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Abstract 

A Finite Element Analysis (FEA) system was designed for the analysis of creep deformation and 

damage evolution in weldment. This project essentially consists of three parts which involves 1) 

transfer programme development, 2) numerical integration subroutine development, and 3) validation 

of complete FEA system. Firstly, the development of a user-friendly pre- and post- processing transfer 

programme and its assembly with the numerical solver was reported; its primary development was 

published before. This part includes file format understanding, specific parameter adding, and transfer 

algorithm design. Secondly, a numerical integration subroutine which developed for specific creep 

constitutive equations was introduced. This part includes the numerical method selection, accuracy 

control in finite element method, and its validation. Thirdly, because this project has not finished yet, a 

demonstration how this system works was assumed in future work. For this part, a circumferentially 

notched bar with low Cr alloy material case was purposed to prove the capability of transfer 

programme and integration subroutine. 

 

1. Introduction 

 

Creep deformation and damage in weldment is a serious problem for high temperature industries. A 

weldment typically consists of four material zones such as parent metal, fine grain HAZ (FGHAZ), 

coarse grain HAZ (CGHAZ), and weld metal. The mis-match in mechanical properties among these 

zones and the influence on stress re-distribution leads to extremely complication in understanding the 

mechanisms of failure of a weldment. 

 

Computational approach (finite element analysis based) has been used in research. However, due to the 

advanced nature of the creep damage constitutive equations, the analysis capability is not available 

from the standard FE. Only two ways can provide the computational means; one is to develop a User’s 

Subroutine for existing commercial FEA software such as ABAQUS or ANSYS [1], the other is to 

develop an in-house numerical solver in junction with commercial pre- and post- processing software 

[2]. The second approach has its own advantages and merits. 

 

Liu et al [3, 4] intend to develop an in-house solver which utilised current subroutines to fit his 

algorithm. However, for the solver development itself, there is a need of accurate and efficient 

integration which requires further research; in addition to the development of numerical solver, there is 

a gap between standard pre- and post-processing software and the need for creep damage analysis. Thus, 



this project is part of the integral of the project of developing FEA software for creep deformation and 

damage analysis of weldments, and complements to the research work carried out or to be carried out 

by Liu et al [3, 4]. 

This research utilised the Femsys [5] as the pre- and post- processor, and reports the development of the 

data transfer software between Femsys and in-house numerical solver. Femsys was utilised by some 

researchers such as Hayhurst et al [6] and Becker, et al [7], and it is an important reason to choose 

Femsys in this research. The authors also reviewed the detail in previously publication [8], for example: 

 

1. DAMAGE XX [9] is an early creep damage analysis solver developed at UMIST. The authors 

have noted that there are detailed publication on its development, however, it is understood that 

this software is of plane stress, plane strain, and axi-symmetrical version, written in Fortran 77 and 

the failed elements are removed from the stiffness matrix. Fourth order Runge-Kutta integration 

method was adopted. It has been an important tool for a number of researches and supporting the 

production of significant number of publication, these publications are not listed here for brevity. 

Femsys is used for pre- and post- processing. 

 

2. DAMAGE XXX [10] is a new advanced version of DAMAGE XX, which was also developed at 

UMIST. This package not only adds a 3D finite element analysis function but also expands to 

parallel computation. Hayhurst et al. [11] report its validation via analysing creep failure in the 

HAZ zone of Cr-Mo-V cross-welds and its application. Femsys is used as pre- and post- 

processing software. 

 

3. FE-DAMAGE is another in-house code developed at University of Nottingham. It has been used in 

research, for example, Becker et al. [6] used the FE-DAMAGE program to present four different 

creep damage results (e.g. uniaxial problem, biaxial perforated plate problem, tri-axial notched bar 

problem and multi-material cross-weld problem in his paper). Femsys is also used as the pre- and 

post- processing software. 

 

Creep damage problem is complicated and dynamically developing, and there is not readily available 

analysis capability in most of the commercial analysis software. There is still a need, to certain degree, 

to develop and then use in-house software in research community. Tan et al. [8] reviewed the current 

situation of computational tools in 2012. This paper also introduced the detail of numerical integration 

subroutines development such as integration method selection, time step control. Even the concept is 

following previously researchers [9, 10, 12, 13], all the technique skills details are authors own work [8, 

14].  

 

2. Data transfer interface development 

 

Following the research on data structure of Femsy [5, 15], because Femsys is a general pre- and post- 

processor, the file format cannot fit to every in-house software. Therefore, some gaps will influence 

the file transfer progress such as 1) In creep damage analysis, a lot of special creep material parameters 

such as A, B, C, h, H*, Kc, and v will participate in calculation; however, the both of them cannot obtain 

from Femsys; 2) Which integration method will be chosen and been included in the input data 

 



In order to solve these problems which mentioned above, a series of subroutines were coded. After that, 

these subroutines were assembled, and the software running flowchart shows below. 

 
Figure 1. Flowchart of interface programme [16] 

In pre-processing transfer, node coordinate system was completely adopted. Element definition will be 

rewrite depend on which element type had been chosen. Constraint and load should be rewrite to fit 

solver’s format. The information of material’s parameter and constitutive equations type must be 

added. In post-processing transfer, the specific result head set required be added, and all the result 

format will be rewrite to fit Femsys format. 

