace DC (1994) Mitochondrial DNA analysis in Tibet: implications for the origin of the Tibetan population and its adaptation to high altitude. *American Journal of Physical Anthropology* **93**:189-199
- Torroni A, Huoponen K, Francalacci P, Petrozzi M, Morelli L, Scozzari R, Obinu D, Savontaus M-L, Wallace DC (1996) Classification of European mtDNAs from an analysis of three European populations. *Genetics* 144:1835-1850
- Torroni A, Bandelt H-J, Macaulay V, Richards M, Cruciani F, Rengo C, Martinez-Cabrera V, Villems R, Kivisild T, Metspalu E, Parik J, Tolk H-V. Tambets K, Forster P, Karger B, Francaletti P, Rudan P, Janicijevic B, Rickards O, Savontaus M-L, Huoponen K, Laitinen V, Koivumäki S, Sykes B, Hickey E, Novelletto A, Moral P, Sellitto D, Coppa A, Al-Zaheri N, Santachiara-Benerecetti AS, Semino O, Scozzari R (2001) A signal, from human mtDNA, of postglacial recolonization in Europe. American Journal of Human Genetics 69:844-852
- Trejaut JA, Kivisild T, Loo JH, Lee CL, He CL, Xi JR, Li ZY, Lin M (In press) Traces of archaic mitochondrial lineages persist in Austronesian speaking Formosan populations. Unambiguous linkage between Aboriginal Taiwanese and Polynesians to the exclusion of Mainland Asians.
- Vigilant L, Stoneking M, Harpending H, Hawkes K, Wilson AC (1991) African populations and the evolution of human mitochondrial DNA. *Science* 253:1503-1507
- Ward RH, Frazier BL, Dew-Jager K, Pääbo S (1991) Extensive mitochondrial diversity within a single Amerindian tribe. *Proceedings of the National Academy of Sciences* USA 88:8720-8724
- Watson E, Forster P, Richards M, Bandelt H-J (1997) Mitochondrial footprints of human expansions in Africa. American Journal of Human Genetics 61:691-704
- Wen B, Li H, Gao S, Mao X, Gao Y, Li F, Zhang F, He Y, Dong Y, Zhang Y, Huang W, Jin J, Xiao C, Lu D, Chakraborty R, Su B, Deka R, Jin L (2004) Genetic structure of Hmong-Mien speaking populations in East Asia as revealed by mtDNA lineages. Molecular Biology and Evolution 22:725-734

- Wickler S, Spriggs M (1988) Pleistocene human occupation of the Solomon Islands, Melanesia. Antiquity 62:703-706
- Wolpoff M, Thorne A (1991) The case against Eve. New Scientist 130:37-41
- Wrischnik LA, Higuchi RG, Stoneking M, Erlich HA, Arnheim N, Wilson AC (1987) Length mutations in human mitochondrial DNA: direct sequencing of enzymatically amplified DNA. *Nucleic Acids Research* **15**:529-542
- Wurm SA (1983) Linguistic prehistory in the New Guinea area. Journal of Human Evolution 12:25-35
- Y Chromosome Consortium (2002) A nomenclature system for the tree of human Ychromosomal binary haplogroups. *Genome Research* 12:339-348
- Yao Y-G, Lu X-M, Luo H-R, Li W-H, Zhang Y-P (2000) Gene admixture in the silk road of China - evidence from mtDNA and melanocortin 1 receptor polymorphism. *Genes and Genetic Systems* **75**:173-178
- Yao Y-G, Kong Q-P, Bandelt H-J, Kivisild T, Zhang Y-P (2002a) Phylogeographic differentiation of mitochondrial DNA in Han Chinese. American Journal of Human Genetics 70:635-651
- Yao Y-G, Nie L, Harpending H, Fu Y-X, Yuan Z-G, Zhang Y-P (2002b) Genetic relationship of Chinese ethnic populations revealed by mtDNA sequence diversity. *American Journal of Physical Anthropology* 118:63-76
- Yao Y-G, Zhang Y-P (2002c) Phylogeographic analysis of mtDNA variation in four ethnic populations from Yunnan Province: new data and a reappraisal. Journal of Human Genetics 47:311-318
- Yao Y-G, Kong Q-P, Wang C-Y, Zhu C-L, Zhang Y-P (2004) Different matrilineal contributions to genetic structure of ethnic groups in the silk road region in China. *Molecular Biology and Evolution* 21:2265-2280
- Zainuddin Z, Goodwin W (2004) Mitochondrial DNA profiling of modern Malay and Orang Asli populations in peninsular Malaysia. International Congress Series 1261:428-430

## Appendix I – Results of HVS – I Sequencing and Restriction Fragment Length Polymorphism Tests

| ALO       1       16193       16223       16291       16319         ALO       1       16159N)       16159N       16159N       161335         ALO       5       16129       16144       16335       16335         ALO       6       16129       16144       161335       16335         ALO       6       16129       16144       161543       16222/3insA         ALO       7       16129       16172       16335       16155         ALO       7       16129       16172       16335       16155         ALO       7       16129       16172       16335       16155         ALO       8       16157       16256       16304       16159       16153         ALO       10       10       16140       16189       16233       16153       16153         ALO       27       16189       16213       16223       16304       16156       16155         ALO       27       16189       16212       16291       16152       16304       16362         ALO       29       16129       16129       16129       16162       16162       16162       16162       161                                                                                                                                                                                                                               | 16193       16223       16249       16291       16319       16098N         16159N)       16120       16335       16319       16098N         16120       16189       16274       16335       16311         16129       16144       16148       16245C       16311         16343       16129       16144       161241       16241         16129       16144       16148       16222/3insA       16241         16129       16141       16343       16265C       16311         16255C       16311       16343       16222/3insA       16241         16129       16172       16304       (16159N)       16127       16256       16304         16127       16256       16304       16335       (16159N)       16159N       16159N | N21<br>84c<br>F1a  | Start<br>16030<br>16060<br>16001 | End<br>16500 | 1020741.1 1020412461 1560641.1                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------|--------------|----------------------------------------------------------------------|
| 1         4         4           5         5         5           17         10         8           23         36         36           24         44         44           44         44         53           53         53         53           58         53         53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16249 16291 16319 (16098N<br>16274 16335<br>16148 16241 16265C 16311<br>16148 16222/3insA 16241<br>1 16343<br>16304 (16159N)<br>16304 16335 (16159N)<br>16266A 16291 (16159N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N21<br>84c<br>61s  | 16030<br>16060<br>16001          | 16500        | 10207 A 11 10204 D 4a1 15606 A 1u1                                   |
| 4         7         5         5           6         7         7         6           17         10         8         8           36         227         27         12           36         23         36         23           53         53         53         53           58         53         53         53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16274 16335<br>16148 16241 16265C 16311<br>16148 16222/3insA 16241<br>1 16343<br>16304 (16159N)<br>16304 16335 (16159N)<br>16266A 16291 (16159N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B4c<br>F1 Ο Ο      | 16060<br>16001                   |              | -1039/Alut, -10394Dact, -13000Au                                     |
| 5         7         6         5           17         10         8         7         6           17         10         8         36         36           23         36         22         17         10           17         10         8         8         1           17         10         8         17         10           17         10         17         10         10           17         10         10         10         10           17         10         10         10         10           17         10         10         10         10         10           17         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10 <td>16148 16241 16265C 16311<br/>16148 16222/3insA 16241<br/>1 16343<br/>16304 (16159N)<br/>16304 16335 (16159N)<br/>16266A 16291 (16159N)</td> <td>с с <mark>1</mark></td> <td>16001</td> <td>16465</td> <td>+9bpdel</td> | 16148 16241 16265C 16311<br>16148 16222/3insA 16241<br>1 16343<br>16304 (16159N)<br>16304 16335 (16159N)<br>16266A 16291 (16159N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | с с <mark>1</mark> | 16001                            | 16465        | +9bpdel                                                              |
| 6<br>8<br>17<br>17<br>17<br>10<br>17<br>10<br>17<br>10<br>17<br>10<br>17<br>10<br>17<br>10<br>17<br>10<br>17<br>10<br>10<br>17<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16148 16222/3insA 16241<br>1 16343<br>16304 (16159N)<br>16304 16335 (16159N)<br>16266A 16291 (16159N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Q                  |                                  | 16386        | +10397Alul, +10394Ddel                                               |
| 6<br>8<br>17<br>17<br>17<br>10<br>18<br>8<br>8<br>8<br>17<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16148 16222/3insA 16241<br>1 16343<br>16304 (16159N)<br>16304 16335 (16159N)<br>16266A 16291 (16159N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C Ela              |                                  |              |                                                                      |
| 7<br>8<br>8<br>10<br>17<br>17<br>17<br>17<br>16<br>8<br>7<br>53<br>53<br>53<br>53<br>53<br>53<br>53<br>53<br>53<br>53<br>53<br>53<br>53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 16343<br>16304 (16159N)<br>16304 16335 (16159N)<br>16266A 16291 (16159N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FIa                | 16024                            | 16503        | +10397Alul                                                           |
| 7<br>8<br>10<br>27<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16304 (16159N)<br>16304 16335 (16159N)<br>16266A 16291 (16159N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fla                |                                  |              |                                                                      |
| 8<br>10<br>27<br>17<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16304 16335 (16159N)<br>16266A 16291 (16159N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 777                | 16030                            | 16500        |                                                                      |
| 10         17         10           17         29         27           28         48         44           53         53         53           58         53         53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16266A 16291 (16159N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F                  | 16030                            | 16500        |                                                                      |
| 17           17           29           29           36           36           36           36           36           36           36           36           36           36           36           36           37           44           41           44           44           51           53           53           53           54           57           58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B5a                | 16055                            | 16470        | +9bpdel                                                              |
| 17           27           29           36           36           36           36           36           36           36           36           36           36           36           36           36           36           36           36           44           44           44           51           53           53           53           53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                                  |              |                                                                      |
| 27           236           36           36           36           36           36           36           36           36           36           36           36           36           36           37           44           41           44           44           51           53           53           53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16189 16213 16223 16295 16362 (16159N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M7c1c              | 16030                            | 16470        | +10397Alul, +10394Ddel, -9bpdel, +51/6Alul,<br>+9824Hinfl, +7598Hhal |
| 29         29         29         29         29         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20<                                                                                                                                | 16162 16172 16304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Flala              | 16030                            | 16500        |                                                                      |
| 57         54           51         44           53         51           53         53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M7c1c              | 16060                            | 16500        | +5176Alul, +7598Hhal                                                 |
| 40           41           45           53           53           53           53           53           53           53           53           54           53           54           53           54           53           54           53           54           53           54           53           54           53           54           55           54           55           54           55           54           55           54           55           56           57           58           58           58           58           58           58           58           58           58           59           50           51           52           53           54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 60%6 16223 16291 16362 16390 16465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ela                | 16050                            | 16500        | +10397Alul, +10394Ddel, +5176Alul, -7598Hhal                         |
| 44<br>45<br>51<br>53<br>53<br>53<br>53<br>53<br>53<br>53<br>53<br>53<br>58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ĺ                  | 16045                            | 16500        |                                                                      |
| 44           45           51           53           53           54           53           54           53           54           53           54           53           54           53           54           53           54           53           54           53           54           53           54           53           54           54           54           54           57           58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16294 16304 16362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fla                | 16050                            | 16500        |                                                                      |
| 45<br>51<br>53<br>54<br>57<br>58<br>58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16157 16256 16304 16335 (16054N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ľ.                 | 16050                            | 16500        |                                                                      |
| 51<br>53<br>54<br>57<br>58<br>58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16249 16266A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B5a                | 16070                            | 16470        | +9bpdel                                                              |
| 53<br>54<br>57<br>58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16294 16304 16362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fla                | 16050                            | 16500        |                                                                      |
| 54<br>57<br>58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16093 16189 16217 16247 16261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B4a1               | 16027                            | 16392        | +9bpdel                                                              |
| 57<br>58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6129 16144 16148 16172 16223 16241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                  | 16050                            | 16500        | +10397AluI                                                           |
| 57<br>58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C 16311 16343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                  |              |                                                                      |
| 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                  | 16060                            | 16500        | +10397Alul, +10394Ddel, +5176Alul,+7598Hhal,<br>-9824Hinfl           |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (16054N 16168N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R22                | 16050                            | 16500        |                                                                      |
| 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16129 16209 16223 16233 16259 16274<br>16290 16304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R9                 | 16060                            | 16500        |                                                                      |
| ALO 64 16157 16256 16335 (16054N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16335 (16054N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F                  | 16050                            | 16500        |                                                                      |

## <u>Appendix 1 – Results of HVS – I Sequencing and Restriction</u> <u>Fragment Length Polymorphism Tests</u>

|     |     | UVC I Variante                                                     | Hanlogroun | I-SVH | I-SVH | RFLP Variants                                                                   |
|-----|-----|--------------------------------------------------------------------|------------|-------|-------|---------------------------------------------------------------------------------|
|     |     |                                                                    |            | Start | End   |                                                                                 |
| ALO | 65  | 16129 16144 16148 16241 16265C 16311<br>16343                      | δ          | 16011 | 16500 | +10397AluI                                                                      |
| ALO | 89  | 16129 16144 16148 16241 16265C 16311<br>16343                      | δ          | 16030 | 16500 |                                                                                 |
| ALO | 71  | 16129 16144 16148 16172 16223 16241<br>16265C 16311 16343 (16159N) | δ          | 16030 | 16500 |                                                                                 |
| ALO | 72  | 16157 16256 16335 (16159N)                                         | Ŧ          | 16060 | 16500 |                                                                                 |
| ALO | 75  | 16129 16144 16148 16223 16265C 16311<br>16343 (16098N 16159N)      | δ          | 16030 | 16500 | +10397AluI                                                                      |
| ALO | 78  | 16129 16144 16148 16172 16223 16241<br>16265C 16311 16343          | δ          | 16011 | 16500 | +10397AluI                                                                      |
| ALO | 62  | 16129 16223 16241 16311                                            | δ          | 16011 | 16500 | +10397Alu1, +10394Ddel, +5176Alu1, +7598Hhal,<br>-9824Hinf1                     |
| ALO | 98  | 16129 16144 16148 16241 16265C 16311<br>16343                      | ð          | 16030 | 16500 |                                                                                 |
| ALO | 8   | 16140 16189 16217 16235 16274                                      | B4c        | 16060 | 16460 | +9bpdel                                                                         |
| ALO | 103 | 16129 16172 16173 16294 16304 16362                                | Fla        | 16030 | 16500 |                                                                                 |
| ALO | 107 | 16140 16189 16217 16274 16335                                      | B4c        | 16060 | 16460 | +9bpdel                                                                         |
| ALO | 114 | 16223 16291 16362 16390                                            | Ela        | 16060 | 16500 | +10397Alul, +10394Ddel, +5176Alul                                               |
| ALO | 115 | 16193 16223 16291 16319                                            | N21        | 16070 | 16500 | -10397Alul, -10394Ddel, -15606Alul                                              |
| ALO | 119 | 16092 16129 16144 16148 16169 16223<br>16265C 16311 16343          | δ          | 16060 | 16500 | +10397AluI                                                                      |
| ALO | 127 | 16129 16144 16148 16241 16265C 16311<br>16343                      | ð          | 16060 | 16500 |                                                                                 |
| ALO | 133 | 16184A 16213 16223 16278                                           | G2         | 16060 | 16500 | +10397Alul, +10394Ddel, +5176Alul, +7598Hhal,<br>-9824Hinfl, +4831Hhal          |
| ALO | 142 | 16066 16290 16298 16357 16362                                      | F3         | 16030 | 16500 | -10397Alul, -10394Ddel                                                          |
| ALO | 147 | 16129 16223 16274 16311 16317 16362                                | D4a        | 16060 | 16500 | +10397Alul, +10394Ddel, -5176Alul                                               |
| ALO | 149 | 16188 16189 16223 16278 16288                                      | G2         | 16030 | 16500 | -9bpdel, +10397Alul, +10394Ddel, +5176Alul,<br>+7598Hhal, -9824Hinfl, +4831Hhal |
| ALO | 152 | 16223 16291 16362 16390                                            | Ela        | 16030 | 16500 | +10397Alul, +5176Alul, -7598Hhal                                                |
| ALO | 158 | 16223 16261 16362 16390 (16259N)                                   | EIb        | 16060 | 16500 | +10397Alul, +5176Alul, -7598Hhal                                                |
|     |     |                                                                    |            | _     |       |                                                                                 |

|     |     | UVC.I Variante                      | Hanhoronn | I-SVH | HVS-I | RFLP Variants                                               |
|-----|-----|-------------------------------------|-----------|-------|-------|-------------------------------------------------------------|
|     |     |                                     | 0         | Start | End   |                                                             |
| ALO | 160 | 16129 16144 16148 16172 16223 16241 | δ         | 16060 | 16500 |                                                             |
|     |     | 16265C 16311 16343                  |           | 0,0,, | 1/600 |                                                             |
| ALO | 161 | 16223 16261 16362 16390             | Elb       | 16060 | 16500 | +1039/Alul, -/                                              |
| AMB | 3   | 16223 16362                         | M7        | 16015 | 16500 | +10397Alul, +10394Ddel, +/398Hnal, +9824Hlill               |
| AMB | 4   | 16108 16129 16162 16172 16304       | Flala     | 16030 | 16500 |                                                             |
| AMB | 6   | 16129 16144 16148 16172 16223 16241 | δ         | 16025 | 16500 | +10397Alul, +10394Ddel                                      |
|     |     | 16256 16265C 16311 16343            |           |       |       |                                                             |
| AMB | 6   | 16189 16266A                        | B5a       | 16030 | 16465 | +9bpdel                                                     |
| AMB | 10  | 16140 16189 16266A                  | B5a       | 16040 | 16465 | +9bpdel                                                     |
| AMB | 12  | 16189 16217 16247 16261 16362       | B4a1      | 16030 | 16470 | +9bpdel                                                     |
| AMB | 14  | 16223 16362 16390                   | D         | 16015 | 16500 | +10397AluI, +10394DdeI, +7598Hhal, -5176AluI                |
| AMB | 17  | 16136 16189 16217                   | B4b1      | 16045 | 16470 | +9bpdel                                                     |
| AMB | 20  | 16189 16217 16261                   | B4a       | 16030 | 16470 | +9bpdel                                                     |
| AMB | 22  | 16223 16291 16362 16390             | Ela       | 16030 | 16500 | +10397Alul, +5176Alul                                       |
| AMB | 26  | 16104 16129 16172 16294 16304 16362 | Fla       | 16030 | 16500 |                                                             |
| AMB | 28  | 16104 16129 16172 16294 16304 16362 | Fla       | 16030 | 16500 |                                                             |
|     |     | (16054N)                            |           |       |       |                                                             |
| AMB | 36  | 16189 16217 16247 16261             | B4a1      | 16015 | 16480 | +9bpdel                                                     |
| AMB | 39  | 16189 16217 16247 16261             | B4a1      | 16012 | 16394 |                                                             |
| AMB | 52  | 16168 16189 16209 16223 16233 16304 | W         | 16050 | 16480 | +10397Alul, +5176Alul, +7598Hhal, -9824Hinfl                |
| AMB | 95  | 16051 16223 16362 16390             | EI        | 16025 | 16500 | +10397Alul, +10394Ddel, +5176Alul, -9824Hinfl,              |
|     | 2   |                                     |           | _     |       | -7598Hhal                                                   |
| AMB | 57  | 16223 16248 16362 16390             | El        | 16015 | 16500 | +10397Alul, +5176Alul, -9824Hinfl, -7598Hhal                |
| AMB | 63  | 16148 16189 16223 16362             | DS        | 16050 | 16480 | -10397Alul, -10394Ddel, -9bpdel, -5176Alul                  |
| AMB | 65  | 16295 16362                         | D         | 16050 | 16460 | +10397Alul, +10394Ddel, -5176Alul                           |
| AMB | 999 | 16051 16223 16362 16390             | EI        | 16030 | 16500 | +5176Alul                                                   |
| AMB | 67  | 16093 16189 16223 16265 16278       | G2        | 16045 | 16480 | +10397Alul, +5176Alul, -9824Hinfl                           |
| AMB | 68  | 16223 16362 16390                   | Σ         | 16015 | 16500 | +10397Alul, +5176Alul, +7598Hhal, -9824Hinfl                |
| AMB | 12  | 16223 16362 16390                   | Μ         | 16055 | 16500 | +5176Alul, +7598Hhal                                        |
| AMB | 12  | 16184A 16223                        | G2a?      | 16045 | 16500 | +10397Alul, +10394Ddel, +5176Alul, +7598Hhal,<br>-9824Hinfl |
|     |     |                                     |           |       |       |                                                             |

| HVS-I Varians         Haplogroup         Siart         Ead         10397Alul           16129 16144 16148 16154 16309 16222         Q         16055         16500         +10397Alul           16231 16265 1631 16343         B4b1         16050         16480         +9bpdel           16189 16217 16261 1636N)         B4a1         16033         16480         +9bpdel           16189 16217 16361 16343         B4a1         16033         16480         +9pbdel           16129 16172 16304 1631         F1a         16030         16480         +9224Hinfl           16129 16172 16304 1631         F1a         16030         16500         +9224Hinfl           16129 16172 16304 1631         F1a         16030         16500         +9234Hinfl           16139 1637 16261         B4a         16030         16500         +9234Hinfl           16139 1637 16261         B4a         16030         16500         16475           16139 1637 16261         B4a         16030         16500         16475           16130 1638 16274 16261         B4a         16030         16500         16475           16130 1631 1634         1633 16241         Q         16030         16460         16734           16130 16148 16138 1633 162241                                                                                                                                       |        |          |                                      |            | 1 3/11 |       | RFLP Variants                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|--------------------------------------|------------|--------|-------|----------------------------------------------------------------------|
| 75         16129         16144         16148         16154         16200         16030         166030         166030         166030         166030         166030         166030         166030         166030         166030         166030         166030         166030         166030         166030         166037         16535         16480         2           88         16189         62171         162471         6561         B4a1         16037         16385         16480         2         16460         2         16460         2         16391         16129         16129         16129         16129         16129         16129         16129         16129         16129         16129         16129         16129         16129         16129         16129         16129         16129         16129         16129         16129         16129         16129         16129         16129         16129         16129         16300         16500         16400         16400         16415         16320         16415         16320         16415         16320         16415         16320         16410         168916         16306         16500         16410         168916         16415         16410         168916         16116 </th <th>Series</th> <th>Ŷ</th> <th>HVS-I Variants</th> <th>Haplogroup</th> <th>Start</th> <th>End</th> <th></th> | Series | Ŷ        | HVS-I Variants                       | Haplogroup | Start  | End   |                                                                      |
| Iozal lozov (b)1 los 43         B4b1         16030         16480         4680           81         16189 16217         16261 16278 (16156N)         B4a         16033         16480         4680           88         16189 16217 (6261 16278 (16156N)         B4a         16033         16480         4680           94         16129 1617 (6241 (6261         B4a1         16015         16430         16460           94         16129 1617 16241 (5241 (525)         B4a1         16015         16460         16460           97         16111 (524) (5261         B4a1         16030         16500         16460           98         16189 16217 16261         B4a         16030         16500         16460           97         16111 (6134 1618 16256A         B4a1         16030         16460         16475           98         16189 16217         B4a         16030         16460         16475           98         16189 16217         B4a         16030         16475         16460           103         16129 1614 16148 1613 16223 16241         Q         16030         16473           103         16129 1614 16148 1613 16223 16241         Q         16030         16473           103         16129                                                                                                                                                           | AMB    | 75       | 16129 16144 16148 16154 16209 16222  | Ø          | 16075  | 16500 | +10397AluI                                                           |
| 81         10136 10189 10217 16261 16278 (16156N)         B44a         10030         10430         10430           88         16189 16217 16247 16261         B44a         16033         16408         1633         16408         1633         16408         1633         16408         1633         16408         1633         16408         1633         16408         1633         16408         1633         16408         1633         16408         1633         16408         1633         16408         1633         16408         1633         16408         1633         16408         1633         16408         1633         1640         1633         16408         1633         16408         1633         1640         1633         1640         1633         1640         1633         1640         1633         1640         1633         1640         1633         1633         1640         1633         1633         1640         1633         1633         1640         1633         16500         1640         1633         16500         1640         1633         1633         1633         1633         1633         1633         1633         1633         1633         1633         1633         1633         1633         1633                                                                                                                             |        |          | 16241 16265C 16311 16343             | DALI       | 16050  | 16480 |                                                                      |
| 84         16189 16217 16261         Data         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         100000         100000         10000                                                                                                      | AMB    | <b>2</b> | 16136 16189 1621/                    | DHU        | 00001  | 16480 | +0hrdel                                                              |
| 88         16189         162.17         162.47         162.61         B4a1         1600.35         16430           89         16129         16189         162.31         162.97         16.335         16430           94         16129         16189         162.31         162.97         16.300         16500           97         16129         16189         162.71         162.61         B4a         160.30         16500           97         16129         16189         162.71         162.61         B4a         160.30         16460           98         16311         16341         16341         16340         16500         16475           103         16129         16189         162.741         16565         Q         16050         16475           103         16129         16189         163.23         162.41         163.62         16475           103         16129         16144         16342         B4a1         16020         16475           103         162.64         B4a1         16020         16475         16475           103         16129         16172         16304         1631         16475           103                                                                                                                                                                                                                             | AMB    | 84       | 16189 16217 16261 16278 (16136N)     | 154a       | 00001  | 00+01 | - Zupaus                                                             |
| 89         16189         162.17         16.247         16.247         16.385         16.335         16.335         16.335         16.335         16.335         16.335         16.335         16.335         16.335         16.330         16.350         16.350         16.350         16.500         15.500         15.500         15.500         16.500         16.500         16.500         16.500         16.500         16.500         16.500         16.500         16.500         16.500         16.500         16.500         16.500         16.500         16.500         16.500         16.500         16.500         16.500         16.500         16.500         16.500         16.500         16.500         16.500         16.500         16.500         16.500         16.500         16.500         16.500         16.500         16.500         16.500         16.500         16.500         16.500         16.500         16.500         16.500         16.500         16.500         16.475         16.475         16.475         16.475         16.475         16.475         16.475         16.475         16.475         16.475         16.475         16.475         16.475         16.475         16.475         16.475         16.475         16.475         16.475         16.475                                                                          | AMB    | 88       | 16189 16217 16247 16261              | B4a1       | 16033  | 10408 | +yopuci                                                              |
| 94         16129         16129         16231         16230         16420         16420           96         16129         16172         16304         16311         16450         16500         16500           97         16129         16174         16231         16530         16500         16500           97         16139         16144         1644         16501         16500         16500           98         16189         16231         1633         16526         16415         16500         16460           103         16129         16144         1643         1633         16500         16475           103         16129         16144         1643         1633         16500         16475           103         16129         16144         1643         16500         16475           103         16129         1634         1633         16523         16500         16475           103         16129         16144         1643         16500         16475           103         16129         16141         1633         16223         16475           103         16129         16141         1631         16223                                                                                                                                                                                                                                     | AMB    | 89       | 16189 16217 16247 16261              | B4a1       | 16037  | 16385 |                                                                      |
| 9616129161721630416510165009716129161441614816223162411650016500981631116343163161619316460165001647510216140161891623116341164351647516475103161291614016139162351631183411602016475103162561613416331636218481633165001647510516189162171623116361164751642416424106161291617216304163117160201647510816189162171623116304163117160201650011016129161721630416311716020165001650011116129161721634316362163031650016500111161291614416183163231622316297M7b116050164801111612916129161221632316223162231622316500164801111612616129161221632316223162231624671660016500112161261612216323163231622316246716600165001131622316221163231632316246716600165001131622                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AMB    | 8        | 16129 16189 16223 16297              | M7b        | 16015  | 16420 | +10397Alul, +10394Ddel, +5176Alul, +798Hnal,<br>+9824Hinfl           |
| 971612916129161411614816223162411650016500981631116343163111634316403164051021614016189162561B4a1605016475103161291612916134163316362164751051618916271162316361B4a16020164751051618916271162316361B4a11602016475106161291617163216361B4a1160201650010916129161716321630416311F1a160201650011016129161721630416311F1a1602016500165001111612916172163431636216301650016500165001111612916124163316362163016500165001650011116129161291632316223162231629116500164801111622316291163231634701605016480165001121612616129163231624671630165001648011316223162211639416311163021648016500113162231622116394163111636216435165001131622316221163941631116323162467<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AMB    | 8        | 16129 16172 16304 16311              | Fla        | 16030  | 16500 |                                                                      |
| 98161891626484a1603016460102161401618916266A8531630164751031612916144161816311632316301647510316256163116331632316311637165001647510316256163116331636284a160201647516441031625616311624163184a160201647516424108161891621716241162611642416500165001091612916172163041631184a160201650016500110161291617216341631187a160601650016500111161291612916123162231622316297M7b11605016500112161261612916123162231624616362163621636216362113162231629116362163921636216362163621643016500113162231629116362163911636216362164301650011316223162911636216392163641631171603016500113162231629116362163911636216461161301650016430113162231629116362163911636216311 <t< th=""><th>AMB</th><td>67</td><td>16129 16144 16148 16223 16241 16265C</td><td>δ</td><td>16050</td><td>16500</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AMB    | 67       | 16129 16144 16148 16223 16241 16265C | δ          | 16050  | 16500 |                                                                      |
| $y_{y_0}$ 1000 1000 1000 1000 10001647510216120 16139 16266AB3B5160501647510316255C 16311 16143 16193 16323 16261B416020164751051689 16217 1623 16361B4160201642410816189 16217 1623 16261B4160201642410916129 16172 16304 16311F1a160201650011016129 16172 16304 16311F1a160601650011116129 16172 16304 16311F1a160601650011216129 16172 16304 16311F1a160601650011316223 1639116223 16397M7b1160501648011316223 16291 16362 16390E1a160451650011316223 16291 16362 16390E1a160451650011316223 16291 16362 16390B4a160301650011316223 16291 16362 16391B4a160301650011316223 16291 16362 16391B4a160301650011316223 16291 16362 16391B4a160301650011316223 16291 16362 16391B4a160301650011316223 16291 16362 1639116361164301643011316223 16291 16362 1639216341 16311F1a1603016500114816223 1629416311 16362M7clc160301650011516128 16189 16223 1629416311F1a1602016430114816108 16189 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | e        | 12101 1001                           | B4a        | 16030  | 16460 |                                                                      |
| 102         16179         1643         1633         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16630         16500         16630         16630         16500         16630         16500         16630         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16480         16                                                                                                         | AMD    | °21      | 16100 16180 16764 A                  | B5a        | 16050  | 16475 |                                                                      |
| 0.0 $16256C$ $16311$ $16326C$ $16311$ $16326C$ $16475$ $108$ $16189$ $6217$ $16221$ $16261$ $16475$ $16475$ $108$ $16189$ $16217$ $162311$ $16241$ $16424$ $108$ $16129$ $16172$ $16304$ $16311$ $F1a$ $16020$ $16500$ $110$ $16129$ $16172$ $16304$ $16311$ $F1a$ $16020$ $16500$ $111$ $16129$ $16172$ $16304$ $16323$ $16297$ $M7b1$ $16020$ $16500$ $111$ $16126$ $16129$ $16193$ $16223$ $16297$ $M7b1$ $16020$ $16500$ $112$ $16126$ $16129$ $1692$ $16223$ $16297$ $M7b1$ $16020$ $16480$ $112$ $16126$ $16322$ $16223$ $16297$ $M7b1$ $16020$ $16500$ $113$ $16223$ $16297$ $16321$ $16322$ $16297$ $M7b1$ $16020$ $16500$ $113$ $16223$ $16297$ $16321$ $16322$ $16297$ $M7c1C$ $16030$ $16500$ $113$ $16223$ $16296$ $16304$ $16311$ $16020$ $16430$ $113$ $16223$ $16297$ $16304$ $16302$ $16500$ $128$ $16128$ $16223$ $16304$ $16311$ $16020$ $16430$ $128$ $16128$ $16223$ $162304$ $16311$ $16020$ $16430$ $128$ $16129$ $16129$ $16223$ $16224$                                                                                                                                                                                                                                                                                                                                                                                                                        | AMD    | 103      | 16170 16144 16148 16193 16223 16241  | 0          | 16050  | 16500 |                                                                      |
| 105161891622171622316261B4a1160201647510816189162171624716261B4a1160261642410916129161721630416311F1a160201650011016129161721630416311F1a16020165001111612916172163041631171602016500111161291614416148161931622316297M7b1160501650011216126161221632316343163626480165001650011316223162911636216391163621630016500113162231629116362163111636216500165001131622316291163621631116362165001650011316223162911632316246716311163621650021614816189162231629416311163621650031612916122161891630416311F1a1160201650031612916189162031630416311F1a11602016500316129161891620416311F1a11602016500316129161891620416311F1a1160201643041610816189162041632316324 <td< th=""><th>CIMIN</th><td>6</td><td>16265C 16311 16343 16362</td><td>,</td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CIMIN  | 6        | 16265C 16311 16343 16362             | ,          |        |       |                                                                      |
| 10816891624716261B4a1160261642410916129161721630416311F1a160201650011016129161721630416311F1a160201650011116129161721630416311716500165001111612916131163431634277160201650011216126161291619216343163621634116480112161261612916192162231622316297M7b116050164801131622316291163621639216362163111650016480113162231629116324163111636216500165001181622316295163621631116362166301650021614816189162231624671631116362163041650031612916189162231630416311F1a1160201643031612916189162231630416311F1a1160201643041610816189162231632316323163231630416430516140161891622316323163231632316323163041643061609316189162231632316323163231632316430164306 </th <th>AMR</th> <td>105</td> <td>16189 16217 16223 16261</td> <td>B4a</td> <td>16020</td> <td>16475</td> <td>+9bpdel</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AMR    | 105      | 16189 16217 16223 16261              | B4a        | 16020  | 16475 | +9bpdel                                                              |
| 109161291612916311 $F1a$ 160201650011016129161721630416311 $F1a$ 1602016500111161291614416193162231620165001650011216265C1612916192162231632916500165001121612616129161921622316329163001650011316223162911636216390 $E1a$ 1604516500113162231629116362163901650016500113162231629516362M7b11603016500118162231629516362M1603016500216148161891622316246T16311163621650031612916122161891622316304163111602016500316129161891622316246T1631116362160301650031612916189162231620416311F1a116020165004161081618916223162231622316302164305161401618916223162231622316440616093162091622316325M1600016500616093162091622316325M1600016500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AMB    | 108      | 16189 16217 16247 16261              | B4a1       | 16026  | 16424 |                                                                      |
| 11016129161721630416311F1a16060165001111612916148161931622316231165001650011216255163111634316342163231632316500165001121612616129161321632316223163016500165001131622316291163621630165001650016500118162231629116362M7clc1603016500216148161891622316246T16311163621650021612916129161301631116362165001650031612916127161891622316246T16311F1a11602016430316129161271618916221716261B4a1602016430416108161891622316323163231632316440516140161891622316323163231630416400616093162091622316323163041630016440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AMB    | 100      | 16129 16172 16304 16311              | Fla        | 16020  | 16500 |                                                                      |
| III         16129         16144         16148         16193         16223         16201         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16480         1612         16126         16129         16192         16323         16223         16223         16223         16223         16223         16300         16480         16300         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16                                                                                                        | AMB    | 110      | 16129 16172 16304 16311              | Fla        | 16060  | 16500 |                                                                      |
| 112       16265C 16311 16343 16362       M7b1       16050       16480         112       16126 16129 16192 16223 16297       M7b1       16050       16480         113       16223 16291 16362 16390       Ela       16045       16500         118       16223 16291 16362       M7clc       16045       16500         2       16148 16189 16523 16246T 16311 16362       M       16050       16500         3       16129 16162 16172 16189 16304 16311       F1a1       16050       16430         3       16129 16162 16172 16189 16304 16311       F1a1       16020       16430         4       16108 16189 162217 16261       B4a       16030       16430         5       16140 16189 16223 16325       M       16010       16440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AMB    | E        | 16129 16144 16148 16193 16223 16241  | δ          | 16020  | 16500 | +10397AluI                                                           |
| 112       16126 16129 16192 16223 16297       M7b1       16050       16480         113       16223 16291 16362 16390       E1a       16045       16500         118       16223 16291 16362       M7clc       16030       16500         2       16148 16189 16223 16246T 16311 16362       M       16030       16500         3       16129 16162 16172 16189 16304 16311       F1a1       16020       16430         4       16108 16189 162217 16261       B4a       16030       16430         5       16140 16189 16223 16325       M       16010       16440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |          | 16265C 16311 16343 16362             |            |        |       |                                                                      |
| 113       16223 16291 16362 16390       E1a       16045       16500         118       16223 16295 16362       M7clc       16030       16500         2       16148 16189 16223 16246T 16311 16362       M7clc       16030       16500         3       16129 16162 16172 16189 16304 16311       F1a1       16020       16430         4       16108 16189 16217 16261       B4a       16030       16430         5       16140 16189 16223 16325       M       16000       16440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AMB    | 112      | 16126 16129 16192 16223 16297        | M7b1       | 16050  | 16480 | +10397Alul, +10394Ddel, +51/6Alul, +7296Final,<br>+9824Hinfi         |
| 118         16223         16205         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         1                                                                                                        | AMR    | 113      | 16223 16291 16362 16390              | Ela        | 16045  | 16500 | +10397Alul, +10394Ddel, +5176Alul                                    |
| 2     16148 16189 16223 16246T 16311 16362     M     16050     16500       3     16129 16162 16172 16189 16304 16311     F1a1     16020     16430       4     16108 16189 16217 16261     B4a     16030     16430       5     16140 16189 16206A     B5a     16010     16440       6     16093 16209 16223 16325     M     16000     16500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AMB    | 118      | 16223 16295 16362                    | M7c1c      | 16030  | 16500 | +10397Alul, +5176Alul, +7598Hhal, +9824Hinfl                         |
| 3         16129         16122         16120         16430         16430           4         16020         16121         16020         16430         16430           5         16108         16217         16261         B4a         16030         16430           6         16093         16209         16223         16325         M         16000         16500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BAL    | 5        | 16246T 16311                         | Μ          | 16050  | 16500 | -9bpdel, +10397Alul, +10394Ddel, +5176Alul,<br>+7598Hhal, -9824Hinfl |
| 4         1.02.217)         16261         B4a         16030         16430           5         16140         16189         16266A         B5a         16010         16440           6         16093         16223         16325         M         16500         16500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BAL    | m        | 16129 16162 16172 16189 16304 16311  | Flal       | 16020  | 16430 |                                                                      |
| 5         16140 16189 16266A         B5a         16010         16440           6         16093 16209 16223 16325         M         16000         16500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DAI    |          | 16108 16180 16717 16761              | B4a        | 16030  | 16430 | +9bpdel                                                              |
| 6 16093 16209 16223 16325 M 16000 16500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BAL    | + ~      | 16140 16189 16266A                   | B5a        | 16010  | 16440 | +9bpdel                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BAL    | 6        | 16093 16209 16223 16325              | W          | 16000  | 16500 | +10397Alul, +10394Ddel, +5176Alul, +7598Hhal,<br>-9824Hinf1          |

|        |    |                                                     | Harloaroun | I-SVH | HVCI  | RFLP Variants                                                          |
|--------|----|-----------------------------------------------------|------------|-------|-------|------------------------------------------------------------------------|
| Series | °2 | HV0-I Variance                                      | dnoigoideu | Start | End   |                                                                        |
| BAL    | 7  | 16129 16189 16218 16223 (16280N<br>16284N)          | Ð          | 16040 | 16400 | -9bpdel, +10397Alul, +5176Alul, +7598Hhal,<br>-9824Hinfl, +48311Hhal   |
| BAL    | ∞  | 16126 16129 16192 16223 16297                       | M7b1       | 16000 | 16500 | +10397Aiul, +10394Ddel, +5176Alul, +7598Hhal,<br>+9824Hinfl            |
| BAL    | 10 | 16145 16181 16192 16223 16291 16304                 | X          | 16000 | 16500 | +10397Alul, +10394Ddel, +5176Alul, +7598Hhal,<br>-9824Hinfl            |
| RAL    | 12 | 16189 16223 16311 16362                             | DS         | 16030 | 16430 | -9bpdel, +10397Alul, -5176Alul                                         |
| BAL    | 13 | 16256 16290 16465 (16362N)                          | R          | 16030 | 16500 | -10397Alul ,-10394Ddel, +5176Alul, -15606Alul                          |
| BAL    | 14 | 16108 16129 16162 16172 16304                       | Flala      | 16000 | 16500 |                                                                        |
| BAL    | 15 | 16223 16291 16362 16390                             | Ela        | 16000 | 16500 | +10397Alul, -7598Hhal                                                  |
| BAL    | 16 | 16145 16181 16192 16223 16266 16291                 | X          | 16000 | 16500 | +10397Alul, +5176Alul, +7398Hhal, -9824Himu                            |
|        |    | 10304                                               |            | 16020 | 16500 |                                                                        |
| BAL    | 17 | 16249 16288 16304 16390                             | K22        | 16030 | MC01  |                                                                        |
| BAL    | 18 | 16086 16129 16148 16223 16241 16265C<br>16311 16343 | ð          | 16010 | 16400 | +10397AluI                                                             |
| BAL    | 19 | 16086 16223 16243 16262 16278 16311<br>16319        | 62         | 16000 | 16500 | +10397AluI, +10394Ddel, +5176Alul, +7598Hhal,<br>-9824Hinfl, +4831Hhal |
| BAL    | 21 | 16223 16254 16362                                   | X          | 16000 | 16500 | +10397AluI, +10394DdeI, +5176AluI, +7598Hhal,<br>-9824Hinf1            |
| BAL    | 22 | 16129 16153 16162 16172 16304 16311<br>16399        | Flal       | 16000 | 16500 |                                                                        |
| BAL    | 25 | 16129 16172 16304 16352                             | Fla        | 16000 | 16500 |                                                                        |
| BAL    | 26 | 16129 16162 16172 16304 16311 16399                 | Flal       | 16010 | 16500 |                                                                        |
| BAL    | 27 | 16037 16129 16172 16304                             | Fla        | 16000 | 16500 |                                                                        |
| BAL    | 28 | 16129 16162 16172 16189 16304 16311                 | Flal       | 16030 | 16400 |                                                                        |
| BAL    | 29 | 16249 16288 16304 16344                             | R22        | 16000 | 16500 |                                                                        |
| BAL    | 30 | 16234 16256 16278 16294                             | G2         | 16000 | 16500 | +10397Alu1, +10394Ddel, +51/0Alu1, +/396Hnal,<br>-9824Hinfi            |
| BAL    | 32 | 16147 16189 16217                                   | B4         | 16000 | 16440 | +9bpdel                                                                |
| BAL    | 33 | 16129 16155 16219 16223 16356 16362                 | M7         | 16000 | 16500 | +10397Alu1, +10394Ddel, +5176Alu1, +7398Hnal,<br>+9824Hinf1            |
| BAL    | 34 | 16256 16290 16465                                   | R          | 16000 | 16500 | -10397Alul, -10394Ddel, -15606Alul                                     |
| BAL    | 35 | 16129 16189 16192 16215 16223 16297                 | M7b1       | 16000 | 16500 | +10397Alul, +7598Hhal, +9824Hintl                                      |

|        |    |                                      |            | 1 3/11 |       | RFI P Variants                                                         |
|--------|----|--------------------------------------|------------|--------|-------|------------------------------------------------------------------------|
| Series | °Z | HVY-I Variants                       | napiograup | Start  | End   |                                                                        |
| BAL    | 38 | 16129 16140 16189 16192 16223 16265  | M7b1       | 16010  | 16410 | -9bpdel, +10397Alul, +5176Alul, +9824Hinfl                             |
|        |    | 16297                                |            | 1,000  | 1/600 | - Obdo-                                                                |
| BAL    | 39 | 16147 16189 16217 16235              | B4         | 16000  | 00001 | +90puer                                                                |
| RAI.   | 41 | 16092 16140 16189 16217 16335        | B4c        | 16000  | 16400 | dq6+                                                                   |
| BAL    | 43 | 16140 16189 16217 16235 16274        | B4c        | 16030  | 16420 | -10397Alul, +9bpdel                                                    |
| BAL    | 4  | 16108 16129 16162 16172 16234 16299  | Flala      | 16010  | 16500 |                                                                        |
|        |    | 16304                                |            |        |       |                                                                        |
| BAL    | 45 | 16249 16288 16304 16390              | R22        | 16000  | 16500 |                                                                        |
| BAL    | 45 | 16249 16288 16304 16390              | R22        | 16050  | 16500 |                                                                        |
| BAL    | 47 | 16124 16189 16278 16292 16362        | 62         | 16010  | 16410 | -9bpdel, +10397Alul, +10394Ddel, +51/6Alul,<br>-9824Hinfl              |
| BAI    | 48 | 16037 16129 16172 16304              | Fla        | 16000  | 16500 |                                                                        |
| BAI    | 40 | 16249 16288 16304 16390 (16477N)     | R22        | 16000  | 16500 |                                                                        |
| BAL    | 50 | 16189 16217                          | B4         | 16050  | 16420 | +9bpdel -10397Alul                                                     |
| RAI    | 51 | 16193 16223                          | N21        | 16000  | 16500 | -10397Alul, -10394Ddel, -15606Alul                                     |
| BAI    | 5  | 16003 16193                          | W          | 16000  | 16500 | +10397Alul, +10394Ddel, +5176Alul, -9824Hintl,                         |
|        | 1  |                                      |            |        |       | +7598Hhal                                                              |
| RAL    | 53 | 16223 16311 16362                    | W          | 16000  | 16500 | +10397Alul, +5176Alul, -9824Hinfl, +7598Hhal                           |
| RAL.   | 54 | 16223 16234 16261 16290              | M12a       | 16020  | 16500 | +10397Alul, +10394Ddel, +5176Alul, -9824Hintl                          |
| RAI    | 36 | 16092 16147 16179 16189 16217 16235  | B4         | 16000  | 16410 | +9bp                                                                   |
| BAL    | 58 | 16124 16189 16209 16293C 16304 16362 | R9         | 16000  | 16410 | -9bpdel, +5176Alul                                                     |
| RAI.   | 60 | 16172 16223 16245A                   | W          | 16000  | 16500 | +10397Alul, +10394Ddel, +5176Alul, -9824Hintl                          |
| BAL    | 61 | 16140 16189 16266A                   | B5a        | 16030  | 16440 |                                                                        |
| BAL    | 62 | 16223 16311 16362                    | M          | 16000  | 16500 | +10397Alul, +5176Alul, -9824Hintl                                      |
| BAL    | 63 | 16223 16278 16294                    | G2         | 16000  | 16500 | +10397Alul, +10394Ddel, +51/6Alul, +/298Hnal,<br>-9824Hinfl, +4831Hhal |
|        |    | 06231 16361 16201                    | Ela        | 16000  | 16430 | +10397Aiul, +5176Alul                                                  |
| BAL    | ŧ. | VICO1 20001 10201 02701              | BSa        | 16010  | 16400 |                                                                        |
| BAL    | 80 | (VIOCOL) VIOCOL 2007 10101 10101     | 6          | 16000  | 16500 | +10397Alul +5176Alul9824Hinfl, +7598Hhal                               |
| BAL    | 72 | 16129 16209 16223 16323              | 2          | 16000  | 16500 | -10397Ahil +10394Ddel                                                  |
| BAL    | 73 | 16126 16192 16231 16311              |            | 16000  | 16500 | +10307Ahil +10394Ddel +5176Ahil +7598Hhal.                             |
| BAL    | 75 | 16129 16209 16223 16272              | 2          | 0001   | 00001 | -9824Hinft, +4831Hhal                                                  |
|        |    |                                      |            |        |       |                                                                        |

|        |          |                                                                        | Ilaulaana    |       | HVCI   | RFLP Variants                                               |
|--------|----------|------------------------------------------------------------------------|--------------|-------|--------|-------------------------------------------------------------|
| Series | <b>8</b> |                                                                        | dno iŝoideti | Start | End    |                                                             |
| BAL    | 76       | 16129 16189 16223 16297                                                | M7b          | 16010 | 16410  | -9bpdel, +5176Alul, +10397Alul, +9824Hinfl,<br>+10394Ddel   |
| BAL    | 77       | 16092 16129 16209 16223 16325 (16477N)                                 | U            | 16000 | 16500  | +10397Alul, +10394Ddel, +5176Alul, -9824Hinfl,<br>+4831Hhal |
| RAL    | 78       | 16223 16295 16362                                                      | M7c1c        | 16000 | 16500  | +10397Alul, +5176Alul, +9824Hinfl                           |
| BAL    | 80       | 16129 16256 16290 16465                                                | R            | 16000 | 16500  | -10397Alul, -10394Ddel, -15606Alul                          |
| BAL    | 81       | 16192 16223 16295 16362                                                | M7c1c        | 16000 | 16500  | +10397Alul, +5176Alul, +7598Hnal, +9824Hln11                |
| BAL    | 82       | 16037 16129 16172 16304                                                | Fla          | 16000 | 16500  |                                                             |
| BAL    | 83       | 16304 16362                                                            | Ĩ            | 16000 | 16500  |                                                             |
| BAL    | 2        | 16140 16189 16217 16235 16274                                          | B4c          | 16030 | 16410  |                                                             |
| BAL    | 85       | 16140 16189 16266A                                                     | B5a          | 16010 | 16420  | +9bpdel                                                     |
| BAL    | 86       | 16223 16261 16362 16390 (16477N)                                       | Elb          | 16010 | 16500  | +10397Alul, +5176Alul, -7598Hhal                            |
| RAL    | 87       | 16129 16172 16223 16291 16305                                          | Fla          | 16000 | 16500  |                                                             |
| BAN    | 5-       | 16129 16185 16189 16223 16260 16298                                    | Z            | 16001 | 16500  | +10397AluI +10394DdeI +5176AluI -9bpdel,                    |
|        |          |                                                                        |              |       | 00221  | +//29611181<br>1020741-1 1020404-1                          |
| BAN    | 2        | 16093 16220C 16298 16362                                               | F3b          | 16024 | 16500  | -1039/Alui -10394Daei                                       |
| BAN    | 3        | 16189 16217 16261 (16324N)                                             | B4a          | 16020 | 16410  | B-111/000 1-17/212 11 2 70001 2 11 2000                     |
| BAN    | 4        | 16129 16172 16189 16223 16297                                          | M7b          | 16024 | 16420  | +10397 Alul +10394 Ddel +31 /6Alul +9824mm                  |
| BAN    | 5        | 16108 16111 16129 16162 16172 16189                                    | Flala        | 16020 | 16417  | -9bpdel                                                     |
|        |          | 16304                                                                  |              |       | 1/110  |                                                             |
| BAN    | 9        |                                                                        | 850          | 07001 | 10410  |                                                             |
| BAN    | 7        | 16140 16189 16217 16274 16335 (16341N)                                 | B4c          | 16033 | 16400  | +90pdel                                                     |
| BAN    | ∞        | 16129 16209 16223 16272                                                | 5            | 16021 | 100001 | +1039/Alul +31/0Alul -9024ftifili, +/390ftifia              |
| BAN    | 6        | 16223 16261 16362 16390                                                | EID          | 16016 | 16500  | +1039/AIUI +31/0AIUI -98/4HINII, -/396/1181                 |
| BAN    | 10       |                                                                        | 62           | 16016 | 00001  |                                                             |
| BAN    | 11       | 16223 16261 16288 16362 16390 (16416N)                                 | Elb          | 16043 | 16500  | +10397Alul +5176Alul -9824Hint                              |
| BAN    | 12       | 16223 16261 16288 16362 16390                                          | EIb          | 16027 | 16500  | +10397AluI +5176AluI -9824Hintl                             |
| BAN    | 13       | 16136 16189 16217 16261                                                | B4b1         | 16018 | 16426  |                                                             |
| BAN    | 14       | 16045 16223 16311 16362 (16124N<br>16100N 16342N 16398N 16412N 16440N) | W            | 16043 | 16460  | +10397Alu1 +5176Alu1 -9824Hin1                              |
| BAN    | 15       | 16111 16168 16172 16189 16223 16311<br>16367 (16120N)                  | Z            | 16045 | 16450  | -10397 Alul -10394 Ddel +5176Alul, -9bpdel,<br>-15606Alul   |
|        |          | (10107) 70001                                                          |              |       |        |                                                             |

| Start         End           241         Q         16012         16500           241         Q         16016         16500           F3b         16016         16500         16000           B5a         16016         16500         16300           M         16016         16500         16300           B4a         16016         16500         16300           B4a         16016         16500         16300           B4a         16016         16500         16500           B4a         16016         16500         16500           B4a         16016         16500         16500           B4a         16019         16500         16500           G2         16019         16500         16500           B4a         16010         16450           B4a         16016                                                                                   |    |                                        | UNDIZO10 |       |       |                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------------------------------|----------|-------|-------|-----------------------------------------------------------|
| G2         16012         16500 $Q$ 16016         16500           F3b         16016         16500           F3b         16016         16500           M         16016         16500           B4a         16016         16500           B4a         16016         16409           B4a         16016         16500           B4a         16016         16500           C3         16016         16500           B4a         16019         16500           F3b         16019         16500           G2         16000         16500           B4a         16019         16500           M         16019         16500           M         16010         16430           M         16010         16430           M         16010         16430                                                                                                                                                             |    |                                        | •        | Start | End   |                                                           |
| Q     16016     16500       F3b     16016     16500       B5a     16016     16500       B4a     16016     16500       B4a     16016     16430       B4a     16016     16500       B4a     16016     16500       B4a     16016     16500       B4a     16019     16500       F3b     16019     16500       C2     16019     16500       F3b     16019     16500       F3b     16019     16500       F3b     16019     16500       F3b     16010     16500       F3b     16010     16500       M     16010     16500       M     16010     16500       B4ai     16020     16500       B4ai     16020     16500       B4ai     16020     16390       B4ai     16016     16500       B4ai     16020     16390       B4ai     16016     16500       B4ai     16016     16500       B4ai     16016     16410       B4ai     16016     16500       B4ai     16016     16500       B4ai     16016     16500                                                                                                                                                                                                                                                    | -  | 16003 161845 16223 16278               | G2       | 16012 | 16500 | +10397Alul +5176Alul -9824Hinfl, +7598Hhal                |
| F3b       16016       16500         B5a       16027       16430         M       16016       16500         B4a       16010       16500         F3b       16010       16500         M       16010       16500         M       16010       16500         M       16010       16500         B4a       16010       16500         M       16010       16500         M       16010       16500         B4       16010 <td></td> <td>16129 16144 16148 16172 16223 16241</td> <td>δ</td> <td>16016</td> <td>16500</td> <td>+10397 Alul +10394 Ddel +5176Alul -9824Hinfl</td>                                                           |    | 16129 16144 16148 16172 16223 16241    | δ        | 16016 | 16500 | +10397 Alul +10394 Ddel +5176Alul -9824Hinfl              |
| $\Gamma_{20}$ $\Gamma_{001}$ $\Gamma_{001}$ $\Gamma_{001}$ $\Gamma_{001}$ $M$ 1601616500 $B4a1$ 1601616500 $B4a1$ 1601616500 $F3b$ 1601616500 $F3b$ 1601916500 $G2$ 1601916500 $G2$ 1601916500 $R1a$ 1601916500 $R1a$ 1601916500 $R1a$ 1601916500 $R9b$ 1601016500 $R9b$ 1601616500 $R9b$ 1601616500 $R1a$ 1601016500 $R1a$ 1601016500 $R1a$ 1601016500 $R1a$ 1601016500 <tr< td=""><td></td><td>16265C 16311 16343</td><td>E3h</td><td>91091</td><td>16500</td><td>-10397AluI -10394Ddel</td></tr<>                                                                                                                                                                                                                                                                              |    | 16265C 16311 16343                     | E3h      | 91091 | 16500 | -10397AluI -10394Ddel                                     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +  | 16093 16220C 16298 10302               | DSa      | 16077 | 16430 |                                                           |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -+ | 16140 16189 16266A                     | DJ4      | 15016 | 16500 | +10397Alul +5176Alul -9824Hinfl, +7598Hhal                |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -  | 16223 16311                            | M        | 16016 | 16409 | -10397Alul -10394Ddel                                     |
| B4al $100.28$ $100.28$ $100.20$ F3b $16016$ $16500$ G2 $16019$ $16500$ G2 $16019$ $16500$ F1a $16019$ $16500$ F1a $16019$ $16500$ F1a $16010$ $16500$ M $16010$ $16500$ M $16010$ $16500$ M $16010$ $16500$ M $16010$ $16500$ B4a $16020$ $16300$ B4a1 $16016$ $16500$ <td></td> <td>16189 16217 16261</td> <td>D4a</td> <td>10010</td> <td>1/160</td> <td>1020741.1 10204Ddel +0hndel</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | 16189 16217 16261                      | D4a      | 10010 | 1/160 | 1020741.1 10204Ddel +0hndel                               |
| F3b1601616500G21600016500G21601916500E1a1601916500F1a1601016500M1601016500M1601016500M1601016500M1601016500M1601016500M1601016500B4a1602016390B4a11602016390B4a11602016390B4a11602016390B4a11602016300B4a11602016300B4a11602016300B4a11601616500B4a11601616500B4a11601616500B4a11601616500B4a11602016500B4a11601616500B441601616500B441601616500B441600016500B441600016500B441600016500B441600016500B441600016500B441600016500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    | 16189 16217 16247 16261                | B4a1     | 16028 | 10450 | -1039/Alul -10394Duci, -20puci                            |
| G2     16000     16500       N)     K21a     16019     16500       F1a     16019     16500       F1a     16010     16500       M     16010     16500       B4a     16020     16435       B4a     16010     16430       B4a     16010     16430       B4a     16010     16430       B4a     16010     16430       B4a     16016     16300       B4a     16016     16500       B4a     16016     16500       B4     16000     16500       B4 <td>┢╴</td> <td>16093 16220C 16265 16298 16362</td> <td>F3b</td> <td>16016</td> <td>16500</td> <td>-1039/Alul -10394Ddel</td>                                                                                                                                | ┢╴ | 16093 16220C 16265 16298 16362         | F3b      | 16016 | 16500 | -1039/Alul -10394Ddel                                     |
| N)     M21a     16019     16500       E1a     16019     16500       F1a     16010     16500       M     16010     16500       B4a     16010     16500       B4a1     16010     16430       B4a1     16010     16430       B4a1     16010     16430       B4a1     16016     16500       B4a1     16016     16500       B4a1     16016     16500       C     B4     16016     16500       M7c1a     16016     16500       B4     16016     16500       M     16026     16500       M     16020     16500       M     16020     16500       M     16016     16500       M     16016     16500       M     16020     16500       M     16016     16500       M     16016     16500       M     16016     16500       M     16020     16500                                                                                                                                                                                                                                                                    |    | 16172 16173 16223 16278 16311          | 62       | 16000 | 16500 | +1039/ Aiul +10394 Ddel +31/0Aiul -7024mini,<br>+7598Hhal |
| E1a     16019     16500       F1a     16010     16500       M     16010     16500       M     16019     16500       M     16019     16500       B4a     16010     16500       B4a     16010     16500       B4a     16010     16455       B4a     16010     16430       B4a     16010     16430       B4a     16016     16300       B4a     16016     16500       B4a     16016     16500       B4a     16016     16500       B4a     16016     16500       B4     160016     16500       B4     160016     16500       B4     160000     16500       B4                                                                                                                                                                                                                                                                | +  | 16003 16129 16223 16256 16271 (16045N) | M21a     | 16019 | 16500 | +10397AluI +5176AluI                                      |
| Fla     16040     16398       M     M     16010     16500       M     16010     16500     16500       D     D     16027     16500       B4a     16020     16500     16500       B4a     16010     16500     16500       B4a     16010     16455       B4a     16010     16430       B4a     16016     16500       B4a     16016     16500       B4a     16016     16500       B4     160016     16500       B4     16000     16500       B4     16000     16500       B4     16000     16500       B4     16000     16500                                                                                                                                                                                                                                                                                                                            | +  | 1                                      | Ela      | 16019 | 16500 | +10397Alul +5176Alul -9824Hintl                           |
| M         16010         16500           M         16019         16500           D         16027         16500           B4a         16020         16500           B4a         16020         16500           B4a         16010         16500           B4a         16020         16455           B4a         16010         16430           B4a         16010         16430           B4a         16016         16300           B4a         16016         16500           B4         160016         16500           B4         16016         16500           B4         16000         16500           B4         16000         16500           B4         16000         16440           B4         16020         16500 <td></td> <td>16168 16172 16189 16311 16362</td> <td>Fla</td> <td>16040</td> <td>16398</td> <td>-10397AluI -10394DdeI -9bpdel</td> |    | 16168 16172 16189 16311 16362          | Fla      | 16040 | 16398 | -10397AluI -10394DdeI -9bpdel                             |
| M         16019         16500           D         D         16027         16500           R9b         16030         16500         16500           B4a         16020         16455         16455           B4a1         16020         16430         16455           B4a1         16010         16430         16455           B4a1         16010         16430         16430           B4a1         16016         16500         16410           M7cla         16016         16500         16500           B4         16016         16500         16500           M         16016         16500         16500           M         16016         16500         16500           M         16016         16500         16500           M         16019         16500         16500           M         16020         16500         16500           M         16016         16500         16500           M         160016         16500         16500           M         16020         16500         16500           M         16020         16500         16500                                                                                            | +  | 16273 16311 16362                      | Σ        | 16010 | 16500 | +5176Alul -9824Hinfl, +7598Hhal                           |
| D     16027     16500       R9b     16030     16500       B4a     16010     16455       B4a     16010     16430       B4a1     16010     16430       B4a1     16010     16430       B4a1     16010     16430       B4a1     16016     16300       B4a1     16016     16500       B4     16016     16500       M     16026     16500       M     16020     16500       M     16020     16500       B4     16016     16500       B4     16016     16500       B4     16000     16500       F3b     16020       F3b     16020       F3b     16020       F3b </td <td>1</td> <td>16223 16200 16311 16362</td> <td>W</td> <td>16019</td> <td>16500</td> <td>+10397Alul +5176Alul -9824Hinfl, +7598Hhal</td>                                                                                                                   | 1  | 16223 16200 16311 16362                | W        | 16019 | 16500 | +10397Alul +5176Alul -9824Hinfl, +7598Hhal                |
| R9b     16030     16500       B4a     16020     16455       B4a     16020     16455       B4a1     16010     16430       B4a1     16010     16430       B4a1     16016     16390       B4     16016     16500       B4     16026     16500       B4     16020     16500       F3b     16020     16500       F3b     16020     16500       F3b     16020     16500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | 16177 16367                            | D        | 16027 | 16500 | +10397Alul -5176Alul                                      |
| B4a     16020     16455       B5a     16010     16430       B5a     16010     16430       B4a1     16016     16390       B4a1     16016     16500       B4     16026     16500       B4     16019     16500       B4     16020     16500       B4     16020     16500       F3b     16016     16500       B4     16010     16500       F3b     16020     16500       F3b     16020     16500       F3b     16020     16500       F3b     16020     16500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +  | 10112 10002 16788 16304 16309 16390    | R9b      | 16030 | 16500 | -10397Alul -10394Ddel                                     |
| 74     B5a     16010     16430       (16045N)     B4a1     16020     16390       (16045N)     M7c1a     16016     16500       (16045N)     M7c1a     16016     16500       (16045N)     B4     16016     16500       (16045N)     M     16016     16500       (16045N)     M     16026     16500       (16045N)     M     16026     16500       016278     6319     G2     16019     16500       98     16362     F3b     16024     16500       98     16222     16016     16500       98     16362     F3b     16020     16500       98     16362     F3b     16020     16500       98     16362     F3b     16020     16500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +  | 16178 16189 16217 16261                | B4a      | 16020 | 16455 | +9bpdel                                                   |
| (6045N)         B4a1         16020         16390           M7c1a         16016         16500           M7c1a         16016         16500           6294         16360         16410           6294         16360         16410           6294         16319         16016         16500           6294         16319         0         16026         16500           16045N)         M         16026         16500           6278         16319         0         16026         16500           16362         F3b         16019         16500         16500           16362         F3b         16016         16500         16500           16362         F3b         16016         16500         16500           16362         F3b         16010         16500         16500           16362         F3b         16020         16500         16500                                                                                                                                                                                                                                                                                                    | +  | 16140 16189 16266A 16274               | B5a      | 16010 | 16430 |                                                           |
| M7c1a         16016         16500           E1a         16016         16500           B4         16016         16500           B4         16016         16500           M         16026         16500           G2         16019         16500           F3b         16019         16500           Y2         16016         16500           B4         16000         16500           F3b         16016         16500           F3b         16024         16500           F3b         16000         16400           F3b         16000         16500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +- | 16189 16217 16247 16261 (16045N)       | B4a1     | 16020 | 16390 |                                                           |
| Ela     16016     16500       B4     16016     16410       M     16026     16410       M     16026     16500       G2     16019     16500       F3b     16024     16500       Y2     16016     16500       B4     16000     16500       F3b     16020     16500       F3b     16020     16500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1  | 16/03 16223 16319                      | M7c1a    | 16016 | 16500 |                                                           |
| B4         16016         16410           M         16026         16410           M         16026         16500           G2         16019         16500           F3b         16024         16500           Y2         16016         16500           B4         16000         16500           F3b         16016         16500           Y2         16016         16500           F3b         16000         16440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    | 16223 16201 16362 16390                | Ela      | 16016 | 16500 | Ę                                                         |
| M         16026         16500           G2         16019         16500           F3b         16024         16500           Y2         16016         16500           B4         16000         16400           F3b         16020         16500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Τ  | 16147 16189 16217 16235 16294 16360    | B4       | 16016 | 16410 | -10397AluI -10394Ddel, +9bpdel                            |
| 6319 G2 16019 16500<br>F3b 16024 16500<br>Y2 16016 16500<br>B4 16000 16440<br>F3b 16020 16500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | 16051 16223 16362 16390 (16045N)       | W        | 16026 | 16500 | +10397Alul +5176Alul -9824Hinfl, +7598Hhal                |
| F3b     16024     16500       Y2     16016     16500       B4     16000     16440       F3b     16020     16500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | 16086 16148 16223 16259 16278 16319    | G2       | 16019 | 16500 | +10397Alul +5176Alul -9824Hintl                           |
| F30         F30         F30           Y2         16016         16500           B4         16000         16440           F3b         16020         16500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 16399 (16045N)                         | E36      | PCU21 | 16500 | -10307 Ahil -10394 Ddel                                   |
| r 16235 16294G B4 16000 16440<br>65 16298 16362 F3b 16020 16500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | 16093 16220C 16265 16298 16362         | V        | 16016 | 16500 |                                                           |
| F3b 16000 10740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | 16126 16231 16311                      | 17       | 01001 | 16440 | -10207 Ahil -10204 Ddel                                   |
| F30 16020 16020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | 16147 16189 16217 16235 16294G         | 5. IS    | 00001 | 04401 | 10207 1.11 1020404                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | 16220C 16261 16265 16298 16362         | F3b      | 16020 | MC01  | -1039/Alul -10394Duct                                     |
| ) B4a 16019 10420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T  | 16178 16189 16217 16261 (16045N)       | B4a      | 16019 | 16420 | +9bpdel                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |                                        |          |       |       |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |                                        |          |       |       |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |                                        |          |       |       |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |                                        |          |       |       |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |                                        |          |       |       |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |                                        |          |       |       |                                                           |

| BAN         53         16093         16202         16238         16362         F 3b         16016         16500         -10397         Alul         -10394         Ddel           BAN         54         16129         16233         16381         M21b         16000         16500         +10397         Alul         +0397         Alul         +0397         Alul         +0397         Alul         +376         Jul         +0397         Alul         +7034         Ddel         +5176         Alul         +7584         Jul         +0397         Alul         +7564         Jul         +7584         Jul         +10397         Jul         +7594         Jul         +10397         Jul         +7584         Jul         +7584         Jul         +10397         Jul         +7594         Jul         +10397         Jul         +7594         Jul         +10397         Jul         +10394         Jul         +7598         Jul         +10397         Jul         +10394         Jul         +10394         Jul         +10394         Jul         +10394                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 33       16093       16220       10220       10200       16500       16500         55       16016       16129       16311       1630       16500       16500         56       16016       16140       16189       16266A       16500       16500       16500         57       16016       16140       16189       16311       16362       M       16024       16500         58       16129       16172       16304       16311       Fia       16016       16500         58       16129       16172       16304       16311       Fia       16016       16500         59       16147       16189       16217       16235       B4       16016       16450         60       16147       16189       16217       16235       B4       16016       16455         61       16147       16189       16217       16231       16430       16430         62       16129       16223       16304       166362       16435       16430         62       16129       16223       16341       16016       16455         63       16129       16232       16304       166362       16500<                                                                                                                                                                                                              |
| 34       10123 10223 10203 10301       850       16016       16500         55       16016 16140 16189 16266A 16298       B53       16016       16500         57       16093 16223 16311 16362       M       16016       16430         58       16129 16172 16304 16311       F1a       16016       16500         59       16147 16189 16217 16235       B4       16016       16450         60       16147 16189 16217 16235       B4       16016       16450         61       16147 16189 16217       B4       16016       16450         60       16147 16189 16217       B4       16020       16410         61       16147 16189 16217       B4       16020       16435         62       16129 16223 16231 16304       F?       16020       16435         63       16129 16223 16231 16304 16362       F1a       16026       16500         64       16129 16172 16294 16364 16362       F1a       16016       16500         65       16129 16172 16294 16364 16362       F1a       16026       16500         64       16129 16172 16294 16364 16362       F1a       16016       16500         65       16129 16172 16391 16362       F1a       16016                                                                                                                                     |
| 55       10249710208 10223 16311 16362       B5a       16010       16430         57       16093 16223 16311 16362       M       16024       16500         58       16129 16172 16304 16311       F1a       16016       16450         59       16147 16189 16217 16235       B4       16016       16450         60       16147 16189 16217 16235       B4       16016       16450         61       16147 16189 16217       B4       16016       16450         62       16147 16189 16217       B4       16020       16410         63       16129 16223 16263 16381 (16045N       M21b       16018       16500         63       16129 16172 16294 16304 16362       F1a       16016       16500         64       16129 16172 16294 16304 16362       F1a       16016       16500         65       16129 16172 16294 16304 16362       F1a       16026       16500         66       16129 16172 16294 16362       F1a       16026       16500         66       16129 16172 16294 16362       F1a       16026       16500         67       16129 16172 16294 16362       F1a       16026       16500         66       16129 16172 16391 16362       F1a       16016<                                                                                                                          |
| 56       10010 10140 10180 1020 10200 10200       16500         57       16093 16223 16311 16362       M       16024       16500         58       16129 16172 16304 16311       F1a       16016       16500         59       16147 16189 16217 16235       B4       16016       16450         60       16140 16189 16217       B4       16020       16410         61       16147 16189 16217       B4       16020       16410         62       16147 16189 16217       B4       16020       16435         63       16129 16223 16263 16381 (16045N       M21b       16018       16500         63       16129 16172 16294 16304 16362       F1a       16026       16500         64       16129 16172 16294 16362 16390 (16045N)       E1a       16016       16500         65       16129 16172 16294 16362       F1a       16016       16500         64       16185 16223 16291 16362       B3a       16016       16500         65       16129 16172 16391 16362       F1a       16016       16500         66       16189 16266A       B5a       16016       16500         66       16140 16189 16266A       B5a       16030       16420 <td< td=""></td<>                                                                                                                                 |
| 57       10005 10225 10511 10502       58       16129 16172 16304 16311       F1a       16016       16500         59       16147 16189 16217 16235       B4       16016       16450       16450         60       16140 16189 16217       B4       16016       16450       16450         61       16147 16189 16217       B4       16020       16410       16455         61       16147 16189 16217       B4       16020       16455       16500         62       16129 16223 16263 16381 (16045N       B4       16018       16500       16450         62       16129 16172 16294 16304 16362       F1a       16016       16500       16500         63       16129 16172 16294 16362 16390 (16045N)       E1a       16026       16500         64       16185 16223 16291 16362 16390 (16045N)       E1a       16016       16500         65       16129 16172 16391 16362 16390 (16045N)       B1a       16016       16500         66       16189 16266A       B5a       16016       16500       16420         66       16140 16189 16266A       B5a       16030       16430       16430         67       16111 16168 16172 16189 16223 16311       N       16030       16430 <t< td=""></t<>                                                                                               |
| 58 $16129$ $16172$ $16304$ $16311$ $1713$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10010$ $10$                                                                                                                                                                                                                                    |
| 59       16147 16189 16217 16235       B4       10010       10430         60       16140 16189 16304       F?       16020       16410         61       16147 16189 16304       F?       16020       16410         62       16129 16273 16263 16381 (16045N       B4       16020       16455         62       16129 16223 16263 16381 (16045N       M21b       16018       16500         63       16129 16172 16294 16304 16362       F1a       16026       16500         64       16185 16223 16291 16362 16390 (16045N)       E1a       16016       16500         65       16129 16172 16294 16362       B3a       16016       16500         66       16189 16266A       B5a       16016       16500         66       16111 16168 16172 16189 16223 16311       N       16030       16430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 60         16140 16189 16304         F?         10020         10410           61         16147 16189 16217         B4         16020         16455           62         16129 16223 16263 16381 (16045N         B4         16020         16455           63         16129 16272 16294 16304 16362         F1a         16018         16500           63         16129 16172 16294 16362 16390 (16045N)         E1a         16016         16500           64         16185 16223 16291 16362 16390 (16045N)         E1a         16016         16500           65         161223 16291 16362 16390 (16045N)         E1a         16016         16500           66         16189 16266A         B5a         16033         16420           67         16111 16168 16172 16189 16223 16311         N         16030         16430                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 61         16147 16189 16217         B4         16020         10433           62         16129 16223 16263 16381 (16045N         M21b         16018         16500           63         16129 16172 16294 16304 16362         F1a         16016         16500           63         16129 16172 16294 16304 16362         F1a         16026         16500           64         16185 16223 16291 16362 16390 (16045N)         E1a         16016         16500           65         161223 16291 16362         M7clc         16026         16500           66         16140 16189 16266A         B5a         16033         16420           67         16111 16168 16172 16189 16223 16311         N         16030         16430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 62         16129         16223         16381         (16045N         M21b         16018         16500           63         16026         16362         F1a         16026         16500           64         16185         16223         16391         16362         16300         16045N)         E1a         16016         16500           64         16185         16223         16391         16362         16300         16045N)         E1a         16016         16500           65         161223         16295         16362         16300         16045N)         B1a         16016         16500           66         16140         16189         16226A         16520         16520         16420           67         16111         16168         16172         16189         16223         16311         N         16030         16430                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 63         16026         16306         16500           63         16129 16172 16294 16304 16362         F1a         16026         16500           64         16185 16223 16291 16362 16390 (16045N)         E1a         16016         16500           65         16223 16295 16362         16362         16500         16500           66         16140 16189 16266A         B5a         16033         16420           67         16111 16168 16172 16189 16223 16311         N         16030         16430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 00         10127         10127         10125         16216         16500         16016         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         166016         16500         16500         166016         16500         16500         166016         16500         16600         16600         16600         16600         16600         16600         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430         16430 <th< td=""></th<> |
| 04         10103 10223 16205 16362         10225 16205 16362         16500           65         16140 16189 16266A         B5a         16033         16420           67         16111 16168 16172 16189 16223 16311         N         16030         16430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 65         16223 10302         16420         16420           66         16140 16189 16266A         B5a         16033         16420           67         16111 16168 16172 16189 16223 16311         N         16030         16430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 66         16140         16189         16223         16311         N         16030         16430           67         16111         16168         16172         16189         16223         16311         N         16030         16430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 67 16111 16168 16172 16189 16223 16311 N 16030 16430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BAN 68 16223 16278 16311 -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.27011141, -7.2701141, -7.2701141, -7.2701141, -7.2701141, -7.2701141, -7.2701141, -7.2701141, -7.2701141, -7.2701141, -7.2701141, -7.2701141, -7.270114                                                                                                                                                                                                                                                                                           |
| DANI 60 16788 16295 16304 (16045N) R22 16016 16500 -10397Alul -10394Ddel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 71 16140 10167 102007<br>71 15160 15717 15761 (150642N) B48 16030 16410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| A 16261 16292 N941 10010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 16016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 75 16189 16217 16261 B4a 16020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 76 16136 16189 16217 B4b1 16020 16400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 77 16129 16223 16234 16290 16311 (16045N) G 16019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 16410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

|        |          |                                                                                                                  |            | 1 SIMI | 1 3/11 | RFLP Variants                                                         |
|--------|----------|------------------------------------------------------------------------------------------------------------------|------------|--------|--------|-----------------------------------------------------------------------|
| Series | °N<br>N  | HVS-I Variants                                                                                                   | Haplogroup | Start  | End    |                                                                       |
|        |          |                                                                                                                  |            |        | 100    | 10207 41.11 + 5176 Alvil - 0824 Hinfi + 7598 Hhal                     |
| BAN    | 80       | 16051 16093 16145 16223 16234 16249                                                                              | M12a       | 16013  | 16500  | +1039/Alut +21/0Alut -9024111114                                      |
|        |          | 16290 16399                                                                                                      |            |        | 007.1  | 10207 A11 10204Ddel _0hndel _15606Alul                                |
| BAN    | 81       | 16111 16168 16172 16189 16223 16311                                                                              | Z          | 16016  | 16400  | -1039/ Alui -100344001- 10040-1-                                      |
|        |          | (NICHODI) 70501 61501                                                                                            | C2h        | 16024  | 16500  |                                                                       |
| BAN    | 82       | 16093 162200 16298 10362                                                                                         | UC J       | 12001  | 20701  |                                                                       |
| BAN    | 8        | 16147 16189 16217 16235                                                                                          | ¥          | 10020  | CC+01  |                                                                       |
| RAN    | 85       | 16147 16189 16217                                                                                                | B4         | 16015  | 10400  | +yopuci                                                               |
| BAN    | 85       | 16189 16217                                                                                                      | B4         | 16019  | 16405  | fmiUlr00 1.16271311-Ed E0001 11 10001                                 |
| BAN    | 86       | 16223 16311 16362                                                                                                | Z          | 16010  | 16500  | +10.39/ Alul +10.394 Lucel +31 /0.41ul -70.241 IIIIII,<br>+7598Hhal   |
|        | 07       | 15002 15773 16778 16310 (16045N)                                                                                 | G2         | 16026  | 16500  | +10397Alul +5176Alul -9824Hinfl, +7598Hhal                            |
| BAN    | 0        | 0001 1201 01201 01201 02001                                                                                      | Σ          | 16016  | 16500  | +10397Alul +5176Alul -9824Hinfl, +7598Hhal                            |
| BAN    | 80       | 12120 10200 10201 10270                                                                                          | BSh        | 16016  | 16415  |                                                                       |
| BAN    | 89       | 10140 10169 10243                                                                                                | W          | 16010  | 16490  | +10397 Alul +5176Alul -9824Hinfl, +10394Ddel                          |
| BAN    | 3        | 10129 101201 02201 2/101 04101 02201                                                                             |            |        |        |                                                                       |
|        |          | 16309                                                                                                            | B4a        | 16016  | 16410  |                                                                       |
| BAN    | 14       | 1201 01 001 10201 10201 10101 1200 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 | EI         | 16016  | 16500  | +10397AluI +5176AluI -9824HinfI                                       |
| BAN    | 7        | (1001) 0/001 70001 C7701 10001                                                                                   | Z          | 16015  | 16410  | -10397 Alul -9bpdel, -15606Alul                                       |
| BAN    | \$       | ZOCOT 11C01 C7701 68101 7/101 11101                                                                              | DAc        | 16013  | 16410  | -10397 AluI +9bbdel                                                   |
| BAN    | 95       | (NICENOI) (16140 1621/ 162/4 16333                                                                               | E10        | 51001  | 16500  | -10397Ahtl -10394Ddel                                                 |
| BAN    | 97       | 16129 16172 16271 16304 16311                                                                                    | L 18       | 21001  | 16500  | ±10207Ahit +5176Ahit -9824Hinfi                                       |
| BAN    | 98       | 16051 16223 16362 16390                                                                                          | EI         | C1001  | 0001   |                                                                       |
| RAN    | 901      | 16147 16189 16217 16235                                                                                          | B4         | 16010  | 10430  |                                                                       |
| RAN    | 106      | 16223 16278                                                                                                      | G2         | 16016  | 16500  | +10397Ajul +51/6Ajul -9824Hinii, +4651rhiat                           |
| BGK    | S        | 16189 16223 (16051N 16261N)                                                                                      | W          | 16010  | 16500  | +10397Alul, -95pdel, +10394Ddel, +31/04Alul,<br>-9824Hinfl, +7598Hhal |
| 204    |          | 16200 16223 16234 16261 16290 16304                                                                              | R9         | 16020  | 16500  |                                                                       |
|        | <u>t</u> |                                                                                                                  |            |        |        |                                                                       |
| ADd    | 10       | 16223 16263 16274 16311 16343 16357                                                                              | M10        | 16015  | 16500  | -10397Alul, +10394Ddel, -9824Hinfl                                    |
| BUR    | 25       | 16223 16263 16274 16311 16343 16357                                                                              | 01M        | 16015  | 16500  | -10397Alul, +10394Ddel, +5176Alul, -9824Hintl,                        |
|        |          | (16273N)                                                                                                         |            |        |        | +/598Hnal, -1.3000A1ul                                                |
| BGK    | 26       | 16093 16189 16223 16278 16319                                                                                    | 62         | 16015  | 16410  | -90pdel, +31/0Alul, +/396nilal, -130004lul,<br>+10397Alul, +10394Ddel |
|        |          |                                                                                                                  |            |        |        |                                                                       |

| Series     | Vo  | HVS-I Variants                             | Haplogroup | I-SVH | I-SVH | RFLP Variants                                                          |
|------------|-----|--------------------------------------------|------------|-------|-------|------------------------------------------------------------------------|
|            |     |                                            |            | Start | End   |                                                                        |
| BGK        | 28  | 16223 16291 16362 16390                    | Ela        | 16015 | 16500 | •                                                                      |
| NOG<br>NCR | 37  | 16223 16362 16390                          | Σ          | 16015 | 16500 | , +10394Dde                                                            |
|            | 20  | 14086 16120 16200 16223 16272              | U          | 16015 | 16500 | +7598Hhal, +10397Alul, +10394Ddel, +4831Hhal                           |
| ADd        |     |                                            | Y2         | 16000 | 16500 | -10397Alul, -9bpdel, +5176Alul                                         |
| ADd<br>BCK | 41  | 16086 16129 16209 16223 16272              | G          | 16050 | 16500 | +10397Alul, +10394Ddel, +7598Hhal                                      |
| BGK        | 43  | 16051 16215 16223 16362 16390 16399        | EI         | 16045 | 16500 | +10397Alul, +10394Ddel, +31/6Alul, -9624mml,                           |
| BCK        | 44  | 16180 16223 16257A 16261 16292             | N9a1       | 16050 | 16410 | -9bpdel, -10397Alul, -10394Ddel, +5176Alul                             |
| BGK        | 47  | 16093 16129 16223 16234 16290 16311        | U          | 16015 | 16500 | +10397Alul, +10394Ddel, +5176Alul, -9824Himil,<br>+7598Hhal, +4831Hhal |
| 200        | Q   | 10304                                      | Ela        | 16065 | 16500 | +10397Alul, +5176Alul, -7598Hhal, +10394Ddel                           |
| ADd ADd    | 49  | 0/201 20201 12201 22201                    | M7c1c      | 16060 | 16500 | +10397Alul, +5176Alul, +9824Hinfl                                      |
| ADd        | 3   | MUSA 14170 14170                           | Fla        | 16045 | 16500 |                                                                        |
| ADd        | 3 3 | 16127 16223 16261 16362 16390              | EIb        | 16020 | 16500 | +10397Alul, -7598Hhal                                                  |
|            | 8   | 16112 16223 16257A 16261 16292             | N9al       | 16030 | 16410 | -9bpdel                                                                |
| BGK        | 802 | 16093 16209 16223 16224 16263 16274        | 62         | 16015 | 16500 | +10397Alul, +5176Alul, -9824Hinfl, +7598Hhal                           |
| BGK        | 78  | 16223 16263 16274 16311 16343 16357        | M10        | 16020 | 16500 | -10397Alul, +10394Ddel, +5176Alul, +7598Hhal,                          |
|            |     |                                            | c          | 12045 | 14500 | -13000Alut<br>+10307Alut +10304Ddef +5176Aluf +7598Hhal.               |
| BGK        | 6L  | 16086 16129 16209 16223 16272 16311        | 5          | 10040 | 00001 | -9824Hinft, +4831Hhal                                                  |
| RGK        | 86  | 16140 16189 16217 16335                    | B4c        | 16020 | 16420 | +9bpdel                                                                |
| BGK        | 68  | 16051 16189 16362                          | В          | 16045 | 16410 | -10397Alul, +9bpdel                                                    |
| BGK        | 6   | 16126 16231 16311                          | Y2         | 16020 | 16500 |                                                                        |
| BGK        | 92  | 16189 16223 16257A 16261 16292<br>(16156N) | N9a1       | 16050 | 16420 | -1039/Alut, -10394Ddei                                                 |
| DCV        | 02  | 16147 16189 16217 16235                    | B4         | 16045 | 16460 | +9bpdel                                                                |
| ADd        | 8   | 16086 16129 16209 16223 16272 16311        | U          | 16020 | 16500 | +10397Alul, +5176Alul, +7598Hhal                                       |
| ADd<br>DCK | 100 | 16223 16311 16362                          | Ψ          | 16045 | 16500 | +10397Alul, +5176Alul, +7598Hhal                                       |
| BGK        | 101 | 16129 16166C 16189 16223 16287 16319       | G          | 16035 | 16455 | +10397Alul, +10394Ddel, +5176Alul, +798Hnal,<br>-9824Hinfl, +4831Hhal  |
| BGK        | 103 | 16223 16293 16311 16362                    | W          | 16015 | 16500 | +10397Alul, +5176Alul, +7598Hhal, -9824Hinfl                           |
|            |     |                                            |            |       |       |                                                                        |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HVS-I HVS-I RFLP Variants<br>Start End | 19     | +- | 00001    | MC01        | 16015 16500 +1039/Alul, +10394Ddel, +31/0Alul, +72701.044 | 16015 16500 +10397Alul, +7598Hhal, +9824Hinfl | 16015 16500 +10397Alul, +10394Ddel, +5176Alul, -7598Hhal, |                               |                               | _                              | 16015 16480 -9bpdel, +10394Alul, -9824Hintt, +10394Ddel,<br>+4831Hhal | 16025 16500 +10397Alul, +5176Alul, -7598Hhal, -9824Hinfl | 16015 16500 -10397Alul, -10394Ddel, -5176Alul, -1506Alul | 16015 16500 +10397Alu1, +10394Ddel, +5176Alu1, +7598Hhal,<br>+9824Hinf1 | 16020 16480 -10397Alul, -9bpdel, -5176Alul |                         | 16470    | 16015 16500                        |                   | 16500 +10397Alul,       | 16500                             | 16500                      | 16500       | 16500                         | 16500                   |                                     | 16015 16500 +10397Alul, -9824Hintl, -7598Hnal |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------|----|----------|-------------|-----------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------|-------------------------------|-------------------------------|--------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------|-------------------------|----------|------------------------------------|-------------------|-------------------------|-----------------------------------|----------------------------|-------------|-------------------------------|-------------------------|-------------------------------------|-----------------------------------------------|
| 16175         16223         16223         16327         16327           16304         16362         16311         16327         16327           16223         16223         16233         16311         16362           16093         16223         16291         16362         16390           16185         16223         16291         16362         16390           16185         16223         16291         16362         16390           16185         16223         16291         16362         16390           16187         16129         16189         16223         16391         16391           16187         16221         16291         16362         16390         16342           16187         16223         16291         16362         16390         16342           16126         16129         16223         16390         16342         16342           161354         16536         16316         16391         16342         16342           16136         16223         16233         16392         16390         16312         16390           16126         16189         16223         16392         16391         1639      | M7c1c                                  | MI/LIL | c  | <br>     | F           | X                                                         | M7c1c                                         | Fla                                                       | E I a                         | Ela                           | M7b1                           | G2                                                                    | Ela                                                      | R                                                        | M7                                                                      | 50                                         | W                       | Z        | Fla                                | Y2                | M7c1c                   | M7c1c                             | M7c1c                      | Ela         | Ela                           | Fla                     | Ela                                 | C                                             |
| No         Solution         Solution         No         No | HVS-I Variants                         |        |    | 16327 (1 | 16304 16362 | 16223 16243 16311 16362                                   |                                               | 70001 / 0001 0001 0001 0001                               | 16185 16223 16291 16362 16390 | 16185 16223 16291 16362 16390 | 16180 16192 16223 16294G 16297 | 16126 16129 16189 16278                                               | 00291 69291 10691 26691 06171                            | 16187 16241 16269 16319 16342                            | 16354                                                                   | C3631 2000 120031 20101                    | 70001 07701 60101 07101 | 16223 10 | 10203 10311 1002 16304 16304 16362 | 16126 16231 16311 | 16003 16223 16295 16362 | 16223 16295 16346C 16362 (16110N) | 16223 16295 16362 (16110N) | <b>179N</b> | 16185 16223 16291 16362 16390 | 16129 16172 16304 16311 | 16223 16291 16311 16342 16362 16390 | (NU1171) 1000 1 1000 1 1000 1                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No                                     |        | 66 | 9        | 15          | 17                                                        |                                               | 8                                                         | 21                            | 22                            | 3 2                            | 25                                                                    |                                                          | 27                                                       | 28                                                                      |                                            | 67                      | 31       |                                    | 32                | 46                      | 48                                | 49                         | 55          | 57                            | 60                      | 19                                  |                                               |

|        |     |                                        | Henlogroun  | I-SVH | I-SVH | RFLP Variants                                                                                                   |
|--------|-----|----------------------------------------|-------------|-------|-------|-----------------------------------------------------------------------------------------------------------------|
| Series | Ž   |                                        | den Souderr | Start | End   |                                                                                                                 |
| VV     | 22  | 162200 16265 16298 16362               | F3b         | 16060 | 16500 |                                                                                                                 |
|        | 3   | 16240 16788 16304 16390                | R22         | 16050 | 16500 |                                                                                                                 |
|        | 8   | 12157 16764 16336 1523                 | Ľ.          | 16050 | 16500 |                                                                                                                 |
| ž ž    | 20  | 16129 16209 16223 16272 (16342N)       | Ð           | 16030 | 16500 | +10397Alul, +10394Ddel, +5176Alul, +7598Hhal,<br>-9824Hinfl                                                     |
|        | 11  | 11531 1521 20131                       | Y2          | 16025 | 16500 | -10397Alui                                                                                                      |
| KK     | 131 | 16223 16278 16295 16362                | M7c1c       | 16010 | 16500 | +10397AluI, +10394DdeI, +5176AluI, +7598Hhal,<br>+9824HinfI                                                     |
| 77     | 133 | 16003 16120 16209 16223 16272          | Ū           | 16000 | 16500 | +10397Alul, +5176Alul, -9824Hinfl, +4831Hhal                                                                    |
|        | 201 | 16002 16773 16705 16337 16362          | M7c1c       | 16000 | 16500 | +10397Alul, +9824Hinfl                                                                                          |
|        | 134 | 16185 16223 16291 16362 16390 (16064N) | Ela         | 16030 | 16470 | +10397Alul, +5176Alul, -9824Hinfl                                                                               |
|        | 135 | 16223 16294 (16311N 16362N het?)       | z           | 16000 | 16500 | -10397Alul, +5176Alul, -15606Alul                                                                               |
| KK     | 136 | 16126 16129 16223 16297 (16477N)       | M7b         | 16000 | 16500 | +10397Alul, +10394Ddel, +51/0Alul, +7396rtnat,<br>+9824Hlnfl                                                    |
|        | 201 | 12051 15773 15367 15300                | EI          | 16020 | 16500 | +10397Alul, +5176Alul, -9824Hinfl                                                                               |
|        | 120 | 14184 14773 16701 16362 16390          | Ela         | 16000 | 16500 | +10397Alul, +5176Alul, -7598Hhal, -9824Hintl                                                                    |
|        | 130 | 16185 16223 16291 16362 16390          | Ela         | 16000 | 16500 |                                                                                                                 |
| KK N   | UTI | 16140 16189 16266A 16362               | B5a         | 16035 | 16400 | +9bpdel                                                                                                         |
|        | 141 | 16189 16217 16261                      | B4a         | 16040 | 16400 | +9bpdel                                                                                                         |
| KK V   | 142 | 16223 16291 16362 16390                | Ela         | 16030 | 16500 |                                                                                                                 |
| KK     | 143 | 16220C 16265 16274 16298 16311 16362   | F3b         | 16030 | 16500 | -10397Alul, -10394Ddel                                                                                          |
| X      | 144 | 16189 16217 16223 16261                | B4a         | 16010 | 16420 | +9bpdel                                                                                                         |
| KK     | 145 | 16140 16189 16266A                     | B5a         | 16000 | 16455 | +yopaei                                                                                                         |
| KK     | 147 | 16118 16129 16162 16172 16304          | Flal        | 16020 | 16500 | 10207A11 0877/Himfi                                                                                             |
| KK     | 148 | 16223 16311                            | Σ           | 10000 | 00001 | 10397A11 ±6176A11 _0824Hinfl                                                                                    |
| KK     | 149 | 16126 16129 16189 16278 (16042N)       | 62          | 10030 | 10410 |                                                                                                                 |
| KK     | 150 | 16185 16223 16291 16362 16390          | Ela         | 16030 | 00001 | 1020741.1 +10204Dde1 +517641u1 +7508Hhal                                                                        |
| KK     | 151 | 16126 16129 16189 16278                | 62          | 10000 | 10400 | +1039/Auti, +1039/10, 101/2014, 10/2014, 10/2014, 10/2014, 10/2014, 10/2014, 10/2014, 10/2014, 10/2014, 10/2014 |
| 77     | 154 | 16066 16179 16173 16223 16241          | 0           | 16000 | 16500 | +10397Alul, +5176Alul, +7598Hhal, -9824Hinfl                                                                    |
|        | 155 | 16140 16189 16217 16274 16335          | B4c         | 16000 | 16400 | +9bpdel +9bpdel                                                                                                 |
| KK     | 157 | 16093 16129 16209 16223 16272          | IJ          | 16000 | 16500 | +10397Alul, +5176Alul, +7598Hhal, -9824Hinti                                                                    |
|        |     |                                        |             |       |       |                                                                                                                 |

| 10101 - 10101 - 1110 0/ 1 C+ 111111 +706- 1111 / 1601 + | 16434 | 16075 | Ela        | 16189 16223 16290 16291 16362 16390 | 8           | MED   |
|---------------------------------------------------------|-------|-------|------------|-------------------------------------|-------------|-------|
| +1039/ Alul +10394 Ddel +9824 Hillit                    | 16500 | 16026 | M7b1       |                                     | 59          | MED   |
| +10397 Alul -9824 Hinf1 +5176 Alul -7598 Hhal           | 16500 | 16026 | EIb        | 16131 16223 16261 16362 16390       | 00          | MED   |
| +10397 Alul +5176 Alul +9824 Hintl                      | 16500 | 16026 | M7         | 16223 16362                         | 5           | MED   |
| +10397 Alul +10394 Ddel +9824 Hintl                     | 16500 | 16026 | M7         | 16223 16362                         | <u>5</u> 4  | MED   |
| -10397 Alul -10394 Ddel                                 | 16500 | 16026 | Flala      | 16108 16129 16162 16172 16304       | 35          | MED   |
| +10397 Alu I -9824 Hinti +21/0 Alui                     | 16500 | 16026 | W          | 16223 16362                         | : \$        | MED   |
|                                                         | 16432 | 16011 | B5a        | 16140 16189 16266A                  | 15          | MED   |
| -1039/ Alui                                             | 16422 | 16011 | B5b        | 16111 16140 16189 16234 16243 16399 | 50          | MED   |
| +1039/ Alul +9024 Illill<br>10207 At.I                  | 16500 | 16026 | M7b1       |                                     | 47          | MED   |
| -1039/ Alui<br>-10307 41.1 (0004 11:-6                  | 16398 | 16038 | B5b        | 16111 16140 16189 16234 16243       | 21          | MED   |
| -1039/ Alul -10394 Duct                                 | 00001 | 16038 | Y2         | 16126 16231 16311                   | 61          | MED   |
| -1039/ Alul -10394 Duci                                 | 16500 | 16012 | F4b        | 16170 16218 16304 16311             | . 00        | MED   |
| -1039/ Alul                                             | 16398 | 16036 | BSb        | 16140 16189 16243                   | -<br>-<br>- | MED   |
| +10397 Alul -9824 Hintl                                 | 16500 | 16026 | M3         | 16126 16147 16153 16223             |             | MED   |
| -10397 Alul -10394 Ddel                                 | 16497 | 16014 | R9         | 16209 16223 16233 16274 16304       |             | MEN   |
|                                                         | 16500 | 16000 | F          | 16157 16256 16304 16335             | 170         |       |
| +10397Alul, +10394Ddel, +/398Hnal, -9024num             | 16500 | 16020 | W          | 16223 16304 16325 16344 16362 16381 | 170         |       |
|                                                         | 16500 | 16000 | Fla        | 16129 16172 16192 16294 16304 16362 | 176         |       |
| +9824Hinfl                                              | 00001 | 10000 | M/CIC      | 16223 16295 16346C 16362            | 174         |       |
| +10207Alv1 +10304Dde1 +5176Alu1 +7598Hhal.              | 16500 | 16000 | Fla        | 16129 16172 16304                   | 173         |       |
| +1039/Alul, +31/0Alul, +/370111141, -/044               | 16500 | 16000 | M7c1c      | 16093 16223 16291 16295 16337 16362 | 172         |       |
| +1039/Alul, +51/6Alul, -/396Hilal                       | 16500 | 16010 | EI         | 16051 16223 16362 16390             | 121         |       |
| <u>-</u>                                                | 16500 | 16000 | M7c1c      | 16223 16295 16362                   | 169         |       |
| finiHhteso+ 1.40055+ 1.45213+ 1.422000                  | 16500 | 16030 | ц          | 16157 16256 16304 16335             | 168         |       |
| +1039/Alul, +21/0Alul, +7390011141, -702411111          | 16500 | 16000 | X          | 16223 16234 16362                   | 167         |       |
| +90pdel                                                 | 16460 | 16000 | B4b1       | 16086 16136 16189 16217             | 164         |       |
|                                                         | 16430 | 16010 | B4a        | 16189 16217 16261                   | 163         |       |
| +yopaei                                                 | 16430 | 16010 | B4a        | 16189 16217 16261                   | 162         |       |
| -1039/Alul, -10394Duel, -30puel, -31/07101              | 16430 | 16010 | D5         | 16092 16148 16189 16223 16362       | 161         |       |
|                                                         | 16500 | 16000 | н          | 16304                               | 158         |       |
|                                                         | End   | Start |            |                                     | Ž           | Xenes |
| <b>RFLP Variants</b>                                    | I-SVH | I-SVH | Haplogroup | HVC-I Variants                      |             |       |

| Series | No<br>N | HVS-I Variants                         | Haplogroup | HVS-I<br>Start | HVS-I<br>Fnd | RFLP Variants                                               |
|--------|---------|----------------------------------------|------------|----------------|--------------|-------------------------------------------------------------|
|        |         |                                        | LM7        | 16037          | 16500        | +10397 Alul +5176 Alul +9824 Hinfl                          |
|        | 62      | 16223 16362                            | M          | 16033          | 16497        | +10397 Alul -9824 Hinfl +5176 Alul                          |
|        | 2       | 16189 16192 16223 16291 10302          | M          | 16052          | 16407        | +10397 Alul +9824 Hinfl                                     |
|        | 65      | 16129 16189 16192 16223 16297          | 10/W       | 5001           | 16400        | 10207 Alul - 10394 Ddel - 12308 Hinfl                       |
|        | 67      | 16249 16288                            | K22        | 10020          | 00001        |                                                             |
| Γ      | 75      | 16223 16292 16295 16362                | M7c1c      | 16026          | 16500        | +1039/ Alut +7024 IIIIII<br>10207 11.1 0004 III6176 Alul    |
| T      | 103     | 16223                                  | M          | 16011          | 16500        | +1039/ Alul -9624 Hint +1/1 / 0/1/ 1                        |
| T      | 104     | 16126 16231 16311                      | Y2         | 16011          | 16500        | -1039/ Alul +10394 Ddel                                     |
| T      | 105     | 16069 16231 16311                      | Y2         | 16012          | 16500        | -10397 Alul +10397 LOGEI +21/0 Alul                         |
| T      | 107     | 16147 16189 16217 16235                | B4         | 16038          | 16398        | -10397 Alul                                                 |
| T      | 108     | 16185 16223 16295 16362                | M7c1c      | 16024          | 16500        | +10397 Alui +9824 Hintl                                     |
| T      | 001     | 16223 16288 16291 16362 16390          | Ela        | 16026          | 16497        | +10397 Alu -7598 Hhai                                       |
| T      | 110     | 16120 16180 16223 16297                | M7b        | 16011          | 16412        | +10397 AluI +9824 Hintl                                     |
| T      | 114     | (NCR091) [1891 [201 710]               | Y2         | 16036          | 16500        | -10397 Alul +10394 Ddel                                     |
| MEU    | 117     | 16773 16778                            | G2         | 16033          | 16500        | +10397 Alul -9824 Hintl +5176 Alul                          |
| MEU    | 110     | 11211 1121 1121 1121 1121 1121 1121 11 | F4b        | 16026          | 16500        | -10397 Alul -10394 Ddel                                     |
| T      | 117     | MEN1 7711 011201                       | Fla        | 16026          | 16500        | -10397 Alul -10394 Ddel                                     |
| T      | 121     | 16140 16189 16243                      | B5b        | 16019          | 16410        |                                                             |
| T      | 125     | 11231 1231 1231                        | Y2         | 16015          | 16371        | -10397 Alul +10394 Ddel                                     |
| MED    |         | 1603 16126 16231 16311                 | Y2         | 16024          | 16500        | -10397 Alul                                                 |
| MED    | 741     | 16107 16362                            | W          | 16024          | 16500        | +10397 Alul +7025 Alul -9824 Hinti +10397 Alul              |
| MED    | 147     | 16145 16223 16295 16362                | M7c1c      | 16024          | 16500        | +10397 Alul -51/6 Alul +9824 HINII                          |
| MFD    | 148     | 16172 16223 16239 16263 16325 16381    | M21b       | 16026          | 16500        | +10397 Alui -9824 Hinti                                     |
| MFD    | 150     | 16140 16189 16266A                     | B5a        | 16011          | 16423        | -1039/ Alul                                                 |
| MFD    | 153     | 16223 16295 16362                      | M7c1c      | 16044          | 16500        | +1039/ AJUI +9824 HIIII                                     |
| MFD    | 155     | 16093 16223 16231 16319                | M2         | 16024          | 16500        | +1039/ Alul -9624 fillit +21/0 Alul<br>10007 11 110001 Dist |
| MED    | 183     | 16126 16231 16311                      | Y2         | 16037          | 16500        | -1039/ Alul +10394 Duel                                     |
| MND    | 3-      | 16/02 16148 16189 16223 16362          | DS         | 16000          | 16460        | -10397Alul, -10394Dael, -90pael, -01/0Alul                  |
|        |         | 16157 16256 16304 16335                | ч          | 16000          | 16500        |                                                             |
| Γ      | 1 0     | 16120 16172 16294 16304 16362 (16384N) | Fla        | 16000          | 16400        |                                                             |
|        |         | 16773 16705 16362                      | M7c1c      | 16000          | 16465        | +9824Hinfl                                                  |
|        | * *     | 16148 16180 16773 16362                | DS         | 16020          | 16430        | -10397Alul, -9bpdel, -10394Ddel, -5176Alul                  |
| NNN    | 2       | 10140 10100 10220 10000                |            |                | 11500        |                                                             |

| Serics     | No          | HVS-I Variants                         | Haplogroup | HVS-I<br>Start | HVS-I<br>End | RFLP Variants                                                |
|------------|-------------|----------------------------------------|------------|----------------|--------------|--------------------------------------------------------------|
|            |             |                                        | Rfa        | 16015          | 16460        | +9bpdel                                                      |
| $\uparrow$ | L           | 1 10701 0                              | FI         | 16000          | 16500        | -7598Hhal                                                    |
| QNW        | <u>× </u> ~ | 16001 10223 10302 10390                | E C        | 16000          | 16500        | -10397Alul, -10394Ddel, -9bpdel, -10394Ddel, -<br>-15666Alul |
|            |             |                                        |            | 00031          | 12440        | 7500Uhal                                                     |
| QNM        | 10          | 16189 16223 16291 16362 16390          | Ela        | 16000          | 10440        | -/////////////////////////////////////                       |
| 1          | 1           | 16249 16319 16390 (16120N)             | ፈ          | 16080          | 16500        | -1039/Alut, +10394Juct, +11034Juct, +10394Juct, +15606Alul   |
| QNW        | 12          | 16093 16209 16223 16224 16263 16265    | G2         | 16000          | 16500        | +10397Alul, +10394Ddel, +7598Hhal, -9824Hinti,<br>+4831Hhal  |
|            |             | 16278 16319                            | Ela        | 16000          | 16500        | -7598Hhal                                                    |
| MND        | 13          | 16223 16291 16362 16390                | DI4        | 16000          | 16500        | -7598Hhal                                                    |
| MND        | 14          | 16051 16184 16223 16362 16390          | E          | 10000          | 00001        | +0hndel                                                      |
| MND        | 15          | 16092 16140 16189 16217 16274 16283T   | B4c        | 00001          | 10+01        |                                                              |
|            |             | 16311 16335                            | Ela        | 14000          | 16500        | +10397Alu1.+5176Alu17598Hhal                                 |
| MND        | 16          | 16172 16223 16291 16362 16390          | De         | 0001           | 16460        | _10397Alu1 -10394DdeL -9bpdel, -5176AluI                     |
| QNW        | 17          | 16148 16189 16223 16362                | 3          | 07001          | 12460        | -100/1/1/1/1/ 100/100/100/100/100/100/100                    |
| DNM        | 18          | 16140 16189 16243 16355                | 830        | 10040          |              | 1020741.1 10204Ddel _0hndel _5176Alul                        |
| UNM        | 19          | 16092 16148 16189 16223 16362 (16120N) | D5         | 16040          | 16460        | -1039/Alul, -10394Duci, -2004ci, -2017 - 1039                |
| CINM       | 20          | 16188 16223 16274 16311 16362          | D          | 16050          | 16500        | +1039/Alul, +10394Daci, -21/04Jul                            |
| ╞          | 10          | 16189 16217 16247 16261                | B4a1       | 16030          | 16440        |                                                              |
| $\top$     | 33          | 16129 16144 16148 16172 16223 16241    | Ø          | 16000          | 16500        |                                                              |
|            |             |                                        |            | 0001           | 16500        |                                                              |
| MND        | 23          | 16223 16257A 16261 16292 16294 16357   | Nyal       | 10000          | 20001        | 10207Ahit -10304Ddel -5176Ahil                               |
| UNM        | 24          | 16092 16148 16189 16223 16362          | DS         | 16020          | 10455        |                                                              |
| MND        | 25          | 16051 16223 16362 16390                | EI<br>     | 10000          | 00001        | TJ1/0A101, -7.2701 1041                                      |
| MND        | 26          | 16108 16129 16162 16172 16304          | r la la    | 01001          | 00001        | _1030741n1 _10394Dde1 _5176Alu1                              |
| MND        | 27          | 16092 16129 16148 16189 16223 16362    | 5          | 16010          | 16435        | +0hndel                                                      |
| UNM        | 29          | 16086 16136 16189 16217                | D401       | 01001          | 00371        | +6176Ahil +10307Ahil -7598Hhal +10394Ddel                    |
| MND        | 30          | 16223 16261 16362 16390                | EID        | 100001         | 000371       | +0874Hinfl                                                   |
| DNM        | 33          | 16223 16295 16362                      | M/CIC      | 00001          | 00001        | TIMT12-702                                                   |
| QNW        | 34          | 16129 16172 16304                      | Fla        | 16000          | 00001        |                                                              |
| UNW        | 36          | 16189 16217 16261 16311                | B4a        | 16010          | 16430        | +ybpdei                                                      |
| QNM        | 37          | 16189 16217 16261 16288                | B4a        | 16010          | 16415        | +9bpdel                                                      |
|            |             |                                        |            |                |              |                                                              |
|            |             |                                        |            |                |              |                                                              |
| 22         |             |                                        |            |                |              |                                                              |
| l          |             |                                        |            |                |              |                                                              |

| No         Start         End           38         16223 16295 16362         M7c1c         16010         16500           39         16223 1629 16362 16390         E1a         16010         16500           40         16172 1622 1639 16362 16390         E1a         16000         16500           41         16223 1629 16362 16390         E1a         16000         16500           43         16129 16172 1629 16362 16390         E1a         16000         16500           44         16129 16172 1629 16362 16390         E1a         16000         16500           48         16023 1632 16390         E1a         16000         16500           49         16039 16172 16294 16304 16362         E1a         16000         16500           50         16023 1632 16390         E1a         16000         16500           51         16223 1632 16390         E1a         16000         16500           53         16223 1632 16390         E1a         16000         16500           53         16223 1632 16390         E1a         16000         16500           54         16223 1632 16390         E1a         16000         16500           55         16223 1632 16390         E1a                                                                                                                                                                                                      | .      |              | UVC I Variante                   | Hanloeroun | I-SVH | <b>HVS-I</b> | RFLP Variants                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------|----------------------------------|------------|-------|--------------|-----------------------------------------------|
| 38 $ 6223 6295 6362$ M7clc $ 6030 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $ $ 6500 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Series | Ž            |                                  |            | Start | End          |                                               |
| 39         i6223         i629i         i630i         i650i         i630i         i650i         i650ii         i650i         i650i <t< td=""><td></td><td>38</td><td>16223 16295 16362</td><td>M7c1c</td><td>16030</td><td>16500</td><td>-1</td></t<>                 |        | 38           | 16223 16295 16362                | M7c1c      | 16030 | 16500        | -1                                            |
| 40         16172         16231         6530         6530           41         16223         16291         16362         16390         16500         16500           42         16223         16291         16352         16391         16550         16500         16500           43         16223         16291         1635         16394         16362         16390         16500         16500           44         16129         16721         16391         16323         16391         16500         16500         16500           49         16093         16148         1630         1632         16390         16500         16500         16500           50         16223         16391         1632         16390         16400         16500         16500           51         16223         16321         16391         6523         16390         16400         16500           53         16223         16321         16321         16300         16500         16500           53         16223         16321         16321         16300         16500         16500           54         16189         16321         16321         16321                                                                                                                                                                                                                                          | +      | 202          | 16223 16295 16356 16362          | M7c1c      | 16010 | 16500        | <u>_</u>                                      |
| 41         16223 16291 16362 16390         E1a         16000         16500         16500           42         16223 16291 16362 16390         66300         16500         16500         16500           43         16223 16221 16362 16390         6630         16500         16500         16500           44         16129 16172 16294 16302 16390         E1         16000         16500         16500           48         16021 6223 16321 6390         E1         16000         16500         16500           50         16223 16291 16362 16390         E1a         16000         16500         16500           51         16223 16291 16362 16390         E1a         16000         16500         16500           53         16223 16291 16362 16390         E1a         16000         16500         16500           53         16223 16291 16362 16390         E1a         16000         16500         16500           54         16223 16291 6362 16390         E1a         16000         16500         16500           54         16223 16291 6362 16390         E1a         16000         16500         16500           55         16223 16291 6362 16390         E1a         16000         16500         16500                                                                                                                                                                              | ╎      |              |                                  | Ela        | 16010 | 16500        | -7598Hhal                                     |
| 42         i6223 i629 i6362         Ela         16000         16500         16500           43         i6223 i629 i6362         m7clc         i6000         i6500         i6500           44         i6129 i6172 i6294 i6302 (16278N)         D         i6000         i6500         i6500           48         i6051 i6223 i637 i6362 (16278N)         D         i6000         i6500         i6500           49         i60951 i6323 i637 i6362 (16278N)         D         i6000         i6500         i6500           59         i6023 i639 i638 i638 i638 i6390         E1a         i6000         i6500         i6500           51         i6223 i6291 i6362 i6390         E1a         i6000         i6500         i6500           53         i6223 i6291 i6362 i6390         E1a         i6000         i6500         i6500           53         i6223 i6291 i6362 i6390         E1a         i6000         i6500         i6500           54         i6189 i632 i6390         E321 i6321 i632         i6390         i6500         i6500           55         i6223 i6291 i6362 i6390         E1a         i6000         i6500         i6500           55         i6223 i6291 i6362 i6390         E1a         i6000         i6500         i65                                                                                                                                                             |        | 41           | 16223 16291 16362 16390          | Ela        | 16000 | 16500        | +5176Alul, -7598Hhal                          |
| 43         16223 1630         M7clc         16000         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500                                                                                                                                | T      |              | 06291 19361 16291                | Ela        | 16000 | 16500        |                                               |
| 44         16129         16172         16294         16300         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         1                                                                                                                           | +-     | 43           | 16223 16295 16362                | M7c1c      | 16000 | 16500        | +9824Hinfl                                    |
| 45         16051         6523         6530         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         165                                                                                                                           | T      | 44           | 16129 16172 16294 16304 16362    | Fla        | 16000 | 16500        |                                               |
| 48         16192         16223         16274         16300         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         1                                                                                                                           | ╋      | 45           | 16051 16223 16292 16362 16390    | EI         | 16000 | 16500        |                                               |
| 4916003 16148 16189 16223 16362D5160001663005066223 16291 16362 16390E1a160000165005116223 16291 16362 16390E1a160000165005216223 16291 16362 16390E1a160000165005316223 16291 16362 16390E1a160000165005316223 16291 16362 16390E1a160000165005316223 16291 16362 16390E1a160000165005416129 16321 16362 16390E1a160000165005816223 16291 16362 16390E1a16010016500591629 16132 16362 16390E1a16010016500591629 16132 16362 16390E1a160100165006116129 16132 16361 6313B4c16010016500631629 16132 16361 6313B4c160100165006416129 16132 16391 6318325 16391E1a160000165006316223 16291 16362 16390E1a160000165006416129 16132 16391 6317216000165006516121 6223 16231 6235 162347216000165006616126 16231 16317216000165006716126 16231 16317216000165006816223 16239 16362 16390E1a16010165006916126 16231 6391 6392B4c16010165006016126 16231 16362 16390E1a1600016500 <td></td> <td>48</td> <td>16192 16223 16274 16362 (16278N)</td> <td>D</td> <td>16000</td> <td>16500</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                             |        | 48           | 16192 16223 16274 16362 (16278N) | D          | 16000 | 16500        |                                               |
| 50 $6223$ $6223$ $6620$ $16500$ $16500$ 51 $16223$ $66251$ $16362$ $16362$ $16500$ $16500$ 52 $16223$ $16223$ $16223$ $16232$ $16500$ $16500$ $16500$ 53 $16223$ $16223$ $16326$ $16362$ $16500$ $16500$ $16500$ 54 $16189$ $16223$ $16326$ $16362$ $16300$ $16500$ $16500$ 55 $16223$ $16223$ $16326$ $16362$ $16300$ $16500$ $16500$ 57 $16223$ $16223$ $16362$ $16362$ $16300$ $16500$ $16500$ 58 $16223$ $16223$ $16362$ $16362$ $16362$ $16300$ $16500$ 59 $16129$ $16129$ $16300$ $16500$ $16500$ $16500$ 50 $16224$ $6223$ $16223$ $16224$ $6327$ $16000$ $16500$ 61 $16129$ $16129$ $16302$ $16302$ $16302$ $16500$ 62 $16120$ $16302$ $16304$ $6335$ $16223$ $16223$ $16223$ 63 $16223$ $16304$ $16335$ $16000$ $16500$ 64 $16126$ $16322$ $16302$ $16302$ $16302$ $16302$ 65 $16127$ $16223$ $16223$ $16223$ $16223$ $16223$ $16223$ 66 $16223$ $16322$ $16302$ $16322$ $16223$ $16223$ $16223$ $16223$ 67 $16122$ $16223$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +      | 49           | 16093 16148 16189 16223 16362    | DS         | 16000 | 16430        | -10397Alul, -10394Ddel, -90pdel, -01/0Alul    |
| 51 $16223 16291 16362 16390$ $E1a$ $16000$ $16500$ 52 $16223 16291 16362 16390$ $E1b$ $16000$ $16500$ 53 $16223 16291 16362 16390$ $E1a$ $16000$ $16500$ 54 $16189 16284 16304$ $E1a$ $16000$ $16500$ 55 $16223 16291 16362 16390$ $E1a$ $16000$ $16500$ 57 $16223 16291 16362 16390$ $E1a$ $16000$ $16500$ 58 $16223 16291 16362 16390$ $E1a$ $16000$ $16500$ 59 $16129 16142 16166 16223 16257 16274$ $G3?$ $16000$ $16500$ 59 $16129 16142 16166 16223 162390$ $E1a$ $16000$ $16500$ 50 $16129 16172 16304 16311$ $F1a$ $16000$ $16500$ 61 $16129 16172 16234 16335$ $B4c$ $16010$ $16500$ 62 $16129 16172 16234 16336$ $B4c$ $16010$ $16500$ 63 $16223 16390$ $E1a$ $16000$ $16500$ 64 $16122 6123 16391$ $E1a$ $16000$ $16500$ 65 $16172 16223 16391 6362 16390$ $E1a$ $16010$ $16430$ 66 $16223 16391 16362 16390$ $E1a$ $16000$ $16500$ 67 $16172 16223 16391 16362 16390$ $E1a$ $16000$ $16500$ 68 $16223 16291 16362 16390$ $E1a$ $16010$ $16300$ 69 $16172 16223 16291 16362 16390$ $E1a$ $16010$ $16500$ 68 $16172 16223 16291 16362 16390$ $E1a$ $16000$ $16500$ 69                                                                                                                                                                                                                                                                                                                          | +      | 50           | 16223 16291 16362 16390          | Ela        | 16000 | 16500        | +5176Alul, -7598Hhal                          |
| 32 $16223 16261 16362 16390$ $E1b$ $16000$ $16500$ 53 $16223 16291 16362 16390$ $E1a$ $16000$ $16500$ 54 $16189 16228 16390$ $E1a$ $16000$ $16500$ 55 $16223 16291 16362 16390$ $E1a$ $16010$ $16500$ 57 $16223 16291 16362 16390$ $E1a$ $16010$ $16500$ 58 $16223 16291 16362 16390$ $E1a$ $16000$ $16500$ 59 $16129 16142 16166 16223 16255 16274$ $G37$ $16000$ $16500$ 50 $16129 16142 16362 16390$ $E1a$ $16000$ $16500$ 61 $16129 16172 16304 16311$ $F1a$ $16000$ $16500$ 62 $16129 16172 16304 16311$ $F1a$ $16000$ $16500$ 63 $16223 16231 6330$ $E1a$ $16000$ $16500$ 64 $16126 1623 16390$ $E1a$ $16000$ $16500$ 65 $16172 16223 1623 16390$ $E1a$ $16000$ $16500$ 66 $16223 1623 16390$ $E1a$ $16000$ $16500$ 67 $16172 16223 1623 16390$ $E1a$ $16000$ $16500$ 68 $16223 16223 16329 16362 16390$ $E1a$ $16000$ $16500$ 69 $16172 16223 1623 16390$ $E1a$ $16000$ $16500$ 68 $16223 16223 16390$ $E1a$ $16000$ $16500$ 69 $16172 16223 1623 16390$ $E1a$ $16000$ $16500$ 69 $16172 16223 1623 16390$ $E1a$ $16000$ $16500$ 69 $16172 16223 16291 16362 16390$ <t< td=""><td></td><td>51</td><td>16223 16291 16362 16390</td><td>Ela</td><td>16000</td><td>16500</td><td>0-111-000 1 1 H 2000</td></t<>                                                                                                                                                                                      |        | 51           | 16223 16291 16362 16390          | Ela        | 16000 | 16500        | 0-111-000 1 1 H 2000                          |
| 5316223 16291 16362 16390E1a16000165005416189 16284 1630451b?1601016500164605516223 16291 16362 16390E1a1601016500165005716223 16291 16362 16390E1a1600016500165005816223 16291 16362 16390E1a1600016500165005916129 16142 16166 16223 16253 16274G3?1600016500165005916129 16122 16304 16311F1a1603016500165006116129 16172 16304 16311F1a1601016300165006316223 16291 16362 16390E1a16010164356416120 16189 16217 16274 16335E1a16000165006516172 16223 16291 16362 16390E1a16000165006616122 16223 16291 16362 16390E1a16010165006716172 16223 16291 16362 16390E1a16010165006816172 16223 16291 16362 16390E1a16000165006916172 16223 16291 16362 16390E1a16000165006916172 16223 16291 16362 16390E1a16000165006916172 16223 16291 16362 16390E1a16010165006916172 16223 16291 16362 16390E1a16010165006916172 16223 16291 16362 16390E1a16010165006916172 16223 16291 16362 16390E1a16010165006916172 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t      | 52           | 16223 16261 16362 16390          | EIb        | 16000 | 16500        | +5176Alul, +1039/Alul, -9824Hinti, +10394Duei |
| 5416189162381630016460551622316229116362163901640057162231622911636216390165005816223162291163621630016500591612916142161641631016500591612916142161641631116000165005916129161421616416311711600016500611612916172163041631172160001650062161401631172721600016500631622316321163117216000165006416126163221632916323163291650065161721622316329163231632916500661612216223163291632316390165006716172162231632916362163621630068161721622316329163621630016500691617216223163291636216360165006916189162171626184a1601016500691618916223162991636216164N)D516000711622316291163621636216164N)163001630073161971618916223162991630916309 <td< td=""><td></td><td>3 53</td><td>16223 16291 16362 16390</td><td>Ela</td><td>16000</td><td>16500</td><td>-7598Hhal</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | 3 53         | 16223 16291 16362 16390          | Ela        | 16000 | 16500        | -7598Hhal                                     |
| 5516223 16291 16362 16390E1a16010165005716223 16291 16362 16390E1a16000165005816223 16291 16362 16390E1a16000165005916129 16142 16166 16223 16255 16274G3?16000165006116294 16327AG3?16000165006216129 16142 16304 16311F1a16000165006316223 16291 16362 16390E1a16000165006416126 1623 16311Y216000165006516172 16223 16291 16362 16390E1a16000165006616125 16223 16291 16362 16390E1a16000165006716172 16223 16291 16362 16390E1a16000165006816172 16223 16291 16362 16390E1a16000165006916172 16223 16291 16362 16390E1a16000165006916172 16223 16291 16362 16390E1a16000165007116172 16223 16291 16362 16390E1a16000165007216172 16223 16291 16362 16390E1a16000165007316172 16223 16291 16362 16390E1a16000165007116223 16291 16362 1636216164N)D516010164107316197 16231 16391 16390 16390 16390F1a16010165007316197 16231 16381 16394 16399 16390F1a1601016500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | 2            | 16189 16284 16304                | FIb?       | 16000 | 16460        | -10397Alul, -10394Ddel, +5176Alul             |
| 57 $16223$ $16223$ $16362$ $16362$ $16390$ $16500$ $16500$ 58 $16223$ $16223$ $16362$ $16320$ $16500$ $16500$ 59 $16129$ $16142$ $16166$ $16223$ $16223$ $16223$ $16223$ 61 $16129$ $16122$ $16123$ $162304$ $16311$ $16000$ $16500$ 62 $16129$ $16127$ $16223$ $16223$ $16223$ $16223$ $16329$ $16500$ 63 $16223$ $16223$ $16329$ $16323$ $16329$ $16320$ $16320$ 64 $16126$ $16322$ $16329$ $16323$ $16323$ $16329$ $16320$ 65 $16172$ $16223$ $16329$ $16323$ $16329$ $16320$ $16500$ 66 $16126$ $16322$ $16329$ $16323$ $16329$ $16320$ $16320$ 67 $16172$ $16223$ $16329$ $16323$ $16329$ $16320$ $16320$ 68 $16172$ $16223$ $16329$ $16362$ $16320$ $16362$ $16362$ 69 $16172$ $16223$ $16329$ $16362$ $16362$ $16100$ $16500$ 69 $16189$ $16223$ $16239$ $16329$ $16362$ $16164N$ $16000$ $16500$ 71 $16223$ $16229$ $16329$ $16362$ $16164N$ $D57$ $16000$ $16500$ 72 $16197$ $16239$ $16322$ $16362$ $16164N$ $D57$ $16000$ $16500$ <td< td=""><td>╈</td><td>5</td><td>16223 16201 16362 16390</td><td>Ela</td><td>16010</td><td>16500</td><td>-9824Hinfl</td></td<>                                                                                                                                                                                                                                                                                                                            | ╈      | 5            | 16223 16201 16362 16390          | Ela        | 16010 | 16500        | -9824Hinfl                                    |
| 58 $6223$ $6223$ $16362$ $16300$ $16500$ 59 $16129$ $16129$ $16166$ $16223$ $16223$ $16000$ $16500$ 59 $16129$ $16129$ $16126$ $16321$ $16000$ $16500$ $16500$ 61 $16129$ $16172$ $16304$ $16311$ $F1a$ $16010$ $16500$ 62 $16140$ $16189$ $16217$ $16274$ $16335$ $B4c$ $16010$ $16500$ 63 $16223$ $16231$ $16321$ $16322$ $16362$ $16390$ $16500$ $16500$ 64 $16126$ $16223$ $16323$ $16329$ $16323$ $16329$ $16362$ $16390$ 65 $16172$ $16223$ $16329$ $16362$ $16390$ $E1a$ $16000$ $16500$ 66 $16172$ $16223$ $16223$ $16390$ $E1a$ $16000$ $16500$ 67 $16172$ $16223$ $16392$ $16390$ $E1a$ $16000$ $16500$ 68 $16223$ $16223$ $16362$ $16390$ $B4a$ $16000$ $16500$ 69 $16189$ $16223$ $16223$ $16223$ $16223$ $16223$ $16223$ $16223$ $16223$ $16223$ $16223$ $16223$ $16223$ $16223$ $16223$ $16223$ $16223$ $16223$ $16223$ $16223$ $16223$ $16223$ $16223$ $16223$ $16223$ $16223$ $16223$ $16223$ $16223$ $16223$ $16223$ $16223$ $16223$ $16223$ $162$                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1      | 51           | 16223 16291 16362 16390          | Ela        | 16000 | 16500        | -9824Hinfl                                    |
| 591612916129161201650016500 $61$ 16129161211630416311 $F1a$ 1603016500 $62$ 1614916311 $F1a$ 1601016435 $16335$ $16231$ 16311 $62$ 1614016189162171627416335 $B4c$ 1601016500 $16500$ $63$ 162231622116311 $Y2$ 1600016500 $16500$ $16500$ $64$ 161261622116311 $Y2$ 1600016500 $16500$ $66$ 1617216223162911636216390 $E1a$ 1601016500 $66$ 1617216223162911636216390 $E1a$ 1601016500 $67$ 1617216223162911636216390 $E1a$ 1600016500 $68$ 1622316223163621636216390 $E1a$ 1600016500 $69$ 161721622316362163621636216360 $171$ $16223$ 1622316390 $71$ 162231629116362163621636216164N) $D5$ 1601016500 $72$ 16192162231622316223162291636216164N) $16000$ 16500 $71$ 1622316291163621636216164N) $D5$ 1601016410 $72$ 1619216223162391636216164N) $D5$ 1601016410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | 200          | 16223 16291 16362 16390          | Ela        | 16030 | 16500        |                                               |
| 16294 16327A $16294 16327A$ $16030 16500$ $16500$ $61$ $16129 16172 16304 16311$ $F1a$ $16030$ $16500$ $62$ $16140 16189 16217 16274 16335$ $B4c$ $16010$ $16500$ $63$ $16223 16291 16362 16390$ $E1a$ $16000$ $16500$ $64$ $16126 16231 16311$ $Y2$ $16000$ $16500$ $65$ $16172 16223 16291 16362 16390$ $E1a$ $16000$ $16500$ $66$ $16223 16291 16362 16390$ $E1a$ $16000$ $16500$ $67$ $16172 16223 16291 16362 16390$ $E1a$ $16000$ $16500$ $68$ $16223 16291 16362 16390$ $E1a$ $16000$ $16500$ $67$ $16172 16223 16291 16362 16390$ $E1a$ $16000$ $16500$ $67$ $16172 16223 16291 16362 16390$ $B4a$ $16010$ $16500$ $67$ $16172 16223 16291 16362 16390$ $B4a$ $16010$ $16500$ $71$ $16223 16291 16362 16362$ $B4a$ $16010$ $16500$ $71$ $16223 16291 16362 16390$ $B4a$ $16010$ $16430$ $72$ $16172 16189 16217 16261$ $B4a$ $16010$ $16430$ $72$ $16172 16189 16217 16261$ $B4a$ $16010$ $16430$ $71$ $16722 16291 16362 16362 (16164N)$ $D5$ $16010$ $16500$ $77$ $16192 16223 16229 16309 16309 16300$ $R9b$ $16020$ $16410$                                                                                                                                                                                                                                                                                                                                                                  | +      | 8 <b>6</b> 5 | 16255 16                         | G3?        | 16000 | 16500        | +10397Alul, +10394Ddel, +5176Alul, +7598Hnal, |
| 6116129161291612916310163101630016300621614016189162171627416335B4c16010164356316223162231636216362163621630016500165006416172162231632116311Y2160001650016500651617216223162311632116322163621636216300165006616172162231629116362163621636216390E1a1600016500671617216223162911636216362163621636216362163626816172162231629116362163621636216362165001650069161891621716261B4a160101650016500711622316291163621636216164N)D5160101643072161721622316223162231622316223163011641073161921622316223162231630216164N)D5160101641073161921632316223162231622316304163091630016410731619216323162231622316223162231630916410731619216324162391630916309163001650016410 <td></td> <td></td> <td>16294 16327A</td> <td></td> <td></td> <td></td> <td>-9624MINIL, +46311NIAI</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |              | 16294 16327A                     |            |       |              | -9624MINIL, +46311NIAI                        |
| 621614016189162171627416335B4c160101643563162231622316362163621633016500165001650064161261623116311Y2160001650016500651617216223162311632516381M21b1601016500661622316223163621636216390E1a1600016500671617216223162911636216362163621636216300681617216223162951636216362163621636269161891621716261B4a1601016500711622316291163621636216362166101650072161921622316223162231622316309165001650073161921622316223162231630916309164307316192162231622316223163091630916410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | QNW    | 61           | 16129 16172 16304 16311          | Fla        | 16030 | 16500        |                                               |
| 6316223 16291 16362 16390E1a16000165006416126 16231 16311Y216000165006516172 16223 16231 16311M21b16010165006616223 16291 16362 16390E1a16000165006716172 16223 16291 16362 16390E1a16000165006816223 16291 16362 16390E1a16000165006816172 16223 16291 16362 16390E1a16000165006916189 16217 16261B4a16010164307116223 16291 16362 16390E1a16000165007116172 16189 16217 16261B4a16010164307216172 16189 16223 16229 16362 (16164N)D516010164107316192 16223 16288 16304 16309 16390R9b1605016410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | 62           | 16140 16189 16217 16274 16335    | B4c        | 16010 | 16435        | +90pdel                                       |
| 64         16126 16231 16311         Y2         16000         16500         16000         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500                                                                                                                            | -      | 63           | 16223 16291 16362 16390          | Ela        | 16000 | 16500        | -/////////////////////////////////////        |
| 65         16172         16223         16320         16500         16010         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16410         16500         16410         16500         16500         16                                                                                                                          | UNM    | 2            |                                  | Y2         | 16000 | 10201        | -1039/Alul, +10394Duci                        |
| 66         16223         16321         16362         16362         16362         16362         16362         16362         16362         16362         16362         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16410         171         12         16172         16189         16223         16223         16203         16309         16050         16410         16410 </td <td>QNW</td> <td>65</td> <td>16325 1</td> <td>M21b</td> <td>16010</td> <td>16500</td> <td>+1039/Alul, +10394Ddel</td> | QNW    | 65           | 16325 1                          | M21b       | 16010 | 16500        | +1039/Alul, +10394Ddel                        |
| 67         16172         16223         16362         16390         16000         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16410         77         16172         16172         16233         16233         16233         16309         16309         R9b         16050         16410         16410           77         16192         16234         16309         16309         R9b         16050         16410         16410                                                                                                                                                                                                     | QNW    | 99           | 16223 16291 16362 16390          | Ela        | 16000 | 16500        |                                               |
| 68         16223 16295 16356 16362         M7clc         16000         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16430         16010         16430         16430         16010         16430         16300         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16410         72         16172 16189 16223 16329 16309 16309 16309         R9b         16050         16410         16410         16410           77         16197 16234 16288 16304 16309 16390         R9b         16050         16410         16410         16410                                                                                                                                                                                                                                                                                                                                                                                           | UNM    | 67           | 16172 16223 16291 16362 16390    | Ela        | 16000 | 16500        | +51/6Alul, -/398Hnal                          |
| 69         16189 16217 16261         B4a         16010         16430           71         16223 16291 16362 16390         E1a         16000         16500           72         16172 16189 16223 16259 16362 (16164N)         D5         16010         16410           73         73         16192 16234 16288 16309 16390         R9b         16050         16470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CINM   | 68           | 16223 16295 16356 16362          | M7c1c      | 16000 | 16500        | +7598Hhal, +9824Hintl                         |
| 71         16223 16291 16362 16390         E1a         16000         16500         16500           72         16172 16189 16223 16259 16362 (16164N)         D5         16010         16410           73         16192 16234 16288 16304 16309 16390         R9b         16050         16470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | QNW    | 69           | 16189 16217 16261                | B4a        | 16010 | 16430        |                                               |
| 72         16172         16189         16223         16362         (16164N)         D5         16010         16410           73         16192         16234         16304         16309         16390         16470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | QNW    | 11           | 2 16390                          | Ela        | 16000 | 16500        |                                               |
| 73 16192 16234 16288 16304 16309 16390 18390 R9b 16050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | QNW    | 72           | 16362 (                          | D5         | 16010 | 16410        | -10397Alul, -10394Ddel, -9bpdel, -01/6Alul    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | QNW    | 73           | 1                                | R9b        | 16050 | 16470        |                                               |

|            |            |                                      | Uonlogenun  | HVSI  | I-S/H | RFLP Variants                                               |
|------------|------------|--------------------------------------|-------------|-------|-------|-------------------------------------------------------------|
| Series     | ²          | HVS-I Variants                       | Inapiograph | Start | End   |                                                             |
|            | 4          | 22231 24C31 08131 04131              | BSb         | 16000 | 16430 | 1                                                           |
| UNM        | 2          |                                      | D5          | 16010 | 16435 | -10397Alul, -10394Ddel, -9bpdel, -5176Alut                  |
| QNW        | 2          |                                      | M7c1c       | 16000 | 16500 | +10397Alul, +9824Hinfl                                      |
| QNW        | 5          | 70601 66701 67701                    | RA          | 16010 | 16420 |                                                             |
| MND        | 78         | 16147 16189 1621 /                   | 5 0         | 16040 | 16500 | +5176Alul_+10397Alul_+7598Hhal, -9824Hinfl,                 |
| MND        | <i>7</i> 9 | 16118 16129 16192 16223 16256 16272  | 2           | 10001 |       | +10394Ddel, -15606Alul, +4831Hhal                           |
|            |            | (75) 500 100 101 101                 | D5          | 16010 | 16410 | -10397Alul, -10394Ddel, -9bpdel, -5176Alul                  |
| MND        | 20         |                                      | Ela         | 16000 | 16500 |                                                             |
| QNW        |            | 16223 16291 16362 10390              | MTele       | 16000 | 16500 |                                                             |
| MND        | 82         | 16223 16295 16362                    | ALVIN C     |       | 16500 | +10394Ddel5176Alul                                          |
| QNW        | <b>8</b> 3 | 16223 16286 16362                    |             | 00001 | 16500 | +5176Ahil +7598Hhal +9824HInfl15606Alul                     |
| MND        | 22         | 16223 16224 16287 16295              | M/CI        | 01001 | 00001 | (mux)/// (mux)/// (mux)///                                  |
| UNM        | 87         | 16223 16291 16362 16390              | Ela         | 10010 | MOCOI | D :117 COC                                                  |
|            | 88         | 16223 16295 16356 16362              | M7c1c       | 16000 | 16500 | +9824HInti                                                  |
|            | 80         | 16223 16295 16362                    | M7c1c       | 16000 | 16500 | +9824Hintl                                                  |
|            | 6 8        | 14140 16180 16766A                   | B5a         | 16000 | 16455 | +9bpdel                                                     |
| <b>UNM</b> | 2 2        |                                      | B5a         | 16000 | 16460 |                                                             |
| NNW        | 7          | 00291 20201 20101 04101              | Ela         | 16000 | 16500 |                                                             |
| MND        | 77         | 0/001 20001 1/201 (2701              | EIL         | 16000 | 16500 | +10397Alul, +5176Alul, -9824Hinfl, +10394Ddel,              |
| QNW        | 93         | 16223 16261 16362 16390              |             |       | 20201 | -7598Hhal                                                   |
| QNW        | 94         | 16051 16223 16258C 16309 16362 16390 | El          | 16000 | 16500 | +10397Alul, +10394Ddel, +5176Alul, -9824Hinti,<br>-7598Hhal |
|            |            | (9E91 OUE91 ECC91 08171 81171        | DS          | 16000 | 16470 | -9bpdel, -5176Alul                                          |
| NNM        | 8 8        | 16170 16177 16794 16304 16362        | Fla         | 16000 | 16500 |                                                             |
|            | 2 2        | 16176 16221 16266 16325 16357        | Р           | 16000 | 16500 | +15606Alul                                                  |
|            | 80         | 16140 16189 16234 16243              | BSb         | 16000 | 16420 | +9bpdel                                                     |
|            | 8          | 16120 16172 16304 16311              | Fla         | 16000 | 16500 |                                                             |
|            |            | 116120 16177 16304 16311             | Fla         | 16000 | 16500 |                                                             |
| <b>NNM</b> | 3          | 10127 10112 1036 16367               | M7c1c       | 16000 | 16500 | +7598Hhal                                                   |
| UNM I      | <u>-</u>   | 06191 2901 2701 2701                 | EIb         | 16040 | 16500 | +10397Alul, +5176Alul, -9824Hinfl                           |
| MIK        |            | 10223 10201 10302 10301 16362 16390  | Ela         | 16030 | 16480 | +10397Alul, +5176Alul, -9824Hinfl, -7598Hhal                |
| MIK        |            | 16297                                | M7b1        | 16050 | 16500 | +10397Alul, +10394Ddel, +5176Alul, +9824Hintl               |
| MIN        |            | 10127 10107 10172 10200              | EIb         | 16015 | 16500 | +10397Alul, +5176Alul, -7598Hhal                            |
| MIK        |            | A 2241 TOCOL LOTOL (7701             |             |       |       |                                                             |

|    |                                        | Haplogroup |       |       |                                                            |
|----|----------------------------------------|------------|-------|-------|------------------------------------------------------------|
|    |                                        |            | Start | End   |                                                            |
| 7  | 16223 16261 16362 16390                | EIb        | 16020 | 16500 |                                                            |
| ×  | 16189 16217 16247 16261                | B4a1       | 16030 | 16400 | +9bpdel                                                    |
| 6  | 16223 16311 16335 16362                | W          | 16030 | 16500 | +10397Alul, -9824Hinfl, +7598Hhal                          |
| =  | 16093 16189 16222 16223 16278 (16252N) | G2         | 16040 | 16430 | +10397Alul, +10394Ddel, +5176Alul, +7598Hhal,<br>+4831Hhal |
| 81 | 16124 16166del 16214 16223             | W          | 16030 | 16500 | +10397Alul, +10394Ddel, +5176Alul, +7598Hhal               |
| 19 | 16129 16172 16214 16304 16311          | Fla        | 16030 | 16500 |                                                            |
| 20 | 16129 16172 16304 16362 16381          | Fla        | 16030 | 16500 |                                                            |
| 34 | 16288 16304                            | R22        | 16050 | 16500 |                                                            |
| 50 | 16108 16129 16162 16172 16304          | Flala      | 16050 | 16500 |                                                            |
| 57 | 16126 16129 16192 16223 16297          | M7b1       | 16045 | 16500 | +10397Alul, +5176Alul, +7598Hhal                           |
| 61 | 16108 16129 16162 16172 16304          | Flala      | 16030 | 16500 |                                                            |
| 62 | 16189 16217 16261 (16156N)             | B4a        | 16045 | 16470 | +9bpdel                                                    |
| 2  | 16219 16223 16290 16291                | W          | 16030 | 16500 | +10397AluI, +10394Ddel, +5176Alul, +7598Hhal               |
| 65 | 16140 16189 16243                      | BSb        | 16040 | 16470 | +9bpdel                                                    |
| 67 | 16189 16223 16278                      | <b>G</b> 2 | 16030 | 16410 | +10397Alul, +5176Alul, -9824Hint1                          |
| 20 | 16140 16189 16266A                     | B5a        | 16030 | 16470 | +9bpdel                                                    |
| 12 | 16129 16172 16304 16362                | Fla        | 16045 | 16500 |                                                            |
| 74 | 16129 16304 16362 16359 16390          | F          | 16025 | 16500 |                                                            |
| 76 | 16249 16288 16304 16390                | R22        | 16030 | 16500 |                                                            |
| 82 | 16192 16288 16304 16309                | R9b        | 16030 | 16500 |                                                            |
| 83 | 16051 16223 16298 16327                | ပ          | 16030 | 16500 |                                                            |
| 2  | 16223 16311                            | Σ          | 16020 | 16500 | +10397Alul, -9824Hintl, +7598Hhal                          |
| 85 | 16093 16129 16172 16294 16304 16362    | Fla        | 16025 | 16500 |                                                            |
| 87 | 16129 16189 16192 16215 16223 16297    | M7b1       | 16025 | 16500 | +10397Alul, -9bpdel, +10394Ddel                            |
| 8  | 16092 16148 16189 16223 16311 16362    | D5         | 16030 | 16470 | -9bpdel                                                    |
| 16 | 16189 16217 16261                      | B4a        | 16045 | 16460 | +9bpdel                                                    |
| 93 | 16189 16222 16223 16278 16352          | G2         | 16030 | 16470 | -9bpdel, +7598Hhal, +10397Alul, +10394Ddel,<br>+4831Hhal   |
| 95 | 16249 16288 16301 16304 16390          | R22        | 16025 | 16500 |                                                            |
| 67 | 16108 16129 16162 16172 16304 16391    | Flala      | 16030 | 16500 |                                                            |
| 8  | 16223 16295 16362                      | M7c1c      | 16015 | 16500 | +10397Alul, +9824Hinfl                                     |

|            |            |                                     |            |       |        | RFL P Variants                                   |
|------------|------------|-------------------------------------|------------|-------|--------|--------------------------------------------------|
| Series     | 2°         | HVS-I Variants                      | Hapiogroup |       | E Part |                                                  |
|            |            |                                     |            | LIRIC |        | Juint 100 10110021 1-11 2012 1 122000            |
| MTR        | 100        | 16093 16189 16209 16223 (16318N)    | W          | 16045 | 16470  | +10397Alul, +51/6Alul, +/298Hnal, -9624milli     |
| MTR        | 103        | 16092 16140 16172 16189 16223 16278 | G2         | 16015 | 16475  | -9bpdel, +7598Hhal, +4831Hhal                    |
| MTR        | 105        | 16093 16133 16176 16223             | W          | 16015 | 16500  | +10397Alul, +5176Alul, +7598Hnal, -9824Hinii     |
| MTR        | 112        | 16129 16172 16304 16362 16400       | Fla        | 16060 | 16500  |                                                  |
| MTP        | 118        | 16140 16189 16266A                  | B5a        | 16015 | 16480  | +9bpdel                                          |
| MTR        | 121        | 16249 16288 16304 16390 (16064N)    | R22        | 16030 | 16500  |                                                  |
| MTR        | 123        | 16129 16172 16304                   | Fla        | 16030 | 16500  |                                                  |
| MTR        | 124        | 16140 16189 16266A                  | B5a        | 16015 | 16390  | +9bpdel                                          |
| MTR        | 125        | 16108 16129 16162 16172 16304       | Flala      | 16060 | 16500  |                                                  |
| MTR        | 147        | 16249 16288 16317C 16319            | R22        | 16000 | 16500  | -15606AluI                                       |
| ORA        |            | 16140 16189 16243 16294 16354       | B5b        | 16012 | 16422  | -10397 Alul                                      |
| ORA        | . ~        | 16140 16189 16243 16294 16354       | BSb        | 16020 | 16412  | -10397 Alul                                      |
| ORA        | 1 ("       | 16140 16189 16243 16294 16354       | BSb        | 16020 | 16414  | -10397 Alul                                      |
| ORA        | 4          | 16129 16223 16256 16271 16362       | M21a       | 16013 | 16497  |                                                  |
| A AO       | . ~        | 16129 16223 16256 16271 16362       | M21a       | 16025 | 16497  | +10397Alul                                       |
| OR A       | , B        | 16140 16189 16243 16294 16354       | BSb        | 16012 | 16422  | -10397 Alul -10394 Ddel -4830Hhal                |
| VNO<br>VNO | e y        | 16140 16189 16243 16294 16354       | BSb        | 16012 | 16433  | -10397 Alul -10394 Ddel +9bpdel                  |
| <b>NRA</b> | B          | 16140 16189 16243 16294             | BSb        | 16012 | 16422  | -10397 Alul -10394 Ddel                          |
| A BO       | AL<br>AL   | 16108 16129 16162 16172             | Flala      | 16012 | 16497  | -10397 Alul                                      |
|            | 84         | 16140 16189 16243 16294 16354       | B5b        | 16012 | 16422  |                                                  |
|            | 8B         | 16093 16129 16223 16256 16271 16362 | M2la       | 16012 | 16497  | +10397 Alul +10394 Ddel                          |
| ORA        | <b>A</b> 6 | 16093 16129 16217 16223 16256 16271 | M2la       | 16012 | 16497  | +10397 Alui                                      |
|            |            | 16362                               |            |       |        |                                                  |
| ORA        | <u>9</u> B | 16093 16129 16223 16256 16271 16362 | M2la       | 16012 | 16497  | +1039/ Alul +10394 Ddel<br>10302 41.1 10304 Ddel |
| ORA        | 10B        | 16140 16189 16243 16294 16354       | BSb        | 16012 | 10435  | -1039/ Alui -10394 Duei                          |
| ORA        | 10A        | 16168 16295 16304                   | R21        | 16012 | 16497  | -10397Alul -10394 Ddel                           |
| ORA        | A11        | 16140 16189 16243 16294 16354       | B5b        | 16012 | 16422  | -10397                                           |
| ORA        | IIB        | 16093 16129 16223 16256 16271 16362 | M21a       | 16012 | 16497  | +10397 Alui +10394 Ddel                          |
|            | AC1        | 16003 16129 16223 16256 16271 16362 | M21a       | 16012 | 16497  | +10397 Alul +10394 Ddel                          |
| ORA        | 128        | 16093 16129 16223 16256 16271 16362 | M21a       | 16012 | 16497  | +10397 Alul +10394 Ddel                          |
| ORA        | 13A        | 16093 16129 16223 16256 16271 16362 | M21a       | 16012 | 16497  | +10397 Alul +10394 Ddel                          |
| ORA        | 13B        |                                     | M21a       | 16012 | 16497  | +10397 Alul +10394 Ddel                          |

| Series | Ŷ           | HVS-I Variants                      | Haplogroup | I-SVH | I-SVH | RFLP Variants                                   |
|--------|-------------|-------------------------------------|------------|-------|-------|-------------------------------------------------|
|        |             |                                     |            | Start | End   |                                                 |
| ORA    | 14B         | 16140 16189 16243 16294 16354       | BSb        | 16012 | 16430 | -10397 Alul                                     |
| ORA    | 14A         | 16108 16129 16162 16172             | Flala      | 16012 | 16497 | –10397 AluI                                     |
| ORA    | 15A         | 16093 16129 16223 16256 16271 16362 | M21a       | 16012 | 16497 | +10397 Alul +10394 Ddel                         |
| ORA    | 16A         | 16140 16189 16243 16294 16354       | BSb        | 16012 | 16422 | -10397 Alul                                     |
| ORA    | 17A         | 16140 16189 16243 16294 16354       | BSb        | 16012 | 16431 | -10397 Alul                                     |
| ORA    | 17B         | 16108 16129 16162 16172 16304       | Flala      | 16012 | 16497 | -10397 Alul -10394 Ddel                         |
| ORA    | 18A         | 16093 16129 16223 16256 16271 16362 | M21a       | 16012 | 16497 | +10397 AluI +10394 DdeI                         |
| ORA    | 18B         | 16086 16168 16295 16296 16304       | R21        | 16012 | 16497 | -10397 Alul -10394 Ddel                         |
| ORA    | 19A         | 16140 16189 16243 16294 16354       | BSb        | 16012 | 16431 | -10397 AluI                                     |
| ORA    | 19 <b>B</b> | 16086 16168 16295 16296 16304       | R21        | 16012 | 16497 | -10397 Alul -10394 Ddel                         |
| ORA    | 20B         | 16108 16129 16162 16172 16304       | Flala      | 16012 | 16497 | -10397 AluI -10394 Ddel                         |
| ORA    | 20A         | 16093 16129 16223 16256 16271 16362 | M21a       | 16012 | 16497 | +10397 Alul +10394 Ddel                         |
| ORA    | 21A         | 16093 16129 16223 16256 16271 16362 | M21a       | 16012 | 16497 | +10397 AluI +10394 DdeI                         |
| ORA    | 21B         | 16086 16168 16295 16296 16304       | R21        | 16012 | 16497 | -10397 Alul -10394 Ddel                         |
| ORA    | 22A         | 16108 16129 16162 16172 16304       | Flala      | 16012 | 16497 | -10397 Alul -10394 Ddel                         |
| ORA    | 22B         | 16168 16209 16295 16296 16304       | R21        | 16012 | 16497 | -10397 Alul -10394 Ddel                         |
| ORA    | 23B         | 16108 16129 16162 16172 16304       | Flala      | 16012 | 16497 | -10397 AluI -10394 DdeI                         |
| ORA    | 23A         | 16086 16168 16295 16296 16304       | R21        | 16012 | 16497 | -10397 Alul -10394 DdeI                         |
| ORA    | 24B         | 16108 16129 16162 16172 16304       | Flala      | 16012 | 16497 | -10397 Alul -10394 Ddel                         |
| ORA    | 24A         | 16086 16168 16295 16296 16304       | R21        | 16012 | 16497 | -10397 Alul -10394 Ddel                         |
| ORA    | 25A         | 16108 16129 16162 16172 16304       | Flala      | 16012 | 16497 | -10397 Alul                                     |
| ORA    | 26A         | 16086 16168 16295 16296 16304       | R21        | 16012 | 16497 | -10397 Alul -10394 Ddel                         |
| ORA    | 27B         | 16108 16129 16162 16172 16304       | Flala      | 16012 | 16497 | -10397 Alui -10394 Ddel                         |
| ORA    | 27A         | 16086 16168 16295 16296 16304       | R21        | 16012 | 16497 | -10397 Alul -10394 Ddel                         |
| ORA    | 28B         | 16108 16129 16162 16172 16304       | Flala      | 16012 | 16497 | -10397 Alul -10394 Ddel                         |
| ORA    | 28A         | 16086 16168 16295 16296 16304       | R21        | 16012 | 16497 | -10397 Alul -10394 Ddel                         |
| ORA    | 29A         | 16108 16129 16162 16172 16304       | Flala      | 16012 | 16497 | –10397 AluI                                     |
| ORA    | 29B         | 16086 16223                         | W          | 16012 | 16497 | +10397 Alul +10394 Ddel +9052 Hhal -5351 Hhal   |
|        |             |                                     |            |       |       | -10054 Hinfi -10143 Alul +5176 Alul -9824 Hinfi |
|        |             |                                     |            |       |       | +7598 Hhal -4830 Hhal                           |
| ORA    | 30B         | 16108 16129 16162 16172             | Flala      | 16012 | 16497 | -10397 Alul -10394 Ddel                         |
|        | 30A         | 16108 16129 16162 16172 16304       | Flala      | 16012 | 16497 | –10397 AluI                                     |

| LI HVS-I RFLP Variants |              | 16497                         | 0 16497 -10397 Alul -10394 Ddel | 16497                       | 16497                         | 16497                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 16497 –10397 Alul -10394 Ddel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16497                               | 2 16497 -10397 Alul           | 16497                   | 16497 -10397 Alul              | 16497       | -10054 Hinf1 -10143 Alu1 +5176 Alu1 -9824 Hinf1<br>+7598 Hha1 -4830 Hha1 | 16497                   | 16497                         | 2 16497 –10397 Alul     | 2   16497   +10397 Alul +10394 Ddel | 2 16497 +10397 Alul +10394 Ddel     | 2 16497 -10397 Alul                   |         | 16497                               | 16497                               | 16422                         | 16497                   | 16497                               | -+                      | 2 16497                             |       | 16497 -1039/ Alul       | 16497                               | 16497                   | 2   16424   -10397 Alul -10394 Ddel |
|------------------------|--------------|-------------------------------|---------------------------------|-----------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------|-------------------------|--------------------------------|-------------|--------------------------------------------------------------------------|-------------------------|-------------------------------|-------------------------|-------------------------------------|-------------------------------------|---------------------------------------|---------|-------------------------------------|-------------------------------------|-------------------------------|-------------------------|-------------------------------------|-------------------------|-------------------------------------|-------|-------------------------|-------------------------------------|-------------------------|-------------------------------------|
| I-SVH                  | Start        | 16012                         | 16012                           | 16012                       | 16012                         | 16012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16012                               | 16012                         | 16012                   | 16012                          | 16017       |                                                                          | 16012                   | 16012                         | 16012                   | 16012                               | 16012                               | 16012                                 |         | 16012                               | 16012                               | 16012                         | 16012                   | 16012                               | 16012                   | 16012                               |       | 16012                   | 16012                               | 16012                   | 16012                               |
| Hanlogroun             | Jaco Goudann | R21                           | R21                             | R21                         | Flala                         | Flala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Flala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M21a                                | R21                           | Flala                   | N9a1                           | W           |                                                                          | Flala                   | Flala                         | Flala                   | M2la                                | M21a                                | R21                                   |         | M21a                                | M21a                                | B5b                           | R21                     | M21a                                | R21                     | M21a                                |       | R21                     | M21a                                | R21                     | B5b                                 |
| UNS I Variants         |              | 16086 16168 16295 16296 16304 | 14148 16200 16205 16206 16304   | 160% 161% 16295 16296 16304 | 14108 14100 14160 14177 16304 | 10100 10170 10100 10100 10101 10100 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 1010101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 100100 | 10100 10120 10107 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 1010101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 100101 100100 | 16/03 16120 16223 16256 16271 16362 | 16168 16709 16795 16296 16304 | 16108 16129 16162 16172 | 16223 16257A 16261 16292 16294 | 1K08K 1K773 |                                                                          | 16108 16120 16162 16172 | 16108 16120 16162 16172 16304 | 16108 16120 16162 16172 | 10109 10127 10122 10172             | 16003 16120 16223 16256 16271 16362 | 16168 16209 16295 16296 16304 (16072- | 16074N) | 16093 16129 16223 16256 16271 16362 | 16093 16129 16223 16256 16271 16362 | 16140 16189 16243 16294 16354 | 16168 16295 16296 16304 | 16093 16129 16223 16256 16271 16362 | 16168 16295 16296 16304 | 16093 16129 16217 16223 16256 16271 | 16362 | 16168 16295 16296 16304 | 16093 16129 16223 16256 16271 16362 | 16168 16295 16296 16304 | 16140 16189 16243 16294 16354       |
|                        | 2            | 314                           |                                 | 27.6                        | 720                           | 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 250                                 | 35.                           | 36R                     | 364                            | 27.6        |                                                                          | 20.4                    | 260                           |                         | 20P                                 |                                     | 404                                   |         | 41A                                 | 41B                                 | 42B                           | 42A                     | 43B                                 | 43A                     | 44A                                 |       | 44B                     | 45B                                 | 45A                     | 46B                                 |
|                        | Senes        | VaC                           |                                 | Vac                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AND A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V D V                               | Vac                           | AND<br>A                | VAO                            | Vac         | 5                                                                        | Vac                     | Vac                           | Vac                     | AND A                               | Vac                                 | ORA                                   |         | ORA                                 | ORA                                 | ORA                           | ORA                     | ORA                                 | ORA                     | ORA                                 |       | ORA                     | ORA                                 | ORA                     | ORA                                 |

| Sourise             | N    | HVS.I Variante                         | Hankorroun | HVS-I | I-SVH | RFLP Variants                                   |
|---------------------|------|----------------------------------------|------------|-------|-------|-------------------------------------------------|
|                     | 2    |                                        |            | Start | End   |                                                 |
| ORA                 | 46A  | 16093 16129 16223 16256 16271 16362    | M21a       | 16012 | 16497 |                                                 |
| ORA                 | 47B  | 16093 16129 16223 16263 16381          | M21b       | 16012 | 16497 | +10397 Alul +10394 Ddel                         |
| ORA                 | 47A  | 16168 16295 16296 16304                | R21        | 16012 | 16497 | -10397 Alul +10394 Ddel                         |
| ORA                 | 48A  | 16093 16129 16223 16256 16271 16362    | M21a       | 16012 | 16497 |                                                 |
| ORA                 | 48B  | 16093 16129 16223 16256 16271 16362    | M21a       | 16012 | 16497 | +10397 Alui +10394 Ddel                         |
| ORA                 | 49A  | 16093 16129 16223 16256 16271 16293    | M21a       | 16047 | 16497 | +10397 Alui +10394 Ddel                         |
|                     |      | 16362                                  |            |       |       |                                                 |
| ORA                 | 49B  | 16093 16129 16223 16256 16271 16362    | M21a       | 16012 | 16497 | +10397 Alul                                     |
| ORA                 | 50B  | 16140 16189 16266A                     | B5a        | 16012 | 16422 | –10397 Alul                                     |
| ORA                 | 51B  | 16093 16129 16217 16223 16256 16271    | M21a       | 16012 | 16497 |                                                 |
|                     |      | 16362                                  |            | 1     |       |                                                 |
| ORA                 | 51A  | 16093 16129 16223 16256 16271 16362    | M21a       | 16012 | 16497 | +10397 Alul +10394 Ddel                         |
| ORA                 | 52B  | 16093 16129 16223 16256 16271 16362    | M21a       | 16012 | 16497 | +10397 Alul                                     |
| ORA                 | 52A  | 16086 16168 16295 16296 16304          | R21        | 16012 | 16497 | -10397 Alul -10394 Ddel                         |
| ORA                 | 53B  | 16093 16129 16217 16223 16256 16271    | M21a       | 16012 | 16497 | +10397 Alul +10394 Ddel                         |
|                     |      | 16362                                  |            |       |       |                                                 |
| ORA                 | 53A  | 16168 16295 16296 16304                | R21        | 16012 | 16497 | -10397 Alul                                     |
| ORA                 | 55B  | 16093 16129 16217 16223 16256 16271    | M21a       | 16012 | 16497 | +10397 AluI +10394 Ddel                         |
|                     |      | 16362                                  |            |       |       |                                                 |
| ORA                 | 56B  | 16093 16129 16223 16256 16271 16362    | M21a       | 16012 | 16497 | +10397 Alul +10394 Ddel                         |
| ORA                 | 56A  | 16093 16129 16223 16256 16271 16362    | M21a       | 16012 | 16497 |                                                 |
| ORA                 | 58A  | 16093 16129 16145 16223 16256 16271    | M21a       | 16012 | 16497 | +10397 AluI +10394 Ddel                         |
| <b>∆</b> B <b>A</b> | 58R  | 10302<br>16086 16168 16295 16296 16304 | R21        | 16012 | 16497 | -10397 Alul                                     |
| ORA                 | S OR | 16189 16223 16229 16294 16311 16362    | Σ          | 16012 | 16422 | +10397 Alul +10394 Ddel +9052 Hhal -5351 Hhal   |
|                     |      |                                        |            |       |       | -10054 Hinfl -10143 Alul +5176 Alul -9824 Hinfl |
|                     |      |                                        |            |       |       | T/270 [11101 -4020 111101                       |
| ORA                 | 60B  | 16140 16189 16266A                     | B5a        | 16012 | 16422 | –10397 Alul                                     |
| ORA                 | 60A  | 16093 16129 16223 16256 16271 16362    | M21a       | 16012 | 16497 | +10397 Alul +10394 Ddel                         |
| ORA                 | 61A  | 16093 16129 16223 16256 16271 16362    | M21a       | 16012 | 16497 | +10397 Alul +10394 Ddel                         |
| ORA                 | 61B  |                                        | R21        | 16012 | 16497 | -10397 Alul                                     |
| ORA                 | 62B  | 16093 16129 16223 16256 16271 16362    | M21a       | 16012 | 16497 |                                                 |

| -    |            | UVC I Variante                               | Hanlogroup | HVS-I | I-SVH | RFLP Variants           |
|------|------------|----------------------------------------------|------------|-------|-------|-------------------------|
| SCIO |            |                                              |            | Start | End   |                         |
| ORA  | 62A        | 16093 16129 16223 16256 16271 16362          | M21a       | 16012 | 16497 | +10397 Alul +10394 Ddel |
| ORA  | 63B        | 16093 16129 16217 16223 16256 16271<br>16362 | M21a       | 16030 | 16497 | +10397 Alul +10394 Ddel |
| A AO | AFA<br>AFA | 16003 16129 16223 16256 16271 16362          | M21a       | 16012 | 16497 | +10397 Alul +10394 Ddel |
| ORA  | 64B        |                                              | M21b       | 16012 | 16497 | +10397 AluI +10394 Ddel |
| ORA  | 65A        | 16093 16129 16223 16256 16271 16362          | M21a       | 16012 | 16497 | +10397 Alul +10394 Ddel |
| ORA  | 65B        | 16093 16129 16223 16256 16271 16362          | M21a       | 16012 | 16497 | +10397 Alul +10394 Ddel |
| A    | 66B        | 16093 16129 16223 16256 16271 16362          | M21a       | 16022 | 16497 | +10397 Alul +10394 Ddel |
| ORA  | 67A        | 16086 16168 16295 16296 16304                | R21        | 16012 | 16497 | -10397 AluI             |
| ORA  | 67B        | 16086 16168 16295 16296 16304                | R21        | 16022 | 16497 | -10397 AluI             |
| ORA  | 68A        | 16086 16168 16295 16296 16304                | R21        | 16012 | 16497 |                         |
| ORA  | 68B        | 16086 16168 16295 16296 16304                | R21        | 16012 | 16497 | -10397 Alul             |
| ORA  | A9A        | 16086 16168 16295 16296 16304                | R21        | 16012 | 16497 |                         |
| ORA  | 69B        | 16086 16168 16295 16296 16304                | R21        | 16012 | 16497 | -10397 Alul             |
| ORA  | 70A        | 16093 16129 16223 16256 16271 16362          | M21a       | 16012 | 16497 |                         |
| ORA  | 70B        | 16086 16168 16295 16296 16304                | R21        | 16012 | 16497 | -10397 Alul             |
| ORA  | 718        | 16129 16145 16223 16256 16271 16362          | M21a       | 16031 | 16497 | +10397 Alul +10394 Ddel |
| ORA  | 71A        | 16086 16168 16295 16296 16304                | R21        | 16012 | 16497 |                         |
| ORA  | 72B        | 16093 16129 16223 16256 16271 16362          | M21a       | 16012 | 16497 | +10397AluI              |
| ORA  | 73A        | 16093 16129 16223 16256 16271 16362          | M21a       | 16012 | 16497 |                         |
| ORA  | 73B        | 16168 16295 16296 16304                      | R21        | 16013 | 16497 | -10397 Alul -10394 Ddel |
| ORA  | 75B        | 16223 16257A 16261 16292 16294               | N9a1       | 16004 | 16497 | -10397 Alul             |
| ORA  | 76B        | 16093 16129 16223 16256 16271 16362          | M21a       | 16012 | 16497 | +10397 AluI +10394 Ddel |
| ORA  | 76A        | 16168 16295 16296 16304                      | R21        | 16012 | 16497 | -10394 Ddel             |
| ORA  | ALL        | 16168 16295 16296 16304                      | <b>R21</b> | 16012 | 16497 | -10397 Alul             |
| ORA  | 77B        | 16168 16295 16296 16304                      | R21        | 16012 | 16497 | -10397 Alul +10394 Ddel |
| ORA  | 78A        | 16093 16129 16223 16263 16381                | M21b       | 16012 | 16497 | +10397 Alul +10394 Ddel |
| 8    | 78B        | 16168 16295 16296 16304                      | R21        | 16012 | 16497 |                         |
| ORA  | A97        | 16093 16129 16223 16263 16381                | M2Ib       | 16012 | 16497 | +10397 Alul +10394 Ddel |
| ORA  | 80B        | 16223 16257A 16261 16292 16294               | N9a1       | 16012 | 16497 | -10397 Alul             |
| ORA  | <b>81A</b> | 16168 16295 16296 16304                      | R21        | 16012 | 16497 | -10397 Alul +10394 Ddel |
| ORA  | 82B        | 16223 16257A 16261 16292 16294               | N9a1       | 16013 | 16497 | -10397 Alul             |
|      |            |                                              |            |       |       |                         |

|        |             |                                              | II Jacon   | I S/NR | I-SVH | RFL P Variants                                 |
|--------|-------------|----------------------------------------------|------------|--------|-------|------------------------------------------------|
| Series | Ž           | HV3-I Varianus                               | devigorer. | Ter.   | Find  |                                                |
|        |             |                                              | 104        | 1010   | 16407 | -10307 Alul                                    |
| ORA    | 82A         | 16086 16168 16295 16296 16304                | K2I        | 10012  | 1049/ | -10397 Alui                                    |
| ORA    | 83B         | 16168 16295 16296 16304                      | R21        | 16004  | 16497 | -10397 Alul                                    |
| ORA    | 84B         | 16086 16168 16295 16296 16304                | R21        | 16012  | 16497 | -10397 Alul                                    |
| ORA    | 84A         | 16168 16295 16296 16304                      | R21        | 16013  | 16497 | -10397 Alul                                    |
| ORA    | 85A         | 16086 16168 16295 16296 16304                | R21        | 16012  | 16497 |                                                |
| ORA    | 85B         | 16086 16168 16295 16296 16304                | R21        | 16069  | 16500 |                                                |
| ORA    | 86B         | 16223 16257A 16261 16292 16294               | N9al       | 16034  | 16497 | -10397 Alul                                    |
| ORA    | 87B         | 16086 16168 16295 16296 16304                | R21        | 16013  | 16497 | -10397 Alul                                    |
| ORA    | 87A         | 16168 16295 16296 16304                      | R21        | 16013  | 16497 | -10397 AluI                                    |
| ORA    | 884         | 16223 16257A 16261 16292 16294               | N9a1       | 16012  | 16497 |                                                |
| ORA    | 88B         | 16223 16257A 16261 16292 16294               | N9a1       | 16020  | 16497 | -10397 Alul                                    |
| ORA    | 89A         | 16223 16257A 16261 16292 16294               | N9a1       | 16012  | 16497 | -10397 Alul                                    |
| ORA    | 80R         | 16168 16295 16296 16304                      | R21        | 16022  | 16497 | -10397 AluI                                    |
| ORA    | <b>ODB</b>  | 16129 16223 16256 16271 16362                | M21a       | 16039  | 16497 |                                                |
|        |             |                                              |            |        |       | +7598 Hhal -4830 Hhal +9052 Hhal -10054 Hinf I |
|        |             |                                              |            |        |       | -10143 Alul                                    |
| ORA    | <b>A00</b>  | 16223 16257A 16261 16292 16294               | N9a1       | 16012  | 16497 | -10397 Alul                                    |
| ORA    | <b>A10</b>  | 16086 16168 16295 16296 16304                | R21        | 16012  | 16497 | -10397 Alul                                    |
| ORA    | 92A         | 16168 16295 16296 16304                      | R21        | 16012  | 16497 | -10397 Alul                                    |
| ORA    | 93A         | 16093 16129 16223 16256 16271 16362          | M21a       | 16012  | 16497 | +10397 AluI                                    |
| ORA    | 94A         | 16223 16257A 16261 16292 16294               | N9a1       | 16012  | 16497 | -10397 Alul                                    |
| ORA    | 95A         | 16168 16295 16296 16304                      | R21        | 16013  | 16497 | -10397 Alul                                    |
| ORA    | 96A         | 16168 16295 16296 16304                      | R21        | 16013  | 16497 | -10397 ARI                                     |
| ORA    | 97A         | 16168 16295 16296 16304                      | R21        | 16013  | 16497 | -10397 Alul                                    |
| ORA    | 98A         | 16168 16295 16296 16304                      | R21        | 16013  | 16497 | -10397 Alul                                    |
| ORA    | <b>A</b> 66 | 16168 16295 16296 16304                      | R21        | 16012  | 16497 |                                                |
| ORA    | 100B        | 16223 16295 16362                            | M7c1c      | 16013  | 16497 | +10397Alul +9824 Hinfl                         |
| ORA    | 100A        | 16086 16223 16288 16304 16309 16390          | R9b        | 16025  | 16497 | -10397 Alul                                    |
| ORA    | 101B        | 16193 16291                                  | N21        | 16038  | 16497 | -10397 AluI                                    |
| ORA    | 101A        | 16086 16170 16223 16288 16304 16309<br>16300 | R9b        | 16031  | 16497 | -10397 Alul                                    |
| V aC   | V CU I      | 16108 16120 16162 16172 16189 16304          | Flala      | 16033  | 16420 | -10397 Alul -10394 Ddel                        |
| UKA    | 10201       | 10100 10147 10104 10114 10114                |            |        |       |                                                |

|        |              |                                                        |            |                |       | DEI D Variante                                                                                                |
|--------|--------------|--------------------------------------------------------|------------|----------------|-------|---------------------------------------------------------------------------------------------------------------|
| Series | No           | HVS-I Variants                                         | Haplogroup | HVV-I<br>Start | End   |                                                                                                               |
| ORA    | 102B         | 16086 16170 16223 16288 16304 16309<br>16200           | R9b        | 16012          | 16497 |                                                                                                               |
| Vac    | 103.8        | 163.50                                                 | Flala      | 16012          | 16423 | –10397 Alul                                                                                                   |
| ORA    | 104A         | 16172 16223 16239 16263 16325 16381                    | M2Ib       | 16019          | 16497 | +10397Alul +5176 Alul -9824 Hinfl -5351 Hhal<br>+7598 Hhal -4830 Hhal +9052 Hhal -10054 Hinf I<br>-10143 Alul |
| ORA    | 104B         | 16086 16170 16223 16288 16304 16309<br>16390           | R9b        | 16012          | 16497 | –10397 Alul                                                                                                   |
| ORA    | 105A         | 16129 16189 16217 16261 (16216N)                       | B4a        | 16031          | 16411 | -10397 Alul                                                                                                   |
| ORA    | 105B         | 16193 16291                                            | N2I        | 16012          | 16497 | -10397 Alul                                                                                                   |
| ORA    | 106A         | 16223 16295 16362                                      | M7c1c      | 16027          | 16497 | +10397Alul +9824 Hint 1                                                                                       |
| ORA    | 106B         | 16086 16170 16223 16288 16304 16309<br>16390           | R9b        | 16012          | 16497 | -10397 Alul                                                                                                   |
| V aC   | 107.4        | 16003 16129 16223 16256 16271                          | M21a       | 16012          | 16497 | +10397 Alul                                                                                                   |
| ORA    | 107B         | 16086 16170 16223 16288 16304 16309                    | R9b        | 16039          | 16497 | -10397 Alul                                                                                                   |
| 140    | dovi         | 16291                                                  | N2I        | 16012          | 16497 | -10397 Alul                                                                                                   |
| AND C  |              | 16120 16223 16288 16304 16309 16390                    | R9b        | 16013          | 16497 | -10397 Alul                                                                                                   |
| AND A  |              | 161/0 10222 10200 1000 161 161 161 161 161 161 161 161 | Flala      | 16012          | 16422 | -10397 Alul                                                                                                   |
| ORA    | 109B         | 16086 16170 16223 16288 16304 16309                    | R9b        | 16012          | 16497 | -10397 Alul                                                                                                   |
|        |              | 16390                                                  |            | 01071          | 16472 | 10307 Alvil                                                                                                   |
| ORA    | 110A         | 16129 16189 16217 16261                                | B4a        | 71001          | 16407 | 10307 Ahil                                                                                                    |
| ORA    | 110B         | 16193 16291 16327                                      | IZN        | 71001          | 16407 | -10207 Alul                                                                                                   |
| ORA    | 111A         | 16193 16291 16327                                      | IZN        | 71001          | 16407 | -1032/ Aluit +5176 Aluit -0824 Hinft -5351 Hhal                                                               |
| ORA    | 112B         | 16223 16242 16319                                      | MZIC       | 1001           | 1049/ | +7598 Hhal -4830 Hhal +9052 Hhal -10054 Hinf I<br>-10143 Alul                                                 |
|        |              | 00291 PULY1 88C91 2CC91 02121 28021                    | R9b        | 16012          | 16497 | –10397 Alul                                                                                                   |
| OKA    | <b>V</b> 711 | 16080 101/0 10220 10200 10200 10000                    |            |                |       | -                                                                                                             |
| ORA    | 113A         | 16223 16295 16362                                      | M7c1c      | 16012          | 16497 |                                                                                                               |
| ORA    | 113B         | 16223 16295 16362                                      | M7c1c      | 16012          | 16497 | +10397 Alul +5176 Alul +9824 Hinti                                                                            |
| ORA    | 114B         | 16193 16291 16327                                      | N21        | 16012          | 16497 | -1039/ Alul                                                                                                   |
| ORA    | 114A         | 16193 16291 16327                                      | N21        | 16019          | 16497 | -1039/ Alui                                                                                                   |

|        |       |                                              |                |       | 1 3/11 | DEI D Variants                                                            |
|--------|-------|----------------------------------------------|----------------|-------|--------|---------------------------------------------------------------------------|
| Series | °N    | HVS-I Variants                               | Haplogroup     | Start | End    |                                                                           |
|        | 115.4 | 16103 16201 16327                            | N2I            | 16022 | 16497  | -10397 Alul                                                               |
| AND OR | VCII  |                                              | N21            | 16012 | 16497  | -10397 Alul                                                               |
|        | 117A  | 16221 16205 16362                            | M7c1c          | 16031 | 16497  | +10397Alul +9824 Hinfl                                                    |
| ORA    | 118A  | 16086 16170 16223 16288 16304 16309          | R9b            | 16012 | 16497  | –10397 Alul                                                               |
| 140    | 100   | 16390<br>15085 15170 15773 15788 15304 16309 | R9b            | 16012 | 16497  | -10397 Alul                                                               |
| OKA    |       | 16080 101/0 10223 10260 10301 10302          |                |       |        | 2                                                                         |
| ORA    | A911  | 16223 16295 16362                            | M7c1c          | 16012 | 16497  | +10397Alul +9824 Hintl                                                    |
| ORA    | 119B  | 16086 16170 16223 16288 16304 16309<br>16200 | R9b            | 16012 | 16497  | -10397 Alul                                                               |
| ORA    | 120A  | 16086 16170 16223 16288 16304 16309          | R9b            | 16012 | 16497  |                                                                           |
| VaC    | VIC1  | 91637 16319                                  | M21c           | 16012 | 16497  | +10397 Alul +9052 Hhal -5351 Hha -10054 Hintl                             |
| 520    |       |                                              |                |       |        | -10143 Alui +5176 Alui -9824 Hinti +/298 Hnai<br>-4830 Hhai               |
|        | aici  | 16103 16701                                  | N21            | 16012 | 16497  | -10397 Alul                                                               |
|        | 121   | 16773 16705 16362                            | M7c1c          | 16012 | 16497  | +10397 Alul +9824 Hinfl                                                   |
|        | 1778  | 16103 16701                                  | N21            | 16012 | 16497  | -10397 Alul                                                               |
|        | 1220  | 16177 16773 16739 16263 16325 16381          | M21b           | 16012 | 16497  | +10397 Alul                                                               |
|        |       | 16003 16180 16773 16274 16278 16311          | 9              | 16013 | 16430  | +10397 Alul +4831 Hhal                                                    |
| ORA    | 124A  | 16086 16170 16223 16288 16304 16309          | R9b            | 16012 | 16497  | -10397 Alul                                                               |
|        |       | 16390                                        |                |       | 20171  | 110207 A11 ± 6176 A11 _082/A Hinft _5351 Hhal                             |
| ORA    | 125B  | 16172 16223 16239 16263 16325 16381          | MZID           | 16032 | 10491  | +7598 Hhal -4830 Hhal +9052 Hhal -10054 Hinf I<br>-10143 Alul             |
|        | V 3C1 | 16273 16206 16362                            | M7c1c          | 16012 | 16497  | +10397Alul +9824 Hinfl                                                    |
| ORA    | 126B  | 16093 16184 16223 16290 16304                | M22            | 16013 | 16497  | +10397 Alu1 +9052 Hhal -5351 Hhal -10054 Hinf I<br>-10143 Alu1 +5176 Alu1 |
| ORA    | 126A  | 16086 16170 16223 16288 16304 16309          | R9b            | 16012 | 16497  | -10397 Alul                                                               |
|        |       | 16390                                        | Elala          | 16017 | 16427  | -10397 Alui                                                               |
| ORA    | 127B  | 16108 16129 16162 161/2 16189 10304          | L'Idia<br>MOIS | 1001  | 16407  | +10397 Alul                                                               |
| ORA    | 127A  | 16093 16129 16223 16256 16271                | W218           | 10012 | 16401  | -10207 Alui                                                               |
| ORA    | 128B  | 16193 16291                                  | NZI            | 1001  | 1049/  |                                                                           |

|          |          |                                                                                                                 |            |       |       | DEI D Veriante                                                          |
|----------|----------|-----------------------------------------------------------------------------------------------------------------|------------|-------|-------|-------------------------------------------------------------------------|
| Series   | °Ž       | HVS-I Variants                                                                                                  | Haplogroup | Start | End   |                                                                         |
| ORA      | 128A     | 16086 16170 16223 16288 16304 16309                                                                             | R9b        | 16012 | 16497 | -10397 Alul                                                             |
| ORA      | 129B     | 16086 16170 16223 16288 16304 16309                                                                             | R9b        | 16012 | 16497 | -10397 AluI -10394 Ddel                                                 |
|          | 0001     | 16390<br>144085 14170 16223 16288 16304 16309                                                                   | R9b        | 16013 | 16497 | -10397 Alul                                                             |
| OKA      | 1305     | 160.00 101/0 10223 10266 10304 10307                                                                            |            |       |       |                                                                         |
| ORA      | 131A     | 16193 16291 16327                                                                                               | N21        | 16012 | 16497 | -10397 Alul                                                             |
| ORA      | 1318     | 16129 16288 16304 16309 16390                                                                                   | R9b        | 16012 | 16497 | -10397 AluI                                                             |
| ORA      | 132B     | 16193 16291                                                                                                     | N2I        | 16013 | 16497 |                                                                         |
| ORA      | 132A     | 16193 16291 16327                                                                                               | N2I        | 16012 | 16497 | -10397 Alul -9bpdel                                                     |
| ORA      | 133A     | 16093 16184 16223 16290 16304                                                                                   | M22        | 16069 | 16497 |                                                                         |
| ORA      | 133B     | 16192 16288 16304 16309 16390                                                                                   | R9b        | 16012 | 16497 | -10397 Alul                                                             |
| ORA      | 134A     | 16193 16291                                                                                                     | N2I        | 16012 | 16497 |                                                                         |
| OP A     | 134R     | 16193 16291                                                                                                     | N2I        | 16012 | 16497 | -10397 Alul                                                             |
| OR A     | 135R     | 16051 16189 16274                                                                                               | B          | 16012 | 16412 | -10397 Alul +9bpdel                                                     |
| A DIO    | 1354     | 16017 16168 16223 16249                                                                                         | N22        | 16012 | 16497 | -9bpdel                                                                 |
| OR A     | AAR 136A | 16108 16129 16147 16162 16172 16304                                                                             | Flala      | 16012 | 16497 | –10397 Alul                                                             |
| VPI0     | 136R     | 16179 16223 16257A 16261 16292 16294                                                                            | N9a1       | 16012 | 16497 |                                                                         |
| AND<br>A | 1374     |                                                                                                                 | B          | 16019 | 16401 | 10397 AluI +9bpdel                                                      |
|          | 1278     | 16103 16701                                                                                                     | N2I        | 16012 | 16497 | -10397 Alui                                                             |
| Vac      | 1384     | 16003 16129 16223 16256 16271 16362                                                                             | M2la       | 16047 | 16497 | +10397 Alul                                                             |
| ORA      | 138B     | 16193 16291                                                                                                     | N2I        | 16013 | 16497 | -10397 Alul                                                             |
| ORA      | 139B     | 16223 16257A 16261 16292 16294 16304                                                                            | N9a1       | 16013 | 16497 | -10397 Alul                                                             |
| ORA      | 140A     | 16295 16319                                                                                                     | M7c1a      | 16030 | 16497 | +10397 Alul +9824 Hinti -5351 Hnal                                      |
| ORA      | 140B     | 16193 16291                                                                                                     | N2I        | 16047 | 16497 | B-1119001 1-1111202 - 1110200 - 11 0100                                 |
| ORA      | 141B     | 16093 16184 16223 16290 16304                                                                                   | M22        | 16013 | 16497 | +10397 Alul +9052 Hhal -5551 Hhal -10054 Hill<br>-10143 Alul +5176 Alul |
| 140      |          | (N19091 19050 19070 19070 19070 19070 19070 19070 19070 19070 19070 19070 19070 19070 19070 19070 19070 19070 1 | N22        | 16047 | 16497 | -10397 AluI                                                             |
|          |          |                                                                                                                 | N21        | 16012 | 16497 |                                                                         |
| Vac      | 1434     | 16223 16257A 16261 16292 16294                                                                                  | N9a1       | 16032 | 16497 | -10397 Alul                                                             |
| ORA      | 14B      | 16086 16170 16223 16288 16304 16309                                                                             | R9b        | 16012 | 16497 | -10397 Alul                                                             |
|          |          | 16390                                                                                                           |            |       |       |                                                                         |

| RFLP Variants  |             |                            |                                |                               |                                     |             |                                      |                                     |             | lel                |                               |                               |                                     |                                     | del                 | +10397 Alui +5176 Alui -9824 Hinfi -5351 Hhal |              | el                  |             |             |                                     |           |                                     |                    | del                           |                               |                               |                                |                               |                   | ul, -12308Hinfl                 |                   |                               |
|----------------|-------------|----------------------------|--------------------------------|-------------------------------|-------------------------------------|-------------|--------------------------------------|-------------------------------------|-------------|--------------------|-------------------------------|-------------------------------|-------------------------------------|-------------------------------------|---------------------|-----------------------------------------------|--------------|---------------------|-------------|-------------|-------------------------------------|-----------|-------------------------------------|--------------------|-------------------------------|-------------------------------|-------------------------------|--------------------------------|-------------------------------|-------------------|---------------------------------|-------------------|-------------------------------|
|                | -10397 Alul | 10207 Alul                 | -1039/ Aun                     | +10397 Alul                   | -10397 Alul                         | 10207 A lul | INIA 79001-                          | -1039 / Alui                        | -10397 Alul | 10307 Ahil -9hndel |                               | +1039/ Alui                   | +10397 Alul                         |                                     | -10397 Alul +9bpdel | +10397 Alul +517                              | -10143 Alual | -10307 Alul -9hndel | 1-14 LOCO1  | -1039/ Alui | -10397 Alul                         | 10207 A1I | +1039/ Alui                         | _                  | -10397 Alul -90pdel           | -10397 Alul                   | -10397 Alul                   | -10397 Alul                    | -10397 Alul                   |                   | -9bpdel, +5176Alul, -12308Hinfl | -9bpdel           |                               |
| HVS-I<br>End   | 16407       | 1401                       | 1049/                          | 16497                         | 16497                               | 16407       | 1049/                                | 16497                               | 16497       | 16407              | 10497                         | 16497                         | 16497                               | 16497                               | 16422               | 16497                                         |              | 16407               |             | 16497       | 16497                               | 204.71    | 1049/                               | 16497              | 16497                         | 16497                         | 16497                         | 16497                          | 16497                         | 16500             | 16400                           | 16420             | 16500                         |
| HVS-I<br>Sterf | 3411        | 10012                      | 10000                          | 16012                         | 16012                               | C1071       | 10012                                | 16012                               | 16013       | C1071              | 71001                         | 16013                         | 16012                               | 16047                               | 16012               | 16018                                         |              | C1071               | 71001       | 16032       | 16012                               |           | 16043                               | 16012              | 16012                         | 16013                         | 16012                         | 16012                          | 16012                         | 16040             | 16030                           | 16060             | 16030                         |
| Haplogroup     | 101         | 17N                        | N9al                           | M22                           | R9b                                 |             | Nyai                                 | R9b                                 | ICN         | 171                | 77N                           | M22                           | M21b                                | R9b                                 | B                   | M21b                                          |              |                     | 17N         | N2I         | R9b                                 |           | M21b                                | Σ                  | N22                           | Flala                         | Flala                         | N9a1                           | Flala                         | Fla               | i                               | Fla               | Fla                           |
| HVS-I Variants |             | 16193 16291 (16380-16383N) | 16223 16257A 16261 16292 16294 | 16093 16184 16223 16290 16304 | 16086 16170 16223 16288 16304 16309 |             | 16223 16257A 16261 16292 16294 16304 | 16086 16170 16223 16288 16304 16309 | 16390       | 16193 16291        | 16017 16075 16168 16223 16249 | 16093 16184 16223 16290 16304 | 16172 16223 16239 16263 16325 16381 | 16170 16223 16288 16304 16309 16390 | 16051 16189         | 16136 16217 16223 16319 16381                 |              |                     | 16193 16291 | 16193 16291 | 16086 16170 16223 16288 16304 16309 | 16390     | 16172 16223 16239 16263 16325 16381 | 16086 16223 16249A | 16017 16075 16168 16223 16249 | 16108 16129 16162 16172 16274 | 16108 16129 16162 16172 16304 | 16223 16257A 16261 16292 16294 | 16108 16129 16162 16172 16304 | 16129 16172 16304 | 16177 16189 16223 16249 16290   | 16172 16189 16304 | 16129 16172 16301 16304 16400 |
| °N<br>N        |             | 145B                       | 145A                           | 146A                          | 146B                                |             | 147A                                 | 147B                                |             | 148B               | 148A                          | 149B                          | 150A                                | 150B                                | 1514                | 151B                                          |              |                     | 152B        | 153B        | 154A                                |           | 156B                                | 157A               | 158A                          | 159B                          | 160B                          | 160A                           | 167A                          | 3                 |                                 | 1                 | 2 2                           |
| Series         |             | ORA                        | ORA                            | ORA                           | ORA                                 |             | ORA                                  | ORA                                 |             | ORA                | ORA                           | ORA                           | <b>A</b> BO                         | ORA                                 | A B D               | ORA                                           |              |                     | ORA         | ORA         | ORA                                 |           | ORA                                 | ORA                | ORA                           | ORA                           | ORA                           | Vac                            | V aC                          |                   |                                 |                   | PAD                           |

| RFLP Variants  |       | +9bpdel, -10397Alul, -10394Ddel | +10397Alul, +10394Ddel, -9824Hintl, +5176Alul | +9bpdel                    | +10397Alul, +5176Alul, -9824Hinfl | -9bpdei, -10397Alui, -10394del, +5176Alui,<br>-15606Alui |                         | -9bpdel, -10397Alul, +5176Alul | -10397Alul, +9bpdel      | -9bpdel                        | -10397Alul, +9bpdel                         | +10397Alul, +5176Alul, -9824Hinfl, -7598Hhal | +5176Alul, +10397Alul, +10394Ddel, +7598Hhal,<br>+9824Hinfl |                                     | -9bpdel, -10397Alul, -10394Ddel, +5176Alul | +9bpdel                             |       |                   | +10397Alul, -9824Hinfl, -/598Hnal | -10397Alul, +9bpdel | •                             | -10397Aiul         | +10397Alul, +9824Hinti | -10397Alul, +10394Ddel     | +10397Alu, +5176Alul, +9824Hinfl |                               | +10397Alu, +10394Ddel, +5176Alul, +9824Hintl | +10397Alu, +10394Ddel, -5176Alul | -10397Alul, -10394Ddel, +5176Alul, +7598Hhai |                                        |
|----------------|-------|---------------------------------|-----------------------------------------------|----------------------------|-----------------------------------|----------------------------------------------------------|-------------------------|--------------------------------|--------------------------|--------------------------------|---------------------------------------------|----------------------------------------------|-------------------------------------------------------------|-------------------------------------|--------------------------------------------|-------------------------------------|-------|-------------------|-----------------------------------|---------------------|-------------------------------|--------------------|------------------------|----------------------------|----------------------------------|-------------------------------|----------------------------------------------|----------------------------------|----------------------------------------------|----------------------------------------|
| I-SVH          | End   | 16470                           | 16500                                         | 16410                      | 16500                             | 16475                                                    | 16500                   | 16420                          | 16410                    | 16390                          | 16410                                       | 16500                                        | 16500                                                       | 16500                               | 16385                                      | 16500                               |       | 16500             | 16500                             | 16410               | 16500                         | 16470              | 16500                  | 16500                      | 16500                            | 16500                         | 16470                                        | 16500                            | 16500                                        | 16500                                  |
| I-SVH          | Start | 16070                           | 16050                                         | 16030                      | 16030                             | 16015                                                    | 16020                   | 16045                          | 16030                    | 16020                          | 16015                                       | 16020                                        | 16050                                                       | 16030                               | 16060                                      | 16030                               |       | 16030             | 16030                             | 16025               | 16030                         | 16060              | 16015                  | 16060                      | 16030                            | 16030                         | 16015                                        | 16030                            | 16030                                        | 16040                                  |
| Haplogroup     |       | В                               | Σ                                             | B4a                        | 5                                 | z                                                        | Fla                     | N9a1                           | B                        | N9a1                           | B                                           | Ela                                          | M7                                                          | Fla                                 | N9al                                       | B4c                                 |       | Fla               | EIb                               | B4a                 | R9b                           | B                  | M7c1c                  | Y2                         | M7                               | Flala                         | M7                                           | D                                | N2I                                          | Fla                                    |
| HVS-I Variants |       | 16189 16195 16286               | 16223 16362 (16294N)                          | 16189 16217 16261 (16054N) | 16120 16200 16223 16272           | 16189 16223 (16126N het? 16311N)                         | 16129 16172 16304 16311 | 16189 16223 16257A 16261 16292 | 16051 16189 16194C 16195 | 16189 16223 16257A 16261 16292 | 16051 16189 16194C 16195 (16039N<br>16215N) | 16223 16291 16362 16390                      | 16223 16362                                                 | 14120 16134 16172 16301 16304 16400 | 16189 16223 16257A 16261 16292             | 16140 16188 16189 16217 16274 16311 | 16335 | 16129 16172 16304 | 16223 16261 16362 16390           | 16189 16217 16261   | 16192 16288 16304 16309 16390 | 16189 16194C 16195 | 16223 16295 16362      | 16126 16231 16311 (16159N) | 16223 16362 (16064N 16102N)      | 16108 16129 16162 16172 16304 | 16223 16362                                  | 16192 16223 16274 16362          |                                              | 16129 16172 16294 16304 16362 (16159N) |
| N              | 2     | 61                              | 20                                            | 32                         | 20                                | 36                                                       | 38                      | 66                             | 78                       | 79                             | 82                                          | 8                                            | 100                                                         | 101                                 | 101                                        | 108                                 |       | 110               | 112                               | 114                 | 116                           | 117                | e                      |                            | • • •                            | 0                             | 18                                           | 26                               | 30                                           | 34                                     |
|                |       | DAD                             | DAD                                           | DAD                        |                                   | QV                                                       | DAD                     | PAD                            | PAD                      | PAD                            | PAD                                         | UVD                                          | PAD                                                         |                                     |                                            | PAD                                 |       | PAD               | PAD                               | PAD                 | PAD                           | PAD                | PAI                    | PAL                        | PAL                              | PAI.                          | DAI                                          | PAL                              | PAL                                          | PAL                                    |

|      |     | UVS I Variante                                     | Hankorom | I-SVH | I-SVH | RFLP Variants                                                          |
|------|-----|----------------------------------------------------|----------|-------|-------|------------------------------------------------------------------------|
| SCIC |     |                                                    |          | Start | End   |                                                                        |
| PAL  | 36  | 16172 16173 16223 16278 16311                      | G2       | 16060 | 16500 | +10397Alu, +10394Ddel, +5176Alul, -9824Hinfl,<br>+7598Hhal, +4831Hhal  |
| PAL  | 37  | 16223 16299 16311                                  | Σ        | 16010 | 16500 | +10397Alu, +10394Ddel, +5176Alul, -9824Hinfl,<br>+7598Hhal             |
| PAL  | 30  | 16223 16261 16362 16390                            | EIb      | 16000 | 16500 | +10397Alu, +5176Alul, -9824Hinfl, -7598Hhal                            |
| PAL  | 42  | 16223 16295 16362 (16152N 16159N)                  | M7c1c    | 16030 | 16500 | +10397Alu, +9824Hinfl, +10394Ddel                                      |
| PAL  | 43  | 16223 16295 16362                                  | M7c1c    | 16050 | 16450 | +10397Alul, +10394Ddel                                                 |
| PAL  | 52  | 16140 16189 16243                                  | BSb      | 16050 | 16470 | +9bpdel                                                                |
| PAL  | 54  | 16215 16223 16362 16390                            | EI       | 16055 | 16500 | +10397Alu, +10394Ddel, +51/6Alul, -9824Himil,<br>-7598Hhal             |
| PAL  | 55  | 16223 16257A 16261 16292 (16081N<br>16152N 16159N) | N9a1     | 16060 | 16500 |                                                                        |
| DAT  | y   | 16120 16180 16192 16223 16297                      | M7b1     | 16070 | 16400 | +9824Hinfl                                                             |
| PAI  | 8   | 16223 16274 16362                                  | D        | 16060 | 16500 | +10397Alu, -5176Alul                                                   |
| PAL  | 59  | 16196 16223 16274 16278 16290 (16159N)             | G2?      | 16030 | 16500 | +10397Alul, +10394Ddel, +5176Alul, +7598Hhal,<br>-9824Hinfl, +4831Hhal |
| DAI  | 19  | 16223 16205 16362                                  | M7c1c    | 16030 | 16475 | +10397Alu, +9824Hinfl                                                  |
| PAL  | 5   | 16223 16311 16362                                  | W        | 16040 | 16500 | +10397Alul, +10394Ddel                                                 |
| PAI  | 33  | 16129 16172 16304 16311 16362                      | Fla      | 16020 | 16500 |                                                                        |
| PAL  | 74  | 16223 16291 16362 16390 (16159N)                   | Ela      | 16030 | 16500 |                                                                        |
| PAL  | 75  | 16223 16291 16362 16390                            | Ela      | 16030 | 16500 |                                                                        |
| PAL  | 80  | 16086 16157 16256 16304 16335                      | н        | 16000 | 16500 |                                                                        |
| PAL. | 95  | 16185 16223 16291 16362 16390                      | Ela      | 16010 | 16500 | -9824Hinfl, -7598Hhal                                                  |
| PAL  | 8   | 16093 16223 16261 16311 16362 16390                | EIb      | 16030 | 16500 | +10397Alu, +5176Alul, -9824Hintl, -7598Hhal                            |
| PAL  | 107 | 16048 16162del 16214 16223                         | X        | 16030 | 16470 | +10397Alul, +7598Hhal, +10394Ddel, -9824Himi,<br>+5176Alul             |
| PAL  | 108 | 16093 16223 16249 16259 16278 16291<br>16362       | G2       | 16030 | 16500 | +10397Alu, +10394Ddel, +5176Alul, -9824Hinfl,<br>+7598Hhal, +4831Hhal  |
| DAI  | 8   | 16136 16189 16217 16300                            | B4bl     | 16030 | 16400 | +9bpdel                                                                |
| PAL  | 142 | 16223 16295 16362                                  | M7c1c    | 16050 | 16500 | +9824Hinfl                                                             |
| PAL  | 145 | 16223 16362                                        | M7       | 16050 | 16500 | +10397Alu, +5176Alul, +9824Hintl                                       |
| PAL  | 152 | 16129 16172 16304 16309                            | Fla      | 16000 | 16500 |                                                                        |
|      |     |                                                    |          |       |       |                                                                        |

| HVS-I Variants                               | Haplogroup HVS-1                       | RFLP Variants                                              |
|----------------------------------------------|----------------------------------------|------------------------------------------------------------|
|                                              | Start End                              | 14H80574 Anit 0874Uint 4750213                             |
| 16223 16311 16362                            | 16480                                  | +1039/Alu, +51/6Alul, -9824Hinii, +7296miai                |
| 16129 16145 16162 16172 16304                | 16500                                  | Q=111/00 1 14/212 1 1 11/000                               |
| 16223 16291 16362 16390                      | Ela 16030 16500 +10397Alu<br>-7598Hhal | +10397Alul, +10394Ddel, +51/6Alul, -9524Himu,<br>-7598Hhal |
| 16223 16295 16362                            |                                        |                                                            |
| 16223 16278 16295 16362                      | 16500                                  | +10397Alu, +10394Ddel, +9824Hlntl                          |
| 16223 16295 16362                            | 16500                                  |                                                            |
| 16223 16246T 16311 16362                     | 16500                                  | +10397 Alul -9824 Hintl +51 /0 Alul                        |
| 16179 16223 16295 16362                      | c 16011 16500                          | +10397 Alul +9824 Hint                                     |
| 16170 16218 16304 16311                      | 16500                                  | -10397 Alui -10394 Ddel                                    |
| 16192 16288 16304 16309 16390                | 16500                                  | -10397 Alul -10394 Ddel                                    |
| 16136 16189 16217                            | 16398                                  | Alul                                                       |
| 16223 16291 16362                            | 16500                                  | +10397 Alul +9824 Hintl +51/6 Alul                         |
| 16092 16209 16223 16224 16263 16278          | G2 16062 16500 +10397                  | +10397 Alul -9824 Hintl +5176 Alul                         |
| 16319<br>16313 16300 16304 16311 16399       | R9 16032 16500 -10397 /                | -10397 Alul -10394 Ddel                                    |
| 16148 16189 16362                            | M 16036 16398 +10397                   | +10397 Alul +10394 Ddel -9824 Hinfl +5176 Alul             |
| 16140 16188 16189 16217 16274 16311<br>16335 | B4c 16033 16500 -10397 /               | -10397 Alul -10394 Ddel                                    |
| 16189 16217 16261                            |                                        | Alul                                                       |
| 16189 16217 16261 16286                      | 16397                                  | 7 Alul                                                     |
| 16140 16189 16217 16274 16335                | B4c 16026 16394                        |                                                            |
| 16126 16214A 16223 16271 16278 16298         | M3 16011 16500                         | 7 Alul -9824 Hintl                                         |
| 16129 16172 16304                            | 16005 16397                            |                                                            |
| 16172 16304                                  | 1 16026 16500                          | -1039/ Alul -10394 Ddel                                    |
| 16093 16192 16288 16304 16309 16390          | b 16026 16500                          | -1039/ Alul -10394 Dael                                    |
| 16051 16189 16194C 16195                     | 16407                                  | -10397 Alul -10394 Ddel +96pdel -9824 Hinri                |
| 16189 16223 16291 16362 16390                | 16396                                  | 7 Alul +5176 Alul -7598 Hhal                               |
| 16126 16231 16311                            | 16500                                  | -10397 Alul +10394 Ddel                                    |
| 16129 16223                                  | 16500                                  | +10397 Alul -9824 Hinfl +5176 Alul                         |
| 16223 16295 16362                            | 16026 16500                            | +10397 Alul +9824 Hinfl                                    |
| 16108 16129 16162 16172 16304                | T1207 16600 - 10307                    | - 10397 Alul -10394 Ddel                                   |

|                |       |                               |                                     |                                    |                                |                                                                                                                 |                               |                                    |                                     |                                 |                                     |                                     |                                 |                                     |            |                         |                         |                                     |       |                                     | T     |                                |                   |                   |                                |                               | ļ                  |                                     |                                     |             |                   |                   |                         |
|----------------|-------|-------------------------------|-------------------------------------|------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|-------------------------------------|---------------------------------|-------------------------------------|-------------------------------------|---------------------------------|-------------------------------------|------------|-------------------------|-------------------------|-------------------------------------|-------|-------------------------------------|-------|--------------------------------|-------------------|-------------------|--------------------------------|-------------------------------|--------------------|-------------------------------------|-------------------------------------|-------------|-------------------|-------------------|-------------------------|
| RFLP Variants  |       | -10397 Alul -10394 Ddel       | -10397 Alul -10394Ddel +12308 Hinfl | +10397 Alul -9824 Hinfl +5176 Alul | -10397 Alul                    |                                                                                                                 | -10394 Ddel                   | +10397 Alul +9824 Hinfl +5176 Alul | -10397 Alul -10394 Ddel             | fuiH 1000 1.17 75134 1.17 20201 | +1039/ Alul +71/0 Alul -7024        | +1039/ Alul -9824 Hinti             | Infa A1.1 0001 Uinfa +6176 Ahit | mix 0/16, 111111 4706- 1014 /6601+  | 1-14 20001 | -1039/ Alui             |                         | -10397 Alui -10394 Ddel +9bpdel     |       | -10397 Alul -10394 Ddel             |       | -10397 Alul                    | -10397 Alul       |                   |                                | -10397 Alul -10394 Ddel       | -10397 Alui        | -10397 Alul -10394 Ddel +9bpdel     | -10397 Alul -10394 Ddel +9bpdel     |             | -1039/ Alul       | -10397 Alul       | +10397 Alul +9824 Hintl |
| I-SVH          | End   | 16500                         | 16500                               | 16436                              | 16400                          |                                                                                                                 | 16500                         | 16500                              | 16500                               | 1007                            | 10390                               | 16500                               | 1/100                           | 10000                               | 0000.      | 16398                   | 16500                   | 16500                               |       | 16500                               |       | 16398                          | 16432             | 16420             | 16399                          | 16500                         | 16396              | 16423                               | 16500                               |             | 16401             | 16398             | 16497                   |
| I-SVH          | Start | 16023                         | 16023                               | 16035                              | 16067                          |                                                                                                                 | 16024                         | 16025                              | 16033                               |                                 | 16024                               | 16012                               |                                 | 16024                               |            | 16020                   | 16036                   | 16025                               |       | 16024                               |       | 16011                          | 16011             | 16014             | 16011                          | 16011                         | 16029              | 16024                               | 16026                               |             | 16026             | 16060             | 16060                   |
| Hankeroup      |       | Fla                           | U7                                  | Σ                                  | Y2                             | 1                                                                                                               | Fla                           | M7c1c                              | B4c                                 |                                 | U                                   | G2                                  |                                 | G2                                  |            | Fla                     | M7c1c                   | B4c                                 |       | B4c                                 |       | B5a                            | B4a               | B4a               | B5a                            | Fla                           | B4a                | B                                   | B4c                                 |             | B4a               | B4a               | M7c1c                   |
| UVC.I Veriants |       | 16120 16122 16301 16304 16400 | 14040 16207 16309 16318T            |                                    | NUCEYI NOUYI/ 11271 1221 72171 | 16120 1621 1101 1101 1101 1101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10 | 16120 16172 16294 16304 16362 | 16223 16205 16362                  | 16140 16188 16189 16217 16274 16311 | 16335                           | 16129 16166C16189 16223 16287 16319 | 16093 16209 16223 16224 16263 16278 | 16319                           | 16093 16209 16223 16224 16263 16278 | 16319      | 16129 16132 16172 16304 | 16185 16223 16295 16362 | 16140 16188 16189 16217 16274 16311 | 16335 | 16140 16188 16189 16217 16274 16311 | 16335 | 16140 16145 16189 16224 16266A | 16189 16217 16261 | 16189 16217 16261 | 16140 16145 16189 16224 16266A | 16129 16172 16294 16304 16362 | 161.89 16217 16261 | 16093 16189 16222 16298 16299 16399 | 16140 16188 16189 16217 16261 16274 | 16311 16335 | 16189 16217 16261 | 16189 16217 16261 | 16223 16295 16362       |
|                | 2     | 53                            | 36                                  | 5 2                                | 7                              | ţ                                                                                                               | 101                           | 2                                  | 1961                                |                                 | 108                                 | 109                                 |                                 | 110                                 |            | 111                     | 117                     | 113                                 |       | 115                                 |       | 116                            | 117               | 118               | 611                            | 121                           | 13                 | 128                                 | 130                                 |             | 131               | 133               | 137                     |
|                | Sence | DEV                           | DEV                                 | LEN                                | <b>FEN</b>                     | LEN                                                                                                             | DEV                           | DEK                                | PEK                                 |                                 | PEK                                 | PEK                                 |                                 | PEK                                 |            | PEK                     | DFK                     | PEK                                 |       | PEK                                 |       | PFK                            | DFK               | PFK               | PEK                            | PFK                           | DEK                | DFK                                 | PFK                                 |             | PEK               | PEK               | PEK                     |

| No HVS-I Variants                              | <b>VI-SVH</b>                              | ariants | Haplogroup | HVS-I<br>Start | HVS-1<br>Fnd | RFLP Variants                                            |
|------------------------------------------------|--------------------------------------------|---------|------------|----------------|--------------|----------------------------------------------------------|
|                                                |                                            | -       | -          | 16011          | 16500        | -10397 AluI +10394 DdeI +10032 Alul                      |
| 138 16129 16220 10071<br>130 11201 1631 1631 1 |                                            |         | Y2         | 16011          | 16500        | -10394 Alul +10394 Ddel                                  |
| -                                              | 16066 16209 16304 16311 16399              |         | R9         | 16024          | 16500        | -10397 Alul -10394 Ddel                                  |
| ╉╴                                             | 16180 16217 16261                          |         | B4a        | 16033          | 16500        |                                                          |
|                                                | 16179 16223 16294                          |         | Σ          | 16000          | 16400        | +10397Alu, -9824Hintl, +/598Hnal, +21/0Alu               |
|                                                | 16223 16295 16362 (16358N)                 |         | M7c1c      | 16000          | 16400        | +1039/Alu                                                |
| +                                              | 16189 16223 16278                          |         | G2         | 16030          | 16410        | +1039/Alu, +10394Daci, +/390111ai, +931111ai             |
|                                                | 16109C 16129 16172 16304                   |         | Fla        | 16050          | 16500        |                                                          |
| $\left  \right $                               | 16223 16295 16362                          | -       | M7c1c      | 16030          | 16500        |                                                          |
| +                                              | 16223 16295 16362                          |         | M7c1c      | 16000          | 16500        |                                                          |
| 44 16108 16129 16162 16170 16172 16304         | 16108 16129 16162 16170 16172 16304        |         | Flala      | 16050          | 16500        |                                                          |
|                                                | 16108 16129 16162 16170 16172 16304        |         | Flala      | 16050          | 16500        | -10201 - 10201Ddal +7508Hbal -0874Hinfl                  |
| <br>                                           | <b>16086 16172 16173 16223 16278 16311</b> |         | G2         | 16015          | 16500        | +1039/Alt, +10394Ddcl, +12301.mai, -202-11.              |
| 19(9) 08191 19                                 | 141001671                                  | +       | B4a        | 16030          | 16410        | +9bpdel                                                  |
| +-                                             | 16272 16261 16362 16390                    | 1-      | EIb        | 16025          | 16500        | +10397Alu, -7598Hhal                                     |
| +                                              | 16005 16170 16700 16723 16272              | 1       | U          | 16025          | 16500        | +10397Alul, +10394Ddel, +7598Hhal                        |
|                                                | 16223 16295 16362                          |         | M7c1c      | 16015          | 16500        | +9824Hinfl                                               |
| 1                                              | 16147 16184A 16189 16217 16235 16239       |         | <b>B4</b>  | 16025          | 16500        | +9bpdel                                                  |
|                                                | 16223 16295 16362                          |         | M7c1c      | 16040          | 00001        |                                                          |
| 16108 16129 16162 16172                        | 16172                                      |         | Flala      | 16000          | 10000        |                                                          |
| 80   16129 16172 16304 16311 (16189N)          | _                                          |         | F 1a       | 51001          | 00001        | -10307Ahit -15606Ahul                                    |
|                                                |                                            |         | 17N        | 10043          | 020201       | -Ohndel +4831Hhal                                        |
| 85 16140 16172 16189 16223 16278 (16039N)      | 16223 16278                                | Î       | 10         | 07001          | 16500        |                                                          |
| 89 16223 16295 16362                           | 16223 16295 16362                          |         | M /CIC     | 100+0          | 00771        | - Oberda]                                                |
|                                                | 16140 16189 16248 16266A 16319             |         | B5a        | 16010          | 10430        |                                                          |
| +                                              | 16140 16189 16261 16266A                   |         | B5a        | 16045          | 16425        | ++9bpdel                                                 |
| 6                                              |                                            |         | 9          | 16050          | 16500        | +1039/Alu, +51/6Alul, -9824minu, +7296miai,<br>+4831Mhal |
| 103 16140 16189 16266A                         | 16140 16189 16266A                         |         | B5a        | 16050          | 16430        | +9bpdel                                                  |
| +                                              | 16108 16129 16162 16172                    |         | Flala      | 16000          | 16500        |                                                          |
|                                                |                                            |         |            |                |              |                                                          |

| a         No         HVS-I Variants         Happeroup         Sirvit         End           108         16185 16223 16206 16298         Z         16015         165500         4           110         16147 16189 1627 16134         15141         16010         16500         4           111         16108 1612 16172 16184 16304         Fla1a         16010         16500         4           111         16233 1621 16362 16390         M/Fcic         16010         16500         4           111         16233 1631 16362         E001 16304 15400         Fla1a         16010         16500         4           113         16233 1631 16362 16391 16301         M/Fcic         16045 16500         4         4           113         16233 1631 16362 (16093N)         C         16050 16500         4         4           114         16393         1633 1637 1631 16362         M/10         16040         16500         4           113         16223 1631 16362 1637 1631 13         M/10         16030         16500         4           1639         16337         1633 1637 1631 16362         160930         16500         4         4           1639         16337         1633 1637 1631 16362         16030                                                                                                                                      |     |             |                                     | 11         |        | INCI    | RFLP Variants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------|-------------------------------------|------------|--------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 108         16185 16223 16260 16298         Z         16015         16500         +           110         16147 16189 162.1 16335         B4         16010         16500         -           111         16093 162.23 16295 16362         B1         16010         16500         +           111         16223 1621 16362 16390         B1         16030         16500         +           111         16223 1631 16362         M         F1a         16030         16500         +           111         16223 1631 16362 16390         B1         16030         16500         +         +           113         16223 1631 16362 16304 16400         F1a         16030         16500         +         +           113         16223 1631 16352 16319         C         16030         16500         +         +           11         16093 16223 1631 16362         M         16030         16500         +         +         +         +         +         +         16030         16500         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +                                                                                                                                                                                      | je. | °           | HVS-I Variants                      | Hapingroup | Start  | End     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 110         16147         16139         162.17         163.35         B4         16030         16400           114         16108         162.23         165.21         163.35         16500         1           114         16108         161.29         161.25         161.84         163.00         16500         1           11         162.23         163.01         163.62         163.62         163.90         165.00         1           11         162.23         163.11         163.62         163.62         163.90         165.00         1           11         162.23         163.11         163.62         163.91         0.01         165.00         1           11         162.23         163.11         163.62         163.91         0.01         165.00         1           11         162.23         163.11         163.62         163.91         0.01         165.00         1           11         162.23         163.11         163.62         163.91         165.00         1           12         162.23         163.16         163.01         163.01         165.00         1           12         163.93         165.23         163.16                                                                                                                                                                                                   |     | 108         | 16185 16223 16260 16298             | Z          | 16015  | 16500   | +10397Alu, +10394Ddel, +5176Alul, +7598Hhal,<br>-9824Hinfl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 110         1014         10610         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16500         16                                                                                      |     |             | 52312123120121232                   | R4         | 16030  | 16400   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| III         I6108         I6123         I6239         I6108         I6123         I6530         +           1         16538         16523         16536         M7clc         16040         16500         +           1         16233         16233         16311         16537         166030         16500         +           1         16233         16311         16537         16102N         16129         16530         16530         +           1         16129         16311         16567         16093N         M         16050         165300         +           2         1         16094         16129         16323         16311         6500         165300         +           2         1         16094         16129         16223         16311         16500         16500         +           2         1         16094         16129         16523         16319         C2         16030         16500         +           2         1         16093         16223         16311         6502         16500         +         +           2         1         16094         16233         16316         1630                                                                                                                                                                                                                             |     | 0           | 16147 16189 10217 10222             | Fiala      | 16010  | 16500   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| I $16223$ $16223$ $16223$ $16300$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16500$ $16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | 114         | 16108 16129 16162 161/2 10164 10004 | 8181       |        |         | friiH10001 1.162713                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 11         10093         16223         16311         16362         16500         1           13         16223         16311         16327         (16102N)         16159N)         C         16050         16500         1           21         16223         16311         16327         (16102N)         16159N)         C         16050         16500         1           21         16023         1611         16362         (16030)         16500         1         16500         1           23         16094         1612         16223         16231         1630         16500         1           24         16343         16223         16231         1637         0         16030         16500         1           25         16094         16129         16223         16311         16362         1         16030         16500         1           25         16094         161362         161562         161562         161562         16500         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <t< td=""><td></td><td> </td><td>16223 16295 16362</td><td>M7c1c</td><td>16030</td><td>16500</td><td>+1039/Alu, +51/0Alul, +9824111111<br/></td></t<>                                                              |     |             | 16223 16295 16362                   | M7c1c      | 16030  | 16500   | +1039/Alu, +51/0Alul, +9824111111<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| I3         I6223 I6311 I6362         M         I6040         I6590         +           I8         I6129 I6172 I6301 I6304 I6400 $F1a$ I6045         I6500         +           21         I6223 I6311 I6327 (I6102N I6159N)         M         I6045         I6500         +           21         I6223 I6311 I6362 (16093N)         M10         I6050         I6500         +           24         I6084 I6148 I6223 I623 I6274 I6311         M10         I6030         I6500         +           25         I6084 I6148 I6223 I6259 I6278 I6319         G2         I6093         I6500         +           25         I6093 I6223 I6311 I6362         M         I6030         I6500         I6500         -           26         I6093 I6223 I6311 I6362         M         I6030         I6500         I6500         -           29         I6093 I6223 I6311 I6362         M         I6040         I6500         -         -           30         I6093 I6223 I6311 I6362         M         I6040         I6500         -         -           31         I6223 I6311 I6362         M         I6040         I6500         -         -           33         I6093 I6223 I6311 I6362         M                                                                                                                                                                         |     | 11          | 16093 16223 16261 16362 16390       | Elb        | 16060  | 16500   | +1039/Alu, +31/0Alui, -/370111141, 702 11.1111<br>10202 41 16174 411 +7508Hhal -0874Hinfl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 18         16223         16311         16327         (16102N         16159N)         C         16050         16550         15500         1           21         16223         16311         16326         16500         16500         16500         1           24         16094         16129         16523         16531         16500         16500         1           24         16094         16129         16523         16531         16500         16500         1           25         16093         16233         16311         16362         16159N)         M         16030         16500         1           256         16093         16233         16311         16362         M         16030         16500         1           29         16093         16233         16311         16362         M         16030         16500         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <td></td> <td>13</td> <td></td> <td>X</td> <td>16040</td> <td>16500</td> <td>+1039/Alu, +31/0Alui, +739011184, 70271201</td>                                                                                     |     | 13          |                                     | X          | 16040  | 16500   | +1039/Alu, +31/0Alui, +739011184, 70271201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 18         16129         16129         16301         6304         6400         7           21         16223         16311         16362         160931         16500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500         15500                                                                                                       |     | 18          | (16102N 16159                       | C          | 16050  | 16500   | +51/0Alul, +/290rulat, -702+11000<br>10207.01.1 10300.0461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 21 $16223$ $16362$ $16094$ $16362$ $16090$ $10500$ $10500$ $10500$ $24$ $16094$ $16129$ $16223$ $16223$ $16231$ $16530$ $16500$ $16500$ $25$ $16086$ $16148$ $16223$ $16231$ $16362$ $16500$ $16500$ $16500$ $26$ $16093$ $16223$ $16311$ $16362$ $M$ $16030$ $16500$ $16500$ $28$ $16093$ $16223$ $16311$ $16362$ $M$ $16040$ $16460$ $16460$ $29$ $16093$ $16223$ $16311$ $16362$ $M$ $16030$ $16500$ $16500$ $30$ $16093$ $16223$ $16311$ $16362$ $M$ $16030$ $16500$ $16500$ $31$ $16223$ $16221$ $16224$ $16294$ $16040$ $16500$ $16500$ $37$ $16223$ $16304$ $16400$ $16460$ $16460$ $16460$ $37$ $16223$ $16221$ $16223$ $16221$ $16204$ $16630$ $16500$ $37$ $16223$ $16221$ $16224$ $1623$ $16304$ $16400$ $16500$ $38$ $16129$ $16120$ $16304$ $16400$ $16400$ $16500$ $45$ $16129$ $16120$ $16304$ $16400$ $16300$ $16500$ $46$ $16024$ $16129$ $16304$ $16400$ $16300$ $16500$ $46$ $16023$ $16304$ $16400$ $16300$ $16500$ $16500$ $47$                                                                                                                                                                                                                                                                                                                                                                                                                 |     | 18          | 16129 16172 16301 16304 16400       | Fla        | 16045  | 16500   | -1039/Aiui, -103341004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 24         16094         16129         16223         16231         16330         10500         10500         1           25         16086         16148         16223         16231         16530         16500         1           26         16093         16223         16311         16362         1618         16500         16500           28         16093         16223         16311         16362         M         16030         16500         1           29         16093         16223         16311         16362         M         16030         16500         1           30         16093         16223         16311         16362         M         16030         16500         1           31         16223         16311         16362         M         16030         16500         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1<                                                                                                                                                                                                                       |     | 21          | 16223 16311 16362 (16093N)          | Σ          | 16050  | 10201   | +10.39/Alu, +31/020404 +5176Ahil +7598Hhal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1         16343 16357         16343 16357         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         16530         165300         16530         16530                                                                                     | 2   | 24          | 16094 16129 16223 16263 16274 16311 | M10        | 16030  | 16500   | -10.39/Aluit, +10.374.Ducit, -11.00.74.Ducit, -1.1.00.74.Ducit, -1.5606.Alul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 25       16086 16148 16223 16259 16278 16319       G2       16030       10500         26       16093 16223 16311 16362       M       16030       16500       16500         28       16093 16223 16311 16362       M       16030       16500       16500         29       16093 16223 16311 16362       M       16040       16500       16500         30       16093 16223 16311 16362       M       16040       16500       16460         34       16223 16257A 16261 16392 16294       N9ai       16030       16460       16500         34       16223 16257A 16261 16392 16394 16400       F1a       16030       16500       16500         37       16223 16295 16304 16311       M7clc       16030       16500       16500         38       16129 16172 16304 16400       F1a       16030       16500         45       16129 16172 16301 16304 16400       F1a       16030       16500         47       16129 16172 16301 16304 16400       F1a       16030       16500         47       16129 16172 16301 16304 16400       F1a       16030       16500         47       16129 16172 16301 16304 16400       F1a       16030       16500         48       16129 16172 16304 1                                                                                                                                                                                    |     |             | 16343 16357                         |            |        | 1 ( 500 | +10207Alin +10304Ddel +5176Alul +7598Hhal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1639916399 $16390$ $16500$ $16500$ 2616093 16223 16311 16362M16030165002816093 16223 16311 16362M16040164602916093 16223 16311 16362M16025165003016093 16223 16311 16362M16025165003416223 16257A 16261 16292 16294N9a116025165003716223 16275A 16261 16292 16294N9a116040165003716223 16275 16304 16311F1a16030165003816129 16172 16304 16311F1a16030165004316129 16172 16301 16304 16400F1a16030165004516129 16172 16301 16304 16400F1a16030165004616331 15304 16400F1a16030165004716129 16172 16301 16304 16400F1a16030165004816129 16172 16301 16304 16400F1a16030165004716129 16172 16301 16304 16400F1a16030165004816129 16172 16301 16304 16400F1a16030165004916129 16172 16301 16304 16400F1a16030165004816129 16172 16301 16304 16400F1a16030165004916129 16172 16301 16304 16400F1a16030165005416129 16172 16301 16304 16400F1a16050164705916140 16189 16266AB5a16050164705916140 16189 16266AB5a<                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | 25          | 16086 16148 16223 16259 16278 16319 | 62         | 00001  | nncol   | 0874Hinfi +4831Hhal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 26         16093         16322         161500         10500           28         16093         16223         16311         16362         16500         16500           29         16093         16223         16311         16362         16500         16500           30         16093         16223         16311         16362         M         16025         16500           30         16093         16223         16311         16362         M         16020         16500           34         16223         16311         6693         16520         16500         16500           37         16223         16224         16311         F1a         16030         16500           43         16129         16172         16304         16400         16400         16500           45         16129         16172         16304         16400         16030         16500           45         16129         16172         16304         16400         16500         16500           45         16129         16172         16304         16400         16300         16500           46         16129         16172         16304         <                                                                                                                                                                                                              | !   |             | 16399                               |            |        |         | -7024111111, 7031111111<br>10307411, 451764111 +7508Hhal -9824Hinfl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\overline{28}$ 16093163231631116362M160501650016500 $\overline{29}$ 16093162231631116362M160401646016500 $\overline{30}$ 16093162231631116362M160251650016500 $\overline{31}$ 162231622316257A1626116292160401650016500 $\overline{31}$ 16223162231630416311 $\overline{71}$ 160201650016500 $\overline{31}$ 16129161721630416311 $\overline{71}$ 160301650016500 $\overline{43}$ 16129161721630416400 $\overline{71}$ 160301650016500 $45$ 16129161721630416400 $\overline{71}$ 160301650016500 $46$ 16129161721630416400 $\overline{71}$ 160301650016500 $47$ 16129161721630416400 $\overline{71}$ $\overline{71}$ 1603016500 $48$ 16129161721630416400 $\overline{71}$ $\overline{71}$ 1603016500 $49$ 16129161721630416400 $\overline{71}$ $\overline{71}$ 1605016500 $48$ 16129161721630416400 $\overline{71}$ $\overline{71}$ 1605016500 $45$ 16129161721630416400 $\overline{71}$ $\overline{71}$ 1605016500 $49$ 16129161721630416400 $\overline{71}$ $\overline{71}$ $\overline{71}$                                                                                                                                                                                                                                                                                                                                                                       |     | 26          | 16093 16223 16311 16362 (16159N)    | W          | 16030  | 10001   | +1039/Alu, 101/0/111, 10/01 101, 10/01 101, 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2916093 16223 16311 16362M160401646016460 $30$ 16093 16223 16311 16362M160251650016500 $34$ 16223 16257A 16261 16362N9a1160401650016500 $37$ 16223 16223 16304 16311M7clc160301650016500 $37$ 16223 16291 16304 16400F1a160301650016460 $38$ 16129 16172 16301 16304 16400F1a160301650016500 $45$ 16129 16172 16301 16304 16400F1a160301650016500 $46$ 16239 16172 16301 16304 16400F1a160301650016500 $47$ 16129 16172 16301 16304 16400F1a160301650016500 $47$ 16129 16172 16301 16304 16400F1a160301650016500 $48$ 16129 16172 16301 16304 16400F1a160301650016500 $48$ 16129 16172 16301 16304 16400F1a160301650016500 $49$ 16129 16172 16301 16304 16400F1a160301650016500 $49$ 16129 16172 16301 16304 16400F1a160301650016500 $54$ 16189 16266AB160501647016470 $59$ 16140 16189 16266AB5a160501647016470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2   | 20          | 16003 16223 16311 16362             | W          | 16050  | 16500   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20  | 300         | 16003 16223 16311 16362             | W          | 16040  | 16460   | +5176Alul, +/598Hnal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30         16023 16257A 16261 16292 16294         N9a1         16040         16500           37         16223 16257A 16261 16292 16292 16294         M7c1c         16030         16460           37         16223 16259 16362 (16416N)         M7c1c         16030         16500           38         16129 16172 16301 16304 16400         F1a         16030         16500           45         16129 16172 16301 16304 16400         F1a         16030         16500           45         16129 16172 16301 16304 16400         F1a         16030         16500           46         16034 16121 16304 16400         F1a         16030         16500           47         16129 16172 16301 16304 16400         F1a         16030         16500           48         16129 16172 16301 16304 16400         F1a         16030         16500           49         16129 16172 16301 16304 16400         F1a         16030         16500           49         16129 16172 16301 16304 16400         F1a         16030         16500           49         16129 16172 16301 16304 16400         F1a         16030         16500           54         16189         16129 16172 16301 16304 16400         F1a         16030         16500           54                                                                                                                  | 2   | 30          | 15003 16773 16311 16362             | X          | 16025  | 16500   | +5176Alul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 2 | <u>بع</u> ا | 16223 16257A 16261 16292 16294      | N9a1       | 16040  | 16500   | -10397Alul, -10394Ddel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 37 $16223$ $16223$ $16320$ $16300$ $10030$ $10030$ $10030$ $10030$ $10030$ $10030$ $16500$ $38$ $16129$ $16172$ $16301$ $16304$ $16400$ $16500$ $16500$ $16500$ $45$ $16129$ $16172$ $16301$ $16304$ $16400$ $16500$ $16500$ $46$ $16029$ $16172$ $16301$ $16304$ $16400$ $16500$ $46$ $16034$ $16129$ $16223$ $162263$ $16274$ $16311$ $M10$ $16030$ $16500$ $47$ $16129$ $16172$ $16304$ $16311$ $F1a$ $16030$ $16500$ $48$ $16129$ $16172$ $16304$ $16400$ $F1a$ $16030$ $16500$ $49$ $16129$ $16172$ $16304$ $16400$ $F1a$ $16030$ $16500$ $49$ $16129$ $16172$ $16301$ $16304$ $16400$ $F1a$ $16030$ $16500$ $54$ $16129$ $16172$ $16301$ $16400$ $F1a$ $16050$ $16500$ $16470$ $59$ $16140$ $16189$ $16266A$ $B5a$ $16050$ $16470$ $16470$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |             | (16412N)                            |            | 1000   | 12450   | ±0074Hinfl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 38         16129         16172         16304         16311         Fla         10030         16500           43         16129         16172         16301         16304         16400         16500         16500           45         16129         16172         16301         16304         16400         16500         16500           46         16094         16129         16223         16223         16203         16500         16500           47         16333         16357         Fla         16030         16500         16500           48         16129         16172         16304         16400         Fla         16030         16500           49         16129         16172         16301         16304         16400         Fla         16030         16500           54         16129         16172         16301         16304         16400         Fla         16050         16500           59         16140         16189         16206         16470         B5a         16050         16470                                                                                                                                                                                                                                                                                                                                       | 2   | 37          | 16223 16295 16362 (16416N)          | M7c1c      | 00001  | 10400   | 1111111-2064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 43       16129       16172       16304       16400       16300       16040       16500         45       16129       16172       16301       16304       16400       16500       16500         46       16094       16129       16223       16223       16204       16500       16500         47       16129       16129       16129       16304       16300       16500         48       16129       16172       16304       16304       16500       16500         49       16129       16172       16304       16400       F1a       16030       16500         54       16129       16172       16304       16400       F1a       16050       16500         54       16189       16189       16266A       B       16050       16470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R   | 38          | 16129 16172 16304 16311             | Fla        | 10030  | 00001   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 45       16129       16172       16304       16300       16040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10040       10030       10040       10040       10040       10040       10050       10500       10500       10500       10500       10500       10500       10500       10500       10500       10500       10500       10500       10500       10500       10500       10500       10500       10500       10500       10500       10500       10500       10500       10500       10500       10410       10410       10410       10410       10410       10410       10                                                                                                                                                                      | ×   | 43          | 4 16400                             | Fla        | 16030  | 00001   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 46       16094 16129 16223 16263 16274 16311       M10       16030       16030       16500         47       16129 16172 16304 16311       F1a       16030       16500       16500         48       16129 16172 16301 16304 16400       F1a       16030       16500       16500         49       16129 16172 16301 16304 16400       F1a       16050       16500       16500         54       16189       16189 16266A       B5a       16050       16470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2   | 45          | $\neg$                              | Fla        | 16040  | 10000   | 1-1-1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 16343       16343       16357       16330       16500       16500         47       16129       16172       16301       16304       16400       F1a       16030       16500         48       16129       16172       16301       16304       16400       F1a       16030       16500         49       16129       16172       16301       16304       16400       F1a       16050       16500         54       16189       16266A       B       16055       16470         59       16140       16189       162266A       B5a       16050       16470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2   | \$          | 16094 16129 16223 16263 16274 16311 | M10        | 16030  | 16500   | -1039/Alut, +10394Duct, +31/0Alut, 1039/Alut, -1039/Alut, - |
| 47     16129     16172     16304     16311     F1a     10030     10300       48     16129     16172     16301     16304     16400     F1a     16030     16500       49     16129     16172     16301     16304     16400     F1a     16050     16500       54     16189     16189     16266A     B     16050     16470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |             | 16343 16357                         |            | 00001  | 14600   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 48         16129         16172         16301         16304         16400         F1a         10030         10030         10030         10030         10030         10030         10030         10030         10030         10030         10030         10030         10030         10030         10030         10030         10030         10030         10030         10030         10030         10030         10030         10030         10030         10030         10030         10030         10030         10030         10030         10030         10030         10030         10030         10030         10030         10030         10030         10470         20         20         10140         10030         10470         20         10030         10470         20         10470         20         10470         20         10470         20         10470         20         10470         20         10470         20         10470         20         10470         20         10470         20         10470         20         10470         20         10470         20         10470         20         10470         20         10470         20         10470         20         10470         20         10470 <t< td=""><td>ĸ</td><td>47</td><td>16129 16172 16304 16311</td><td>Fla</td><td>100001</td><td>00001</td><td></td></t<> | ĸ   | 47          | 16129 16172 16304 16311             | Fla        | 100001 | 00001   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 49         16129         16172         16304         16400         F1a         16030         10300         10300           54         16189         16266A         B         16050         16470           59         16140         16189         16266A         B5a         16050         16470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ×   | 48          | 16129 16172 16301 16304 16400       | Fla        | 16030  | 00001   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 54         16189         10401         10000         10400         10400         10400         10400         10400         10470           59         16140         16189         16266A         B5a         16050         16470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2   | 49          | 16129 16172 16301 16304 16400       | Fla        | 00001  | 02771   | 10307 Alui +9hndei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 59 16140 16189 16266A B3a 16140 16189 16266A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TGR | 5           | 16189                               | B          | CCU01  | 16470   | -1027/mui,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TGR | 59          | 16140 16189 16266A                  | B3a        | ncnot  | 104/0   | invence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

|              |            |                                        | Ucalcaroun   | HVCI    | I-SVH | RFLP Variants                                           |
|--------------|------------|----------------------------------------|--------------|---------|-------|---------------------------------------------------------|
| Series       | ŝ          | HVS-I Variants                         | dan ignidati | Start   | End   |                                                         |
|              |            | 01231 82031 03031 00001 0101           | 5            | 16050   | 16480 | +10397Alu, +10394Ddel, +5176Alul, +7598Hhal,            |
| TGR          | 88         | 16086 16148 16223 16239 102/0 102/0    | 70           |         |       | -9824Hinfl                                              |
|              |            | 16399 (16110N)                         | 11710        | 02031   | 16500 |                                                         |
| TGR          | 77         | 16223 16295 16362                      | M/CIC        | 0,001   | 00001 |                                                         |
| TGR          | 82         | 16129 16172 16301 16304 16400          | гlа          | 100.001 | MCOI  | 1.1.2.2.2.1.1.1.1.2.2.1.2.1.1.1.2.2.2.2                 |
| TGR          | 86         | 16094 16129 16223 16263 16274 16311    | M10          | 16030   | 16500 | -1039/Alult, +10394Date, -1,039/Alult, -15606Alul       |
|              |            | 16343 1635/ (10004N 101 /01)           | 100          | 14030   | 16500 | -10397Alul                                              |
| TGR          | 87         | 16192 16234 16288 16293 16304 16309    | KyD          | 00001   | 00001 |                                                         |
|              |            | 16390                                  | 110          | 16030   | 16500 | <u>-10397Alul. +10394Ddel. +5176Alul. +7598Hhal.</u>    |
| TGR          | 88         | 16223 16263 16274 16311 16343 16327    | MIN          | 00001   | 20101 | -9824Hinfl                                              |
| TGR          | 8          | 16094 16129 16223 16263 16274 16311    | M10          | 16060   | 16500 | -10397Alul, +10394Ddel, +5176Alul, +798Hnal,            |
|              |            | 16343 16357                            |              |         |       | -9624HIIIII 10204D4c1                                   |
| TGR          | 16         | 16192 16234 16288 16293 16304 16309    | R9b          | 16010   | 16500 | -1039/Alul, -10394Daci                                  |
|              |            | 16390                                  |              | 0,000   |       |                                                         |
| a Ju         | 8          | 16140 16189 16217 16274 16335 (16094N) | B4c          | 16040   | 16390 |                                                         |
| TGR          | 93         | 16094 16129 16223 16263 16274 16311    | M10          | 16080   | 16460 | -10397Alul, +10394Ddel, +51 /0Alul, +73961114           |
|              |            | 16343 16357                            |              |         |       | 10000111111000010401 +7500Uhal                          |
| TGR          | \$         | 16094 16129 16223 16263 16274 16311    | M10          | 16060   | 16500 | -1039/AIUI, +10394Duci, +/3201110                       |
|              |            | 16343 16357                            |              | 00031   | 1/500 | 10207A11_10304DdeI                                      |
| TGR          | 95         | 16249 16288 16304                      | R22          | 16030   | 00001 |                                                         |
| TCP          | 8          | 16129 16172 16301 16304 16400          | Fla          | 16040   | 10200 | Proventing 11 1 260011hot 0074Uinft                     |
| TOR          | ,<br>      | 16223 16261 16362 16390                | EIb          | 16050   | 16475 | +1039/Alu, +51/6Alul, -/596Hilal, -9624Hilli<br>        |
| TOR          | 2          | 16086 16129 16297 16324                | M7b3         | 16030   | 164/0 | +1039/Alu, +10394Duct, +31/0Alu, -702411                |
| TOR          | 4          |                                        | Σ            | 16030   | 16500 | +1039/Alul, +31/0Alul, +10374Duci, 1/2/01               |
| TOR          | . ~        | 16189 16217 16247 16261 (16169-16170N) | B4a1         | 16032   | 16424 | 1020741: 1517641.1 0874Hinft -7508Hhal                  |
| aOT          | 2          | 16223 16291 16362 16390                | Ela          | 16080   | 16480 |                                                         |
| TOP          | , <u>-</u> | 16223 16261 16362 16390                | Elb          | 16000   | 16500 | +1039/AIUI, +31/0AIUI, -3024011111                      |
| TOR          | 13         | 16092 16148 16189 16223 16362          | 50           | 16030   | 16410 | -1039/Alui, -90pdei, -103940dei, -3170Auu,<br>+7598Hhal |
| <b>4</b> 0.2 | 71         | 19291 2721 21231 00171                 | B4a1         | 16033   | 16410 |                                                         |
| TQR<br>TOR   | 81         | 16189 16195A 16241 162651 16311        | W            | 16050   | 16430 | +10397Alu, +10394Ddel, -9824Hintl, +51/6Alul            |
|              |            | (NICZZOL NICALOL)                      | B4a1         | 16027   | 16433 |                                                         |
| TOR          | 70         | 10101 10101 10741 10701                |              |         |       |                                                         |

| Series | No | HVS-I Variants                                                  | Haplogroup | I-SVH | I-SAH | RFLP Variants                                               |
|--------|----|-----------------------------------------------------------------|------------|-------|-------|-------------------------------------------------------------|
|        |    |                                                                 |            | Start | End   |                                                             |
| TOR    | 21 | 16129 16172 16294 16304 16362                                   | Fla        | 16030 | 16500 |                                                             |
| TOR    | 22 | 16223 16291 16362 16390                                         | Ela        | 16000 | 16500 |                                                             |
| TOR    | 23 | 16168 16223 16295 16362 (16399N)                                | M7c1c      | 16030 | 16500 | +10397Alu, +9824Hinfl                                       |
| TOR    | 24 | 16223 16295 16362                                               | M7c1c      | 16030 | 16500 |                                                             |
| TOR    | 26 | 16223 16291 16362 16390                                         | Ela        | 16000 | 16500 | +10397Alul, +10394Ddel, -9824Hinfl                          |
| TOR    | 27 | 16086 16129 16297 16324                                         | M7b3       | 16040 | 16500 | +10397Alul, +10394Ddel, +9824Hinfl                          |
| TOR    | 28 | 16140 16189 16217 16274 16335                                   | B4c        | 16050 | 16460 |                                                             |
| TOR    | 31 | 16189 16217 16261 (16195N 16198N                                | B4a        | 16065 | 16440 | +9bpdel                                                     |
|        |    | 16199N)                                                         |            |       |       |                                                             |
| TOR    | 34 | 16223 16295 16362                                               | M7c1c      | 16010 | 16500 |                                                             |
| TOR    | 35 | 16223 16291 16362 16390                                         | Ela        | 16010 | 16500 |                                                             |
| TOR    | 36 | 16126 16231 16311                                               | Y2         | 16030 | 16500 | -10397Alul, +10394Ddel                                      |
| TOR    | 37 | 16234 16278 16294                                               | <b>G</b> 2 | 16060 | 16430 | +10397Alu, +10394Ddel, +5176Alul, +7598Hhal,<br>-9824Hinfl  |
| TOR    | 38 | 16129 16144 16148 16223 16241 16265C<br>16700 16311 16343 16362 | ð          | 16030 | 16500 |                                                             |
| TOR    | 39 | 16092 16148 16189 16223 16362                                   | DS         | 16010 | 16415 | -10397Alul, -10394Ddel, -9pbdel, -5176Alul                  |
| TOR    | 41 | 16140 16189 16217 16362                                         | B4         | 16020 | 16410 |                                                             |
| TOR    | 42 | 16223 16295 16362                                               | M7c1c      | 16030 | 16500 |                                                             |
| TOR    | 43 | 16189 16223 16362 (16039N)                                      | DS         | 16020 | 16410 | -10397Alul, -10394Ddel, -5176Alul                           |
| TOR    | 4  | 16129 16172 16294 16304 16362                                   | Fla        | 16030 | 16500 |                                                             |
| TOR    | 45 | 16223 16295 16362                                               | M7c1c      | 16010 | 16500 |                                                             |
| TOR    | 52 | 16189 16217 16247 16261                                         | B4a1       | 16037 | 16431 |                                                             |
| TOR    | 53 | 16223 16291 16362 16390                                         | Ela        | 16030 | 16470 | +5176Alul, +10397Alul, +10394Ddel, -7598Hhal,<br>-9824Hinfl |
| TOR    | 54 | 16129 16172 16294 16304 16362                                   | Fla        | 16030 | 16470 |                                                             |
| TOR    | 55 | 16189 16217 16261 16311                                         | B4a        | 16050 | 16430 |                                                             |
| TOR    | 56 | 16223 16324 16362 16390                                         | EI         | 16000 | 16500 | +5176Alul, +10397Alul, +10394Ddel, -7598Hhal,<br>-9824Hinf1 |
| TOR    | 59 | 16140 16189 16243                                               | BSb        | 16030 | 16410 |                                                             |
| TOR    | 8  | 16140 16189 16217 16274                                         | B4c        | 16030 | 16415 |                                                             |
| TOR    | 63 | 16126 16231 16311                                               | Y2         | 16020 | 16500 |                                                             |

|            |        |                                     | Hanlogroun  | I-SAH | I-SVH | RFLP Variants                                                         |
|------------|--------|-------------------------------------|-------------|-------|-------|-----------------------------------------------------------------------|
| Neries     | Ž      |                                     | dan Soudary | Start | End   |                                                                       |
| TOR        | 65     | 16092 16148 16189 16223 16362       | DS          | 16060 | 16420 | -10397Alul, -10394Ddel, -9bpdel, -5176Alul                            |
| TOR        | 8      | 16223 16291 16362 16390             | Ela         | 16030 | 16500 | -7598Hhal                                                             |
| TOR        | 88     | 16189 16217 16261                   | B4a         | 16050 | 16400 |                                                                       |
| TOR        | 21     | 16295 16362                         | M7c1c       | 16050 | 16500 | +5176Alul, +9824Hinfl                                                 |
| TOR        | 74     | 16223 16291 16362 16390             | Ela         | 16040 | 16500 |                                                                       |
| TOR<br>TOR | 75     | 16092 16148 16189 16223 16362       | DS          | 16030 | 16410 | -10397Alul, -10394Ddel, -9bpdel, -51/6Alul                            |
| TOR        | 77     | 16189 16223 16362                   | D5          | 16040 | 16400 | -10397Alul, -10394Ddel, -9bpdel, -21/0Alul                            |
| TOR        | 78     | 16189 16217 16247 16261             | B4a1        | 16030 | 16410 |                                                                       |
| TOR        | 80     | 16140 16189 16217 16274 16335       | B4c         | 16050 | 16430 |                                                                       |
| TOR        | 81     | 16189 16223 16278                   | 62          | 16020 | 16425 | +10397Alu, +10394Ddel, +51/6Alul, +7398Hnal,<br>-9824Hinfl, +4831Hhal |
| TOR        | 8      | 16140 16189 16217 16274 16335       | B4c         | 16060 | 16410 |                                                                       |
| TOR        | 85     | 16168 16223 16295 16362 (16078N     | M7c1c       | 16050 | 16500 | +10397Alul, +10394Ddel, +9824Hinti                                    |
|            |        | 16120N)                             |             |       |       | Buill Coo 1-F Chocot - T 1                                            |
| TOR        | 86     | 16223 16324 16362 16390             | EI          | 16010 | 16500 | +10397Alul, +10394Ddel, -9624mini                                     |
| TOR        | 8      | 16129 16172 16294 16304 16362       | Fla         | 16050 | 16500 |                                                                       |
| TOR        | 16     | 16117 16223 16291 16362 16390       | Ela         | 16040 | 16500 | +10397Alul, +10394Ddel, -7598Hhal, -9824Hinti                         |
| TOR        | 32     | 16117 16223 16291 16362 16390       | Ela         | 16010 | 16500 | +10397Alul, +10394Ddel, -7598Hhal                                     |
| TOR        | 8      | 16129 16172 16294 16304 16362       | Fla         | 16080 | 16400 |                                                                       |
| TOR        | 106    | 16223 16291 16362 16390             | Ela         | 16030 | 16500 |                                                                       |
| TOR        | 108    | 16108 16129 16162 16172 16304       | Flala       | 16010 | 16500 | 1-1-1-1-0-0-1-                                                        |
| TOR        | 110    | 16180 16223 16291 16362 16390       | Ela         | 16030 | 16500 | +10397Alui, +10394Ddei, -9624Hinii, -7396Filiai                       |
| TOR        | E      | 16086 16126 16129 16297 16324       | M7b3        | 16030 | 16500 | +10397Aiul, +10394Ddel, +9824HIIII                                    |
| TOR        | 113    | 16129 16172 16294 16304 16362       | Fla         | 16030 | 16500 | 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-                                |
| TOR        | 114    | 16189 16223 16362                   | D5          | 16050 | 16400 | -51/6Alul, -96/4Hinu                                                  |
| TOR        | 116    | 16223 16291 16362 16390             | Ela         | 16030 | 16470 | -7598Hhal                                                             |
| TOR        | 122    | 16129 16172 16294 16304 16362       | Fla         | 16030 | 16500 |                                                                       |
| TOR        | 127?   | 16189 16217 16261                   | B4a         | 16023 | 16394 |                                                                       |
| TOR        | 127    | 16223 16291 16362 16390             | Ela         | 16050 | 16500 | -7598Hhal                                                             |
| dīn        | -      | 16093 16192 16223 16271 16316 16362 | D           | 16030 | 16500 | +10397Alul, +10394Ddel, -9824Hinti, +7398Hhai,<br>-5176Alul           |
| all        | -<br>- | 16189 16217 16261                   | B4a         | 16040 | 16410 | +9bpdel                                                               |
| UJF        | 4      |                                     |             |       |       |                                                                       |

|                |       |                                   |                         |                   |                                                             |                                                                             |            |                                               |                                 |                                               |                                                                     |                                   |                               |                   |                         |                   |                         |                    | IJ,                                                         |                                     |                               |                                 |                         |             |                         |                   |                         |
|----------------|-------|-----------------------------------|-------------------------|-------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------|------------|-----------------------------------------------|---------------------------------|-----------------------------------------------|---------------------------------------------------------------------|-----------------------------------|-------------------------------|-------------------|-------------------------|-------------------|-------------------------|--------------------|-------------------------------------------------------------|-------------------------------------|-------------------------------|---------------------------------|-------------------------|-------------|-------------------------|-------------------|-------------------------|
| RFLP Variants  |       | +10397Alul, +5176Alul, -9824Hinfl | +9bpdel                 |                   | +10397Alul, +10394Ddel, +5176Alul, -7598Hhal,<br>-9824Hinfi | +10397AluI                                                                  | +10397AluI | +10397Alul, +10394Ddel, +5176Alul, -9824Hinfl | -10397Alul, -10394Ddel, +9bpdel | +10397Alul, +10394Ddel, -7598Hhal, -9824Hinfl | +10397Alu, -9bpdel, +10394Ddel, +7598Hhal,<br>-9824Hinfl, +5176Alul | +10397Alul, -7598Hhal, -9824Hinfl | +9bpdel                       | +9bpdel           | +10397Alu, -7598Hhal    | +9bpdel           | -7598HhaI               | +9bpdel            | +10397Alul, +10394Ddel, +7598Hhal, -9824Hinfl,<br>-5176Alul |                                     | +10397Alul, -7598Hhal         | -10397Alul, -9bpdel, -10394Ddel |                         |             | +9bpdel                 | +9bpdel           | -7598Hhal               |
| I-SVH          | End   | 16500                             | 16380                   | 16420             | 16500                                                       | 16410                                                                       | 16500      | 16500                                         | 16430                           | 16500                                         | 16370                                                               | 16500                             | 16400                         | 16400             | 16500                   | 16410             | 16500                   | 16430              | 16430                                                       | 16500                               | 16470                         | 16380                           | 16500                   | 16500       | 16410                   | 16435             | 16500                   |
| I-SVH          | Start | 16030                             | 16030                   | 16010             | 16030                                                       | 16000                                                                       | 16040      | 16020                                         | 16030                           | 16050                                         | 16030                                                               | 16010                             | 16030                         | 16050             | 16030                   | 16030             | 16030                   | 16040              | 16050                                                       | 16030                               | 16010                         | 16030                           | 16030                   | 16030       | 16030                   | 16030             | 16030                   |
| Haplogroup     | )     | EIb                               | B4a1                    | Fla               | EI                                                          | ð                                                                           | ð          | C                                             | B                               | Ela                                           | W                                                                   | Ela                               | B4c                           | B4a               | Elb                     | B4a               | Ela                     | B5a                | DS                                                          | Fla                                 | El                            | DS                              | Ela                     | Fla         | B4a1                    | B4a               | Ela                     |
| HVS-I Variants |       | 16093 16223 16261 16362 16390     | 16189 16217 16247 16261 | 16129 16172 16304 | 16051 16223 16258C 16309 16362 16390                        | 16129 16144 16148 16153 16162 16192<br>16223 16241 16249 16265C 16311 16343 |            | 16223 16298 16327                             | 16051 16189 16362               | 16129 16148 16223 16291 16362 16390           | 16189 16209 16223 16300                                             | 16223 16291 16362 16390           | 16140 16189 16217 16274 16335 | 16189 16217 16261 | 16223 16261 16362 16390 | 16189 16217 16261 | 16223 16291 16362 16390 | 16140 16189 16266A | 16189 16223 16311 16362                                     | 16092 16129 16172 16294 16304 16362 | 16223 16256 16324 16362 16390 | 16148 16189 16223 16362         | 16223 16291 16362 16390 | 16172 16304 | 16189 16217 16247 16261 | 16189 16217 16261 | 16223 16201 16362 16390 |
| Ŋ              |       | 3                                 | 4                       | 9                 | 8                                                           | 6                                                                           | 10         | 12                                            | 13                              | 14                                            | 15                                                                  | 16                                | 17                            | 18                | 19                      | 20                | 22                      | 23                 | 24                                                          | 25                                  | 26                            | 27                              | 28                      | 29          | 30                      | 31                | 22                      |
| Series         |       | dſŊ                               | UIP                     | dſŊ               | đ                                                           | UIP                                                                         | UIP        | <b>UIP</b>                                    | UIP                             | UIP                                           | <b>UIP</b>                                                          | dID                               | UIP                           | UIP               | UIP                     | UJP               | din                     | UIP                | UJP                                                         | UP                                  | dīn                           | UIP                             | UIP                     | UIP         | UP                      | dſŊ               | alli                    |

|        |                 |                                         |            | I SINT |       | RFLP Variants                                                          |
|--------|-----------------|-----------------------------------------|------------|--------|-------|------------------------------------------------------------------------|
| Series | °Z              | HVS-I Variants                          | Hapiogroup | Start  | End   |                                                                        |
| drn    | 33              | 16129 16209 16223 16272                 | U          | 16045  | 16430 | +10397Alu, +10394Ddel, +5176Alul, +7598Hhal,<br>-9824Hinfl             |
|        |                 | AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA  | BSa        | 16040  | 16410 | +9bpdel                                                                |
| 10     | *               |                                         | BSb        | 16040  | 16430 | +9bpdel                                                                |
| an an  | 36              | 16189 16223 16278                       | <u>G2</u>  | 16030  | 16430 | +10397Alul, +10394Ddel, +5176Alul, +7598Hhal,<br>-9824Hinfl, +4831Hhal |
| -      | 4               | 899C91 19C91 08191 0F121                | B5a        | 16030  | 16410 | +9bpdel                                                                |
| d In   | 40              | 16129 16209 16223 16272                 | U          | 16000  | 16500 | +10397Alul, +10394Ddel, +5176Alul, +/598Hhal,<br>-9824Hinfl            |
|        | Į               | 19291 2721 21231 2131                   | B4a1       | 16040  | 16430 | +9bpdel                                                                |
| dīn    | 42              | 16129 16144 16148 16172 16223 16242     | δ          | 16020  | 16500 | +10397Alul                                                             |
|        |                 | 16265C 10311 10343                      | R21/R9??   | 16030  | 16500 | -10397Alul, -10394Ddel                                                 |
|        | <del>1</del> 40 | 16120 16717 16773 16261 16335           | B4a        | 16040  | 16425 | +9bpdel                                                                |
|        | ‡ ¥             | 16180 16180 16217 16274 16335 (16252N)  | B4c        | 16040  | 16415 | +9bpdel                                                                |
|        | 46              | 16223 16205 16362                       | M7c1c      | 16030  | 16500 | +10397Alul, +9824Hintl                                                 |
|        | <b>}</b>        | 16180 16740 16786 16288                 | R22        | 16050  | 16435 | -10397Alul, -10394Ddel, -12308Hintl                                    |
| an     | 48              | 16051 16185 16223 16362 16390           | EI         | 16030  | 16500 | +10397Alul, +10394Ddel, +51/6Alul, -7598Hnal,<br>-9824Hinfl            |
|        |                 | 00531 5251 10531 52531                  | Ela        | 16050  | 16500 |                                                                        |
| 40     | 49              | 12101 12101 1201 1201 1201 1201 1201 12 | B4c        | 16040  | 16435 | +9bpdel                                                                |
|        | 2               | 16147 16189 16217 16235 (16358N)        | B4         | 16030  | 16410 | +9bpdel                                                                |
|        | 5               | 16120 16172 16301 16304 16362 16400     | Fla        | 16030  | 16500 | 9-:117.000 - 1 17.25.2 · · · · · · · · · · · · · · · · · · ·           |
| MAI    | 34              | 16223 16295 16311 16362                 | M7c1c      | 16080  | 16500 | +10397Alul, +10394Ddel, +51/0Alul, +9824Hilli                          |
| WAI    | 2               | 16223 16295 16311 16362 (16412N         | M7c1c      | 16080  | 16480 | +21/6Alul                                                              |
|        |                 | 16434N)                                 | MTh2       | 16030  | 16500 | +10397Alul +5176Alul, +9824Hinfl                                       |
| IMAI   | 6               | 16086 16129 16295 16297 16324           | C0/W       | 0001   | 00701 |                                                                        |
| WAI    | 12              | 16129 16172 16294 16304 16362           | Fla        | 16050  | 00001 |                                                                        |
| WAI    | 10              | 16168 16172 16223 16249                 | N22        | 16030  | 16500 | -1039/Alul, -10394L0del, -10000Alul                                    |
| IVM    | 24              | 16223 16311 16362 16400                 | W          | 16030  | 16500 |                                                                        |
| WAI    | 25              | 16093 16168 16172 16223 16249           | N22        | 16030  | 16500 | -10397Alul, -10394Ddel, -13000Alul                                     |
|        |                 |                                         |            |        |       |                                                                        |

| Series | No | HVS-I Variants                                          | Haplogroup | I-SAH | I-SVH | RFLP Variants                                                          |
|--------|----|---------------------------------------------------------|------------|-------|-------|------------------------------------------------------------------------|
|        |    |                                                         |            | Start | End   |                                                                        |
| WAI    | 26 | 16150 16223 16274 16295 16311 16362                     | M7c1c      | 16000 | 16500 | +5176Alul, +10397Alul, +7598Hhal, +10394Ddel,<br>+9824Hinfl            |
| WAI    | 27 | 16223 16261 16362 16390                                 | EIb        | 16050 | 16500 | +10397Alul, +5176Alul, -7598Hhal, -9824Hinfl                           |
| WAI    | 28 | 16223 16261 16362 16390                                 | EIb        | 16030 | 16500 | +5176Alul, +10397Alul, +10394Ddel                                      |
| WAI    | 30 | 16051 16215 16223 16362 16390                           | EI         | 16030 | 16500 | +10397Alul, +5176Alul, -7598Hhal, -9824Hinfl                           |
| WAI    | 31 | 16256 16290 16465                                       | R          | 16000 | 16500 | -10397Alul, -10394Ddel, -15606Alul                                     |
| WAI    | 33 | 16168 16172 16223 16249                                 | N22        | 16030 | 16500 | -10397Alul, -10394Ddel, -15606Alul                                     |
| WAI    | 35 | 16223 16295 16362                                       | M7c1c      | 16010 | 16500 | +10397Alul, +9824Hinfl                                                 |
| WAI    | 36 | 16108 16129 16162 16172 16304                           | Flala      | 16030 | 16500 |                                                                        |
| WAI    | 37 | 16189 16223 16227 16291 16362 (16356N<br>16358N 16360N) | ¥          | 16030 | 16390 | +10397Alul, +5176Alul, -7598Hhal, -9824Hinfl                           |
| WAI    | 38 | 16129 16172 16304 16311 (16477N)                        | Fla        | 16050 | 16500 |                                                                        |
| WAI    | 39 | 16249 16288 16301 16304 16390                           | R22        | 16050 | 16500 | -10397Alul, -10394Ddel                                                 |
| WAI    | 6  | 16129 16209 16223 16311 16325                           | 9          | 16000 | 16500 | +10397Alul, +10394Ddel, +5176Alul, +7598Hhal,<br>-9824Hinfl, +4831Hhal |
| WAI    | 41 | 16129 16172 16294 16304 16362                           | Fla        | 16000 | 16500 |                                                                        |
| WAI    | 42 | 16129 16144 16148 16223 16241 16265C<br>16311 16343     | ბ          | 16040 | 16500 | +10397AluI                                                             |
| WAI    | 43 | 16223 16261 16362 16390                                 | EIb        | 16040 | 16500 | +5176Aluf, +10397Aluf, +10394Ddel, -7598Hhal,<br>-9824Hinfl            |
| WAI    | 45 | 16220C 16265 16298 16311 16362                          | F3b        | 16060 | 16480 | -10397AluI                                                             |
| WAI    | 46 | 16129 16172 16304 16311 (16465N)                        | Fla        | 16020 | 16500 |                                                                        |
| WAI    | 47 | 16093 16172 16266 16270                                 | Р          | 16000 | 16500 | -10397Alul, -10394Ddel, +15606Alul                                     |
| WAI    | 48 | 16086 16129 16295 16297 16324                           | M7b3       | 16060 | 16500 | +10397Alul, +5176Alul, +9824Hinfl                                      |
| WAI    | 50 | 16129 16172 16304                                       | Fla        | 16040 | 16500 |                                                                        |
| WAI    | 55 | 16129 16140 16271                                       | W          | 16040 | 16500 | +10397Alul, +10394Ddel, +5176Alul, +7598Hhal,<br>-9824Hinfl            |
| WAI    | 56 | 16189 16223 16362                                       | M7         | 16000 | 16460 | +10397Alul, +1039Ddel, +5176Alul, +9824Hinfl                           |
| WAI    | 57 | 16223 16295 16362                                       | M7c1c      | 16010 | 16500 | +5176Alul, +9824Hinfl                                                  |
| WAI    | 58 | 16086 16129 16295 16297 16324                           | M7b3       | 16040 | 16500 | +10397AJul, +5176Alul, +9824Hinfl                                      |
| WAI    | 59 | 16223 16261 16362 16390 (16348N)                        | Elb        | 16070 | 16500 | +5176Alul, -7598Hhal, -9824Hinfl                                       |
| WAI    | 60 | 16223 16295 16362                                       | M7c1c      | 16030 | 16500 |                                                                        |

| 54150      | ź   | HVS-I Variants                         | Haplogroup | HVS-I | HVY-I | Kr Lr Varianus                              |
|------------|-----|----------------------------------------|------------|-------|-------|---------------------------------------------|
|            | 2   |                                        |            | Start | End   |                                             |
| MAI 6      | 62  | 16223 16261 16362 16390                | EIb        | 16040 | 16500 | +5176Alul, -7598Hhal, -9824Hinfl            |
|            | 27  | 16086 16129 16295 16297 16324          | M7b3       | 16040 | 16500 |                                             |
| +          | 65  | 16129 16162 16172 16304                | Flal       | 16040 | 16500 |                                             |
| +          | 99  | 16249 16288 16301 16304 16390          | R22        | 16080 | 16500 |                                             |
|            | 67  | 16249 16288 16317C                     | R22        | 16060 | 16500 | -10397Alul, -10394Ddel                      |
| $\uparrow$ | 69  | 16223 16291 16362 16390                | Ela        | 16040 | 16460 | +10397Alul, +5176Alul, -7598Hhal            |
|            | 20  | 16093 16168 16223 16249 16278 16295    | N22        | 16040 | 16500 | -10397Alul, -10394Ddel, -15606Alul          |
|            | 72  | 16249 16288 16304 16390                | R22        | 16070 | 16500 |                                             |
| +          | 1/2 | 16108 16129 16162 16172 16293 16304    | Flala      | 16000 | 16500 |                                             |
|            | 77  | 16093 16176 16266 16270 16357          | đ          | 16070 | 16470 | -10397Alul, -10394Ddel, +15606Alul          |
|            | 78  | 16157 16256 16304 16335 (16086N)       | ſ.         | 16060 | 16500 | -10397Alul, -10394Ddel                      |
| +          | 8   | 16223 16261 16362 16390                | EIb        | 16050 | 16500 | +10397Alu, +10394Ddel, +5176Alul, -7598Hhal |
| +-         | 83  | 16129 16172 16294 16304 16362 (16412N) | Fla        | 16050 | 16500 |                                             |
|            | 84  | 16129 16172 16294 16304                | Fla        | 16000 | 16500 |                                             |
|            | 88  | 16129 16144 16148 16209 16223 16241    | 0          | 16050 | 16500 | +10397AluI                                  |
|            |     | 16265C 16311 16343                     |            |       |       |                                             |

## Appendix II – Results of HVS-II Sequencing, np 10310 and np 8701 Status

## Appendix II – Results of HVS-II Sequencing, np 10310 and np 8701 Status

| Series | Number | HVS-  | HVS- | HVS-II Variants          | Other      |
|--------|--------|-------|------|--------------------------|------------|
|        |        | II    | II   |                          | Variants   |
|        |        | Start | End  |                          |            |
| ALO    | 8      | 40    | 429  | 073 249del 263           | n/t        |
| ALO    | 40     | 40    | 429  | 073 249del 263           | n/t        |
| ALO    | 44     | 40    | 429  | 073 249del 263 (85N 94N) | n/t        |
| ALO    | 58     | 90    | 429  | 263                      | n/t        |
| ALO    | 63     | 60    | 429  | 73 143 199 263           | n/t        |
| ALO    | 72     | 100   | 400  | 249del 263               | n/t        |
| BAL    | 58     | 90    | 429  | 152 263                  | <u>n/t</u> |
| FIL    | 3      | 40    | 429  | 73 249del 263            | n/t        |
| KK     | 6      | 40    | 429  | 73 146 249del 263        | n/t        |
| KK     | 63     | 40    | 429  | 73 249del 263            | n/t        |
| KK     | 69     | 50    | 420  | 73 249del 263            | n/t        |
| MED    | 3      | 40    | 370  | 73 143 263               | 10310G     |
| MED    | 8      | 40    | 420  | 73 249del 263            | 10310A     |
| MED    | 113    | 40    | 420  | 73 223 263               | 10310G     |
| MND    | 2      | 130   | 400  | 249del 263               | n/t        |
| MND    | 54     | 50    | 420  | 73 146 249del            | 10310A     |
| MTR    | 83     | 50    | 420  | 73 145 152 249del 263    | n/t        |
| PAL    | 80     | 50    | 420  | 73 249del 263            | 10310G     |
| PEK    | 7      | 60    | 120  | 73 249del 263            | n/t        |
| PEK    | 20     | 40    | 420  | 73 89 90 263             | 10310G     |
| PEK    | 107    | 50    | 430  | 73 146 199 263           | 10310G     |
| PLB    | 108    | 96    | 420  | 73 249del 263            | n/t        |
| UJP    | 12     | 96    | 420  | 143 146 195 249del 263   | n/t        |
| ORA    | 9B     | 39    | 426  | 73 150 152 263 315insC   | n/t        |
| ORA    | 158B   | 39    | 426  | 73 263 309insC 315insC   | n/t        |
| ORA    | 7A     | 41    | 420  | 73 249del 263            | n/t        |
| ORA    | 112A   | 60    | 420  | 73 143 152 183 263       | n/t        |
| ORA    | 118A   | 40    | 430  | 58 73 143 152 183 263    | n/t        |
| ORA    | 80B    | 50    | 420  | 73 150 263               | n/t        |
| ORA    | 114A   | n/t   | n/t  | n/t                      | 8701G      |
| ORA    | 115A   | n/t   | n/t  | n/t                      | 8701G      |
| ORA    | 122B   | n/t   | n/t  | n/t                      | 8701G      |

n/t = not tested

## Appendix III – Table of Southeast Asian Haplotypes

## <u>Appendix III – Table of</u> Southeast Asian Haplotypes

| Ambon                        |                             |                 |                         |             |             |                         |         |                             |                         |                           |         |                   |                 |                   |             |             |                     |         |                 |             |         |                 |                      |                  |                          |       |                 |      |                          |                         |                 |                     |                     | ]                   |
|------------------------------|-----------------------------|-----------------|-------------------------|-------------|-------------|-------------------------|---------|-----------------------------|-------------------------|---------------------------|---------|-------------------|-----------------|-------------------|-------------|-------------|---------------------|---------|-----------------|-------------|---------|-----------------|----------------------|------------------|--------------------------|-------|-----------------|------|--------------------------|-------------------------|-----------------|---------------------|---------------------|---------------------|
| Alor                         |                             |                 |                         |             | ·           | ·                       |         |                             |                         |                           |         |                   |                 |                   |             |             |                     |         |                 | ,           |         |                 | ,                    |                  |                          |       |                 |      |                          |                         |                 |                     |                     |                     |
| Sumba                        |                             |                 |                         |             |             |                         |         |                             |                         |                           |         |                   |                 |                   |             |             |                     |         |                 |             |         |                 |                      |                  |                          |       |                 |      |                          |                         |                 |                     | •                   |                     |
| Lombok                       |                             |                 |                         |             |             |                         |         |                             |                         |                           |         |                   |                 |                   |             |             |                     |         |                 |             |         |                 |                      |                  |                          |       |                 |      |                          |                         |                 |                     |                     |                     |
| Bali                         |                             |                 |                         |             |             |                         |         |                             |                         |                           |         |                   |                 |                   |             |             |                     |         |                 |             |         |                 |                      |                  |                          |       |                 |      |                          | •                       |                 |                     |                     |                     |
| Toraja                       |                             |                 |                         |             |             |                         |         |                             |                         |                           |         |                   | •               |                   |             |             |                     |         |                 |             |         |                 |                      |                  |                          |       |                 |      |                          |                         |                 |                     |                     |                     |
| Ujung Padang                 |                             |                 |                         |             |             |                         |         |                             |                         |                           |         | ·                 |                 |                   |             |             |                     |         |                 |             |         |                 |                      |                  |                          |       |                 |      |                          |                         |                 |                     |                     |                     |
| Palu                         |                             |                 |                         |             |             |                         |         |                             |                         |                           |         |                   |                 |                   |             |             |                     | •       |                 |             |         |                 | ·                    |                  |                          |       |                 |      |                          |                         |                 |                     |                     |                     |
| Manado                       |                             |                 |                         |             |             |                         |         |                             |                         |                           | •       |                   |                 |                   |             |             |                     |         |                 |             |         |                 |                      |                  |                          |       |                 |      |                          |                         |                 |                     |                     |                     |
| Kota Kinabalu                | •                           |                 |                         |             |             |                         |         | •                           |                         | •                         |         |                   |                 |                   |             |             |                     |         |                 |             |         |                 |                      |                  |                          |       |                 |      |                          |                         |                 |                     |                     |                     |
| Banjarmasin                  | •                           |                 |                         |             |             |                         |         |                             |                         | •                         |         |                   | •               |                   |             |             |                     |         |                 |             |         |                 | •                    |                  |                          |       |                 |      | •                        |                         |                 |                     |                     |                     |
| Tengger                      |                             |                 | •                       |             |             |                         |         |                             |                         |                           | •       |                   |                 |                   |             | •           |                     |         |                 |             |         |                 |                      |                  |                          |       |                 |      | •                        |                         |                 |                     |                     |                     |
| Medan                        | •                           | •               | •                       |             |             |                         |         |                             |                         |                           | •       |                   |                 |                   |             |             |                     |         |                 |             |         |                 |                      |                  |                          |       |                 |      |                          |                         |                 |                     |                     |                     |
| Bangka                       |                             |                 | •                       |             |             | •                       | •       |                             |                         |                           | •       |                   |                 |                   |             |             |                     |         |                 |             | •       |                 |                      |                  |                          |       |                 |      |                          |                         |                 |                     |                     |                     |
| Padang                       |                             |                 |                         |             |             |                         |         | •                           |                         |                           |         | 1                 |                 |                   |             |             |                     |         |                 |             |         |                 | •                    |                  |                          |       |                 |      | •                        |                         |                 |                     |                     |                     |
| Pekanbaru                    |                             |                 |                         |             |             |                         | •       |                             |                         |                           |         |                   |                 |                   |             | •           |                     | •       |                 |             |         |                 |                      |                  |                          |       |                 |      | •                        | •                       |                 |                     |                     |                     |
| Palembang                    |                             |                 |                         | •           |             |                         |         |                             | •                       |                           |         | •                 |                 | <u> </u>          |             |             |                     | •       |                 | ŀ           |         |                 | •                    |                  |                          |       |                 |      |                          |                         |                 |                     |                     |                     |
| Melayu                       | •                           |                 |                         |             |             |                         |         |                             |                         |                           |         |                   |                 |                   |             |             |                     | •       |                 |             |         |                 |                      |                  | •                        | •     |                 |      | •                        |                         |                 |                     |                     | -                   |
| A. Malay                     |                             |                 |                         |             |             |                         |         |                             |                         |                           |         |                   |                 |                   |             |             |                     | •       |                 |             |         |                 |                      |                  |                          |       |                 |      | •                        |                         |                 | •                   |                     |                     |
| Senoi                        |                             |                 |                         |             |             | •                       |         |                             |                         |                           |         |                   |                 |                   |             |             |                     | •       |                 |             |         |                 | •                    |                  |                          |       |                 | •    |                          |                         | •               | •                   |                     |                     |
| Semang                       |                             |                 |                         | •           |             |                         |         |                             | •                       |                           | •       |                   |                 |                   |             |             |                     | •       |                 | •           | •       |                 | •                    |                  |                          |       | •               |      | •                        |                         |                 | •                   |                     |                     |
| Thailand                     | 2                           | -               |                         | -           | 1           |                         | -       |                             | 3                       |                           | 1       |                   | -               | 2                 |             |             |                     |         |                 |             | 1       |                 | 1                    | 2                | 3                        | 1     | 1               | 1.   |                          | -                       | 1               |                     |                     |                     |
| Philippines                  |                             |                 |                         |             |             |                         |         |                             |                         |                           |         |                   |                 |                   |             | -           |                     |         |                 | 1           |         |                 |                      |                  |                          |       |                 |      |                          |                         |                 |                     |                     |                     |
| Taiwan                       |                             |                 |                         |             |             |                         |         |                             |                         |                           |         |                   |                 |                   |             |             |                     |         |                 |             |         |                 | •                    |                  |                          | •     |                 |      |                          |                         |                 | •                   |                     | •                   |
| China                        |                             |                 | 1                       |             | •           |                         |         | 2                           |                         | 2                         |         |                   |                 |                   | 7           |             | 2                   | 2       | -               |             |         | 1               |                      | •                | ·                        |       |                 |      | 1                        |                         | 1               | 1                   | -                   |                     |
|                              | 093 129 219 223 261 278 325 | 104 219 223 287 | 111 129 183 189 223 311 | 124 148 223 | 124 193 223 | 127 129 166 217 319 365 | 129 223 | 148 172 189 223 234 261 290 | 148 223 234 355 356 362 | 2 223 259 289 324 355 362 | 166 189 | 2 189 223 249 290 | 172 189 223 311 | 4 223 260 264 271 | 182 193 223 | 185 189 324 | 188 223 266 271 362 | 189 311 | 192 223 316 362 | 192 278 325 | 214 223 | 214 223 274 311 | 214A 223 228 256 278 | 214A 223 256 278 | <b>9 223 239 325 355</b> | 8     | 223 266 278 302 | 0    | 093 223 263 290 293C 319 | 126 223 234 256 290 319 | 126 235 290 319 | 129 189 223 290 319 | 129 213 223 290 319 | 129 223 290 311 325 |
| HVS-I Variants<br>Haplogroup | 30<br>60                    |                 | 11 6                    | ? 12        | ? 12        | ? 12                    | ? 12    | ? 14                        | ? 14                    | ? 16                      | ? 16    | 3 17              |                 | 17                | 31 18       |             | 7 18                | 7 18    |                 | 7 19        | 7 21    | ? 21/           |                      | ? 21-            |                          | ? 223 |                 | ? 35 | 80<br>80                 |                         |                 |                     |                     |                     |

| Ambon          |                 |                      |             |              |             |                         |                 |                             |                     |                 |                         |                          |                         | ·                       |                 |                     |                 |                     |             |             |                 |                     |         |                 |             |                           |          |             |     |         |             |         |          |          |
|----------------|-----------------|----------------------|-------------|--------------|-------------|-------------------------|-----------------|-----------------------------|---------------------|-----------------|-------------------------|--------------------------|-------------------------|-------------------------|-----------------|---------------------|-----------------|---------------------|-------------|-------------|-----------------|---------------------|---------|-----------------|-------------|---------------------------|----------|-------------|-----|---------|-------------|---------|----------|----------|
| Alor           |                 |                      |             |              |             | ·                       |                 |                             |                     |                 |                         | -                        |                         | ·                       | ·               |                     | ·               |                     | ·           |             |                 | ·                   | ·       | ·               |             |                           |          |             |     |         |             |         | ·        |          |
| Sumba          |                 |                      |             |              |             |                         |                 |                             |                     |                 |                         |                          |                         |                         |                 |                     |                 |                     |             | ·           |                 |                     |         |                 |             |                           |          |             |     |         |             |         |          |          |
| Lombok         |                 |                      |             |              |             |                         |                 |                             |                     |                 |                         |                          |                         |                         |                 |                     |                 |                     |             |             |                 |                     |         |                 |             |                           |          |             |     |         |             |         |          |          |
| Bali           |                 |                      |             |              |             |                         |                 |                             |                     |                 |                         |                          |                         |                         |                 |                     |                 |                     |             |             |                 |                     |         |                 |             |                           |          |             |     |         |             |         |          |          |
| Toraja         |                 |                      |             |              |             |                         |                 |                             |                     |                 |                         |                          |                         |                         |                 |                     |                 |                     |             |             |                 |                     |         |                 |             |                           |          |             |     |         |             |         |          |          |
| Ujung Padang   |                 |                      |             |              |             |                         |                 |                             |                     |                 |                         |                          |                         |                         |                 |                     |                 |                     |             |             |                 |                     |         |                 |             |                           |          |             |     |         |             |         |          | -        |
| Palu           |                 |                      |             |              |             |                         |                 |                             |                     |                 |                         |                          |                         |                         |                 |                     |                 |                     |             |             |                 |                     |         |                 |             |                           |          |             |     |         |             |         |          |          |
| Manado         |                 |                      |             |              |             |                         |                 |                             |                     |                 |                         |                          |                         |                         |                 |                     |                 |                     |             |             |                 |                     |         |                 |             |                           |          |             |     |         |             |         |          |          |
| Kota Kinabalu  |                 |                      |             |              |             |                         |                 |                             |                     |                 |                         |                          |                         |                         |                 |                     |                 | •                   |             |             |                 |                     |         |                 |             |                           |          |             |     |         |             |         |          |          |
| Banjarmasin    |                 |                      |             |              |             |                         |                 |                             |                     |                 |                         | •                        |                         |                         |                 |                     |                 |                     |             |             |                 |                     |         |                 |             |                           |          |             |     |         |             |         |          |          |
| Tengger        |                 |                      |             |              |             |                         |                 |                             |                     |                 |                         | •                        |                         |                         |                 | •                   |                 |                     |             |             |                 |                     |         |                 |             | -                         |          |             |     |         |             |         | •        |          |
| Medan          |                 |                      |             |              |             |                         |                 |                             |                     |                 |                         | •                        |                         |                         |                 |                     | •               |                     |             |             |                 |                     |         |                 |             |                           |          |             |     |         |             |         |          |          |
| Bangka         |                 |                      |             | •            |             |                         |                 |                             |                     |                 | •                       |                          | •                       |                         |                 |                     |                 |                     |             |             |                 |                     |         |                 |             |                           |          |             |     |         |             |         |          | -        |
| Padang         |                 |                      |             |              |             |                         |                 |                             |                     |                 |                         |                          |                         | •                       |                 |                     |                 |                     |             |             |                 |                     |         |                 |             | -                         | 3        | _           |     |         |             |         | Ŀ        |          |
| Pekanbaru      |                 |                      |             |              |             |                         |                 | •                           |                     |                 |                         |                          |                         |                         |                 |                     |                 |                     |             |             |                 | -                   |         |                 |             |                           | 1        |             |     |         |             |         |          | •        |
| Palembang      |                 |                      |             |              |             |                         |                 | •                           |                     |                 |                         |                          | ·                       |                         |                 | •                   |                 |                     |             |             | •               |                     |         |                 |             |                           |          |             |     | •       |             |         | •        |          |
| Melayu         |                 |                      |             |              |             |                         |                 |                             |                     |                 |                         |                          | -                       |                         |                 |                     |                 |                     |             |             | •               |                     |         |                 | •           |                           |          |             |     |         |             |         |          |          |
| A. Malay       | ŀ               |                      |             |              |             |                         |                 |                             |                     |                 |                         |                          |                         |                         |                 |                     |                 |                     |             |             | •               |                     |         |                 |             | 2                         |          |             |     | 1       |             |         | •        | .        |
| Senoi          |                 |                      |             |              |             |                         |                 |                             |                     |                 |                         |                          |                         |                         |                 |                     |                 |                     |             |             |                 |                     |         |                 | •           |                           |          |             |     |         | •           |         | Ŀ        | <u> </u> |
| Semang         |                 |                      |             |              |             |                         | •               |                             |                     |                 |                         |                          |                         |                         |                 |                     |                 |                     |             |             |                 |                     |         |                 |             |                           |          |             |     |         |             |         | <u> </u> |          |
| Thailand       |                 |                      |             |              |             |                         | -               |                             | -                   |                 | .                       |                          |                         |                         | _               |                     | .               |                     |             |             | •               |                     |         |                 | •           |                           |          |             | .   |         |             |         |          |          |
| Philippines    |                 |                      |             |              |             |                         |                 |                             |                     |                 |                         |                          |                         |                         |                 |                     |                 |                     |             |             |                 |                     |         |                 | •           |                           |          |             |     |         |             | •       |          |          |
| Taiwan         |                 |                      | 4           |              |             |                         |                 |                             |                     |                 |                         |                          |                         |                         |                 |                     |                 |                     | _           |             |                 |                     |         |                 |             |                           |          |             |     |         | •           |         |          |          |
| China          | -               | _                    |             | _            | 2           |                         |                 | _                           | \$                  | _               | 2                       | 1                        |                         | -                       | 18              | 1                   | -               | _                   | 7           | -           | 2               |                     | 1       | 2               | I           | 1                         |          |             | _   |         | -           | 1       | 2        |          |
|                | 189 223 290 319 | 223 234 290 293C 319 | 223 249 319 | 290 293C 319 | 223 290 319 | 092 223 256 290 319 362 | 092 223 319 362 | 093 129 145 223 290 319 362 | 124 223 290 319 362 | 223 290 319 362 | 129 223 274 290 319 362 | 131 222A 223 290 319 362 | 223 271 287 319 356 362 | 223 274 290 319 325 362 | 274 290 319 362 | 223 289 290 319 362 | 290 294 319 362 | 223 290 319 356 362 | 290 319 362 | 093 179 189 | 093 179 189 342 | 093 189 222 298 299 | 189 362 | 129 189 352 355 | 189 222 342 |                           | 194C 195 | 189 195 286 | 234 | 274     | 189 274 362 | 278     | 292      | JK)      |
| HVS-I Variants | 681             | ន្ត                  | 8           | 23           | 223         | 8                       | 8               | 660                         | 124                 | 126             | 129                     | 131                      | ส                       | 83                      | 8               | 223                 | ន               | 53                  | 223         | <u> </u>    | <u>8</u> 93     | 660                 | 108     | 129             | 621         | <b>8</b> 8<br><b>1</b> 80 | 681      | 681         | 180 | 189 274 | 88          | 189 278 | 189 292  | 8        |
| Haplogroup     | <               |                      | <           | <            | ×           | 44                      | 4               | Z                           | 4                   | A               | ¥                       | ¥                        | 4                       | A                       | 4               | ¥                   | 4               | ł                   | 4           | B           | B               | æ                   | B       | B               | B           | æ                         | B        | 8           |     | æ       | B           | m       | B        | a        |

| Ambon          |                         |                 |                     |                     | ·           |                 |                      |                 |                          |                      |                          |                          |             |                 |                         |                      |                     |             |             |         |             |                     |             |                         |                 |                     |             |                 |                     |             |             | ·           |                     |
|----------------|-------------------------|-----------------|---------------------|---------------------|-------------|-----------------|----------------------|-----------------|--------------------------|----------------------|--------------------------|--------------------------|-------------|-----------------|-------------------------|----------------------|---------------------|-------------|-------------|---------|-------------|---------------------|-------------|-------------------------|-----------------|---------------------|-------------|-----------------|---------------------|-------------|-------------|-------------|---------------------|
| Alor           |                         |                 |                     |                     |             |                 |                      | ·               |                          | ·                    |                          |                          |             |                 |                         |                      |                     |             | ·           |         | ·           | •                   |             |                         |                 |                     | ·           |                 |                     |             |             |             |                     |
| Sumba          | ·                       |                 |                     |                     |             |                 | ·                    |                 |                          | ·                    |                          |                          | ·           |                 |                         |                      |                     |             |             |         | ·           |                     |             | ·                       | ·               |                     |             |                 |                     |             | ·           |             |                     |
| Lombok         |                         |                 |                     |                     |             |                 |                      |                 |                          |                      |                          | ·                        |             |                 |                         | ·                    |                     |             |             |         | ·           | ·                   |             | ·                       |                 |                     |             | ·               | ·                   |             | •           |             |                     |
| Bali           | _                       |                 |                     |                     |             |                 |                      |                 |                          |                      |                          |                          | _           | -               |                         |                      |                     |             |             | -       |             |                     |             |                         | •               |                     | ·           |                 |                     | ·           |             |             |                     |
| Toraja         |                         |                 |                     |                     |             |                 |                      | _               |                          |                      |                          |                          |             |                 |                         |                      |                     |             | ·           |         | ·           |                     |             |                         |                 |                     |             |                 |                     |             |             |             |                     |
| Ujung Padang   |                         |                 |                     |                     |             |                 |                      |                 |                          |                      |                          |                          |             | _               |                         |                      |                     |             |             |         |             |                     |             |                         |                 |                     |             |                 |                     |             |             |             |                     |
| Palu           |                         |                 |                     |                     |             |                 |                      |                 |                          |                      |                          |                          |             |                 |                         |                      |                     |             |             |         |             |                     |             |                         |                 |                     |             |                 |                     |             |             |             |                     |
| Manado         |                         |                 |                     |                     |             |                 |                      |                 |                          |                      |                          |                          | -           |                 |                         |                      |                     |             |             |         |             |                     |             |                         |                 |                     |             |                 |                     |             | ·           |             |                     |
| Kota Kinabalu  |                         |                 |                     |                     |             |                 |                      |                 |                          |                      |                          |                          |             |                 |                         |                      | •                   |             |             |         |             |                     |             |                         |                 |                     |             |                 |                     |             |             |             |                     |
| Banjarmasin    |                         |                 |                     |                     |             |                 |                      |                 |                          |                      |                          |                          | m           | 4               | -                       | _                    |                     |             |             | _       |             |                     |             |                         |                 |                     |             |                 |                     |             |             |             |                     |
| Tengger        |                         |                 |                     |                     | •           |                 |                      |                 |                          |                      |                          |                          |             |                 | •                       |                      | •                   |             |             |         |             |                     |             |                         |                 |                     |             |                 |                     |             |             |             |                     |
| Medan          | •                       |                 |                     |                     |             |                 | •                    |                 |                          |                      |                          |                          |             | 1               |                         |                      | •                   |             |             |         |             |                     |             |                         |                 |                     |             |                 |                     |             |             |             |                     |
| Bangka         |                         |                 | •                   |                     |             |                 |                      |                 |                          |                      |                          |                          | •           | 1               | •                       |                      | •                   |             |             |         |             |                     |             |                         |                 |                     |             |                 |                     | -           | •           |             |                     |
| Padang         |                         |                 |                     |                     |             |                 | •                    |                 | •                        |                      |                          |                          |             |                 |                         | •                    |                     |             |             |         |             |                     |             |                         |                 |                     |             |                 |                     |             |             |             |                     |
| Pekanbaru      |                         |                 |                     |                     |             |                 |                      |                 |                          | •                    |                          |                          |             |                 |                         | •                    | •                   |             |             |         |             |                     |             |                         |                 |                     |             |                 |                     |             |             |             |                     |
| Palembang      |                         |                 |                     |                     | •           | •               | •                    |                 |                          | •                    | 1                        |                          | •           | 1               | •                       |                      |                     |             | •           |         |             | •                   |             |                         |                 |                     |             |                 |                     |             |             |             |                     |
| Melayu         |                         |                 |                     |                     |             |                 |                      |                 |                          |                      |                          | 1                        |             | 5               |                         |                      | •                   |             |             |         |             | •                   |             | •                       |                 |                     | •           |                 |                     |             |             |             |                     |
| A. Malay       |                         |                 |                     | •                   |             |                 | •                    |                 |                          |                      |                          |                          |             |                 |                         |                      |                     |             | •           |         |             |                     | •           |                         |                 | •                   | •           |                 |                     |             |             |             |                     |
| Senoi          |                         |                 |                     |                     |             |                 |                      |                 |                          |                      |                          |                          |             |                 |                         |                      |                     |             |             |         |             |                     |             |                         |                 |                     | •           | •               |                     |             | •           |             |                     |
| Semang         |                         |                 |                     |                     |             |                 |                      |                 |                          |                      |                          |                          |             |                 |                         |                      |                     |             |             |         | •           | •                   |             |                         | •               |                     |             |                 |                     |             |             |             |                     |
| Thailand       |                         |                 |                     |                     | -           |                 |                      |                 | 7                        | 2                    |                          |                          |             |                 |                         |                      | -                   | -           |             |         |             |                     | 4           |                         | -               |                     |             |                 | •                   |             | -           |             |                     |
| Philippines    | .                       |                 |                     |                     | .           |                 |                      |                 |                          |                      |                          |                          |             | .               |                         |                      |                     |             |             |         |             |                     |             |                         |                 |                     |             |                 |                     |             |             |             |                     |
| Taiwan         |                         |                 |                     |                     |             |                 | .                    | .               | .                        |                      |                          |                          |             |                 | .                       |                      |                     |             |             | _       |             |                     |             |                         |                 |                     |             |                 |                     |             |             | 7           |                     |
| China          |                         | _               | -                   | 4                   | _           | -               | -                    | .               | .                        | _                    |                          |                          | .           |                 | .                       | .                    |                     |             | -           | -       | -           | -                   | 7           | _                       |                 | -                   | _           | -               | -                   |             | -           |             | _                   |
| HVS-I Variants | 092 147 179 189 217 235 | 093 189 217 234 | 093 189 217 262 362 | 108 189 217 324 362 | 129 189 217 | 129 189 217 354 | 140 168A 189 217 311 | 140 189 217 362 | 147 184A 189 217 234 235 | 147 184A 189 217 235 | 147 184A 189 217 235 239 | 147 184A 189 217 235 261 | 147 189 217 | 147 189 217 235 | 147 189 217 235 294 360 | 147 189 217 235 294G | 147 189 217 235 311 | 186 189 217 | 189 214 217 | 189 217 | 189 217 218 | 189 217 218 234 278 | 189 217 223 | 189 217 223 235 291 316 | 189 217 223 257 | 189 217 223 311 320 | 189 217 234 | 189 217 234 278 | 189 217 256 311 362 | 189 217 299 | 189 217 362 | 189 217 365 | 007 180 217 261 200 |
| Haplogroup     | æ                       | Z               | Z                   | B                   | A           | æ               | Z                    | Z               | Z                        | Z                    | Æ                        | A                        | 8           | Æ               | Z                       | B                    | A                   | B           | Æ           | Æ       | æ           | ₩                   | A           | æ                       | R I             | 8                   | Z           | Æ               | B                   | R4          | A           | A           | -14-                |

| Ambon          |                                    |                             | ·                      |                 | ·                   |                 |                         | ·                   |                     |                     |               |                     |                     |                       |               |                     |             |                     |                     |             |                             |               |                     |                     |                 |                         |                         |                       |                             |                         | ·                     |                   | _          |
|----------------|------------------------------------|-----------------------------|------------------------|-----------------|---------------------|-----------------|-------------------------|---------------------|---------------------|---------------------|---------------|---------------------|---------------------|-----------------------|---------------|---------------------|-------------|---------------------|---------------------|-------------|-----------------------------|---------------|---------------------|---------------------|-----------------|-------------------------|-------------------------|-----------------------|-----------------------------|-------------------------|-----------------------|-------------------|------------|
| Alor           |                                    |                             |                        |                 | •                   |                 |                         |                     |                     |                     |               |                     |                     |                       |               |                     |             |                     |                     |             |                             |               |                     |                     |                 |                         |                         |                       |                             |                         |                       |                   |            |
| Sumba          |                                    |                             |                        |                 |                     |                 |                         |                     |                     |                     |               |                     |                     |                       |               |                     |             |                     |                     |             |                             |               |                     |                     |                 | _                       |                         |                       |                             |                         |                       |                   |            |
| Lombok         |                                    |                             |                        |                 |                     |                 |                         |                     |                     |                     |               |                     |                     |                       |               |                     |             |                     |                     |             |                             |               |                     | ·                   |                 |                         |                         |                       |                             |                         |                       |                   |            |
| Bali           |                                    |                             |                        |                 |                     | -               |                         |                     |                     |                     |               |                     |                     |                       |               |                     |             |                     |                     |             |                             |               |                     |                     |                 |                         | •                       |                       |                             |                         |                       |                   |            |
| Toraja         |                                    |                             |                        |                 |                     |                 |                         |                     |                     |                     |               |                     |                     |                       |               |                     |             |                     |                     |             |                             |               |                     |                     |                 |                         |                         |                       |                             |                         |                       |                   |            |
| Ujung Padang   |                                    |                             |                        |                 |                     |                 |                         |                     |                     |                     |               |                     |                     |                       |               |                     |             |                     |                     |             |                             |               |                     |                     |                 |                         | •                       |                       |                             |                         |                       |                   |            |
| Palu           |                                    |                             |                        |                 |                     |                 |                         |                     |                     |                     |               |                     |                     |                       |               |                     |             |                     |                     |             |                             |               |                     |                     |                 |                         |                         |                       |                             |                         |                       |                   |            |
| Manado         |                                    |                             |                        |                 |                     |                 |                         |                     |                     |                     |               |                     |                     |                       |               |                     |             |                     | ·                   |             |                             |               |                     |                     |                 | •                       |                         |                       |                             |                         |                       |                   |            |
| Kota Kinabalu  |                                    |                             |                        |                 |                     |                 |                         | ·                   |                     |                     |               |                     |                     |                       |               |                     |             |                     |                     |             |                             |               |                     |                     |                 |                         |                         |                       |                             |                         |                       |                   | -          |
| Banjarmasin    |                                    |                             |                        |                 |                     |                 |                         |                     |                     |                     |               |                     | •                   |                       |               |                     |             |                     |                     | ·           |                             | ·             | ·                   |                     | 2               |                         |                         |                       |                             |                         |                       |                   |            |
| Tengger        |                                    |                             |                        |                 |                     |                 | •                       |                     |                     |                     |               |                     |                     |                       |               |                     |             |                     |                     |             |                             |               |                     |                     |                 | •                       |                         |                       |                             |                         |                       |                   | •          |
| Medan          |                                    |                             |                        |                 |                     |                 |                         |                     |                     | ·                   |               |                     | ·                   | ·                     |               |                     |             |                     |                     |             |                             |               |                     |                     |                 |                         |                         |                       |                             |                         |                       |                   |            |
| Bangka         |                                    |                             |                        |                 |                     |                 |                         |                     | •                   |                     |               |                     |                     |                       |               |                     |             |                     |                     |             |                             |               |                     |                     |                 |                         |                         |                       |                             |                         |                       |                   |            |
| Padang         | •                                  |                             |                        |                 |                     | •               |                         |                     |                     |                     | •             |                     |                     |                       |               |                     |             |                     |                     |             |                             |               |                     |                     | •               |                         |                         | •                     |                             |                         |                       |                   |            |
| Pekanbaru      |                                    |                             |                        |                 |                     |                 |                         |                     |                     |                     | •             |                     |                     |                       |               |                     | •           |                     |                     |             |                             |               |                     |                     |                 |                         |                         |                       |                             | Ŀ                       |                       |                   |            |
| Palembang      |                                    |                             |                        |                 |                     |                 |                         |                     |                     |                     |               |                     |                     |                       |               |                     | •           |                     |                     |             |                             |               |                     |                     |                 |                         | ·                       |                       | •                           |                         |                       |                   |            |
| Melayu         |                                    |                             |                        |                 |                     |                 |                         |                     |                     | -                   |               |                     |                     |                       |               |                     |             |                     |                     |             |                             |               |                     |                     | •               |                         |                         |                       |                             |                         |                       |                   | •          |
| A. Malay       |                                    |                             |                        |                 |                     |                 |                         |                     |                     |                     | 2             |                     |                     |                       | •             |                     | •           |                     |                     |             |                             |               |                     |                     |                 |                         |                         |                       |                             |                         |                       |                   |            |
| Senoi          |                                    |                             |                        |                 |                     |                 |                         |                     |                     |                     | •             |                     | •                   |                       |               |                     | •           | •                   |                     |             |                             |               | •                   | •                   |                 |                         |                         |                       |                             |                         |                       |                   |            |
| Semang         |                                    |                             |                        |                 |                     |                 | .                       |                     |                     |                     |               |                     | •                   |                       | •             | •                   |             | •                   |                     |             |                             |               | •                   |                     |                 |                         |                         |                       |                             |                         |                       | •                 |            |
| Thailand       |                                    |                             | 1                      |                 |                     |                 |                         |                     |                     |                     |               | 1                   |                     | •                     | •             |                     | 1           | 1                   |                     |             |                             |               | •                   |                     |                 |                         |                         | 7                     | 1                           | -                       | 1                     |                   |            |
| Philippines    |                                    |                             |                        |                 |                     |                 |                         |                     |                     |                     |               |                     |                     |                       |               |                     |             |                     |                     |             |                             |               |                     | •                   |                 |                         |                         |                       |                             |                         | •                     | •                 |            |
| Taiwan         |                                    |                             |                        | 1               |                     |                 | -                       | _                   |                     |                     |               |                     | 1                   |                       | •             |                     |             |                     |                     | •           |                             | •             | •                   | 4                   |                 |                         | -                       |                       |                             |                         |                       |                   |            |
| China          | 1                                  | _                           |                        | -               | _                   |                 |                         |                     | _                   |                     | 3             |                     | -                   | -                     | 1             | 1                   | 1           |                     | 1                   | I           | 1                           | 1             | 1                   | •                   |                 |                         |                         |                       |                             |                         | -                     | _                 |            |
| HVS-I Variants | 093 153 189 217 261 292 311<br>362 | 093 188 189 214 217 261 287 | 33 189 217 243 261 278 | 093 189 217 261 | 093 189 217 261 344 | 108 189 217 261 | 111 129 189 217 261 324 | 111 189 217 261 324 | 129 145 189 217 261 | 129 154 189 217 261 | 9 189 217 261 | 129 189 217 261 311 | 129 189 217 261 324 | 9 189 217 261 354 357 | 9 189 223 261 | 129 189 223 261 311 | 129 189 261 | 150 189 217 228 261 | 150 189 217 240 261 | 150 189 261 | 153 189 213 217 261 292 362 | 3 189 217 261 | 154 189 217 240 261 | 154 189 217 261 324 | 178 189 217 261 | 188 189 217 223 261 355 | 189 197 217 261 272 324 | 9 213 217 228 261 292 | 189 213 217 228 261 292 358 | 189 213 217 261 270 292 | 9 213 217 261 292 362 | 9 217 221 240 261 | 192 222 14 |
| Haplogroup     | B4a<br>3. 0<br>3.                  | ŀ                           |                        | B4a 0           | ╞─                  | t               | ┢                       | ╞                   | ┢                   | +                   | ┢╌            | B4a 15              | Γ                   |                       |               |                     |             | ┢                   | ┢                   |             | B4a 1:                      |               | $\vdash$            |                     | ┢               | B4a 18                  | ╉                       | 1                     | ┢                           | B4a 15                  |                       |                   |            |

| Ambon          |                     |                 |                     | 7           |                         |                     | _               |                 |                 |                 |                     |                 |                 |                 |         |             |                     |                         | Ś               | -                   |                     |                 |                     |                 |                              |         | 7           |                 |                     |                     |                         |                         |                 |                  |
|----------------|---------------------|-----------------|---------------------|-------------|-------------------------|---------------------|-----------------|-----------------|-----------------|-----------------|---------------------|-----------------|-----------------|-----------------|---------|-------------|---------------------|-------------------------|-----------------|---------------------|---------------------|-----------------|---------------------|-----------------|------------------------------|---------|-------------|-----------------|---------------------|---------------------|-------------------------|-------------------------|-----------------|------------------|
| Alor           |                     |                 |                     |             |                         |                     |                 |                 |                 |                 |                     |                 |                 |                 |         |             | -                   |                         |                 |                     |                     | ·               |                     |                 |                              |         |             |                 |                     |                     |                         |                         | ·               |                  |
| Sumba          |                     |                 |                     |             |                         |                     |                 |                 |                 |                 |                     |                 |                 |                 |         |             |                     |                         |                 |                     |                     |                 |                     |                 |                              |         |             |                 |                     |                     | -                       |                         |                 | •                |
| Lombok         |                     | ·               |                     | 5           |                         |                     |                 |                 |                 |                 |                     |                 | ·               |                 |         |             |                     |                         | _               |                     |                     |                 |                     |                 |                              |         |             |                 |                     |                     |                         |                         |                 | •                |
| Bali           |                     |                 |                     |             |                         |                     |                 |                 |                 |                 |                     | •               |                 |                 |         |             |                     |                         |                 |                     |                     |                 |                     |                 |                              |         |             |                 |                     |                     |                         |                         |                 |                  |
| Toraja         |                     |                 |                     | e           |                         |                     |                 |                 |                 |                 |                     | 1               |                 |                 | ,       |             |                     |                         | S               |                     |                     |                 |                     |                 |                              |         |             |                 |                     |                     |                         |                         |                 |                  |
| Ujung Padang   | -                   |                 |                     | 4           |                         |                     |                 |                 |                 |                 |                     |                 |                 |                 |         |             |                     |                         | ۳               |                     |                     |                 |                     |                 |                              |         |             |                 |                     |                     |                         |                         |                 |                  |
| Palu           | •                   |                 |                     |             |                         |                     |                 |                 |                 |                 |                     |                 |                 |                 |         |             |                     |                         |                 |                     |                     |                 |                     |                 |                              |         |             |                 |                     |                     |                         |                         |                 | •                |
| Manado         |                     |                 |                     | -           |                         |                     |                 |                 | 1               | •               |                     | I               |                 |                 |         |             |                     |                         | 1               |                     |                     |                 |                     |                 |                              |         | 1           |                 |                     |                     |                         |                         |                 |                  |
| Kota Kinabalu  |                     |                 |                     | 3           |                         |                     |                 |                 |                 |                 |                     |                 |                 |                 |         |             |                     |                         |                 |                     |                     |                 |                     |                 | ·                            |         | -           |                 |                     | •                   |                         |                         |                 |                  |
| Banjarmasin    | •                   |                 |                     | 5           |                         |                     |                 |                 |                 |                 |                     | •               |                 |                 |         |             |                     |                         | 7               |                     |                     |                 |                     |                 |                              |         | -           |                 |                     |                     |                         |                         | _               |                  |
| Tengger        |                     |                 |                     |             |                         |                     |                 |                 |                 |                 | •                   |                 |                 |                 |         |             |                     |                         |                 |                     |                     |                 |                     |                 |                              |         |             |                 |                     |                     | •                       |                         |                 |                  |
| Medan          |                     |                 |                     |             |                         |                     |                 |                 |                 |                 |                     |                 | •               |                 |         |             |                     |                         |                 |                     |                     |                 |                     |                 |                              |         |             |                 |                     |                     |                         |                         |                 | •                |
| Bangka         |                     |                 |                     |             |                         |                     |                 |                 |                 |                 |                     |                 |                 |                 | •       |             |                     |                         |                 |                     |                     |                 |                     |                 |                              |         |             |                 |                     | •                   |                         |                         |                 | •                |
| Padang         |                     |                 | ·                   | 2           |                         |                     |                 |                 | •               | •               |                     |                 |                 |                 |         |             |                     |                         |                 |                     |                     |                 |                     |                 |                              |         |             |                 | ·                   | •                   |                         |                         |                 |                  |
| Pekanbaru      |                     |                 |                     | 7           |                         |                     |                 | 1               |                 | •               |                     | •               |                 |                 |         |             |                     |                         |                 | ·                   |                     |                 |                     |                 |                              |         | 1           |                 |                     | •                   |                         |                         |                 |                  |
| Palembang      |                     |                 |                     |             |                         |                     |                 |                 |                 |                 |                     | •               |                 |                 | -       |             | ·                   | •                       |                 |                     |                     |                 |                     |                 |                              |         | •           |                 | •                   |                     |                         |                         |                 |                  |
| Melayu         |                     |                 |                     |             |                         |                     |                 |                 |                 | •               |                     | •               |                 |                 | ŀ       |             |                     |                         |                 |                     | •                   |                 |                     |                 |                              |         | 1           |                 |                     |                     |                         | ·                       |                 |                  |
| A. Malay       |                     |                 |                     |             |                         |                     |                 |                 |                 | •               |                     |                 |                 |                 |         |             |                     |                         | •               |                     |                     |                 |                     |                 |                              |         | •           |                 |                     | •                   |                         |                         |                 |                  |
| Senoi          |                     |                 |                     |             |                         |                     |                 |                 |                 |                 |                     |                 |                 |                 |         |             |                     | •                       | •               |                     |                     |                 | •                   |                 |                              |         |             |                 | •                   |                     |                         |                         |                 |                  |
| Semang         |                     |                 |                     |             |                         |                     |                 |                 |                 |                 |                     |                 |                 |                 |         |             |                     |                         |                 |                     |                     |                 |                     |                 |                              |         |             |                 | •                   |                     | •                       |                         |                 | •                |
| Thailand       | .                   | _               | .                   | _           |                         |                     |                 |                 |                 |                 |                     |                 |                 |                 |         | -           |                     |                         |                 | .                   |                     |                 |                     |                 |                              |         |             |                 | •                   |                     |                         |                         |                 |                  |
| Philippines    |                     |                 |                     |             |                         |                     |                 |                 |                 |                 |                     |                 |                 |                 |         |             |                     |                         |                 |                     |                     |                 |                     |                 | •                            |         |             | •               |                     |                     |                         |                         |                 | •                |
| Taiwan         |                     |                 |                     | 14          | 7                       | 10                  |                 |                 |                 |                 |                     | s               | 7               |                 |         |             |                     |                         |                 |                     |                     |                 |                     |                 |                              | •       | 3           | •               |                     | I                   |                         |                         |                 |                  |
| China          |                     |                 | -                   | m           |                         |                     |                 |                 |                 | I               | _                   |                 |                 | _               |         | 7           |                     | 1                       |                 |                     | 1                   | 1               | 1                   | 3               | 1                            | 1       | 1           | 4               | 1                   |                     | 1                       | 1                       |                 | -                |
| HVS-I Variants | 189 217 223 261 335 | 189 217 228 261 | 189 217 248 261 295 | 189 217 261 | 189 217 261 272 288 324 | 189 217 261 272 324 | 189 217 261 278 | 189 217 261 286 | 189 217 261 288 | 189 217 261 292 | 189 217 261 299 355 | 189 217 261 311 | 189 217 261 324 | 189 257 261 360 | 189 261 | 189 261 292 | 093 189 217 247 261 | 184 189 217 247 261 299 | 189 217 247 261 | 189 217 247 261 362 | 092 136 189 309 354 | 126 136 189 217 | 136 171 189 223 297 | 136 179 189 217 | 136 183T 189 217 218 239 248 | 136 189 | 136 189 217 | 136 189 217 218 | 136 189 217 223 257 | 136 189 217 228 365 | 136 189 217 234 309 354 | 136 189 217 260 287 325 | 136 189 217 261 | 136 189 217 265C |
| Haplogroup     | Ba                  | H               | Bła                 | Bła         | Bła                     | B4a                 | Bła             | B4a             | B4a             | B4a             | B4a                 | B4a             | Bla             | B4a             |         | ┢╴          | B4al                | B4al                    | B4al            | B4a1                |                     |                 | B4b                 | B4b             | ┝                            |         |             | ₽<br>₽<br>₽     | ╞                   | B4b                 | ┢                       | B                       | ┢               | R4b              |

| Ambon<br>Alor  |                 |                     |                 |         |             |                                     |                     |                                    |                                    |                             |                                    | •                           |                             |                 |                          |                 |                 |                          |                     |                     |                     |                         |                 |                 |             |                      |                      |              |                  | - |
|----------------|-----------------|---------------------|-----------------|---------|-------------|-------------------------------------|---------------------|------------------------------------|------------------------------------|-----------------------------|------------------------------------|-----------------------------|-----------------------------|-----------------|--------------------------|-----------------|-----------------|--------------------------|---------------------|---------------------|---------------------|-------------------------|-----------------|-----------------|-------------|----------------------|----------------------|--------------|------------------|---|
|                | ·               | •                   | •               |         | •           | •                                   | •                   | •                                  | •                                  | ·                           | ·                                  |                             |                             | -               | ·                        | •               |                 | •                        | ÷                   | •                   | -                   | •                       |                 | -               | •           | ·                    | •                    | •            |                  |   |
| Sumba          | •               | •                   |                 | •       | •           |                                     | •                   |                                    |                                    | •                           |                                    |                             |                             | •               |                          | -               | ·               | •                        | ·                   | ·                   | ·                   | ·                       |                 | •               | •           | ·                    | •                    | •            | ·                |   |
| Lombok         |                 |                     | •               |         |             |                                     |                     | •                                  | •                                  | •                           | ·                                  |                             |                             |                 | ·                        | ·               |                 | •                        | ·                   | ·                   | ·                   | ·                       | ·               | •               | •           | •                    | •                    | •            | ÷                | - |
| Bali           |                 | •                   |                 | ·       |             |                                     | -                   |                                    |                                    | •                           |                                    | •                           | •                           | 2               |                          |                 | ·               |                          | •                   | •                   |                     | ·                       |                 | •               | •           | ·                    | •                    | ·            |                  | - |
| Toraja         |                 |                     |                 |         |             |                                     |                     |                                    |                                    | ·                           |                                    | •                           |                             |                 |                          | _               |                 |                          | ·                   |                     | m                   |                         |                 |                 |             | ·                    |                      |              |                  |   |
| Ujung Padang   |                 |                     |                 |         |             |                                     |                     |                                    |                                    |                             |                                    |                             |                             |                 |                          |                 |                 |                          |                     |                     | m                   |                         |                 |                 |             |                      |                      | ·            |                  |   |
| Palu           | _               |                     |                 |         |             |                                     |                     |                                    |                                    |                             |                                    |                             | ·                           |                 |                          |                 |                 |                          |                     |                     |                     |                         |                 |                 |             |                      |                      |              |                  | + |
| Manado         |                 |                     |                 |         |             | -                                   |                     | •                                  |                                    |                             |                                    |                             |                             |                 |                          |                 |                 |                          |                     |                     | -                   |                         |                 |                 |             |                      |                      |              |                  |   |
| Kota Kinabalu  |                 |                     |                 |         |             |                                     |                     |                                    |                                    |                             |                                    |                             |                             |                 |                          |                 |                 |                          |                     |                     | -                   |                         |                 |                 |             |                      |                      |              |                  |   |
| Banjarmasin    |                 |                     |                 |         |             |                                     |                     |                                    | ,                                  |                             |                                    |                             |                             |                 |                          |                 | ·               |                          |                     |                     | 2                   |                         |                 |                 |             |                      |                      |              |                  |   |
| Tengger        |                 |                     |                 |         |             |                                     |                     |                                    |                                    |                             | •                                  |                             |                             |                 |                          |                 |                 |                          |                     |                     | _                   |                         | •               |                 |             |                      |                      |              |                  |   |
| Medan          |                 |                     |                 |         |             |                                     |                     | •                                  |                                    |                             |                                    |                             |                             |                 |                          |                 |                 |                          |                     |                     |                     |                         | •               |                 |             |                      |                      |              |                  |   |
| Bangka         |                 |                     |                 |         |             |                                     |                     | •                                  |                                    |                             |                                    |                             |                             |                 |                          |                 |                 |                          |                     |                     |                     |                         | 1               | •               |             |                      |                      |              |                  |   |
| Padang         |                 |                     |                 | •       |             | ,                                   |                     |                                    |                                    |                             |                                    | 1                           |                             |                 |                          |                 |                 |                          |                     |                     |                     |                         | •               |                 |             |                      |                      |              |                  |   |
| Pekanbaru      |                 |                     |                 |         |             |                                     |                     |                                    |                                    |                             | 1                                  | 4                           |                             |                 |                          |                 |                 |                          |                     |                     | _                   |                         |                 |                 |             |                      |                      | •            |                  | ĺ |
| Palembang      |                 |                     |                 |         |             |                                     |                     |                                    |                                    | •                           |                                    |                             |                             |                 |                          |                 |                 |                          |                     |                     |                     |                         |                 |                 |             |                      |                      |              |                  |   |
| Melayu         |                 |                     |                 | Γ.      |             |                                     |                     |                                    |                                    |                             |                                    |                             |                             |                 |                          |                 | I               |                          |                     |                     | 1                   |                         |                 |                 | -           |                      | 1                    | •            |                  |   |
| A. Malay       |                 |                     | •               |         |             |                                     |                     |                                    |                                    |                             | ·                                  |                             |                             | •               | •                        |                 | •               | ·                        |                     |                     |                     |                         | •               |                 |             | •                    |                      |              |                  |   |
| Senoi          |                 |                     |                 |         |             |                                     |                     |                                    |                                    |                             |                                    |                             |                             |                 |                          |                 |                 |                          |                     |                     |                     |                         |                 |                 |             |                      |                      |              |                  |   |
| Semang         |                 |                     |                 |         |             |                                     |                     |                                    |                                    |                             |                                    |                             |                             |                 |                          | T               |                 |                          |                     |                     | •                   | •                       |                 |                 | •           | •                    |                      |              |                  |   |
| Thailand       |                 |                     | .               | .       |             |                                     |                     |                                    | .                                  |                             |                                    | .                           |                             |                 |                          |                 |                 |                          |                     |                     |                     |                         |                 | .               |             | 1                    |                      | 1            | -                |   |
| Philippines    |                 |                     |                 |         |             |                                     |                     |                                    |                                    |                             |                                    | <b>_</b>                    |                             |                 |                          |                 | •               |                          |                     |                     |                     |                         |                 |                 |             | •                    |                      |              |                  | ĺ |
| Taiwan         |                 |                     | s               |         | <b>.</b>    |                                     | <b>.</b>            |                                    |                                    |                             |                                    |                             | _                           |                 |                          |                 |                 |                          |                     | 3                   | æ                   | 1                       | 2               |                 | 3           |                      |                      |              |                  | ſ |
| China          |                 | 4                   |                 | _       | _           |                                     |                     | _                                  | _                                  | _                           |                                    |                             |                             |                 | _                        | -               |                 | 1                        | 7                   |                     | 5                   |                         |                 |                 |             |                      |                      |              |                  | I |
|                | 136 189 217 300 | 136 189 217 309 354 | 136 189 217 365 | 189 257 | 136 189 284 | 092 140 189 217 274 283T 311<br>335 | 092 140 189 217 335 | 129 140 145 166 189 217 274<br>335 | 129 140 166 179 189 217 274<br>335 | 129 189 217 274 289 301 311 | 140 188 189 217 261 274 311<br>335 | 140 188 180 217 274 311 335 | 140 189 217 228 274 319 335 | 189 217 235 274 | 140 189 217 242A 274 335 | 140 189 217 274 | 189 217 274 291 | 140 189 217 274 305T 335 | 140 189 217 274 311 | 189 217 274 319 335 | 140 189 217 274 335 | 140 189 217 274 335 375 | 140 189 217 335 | 140 189 274 335 | 217 274 335 | 099 140 189 266A 293 | 124 140 189 261 266A | 140 189 266A | 129 140 189 266A |   |
| HVS-I Variants | 136             | 136                 | 136             | 136     | 136         | 335<br>335                          | 66                  | 52 SE                              | 335                                | 120                         | 140<br>335                         | 140                         | 14                          | 140             | 140                      | 140             | 140             | 140                      | <b>64</b> 1         | 140                 | 140                 | <del>1</del>            | 140             | 146             | 189         | 8                    | 124                  | 127          | 671              | i |
| Haplogroup     | £               | ₹                   | <del>8</del>    | 45      | æ           | B4c                                 | Bac                 | <b>B4</b> 6                        | BAc                                | 1<br>2                      | Błc                                | RAC                         | 88                          | 3               | ¥                        | 1×              | 3               | <b>3</b>                 | B4c                 | BAc                 | B4c                 | 86                      | Ac              | BAc             | <b>34</b> c | BSa                  | BSa                  | BSa          | BSa              | 1 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |          | <b>33344</b>                        |                                       | · · · · · · · · · · · · · · · · · · · |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------|-------------------------------------|---------------------------------------|---------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       . |                            |          |                                     | · · · · · · · · · · · · · · · · · · · |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |          | · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |          | · · · · · · · · · · · · · · · ·     | · · · · · · · · · · · · · · · · · · · |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |          |                                     | · · · · · · · · · · · · · · · · · · · |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       · |                            |          |                                     | · · · · · · · · · · · · · · · · · · · |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     · <td></td> <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td>                                                |                            |          |                                     | · · · · · · · · · · · · · · · · · · · |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     · <td></td> <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td>                                                |                            |          |                                     | · · · · · · · · · · · · · · · · · · · |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     · <td></td> <td></td> <td>· · · · · · · · · · ·</td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td>                           |                            |          | · · · · · · · · · · ·               | · · · · · · · · · · · · · · · · · · · |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |          |                                     | · · · · · · · · · · · · · · · · · · · |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     . <td></td> <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td>                                                |                            |          |                                     | · · · · · · · · · · · · · · · · · · · |                                       |
| .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     . <td></td> <td>· · · · · · · ·</td> <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td>                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · · · · · · ·            |          |                                     | · · · · · · · · · · · · · · · · · · · |                                       |
| ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |          |                                     | · · · · · · · · · · · · · · · · · · · |                                       |
| .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     . <td></td> <td>· · · · ·</td> <td>· · · ·</td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td>                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · · · ·                  | · · · ·  |                                     | · · · · · · · · · · · · · · · · · · · |                                       |
| .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     . <td></td> <td>· - · ·</td> <td>· · · ·</td> <td>· · · ·</td> <td>· · · · · · ·</td> <td></td>                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · - · ·                    | · · · ·  | · · · ·                             | · · · · · · ·                         |                                       |
| .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     . <td></td> <td>-<br/>-<br/>-<br/>-<br/>-<br/>-</td> <td>· ·</td> <td></td> <td>· · · · ·</td> <td>· ·</td>                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -<br>-<br>-<br>-<br>-<br>- | · ·      |                                     | · · · · ·                             | · ·                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . -<br>                    | ·        | ++                                  | 2                                     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                          |          | +                                   | · · ·                                 |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | ·        |                                     |                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            | .  .<br> |                                     |                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |          | T                                   |                                       |                                       |
| · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                          |          | Γ.                                  |                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                          | •        |                                     | •                                     | •                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ·<br>·<br>·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |          |                                     | 5.                                    |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ·<br>·<br>·<br>·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |          |                                     |                                       | •                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | •        | -                                   |                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | ·        | -                                   |                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •<br>•<br>•<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                          | •        |                                     | •                                     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6 1                        | •        | 1                                   | 6 1 1                                 | 11 . 6 1 1                            |
| ·<br>·<br>·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ·<br>·<br>·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | ·        | •                                   |                                       |                                       |
| ·<br>·<br>·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | ŀ        |                                     |                                       |                                       |
| ·<br>·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | · <br>   | +                                   |                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | ╀        |                                     |                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -†                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                          |          |                                     |                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | <br>     | _                                   | · ·                                   |                                       |

| Ambon          |                     |                         |                     |                 | -           |                     |                 |                     |                 |                 |                             |                         |                     |                 |             |                         |                         |                                    |                     |                 |                     |                     |                         |                     |                 |             |                     |                         |             |             |         |             |     |
|----------------|---------------------|-------------------------|---------------------|-----------------|-------------|---------------------|-----------------|---------------------|-----------------|-----------------|-----------------------------|-------------------------|---------------------|-----------------|-------------|-------------------------|-------------------------|------------------------------------|---------------------|-----------------|---------------------|---------------------|-------------------------|---------------------|-----------------|-------------|---------------------|-------------------------|-------------|-------------|---------|-------------|-----|
| Alor           |                     | _                       |                     |                 |             |                     |                 | -                   |                 |                 |                             |                         |                     |                 |             |                         |                         |                                    |                     |                 |                     |                     |                         | -                   |                 |             |                     |                         |             |             |         |             |     |
| Sumba          |                     |                         |                     |                 |             |                     |                 |                     |                 |                 |                             |                         |                     |                 |             |                         |                         |                                    |                     |                 |                     |                     |                         |                     |                 |             |                     |                         |             |             |         | -           |     |
| Lombok         |                     |                         |                     |                 | -           |                     |                 |                     |                 |                 |                             |                         |                     |                 |             |                         |                         |                                    |                     |                 |                     |                     |                         |                     |                 |             |                     |                         | -           |             |         |             |     |
| Bali           |                     |                         |                     |                 |             |                     |                 |                     |                 |                 |                             |                         |                     |                 |             |                         |                         |                                    |                     |                 |                     |                     |                         |                     |                 |             |                     |                         |             |             |         |             |     |
| Toraja         |                     |                         |                     |                 | -           |                     |                 |                     |                 |                 |                             |                         |                     |                 |             |                         |                         |                                    |                     |                 |                     |                     |                         |                     |                 |             |                     | ·                       |             |             |         |             | ·   |
| Ujung Padang   |                     |                         |                     |                 |             |                     |                 |                     |                 |                 |                             |                         |                     |                 |             |                         |                         |                                    |                     |                 |                     |                     |                         |                     |                 |             |                     |                         | -           |             |         |             |     |
| Palu           |                     |                         |                     |                 | -           |                     |                 |                     |                 |                 |                             |                         |                     |                 |             |                         |                         | •                                  |                     |                 |                     |                     |                         |                     |                 |             |                     |                         |             |             |         |             |     |
| Manado         |                     |                         |                     | 1               |             |                     |                 |                     |                 | 2               |                             |                         |                     |                 |             |                         |                         | •                                  |                     |                 |                     |                     |                         |                     |                 |             |                     |                         |             |             |         |             | •   |
| Kota Kinabalu  |                     |                         |                     |                 |             |                     |                 |                     |                 |                 |                             |                         |                     |                 |             |                         |                         | •                                  |                     |                 | _                   |                     |                         | •                   |                 |             |                     |                         | _           |             |         |             |     |
| Banjarmasin    |                     |                         |                     |                 | 2           |                     |                 |                     |                 |                 |                             |                         |                     |                 | •           |                         |                         | •                                  |                     |                 |                     |                     |                         |                     |                 |             |                     |                         |             |             |         |             |     |
| Tengger        |                     | •                       | •                   |                 |             |                     |                 |                     |                 |                 |                             |                         |                     |                 |             |                         |                         | •                                  |                     |                 |                     |                     |                         |                     |                 |             |                     |                         |             | -           |         |             |     |
| Medan          |                     |                         |                     |                 | 2           |                     |                 |                     |                 |                 |                             |                         |                     |                 |             |                         |                         | •                                  |                     |                 |                     |                     |                         |                     |                 |             |                     |                         |             |             |         |             |     |
| Bangka         |                     |                         |                     | •               | ŀ           |                     |                 |                     |                 |                 |                             |                         |                     |                 |             |                         |                         |                                    | [.                  | •               |                     |                     |                         |                     |                 |             |                     |                         |             |             |         |             |     |
| Padang         |                     |                         |                     |                 |             |                     |                 |                     | •               |                 |                             |                         |                     |                 |             |                         |                         |                                    |                     |                 |                     |                     |                         |                     |                 |             |                     |                         |             |             |         |             |     |
| Pekanbaru      |                     |                         |                     |                 |             |                     |                 |                     |                 |                 |                             |                         |                     |                 |             | •                       |                         | •                                  |                     | •               |                     |                     |                         |                     |                 |             |                     |                         |             |             |         |             | •   |
| Palembang      |                     |                         |                     |                 |             |                     | •               |                     |                 |                 |                             |                         |                     |                 |             |                         |                         | •                                  |                     |                 | ·                   |                     |                         |                     |                 |             |                     |                         |             |             |         |             |     |
| Melayu         |                     |                         |                     |                 |             |                     |                 |                     | -               |                 |                             |                         |                     |                 |             |                         |                         | •                                  | Ŀ                   |                 |                     |                     |                         | •                   | 1               |             | ·                   |                         |             |             | •       |             | •   |
| A. Malay       |                     |                         |                     |                 |             |                     |                 | •                   |                 |                 |                             |                         |                     |                 |             |                         |                         | •                                  |                     |                 | ·                   |                     |                         |                     |                 |             |                     |                         |             |             |         |             |     |
| Senoi          |                     |                         |                     |                 |             | •                   |                 |                     |                 |                 |                             |                         |                     |                 |             |                         |                         |                                    |                     | •               |                     |                     |                         | •                   |                 |             |                     |                         |             |             |         |             |     |
| Semang         |                     |                         |                     |                 |             | ·                   | 1               | 14                  | •               |                 |                             |                         |                     |                 |             |                         |                         |                                    |                     |                 |                     |                     |                         |                     |                 |             |                     |                         | Γ.          |             |         |             |     |
| Thailand       | .                   |                         | .                   |                 |             |                     |                 |                     |                 | .               | .                           |                         |                     | -               | -           | .                       | -                       |                                    | -                   | .               |                     |                     |                         |                     |                 |             |                     |                         | 4           |             |         |             |     |
| Philippines    |                     |                         |                     |                 |             |                     |                 |                     |                 | <b>.</b>        |                             |                         |                     |                 |             |                         |                         |                                    |                     |                 |                     | •                   | •                       | •                   |                 |             |                     |                         | •           |             |         |             |     |
| Taiwan         |                     |                         |                     |                 |             |                     |                 |                     |                 |                 |                             |                         |                     |                 |             |                         |                         |                                    |                     |                 |                     |                     |                         |                     |                 |             |                     |                         |             |             |         |             |     |
| China          | -                   | _                       | -                   |                 | 2           | -                   |                 |                     | _               |                 | -                           | -                       | -                   |                 | .           | -                       |                         | 1                                  |                     | _               |                     | 5                   | 1                       | 1                   | 6               | -           | -                   | 1                       | 4           |             | 1       | -           | 7   |
|                | 140 189 234 243 291 | 111 140 189 234 243 344 | 140 147 189 243 262 | 140 189 234 243 | 140 189 243 | 140 189 243 256 311 | 140 189 243 294 | 140 189 243 294 354 | 140 189 243 311 | 140 189 243 355 | 092 129 189 223 298 327 355 | 092 189 223 298 327 355 | 093 129 223 298 327 | 172 223 298 327 | 093 172 298 | 126 189 223 298 311 327 | 129 148 193 223 298 327 | 129 148 223 242 298 311 319<br>327 | 129 148 223 298 327 | 129 223 298 327 | 175 223 298 311 327 | 189 223 261 298 327 | 189 223 298 311 327 357 | 189 223 298 319 327 | 189 223 298 327 | 189 298 327 | 217 223 298 311 327 | 223 243 297 298 324 327 | 223 298 327 | 223 311 327 | 223 327 | 092 223 362 | 362 |
| HVS-I Variants | Ξ                   | Ξ                       | ┢                   | -               | t           | ¥                   | 140             | ┢                   |                 | -               |                             | 8                       | 66                  | 66              | 80          | 126                     | 125                     | 129                                | 125                 | 125             | 175                 | 185                 | 182                     | 185                 | 189             | 189         | 217                 | 223                     | 223         | 23          | 573     | 66          | 8   |
| Haplogroup     | BSB                 | BSb                     | BSb                 | BSb             | BSB         | BSB                 | BSb             | BSb                 | BSb             | BSb             | ပ                           | ပ                       | ပ                   | ပ               | ပ           | ပ                       | ပ                       | ပ                                  | ပ                   | ပ               | ပ                   | ပ                   | ပ                       | ပ                   | ပ               | ပ           | ပ                   | ပ                       | ပ           | ပ           | ပ       | ñ           | 8   |

| Ambon          |                             |                         |                     |             |                     |             |             |                     |         |                 |                     |                 |               |               |               |           |             |           | -       | _     |                 |               |                     |           |         |                     |                 |             |                 |                         |                   |             |         | _                |
|----------------|-----------------------------|-------------------------|---------------------|-------------|---------------------|-------------|-------------|---------------------|---------|-----------------|---------------------|-----------------|---------------|---------------|---------------|-----------|-------------|-----------|---------|-------|-----------------|---------------|---------------------|-----------|---------|---------------------|-----------------|-------------|-----------------|-------------------------|-------------------|-------------|---------|------------------|
| Alor           |                             |                         |                     |             |                     |             |             |                     |         |                 |                     |                 |               |               |               |           |             | ·         |         |       |                 |               |                     |           |         | •                   |                 |             |                 |                         |                   |             |         |                  |
| Sumba          |                             |                         |                     |             |                     |             |             |                     |         |                 |                     |                 |               |               | •             |           |             |           |         |       |                 |               |                     |           |         |                     |                 |             |                 |                         |                   |             |         |                  |
| Lombok         |                             |                         |                     |             |                     |             |             |                     |         |                 |                     |                 |               |               |               |           |             |           |         |       |                 |               | ·                   | ·         |         |                     |                 |             |                 |                         |                   |             |         |                  |
| Bali           |                             |                         |                     |             |                     |             |             |                     |         |                 |                     |                 |               |               |               |           |             |           |         |       |                 |               |                     |           |         |                     |                 |             |                 |                         |                   |             |         |                  |
| Toraja         |                             |                         |                     |             |                     |             |             |                     |         |                 |                     |                 |               |               |               |           |             |           |         |       |                 |               |                     |           |         |                     |                 |             |                 |                         |                   |             |         |                  |
| Ujung Padang   |                             | -                       |                     |             |                     |             |             |                     |         |                 |                     |                 | •             |               |               |           |             |           |         |       |                 |               |                     |           |         |                     |                 |             |                 |                         |                   |             |         |                  |
| Palu           |                             |                         |                     |             |                     |             |             |                     |         |                 |                     | _               |               |               |               | 1         |             |           |         |       | •               |               |                     |           |         |                     |                 |             |                 |                         |                   |             |         |                  |
| Manado         |                             |                         |                     |             |                     |             |             |                     |         |                 | 1                   | 1               | •             |               |               |           | 1           |           |         |       |                 |               |                     |           |         |                     |                 |             |                 |                         |                   |             |         |                  |
| Kota Kinabalu  |                             |                         |                     |             |                     |             |             |                     |         |                 |                     |                 |               |               |               |           |             | •         |         |       |                 |               |                     |           |         |                     |                 |             |                 |                         |                   |             |         |                  |
| Banjarmasin    |                             |                         |                     |             |                     |             |             |                     | 1       |                 |                     |                 |               |               |               |           |             |           |         |       |                 | ·             |                     | ·         | ·       |                     | ·               |             |                 |                         |                   |             |         |                  |
| Tengger        |                             |                         |                     |             | •                   |             | •           | •                   |         |                 |                     |                 | •             |               |               |           |             | •         |         |       |                 |               |                     |           |         |                     |                 |             |                 |                         |                   |             |         |                  |
| Medan          |                             | •                       |                     |             |                     |             | •           | •                   | •       |                 |                     |                 |               |               |               |           |             |           |         |       |                 |               |                     |           |         |                     |                 |             |                 |                         |                   |             |         | Ŀ                |
| Bangka         |                             |                         |                     |             |                     |             |             |                     | •       |                 |                     |                 |               |               |               |           |             | •         |         |       |                 |               |                     |           |         |                     |                 |             |                 |                         | •                 |             |         |                  |
| Padang         |                             |                         |                     | ŀ           |                     |             |             |                     |         |                 |                     |                 |               |               |               |           |             |           |         |       |                 |               |                     |           | ·       |                     |                 | •           | •               |                         |                   |             |         |                  |
| Pekanbaru      |                             |                         |                     |             |                     |             |             |                     |         |                 |                     |                 |               | <u> </u>      |               |           | •           |           |         |       | ·               |               |                     |           |         |                     |                 |             | •               | •                       |                   |             |         | ·                |
| Palembang      |                             |                         | <u> </u>            |             |                     |             |             |                     |         |                 |                     |                 |               |               | •             | •         |             |           |         |       | Ŀ               |               |                     |           |         |                     |                 |             |                 | •                       |                   |             | •       | ·                |
| Melayu         |                             | .                       |                     |             | <u> </u>            |             |             | <u>.</u>            |         |                 |                     |                 |               |               |               | •         |             |           |         |       |                 |               |                     |           |         |                     |                 |             |                 |                         |                   |             |         |                  |
| A. Malay       |                             |                         |                     |             |                     |             |             |                     |         |                 |                     |                 |               |               |               | •         |             |           |         |       |                 |               |                     |           |         | •                   |                 |             |                 |                         |                   |             | •       |                  |
| Senoi          |                             |                         |                     |             |                     |             |             | .                   |         |                 |                     |                 |               |               |               |           |             |           |         |       |                 |               |                     |           |         | ·                   |                 |             |                 |                         | •                 |             | •       |                  |
| Semang         |                             |                         |                     |             |                     |             |             |                     |         |                 |                     |                 |               |               |               |           | · ·         |           |         |       |                 |               |                     |           |         |                     |                 | •           |                 |                         |                   |             |         |                  |
| Thailand       | _                           | .                       | .                   |             | .                   |             | .           | _                   |         |                 | .                   |                 |               |               | 5             | 1         |             |           |         |       |                 |               |                     |           |         |                     |                 |             |                 |                         | •                 |             |         |                  |
| Philippines    |                             |                         |                     |             |                     |             |             |                     |         |                 |                     |                 |               |               |               |           |             | 5         |         |       |                 |               |                     |           |         |                     |                 |             |                 |                         |                   |             |         |                  |
| Taiwan         |                             |                         |                     |             |                     | _           |             |                     |         |                 |                     |                 |               | [.            |               |           |             |           | _       |       |                 |               |                     |           | ·       |                     |                 |             |                 |                         |                   |             | •       |                  |
| China          | [.                          | [.                      | _                   | -           | _                   | -           | 7           |                     |         | ٣               |                     |                 | 1             | -             | 5             | -         |             |           |         |       |                 | 1             |                     | 1         | 1       | -                   | 1               | -           | -               | -                       | _                 | _           | 1       | _                |
|                | 093 192 223 234 271 316 362 | 093 192 223 271 316 362 | 111 172 193 223 362 | 111 223 362 | 114 223 294 318 362 | 153 223 362 | 193 223 362 | 172 223 274 291 362 | 172 362 | 174 223 311 362 | 188 223 274 311 362 | 192 223 274 362 | 1 249 274 362 | 1 256 311 362 | 1 274 291 362 | 1 274 362 | 223 286 362 | 1 301 362 | 223 362 | 1 362 | 092 218 223 362 | 1 176 223 362 | 093 223 232 290 362 | 3 223 362 | 093 362 | 095 209 223 294 362 | 095 209 223 362 | 187 223 362 | 111 223 261 362 | 148 223 249 301 342 362 | 1 223 311 343 362 | 174 223 362 | 174 362 | 176 223 291A 362 |
| HVS-I Variants | 8                           | 8                       | E                   | E           | 14                  | 153         | 121         | 12                  | 12      | 174             | 188                 | 191             | 8             | 23            | 22            | 223       | 8           | 23        | 2       | ŝ     | 66              | 8             | 60                  | 8         | 80      | 8                   | 8               | E           | Ξ               | 148                     | 174               | 174         | 174     | ž                |
| Haplogroup     |                             |                         | ۵                   |             |                     |             | ۵           | ß                   |         | ۵               |                     |                 | 8             |               | ۵             | a         |             | 6         |         | 0     | Z               | Z             | Z                   | 2         | Z       | Z                   | Z               | Z           | A               | A                       | A                 | A           | Z       | A                |

| HVS-I Variants |                               | China    | Taiwan | Philippines | Thailand | Semang                 | A. Malay<br>Senoi | Melayu  | Palembang | Pekanbaru  | Padang | Bangka | Medan | Tengger | Banjarmasin | Kota Kinabalu | Manado   | Palu     | Toraja<br>Ujung Padang | Bali<br>Tornia | Lombok     | Sumba      | Alor     | Ambon     |
|----------------|-------------------------------|----------|--------|-------------|----------|------------------------|-------------------|---------|-----------|------------|--------|--------|-------|---------|-------------|---------------|----------|----------|------------------------|----------------|------------|------------|----------|-----------|
|                | 161 773 311 367               | ~        |        |             |          |                        | <u> </u> ·        |         |           | _ <u>_</u> |        | -+     | -+    |         |             |               |          | -+       | -+                     | +              | <u> </u> . | <u> </u> . | <u> </u> | <u> .</u> |
| 5 <u>8</u>     | 180 223 292 362               | -<br>-   |        | <u> </u>    | ╞        | ŀ                      | +-                | ŀ       | ŀ         | Ŀ          | [      |        |       |         |             |               | :        | ÷        | -+                     | . <br> <br>    | -          | •          |          | ·         |
| <u>}</u>       | 192 223 278 316 362           | - -      | +      | <u> </u> .  | †-       | ·                      |                   | H       | Ŀ         |            | Ŀ      |        |       |         |             | +             | -        | ·        | +                      | +              | -+-        |            | -        |           |
| 201            | 201 223 362                   | <b> </b> |        |             | H        | $\left  \cdot \right $ | ŀ                 | ŀ       |           |            |        | -+     | _     | _       | +           | ÷             | -+       | ·        | -                      |                |            | ·          |          |           |
| 183<br>        | 209 223 266 362               |          |        | -<br> <br>  | H        |                        |                   |         |           |            |        | -      | -     | -+      | _           | +             | ·        | -        | -+                     | +              |            |            |          |           |
| 8              | 223 224 245 292 362           | -        | H      | H           |          |                        |                   |         |           |            | _      |        | +     | +       | +           | +             | +        | +        | +                      | -              | ·          |            |          | ·         |
| 23             | 223 245 269 362               |          |        |             | · ·      | ·                      |                   | •       | +         |            | -      |        | +     | +       | +           | +             | +        | +        | -                      | ·              | ·<br>      |            |          | ·         |
| 223            | 223 249 261 278 362           | -        |        |             |          | •                      | ·                 |         |           |            | ·      | -      | -+    |         |             | +             | ·        | +        | •                      | ·              |            |            |          |           |
| 223            | 223 249 362                   | e        |        | •           |          |                        | ·                 | •       |           |            | ·      | +      |       |         | +           |               | -        | ·        | · -                    | •              | . <br>     |            |          |           |
| 223            | 291 362                       | -        |        | •           | •        | ·                      | ·                 | ·       |           |            | ·      | ł      | -+    | +       | +           | ÷             | •        | ╧        | •                      | . <br>         |            |            |          | •         |
| 223            | 223 362                       | =        |        |             |          | •                      |                   | ·       | _         | .          |        | +      |       | +       | +           | +             | +        | ·        | · <br>                 | •              |            |            |          | ·         |
| 362            |                               | -        |        |             |          | •                      | •                 | ·       | •         |            |        | -+     |       | -       |             |               | +        | ł        | +                      | ·              |            |            |          |           |
| Ē              | 111G 129 223 362              | 1        |        |             |          | ·                      |                   |         |           |            |        |        | +     |         | -+-         | +             | -        | +        |                        | . <br>         |            |            | •        |           |
| 129            | 129 162 223 362               | 1        |        |             |          | •                      | ·<br>             | •       |           |            |        |        | +     | +       |             |               | +        |          | · <br>                 | -              | •          |            |          | ·         |
| 129            | 129 193 223 256 362           | -        |        |             |          | •                      | ·<br>             | -       | •         |            |        | ł      | +     | +       | -           | +             | <br>     |          | •                      | ·              | •          |            |          |           |
| 129            | 129 223 234 249 311 362       | -        |        |             | -        | ÷                      | •                 | +       | .         |            |        |        | +     |         |             |               | ╈        | ·        | ·<br>                  | •              |            |            |          |           |
| 671            | 129 223 249 278 311 362       | -        |        |             |          | +                      | ·                 | ·       |           |            | ·      | Ţ      | Ţ     | +       | +-          | +             |          |          | •                      | ·              |            |            | . -      | ·         |
| 129            | 0 223 274 311 317 362         |          |        |             | -        | +                      | ·                 | ·       | •         |            |        | ŀ      | +     | 1       | +           | +             | +        | +        | ·                      | ·<br>          | . <br>     |            |          |           |
| 129            | 129 223 362                   | e        | -      |             | _        | <br>                   | +                 | . <br>- | .         |            |        | ·      |       |         | -           | -             |          | <u>.</u> | ·<br>                  | ·              |            |            |          |           |
| 181            | 1 223 311 319                 | -        |        | -           |          | ·                      | +                 | +       | ·         | . <br>     | ·      | ·      | Ţ     | 1       |             |               |          | ·<br>    | •                      | +-             | •          |            |          |           |
| 184            | 184in/del 186 189 223 319 362 | -        | -      | -           | ╉        | +                      |                   | +       | ·         | .          | ·      | ·      | t     | +       | +           | +             |          | · <br> - | · -                    |                | .          |            |          |           |
| 223            | 223 287 319 362               | -        | -+     | +           |          | +                      | ·                 | ·       | •         |            | •      | ·      |       | +-      |             |               |          |          |                        | ·  ·           |            |            |          |           |
| 66             | 2 129 148 189 223 362         |          | -      | +           |          |                        | ╡                 | ·       | ·         | ·          |        | ·      | 1     | •       | •           | +             |          |          | •                      |                |            |            |          | _         |
| 660            | 092 148 184 189 223 356 362   |          | -      |             |          | ÷<br>                  | •                 | ·       | •         |            | -      | ·      | 1     | 1       |             | +             |          | <br>     | · -                    | ·              |            |            |          |           |
| 66             | 092 148 185 189 223 362       | _        | -      |             | -        | -<br> <br>             | <br>              | •       | •         |            | ·      | ·      |       | Ţ       |             | +             | ╎        |          | ·<br>                  | ·<br>          | -          |            |          |           |
| 66             | 092 148 189 223 256 362       | 1        |        |             |          |                        | ÷                 | ·       |           | •          |        | ·      |       | -†      |             |               |          |          | +                      |                | . -<br>    |            | ·<br>    |           |
| 8              | 092 148 189 223 311 362       |          |        |             |          |                        | ·                 | <br>    |           | •          |        | ·      | •     |         | -           | +             |          |          | -                      | ·              | -          |            |          |           |
| 8              | 092 148 189 223 362           | 2        |        |             |          | •                      | ·                 | •       |           | .<br>      |        | ·      |       |         | -†          | ╡             | <u>_</u> | -        | *                      | ·              | ·          |            |          | •         |
| 002            | 092 164 186 189 223 362       |          | [.]    |             | _        |                        | ·                 | İ       | -+        | .          |        |        | 1     | 1       | -†-         | +             | +        | +        | +                      | +              | ∔          | ÷          |          |           |
| 80             | 1 148 189 223 362             | -        |        | •           |          |                        | ·                 |         | •         |            | ļ      | ·      | +     | +       | +           | +             | +        | +        | . <br> <br>            | ·<br>          | +          |            |          | ·         |
| 8              | 093 189 223 362               | -        |        |             |          |                        | ·                 | ÷<br>   | . <br>    | .          |        | -      |       |         | +           | +             | +        | +        | +                      | ·              | ·          | ·          | ·        |           |
| E              | 111 172 189 223 228 362       |          |        |             | _        |                        | -                 |         | . <br> -  |            |        |        | Ţ     | 1       | -           | +             | +        |          | +                      | +              | ÷          | +          | ÷        | ·         |
| E              | 1 172 189 223 311 362         | -        |        |             | -        | <br>                   | -                 |         | . <br>-   |            |        |        |       | -       |             | -†-           |          | +        | +                      |                | •          | . <br>     |          |           |
| E              | 111 172 189 223 362           | _        | -      |             | -        | ÷<br>!                 | Ì                 | ļ       | ÷         | ÷          |        |        | -     | -       | -           | -             |          | -        |                        | -              | -          | -          |          |           |
|                |                               |          |        |             |          |                        |                   |         |           |            |        |        |       |         |             |               |          |          |                        |                |            |            |          |           |

| Ambon          |                 |                     | _               | ,               |                     |                     |                         |                     |                     |                      |                         |                 |                 |                     |             |                 |             |                             |                     |                         |                     |                             |                         |                         |                         |                         |                     |                 |                 |         |             |         |             | _       |
|----------------|-----------------|---------------------|-----------------|-----------------|---------------------|---------------------|-------------------------|---------------------|---------------------|----------------------|-------------------------|-----------------|-----------------|---------------------|-------------|-----------------|-------------|-----------------------------|---------------------|-------------------------|---------------------|-----------------------------|-------------------------|-------------------------|-------------------------|-------------------------|---------------------|-----------------|-----------------|---------|-------------|---------|-------------|---------|
| Alor           | -               |                     | -+              | -               |                     |                     |                         |                     |                     |                      | -                       | -               |                 |                     |             | <del>  -</del>  |             |                             |                     | _                       | -                   |                             |                         |                         |                         |                         | -+                  |                 |                 |         | -           |         |             | -       |
| Sumba          | -               |                     |                 |                 |                     |                     |                         |                     |                     |                      |                         |                 |                 |                     |             |                 |             |                             |                     |                         |                     | -                           |                         |                         |                         |                         |                     |                 |                 |         |             |         | _           | -       |
| Lombok         |                 |                     |                 |                 |                     |                     |                         |                     | -                   | -                    | -                       |                 |                 |                     |             |                 |             |                             |                     |                         |                     |                             |                         |                         |                         |                         |                     |                 |                 |         |             |         |             |         |
| Bali           |                 |                     |                 |                 |                     |                     |                         |                     |                     |                      |                         |                 | _               |                     |             |                 |             |                             |                     |                         |                     |                             |                         |                         |                         |                         |                     |                 |                 |         |             |         |             |         |
| Toraja         |                 |                     |                 |                 |                     |                     |                         |                     |                     |                      |                         |                 |                 |                     |             | •               | m           |                             |                     |                         |                     |                             |                         |                         |                         |                         |                     |                 |                 |         |             | -       |             |         |
| Ujung Padang   |                 |                     | _               |                 |                     |                     |                         |                     |                     |                      |                         |                 | -               |                     |             |                 |             |                             |                     |                         |                     |                             |                         |                         |                         |                         |                     |                 |                 |         | -           |         |             |         |
| Palu           |                 |                     |                 |                 |                     |                     |                         |                     |                     |                      |                         |                 |                 |                     |             |                 |             |                             |                     |                         |                     |                             |                         |                         |                         |                         |                     |                 |                 |         |             |         | 1           |         |
| Manado         |                 | 1                   | 4               |                 |                     |                     |                         | -                   |                     |                      |                         | •               |                 |                     |             |                 |             |                             |                     |                         |                     |                             |                         |                         |                         |                         |                     |                 |                 | -       |             |         |             |         |
| Kota Kinabalu  | -               |                     |                 |                 |                     |                     |                         |                     |                     |                      |                         |                 |                 |                     |             |                 |             |                             |                     |                         |                     |                             |                         |                         |                         |                         |                     |                 |                 |         | •           |         |             |         |
| Banjarmasin    |                 |                     |                 |                 |                     |                     |                         |                     |                     |                      |                         |                 |                 |                     |             |                 |             |                             |                     |                         |                     |                             |                         |                         |                         |                         |                     |                 |                 |         |             | •       |             |         |
| Tengger        |                 |                     |                 |                 |                     |                     |                         |                     |                     | •                    |                         |                 |                 | •                   |             |                 |             |                             |                     |                         |                     |                             |                         |                         |                         |                         |                     |                 |                 |         |             |         |             |         |
| Medan          |                 |                     |                 |                 |                     |                     |                         |                     |                     |                      | •                       |                 |                 |                     |             |                 |             |                             |                     |                         |                     |                             |                         |                         |                         |                         |                     |                 |                 |         |             |         |             |         |
| Bangka         |                 |                     |                 |                 |                     |                     |                         |                     |                     | •                    |                         |                 |                 |                     |             |                 |             |                             |                     |                         |                     |                             |                         |                         |                         |                         |                     |                 |                 |         | •           |         | -           |         |
| Padang         |                 |                     |                 | •               |                     |                     |                         |                     |                     |                      |                         |                 |                 |                     |             |                 |             |                             |                     |                         |                     |                             |                         |                         |                         |                         |                     |                 |                 |         | •           | •       | •           |         |
| Pekanbaru      |                 |                     |                 |                 |                     |                     |                         |                     |                     |                      |                         |                 |                 |                     |             |                 |             |                             |                     |                         |                     |                             |                         |                         |                         |                         |                     |                 |                 |         | •           | •       |             |         |
| Palembang      |                 |                     |                 |                 |                     |                     |                         |                     |                     |                      |                         |                 |                 |                     |             |                 |             |                             |                     |                         |                     |                             |                         |                         |                         |                         |                     |                 |                 |         |             | •       |             |         |
| Melayu         |                 |                     |                 |                 |                     |                     |                         |                     |                     |                      |                         |                 | -               |                     |             |                 |             |                             |                     |                         |                     |                             |                         |                         |                         |                         |                     |                 |                 | •       |             |         |             |         |
| A. Malay       |                 |                     |                 |                 | •                   |                     |                         |                     |                     |                      |                         |                 |                 |                     |             |                 |             |                             | •                   |                         |                     |                             |                         |                         |                         |                         |                     |                 |                 |         | •           |         |             | •       |
| Senoi          |                 |                     | .               |                 |                     |                     |                         |                     |                     |                      |                         | .               |                 |                     |             |                 |             |                             |                     |                         |                     |                             | •                       |                         |                         |                         |                     |                 |                 | •       |             |         |             |         |
| Semang         |                 |                     |                 |                 |                     |                     |                         |                     |                     |                      |                         |                 |                 |                     |             |                 |             |                             |                     | •                       | ]                   |                             | •                       |                         |                         |                         |                     | •               |                 |         |             |         |             |         |
| Thailand       | .               |                     | .               |                 | .                   | .                   | .                       | .                   | .                   | .                    | .                       |                 | .               | .                   | .           | .               | 2           |                             |                     | .                       |                     |                             |                         |                         |                         |                         |                     |                 |                 | •       |             |         |             | •       |
| Philippines    |                 | 1.                  |                 |                 |                     |                     |                         |                     |                     |                      |                         |                 |                 |                     | Ι.          |                 |             |                             |                     |                         |                     |                             |                         |                         |                         |                         |                     | 1               |                 |         |             |         |             |         |
| Taiwan         |                 |                     |                 |                 |                     |                     |                         |                     |                     |                      |                         |                 |                 |                     |             |                 | 2           |                             |                     |                         |                     |                             |                         |                         |                         | •                       |                     |                 |                 | •       | 9           |         |             |         |
| China          |                 |                     | 2               | -               | -                   | -                   | -                       |                     | -                   | -                    | -                       | -               | 7               | _                   | -           | _               | 12          | -                           | -                   | 1                       | 1                   | 1                           | 1                       | I                       | 1                       | 1                       | 1                   |                 | 1               |         |             | -       |             |         |
|                | 126 189 223 362 | 148 189 223 309 362 | 148 189 223 362 | 150 189 223 362 | 167 189 223 294 362 | 171 189 223 311 362 | 172 187 189 223 256 362 | 172 189 223 259 362 | 184 189 223 311 362 | 189 201A 223 311 362 | 189 210 223 311 316 362 | 189 223 273 362 | 189 223 311 362 | 189 223 319 360 362 | 223 319 362 | 189 223 360 362 | 189 223 362 | 092 145 164 189 223 266 362 | 164 167 189 266 362 | 092 172 189 223 266 362 | 092 172 189 223 362 | 164 172 189 223 235 266 291 | 172 189 223 266 300 362 | 164 172 189 223 266 362 | 169 172 189 223 266 362 | 189 223 266 299 319 362 | 172 189 223 266 362 | 148 223 261 362 | 156 223 274 362 | 223 362 | 185 223 362 | 223 362 | 215 223 362 | 248 362 |
| HVS-I Variants | 126             | 1<br>8              | 148             | 150             | 167                 | 121                 | 121                     | 12                  | 184                 | 8                    | 681                     | 8               | 8               | 8                   | 68          | 180             | 180         | 80                          | 8                   | 8                       | 8                   | 2                           | <u>1</u>                | 161                     | <u>89</u>               | 121                     | 12                  | 148             | 156.            | 184     | 185         | 8       | 215         | 223     |
| Haplogroup     | ۲<br>۲          | 20                  | ß               | 50              | ß                   | ß                   | 5                       | ß                   | ñ                   | ž                    | 5                       | ž               | 3               | ñ                   | ß           | 2               | DS          | DSa                         | D5a                 | D5a                     | DSa                 | D5a                         | DSa                     | D5a                     | DSa                     | DSa                     | D5a                 | E               | EI              | EI      | E           |         | E           | EI      |

| Ambon          |             |                  |             |         | 7       |                 |                 |                 |                     |             |                 |                 |             |             |             |                 |                 |                     |                  |                 |                 |                 |               | 5         |                     |             |                 |                 |             |             |             |             |                 | _       |
|----------------|-------------|------------------|-------------|---------|---------|-----------------|-----------------|-----------------|---------------------|-------------|-----------------|-----------------|-------------|-------------|-------------|-----------------|-----------------|---------------------|------------------|-----------------|-----------------|-----------------|---------------|-----------|---------------------|-------------|-----------------|-----------------|-------------|-------------|-------------|-------------|-----------------|---------|
| Alor           |             |                  |             |         |         |                 |                 |                 |                     |             |                 | -               |             |             |             |                 |                 | -                   |                  | -               |                 | _               |               |           | -+                  | -           |                 |                 | -+          | -           | -           | 2           | -               | -       |
| Sumba          |             |                  |             |         |         |                 |                 |                 |                     |             |                 |                 |             |             |             |                 |                 |                     | _                |                 |                 |                 |               | _         |                     |             |                 |                 |             |             |             | •           |                 | •       |
| Lombok         |             |                  |             |         |         |                 |                 | _               |                     |             |                 |                 |             |             |             |                 |                 |                     |                  |                 |                 |                 |               |           |                     |             |                 |                 |             |             |             | 2           |                 |         |
| Bali           |             |                  |             |         |         |                 |                 |                 | -                   |             |                 |                 |             |             |             |                 |                 |                     |                  |                 |                 |                 | ·             | 2         |                     |             |                 |                 |             |             |             | _           |                 |         |
| Toraja         |             |                  |             | 7       |         |                 | 7               |                 |                     |             |                 |                 |             | -           |             |                 |                 |                     |                  |                 |                 |                 | ·             | 9         |                     |             |                 |                 |             |             |             | 7           |                 |         |
| Ujung Padang   | 1           | 1                |             |         |         |                 |                 |                 | -                   |             |                 | •               |             |             |             |                 |                 |                     |                  |                 |                 |                 |               | S         |                     | -           |                 |                 |             |             |             |             |                 |         |
| Palu           |             |                  |             |         |         |                 |                 |                 |                     |             |                 |                 |             |             | -           |                 |                 |                     |                  |                 |                 |                 |               | m         | -                   |             |                 |                 |             |             |             | -           |                 |         |
| Manado         |             | 1                | 1           |         | 2       |                 |                 |                 |                     |             |                 |                 | 3           |             |             |                 | -               |                     |                  |                 |                 |                 |               | 15        |                     |             |                 |                 |             |             | -           | e           |                 |         |
| Kota Kinabalu  |             |                  |             |         | 2       |                 |                 |                 |                     | 1           |                 |                 |             | •           | 2           |                 |                 |                     |                  |                 | -               |                 |               | 7         |                     |             |                 | •               |             |             |             |             |                 | •       |
| Banjarmasin    |             |                  |             |         | 2       |                 |                 |                 |                     |             |                 |                 |             |             | 1           |                 |                 |                     | 1                |                 |                 |                 |               | _         |                     |             |                 |                 | 2           |             | •           |             |                 |         |
| Tengger        |             | Γ.               |             |         |         |                 |                 |                 |                     |             |                 |                 |             |             |             |                 |                 |                     |                  |                 |                 |                 |               |           |                     | 1           | •               |                 |             |             |             |             |                 | •       |
| Medan          |             |                  |             |         |         |                 |                 |                 |                     | •           | •               |                 |             |             |             | I               |                 |                     |                  | -               | •               |                 |               |           |                     |             | 1               |                 |             |             |             |             |                 |         |
| Bangka         |             |                  |             |         |         |                 |                 |                 |                     |             |                 |                 |             | •           | •           | •               |                 |                     |                  |                 |                 |                 |               | 2         |                     |             |                 | 1               |             |             |             |             |                 |         |
| Padang         |             |                  |             |         | •       |                 | •               |                 |                     | •           |                 |                 |             | •           |             | •               |                 |                     |                  |                 |                 |                 |               | -         |                     |             |                 |                 |             |             |             | -           |                 |         |
| Pekanbaru      |             |                  |             |         |         |                 |                 | •               | •                   | •           | •               |                 |             |             |             |                 | 1               | •                   | •                |                 |                 |                 |               |           |                     | •           |                 | •               |             |             | •           |             |                 |         |
| Palembang      |             |                  |             |         |         | •               |                 |                 |                     |             | •               |                 |             |             |             |                 |                 |                     | •                |                 |                 |                 |               |           |                     |             |                 |                 |             |             |             |             |                 |         |
| Melayu         |             |                  |             |         | -       | •               | •               |                 | •                   |             | •               |                 |             |             |             |                 |                 | •                   |                  |                 |                 |                 |               | -         |                     |             | •               |                 |             | -           | 1           | 7           |                 | •       |
| A. Malay       |             |                  |             |         |         | •               |                 |                 |                     |             |                 |                 |             |             |             |                 |                 |                     |                  |                 |                 |                 |               |           | •                   |             | •               |                 |             |             |             | •           |                 | •       |
| Senoi          |             |                  | .           | .       |         |                 |                 |                 |                     |             |                 |                 |             |             |             | •               |                 |                     |                  |                 |                 |                 |               |           |                     |             | •               |                 | •           |             | •           |             |                 |         |
| Semang         |             |                  |             |         |         |                 |                 |                 |                     |             |                 |                 |             |             |             | •               |                 |                     |                  |                 |                 |                 |               |           |                     | •           |                 | •               | ·           | [.          |             |             |                 | •       |
| Thailand       | .           |                  | .           | .       |         |                 | .               | .               | .                   | .           | .               | .               | .           | .           |             |                 | .               |                     | .                |                 |                 |                 |               |           |                     | •           |                 |                 |             |             |             |             | 1               | I       |
| Philippines    |             |                  |             |         | _       |                 |                 |                 |                     |             |                 |                 |             |             |             |                 |                 |                     |                  |                 |                 | 1               | 1             | 2         |                     |             |                 |                 |             |             |             |             | •               | •       |
| Taiwan         |             |                  | .           |         | ~       | m               |                 |                 |                     |             | _               | _               |             |             |             |                 |                 | -                   |                  |                 |                 |                 |               | 7         |                     |             |                 |                 |             |             |             |             |                 |         |
| China          |             |                  |             |         | -       |                 |                 |                 |                     |             |                 | .               |             |             |             |                 |                 |                     |                  |                 |                 | •               | •             |           |                     |             |                 |                 |             |             |             |             | •               |         |
|                | 256 324 362 | 223 258C 309 362 | 223 292 362 | 324 362 | 223 362 | 093 223 291 362 | 117 223 291 362 | 189 223 291 362 | 129 148 223 291 362 | 223 291 362 | 140 223 291 362 | 172 223 248 291 | 223 291 362 | 223 291 362 | 223 291 362 | 223 290 291 362 | 189 223 291 362 | 223 224 291 294 362 | 223 265T 291 362 | 223 288 291 362 | 291 311 342 362 | 223 291 311 362 | 1 291 356 362 | 1 291 362 | 093 223 261 311 362 | 223 261 362 | 131 223 261 362 | 172 223 261 362 | 261 288 362 | 261 294 362 | 261 311 362 | 223 261 362 | 093 304 311 362 | 129 304 |
| HVS-I Variants | 223         | 12               | 2           | 2       | 53      | 8               | Ē               | 126             | <u>8</u>            | 12          | 14              | 12              | 12          | 180         | 185         | 186             | 188             | 23                  | 22               | 223             | 23              | 8               | 22            | 23        | 80                  | 8           | 131             | 12              | 223         | 223         | 223         | 223         | 66              |         |
| Haplogroup     | EI          | Ξ                | Е           | Ξ       | EI      | Ela             | Ela             | Ela             | Ela                 | Ela         | Ela             | Ela             | Ela         | Ela         | Ela         | Ela             | Ela             | Ela                 | Ela              | Ela             | Ela             | Ela             | Ela           | Ela       | Elb                 | EIb         | EIb             | Elb             | Elb         | EIb         | Elb         | Elb         | <u>ت</u>        | 6       |

| Ambon                        |                 |                         |                |                |             |         |             |             | ]    |         |                     |                         |                |                     |                 | 7                       |                     | -                       |                 |                 |                     |                         |                         |                |                 | ·                       |                     | ·                   |                  |                     |                |                     | ·                   | ]                |
|------------------------------|-----------------|-------------------------|----------------|----------------|-------------|---------|-------------|-------------|------|---------|---------------------|-------------------------|----------------|---------------------|-----------------|-------------------------|---------------------|-------------------------|-----------------|-----------------|---------------------|-------------------------|-------------------------|----------------|-----------------|-------------------------|---------------------|---------------------|------------------|---------------------|----------------|---------------------|---------------------|------------------|
| Alor                         |                 | -                       | -<br>7         | _ ,            | 7           |         |             | +           | ſ    | ·       |                     |                         | •              |                     |                 | ·                       |                     | ·                       | ·               |                 |                     |                         | -                       |                | ·               | ·                       | ·                   | ·                   | ·                | ·                   |                |                     |                     |                  |
| Sumba                        | -               |                         | _              |                |             |         | ·           |             |      |         | ·                   |                         |                |                     |                 |                         |                     | •                       |                 |                 | ·                   |                         |                         |                |                 |                         | ·                   |                     |                  |                     | ·              |                     |                     |                  |
| Lombok                       | _               |                         | ·              |                |             |         |             |             |      |         |                     |                         | •              | -                   |                 |                         |                     | ·                       |                 |                 |                     |                         |                         | ·              |                 |                         | -                   |                     |                  | ·                   |                |                     | ·                   | ·                |
| Bali                         |                 |                         |                |                |             |         |             |             |      | -       |                     |                         |                |                     |                 | ·                       |                     | ·                       |                 | ·               | ·                   |                         | ·                       | ·              | ·               |                         | ·                   |                     |                  | -                   |                |                     | ·                   | ·                |
| Toraja                       | •               |                         |                |                |             |         |             |             |      |         |                     |                         |                |                     |                 |                         |                     |                         |                 | ·               |                     |                         |                         |                |                 | ·                       |                     |                     | ·                |                     |                |                     | ·                   |                  |
| Ujung Padang                 |                 |                         |                |                |             | ·       |             | ·           | ·    |         |                     | -                       |                |                     |                 |                         |                     |                         |                 |                 |                     |                         | ·                       | ·              | ·               |                         |                     |                     |                  | ·                   | ·              |                     | ·                   | ·                |
| Palu                         |                 |                         | _              |                |             |         |             |             |      |         |                     |                         |                |                     |                 | •                       |                     |                         |                 |                 | ·                   | •                       | ·                       |                | ·               |                         |                     | ·                   |                  |                     | ·              |                     |                     |                  |
| Manado                       | .               |                         | _              |                |             |         |             |             |      |         |                     |                         |                |                     |                 |                         |                     |                         |                 |                 | ·                   |                         |                         |                | ·               |                         |                     |                     | ·                |                     | ·              |                     |                     | ·                |
| Kota Kinabalu                | Γ.              |                         | 3              |                |             |         |             |             | _    | -       | •                   |                         |                | •                   |                 |                         |                     |                         |                 |                 |                     |                         |                         |                |                 | ~                       |                     |                     | ·                |                     |                | ·                   |                     | ·                |
| Banjarmasin                  |                 |                         |                |                |             |         |             |             |      |         |                     |                         | •              |                     |                 |                         |                     |                         |                 |                 |                     |                         | ·                       |                |                 |                         |                     |                     |                  | ·                   |                |                     | -                   | _                |
| Tengger                      |                 |                         |                |                |             |         |             |             |      |         |                     |                         |                |                     |                 | •                       |                     |                         |                 |                 |                     |                         |                         |                |                 |                         |                     | ·                   |                  |                     | ·              |                     | ·                   |                  |
| Medan                        |                 |                         |                |                |             |         |             |             | •    | •       |                     |                         |                |                     |                 |                         |                     |                         |                 | ·               |                     |                         |                         |                |                 |                         | ·                   | ·                   |                  |                     |                |                     |                     | Ŀ                |
| Bangka                       |                 |                         |                |                |             |         |             |             |      |         |                     |                         |                |                     |                 |                         |                     | ·                       |                 |                 |                     |                         |                         |                |                 |                         |                     |                     |                  | ·                   |                |                     |                     |                  |
| Padang                       |                 |                         |                |                |             |         |             |             |      |         |                     |                         |                |                     | .<br> -         |                         |                     |                         |                 |                 | 1                   |                         | ·                       |                | ·               |                         |                     |                     |                  | ·                   |                |                     |                     |                  |
| Pekanbaru                    |                 |                         |                |                |             | •       |             |             | •    |         | <br> -              |                         |                |                     | <u> </u> .      |                         |                     |                         |                 | -               |                     | •                       |                         | •              | ·               |                         |                     |                     |                  |                     | ·              |                     |                     |                  |
| Palembang                    |                 |                         |                |                |             |         |             |             |      |         |                     | .                       |                |                     |                 |                         | -                   |                         | ļ.              | Ŀ               | •                   |                         |                         |                |                 |                         |                     |                     |                  | •                   |                |                     |                     |                  |
| Melayu                       |                 |                         | ŀ              | ļ.             |             |         |             |             |      | <br>    |                     |                         |                |                     | <u> </u> .      |                         |                     | .<br>                   | .<br>           | ·               | •                   |                         |                         |                |                 | •                       |                     |                     |                  |                     | •              |                     | •                   | ÷                |
| A. Malay                     |                 |                         |                |                |             | ŀ       |             |             |      |         |                     |                         |                |                     |                 |                         |                     |                         |                 |                 |                     | .<br>_                  |                         |                |                 |                         |                     |                     |                  |                     |                |                     |                     |                  |
| Senoi                        |                 |                         |                |                |             |         |             |             |      | Ŀ       |                     |                         |                |                     |                 |                         |                     |                         |                 |                 |                     |                         |                         |                |                 |                         |                     |                     |                  | •                   |                |                     |                     |                  |
| Semang                       |                 |                         |                |                |             |         |             |             |      |         |                     |                         |                |                     |                 |                         |                     |                         |                 |                 |                     | <u> </u>                |                         |                |                 |                         |                     |                     |                  |                     |                |                     | •                   |                  |
| Thailand                     |                 |                         |                |                | .           | 2       | -           |             | -    | -       | -                   | .                       | .              |                     | . _             |                         |                     | -                       | -               |                 |                     | -                       |                         |                |                 |                         |                     | •                   |                  |                     |                | -                   | •                   |                  |
| Philippines                  | T               | .                       |                |                |             |         |             | _           |      |         |                     |                         |                | ·                   |                 |                         |                     |                         |                 |                 |                     | <u>.</u>                |                         |                |                 |                         |                     |                     |                  |                     |                |                     |                     |                  |
| Taiwan                       | Γ               |                         | 4              |                |             |         |             |             |      |         |                     |                         |                |                     |                 |                         |                     |                         |                 |                 |                     |                         |                         |                |                 | •                       | <u> </u>            |                     |                  |                     |                | ·                   |                     |                  |
| China                        |                 | •                       | -              |                |             |         |             |             | L.   | _       |                     |                         | -              | -                   | •               |                         |                     |                         |                 |                 |                     |                         |                         | _              | 6               |                         |                     | -                   | 2                |                     | -              | ŀ                   | •                   | -                |
|                              | 120 204 251 250 | 322 112 PUE 75C DOI 621 | 157 256 AM 335 | 17 256 304 362 | 157 256 335 | 157 304 | 228 304 362 | 256 304 335 | TA . | Cyt PUE | 001 101 170 180 30M | CYL FUE FOC (11 0C1 COU | 001 177 180 3M | 100 177 200 304 367 | 120 120 172 204 | 110 110 171 704 304 367 | 100 120 172 201 202 | 127 120 177 204 304 362 | 177 120 172 304 | 129 132 172 304 | 129 134 172 301 304 | 129 153 172 223 263 304 | 129 172 173 294 304 362 | 29 172 184 304 | 129 172 187 304 | 129 172 192 294 304 362 | 129 172 214 304 311 | 129 172 218 304 354 | 129 172 218A 304 | 129 172 223 291 305 | 29 172 242 304 | 129 172 265 295 304 | 129 172 271 304 311 | 129 172 274 304  |
| HVS-I Variants<br>Haplogroup |                 |                         | +              | Ţ              |             |         | T           | F 2         |      | Ţ       |                     | t                       | ╀              |                     | ╈               | 1                       | 1 2 2               | ╈                       | E10             | -               | t                   | $\dagger$               | ╞                       | ┢              | T               | $\uparrow$              | ╀                   | $\uparrow$          | ┢                | $\mathbf{t}$        | ┢              | ╞                   | ┢                   | $\left  \right $ |

| AmbonAlorSumbaSumbaLombokBaliTorajaUjung PadangPaluManadoKota KinabaluBanjarmasin |            |     |                      |             |   |   |                         |                         | · · · · · · · · · · · · · · · · · · · |                           |                       |                         |                 |                         |             |                             |        |                                                    |                     |                           |                         |                           |                         |                           |                         |                            |                 |                  | · · · · · · · · · · · · · · · · · · · |   |
|-----------------------------------------------------------------------------------|------------|-----|----------------------|-------------|---|---|-------------------------|-------------------------|---------------------------------------|---------------------------|-----------------------|-------------------------|-----------------|-------------------------|-------------|-----------------------------|--------|----------------------------------------------------|---------------------|---------------------------|-------------------------|---------------------------|-------------------------|---------------------------|-------------------------|----------------------------|-----------------|------------------|---------------------------------------|---|
| Tengger<br>Medan<br>Bangka<br>Padang                                              |            |     |                      |             |   |   |                         |                         |                                       | •                         |                       | ·<br>·<br>·             | ·<br>·<br>·     |                         | ·<br>·<br>· | ·<br>·<br>·                 | •      |                                                    |                     | •                         |                         | ·<br>•<br>•<br>•          |                         |                           | •                       |                            |                 | •                |                                       |   |
| Pekanbaru<br>Palembang<br>Melayu<br>A. Malay                                      | . 3        |     |                      |             |   |   | · · ·                   |                         |                                       | •                         |                       | . 2.                    | -               |                         | •           | ·<br>·<br>·                 | ·<br>· |                                                    |                     | ·<br>·<br>·               |                         |                           | · 7 1 2                 |                           |                         |                            | •               | •                | •                                     |   |
| Senoi<br>Semang<br>Thailand<br>Philippines                                        |            |     |                      | ·<br>·<br>· |   |   | · · ·                   |                         |                                       |                           | •                     | •                       |                 |                         | ·<br>·      | ·<br>·<br>·                 | ·<br>· |                                                    | -                   |                           | •                       |                           | . 18 . 16               | ·<br>·<br>·               | •                       |                            |                 | •                |                                       |   |
| Taiwan<br>China                                                                   | 13 127 204 | 2 - | 1 112 102 117 201 21 |             |   |   | 108 129 162 172 234 299 | 1 1 223 120 162 172 223 | PUL 081 221 291 021 111 801           | 108 124 129 162 172 304 1 | 8 129 147 162 172 304 | 108 129 162 170 172 304 | 108 129 162 172 | 108 129 162 172 184 304 |             | 108 129 162 172 214 304 4 . | 304    | 106 129 162 1/2 200 304<br>108 129 163 177 361 304 | 108 170 162 172 274 | 108 129 162 172 274 304 1 | 8 129 162 172 293 304 1 | 108 129 162 172 295 304 1 | 108 129 162 172 304 9 . | 108 129 162 172 304 311 1 | 8 129 162 172 304 355 1 | 111 189 232A 249 304 311 1 | 126 178 189 304 | 126 189 304 1 .  | 129 145 189 232A 249 304 311 1        | - |
| HVS-I Variants<br>Haplogroup                                                      | Elal 120   | ╈   | ╈                    | 1           | ╉ | ╉ | Fiala 092               | +                       | Elele 108                             | +                         | ┝                     | ╈                       | +               |                         |             | -                           | +      | Fiala 108                                          | +                   | ╉┈                        | ┼─                      | ┢                         | $\vdash$                | $\vdash$                  | a                       | F16 111                    | F1b 126         | $\left  \right $ | F1b 129                               |   |

| Ambon          | []               |                          | Γ.                |                    | Ţ                   |                 | ]              |             | ]       |             |                     |                 |                 |                     |                |                |             |    |                  |             |                         |             |                 |        |                 |        |               |    |         |                           |                           |                       | ]           |                     | $\Box$               |  |    |   |
|----------------|------------------|--------------------------|-------------------|--------------------|---------------------|-----------------|----------------|-------------|---------|-------------|---------------------|-----------------|-----------------|---------------------|----------------|----------------|-------------|----|------------------|-------------|-------------------------|-------------|-----------------|--------|-----------------|--------|---------------|----|---------|---------------------------|---------------------------|-----------------------|-------------|---------------------|----------------------|--|----|---|
| Alor           |                  |                          | <b>.</b>          |                    | +-                  | +               | +              | +           | +       | Ţ           | 1                   | +               | +               | +                   | +              | 1              | +           | -  | 1                | _           |                         |             |                 | -†     |                 |        |               |    |         | 1                         | _                         | _†                    | -           |                     |                      |  |    |   |
| Sumba          |                  |                          | ┞.                |                    | +-                  | +               | +              | +           | +       | +           | +                   | +               | +               | +                   | +              | †              | -†          |    | +                |             | -+                      |             |                 | -      |                 | _      | +-            | -+ | +       | †                         |                           |                       | _           |                     |                      |  |    |   |
| Lombok         | H                |                          | +                 | -                  | +                   | +               | +              | ł           | +       | +           | +                   | +               | +               |                     | +              | +              | +           |    | +                | -           | -                       | _           |                 | -      |                 | _      |               | +  | +       | +                         | 1                         | 1                     | +           | _                   |                      |  |    |   |
| Bali           | H                |                          |                   | -                  | +                   | ╉               | ╀              | ╀           | +       | +           | +                   | +               | Ì               | +                   | +              | +              | +           | 1  | Ì                | Ì           | Ì                       |             |                 |        |                 | +      | +             | +  | +       | Ť                         | +                         | +                     | +           | -                   |                      |  |    |   |
| Toraja         | $\left  \right $ |                          | ╞                 | -                  | ╞                   | ╎               | ╀              | ╎           | ╧       | +           | Ť                   | ╡               | ╡               |                     | ┥              | +              | ┥           | ┥  | ┥                | ┥           | ╉                       | +           | ┥               | +      | +               | +      | +             | ╉  | +       | ╉                         | ╡                         | ╡                     | +           |                     |                      |  |    |   |
| Ujung Padang   | ŀ                |                          | ŀ                 |                    | +                   | +               | ┽              | ╡           | +       | ┽           | ┽                   | ÷               | ╡               | •                   | +              |                | +           | +  | ·                | ·           |                         | -           | •               | -      | -               | +      | +             | +  | +       | ╡                         | ╡                         | ╡                     | Ì           |                     |                      |  |    |   |
| Palu           | ŀ                |                          | ·                 |                    | · <br>              | +               | ÷              | +           | ╧╋      | +           | ╧                   | +               | ÷               | -                   |                | ·              | •           | +  |                  |             | ·                       | -           |                 | ·      | ·               | -      | ·             | +  | ┽       | ÷                         | +                         | ╡                     | ╡           |                     | H                    |  |    |   |
|                | +-               | .                        | ŀ                 | · <br>             | · -                 | ∔               | ÷              | ┽           | ┦       | +           | -+                  | ÷               | ÷               | •                   | ·              | ÷              | ·           | ·  | ÷                | ·           | +                       | •           | -               | ·      | -+              |        | +             | ·  | ┽       | ÷                         | ╡                         | ╡                     | +           | •                   | H                    |  |    |   |
| Manado         | <u></u><br>↓ .   | ļ.                       | ŀ                 |                    | ·                   | ·               |                | -           | ÷       | -           | -                   | ÷               | ÷               | ·                   | •              | •              | •           | •  | ÷                | ÷           | ·                       |             |                 | -+     | -+              |        | ·             | •  | ÷       | ·                         | ·                         | ·                     | -           |                     | H                    |  |    |   |
| Kota Kinabalu  | <u> </u> .       |                          | Ŀ                 |                    | +                   |                 | 4              | -           |         | -           | . <br>-             |                 |                 | ·                   |                | ·              | ·           | •  | ·                | •           | •                       | •           |                 |        |                 |        | ÷             | •  | ÷       | -+                        | ·                         | ·                     | ·           |                     | H                    |  |    |   |
| Banjarmasin    | <u> </u>         |                          | <u> </u>          |                    | ÷                   | ·               | ·              |             | ·       |             | .                   | ·               |                 |                     | ·              |                |             |    | .                |             | ·                       | ·           |                 |        | ·               |        |               | ·  | ·       | ·                         |                           |                       |             |                     | Ŀ                    |  |    |   |
| Tengger        | <u> </u>         |                          | <u> </u>          |                    |                     | ·               |                | ·           |         |             |                     |                 |                 | ·                   |                |                | ·           |    |                  |             |                         | ·           |                 |        |                 |        |               |    | ·       |                           |                           | ŀ                     |             | •                   |                      |  |    |   |
| Medan          |                  |                          |                   |                    | ·                   |                 | ·              | ·           | ·       |             |                     |                 |                 |                     | ·              |                | ·           |    |                  |             |                         |             |                 |        |                 |        |               |    |         | ·                         | ·                         | ·                     |             |                     |                      |  |    |   |
| Bangka         |                  |                          |                   |                    |                     |                 | ·              |             |         |             |                     |                 |                 |                     |                |                |             |    | ·                |             |                         |             |                 |        |                 |        |               |    |         | ·                         |                           |                       |             |                     |                      |  |    |   |
| Padang         | Ι.               |                          | .[.               | ·                  | ]                   |                 |                |             | ]       |             |                     |                 |                 |                     |                |                |             |    |                  | ·           |                         |             |                 |        |                 |        |               |    |         |                           |                           |                       |             |                     | Ŀ                    |  |    |   |
| Pekanbaru      | <b>.</b>         |                          |                   | ·                  | ŀ                   | ·               |                |             |         |             |                     |                 |                 |                     |                |                |             |    |                  |             |                         |             |                 |        |                 |        |               |    |         |                           |                           |                       |             |                     |                      |  |    |   |
| Palembang      | <b>T</b> .       |                          | Ţ                 | ·                  | Ţ                   | Ţ               | Ţ              |             | Ţ       |             | Ţ                   |                 |                 |                     |                |                |             |    |                  | ·           |                         |             |                 |        |                 |        |               |    | ·       |                           |                           |                       |             |                     |                      |  |    |   |
| Melayu         | T .              |                          |                   |                    | Ţ                   | Ţ               | Ţ              |             |         |             |                     | -               |                 |                     |                |                |             |    |                  |             | ·                       |             |                 |        |                 |        |               |    |         | ·                         |                           |                       |             |                     | Ŀ                    |  |    |   |
| A. Malay       | T                |                          | Ţ                 |                    | Ţ                   | 1               | Ţ              | Ţ           | Ţ       | 1           |                     |                 |                 |                     |                |                |             |    |                  |             |                         |             |                 |        |                 |        |               |    |         |                           |                           | _                     | ]           |                     | $\left[ \right]$     |  |    |   |
| Senoi          | <u>†</u>         |                          | +-<br>.           | +                  | +                   | +               | +              | -           | +       | 1           | -                   |                 | 1               |                     | -              |                | -           | -  |                  | -           | -                       |             |                 |        |                 | -      | -             | -† | Ţ       |                           | -                         |                       | -           |                     |                      |  |    |   |
| Semang         | +-               |                          | <b>†</b> -        | +                  | +                   | -               | -              | -           | +       | -           | -                   |                 | -               |                     |                |                |             |    | -                | -           |                         |             |                 |        |                 |        |               | ·  | ·       | ļ                         | ļ                         |                       |             |                     |                      |  |    |   |
| Thailand       | Γ,               |                          | ŀ                 |                    | Ţ                   | Ţ               |                | ]           |         |             |                     |                 |                 |                     |                |                |             |    |                  |             | -                       |             | -               |        |                 |        |               |    |         |                           |                           |                       | 2           | •                   |                      |  |    |   |
| Philippines    | Ţ                |                          | Ţ                 |                    | Ţ                   | 1               | 1              | _           | -       | -           |                     |                 |                 |                     |                |                |             |    | _                |             |                         |             |                 |        |                 |        |               |    | Ţ       |                           |                           |                       |             |                     | $\Box$               |  |    |   |
| Taiwan         | <b>†</b>         |                          | .†-               |                    | +                   | +               | -†             | 1           | -       | -           |                     |                 |                 |                     |                |                |             |    |                  |             |                         |             |                 |        |                 |        |               | ·  | 1       |                           |                           |                       |             | •                   | $\Box$               |  |    |   |
| China          | 1_               | . _                      | .[_               | -   ~              | <u>,</u>            |                 | _              | 1           | 2       |             | _                   | _               | _               | 1                   | 4              |                | _           | _  |                  | _           |                         | _           | 6               | -      | _               | _      | _             | _  | _       | _                         | 2                         | e                     | 7           | 1                   | 4                    |  |    |   |
| UVS I Variante | 172 180 189 304  | 112 PUL PYC 0PC VCLC 081 | 121 A 740 765 204 | 110 007 447 777 40 | 11C 40A 24A 304 311 | 189 249 300 304 | 99 266 284 304 | 189 284 304 | 189 304 | 189 304 311 | 111 129 172 189 304 | 111 129 172 304 | 111 129 189 304 | 111 129 243 266 304 | 11 129 266 304 | 11 129 294 304 | 111 129 304 |    | 092A 291 304 359 | 129 203 304 | 145 192 223 291 304 362 | 167 203 304 | 167 203 304 318 | 72 304 | 203 239 291 304 | 33 304 | <b>39 304</b> | 61 | 299 304 | 092A 170C 189 291 294 304 | 92A 170T 183T 189 291 304 | 092A 170T 189 291 304 | 92A 291 304 | 145 192 223 291 304 | 185 258 266A 291 304 |  |    |   |
| HVS-I Variants | 12               |                          |                   |                    | <u></u>             |                 |                | 18          | 18      | 18          | Ξ                   | =               | Π               | Ξ                   | 11             | Ξ              | 11          | 0  | 8                | 12          | ╞                       |             |                 |        |                 |        |               |    |         |                           |                           | 8                     | 8           |                     | Ĥ                    |  |    |   |
| Haplogroup     | EIB              |                          |                   |                    |                     | E               | FIB            | FIb         | FIb     | FIb         | Flc                 | Flc             | Flc             | Flc                 | Flc            | Flc            | Flc         | F2 | F2               | E           | F23                     | E           | E               | E      | E               | 2      | £             | 2  | R       | 2                         | FZa                       | F2a                   | F2a         | E                   | E2                   |  | 26 | 4 |

| Ambon          |                  |             |         |                    |                                        |                             |                     |                                        |                     |                     |                 | <br>  .        |                         |                      |                  |                      |                      |                          |                      |                      |                 |                  |                     |             |             | <b> </b> .              |                 |                 |                 |             |                     |                    |
|----------------|------------------|-------------|---------|--------------------|----------------------------------------|-----------------------------|---------------------|----------------------------------------|---------------------|---------------------|-----------------|----------------|-------------------------|----------------------|------------------|----------------------|----------------------|--------------------------|----------------------|----------------------|-----------------|------------------|---------------------|-------------|-------------|-------------------------|-----------------|-----------------|-----------------|-------------|---------------------|--------------------|
| Alor           |                  |             | .       | _                  |                                        |                             |                     |                                        |                     |                     |                 |                |                         |                      |                  |                      |                      |                          |                      |                      |                 |                  |                     |             |             | Ϊ.                      |                 | .               | .               |             |                     | <u> </u> .         |
| Sumba          |                  |             |         |                    |                                        |                             |                     |                                        |                     |                     | .               |                |                         |                      |                  |                      |                      |                          | 1                    |                      |                 |                  |                     |             |             |                         |                 |                 | Γ.              |             |                     |                    |
| Lombok         |                  |             |         |                    |                                        |                             |                     |                                        |                     |                     |                 |                |                         |                      |                  |                      |                      |                          |                      |                      |                 |                  |                     |             |             |                         |                 |                 | <br>  .         |             |                     |                    |
| Bali           |                  |             |         |                    |                                        |                             |                     |                                        |                     |                     |                 |                |                         |                      |                  |                      |                      |                          |                      |                      |                 |                  | •                   |             |             |                         |                 |                 |                 |             | _                   |                    |
| Toraja         |                  |             |         |                    |                                        |                             |                     |                                        |                     |                     |                 |                |                         |                      |                  |                      |                      |                          | •                    |                      |                 |                  |                     |             |             |                         | .               |                 |                 |             |                     |                    |
| Ujung Padang   | .                |             | [.      |                    |                                        |                             |                     | •                                      |                     |                     |                 |                |                         |                      |                  |                      |                      |                          | •                    | •                    | •               |                  |                     |             |             |                         |                 |                 |                 | .           |                     |                    |
| Palu           |                  |             |         |                    |                                        |                             |                     |                                        |                     |                     |                 |                |                         |                      |                  |                      |                      |                          | •                    |                      | •               | •                |                     |             |             |                         |                 |                 |                 |             |                     | .                  |
| Manado         |                  |             |         |                    |                                        |                             |                     |                                        |                     |                     |                 |                |                         |                      |                  |                      | •                    |                          |                      |                      |                 | •                |                     |             |             |                         |                 |                 |                 |             |                     |                    |
| Kota Kinabalu  |                  |             |         |                    |                                        |                             |                     |                                        |                     |                     |                 |                |                         |                      |                  |                      |                      | 1                        |                      |                      | -               | •                | •                   |             |             |                         |                 |                 |                 |             |                     | 2                  |
| Banjarmasin    |                  |             |         |                    |                                        |                             |                     |                                        |                     |                     |                 |                |                         | 2                    | 4                |                      | 1                    | •                        | _                    |                      | •               | •                |                     |             |             |                         |                 |                 |                 |             |                     |                    |
| Tengger        |                  |             |         |                    |                                        |                             |                     |                                        |                     |                     |                 |                |                         |                      |                  |                      |                      |                          | •                    |                      |                 | •                |                     |             |             |                         |                 |                 |                 |             |                     |                    |
| Medan          | .                |             |         |                    |                                        |                             |                     |                                        |                     |                     |                 |                |                         |                      |                  |                      |                      |                          |                      |                      | •               | •                |                     |             |             |                         |                 | -               |                 | 1           |                     |                    |
| Bangka         |                  |             |         |                    |                                        |                             |                     |                                        |                     |                     |                 |                |                         |                      |                  |                      |                      |                          |                      |                      |                 |                  |                     |             |             |                         |                 |                 |                 |             |                     |                    |
| Padang         |                  |             |         |                    | •                                      |                             |                     |                                        |                     |                     |                 |                |                         |                      | •                |                      | •                    |                          |                      |                      |                 | •                |                     |             |             |                         |                 | •               |                 |             |                     |                    |
| Pekanbaru      |                  |             |         |                    |                                        |                             |                     |                                        |                     |                     |                 |                |                         |                      | •                |                      |                      |                          |                      |                      |                 |                  |                     |             | •           | •                       | •               | 1               | •               |             |                     |                    |
| Palembang      |                  |             |         |                    |                                        |                             | •                   |                                        |                     | •                   |                 |                |                         |                      |                  |                      |                      |                          |                      |                      |                 |                  | •                   |             |             |                         |                 | •               |                 |             |                     | •                  |
| Melayu         |                  |             |         |                    |                                        | .                           |                     | •                                      |                     |                     | -               |                |                         |                      |                  |                      |                      |                          |                      |                      |                 |                  | •                   |             |             |                         | •               |                 |                 |             |                     |                    |
| A. Malay       |                  |             |         |                    |                                        |                             |                     |                                        |                     |                     |                 |                |                         |                      |                  |                      |                      |                          |                      |                      |                 |                  |                     |             | •           |                         |                 |                 |                 | •           |                     |                    |
| Senoi          |                  |             |         |                    |                                        |                             |                     |                                        |                     |                     |                 |                |                         | •                    |                  |                      |                      | •                        |                      |                      |                 |                  |                     |             | •           |                         |                 |                 | •               |             |                     |                    |
| Semang         |                  |             |         |                    |                                        |                             |                     |                                        |                     | •                   |                 |                |                         | •                    |                  | •                    | •                    | •                        |                      | •                    | •               |                  |                     |             |             |                         |                 | •               |                 |             |                     |                    |
| Thailand       | .                |             |         | .                  |                                        |                             | .                   |                                        | -                   |                     | .               | <b>m</b>       |                         |                      |                  |                      |                      |                          |                      |                      |                 |                  |                     | 2           |             |                         |                 |                 |                 | •           |                     |                    |
| Philippines    |                  |             |         |                    | •                                      |                             |                     |                                        |                     |                     |                 |                |                         |                      |                  | -                    |                      |                          |                      | 5                    |                 |                  |                     |             |             |                         | •               |                 |                 | •           |                     | •                  |
| Taiwan         |                  |             |         |                    |                                        |                             |                     |                                        |                     |                     |                 |                | و                       |                      |                  |                      |                      |                          | 1                    |                      |                 | 10               |                     |             |             |                         | •               |                 | 1               | 56          | •                   |                    |
| China          | _                | -           | -       |                    | 1                                      | 2                           | 2                   | 1                                      |                     | 2                   |                 | 2              |                         |                      |                  |                      |                      | •                        |                      |                      | •               |                  | 1                   |             | 1           | 1                       | -               |                 | •               | •           | •                   |                    |
| HVS-I Variants | 185 266A 291 304 | 266 291 304 | 291 304 | 290 298 357 362    | 093 111 126 192 249 263 298<br>355 362 | 093 111 192 249 298 355 362 | 093 260 298 355 362 | 111 192 249 263 264insC 298<br>355 362 | 127 260 298 355 362 | 209 298 311 355 362 | 209 298 355 362 | 60 298 355 362 | 93 220C 265 298 311 362 | 093 220C 265 298 362 | 093 220C 298 362 | 168 220C 265 298 362 | 220C 261 265 298 362 | 220C 265 274 298 311 362 | 220C 265 298 311 362 | 220C 265 298 335 362 | 20C 265 298 362 | 220C 298 311 362 | 126 140 207 304 362 | 129 185 207 | 207 304 362 | 129 218 265 304 311 355 | 129 218 304 311 | 170 218 304 311 | 218 241 304 311 | 218 304 311 | 092 129 209 223 325 | 93 129 209 223 272 |
| Haplogroup     | F2a 1            |             |         | $\left[ - \right]$ |                                        | F3a 0                       |                     |                                        |                     |                     |                 |                | F3b 0                   |                      |                  |                      |                      | F3b 2                    | -                    | F3b 2                | -               |                  |                     | -           |             |                         | $\vdash$        | F4b 1           |                 |             |                     | G 0                |

| Ambon          |                         |                         |                          |                         |                 |                 |                     |                     |                 |                     |                         |                      |                  |                    | _                   |                        |                     |                                    |                                        |                             |                             |                 |                    |                 |                 |                     |                     |                     |                     |                  | _                |                     |
|----------------|-------------------------|-------------------------|--------------------------|-------------------------|-----------------|-----------------|---------------------|---------------------|-----------------|---------------------|-------------------------|----------------------|------------------|--------------------|---------------------|------------------------|---------------------|------------------------------------|----------------------------------------|-----------------------------|-----------------------------|-----------------|--------------------|-----------------|-----------------|---------------------|---------------------|---------------------|---------------------|------------------|------------------|---------------------|
| Alor           |                         |                         |                          |                         |                 |                 |                     |                     |                 |                     |                         |                      |                  |                    |                     |                        |                     |                                    |                                        |                             |                             |                 |                    |                 |                 |                     |                     |                     |                     | _                |                  | _                   |
| Sumba          |                         |                         |                          |                         |                 |                 |                     | -                   |                 |                     |                         |                      |                  |                    |                     |                        |                     |                                    |                                        |                             | •                           |                 |                    |                 |                 |                     |                     |                     |                     |                  |                  | -                   |
| Lombok         |                         |                         |                          |                         |                 |                 |                     |                     |                 |                     | 1                       |                      |                  | 1                  |                     |                        |                     |                                    |                                        |                             |                             |                 |                    |                 |                 |                     |                     |                     |                     |                  |                  |                     |
| Bali           |                         |                         |                          |                         | 1               | 1               |                     |                     | 1               |                     |                         |                      |                  |                    |                     |                        | •                   |                                    |                                        |                             |                             |                 |                    |                 |                 |                     |                     |                     |                     |                  |                  |                     |
| Toraja         |                         |                         |                          |                         |                 |                 |                     |                     |                 |                     |                         |                      |                  |                    |                     |                        | •                   |                                    |                                        |                             |                             |                 |                    |                 |                 |                     |                     |                     |                     |                  | •                | -                   |
| Ujung Padang   |                         |                         |                          |                         |                 | 2               |                     |                     |                 |                     |                         |                      |                  |                    |                     |                        |                     |                                    |                                        |                             | •                           |                 |                    |                 |                 |                     |                     |                     |                     |                  |                  |                     |
| Palu           |                         |                         |                          |                         |                 |                 |                     |                     |                 |                     |                         |                      |                  |                    |                     |                        |                     |                                    |                                        |                             | 1                           |                 |                    |                 |                 |                     |                     |                     | -                   |                  |                  |                     |
| Manado         |                         | -                       |                          |                         |                 |                 |                     |                     | ,               |                     | •                       |                      |                  |                    |                     |                        |                     | I                                  |                                        |                             |                             |                 |                    |                 | •               |                     |                     |                     |                     |                  |                  |                     |
| Kota Kinabalu  |                         | .                       |                          |                         |                 | -               |                     |                     |                 |                     |                         |                      |                  |                    |                     |                        |                     | •                                  |                                        |                             |                             |                 |                    | З               |                 |                     |                     |                     |                     |                  |                  |                     |
| Banjarmasin    |                         |                         |                          |                         |                 | -               |                     |                     |                 | 1                   |                         |                      | -                |                    |                     |                        |                     |                                    |                                        |                             |                             | -               |                    |                 |                 |                     | 1                   |                     | 2                   |                  | •                |                     |
| Tengger        |                         |                         |                          |                         |                 |                 |                     |                     |                 |                     |                         |                      |                  |                    |                     |                        |                     |                                    |                                        |                             |                             |                 |                    |                 |                 |                     | 2                   |                     |                     |                  |                  |                     |
| Medan          |                         |                         |                          |                         |                 |                 |                     |                     |                 |                     |                         |                      |                  |                    |                     |                        |                     |                                    |                                        |                             | •                           |                 |                    |                 |                 |                     |                     |                     |                     |                  |                  |                     |
| Bangka         | -                       |                         | _                        |                         |                 | 7               | 7                   |                     |                 |                     |                         |                      |                  |                    |                     |                        | _                   |                                    | 1                                      |                             |                             |                 |                    |                 | •               |                     |                     |                     |                     |                  |                  |                     |
| Padang         |                         |                         |                          |                         |                 | -               |                     |                     |                 |                     |                         |                      | •                |                    |                     |                        |                     |                                    |                                        |                             |                             |                 |                    |                 | •               |                     |                     | •                   |                     |                  |                  |                     |
| Pekanbaru      |                         |                         | _                        |                         |                 |                 |                     |                     |                 |                     |                         |                      | •                |                    |                     | •                      |                     |                                    |                                        | 3                           |                             |                 |                    |                 | •               |                     |                     |                     |                     |                  |                  |                     |
| Palembang      |                         |                         |                          | 1                       |                 | 1               |                     |                     |                 | •                   |                         | •                    |                  | •                  |                     | •                      | •                   | •                                  |                                        |                             |                             |                 |                    |                 |                 | 1                   |                     |                     | -                   |                  |                  |                     |
| Melayu         |                         |                         |                          |                         | •               | 2               |                     |                     | •               | •                   |                         | 1                    |                  |                    |                     |                        |                     | •                                  |                                        | 7                           |                             |                 |                    |                 |                 |                     |                     |                     |                     |                  |                  |                     |
| A. Malay       |                         |                         |                          |                         |                 |                 |                     |                     |                 |                     | •                       |                      |                  |                    |                     | 1                      |                     |                                    |                                        |                             |                             |                 |                    |                 |                 |                     |                     |                     |                     |                  | ·                |                     |
| Senoi          |                         |                         |                          |                         |                 |                 | •                   |                     |                 | •                   |                         | •                    |                  | •                  |                     |                        |                     | •                                  |                                        |                             |                             |                 |                    |                 |                 |                     |                     |                     |                     |                  |                  |                     |
| Semang         |                         |                         |                          |                         |                 |                 |                     |                     | •               | •                   |                         | •                    |                  |                    | •                   |                        |                     |                                    |                                        |                             | •                           |                 |                    |                 |                 | •                   |                     | •                   |                     |                  |                  |                     |
| Thailand       |                         | .                       | .                        |                         |                 |                 |                     |                     |                 |                     |                         |                      |                  |                    |                     |                        |                     |                                    |                                        |                             |                             |                 |                    |                 | •               |                     |                     |                     |                     |                  |                  |                     |
| Philippines    |                         |                         | .                        |                         |                 |                 |                     |                     |                 |                     |                         |                      |                  |                    |                     |                        |                     |                                    |                                        |                             |                             |                 |                    |                 |                 |                     |                     |                     |                     |                  |                  |                     |
| Taiwan         |                         | .                       | .                        |                         |                 |                 | <u> </u>            |                     |                 |                     |                         |                      |                  |                    |                     |                        |                     |                                    |                                        |                             |                             |                 |                    |                 |                 | •                   |                     |                     |                     |                  |                  |                     |
| China          |                         |                         |                          |                         |                 | 9               |                     |                     |                 |                     |                         |                      |                  |                    |                     |                        |                     |                                    |                                        |                             |                             |                 | •                  |                 | 1               |                     |                     |                     |                     |                  |                  |                     |
| HVS-I Variants | 093 129 223 234 290 311 | 118 129 192 223 256 272 | 129 166C 189 223 287 319 | 129 172 223 324 290 312 | 129 189 218 223 | 129 209 223 272 | 129 209 223 272 311 | 129 209 223 311 325 | 129 209 223 325 | 129 223 234 290 311 | 092 140 172 189 223 278 | 093 169 184A 223 278 | 093 184A 223 278 | 93 189 222 223 278 | 093 189 223 265 278 | 93 189 223 274 278 311 | 093 189 223 278 319 | 093 209 223 224 263 265 278<br>319 | 093 209 223 224 263 274 278<br>319 356 | 093 209 223 224 263 278 319 | 093 223 249 259 278 291 362 | 093 223 278 310 | 24 189 278 292 362 | 126 129 189 278 | 129 223 278 362 | 140 172 189 223 278 | 148 223 259 278 319 | 166 223 278 335 362 | 172 173 223 278 311 | 184A 213 223 278 | 1 <b>84A</b> 223 | 188 189 223 278 288 |
| Haplogroup     | 0                       | ſ                       |                          |                         |                 |                 |                     |                     |                 |                     |                         |                      |                  |                    |                     |                        | -                   |                                    | G2 0<br>3                              | T                           | ┢                           |                 |                    |                 |                 |                     | G2                  | -                   |                     |                  |                  | G2                  |

| Ambon<br>Alor  |                     |             |                 |                     |                         |                         |         |             |             | •           |             |                 |                                            |     |                     |                             |                         |                             |                     |                             |                     |                                     |     |       |         |             |             |                     |   |                         | •                   |
|----------------|---------------------|-------------|-----------------|---------------------|-------------------------|-------------------------|---------|-------------|-------------|-------------|-------------|-----------------|--------------------------------------------|-----|---------------------|-----------------------------|-------------------------|-----------------------------|---------------------|-----------------------------|---------------------|-------------------------------------|-----|-------|---------|-------------|-------------|---------------------|---|-------------------------|---------------------|
| Sumba          |                     |             |                 |                     | -                       |                         | -       |             |             |             |             |                 |                                            |     |                     |                             |                         |                             |                     |                             | -+                  |                                     | ·   |       |         |             |             |                     | - |                         |                     |
| Lombok         | _                   | _           |                 |                     |                         |                         |         |             |             | •           |             |                 | .                                          |     |                     |                             |                         |                             |                     |                             |                     |                                     |     |       |         |             |             |                     |   |                         |                     |
| Bali           |                     |             |                 |                     |                         | -                       |         | _           |             |             | -           |                 |                                            | _   |                     | ·                           | ·                       |                             |                     |                             | ·                   |                                     |     |       |         |             |             |                     |   |                         |                     |
| Toraja         |                     | -           |                 |                     |                         |                         |         |             |             |             |             | -               |                                            |     |                     |                             |                         |                             |                     |                             |                     |                                     |     |       |         |             |             | ·                   |   |                         |                     |
| Ujung Padang   |                     | -           |                 |                     |                         |                         |         |             |             |             | .<br>       |                 |                                            |     |                     |                             |                         |                             | ·                   |                             | ·                   |                                     |     |       |         |             |             |                     |   |                         |                     |
| Palu           |                     |             |                 | -                   |                         |                         |         |             |             |             |             |                 |                                            |     |                     | ·                           |                         |                             |                     |                             |                     |                                     |     | •     |         |             |             |                     |   |                         |                     |
| Manado         |                     |             |                 |                     |                         |                         |         |             |             |             |             |                 |                                            |     |                     |                             |                         |                             |                     |                             |                     | -                                   |     |       |         |             |             |                     |   | •                       |                     |
| Kota Kinabalu  | •                   |             |                 |                     |                         |                         |         |             |             |             |             |                 |                                            |     |                     |                             |                         |                             |                     |                             |                     |                                     |     |       |         |             |             |                     |   |                         |                     |
| Banjarmasin    |                     |             |                 |                     |                         |                         | -       |             | 1           |             |             |                 |                                            |     |                     |                             |                         |                             |                     |                             |                     |                                     |     | •     |         |             |             |                     |   |                         |                     |
| Tengger        |                     |             |                 |                     |                         |                         |         | •           |             |             |             |                 |                                            |     |                     |                             |                         |                             |                     |                             |                     |                                     |     |       |         |             | ·           |                     |   | •                       |                     |
| Medan          |                     | ·           |                 |                     |                         |                         | 1       | •           |             |             |             |                 |                                            |     |                     |                             | ·                       |                             |                     |                             |                     |                                     |     |       | ·       |             |             |                     | • | •                       |                     |
| Bangka         |                     |             | •               |                     |                         |                         |         | •           |             |             |             |                 |                                            |     |                     |                             |                         |                             |                     |                             |                     |                                     | ·   |       |         |             | •           |                     |   | •                       | .                   |
| Padang         |                     |             |                 |                     |                         |                         |         |             |             |             |             |                 |                                            |     |                     |                             |                         |                             |                     |                             |                     |                                     |     |       |         |             |             |                     |   |                         |                     |
| Pekanbaru      |                     |             |                 |                     | <u> </u>                |                         |         |             | ŀ           |             |             |                 |                                            |     | •                   | •                           | •                       |                             |                     |                             |                     | •                                   |     | •     |         | -           | •           | •                   |   |                         |                     |
| Palembang      |                     | -           |                 |                     |                         |                         |         |             |             |             |             |                 |                                            |     | •                   | •                           |                         |                             |                     |                             |                     |                                     |     | •     |         |             |             | •                   |   |                         |                     |
| Melayu         |                     | ŀ           |                 | .                   | 2                       | .                       | .       |             |             | -           |             |                 |                                            |     | •                   |                             |                         |                             |                     |                             |                     | •                                   | -   | •     |         |             |             |                     | - | •                       |                     |
| A. Malay       |                     |             |                 |                     | .                       | <u> </u>                | Ŀ       |             |             |             | ·           |                 |                                            |     |                     | •                           |                         |                             |                     |                             |                     | •                                   |     | •     |         |             |             |                     |   |                         | _                   |
| Senoi          | .                   | .           | .               | .                   | .                       |                         |         |             | .           |             |             |                 |                                            |     |                     |                             |                         |                             |                     |                             |                     | •                                   |     | •     |         |             |             |                     |   |                         |                     |
| Semang         |                     |             |                 |                     |                         |                         |         |             |             |             | ·           |                 |                                            | •   |                     |                             |                         |                             |                     |                             | Ι.                  |                                     |     | •     |         |             |             |                     |   |                         |                     |
| Thailand       | .                   |             | .               | .                   | .                       | .                       | .       | .           | .           |             |             |                 |                                            | •   |                     |                             |                         |                             |                     |                             |                     | •                                   |     | •     | .       |             |             | -                   |   |                         |                     |
| Philippines    |                     |             |                 |                     |                         |                         |         |             |             |             |             | ·               |                                            |     |                     |                             |                         |                             |                     |                             |                     |                                     |     | •     |         |             |             |                     |   |                         |                     |
| Taiwan         |                     |             |                 |                     |                         |                         |         |             |             | ſ           | ·           | ·               |                                            |     |                     |                             |                         |                             | [.                  |                             |                     |                                     |     | •     |         | [.          |             | [.                  |   |                         |                     |
| China          |                     |             | _               |                     |                         |                         |         |             |             | -           | -           | ·               |                                            |     | -                   | -                           | -                       | -                           | -                   | _                           | -                   |                                     |     | 2     | -       | ŀ           |             |                     |   | 3                       | -                   |
| HVS-I Variants | 189 222 223 278 352 | 189 223 278 | 189 223 278 362 | 196 223 274 278 290 | 209 223 224 263 278 319 | 223 243 262 278 311 319 | 223 278 | 223 278 294 | 773 778 311 | 372 311 347 | 70C 01C CTT | 234 270 2/0 294 | 234 2/8 294<br>111 200 223 227 274 278 226 | 362 | 111 223 227 278 362 | 189 194 223 227 278 311 362 | 189 223 227 256 278 362 | 209 223 227 234 278 309 362 | 223 227 262 278 362 | 223 227 272 278 319 362 365 | 223 227 278 311 362 | 129 142 166 223 255 274 294<br>327A | 192 | 0     | 217 240 | 129 223 311 | 223 278 294 | 773 774 278 294 309 | 0 | 093 104 111 223 235 362 | 002 104 111 202 367 |
| Haplogroup     | 6                   | 33          | 8               | 33                  | ┢                       | ┢                       | t       | T           | T           | T           | T           | ╋               | 38                                         |     | ┢                   |                             | G2a                     | 5                           | T                   | $\square$                   |                     | <u>G37</u>                          | Η?  | H/F/M | +       | t           |             | 1241                |   | I ≥                     | <br>                |

| Ambon          |                 |                         |                 |          |                 |                 |                 |             |                          |                    |                 |             |                      |            |                             |                         |                     |             |                 |             |             |                     |                     |                             |                        |                  |                          |             |                 |                 |                | -                       |             |                 |
|----------------|-----------------|-------------------------|-----------------|----------|-----------------|-----------------|-----------------|-------------|--------------------------|--------------------|-----------------|-------------|----------------------|------------|-----------------------------|-------------------------|---------------------|-------------|-----------------|-------------|-------------|---------------------|---------------------|-----------------------------|------------------------|------------------|--------------------------|-------------|-----------------|-----------------|----------------|-------------------------|-------------|-----------------|
| Alor           |                 |                         |                 |          |                 |                 |                 |             |                          |                    |                 |             |                      |            |                             |                         |                     | •           |                 |             |             |                     |                     |                             |                        |                  |                          |             |                 |                 | ·              | ·                       |             |                 |
| Sumba          |                 |                         |                 |          |                 |                 |                 |             |                          |                    |                 |             |                      | -          |                             | •                       |                     |             |                 |             |             |                     |                     |                             |                        | -                |                          |             |                 |                 |                |                         |             |                 |
| Lombok         | -               |                         | -               |          |                 |                 |                 |             |                          | _                  |                 |             |                      | 1          |                             |                         |                     |             | ·               |             |             |                     | •                   |                             |                        | •                | •                        | ·           |                 |                 |                |                         |             |                 |
| Bali           |                 |                         |                 | 1        | _               |                 |                 |             |                          |                    |                 |             |                      |            |                             | •                       | •                   |             |                 |             |             |                     | •                   | -                           | _                      |                  | 1                        |             |                 |                 |                |                         |             |                 |
| Toraja         |                 |                         |                 |          |                 |                 | •               |             |                          |                    |                 |             |                      |            |                             | •                       |                     |             |                 | -           |             |                     |                     |                             |                        |                  | •                        |             |                 |                 |                |                         |             |                 |
| Ujung Padang   |                 |                         |                 | •        |                 |                 |                 |             |                          |                    |                 |             |                      | •          |                             |                         |                     |             |                 |             |             |                     |                     |                             |                        |                  | •                        |             | •               |                 |                |                         |             |                 |
| Palu           |                 |                         |                 | •        |                 |                 |                 |             |                          |                    |                 | •           |                      |            | •                           |                         |                     | •           | •               |             |             |                     | •                   |                             |                        |                  | •                        | •           |                 |                 | 1              |                         |             |                 |
| Manado         |                 |                         |                 |          |                 |                 |                 |             |                          |                    |                 | •           |                      |            |                             |                         |                     | •           |                 |             |             |                     |                     |                             |                        |                  |                          |             |                 |                 | •              |                         |             |                 |
| Kota Kinabalu  |                 |                         |                 |          |                 |                 |                 |             |                          |                    |                 |             |                      |            |                             |                         |                     |             |                 |             |             |                     |                     |                             |                        |                  | •                        |             |                 |                 |                |                         |             |                 |
| Banjarmasin    |                 | -                       |                 |          |                 |                 | -               |             |                          |                    |                 | •           |                      |            | -                           |                         |                     | •           |                 |             |             |                     |                     |                             |                        |                  |                          |             |                 |                 | •              |                         |             |                 |
| Tengger        |                 |                         |                 |          |                 |                 | 4               |             |                          |                    |                 | •           | •                    |            |                             |                         |                     |             |                 |             |             |                     | •                   |                             |                        |                  | •                        |             | -               |                 |                |                         |             |                 |
| Medan          |                 |                         |                 |          |                 |                 | •               |             |                          |                    | •               |             | •                    |            |                             | •                       |                     | •           |                 | •           |             |                     |                     |                             |                        |                  |                          |             |                 |                 |                |                         |             |                 |
| Bangka         |                 |                         |                 |          | •               | •               | •               |             |                          |                    |                 |             |                      | •          |                             | •                       |                     |             |                 |             |             |                     | •                   |                             |                        |                  |                          |             |                 |                 |                |                         |             |                 |
| Padang         |                 |                         |                 |          |                 |                 |                 |             |                          |                    | :               |             |                      |            |                             |                         |                     |             |                 |             |             |                     | •                   |                             |                        |                  |                          |             |                 |                 |                |                         |             |                 |
| Pekanbaru      |                 |                         |                 |          | •               |                 |                 |             |                          |                    |                 |             |                      |            |                             |                         | -                   |             |                 | •           |             |                     | •                   |                             |                        |                  |                          | 1           |                 |                 | •              |                         |             |                 |
| Palembang      |                 |                         |                 |          |                 |                 |                 |             |                          |                    |                 |             |                      | ŀ          |                             |                         |                     |             |                 | •           |             | ·                   |                     |                             |                        |                  |                          |             |                 |                 |                |                         |             |                 |
| Melayu         |                 |                         |                 | <u> </u> |                 | _               |                 | <u> </u>    | 1                        |                    |                 |             | 1                    |            |                             | -                       |                     | •           | •               |             |             |                     |                     |                             | 1                      |                  |                          |             | 1               |                 |                |                         |             |                 |
| A. Malay       |                 |                         |                 |          |                 |                 |                 |             | •                        |                    | •               |             |                      |            |                             |                         |                     | •           | •               |             |             | •                   |                     | •                           |                        | •                | •                        |             | •               |                 |                |                         |             |                 |
| Senoi          | .               |                         |                 |          |                 |                 |                 |             | •                        | •                  | •               | •           |                      |            |                             |                         |                     | •           | •               |             |             |                     | •                   |                             |                        |                  | •                        |             | •               |                 |                |                         |             |                 |
| Semang         |                 |                         |                 |          |                 |                 |                 |             |                          |                    |                 |             |                      |            |                             |                         |                     | •           |                 |             |             |                     |                     |                             |                        | •                | •                        |             | •               |                 | •              |                         |             |                 |
| Thailand       | .               | .                       |                 | .        | .               |                 | .               | .           |                          |                    |                 | -           |                      |            |                             | .                       |                     | 1           |                 |             |             | -                   |                     |                             | •                      |                  |                          |             |                 |                 | •              |                         | .           |                 |
| Philippines    |                 |                         |                 |          |                 |                 |                 | .           |                          |                    |                 |             |                      |            |                             |                         |                     |             |                 |             | -           |                     | -                   |                             |                        |                  |                          |             |                 |                 |                |                         |             |                 |
| Taiwan         |                 |                         |                 |          |                 |                 |                 | -           |                          |                    |                 | •           |                      |            |                             |                         |                     |             |                 |             |             |                     | •                   |                             |                        |                  |                          |             | •               |                 | •              |                         |             | .               |
| China          |                 |                         | •               |          |                 |                 |                 |             |                          |                    | I               | I           |                      |            |                             |                         |                     | •           | 2               |             |             | •                   | •                   |                             | •                      |                  |                          |             | •               | 4               |                |                         | -           |                 |
| HVS-I Variants | 093 133 176 223 | 093 145 223 234 249 290 | 093 189 209 223 | 093 193  | 093 209 223 325 | 093 223 256 274 | 093 223 311 362 | 093 223 362 | 095 129 140 223 265C 271 | 124 166del 214 223 | 126 189 223 325 | 126 223 362 | 129 140 223 265C 271 | 29 140 271 | 129 148 172 223 256 305 309 | 129 172 223 256 305 309 | 129 179 209 223 272 | 129 223 256 | 129 223 270 362 | 129 223 362 | 130 185 223 | 134 219 223 225 291 | 145 176 224 233 311 | 145 181 192 223 266 291 304 | 45 181 192 223 291 304 | 148 189 223 246T | 148 189 223 246T 311 362 | 148 189 362 | 149 185 223 362 | 158 223 234 362 | 162del 214 223 | 168 189 209 223 233 304 | 172 173 223 | 172 174 223 362 |
| Haplogroup     | M               |                         |                 |          |                 |                 | t               |             |                          |                    |                 |             |                      |            | T<br>W                      | ┢                       | I<br>W              |             |                 |             |             |                     | -                   | -                           |                        | -                | $\left  \right $         | ┢           |                 |                 |                |                         | W           |                 |

| Ambon          |              | _          |             |                     |                      |                 |        |                     |                         |                  |         |                 |                     |            |     |            |                 |                |                  |         |            |                 |        |                 |             |                |                        |         |                | -          | 7      |            |                         | -                  |
|----------------|--------------|------------|-------------|---------------------|----------------------|-----------------|--------|---------------------|-------------------------|------------------|---------|-----------------|---------------------|------------|-----|------------|-----------------|----------------|------------------|---------|------------|-----------------|--------|-----------------|-------------|----------------|------------------------|---------|----------------|------------|--------|------------|-------------------------|--------------------|
| Alor           |              |            |             |                     |                      |                 |        |                     |                         |                  |         |                 |                     |            |     |            |                 |                |                  |         |            | •               |        |                 |             |                |                        |         |                |            |        |            |                         |                    |
| Sumba          |              |            |             |                     |                      |                 |        | _                   |                         |                  |         |                 |                     |            |     |            |                 |                |                  |         |            |                 |        |                 |             |                |                        |         |                | 1          |        |            |                         |                    |
| Lombok         |              |            |             |                     |                      |                 |        |                     |                         |                  |         | -               |                     |            |     |            |                 |                |                  |         |            |                 |        |                 |             |                |                        | 1       | 1              | •          |        |            |                         |                    |
| Bali           |              |            |             |                     |                      |                 |        |                     |                         |                  |         |                 |                     |            |     |            |                 |                |                  |         | -          | •               |        |                 |             |                |                        |         |                | 2          |        |            |                         |                    |
| Toraja         |              |            |             |                     | -                    |                 |        |                     |                         |                  |         |                 |                     |            |     |            |                 |                |                  |         |            |                 |        |                 |             |                |                        |         |                |            | •      |            |                         |                    |
| Ujung Padang   |              |            |             |                     |                      | -               |        | •                   |                         |                  |         |                 |                     |            |     |            |                 |                |                  |         |            |                 |        |                 |             |                |                        |         |                |            |        |            |                         |                    |
| Palu           |              |            |             |                     |                      |                 |        |                     |                         |                  |         |                 |                     |            |     |            |                 |                |                  |         |            |                 |        |                 | -           |                |                        |         |                | 2          |        |            |                         |                    |
| Manado         |              |            |             |                     |                      |                 |        |                     |                         |                  |         |                 |                     |            |     |            |                 |                |                  |         |            |                 |        |                 |             |                | •                      |         |                |            | •      |            |                         |                    |
| Kota Kinabalu  |              | 1          |             |                     |                      |                 |        |                     |                         |                  |         |                 |                     |            |     | -          |                 | 1              |                  |         |            |                 |        |                 |             |                | 1                      | 1       |                |            |        |            |                         |                    |
| Banjarmasin    |              |            |             |                     |                      |                 |        |                     |                         |                  |         |                 |                     |            |     |            |                 |                |                  |         |            | -               |        |                 |             | _              |                        | 1       |                | 3          | 1      | <u> </u>   |                         | •                  |
| Tengger        | •            |            |             |                     |                      |                 | •      |                     |                         | •                |         | •               |                     |            |     |            |                 | •              |                  |         |            |                 |        |                 |             |                |                        |         |                | 3          |        |            | Ŀ                       |                    |
| Medan          |              |            |             | -                   |                      |                 |        | •                   |                         |                  | 1       |                 | •                   |            | -   |            |                 | •              |                  |         |            |                 |        |                 |             |                |                        |         |                | •          | 1      |            | Ŀ                       |                    |
| Bangka         |              |            |             |                     |                      |                 | 2      |                     |                         |                  |         | ,               |                     |            |     |            |                 |                |                  |         |            |                 |        | -               |             |                |                        |         | •              | 2          |        | <u> </u>   | ŀ                       | •                  |
| Padang         |              |            |             |                     |                      |                 |        |                     |                         | •                |         |                 |                     |            |     | •          |                 |                |                  |         |            |                 |        |                 |             |                |                        |         |                |            | -      |            | Ŀ                       |                    |
| Pekanbaru      |              |            |             |                     |                      |                 |        |                     |                         |                  |         |                 |                     |            |     | •          |                 |                | -                |         |            |                 |        |                 |             |                |                        |         |                |            |        |            | ŀ                       |                    |
| Palembang      |              | ŀ          | -           |                     |                      |                 |        |                     |                         |                  |         |                 |                     |            |     | •          |                 |                |                  |         |            |                 |        |                 |             |                |                        |         |                |            |        | <u> </u>   | Ŀ                       | •                  |
| Melayu         |              |            |             |                     |                      |                 | •      |                     |                         | •                |         |                 |                     |            | 2   | •          | -               |                |                  |         |            | ·               |        |                 |             | •              |                        | 2       |                | -          |        | Ŀ          |                         |                    |
| A. Malay       |              |            |             |                     |                      |                 |        |                     | -                       |                  |         |                 |                     |            | •   |            |                 |                |                  | 1       |            |                 |        |                 | •           | •              | •                      |         |                |            |        |            |                         |                    |
| Senoi          |              |            | .           |                     |                      |                 |        |                     |                         |                  |         |                 |                     |            | 2   |            |                 |                |                  |         |            |                 |        |                 |             |                |                        |         |                |            |        | <u> </u>   | Ŀ                       |                    |
| Semang         |              |            |             |                     |                      | ŀ               |        |                     |                         |                  |         |                 |                     |            |     |            |                 |                |                  |         |            | •               |        | •               |             |                |                        |         |                |            | <br> - |            |                         |                    |
| Thailand       | .            |            |             | .                   |                      | .               | .      | .                   |                         |                  | .       | .               | _                   | _          |     |            | .               |                | .                |         |            |                 |        |                 |             |                | .                      | .       |                | 4          | -      |            |                         |                    |
| Philippines    |              |            |             |                     |                      |                 |        |                     |                         |                  |         |                 |                     |            |     |            |                 |                | .                |         |            |                 | 1      |                 |             |                |                        |         |                |            |        |            |                         |                    |
| Taiwan         |              |            |             | <b>.</b>            |                      |                 | _      |                     |                         |                  |         |                 |                     |            | -   |            |                 |                | .                |         |            |                 |        |                 |             |                |                        |         |                |            |        |            |                         |                    |
| China          |              |            | .           | .                   |                      |                 |        |                     |                         | -                |         |                 |                     |            | 2   |            |                 | <b>.</b>       | Γ.               |         |            |                 |        |                 |             |                | .                      | _       |                | -          |        | -          | _                       | 2                  |
| HVS-I Variants | 172 223 245A | 172 23 362 | 179 223 294 | 189 192 223 291 362 | 89 195A 241 265C 311 | 189 209 223 300 | 89 223 | 189 223 227 291 362 | 189 223 229 294 311 362 | 189 293C 325 362 | 192 362 | 219 223 290 291 | 219 223 290 291 295 | 19 223 362 | 223 | 23 234 362 | 223 239 289 356 | 23 243 311 362 | 223 246T 311 362 | 23 249A | 23 254 362 | 223 266 284 290 | 23 293 | 223 293 311 362 | 223 299 311 | 23 299 311 362 | 23 304 325 344 362 381 | 223 311 | 23 311 335 362 | 23 311 362 | 23 362 | 92 223 311 | 093 129 193 223 311 357 | 93 129 223 311 357 |
| Hapiogroup     | ┢            | ┢          |             | ┢                   | ┢                    | ┢               | ┢      | t                   | ┢                       | ┢╌               | ┢       | t               | t                   | ┢          |     | Γ          | Γ               | Γ              |                  |         | Ι          | Γ               | Γ      | Γ               |             | 1              | ┢                      |         | 1              |            |        |            | M10                     |                    |

| Ambon                        |                    |             |             |                    |                 | ·                   | ·             |                            | ·               |                             |                                |                       |                     |                         |                 |                     |                     |                |                             |                                                |             |                         | Ţ                     | ·                 |                 |            |                 |                     | ·          | ļ           |                     | ]               |
|------------------------------|--------------------|-------------|-------------|--------------------|-----------------|---------------------|---------------|----------------------------|-----------------|-----------------------------|--------------------------------|-----------------------|---------------------|-------------------------|-----------------|---------------------|---------------------|----------------|-----------------------------|------------------------------------------------|-------------|-------------------------|-----------------------|-------------------|-----------------|------------|-----------------|---------------------|------------|-------------|---------------------|-----------------|
| Alor                         |                    |             |             |                    | ·               |                     | ·             |                            |                 | •                           |                                |                       |                     | •                       |                 | •                   | <u> </u>            |                |                             |                                                |             | ·                       |                       | ·                 | ·               |            | ·               |                     | ·          |             |                     | ·               |
| Sumba                        |                    |             |             |                    |                 | ·                   |               |                            |                 |                             |                                |                       |                     |                         |                 |                     |                     |                |                             |                                                | •           |                         | ·                     |                   | ·               |            | ·               |                     | ·          | ·           | ·                   |                 |
| Lombok                       |                    |             |             |                    |                 |                     |               |                            |                 |                             |                                |                       |                     |                         |                 | •                   |                     |                |                             |                                                |             |                         | ·                     | ·                 |                 | ·          |                 | ·                   | ·          |             |                     |                 |
| Bali                         | ·                  |             |             |                    |                 |                     |               |                            | ·               | •                           |                                |                       |                     | -                       |                 |                     |                     |                |                             |                                                |             |                         | ·                     |                   |                 | ·          |                 | ·                   |            |             |                     |                 |
| Toraja                       |                    |             |             |                    |                 |                     |               |                            |                 |                             |                                |                       |                     |                         |                 |                     |                     |                |                             |                                                |             |                         |                       |                   |                 |            |                 |                     |            |             |                     |                 |
| Ujung Padang                 |                    |             |             |                    |                 |                     |               |                            |                 | •                           |                                |                       |                     |                         |                 |                     |                     |                |                             |                                                |             |                         | •                     |                   |                 |            |                 |                     | ·          |             |                     |                 |
| Palu                         |                    |             |             |                    | ·               |                     |               |                            |                 |                             |                                |                       |                     |                         |                 |                     |                     | .              |                             |                                                |             |                         |                       |                   |                 | ·          |                 |                     |            |             |                     |                 |
| Manado                       |                    |             |             |                    |                 |                     |               |                            |                 |                             |                                |                       |                     |                         |                 |                     |                     |                | .                           |                                                |             |                         |                       |                   |                 |            |                 | _                   |            |             |                     |                 |
| Kota Kinabalu                |                    |             |             |                    |                 |                     |               |                            |                 | •                           |                                |                       |                     |                         |                 |                     |                     |                |                             |                                                |             |                         |                       |                   |                 |            |                 |                     |            |             |                     |                 |
| Banjarmasin                  | ,                  |             |             |                    |                 |                     |               |                            |                 |                             |                                |                       |                     |                         |                 |                     |                     |                |                             | -                                              |             |                         |                       |                   | ·               | 2          |                 |                     |            |             |                     |                 |
| Tengger                      |                    | 9           |             | •                  |                 |                     | •             | -                          |                 | •                           |                                |                       |                     |                         |                 |                     |                     |                |                             |                                                |             |                         |                       |                   |                 |            |                 |                     |            |             |                     |                 |
| Medan                        |                    |             |             | •                  |                 |                     |               |                            |                 |                             |                                |                       |                     |                         |                 |                     |                     | •              |                             |                                                |             |                         |                       |                   |                 |            |                 | -                   |            |             | ·                   | .               |
| Bangka                       | •                  |             |             | •                  |                 | -                   |               | 4                          | •               |                             |                                |                       |                     |                         |                 |                     |                     |                |                             |                                                |             | •                       |                       |                   | ·               |            |                 |                     |            |             |                     |                 |
| Padang                       |                    | •           |             |                    |                 |                     |               |                            |                 |                             |                                |                       |                     |                         |                 |                     |                     |                |                             |                                                |             |                         |                       | •                 |                 | ·          |                 |                     |            |             |                     |                 |
| Pekanbaru                    | •                  |             |             |                    |                 |                     |               |                            |                 |                             |                                |                       |                     |                         |                 |                     |                     |                |                             |                                                |             |                         |                       |                   |                 |            |                 |                     |            |             |                     |                 |
| Palembang                    |                    |             |             |                    |                 |                     |               |                            |                 |                             |                                |                       |                     |                         |                 |                     |                     |                | ·   ·                       | .                                              |             |                         |                       |                   | ·               |            |                 |                     |            |             |                     |                 |
| Melayu                       |                    |             |             |                    | _               |                     | -             |                            |                 | -                           |                                |                       |                     | • -                     | -               |                     | ·                   |                |                             | -                                              |             | 4                       |                       |                   | •               |            | -               |                     | ·          |             |                     |                 |
| A. Malay                     |                    |             |             |                    |                 |                     |               |                            |                 |                             |                                |                       |                     | ·                       |                 | ·                   |                     |                |                             | 2                                              |             | -                       | •                     |                   |                 |            |                 | 5                   | •          | 2           | 5                   | Ŀ               |
| Senoi                        |                    |             |             |                    |                 |                     |               |                            |                 |                             |                                |                       |                     |                         |                 |                     |                     | . -            | -                           |                                                |             | -                       | -                     |                   | -               |            | •               | •                   |            |             |                     |                 |
| Semang                       |                    |             |             |                    |                 |                     |               |                            |                 |                             |                                |                       |                     |                         |                 | ·                   |                     |                | . 🛥                         |                                                | -           | 38                      |                       | ٣                 | 3               |            |                 |                     |            |             |                     | Ŀ               |
| Thailand                     |                    |             | .           |                    |                 | .                   |               |                            |                 |                             |                                | . -                   | -                   | •                       |                 |                     | 4                   |                |                             |                                                |             |                         |                       | 16                | ŀ               |            | <u>.</u>        |                     | -          | <u>.</u>    |                     | _               |
| Philippines                  |                    |             |             |                    |                 |                     |               |                            | -               |                             |                                | ·                     | •                   |                         |                 |                     |                     | ·              |                             |                                                |             |                         |                       |                   |                 |            |                 |                     |            | <u> </u>    | <u>.</u>            | <u> </u>        |
| Taiwan                       |                    |             |             |                    |                 |                     |               |                            |                 |                             |                                |                       |                     | ·                       |                 |                     |                     | ·              |                             |                                                | ·           |                         |                       |                   |                 |            | Ŀ               | Ŀ                   | ļ .        | <u> </u>    |                     |                 |
| China                        | -                  | •           | 2           | -                  |                 |                     |               | . -                        | -               | •                           | _                              |                       |                     |                         |                 | -                   | ·                   |                | •                           |                                                | ·           |                         |                       |                   |                 |            | <u> </u> .      |                     |            | <u> </u> .  | <br>                | <u> </u> .      |
|                              | 02 102 773 311 357 | 129 223 263 | 100 223 311 | 11 222 224 200 211 | 112 223 264 311 | 180 213 223 271 311 | 2 724 200 211 | 112 MC 407 274 311 343 357 | 772 7/2 771 211 | 093 129 223 234 286 290 311 | 362<br>003 130 773 734 300 311 | 110 007 107 077 271 0 | 129 223 234 290 362 | 223 234 249 261 290 300 | 223 234 261 290 | 223 234 28/ 290 302 | 223 234 290 325 362 | 13 223 231 319 | 093 129 145 223 256 2/1 562 | 002 120 222 227 127 200<br>002 120 222 256 271 | 31202222222 | no3 130 333 356 371 363 | 0 145 223 256 271 362 | 0 222 256 271 362 | 001 120 223 263 | 20 223 263 | 136 217 223 319 | 177 723 239 263 325 | 17 223 319 | 223 242 319 | 003 184 223 290 304 | 153 223 290 304 |
| HVS-I Variants<br>Haplogroup | MIN 00             |             |             | ╉                  |                 | ╉                   |               |                            |                 | +                           | 362                            | ╉                     | +                   | -                       | +               | -                   |                     | +              | +                           | MAIA 0                                         | 1           |                         | 1                     | ND1a              | 1               | +          | MOID 1          | ╀                   | ╋          |             | t                   | M22 1           |

| Ambon          |             |                 |                      |         |    |                         |                     |                 |             |             |     |             | _        |         |         |             |                 |                 |                 |                     |                     |                         |                 | _               |             |                  |             |                 |                 |             |         |                 |         |
|----------------|-------------|-----------------|----------------------|---------|----|-------------------------|---------------------|-----------------|-------------|-------------|-----|-------------|----------|---------|---------|-------------|-----------------|-----------------|-----------------|---------------------|---------------------|-------------------------|-----------------|-----------------|-------------|------------------|-------------|-----------------|-----------------|-------------|---------|-----------------|---------|
| Alor           |             |                 |                      |         |    |                         | _                   |                 |             |             |     |             |          |         |         |             |                 |                 |                 |                     |                     |                         |                 |                 | -           |                  |             |                 |                 |             |         |                 |         |
| Sumba          |             |                 |                      |         |    |                         |                     |                 |             | -           |     |             |          |         |         |             |                 |                 |                 |                     |                     |                         |                 |                 |             |                  |             |                 |                 |             |         |                 |         |
| Lombok         |             |                 |                      |         |    |                         |                     |                 |             |             |     |             |          |         |         |             |                 |                 |                 |                     |                     |                         | -               |                 |             |                  |             |                 |                 | -           |         |                 |         |
| Bali           |             |                 |                      |         |    | _                       |                     |                 |             |             |     |             |          |         |         |             |                 | ,               |                 |                     |                     |                         |                 |                 |             |                  |             |                 |                 |             |         |                 |         |
| Toraja         |             |                 |                      |         |    |                         |                     |                 |             |             |     |             |          |         |         |             |                 | ,               |                 |                     |                     |                         |                 |                 |             |                  |             |                 |                 |             |         |                 |         |
| Ujung Padang   |             |                 |                      |         |    |                         |                     |                 |             |             |     |             |          |         |         |             | ·               |                 |                 |                     |                     |                         |                 |                 |             |                  |             |                 |                 | ·           |         |                 |         |
| Palu           |             |                 |                      |         |    |                         |                     |                 |             |             |     |             | 3        |         |         |             |                 | ,               |                 |                     |                     |                         |                 |                 |             |                  |             |                 |                 |             |         |                 |         |
| Manado         |             |                 |                      |         |    |                         |                     |                 |             |             |     |             |          |         |         |             |                 |                 |                 |                     |                     |                         |                 |                 |             |                  |             |                 | •               |             |         |                 |         |
| Kota Kinabalu  |             |                 |                      |         |    |                         |                     |                 |             |             |     |             |          |         | _       |             |                 | -               |                 |                     |                     |                         |                 |                 |             |                  |             |                 |                 |             |         |                 |         |
| Banjarmasin    |             |                 |                      |         |    |                         | •                   |                 |             |             |     |             |          |         |         |             |                 |                 | •               | 1                   |                     |                         |                 |                 |             |                  |             |                 |                 |             |         |                 |         |
| Tengger        |             |                 | -                    |         |    |                         |                     |                 |             |             |     |             | •        |         |         |             |                 | •               | •               | •                   |                     |                         | •               |                 |             |                  |             |                 |                 |             |         |                 | •       |
| Medan          |             | -               |                      |         |    |                         |                     |                 |             |             |     | •           | 3        | •       |         |             |                 |                 |                 |                     |                     |                         |                 | 1               |             |                  |             |                 |                 |             |         |                 |         |
| Bangka         |             |                 |                      |         | •  |                         |                     |                 |             |             |     |             |          |         |         |             |                 | •               |                 |                     |                     |                         |                 |                 | •           |                  |             |                 |                 |             |         |                 | •       |
| Padang         |             |                 |                      |         |    |                         |                     |                 | ·           |             |     |             | 1        | ·       | ·       | •           |                 |                 |                 |                     |                     |                         | •               |                 |             |                  |             |                 |                 | Ŀ           |         |                 | •       |
| Pekanbaru      |             |                 | _                    | _       |    |                         |                     |                 |             |             |     | 1           |          |         |         |             |                 |                 |                 | •                   |                     |                         | •               |                 |             |                  |             |                 |                 |             |         |                 |         |
| Palembang      |             |                 |                      |         |    |                         |                     |                 |             |             |     |             |          | •       |         |             |                 |                 |                 |                     |                     |                         | •               | •               | •           |                  |             |                 |                 |             |         |                 |         |
| Melayu         |             |                 |                      |         |    |                         |                     |                 |             |             |     |             |          |         |         |             |                 |                 |                 | •                   |                     |                         |                 |                 | •           |                  |             |                 |                 |             |         |                 | •       |
| A. Malay       |             |                 |                      |         |    |                         |                     |                 |             |             | •   | •           |          |         |         |             |                 |                 |                 |                     |                     |                         |                 |                 |             | •                |             |                 |                 |             |         |                 | •       |
| Senoi          |             |                 |                      |         |    |                         |                     |                 |             | •           |     | •           |          |         |         |             |                 | •               |                 |                     | •                   |                         |                 | •               | •           |                  |             |                 |                 |             |         |                 |         |
| Semang         |             |                 |                      |         |    |                         | •                   |                 | •           |             |     |             |          |         |         |             |                 |                 |                 |                     |                     | •                       |                 | ,               |             | •                | •           | •               |                 | •           |         |                 |         |
| Thailand       | -           |                 | .                    | .       |    |                         | -                   |                 |             |             | I   |             | .        |         |         | •           | •               |                 | _               |                     | •                   | ۰                       |                 | 2               |             |                  |             |                 |                 |             |         |                 |         |
| Philippines    |             |                 |                      |         |    |                         |                     |                 |             |             |     |             |          |         |         | -           |                 |                 |                 |                     |                     |                         |                 |                 |             |                  |             |                 |                 |             |         |                 |         |
| Taiwan         | [           |                 |                      |         |    |                         |                     |                 |             |             |     |             |          |         |         |             |                 |                 |                 |                     |                     |                         |                 |                 |             |                  |             |                 |                 |             |         |                 | •       |
| China          | .           |                 |                      |         | Ŀ  | .                       | .                   | _               | _           |             | -   |             |          | -       |         |             |                 |                 |                 |                     | _                   | _                       | 1               | s               | 4           | -                |             | -               | _               | -           | 2       | -               | 1       |
|                | 223 290 304 | 126 147 153 223 | 214A 223 271 278 298 | 129 223 |    | 129 155 219 223 356 362 | 129 219 223 272 362 | 172 223 287 311 | 172 223 311 | 189 223 362 |     | 223 291 362 | 223 362  | 230 304 |         | 209 223 324 | 102 223 297 300 | 126 129 223 297 | 129 166 223 297 | 129 172 189 223 297 | 129 189 223 248 297 | 129 189 223 248 297 300 | 189 223 293 297 | 129 189 223 297 | 129 223 297 | 168 223 297      | 176 223 297 | 182 193 223 297 | 223 249 297 360 | 223 264 297 | 223 297 | 223 297 316 357 | 297 327 |
| HVS-I Variants | 223         | 126             | 126                  | 12      | 0  | 129                     | <u>8</u> 1          | 12              | 12          | 681         | 213 | 23          | 223      | 230     | 354     | 209         | 102             | 126             | 671             | <u>67</u>           | 129                 | 129                     | 671             | <u>87</u>       | 129         | 168              | 176         | 182             | 53              | 223         | 223     | 223             | 223     |
| Haplogroup     | M22         | FW              | EM                   | MS      | TM | LW<br>W                 | ĹW                  | M7              | ĹW          | ĹW          | M7  | M7          | LW<br>LW | M7      | 41<br>W | M7al        | ЧЛИ             | Ф7Ь<br>М        | 4LW             | Q.W                 | M7b                 | 4LM                     | 47M             | M7b             | ٩2W         | Ч <sup>г</sup> М | PLW<br>M    | ЧЛИ             | M7b             | M7b         | M7b     | M7b             | Μ7b     |

271

•

| Ambon                        |                                    | _                   |                         |                 | _                   |                             |                      |                        |                        |                             |                   |                    |                   |                     |                 |                    | -                 |                     |                      |             |                     |                        |                  |                 |                   |                     |                 |                     |               |                 |           |             | ]     |
|------------------------------|------------------------------------|---------------------|-------------------------|-----------------|---------------------|-----------------------------|----------------------|------------------------|------------------------|-----------------------------|-------------------|--------------------|-------------------|---------------------|-----------------|--------------------|-------------------|---------------------|----------------------|-------------|---------------------|------------------------|------------------|-----------------|-------------------|---------------------|-----------------|---------------------|---------------|-----------------|-----------|-------------|-------|
| Alor                         |                                    |                     |                         |                 |                     |                             |                      | -                      |                        |                             |                   |                    |                   |                     |                 |                    |                   |                     |                      |             |                     | -                      |                  |                 |                   |                     |                 |                     |               |                 | 1         |             |       |
| Sumba                        |                                    |                     |                         |                 |                     |                             |                      |                        |                        |                             |                   |                    |                   |                     |                 |                    | -                 |                     |                      |             |                     |                        |                  |                 |                   |                     |                 |                     |               | 4               |           |             | -     |
| Lombok                       |                                    |                     |                         |                 | _                   |                             |                      |                        | _                      |                             | _                 |                    |                   |                     |                 |                    |                   |                     |                      |             |                     |                        |                  |                 |                   |                     |                 |                     |               |                 |           |             | -     |
| Bali                         |                                    |                     |                         |                 | -                   | _                           |                      |                        | _                      |                             |                   |                    |                   |                     |                 |                    |                   |                     |                      |             |                     |                        |                  |                 |                   |                     |                 |                     |               |                 |           |             | -     |
| Toraja                       |                                    |                     |                         |                 |                     |                             |                      |                        |                        |                             |                   |                    |                   |                     |                 |                    |                   |                     |                      |             |                     |                        | -                |                 |                   |                     |                 |                     |               | •               | 2         |             |       |
| Ujung Padang                 |                                    |                     |                         |                 |                     |                             |                      |                        |                        |                             |                   |                    |                   |                     |                 |                    |                   |                     |                      |             |                     |                        |                  |                 |                   |                     |                 |                     |               |                 |           |             |       |
| Palu                         | •                                  |                     |                         |                 |                     |                             |                      |                        |                        |                             | 1                 |                    |                   |                     |                 |                    |                   |                     |                      |             |                     |                        |                  |                 |                   |                     |                 |                     |               |                 |           |             |       |
| Manado                       |                                    | •                   |                         |                 |                     |                             |                      |                        |                        |                             |                   |                    |                   |                     |                 |                    |                   |                     |                      |             |                     |                        |                  |                 |                   | •                   |                 |                     |               |                 | .         |             |       |
| Kota Kinabalu                |                                    |                     |                         |                 |                     |                             |                      |                        |                        |                             |                   |                    |                   |                     |                 |                    |                   |                     | -                    |             |                     |                        |                  |                 |                   |                     |                 |                     |               |                 |           |             |       |
| Banjarmasin                  |                                    |                     |                         |                 |                     |                             |                      |                        |                        |                             |                   |                    |                   |                     |                 |                    |                   |                     |                      |             |                     |                        |                  |                 |                   |                     |                 |                     |               | •               |           |             |       |
| Tengger                      | •                                  |                     |                         |                 |                     |                             |                      |                        |                        |                             |                   |                    |                   |                     |                 |                    |                   |                     |                      |             |                     |                        |                  |                 |                   |                     |                 | •                   | •             |                 |           |             |       |
| Medan                        |                                    |                     |                         |                 |                     |                             | •                    |                        | •                      |                             | 3                 |                    | •                 | ·                   |                 |                    |                   |                     |                      |             |                     | ·                      |                  |                 |                   |                     | •               |                     |               |                 |           |             |       |
| Bangka                       |                                    |                     |                         | •               |                     | •                           |                      |                        |                        |                             |                   | •                  | •                 |                     |                 |                    |                   |                     |                      |             |                     |                        |                  |                 |                   |                     |                 |                     |               |                 |           |             |       |
| Padang                       |                                    |                     |                         |                 |                     |                             |                      |                        |                        |                             | •                 |                    |                   |                     |                 |                    |                   |                     |                      |             |                     |                        |                  |                 | •                 |                     |                 |                     |               |                 |           |             |       |
| Pekanbaru                    |                                    |                     |                         |                 |                     |                             |                      |                        |                        |                             |                   |                    |                   |                     |                 |                    | •                 |                     |                      |             | •                   |                        |                  | •               |                   |                     |                 |                     |               |                 | Ŀ         |             |       |
| Palembang                    |                                    |                     |                         |                 | ŀ                   |                             |                      |                        |                        |                             |                   |                    |                   |                     |                 |                    | •                 |                     |                      |             |                     | •                      |                  |                 |                   |                     |                 |                     |               |                 | Ŀ         |             |       |
| Melayu                       |                                    |                     | Ŀ                       |                 | ŀ                   |                             | <u> </u>             |                        |                        |                             | 7                 |                    |                   |                     | 1               |                    | •                 | •                   |                      |             |                     |                        |                  |                 | ŀ                 |                     |                 |                     |               |                 | Ŀ         |             |       |
| A. Malay                     |                                    |                     |                         |                 |                     |                             |                      |                        |                        |                             |                   |                    |                   |                     |                 |                    |                   |                     |                      | ·           | •                   |                        |                  |                 |                   |                     |                 |                     |               |                 | <u> </u>  | •           |       |
| Senoi                        |                                    | .                   |                         |                 |                     |                             |                      |                        |                        |                             |                   |                    |                   |                     |                 |                    |                   |                     |                      |             |                     |                        | •                |                 |                   |                     | •               |                     | •             |                 | •         | •           |       |
| Semang                       |                                    |                     |                         |                 |                     |                             |                      |                        |                        |                             |                   |                    |                   |                     |                 |                    | •                 |                     |                      | •           |                     |                        |                  |                 |                   |                     |                 |                     |               |                 | Ŀ         | •           |       |
| Thailand                     |                                    | .                   | .                       | .               | .                   | .                           | .                    | .                      | .                      | _                           | .                 | .                  | .                 | .                   | 9               |                    | •                 |                     |                      |             |                     | •                      |                  |                 |                   | .                   | .               |                     |               |                 |           |             |       |
| Philippines                  |                                    | .                   |                         |                 |                     |                             |                      |                        |                        |                             |                   | Γ.                 |                   |                     |                 |                    |                   |                     |                      | •           |                     |                        |                  | •               |                   |                     |                 |                     |               |                 |           |             | 1     |
| Taiwan                       |                                    |                     |                         |                 | -                   |                             |                      |                        |                        |                             |                   |                    |                   |                     |                 |                    |                   |                     |                      |             |                     | •                      |                  | 2               | -                 | _                   | 2               | 7                   | 6             |                 | 12        | 3           | •     |
| China                        | -                                  | -                   | 7                       | _               |                     |                             | _                    | -                      |                        |                             | -                 | -                  | 7                 | _                   | 8               | 2                  | -                 | -                   |                      |             | 7                   | 2                      |                  |                 |                   |                     |                 |                     |               |                 | Ŀ         |             |       |
|                              | 092 129 165 168insA 192 223<br>297 | 092 129 192 223 297 | 093 129 136 192 223 297 | 093 129 192 297 | 126 129 192 223 297 | 129 140 189 192 223 265 297 | 129 188G 192 223 297 | 29 189 192 193 223 297 | 29 189 192 215 223 297 | 129 189 192 223 234 295 297 | 9 189 192 223 297 | 29 192 223 243 297 | 9 192 223 271 297 | 129 192 223 291 297 | 129 192 223 297 | 9 192 223 297 301G | 9 192 223 297 357 | 129 192 223 297 362 | 189 192 223 294G 297 | 192 223 297 | 129 189 223 297 298 | 29 189 223 297 298 325 | 126 129 297 324  | 129 145 297 324 | 9 171 278 297 324 | 129 189 192 297 324 | 129 189 297 324 | 129 192 224 297 324 | 9 192 297 324 | 129 295 297 324 | 9 297 324 | 145 297 324 | 7 324 |
| HVS-I Variants<br>Haplogroup | M7b1 092                           | M7b1                | ┢                       | ┢               | ┢                   | ┢                           | ╀╴                   |                        | ╞                      | ┢                           | ┝                 |                    | ┢╴                | ┢                   | +               | ┝                  | ┝                 | M7b1 12             | ┝                    | M7b1 19     | -                   |                        | $\left  \right $ | ┢               | ┢                 | ╉                   | M7b3 12         | ╋                   | ┝             | ┢               | ┢         | M7b3 14     |       |

| Ambon          |             |                  |                 |             |          |              |         |             |                 |         |         |                         |                     |                 |                 |                 | j                       |                  |                 |                 |                 |                     |             |                 |                 |             |             |                  |                 | -           |       |                 |                         | ]               |
|----------------|-------------|------------------|-----------------|-------------|----------|--------------|---------|-------------|-----------------|---------|---------|-------------------------|---------------------|-----------------|-----------------|-----------------|-------------------------|------------------|-----------------|-----------------|-----------------|---------------------|-------------|-----------------|-----------------|-------------|-------------|------------------|-----------------|-------------|-------|-----------------|-------------------------|-----------------|
| Alor           |             |                  |                 | ·           |          |              |         |             |                 | ·       | ·       | ·                       |                     |                 |                 |                 |                         | ·                |                 |                 |                 | _                   | ·           | ·               |                 |             |             |                  |                 | _           |       |                 | ·                       |                 |
| Sumba          |             |                  |                 |             |          |              |         |             |                 |         |         |                         |                     |                 |                 |                 | -                       |                  |                 |                 |                 |                     |             |                 |                 |             | 2           |                  |                 | 3           |       |                 |                         |                 |
| Lombok         |             |                  |                 |             |          |              |         |             |                 |         |         |                         |                     |                 |                 |                 |                         |                  |                 |                 |                 |                     |             |                 |                 |             |             |                  |                 | -           |       |                 |                         |                 |
| Bali           |             |                  |                 |             |          |              |         |             |                 |         |         |                         |                     |                 |                 |                 |                         |                  |                 |                 |                 |                     | -           |                 |                 |             |             |                  |                 | _           |       |                 |                         |                 |
| Toraja         |             |                  |                 |             |          |              |         |             |                 |         |         |                         |                     |                 |                 |                 |                         |                  | 7               |                 |                 |                     |             |                 |                 |             |             |                  |                 | 4           | -     |                 |                         |                 |
| Ujung Padang   |             |                  |                 |             |          |              |         |             |                 |         |         |                         |                     |                 |                 |                 |                         |                  |                 |                 |                 |                     |             |                 |                 | ·           |             |                  |                 | -           |       |                 |                         | ·               |
| Palu           |             |                  |                 |             |          |              |         |             |                 |         |         |                         |                     |                 |                 |                 |                         |                  |                 |                 |                 |                     |             |                 | _               |             |             |                  |                 | و           |       |                 |                         |                 |
| Manado         |             |                  | _               |             |          |              |         |             |                 | •       | •       |                         |                     |                 |                 |                 |                         |                  |                 |                 |                 |                     |             |                 |                 |             |             |                  | 3               | ∞           | •     |                 |                         | •               |
| Kota Kinabalu  |             |                  |                 |             |          |              |         |             |                 |         |         | 1                       | 2                   | 1               | •               |                 |                         |                  |                 |                 |                 |                     |             |                 |                 |             |             | 2                |                 | 3           |       |                 |                         |                 |
| Banjarmasin    |             |                  |                 |             |          |              | •       | -           |                 |         | •       |                         |                     |                 |                 |                 |                         |                  |                 |                 |                 |                     |             |                 |                 |             |             |                  |                 | _           |       |                 |                         |                 |
| Tengger        |             |                  |                 |             |          |              |         |             |                 |         |         |                         |                     |                 |                 |                 |                         |                  |                 |                 |                 |                     |             |                 |                 |             | ,           |                  | •               | m           |       |                 |                         |                 |
| Medan          |             |                  |                 |             |          |              |         |             | •               |         |         |                         |                     |                 |                 | -               |                         | •                |                 |                 | -               |                     |             | ·               |                 | -           |             |                  |                 | _           |       |                 |                         |                 |
| Bangka         |             |                  |                 |             |          |              |         |             |                 |         | •       |                         |                     |                 |                 |                 |                         | •                | •               |                 |                 |                     |             |                 |                 |             |             |                  | •               | -           |       |                 |                         |                 |
| Padang         |             |                  |                 |             |          |              |         |             |                 |         |         |                         |                     |                 |                 |                 |                         |                  |                 |                 |                 |                     |             |                 |                 |             |             | •                |                 |             |       |                 |                         |                 |
| Pekanbaru      |             |                  |                 |             |          |              |         |             |                 | •       |         |                         |                     |                 | Ŀ               |                 | •                       |                  |                 | -               | 1               |                     |             |                 |                 |             |             |                  |                 | 3           |       |                 |                         |                 |
| Palembang      |             |                  |                 | •           |          | Ŀ            |         |             |                 |         |         |                         |                     |                 |                 |                 | •                       |                  |                 |                 |                 |                     |             |                 |                 |             |             |                  |                 | 9           |       |                 |                         |                 |
| Melayu         |             |                  |                 | -           |          |              |         |             | <u> </u>        |         |         |                         | Ŀ                   |                 | Ŀ               |                 |                         | •                |                 |                 |                 |                     |             |                 |                 |             |             |                  |                 | 5           | ·     |                 |                         |                 |
| A. Malay       |             |                  |                 |             |          |              |         |             |                 | -       |         |                         |                     |                 |                 |                 |                         | •                |                 |                 | •               |                     |             |                 |                 |             |             |                  |                 | 8           |       |                 |                         |                 |
| Senoi          |             |                  |                 |             |          |              |         |             |                 |         |         |                         |                     |                 |                 |                 |                         | •                | •               |                 |                 |                     |             |                 |                 |             |             | •                | •               |             |       | •               |                         |                 |
| Semang         |             |                  |                 |             |          |              |         |             |                 |         |         |                         |                     |                 |                 |                 |                         |                  |                 |                 |                 |                     |             |                 |                 | •           | •           | •                | •               |             |       | •               |                         | •               |
| Thailand       | .           |                  |                 |             |          | _            | _       |             |                 |         |         | .                       | .                   |                 | .               |                 |                         |                  |                 |                 | •               |                     |             |                 |                 | •           | •           |                  | •               | 1           |       | •               |                         |                 |
| Philippines    |             |                  |                 |             |          |              | _       |             |                 |         |         |                         |                     |                 |                 |                 |                         |                  |                 |                 |                 |                     |             |                 |                 | •           |             |                  |                 | 6           |       | •               |                         | •               |
| Taiwan         |             |                  |                 |             |          |              |         |             | .               |         |         |                         | .                   |                 | _               |                 |                         | 4                |                 |                 | •               |                     |             | 1               |                 |             |             |                  |                 | 4           |       |                 |                         |                 |
| China          | 1           |                  |                 |             | -        | 2            | 1       |             | -               | -       | 3       |                         |                     |                 |                 |                 |                         |                  |                 |                 | •               |                     |             |                 |                 |             | I           |                  |                 |             |       | 3               | 1                       | 1               |
|                | 129 223 295 | 172 223 293T 295 | 223 224 287 295 | 223 261 295 | 223 293T | 223 293T 295 | 223 295 | 093 223 319 | 223 295 296 319 | 295 319 | 294 295 | 093 223 291 295 337 362 | 093 223 295 337 362 | 093 223 295 362 | 129 223 295 362 | 145 223 295 362 | 150 223 274 295 311 362 | 223 265T 295 362 | 168 223 295 362 | 179 223 295 362 | 185 223 295 362 | 189 213 223 295 362 | 223 295 362 | 223 254 295 362 | 223 278 295 362 | 292 295 362 | 295 311 362 | 223 295 346C 362 | 223 295 356 362 | 223 295 362 | 362   | 184 223 298 319 | 184 189 223 298 311 319 | 184 189 223 319 |
| HVS-I Variants | 671         | 12               | 23              | 53          | 223      | ส            | 8       | +-          | +               | +       | +       | ╀                       | ┢                   | +               | ╀               | ╋               | <b> </b>                |                  | ┢┈              | +               |                 |                     | ·           |                 |                 | +           | ┢╌          |                  | +               | +           | +     | _               | 184                     | 184             |
| Haplogroup     | M7cl        | M7c1             | M7cl            | M7cl        | M7cl     | M7c1         | M7c1    | M7cla       | M7c1a           | M7c1a   | M7c1b   | M7c1c                   | M7c1c               | M7clc           | M7clc           | M7c1c           | M7clc                   | M7clc            | M7clc           | M7c1c           | M7c1c           | M7clc               | M7c1c       | M7clc           | <b>M7c1c</b>    | M7clc       | M7c1c       | M7c1c            | M7clc           | M7c1c       | M7c1c | M8a             | M8a                     | M8a             |

| Ambon          |             |                                         |                     | [                       | Ţ               |             |                              |                           |                      | ]                        |                          |                      |                  |                          |                           |                       |                 |                      |                      |          |              |                  |                  |                  |                  |              |                          |                          |                          |                      |                  |                      |                          |                          |                 |
|----------------|-------------|-----------------------------------------|---------------------|-------------------------|-----------------|-------------|------------------------------|---------------------------|----------------------|--------------------------|--------------------------|----------------------|------------------|--------------------------|---------------------------|-----------------------|-----------------|----------------------|----------------------|----------|--------------|------------------|------------------|------------------|------------------|--------------|--------------------------|--------------------------|--------------------------|----------------------|------------------|----------------------|--------------------------|--------------------------|-----------------|
| Alor           |             |                                         |                     |                         | +-              | t           | +                            | -+-                       | +                    | +                        | +                        |                      | -                |                          |                           | -                     |                 |                      | +                    |          |              |                  |                  |                  | -†               |              | +                        |                          |                          |                      | -                |                      | -                        |                          |                 |
| Sumba          |             | _                                       | _                   | ~                       | +               | +           | +                            | 1                         | +                    | +                        | -+                       | +                    |                  | -                        |                           |                       |                 |                      |                      |          |              | _                | +                |                  |                  |              |                          |                          |                          |                      | -                |                      |                          |                          | _               |
| Lombok         |             |                                         |                     | +                       |                 | +           |                              |                           | +                    | -+                       | -                        | -                    |                  | -                        |                           |                       |                 |                      | _                    |          | +            |                  |                  |                  |                  |              | 1                        | -                        |                          |                      |                  |                      |                          |                          |                 |
| Bali           |             |                                         | <br>  .             |                         | +               | +           | +                            | ł                         |                      | -+                       |                          | -                    |                  | -                        |                           |                       |                 |                      |                      |          | -+           |                  |                  |                  | -                |              | -+                       |                          |                          |                      |                  |                      |                          |                          |                 |
| Toraja         |             |                                         |                     |                         | Ţ               | +           |                              | 1                         | -                    | +                        | +                        |                      |                  |                          |                           |                       |                 |                      | _                    |          |              |                  |                  |                  |                  |              | 1                        |                          | _                        |                      |                  | _                    |                          |                          |                 |
| Ujung Padang   |             | <br>                                    |                     |                         |                 |             | +                            |                           | +                    | +                        | +                        | _                    | _                |                          |                           |                       |                 |                      |                      |          |              |                  |                  |                  |                  |              | -†                       |                          |                          |                      |                  |                      |                          |                          |                 |
| Palu           |             |                                         |                     |                         | +               | +           | +                            |                           | -+                   | +                        | -                        |                      |                  |                          |                           |                       |                 |                      |                      |          |              |                  | -                |                  |                  |              |                          |                          |                          | -                    | _                |                      |                          |                          |                 |
| Manado         |             |                                         |                     |                         | Ţ               | Ţ           | -                            |                           |                      | 1                        |                          |                      |                  |                          |                           |                       |                 | Π.                   |                      |          |              |                  | -                | :                |                  |              |                          |                          |                          |                      |                  |                      |                          | 1                        |                 |
| Kota Kinabalu  |             |                                         | t                   | +                       |                 |             | -+                           |                           | +                    | 1                        | -                        |                      |                  |                          |                           |                       | .               |                      |                      |          | -            |                  |                  |                  |                  |              |                          |                          | -                        |                      |                  |                      |                          |                          |                 |
| Banjarmasin    | <b>†</b>    |                                         | ţ-                  | 1                       | -               | 1           | -+                           | -                         |                      | 1                        |                          |                      |                  |                          |                           |                       | 1               |                      |                      |          |              |                  |                  |                  |                  |              |                          |                          | 1                        |                      |                  |                      |                          |                          |                 |
| Tengger        | <b>†</b>    | 1                                       | ŀ                   | Ţ                       | 1               | 1           | -                            |                           | -+                   | -                        | -                        |                      |                  | -                        |                           |                       |                 |                      |                      |          |              |                  |                  |                  |                  |              | ·                        |                          |                          |                      |                  | _                    |                          |                          |                 |
| Medan          |             |                                         |                     | ·                       | Ţ               |             |                              |                           |                      |                          | •                        |                      |                  |                          |                           |                       |                 |                      |                      |          |              |                  |                  |                  |                  |              | ·                        |                          |                          |                      |                  |                      |                          |                          |                 |
| Bangka         |             | 1                                       | ·                   |                         | ·               |             |                              |                           |                      |                          |                          |                      |                  |                          |                           |                       |                 |                      |                      |          | • .          |                  |                  |                  |                  |              |                          |                          |                          | 3                    |                  |                      |                          |                          |                 |
| Padang         |             |                                         | ŀ                   | ·                       | ·               |             |                              |                           |                      |                          |                          |                      |                  |                          |                           |                       |                 |                      |                      |          |              |                  |                  |                  |                  |              |                          |                          |                          | 3                    | •                |                      | •                        |                          |                 |
| Pekanbaru      |             |                                         | ·                   |                         |                 |             |                              |                           |                      | •                        |                          |                      |                  |                          |                           |                       |                 |                      |                      |          | •            |                  | •                |                  | •                |              |                          |                          |                          |                      |                  |                      |                          |                          |                 |
| Palembang      |             |                                         |                     | ·                       |                 |             |                              |                           |                      |                          | •                        | •                    | •                |                          |                           |                       |                 |                      |                      |          |              |                  |                  |                  |                  |              |                          |                          |                          |                      |                  | <u> </u>             |                          |                          |                 |
| Melayu         |             |                                         | ·                   | ·                       |                 | ·           |                              |                           |                      |                          |                          |                      |                  |                          |                           |                       |                 |                      |                      |          |              |                  |                  |                  |                  |              | -                        |                          |                          |                      |                  | 2                    |                          | ·                        |                 |
| A. Malay       | ٢           |                                         |                     |                         |                 | 4           |                              |                           |                      |                          | •                        |                      |                  |                          |                           | .                     |                 |                      |                      |          | •            |                  | •                |                  |                  |              |                          | -                        |                          |                      |                  | 2                    | 5                        |                          |                 |
| Senoi          | Γ           | Ī                                       | ·                   | ŀ                       |                 |             |                              |                           |                      |                          | •                        |                      |                  |                          |                           |                       |                 |                      |                      |          | •            |                  |                  |                  |                  |              |                          |                          | •                        |                      | •                | 3                    |                          |                          |                 |
| Semang         | T           | ·                                       | ·                   | ·                       | ·               | ·           |                              |                           |                      |                          |                          |                      |                  |                          |                           |                       | ·               |                      |                      |          | •            | •                | •                | •                |                  |              |                          |                          |                          | •                    |                  | 8                    |                          |                          |                 |
| Thailand       |             |                                         |                     |                         |                 |             |                              |                           |                      |                          | •                        |                      | .                | .                        | .                         |                       | . -             |                      | _                    |          |              |                  |                  |                  |                  |              |                          |                          | •                        | -                    | -                |                      | .                        | .                        |                 |
| Philippines    |             |                                         |                     |                         |                 |             |                              |                           |                      |                          |                          |                      |                  |                          |                           |                       |                 |                      | Γ.                   |          |              |                  |                  |                  |                  |              | •                        |                          | •                        |                      |                  |                      |                          |                          |                 |
| Taiwan         | Ì           |                                         |                     |                         |                 |             | -                            |                           |                      |                          | •                        |                      | 2                |                          | .                         |                       |                 |                      |                      | 7        |              |                  |                  |                  |                  |              | •                        | •                        |                          |                      |                  |                      |                          |                          |                 |
| China          |             |                                         |                     | ·                       |                 | •           | 2                            | I                         | 1                    | -                        | 1                        | -                    |                  | -                        | -                         |                       |                 | . <b>–</b>           |                      |          | 3            | -                | s                | -                | -                | 1            |                          |                          |                          |                      |                  |                      |                          |                          |                 |
| HVS-I Variants | 101 301 237 | 122 122 122 122 120 120 120 120 120 120 | 073 108 1/2 243 247 | 043 106 242 249 2/0 299 | 168 172 223 249 | 168 223 249 | 092 145 172 223 245 257A 261 | 111 129 192A 223 257A 261 | 111 129 223 257A 261 | 111 129 223 257A 261 325 | 129 162 223 250 257A 261 | 129 189 223 257A 261 | 129 223 257A 261 | 145 172 223 245 257A 261 | 166c 173 223 250 257A 324 | 177 180 273 757 A 261 | 177 272 261 200 | 172 223 257A 261 311 | 189 223 257A 261 311 | 223 257A | 223 257A 261 | 223 257A 261 295 | 223 257A 261 311 | 223 257A 261 357 | 223 257A 261 362 | 223 257A 311 | 136 223 257A 261 292 294 | 179 223 257A 261 292 294 | 187 223 257A 261 292 294 | 189 223 257A 261 292 | 223 257A 261 292 | 223 257A 261 292 294 | 223 257A 261 292 294 304 | 223 257A 261 292 294 357 | 003 177 766 770 |
| Haplogroup     | 19          |                                         |                     | Τ                       |                 |             |                              | N9a                       | <b>1</b> 6N          | B6N                      | ž                        | R<br>N               | 86N              | 52                       | e o Z                     | No                    |                 | N9a                  | 65X                  | R9A      |              |                  |                  | Γ                |                  | R9A          | N9a1                     | 186N                     | Noal                     | N9a1                 | Ingu             | Τ                    |                          |                          |                 |

| Ambon          |                     | _                   |             |         |                                         |                                                     | _                                           |                                                 |                                             | -                                           |                                         |                                         | 2                                           |                                         |                                               |                                             |                                             | _                                   |                              | ]                            |
|----------------|---------------------|---------------------|-------------|---------|-----------------------------------------|-----------------------------------------------------|---------------------------------------------|-------------------------------------------------|---------------------------------------------|---------------------------------------------|-----------------------------------------|-----------------------------------------|---------------------------------------------|-----------------------------------------|-----------------------------------------------|---------------------------------------------|---------------------------------------------|-------------------------------------|------------------------------|------------------------------|
| Alor           |                     |                     |             |         | _                                       |                                                     |                                             |                                                 | 1                                           |                                             | 3                                       |                                         |                                             |                                         | _                                             |                                             |                                             |                                     | -                            | 5                            |
| Sumba          | _                   |                     |             |         |                                         |                                                     |                                             |                                                 |                                             |                                             |                                         |                                         |                                             | _                                       |                                               |                                             |                                             | -                                   |                              | _                            |
| Lombok         |                     |                     |             |         |                                         |                                                     |                                             |                                                 | •                                           |                                             |                                         |                                         |                                             |                                         |                                               |                                             |                                             |                                     |                              | _                            |
| Bali           |                     |                     |             |         |                                         |                                                     |                                             |                                                 |                                             |                                             |                                         |                                         |                                             |                                         |                                               |                                             | •                                           |                                     |                              |                              |
| Toraja         |                     |                     |             |         |                                         |                                                     |                                             |                                                 |                                             |                                             |                                         |                                         | •                                           |                                         |                                               |                                             | 1                                           |                                     |                              | -                            |
| Ujung Padang   |                     |                     |             |         |                                         | I                                                   |                                             |                                                 |                                             |                                             |                                         | 1                                       | •                                           |                                         | •                                             |                                             | •                                           | 1                                   |                              |                              |
| Palu           |                     | •                   |             |         | •                                       |                                                     |                                             |                                                 |                                             |                                             | •                                       | •                                       |                                             | •                                       |                                               | •                                           | •                                           | •                                   |                              |                              |
| Manado         |                     | 2                   |             | -       |                                         |                                                     |                                             |                                                 | 1                                           |                                             |                                         |                                         | •                                           | •                                       |                                               |                                             | •                                           | •                                   |                              |                              |
| Kota Kinabalu  |                     |                     |             |         |                                         |                                                     |                                             |                                                 |                                             |                                             |                                         |                                         |                                             |                                         |                                               |                                             |                                             | •                                   |                              |                              |
| Banjarmasin    |                     |                     |             |         | •                                       |                                                     |                                             |                                                 | •                                           |                                             | -                                       |                                         | •                                           | •                                       | •                                             | •                                           | •                                           | •                                   |                              |                              |
| Tengger        |                     |                     |             |         | •                                       |                                                     |                                             |                                                 | •                                           |                                             |                                         |                                         | •                                           | •                                       | •                                             | •                                           | •                                           | •                                   | •                            |                              |
| Medan          |                     |                     |             |         | •                                       |                                                     |                                             |                                                 | •                                           |                                             |                                         |                                         |                                             |                                         | •                                             | •                                           |                                             | •                                   |                              |                              |
| Bangka         |                     |                     |             |         |                                         | •                                                   |                                             |                                                 |                                             |                                             |                                         | •                                       |                                             |                                         | •                                             | •                                           | •                                           |                                     |                              |                              |
| Padang         |                     |                     |             | •       |                                         |                                                     |                                             | •                                               | •                                           | •                                           |                                         | •                                       | •                                           |                                         | •                                             | •                                           | ·                                           |                                     |                              |                              |
| Pekanbaru      |                     |                     |             |         | •                                       | •                                                   |                                             |                                                 |                                             |                                             |                                         | •                                       |                                             |                                         |                                               | •                                           |                                             |                                     |                              |                              |
| Palembang      |                     | Ŀ                   |             |         |                                         |                                                     |                                             |                                                 |                                             |                                             |                                         |                                         |                                             |                                         |                                               |                                             |                                             |                                     |                              |                              |
| Melayu         |                     | .                   | -           |         |                                         |                                                     |                                             | -                                               |                                             |                                             | · _                                     |                                         | •                                           |                                         |                                               | -                                           | •                                           |                                     |                              |                              |
| A. Malay       |                     |                     |             |         |                                         |                                                     | ŀ                                           |                                                 |                                             |                                             |                                         |                                         |                                             |                                         |                                               |                                             |                                             |                                     |                              |                              |
| Senoi          |                     |                     |             |         |                                         |                                                     |                                             |                                                 |                                             |                                             | .                                       |                                         |                                             |                                         |                                               |                                             |                                             |                                     |                              |                              |
| Semang         |                     |                     |             |         |                                         |                                                     |                                             |                                                 |                                             | •                                           | <u>.</u>                                |                                         |                                             |                                         |                                               |                                             |                                             |                                     |                              |                              |
| Thailand       |                     | .                   |             | .       |                                         |                                                     |                                             |                                                 |                                             |                                             |                                         |                                         | .                                           |                                         |                                               |                                             |                                             |                                     | .                            | •                            |
| Philippines    |                     |                     |             |         | •                                       |                                                     |                                             |                                                 |                                             |                                             |                                         |                                         |                                             |                                         |                                               |                                             |                                             |                                     |                              |                              |
| Taiwan         |                     |                     |             |         |                                         |                                                     |                                             |                                                 |                                             |                                             |                                         |                                         |                                             |                                         |                                               | •                                           |                                             |                                     |                              |                              |
| China          |                     |                     |             |         |                                         |                                                     |                                             |                                                 |                                             |                                             |                                         |                                         |                                             |                                         |                                               | •                                           |                                             |                                     |                              |                              |
| HVS-I Variants | 093 176 266 270 357 | 176 221 266 325 357 | 176 266 357 | 249 319 | 092 129 144 148 169 223 265C<br>311 343 | 129 144 148 153 162 192 223<br>241 249 265C 311 343 | 129 144 148 154 209 222 241<br>265c 311 343 | 129 144 148 162 192 223 241<br>249 265C 311 343 | 129 144 148 172 223 241 242<br>265C 311 343 | 129 144 148 172 223 241 256<br>265C 311 343 | 129 144 148 172 223 241 265C<br>311 343 | 129 144 148 172 223 242 265C<br>311 343 | 129 144 148 193 223 241 265C<br>311 343 362 | 129 144 148 209 223 241 265C<br>311 343 | 129 144 148 222/3insA 223<br>241 265C 311 343 | 129 144 148 223 241 255 265C<br>300 311 343 | 129 144 148 223 241 265C 299<br>311 343 362 | 129 144 148 223 241 265C 311<br>343 | 129 144 148 223 265C 311 343 | 129 144 148 241 265C 311 343 |
| Haplogroup     |                     |                     | م           |         | <b> </b>                                | Q                                                   | Q                                           | ö                                               | ð                                           | ø                                           | Ø                                       | Q                                       | Ø                                           | Ø                                       | ð                                             | ð                                           | ð                                           | Ø                                   |                              | 0                            |

| Ambon          |                            | ·                       |                 |                 |             | ·               |                     |            |             | ·           |         |             |                     |                 |                     |                 |             | ·                |                     |                 |                     | ·                        |         |                 |                 |             | -           |              |              |         |                         | •                           |            |
|----------------|----------------------------|-------------------------|-----------------|-----------------|-------------|-----------------|---------------------|------------|-------------|-------------|---------|-------------|---------------------|-----------------|---------------------|-----------------|-------------|------------------|---------------------|-----------------|---------------------|--------------------------|---------|-----------------|-----------------|-------------|-------------|--------------|--------------|---------|-------------------------|-----------------------------|------------|
| Alor           |                            |                         | -               |                 |             |                 |                     | ·          |             |             |         |             |                     |                 |                     |                 | ·           |                  |                     |                 | ·                   |                          |         |                 |                 |             |             | •            | . ,<br>      | _       |                         |                             | <u> </u>   |
| Sumba          |                            |                         |                 |                 |             |                 |                     |            |             | -           |         |             |                     |                 |                     |                 |             |                  |                     |                 |                     |                          |         |                 | ~               | -           |             | -            |              |         |                         |                             | <u> </u> . |
| Lombok         |                            |                         |                 | ·               |             |                 |                     |            |             |             |         |             |                     |                 | ·                   |                 | ·           |                  |                     |                 | ·                   |                          |         |                 | _               | 7           |             |              | -            | -       |                         | •                           | ļ.         |
| Bali           | -                          |                         |                 |                 | -           |                 |                     |            |             | 2           |         | ļ.          |                     |                 | ·                   |                 |             |                  |                     |                 |                     |                          |         |                 |                 | 4           | -           |              |              |         | _                       | •                           | .<br>      |
| Toraja         | ·                          |                         |                 |                 |             |                 | ·                   |            |             |             |         |             |                     |                 |                     |                 |             |                  |                     |                 |                     |                          |         | ·               |                 |             |             |              |              |         |                         | •                           |            |
| Ujung Padang   |                            |                         |                 |                 |             |                 |                     |            |             |             |         |             |                     |                 | ·                   |                 |             | ·                | 1                   | -               |                     |                          |         |                 |                 |             | ·           |              |              |         |                         |                             | <u> </u> . |
| Palu           |                            |                         |                 |                 |             |                 |                     |            |             | •           |         |             |                     |                 | ·                   |                 |             |                  |                     |                 |                     |                          |         |                 |                 |             |             |              |              |         |                         | •                           | ŀ          |
| Manado         |                            |                         |                 |                 |             |                 |                     |            |             |             | .       |             |                     |                 |                     |                 |             |                  |                     |                 |                     |                          |         |                 |                 |             |             |              |              |         |                         | •                           | <u> </u>   |
| Kota Kinabalu  |                            | -                       | •               |                 |             |                 | -                   | •          |             |             |         |             |                     |                 |                     | ·               |             |                  | ·                   |                 |                     |                          |         |                 |                 | 1           |             | •            |              | •       |                         | •                           | <u> </u>   |
| Banjarmasin    |                            |                         |                 |                 |             |                 |                     | •          |             |             |         |             | ·                   |                 |                     |                 |             |                  |                     | •               |                     |                          |         | 2               |                 |             |             |              |              |         |                         | •                           | Ŀ          |
| Tengger        |                            |                         |                 |                 |             |                 |                     |            |             |             |         | ŀ           | ·                   |                 |                     |                 |             |                  |                     |                 |                     |                          |         |                 |                 | 1           |             |              |              |         |                         | •                           | <u> </u>   |
| Medan          |                            |                         |                 |                 |             |                 |                     |            |             |             |         | •           |                     |                 |                     |                 |             |                  |                     |                 |                     |                          | -       |                 |                 | •           |             |              |              |         |                         | •                           | <u> </u>   |
| Bangka         |                            |                         |                 |                 |             | •               | •                   |            |             |             |         |             |                     |                 |                     |                 |             |                  | •                   |                 |                     |                          |         |                 |                 |             | •           |              | Ŀ            | •       |                         |                             | <u> </u>   |
| Padang         |                            |                         |                 |                 |             |                 |                     |            |             |             |         | ·           | ·                   | ·               |                     | ·               |             |                  |                     |                 |                     | Ŀ                        |         |                 | ·               | •           |             |              |              |         | ŀ                       |                             | <u> </u>   |
| Pekanbaru      |                            |                         |                 |                 |             |                 |                     |            |             |             |         | ·           | ·                   | ·               |                     |                 |             |                  |                     | ·               |                     | ·                        |         | •               |                 |             |             |              |              |         | .                       | •                           |            |
| Palembang      |                            |                         |                 |                 |             |                 | Ŀ                   |            |             |             |         |             | •                   | ·               |                     |                 |             |                  |                     |                 |                     |                          |         |                 |                 |             |             |              |              |         |                         |                             | _          |
| Melayu         |                            |                         |                 | _               |             | _               |                     |            |             |             |         | ·           |                     | -               |                     | -               |             | -                |                     |                 |                     |                          |         |                 |                 |             |             |              |              |         |                         |                             | Ļ          |
| A. Malay       |                            |                         |                 |                 |             |                 |                     |            |             |             |         |             |                     | ·               |                     |                 |             | •                |                     |                 |                     |                          |         | •               |                 |             |             |              |              |         |                         |                             |            |
| Senoi          |                            |                         |                 |                 |             |                 |                     | <u> </u>   |             |             |         | ·           | ·                   | ·               | 4                   | 15              |             |                  |                     |                 |                     |                          | ·       | •               |                 |             |             |              |              |         |                         |                             | _          |
| Semang         |                            |                         |                 |                 |             |                 |                     |            |             |             | ·       | ·           | ·                   |                 |                     | 34              | -           |                  |                     |                 |                     |                          |         |                 |                 | <u> </u>    |             |              |              |         |                         | .<br>                       |            |
| Thailand       |                            |                         |                 |                 |             |                 |                     |            |             | ·           |         |             | -                   |                 |                     |                 |             | •                |                     |                 | -                   | -                        |         |                 |                 |             |             |              |              |         |                         |                             |            |
| Philippines    | Γ                          | ·                       |                 |                 |             |                 |                     |            | ·           |             |         | -           |                     |                 |                     |                 |             |                  |                     |                 |                     |                          |         |                 |                 |             |             |              |              |         |                         | .<br>                       |            |
| Taiwan         |                            |                         |                 |                 |             |                 |                     |            | ·           | ·           | ·       |             | ·                   |                 |                     |                 | •           |                  |                     |                 |                     |                          |         |                 | <u> </u> .      |             |             |              |              |         |                         |                             |            |
| China          |                            |                         |                 |                 |             |                 |                     |            | -           |             |         |             | ·                   |                 |                     | •               |             |                  |                     |                 | ŀ                   |                          |         |                 |                 |             |             |              |              |         |                         |                             |            |
| HVS-I Variants | 120 146 773 741 765 11 261 | 171 171 171 171 171 171 | 112 172 771 211 | 112 122 221 211 | 002 101 001 | 177 197 207 325 | 187 241 260 319 342 | 10 240 211 | 107 427 211 | COC 11C 201 | 067 067 | 243 311 333 | 093 129 256 304 357 | 166 266 304 311 | 168 209 295 296 304 | 168 295 296 304 | 168 295 304 | 705 706 3/14 354 | 093 168 187 288 304 | 190 740 796 788 | 740 750 788 201 204 | 240 270A 288 304 311 319 | 249 288 | 249 288 295 304 | 240 288 301 304 | 740 789 204 | 247 200 200 | 740 200 2170 | 247 200 31/C | 700 20M | CYE PUT JEO DUC 001 101 | 129 209 223 233 259 274 290 | 304        |
| Haplogroup     | 4                          | 7                       |                 | 2               | <           | T               | T                   | 4          | < 0         | t           | ╋       | ×           | RF?                 | RI              | R21                 | R21             | Γ           | 100              | ¥                   | 23              |                     | 35                       | T       | T               | T               | T           | Τ           |              | 22           |         |                         | 22                          | 5          |

| S-I Variants 82 00 00 00 00 00 00 00 00 00 00 00 00 00 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | na           | wan              | lippi   | nan<br> | oi    | Mala  | ayu   | em   | anb |            |               |             | _         |            |              | 1        |           |     | li | m    | n   |   |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|---------|---------|-------|-------|-------|------|-----|------------|---------------|-------------|-----------|------------|--------------|----------|-----------|-----|----|------|-----|---|
|                                                        | 6. 304 309 325 356<br>13 233 274 304<br>13 13 234 261 290 304<br>13 11<br>13 13 109<br>13 208 304 309<br>18 184 304 309<br>18 304 309<br>12 228 304 300<br>12 200 200<br>10 200 200<br>10 200 200 200<br>10 200 200<br>10 200 200<br>10 200 200<br>10 200 200<br>10 200  |              | $\left  \right $ |         | -       |       | ıy    |       | bang |     | ng         | an<br><br>gka | gger<br>Ian | ijarmasin | a Kinabalu | <b>nad</b> o | l        | ng Padang | nja | i  | nbok | ıba | r |
|                                                        | 13 223 274 304<br>13 224 261 290 304<br>14 311<br>12 228 304 309<br>14 309<br>18 184 304 309<br>18 304 309<br>18 288 304 309<br>12 228 304 309<br>12 228 304 309<br>12 228 304 309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                  | +       | .<br>   | .<br> | .     | -     |      | +   |            |               | .           | .         | <u>.</u>   |              | ŀ        | Ŀ         |     |    | ·    |     | • |
|                                                        | 13 234 261 290 304<br># 311<br>12 288 304 309<br># 309<br>18 184 304 309<br>18 304 309<br>13 288 304 309<br>23 288 304 309<br>29 228 304 309<br>20 288 204 300<br>20 288 304 300<br>20 288 304 300<br>20 288 300<br>20 288 304 300<br>20 288 300<br>20 200<br>20 2 |              | -                | •       | .<br> - | .     |       |       |      |     |            | -             | Ŀ           |           |            |              |          |           |     |    |      |     | • |
|                                                        | M 311<br>12 288 304 309<br>M 308 304 309<br>H 304 309<br>B 304 309<br>23 288 304 309<br>23 288 304 309<br>29 208 304 309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | ŀ                | ŀ       | .       | .<br> |       |       |      |     | -          |               | ·           |           |            |              |          |           |     |    |      |     | • |
|                                                        | 12 288 304 309<br>14 309<br>18 184 304 309<br>18 304 309<br>23 288 304 309<br>29 228 304 309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | ·                | ┝       | .<br>   | .<br> |       |       |      | 2   | •          |               |             |           |            |              |          |           |     |    | ·    |     | · |
| ╄╌ <del>┥╶┥╺┥╺┥╸┥╸┥╸</del>                             | M 300<br>18 184 304 309<br>18 304 309<br>23 288 304 309<br>23 288 304 309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | ŀ                | ·       | .<br>   | .<br> |       |       |      | -   |            | •             |             |           |            |              |          |           |     |    | ·    |     |   |
| ╏╏┦┦┫╏                                                 | 18 184 304 309<br>18 304 309<br>18 304 309<br>13 288 304 309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ┠╌┠╴<br> _ _ | ·                | <br>    | .<br>   |       |       |       |      |     | •          | •             | •           |           |            |              |          |           |     |    |      |     |   |
| ┼┼┽┽┼┼┼                                                | 18 304 309<br>18 304 309<br>23 288 304 309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | ŀ                | ·       | .<br> - | .<br> |       |       |      |     |            | <u> </u>      |             |           |            |              |          |           |     |    |      |     | • |
| ┼┼┼┼┼                                                  | 18 304 309<br>23 288 304 309<br>27 288 304 309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ł            | -                | +       | .       | .     |       |       |      |     | ╞          | •             |             |           | •          |              |          |           |     |    |      |     | • |
| ┼┼┼┼┼                                                  | 13 288 304 309<br>20 2ee 304 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -            |                  | ·<br>   | .       | .     | -     |       |      |     |            | ŀ             | ·           | .<br>     |            |              |          |           |     |    |      |     |   |
| ++++                                                   | N 769 304 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | +                | ŀ       | ·       | .     | 51    | _     |      |     |            | •             |             |           |            |              |          |           |     |    |      |     |   |
| ┼┼┼                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | -                | -       | .       |       | .     | .<br> |      |     |            | ·             | .<br>       | •         | •          |              |          |           |     |    |      |     |   |
|                                                        | 107 274 288 293 304 309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | +                | .       | .       | .     | .     | .     |      |     |            | ·             | 7           | •         | •          |              |          |           |     |    |      |     |   |
| ┢                                                      | 192 234 288 304 309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | +                | +-      | .       | .<br> | .     |       |      | +   |            | ·             |             | -         |            | 2            |          |           |     |    |      |     |   |
|                                                        | 192 239 304 309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | +-               | ·       | .       | .     | .     |       |      |     |            | ·             | .           | .<br>     |            |              |          |           |     |    |      |     |   |
| ╉                                                      | 192 288 304 309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .            | -<br> -          | ·       | ·       | .     | -     | ļ.    |      | -   | ·          |               | •           |           |            |              |          |           |     |    | -    |     |   |
| Γ                                                      | M 309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | ·                | 7       | ·       | .     |       |       |      |     |            |               | •           |           |            |              |          |           |     |    |      |     |   |
| T                                                      | 223 288 304 309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -<br>        | ·                | ·       | .<br> - | .<br> | -     |       |      |     |            | ·             | •           | •         |            |              | •        |           |     |    |      |     |   |
|                                                        | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17           | ·                | ·       | .<br>   | .<br> |       |       |      |     |            | Ŀ             | ŀ           | Ŀ         |            |              |          |           |     |    |      |     |   |
| t                                                      | 13 186 189 294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | ·                | ·       | .       | .<br> |       |       |      |     | •          |               | •           |           |            |              |          |           |     |    |      |     |   |
| ╞                                                      | 207 309 318T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                  | -<br> - | ŀ       | .<br> | ŀ     |       | ŀ    | -   |            |               | •           | .<br>     |            |              | •        |           |     |    |      |     |   |
| ┢                                                      | 126 193 231 266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1            |                  | •       |         |       |       |       | ·    |     | ·          | ·             | .<br>       |           |            |              |          |           |     |    | ·    |     |   |
| ┢                                                      | 11 266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -            |                  |         |         |       |       |       |      |     | ·          | ·             |             |           | •          |              | ·        | ·         |     |    |      |     |   |
| ╞                                                      | 126 231 266 293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1            |                  | •       | •       |       |       |       | ·    |     | -<br> <br> |               |             | ·         |            |              |          |           |     |    | ·    |     |   |
| ┢                                                      | 126 231 266 325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1            | -                | •       | •       |       |       |       | ·    |     | ·          | .<br>         | •           |           |            |              | <b>+</b> |           |     |    |      |     |   |
| ┢                                                      | 093 126 231 311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | ·                | •       |         | •     |       |       |      |     |            | -             |             |           |            |              |          |           |     |    |      |     | • |
| ┢                                                      | 126 192 231 311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .            |                  |         | -       |       |       |       |      |     | ·          | •             | •           | ·         |            |              |          |           |     | -  |      |     | • |
| ╉                                                      | 126 213insA 231 311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -<br> -      |                  | ·       | .<br>   |       |       |       |      |     |            | •             | •           |           |            |              |          |           |     |    |      |     | • |
| ╀                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                  | ·       | ·       | .     | .<br> | .<br> |      | .   |            |               | ŀ           | .<br> -   |            |              |          |           |     |    |      |     |   |
| ┢                                                      | 126 231 284 311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <br>  .      |                  | ·       | .       | .     | .     |       |      |     |            | ·             |             |           |            |              | •        |           |     |    |      |     |   |
| $\uparrow$                                             | 11311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | 2 5              | ·       |         |       |       | 2     |      | 3   | . 2        | : 5           |             | -         | 7          | -            |          |           | 7   |    |      |     |   |
| $\left  \right $                                       | 126 231 311 362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .            | F                | ·       | .<br> - | .<br> | •     |       |      |     |            | •             | •           |           |            |              | •        |           |     |    |      |     |   |
| +                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                  | ·       |         |       |       |       |      |     | •          | -             | •           |           | ·          |              |          |           |     |    |      |     |   |
| $\vdash$                                               | 15 189 223 260 298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                  | Ŀ       |         |       |       |       | ·    |     | ·          | -<br>         | •           | -         |            |              |          |           |     |    | ļ    |     |   |
| ┢                                                      | 136 185 223 260 298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -            |                  |         |         | -     |       | ·     |      |     |            | ┥             | ┥           | ÷         |            |              | ·        |           |     |    |      | -   |   |

| <u> </u>       |                                    | Т               | ٦                   |
|----------------|------------------------------------|-----------------|---------------------|
| Ambon          |                                    |                 |                     |
| Alor           |                                    |                 | ·                   |
| Sumba          |                                    |                 | ·                   |
| Lombok         |                                    |                 | ·                   |
| Bali           |                                    |                 |                     |
| Toraja         |                                    |                 |                     |
| Ujung Padang   |                                    |                 |                     |
| Palu           |                                    | ·               |                     |
| Manado         |                                    |                 |                     |
| Kota Kinabalu  |                                    |                 |                     |
| Banjarmasin    |                                    |                 |                     |
| Tengger        | •                                  |                 | ·                   |
| Medan          | •                                  |                 | ·                   |
| Bangka         |                                    |                 |                     |
| Padang         | •                                  |                 |                     |
| Pekanbaru      |                                    |                 |                     |
| Palembang      |                                    | -               |                     |
| Melayu         |                                    |                 |                     |
| A. Malay       |                                    |                 |                     |
| Senoi          |                                    |                 |                     |
| Semang         |                                    |                 |                     |
| Thailand       |                                    | -               |                     |
| Philippines    |                                    |                 |                     |
| Taiwan         |                                    |                 | •                   |
| China          | -                                  | 6               | -                   |
| HVS-I Variants | 185 189 223 224 260 261 298<br>200 | 185 223 260 298 | 185 223 260 298 302 |
| Haplogroup     | Z                                  | Z               | Z                   |

## Appendix IV – Haplogroup Frequencies

## Appendix IV – Haplogroup Frequencies

| Palu                         | 0  | -  | 0   | -   | -  | 0 | 0 | 0   | •  | 0  | 0 | -   | 0  | 0 | 0  | -   | 0   | 0    | 0<br>0 | 0 | - | 7 3 |
|------------------------------|----|----|-----|-----|----|---|---|-----|----|----|---|-----|----|---|----|-----|-----|------|--------|---|---|-----|
| Manado                       | 0  | 0  | 0   | -   | -  | 0 | ŝ | 0   | -  | m  | 1 |     | 2  | 0 | Э  | Э   | 0   | 2    | 0      | 0 |   | ٢   |
| Waingapu                     | 0  | 0  | 4   | 0   | 0  | 1 | 2 | 0   | 0  | 1  | 0 | 0   | 0  | 0 | •  | 0   | 0   | 0    | 0      | 4 | - | ~   |
| Mataram                      | 0  | 0  | 0   | 0   | 0  | 0 | 0 | 0   | 0  | 7  | - | 0   | 0  | 0 | e  | -   | 0   | 1    | 0      | S | - | 9   |
| Bali                         | 0  | I  | 0   | 0   | 1  | 3 | 0 | 0   | 4  | -  | • | 0   | 3  | 0 | 4  | 0   | -   | 0    | 0      | 5 | - | S   |
| Kota Kinabalu                | 2  | 0  | 0   | 0   | 2  | - | 0 | 0   | 0  | 4  | 0 | 1   | -  | 0 | 7  | 0   | 0   | 0    | 0      | 1 | 5 | 4   |
| Banjarmasin                  | 4  | 0  | 0   |     | 1  | 0 | 0 | 0   | 10 | 7  | 2 | 2   | 7  | 0 | S  | 2   | 0   | -    | 0      | 2 | - | 4   |
| Tengger                      | 0  | 0  | 0   | 1   | 0  | 0 | • | -   | 0  | 0  | 0 | 0   | -  | 0 | -  | 0   | 0   | 7    | 0      | 1 | 0 | 6   |
| Padang                       | -  | 0  | 0   | e   | 0  | 0 | 0 | 4   | 0  | 2  | 0 | •   | -  | 0 | 0  | 0   | 0   | -    | 0      | 0 | 0 | 9   |
| Bangka                       | •  | 0  | 0   | m   | 7  | 0 | 0 | -   | -  | 0  | 0 | 0   | -  | 0 | 0  | 0   | -   | 0    | 0      | 0 | 0 | -   |
| Palembang                    | 0  | -  | •   | 0   | 0  | 0 | 0 | 0   | 2  | -  | 0 | 0   | 0  | 0 | 3  | 0   | 0   | 0    | 0      | 0 | 0 | 2   |
| Pekanbaru                    | 0  | •  | 0   | 0   | m  | 0 | 0 | 7   | 0  | ∞  | 0 | -   | 9  | • | 7  | 0   | 12  | 7    | •      | 0 | 0 | 5   |
| Medan                        | 0  | 0  | 0   | •   | 2  | • | • | •   | -  | •  | 0 | 0   | 0  | 0 | 7  |     |     | 0    | 0      | - | 0 | -   |
| Philippines                  | 0  | 0  | 0   | 0   | -  | - | 0 | 0   | 0  | 0  | 0 | 0   | 0  | 0 | 0  |     |     | 0    | 0      | 0 | 2 | S   |
| Taiwan                       | 0  | 0  | 0   | 7   | 7  | 0 | 0 | 0   | m  | 38 | 0 | 6   | 13 | - | 15 | 0   | 0   | 0    | 0      | 0 | 4 | 6   |
| Malay Peninsula <sup>5</sup> | -  | 26 | 4   | 19  | 2  | 2 | - | 3   | 3  | 3  | 0 | -   | m  | 0 | 12 | 16  | -   | 25   | 56     | 0 | 0 | 9   |
| Thailand                     | 0  | 0  | 0   | 4   | 0  | 0 | 0 | -   | 13 | 13 | 0 | 0   | 0  | 0 | 26 | 0   | 0   | m    | 0      | 7 | - | 13  |
| SE China <sup>4</sup>        | 7  | 0  | 0   | -   | 0  | - | 0 | -   | S  | 21 | c | 12  | 0  | 0 | 2  | m   | 5   | S    | 0      | 0 | e | 8   |
| SW China <sup>3</sup>        | F  | 0  | 0   | m   | 0  | 0 |   |     | 9  | 6  | e | •   | ·  | 0 | 6  | -   | 0   | 2    | 0      | 0 | 7 | 31  |
| NE China <sup>2</sup>        | 1- | 0  | 0   | 1   | m  | 2 |   | 2   | ∞  | ∞  | - | • • | -  | 0 | ∞  | 2   | -   | e    | 0      | 0 | 4 | 9   |
| NW China <sup>1</sup>        | e  | 0  | 0   | -   |    | 0 |   | , – | 2  | 0  | c | , m |    | 0 | 7  | 4   | . 0 | -  - | .0     | c | 0 | 7   |
|                              |    |    | +   |     |    |   | + | +   |    |    |   |     |    | 1 | +  |     |     |      | +-     |   |   |     |
| Haplogroup                   | ž  | 27 | N22 | N N | 72 | à | - | à   | ž  | 2  |   |     |    | ľ | ž  | A A |     |      | 2      |   | ž | E   |

| Alor                         | 0     | -     | 0        | 0   | 0  | -  | 0  | -  | 0        | 0    | 0   | 0    | 0   | 0   | 0        | 7     | 0   | 0   | 0   | 0   | 0  | 1         | 0  |
|------------------------------|-------|-------|----------|-----|----|----|----|----|----------|------|-----|------|-----|-----|----------|-------|-----|-----|-----|-----|----|-----------|----|
| Ambon                        | 0     | -     | 0        | 0   | 0  | 0  | 0  | m  | -        | -    | -   | 0    | 0   | 0   | 0        | -     | 0   | 0   | 0   | 0   | 2  | 0         | -  |
| Ujung Padang                 | 0     | 0     | 0        | 0   | 0  | 0  | 0  | -  | 0        | 0    | 0   | 0    | 0   | 0   | 0        |       | 0   | 0   | 0   | 0   | 1  | 0         | 2  |
| Toraja                       | 0     | -     | 0        | 0   | 0  | 0  | 0  | 7  | 0        | 0    | 0   | 0    | 3   | 0   | 0        | 2     | 0   | 0   | 0   | 0   | 0  | 0         | 2  |
|                              | _     | -     | 0        | 0   | 0  | 0  | 0  | 4  | 3        | 0    | -   | 0    | 0   | 0   | 0        | 7     | 0   | 0   | 0   | 0   | 2  | 0         | 0  |
| Palu                         | 0     | _     | _        | 0   | 0  | 0  | 0  | 0  | 0        | 0    | 0   | 0    | 0   | 0   | -        | 11    | 0   | 0   | 1   | 0   | 3  | 0         |    |
| Manado                       | -     | 7     | 0        | 0   | 0  | 1  | 0  | 4  | 1        | 0    | 0   | 0    | 4   | 0   | 0        | 9     | 0   | 0   | 0   | 0   | 0  | 0         | 0  |
| Waingapu                     |       |       | _        |     |    |    | 0  | 9  | 0        | 0    | 3   | 0    | 0   | 0   | 0        |       | 0   | 0   | 0   | 0   | 0  | 0         |    |
| Mataram                      | 0     | 4     | 0        | 0   | 0  | 0  | 0  | 6  | 0        | 0    |     |      |     |     |          | 1     | _   | 0   |     |     |    |           |    |
| Bali                         | 4     | 2     | 0        | 0   | 0  | 0  | 0  | 6  | 1        | I    | 3   | 0    | 0   | 0   | 0        | 2     | 0   | 1   | 0   | 0   | 0  | 0         |    |
| Kota Kinabalu                | -     | 0     | 0        | 0   | 0  | 7  | 0  | 5  | l        | -    | 1   | 0    | 0   | 0   | 0        | 10    | 0   | 0   | 0   | 0   | 0  | 0         | 2  |
| Banjarmasin                  | -     | 1     | 0        | 0   | 0  | 7  | 0  | 6  | 0        | 1    | 0   | 0    | 0   | 0   | 0        | -     | 0   | -   | 3   | 0   | 1  | 0         | 0  |
| Tengger                      | 0     | 0     | 0        | 0   | 0  | 0  | 0  | 9  | 0        | 0    | 0   | 0    | 0   | 0   | 0        | 3     | 7   | 0   | 0   | 0   | 0  | 0         | 0  |
| Padang                       | •     | 0     | 0        | 0   | 0  | 0  | 0  | -  | -        | 0    | 0   | 0    | 0   | 0   | 0        | 0     | 0   | 0   | 0   | 0   | 0  | 0         | 0  |
| Bangka                       | 0     | -     | 0        | 0   | 0  | 0  | 0  | S  | 0        | 0    | 0   | 0    | 0   | 0   | 0        | -     | Ś   | 0   | 0   | 0   | 0  | 0         | 0  |
| Palembang                    | •     | S     | 0        | 0   | 0  | 0  | 0  | -  | 0        | 0    | 0   | 0    | 0   | 0   | 0        | 9     | 0   | 0   | 0   | 0   | 0  | 0         | 0  |
| Pekanbaru                    | 0     | 7     | 0        | 0   | 0  | 0  | -  | m  | -        | 0    | 0   | 0    | 0   | 0   | 0        | S     | 0   | 0   | 0   | 0   | 0  | 0         | 0  |
| Medan                        | 0     | -     | 0        | 0   | 0  | 0  | 7  | 4  | m        | -    | m   | 0    | 0   | 0   | 0        | 4     | 0   | 0   | -   | 0   | 0  | 0         | 0  |
| Philippines                  | 0     | 0     | 0        | 0   | 0  | 9  | 0  | 4  | 0        | 0    | 0   | 0    | -   | 0   | -        | 6     | -   | 0   | 0   | 0   | -  | 0         | 0  |
| Taiwan                       | 9     | 0     | 0        | 0   | 0  | 17 | 27 | -  | 0        | 0    | -   | •    | 26  | 0   | 0        | 0     | 0   | 0   | 0   | 0   | -  | 6         | 8  |
| Malay Peninsula <sup>5</sup> | 4     | 37    | 0        | •   | •  | -  | •  | 61 | 0        | •    | 4   | 0    | 0   | 0   | -        | 13    | 0   | e   | 7   | S   | 0  | 0         | -  |
| Thailand                     | m     | 2     | 7        | 0   | 6  | 4  | 2  | Ξ  | 7        | S    | -   | 0    | 0   | 0   | 7        | -     | 0   | 6   | 8   | 7   | =  | 7         | s  |
| SE China <sup>4</sup>        | =     | =     | 9        | 3   | ∞  | ß  | -  | 17 | 7        | 17   | 14  | 0    | 0   | 0   | 9        | -     | m   | 9   | 0   | 0   | 6  | 2         | 14 |
| SW China <sup>3</sup>        | 4     | 0     | ≘        | 4   | 33 | 7  | 0  | 9  | -        | 2    | 2   | 0    | 0   | -   | 0        | 0     | 7   | -   | 0   | 0   | 2  | <u> </u>  | 6  |
| NE China <sup>2</sup>        | s     | -     | ∞        | 6   | s  | -  | 0  | m  | -        | 4    | s   | m    | 0   | 0   | 7        | 0     | 4   | 0   | 0   | 0   | 29 | 24        | 33 |
| NW China <sup>1</sup>        | 7     | •     | 7        | -   | 7  | 7  | 0  | -  | -        | -    | 4   | 1    | •   | 0   | -        | 0     | -   | -   | 0   | 0   | 4  | <u>۳</u>  | -  |
|                              | •_    |       | $\vdash$ |     |    | -  |    |    | <b> </b> |      | -   | 2    | 9   | •   | <b>:</b> | 10    |     |     |     | +-  |    | $\square$ | ╞  |
| Haplogroup                   | Flal* | Flais | Eb       | Fle | 2  | 2  | Z  | ž  | M7*      | M7b* | M7b | M7b2 | M7b | M7c | M7c1*    | M7c1c | MIO | M12 | M21 | M22 | à  | 2         | 2  |

|                              | 0        | m        | 2   | 0      | 2              | 0 | 13 | 0      | Ţ | 45    |
|------------------------------|----------|----------|-----|--------|----------------|---|----|--------|---|-------|
| Alor                         |          |          | _   | _      |                |   |    |        |   |       |
| Ambon                        | n        | 7        | 0   | -      | _              | 0 | S  | °      |   | 43    |
| Ujung Padang                 | 3        | 9        | 7   | 5      | -              | 0 | m  | -      |   | 46    |
| Toraja                       | 2        | 13       | 2   | 0      | 7              | 0 |    | 0      |   | 2     |
| Palu                         | -        | 4        | 2   | 0      | ñ              | 0 | 0  | 0      |   | 38    |
| Manado                       | S        | 19       | ŝ   | -      | -              | 0 | -  | -      |   | 89    |
| Waingapu                     | -        | -        | 9   | -      | 0              | 0 | 7  | 0      |   | 50    |
| Mataram                      | 0        | -        | ω   | 0      | 4              | 0 | 0  | -      |   | 4     |
| Bali                         | 0        | 2        | -   | 4      | 4              | 0 | 1  | 0      |   | 65    |
| Kota Kinabalu                | 2        | Ξ        | 0   | 3      | m              | 0 | -  | 2      |   | 68    |
| Banjarmasin                  | 2        | 3        | 3   | 2      | 7              | 0 | -  | 2      |   | 89    |
| Tengger                      | 0        | 0        | -   | 0      | 2              | 0 | 0  | -      |   | 36    |
| Padang                       | 0        | -        | -   | -      | 0              | 0 | 0  | -      |   | 24    |
| Bangka                       | -        | 7        | -   | 0      | 2              | 0 | 0  | 0      |   | 34    |
| Palembang                    | C        | 0        | -   | · ~    | I M            | 0 | 0  |        |   | 28    |
| Pekanbaru                    | C        | - -      | 0   | ·[-    | ŝ              | 0 | 0  | 4      |   | 52    |
| Medan                        | C        | 2        | -   | · c    | -              | 0 | 0  | 2      |   | 42    |
| Philippines                  | -        | . ~      | . 0 |        | 0              | 0 | 0  | 4      |   | 49    |
| Taiwan                       | 16       | 2 12     |     |        | 0              | 0 | 0  | 5      |   | 233   |
| Malay Peninsula <sup>5</sup> | -        |          | • • | ٠<br>۱ | 2 10           | 0 | 5  | 6      |   | 365   |
| Thailand                     | ſ        | ,<br>  - |     |        |                | • | 0  | 4      |   | 239   |
| SE China <sup>4</sup>        | <u>،</u> | •<br>•   |     |        | > ~            |   | 0  | 3      |   | 257   |
| SW China <sup>3</sup>        | -        | ╞        | ╞   |        | <b>-</b>       |   |    | 53     |   | 262   |
| NE China <sup>2</sup>        | -        | > -      |     |        | <del>,</del> - | - |    | 3      | 1 | 262   |
|                              | +-       |          | > < |        |                | ~ | c  | 2      | : | 145   |
| NW China <sup>1</sup>        | +        | _        |     | +      | +              | + | +  | +      | - | Ē     |
| Haplogroup                   | •0       |          |     |        |                | 3 |    | Others |   | Total |

<sup>1</sup> Qinghai and Xinjiang <sup>2</sup> Shanghai, Wuhan, Liaoning and Qingdao <sup>3</sup> Yunnan <sup>4</sup> Guangdong, Guangxi and Macau <sup>5</sup> Orang Asli and Melayu