 

A notched bar case was used to verify the tranfer programme; however, the damage value is assumed  

because creep damage FE package is unavaliable yet. The damage was assumed to appere on the 

centre of notched part. 

 

 



Figure 2 left) Mesh model of notched bar; right) assumed damage on notched bar 

3. Numerical integration subroutines development 

The Kachanov–Rabotnov–Hayhurst (KRH) constitutive equations were utilised in this research [15]. 

Its uni-axial form can be expressed as: 

ε̇ = Asinh (
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(1−φ)(1−ω)
)  (1-1) 
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σ
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H∗) ε̇        (1-2) 

φ̇ =
Kc

3
(1 − φ)4        (1-3) 

ω̇ = Cε̇∗               (1-4) 

 

The KRH constitutive equations multi-axial form can be expressed: 
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The uni-axial form can be used to investigate which integration method is better, such as Euler’s 

method and Runge-Kutta method. The multi-axial form is used in the real FE software to compute the 

strain increment and three kinds of damage parameter. Such constitutive equations adopt a set of stress 

deviator components to compute the strain deviator components; however, the existing FE subroutine 

normally output stress components as the result and utilise strain components to redistribute the stress. 

This must be noticed in software development. 

 

3.1 Integration method selection 

Two different integration methods were advised by previous researchers [10], the Euler’s method and 

Runge-Kutta Method (RKM) were compared to make sense the benefit of each integration method. The 

author designed the comparison procedure: (1) setting the result of Euler’s method as the baseline; (2) 

comparing the result of RKM within different tolerance control value; (3) comparing Euler’s method 

and RKM. 

 

Two programmes were prepared, one is for constitutive equations integration within Euler’s method via 

call self-coded subroutine, and the other is for integration within RKM via call NAG subroutine 

D02BJF [17]. A simple uni-axial creep under stress of 40 MPa is used for test, the component is 

deemed failed if the damage parameter reaches 0.33 which is the criterion used here. To solve this set 

of constitutive equations within NAG routine D02BJF [17], the terminated time should be predicted for 

prepared this numerical experiment because this routine was suggested from one specific time to 

another specific time. 

 

3.1.1 Result based on Euler’s method  



In order to make sense the most exactly lifetime, a simple Euler’s method programme had been coded. 

The programme was tested using different time increment such as 1, 0.1, 0.01, 0.001, 0.0001 hour 

respectively. 

  

The Table I show the terminated time, strain, and absolute damage value depending on the size of time 

interval. The time interval 0.0001 is the most accurate between the five different intervals. Even from 

mathematic aspect, the interval 0.0001 is the best selection; however, from the physics aspect, 0.0001 

hours equal to 0.36 second, and this is a too short time interval. Therefore, the author selects the time 

interval 0.01 hour as the master accuracy control parameter. Following that, the lifetime value can be 

observed from table 1 is 104032.27 hours. 

TABLE I result of Euler’s method 

Time interval (s) Terminated time (h) Ω (damage value) εf (fracture strain) 

1 104034.0000 0.333435236633273 0.179875512020971 

0.1 104032.4000 0.333339889351067 0.179824075821904 

0.01 104032.2700 0.333333868058920 0.179820827565906 

0.001 104032.2580 0.333333386466599 0.179820567765346 

0.0001 104032.2577 0.333333316847831 0.179820530208621 

 

3.1.2 Result based on Runge-Kutta method 

Because of the nature of NAG subroutine, the variable TOL was designed as the accuracy control 

parameter, where the TOL is a positive tolerance for controlling the error in integration. Give the 

duration from t=0 to t=104032.27 to NAG routine, and record the results of seven different TOL value 

ranging from 0.1E-01 to 0.1E-07 as shown in the following Table II. 

TABLE II result of RK method 

TOL εf  (fracture strain) Ω (damage value) 

0.1E-01 0.136548062074 0.253119148370 

0.1E-02 0.178172199475 0.330277813609 

0.1E-03 0.179803968745 0.333302624373 

0.1E-04 0.179819797001 0.333331965213 

0.1E-05 0.179820066343 0.333332464492 

0.1E-06 0.179820072754 0.333332476375 

0.1E-07 0.179820072807 0.333332476473 

 

3.1.3 Errors analysis (accuracy) 

The elastic strain under 40 MPa is 𝜀 =
𝜎

𝐸
=

40𝑀𝑃𝑎

200𝐺𝑃𝑎
= 2 × 10−4. The master curve (assuming accurate 

enough) creep strain at failure is 0.179820827565906 obtained with Euler’s method at interval 0.01h; 

When TOL=0.1×10-3, strain at failure is 0.179803968745 

The error in creep strain at is  

Error = |0.179803968745 − 0.179820827565906| 

= 1.6858820906 × 10−5 

error rate =
1.6858820906 × 10−5

2 × 10−4
= 8.42% 

 



When TOL=0.1×10-7, strain at failure is 0.179820072807 

The error in creep strain at failure is  

Error = |0.179820072807 − 0.179820827565906| 

= 7.54758906 × 10−7 

error rate =
7.54758906 × 10−7

2 × 10−4
= 0.37% 

Similarly, the error rate in creep strain was calculated and all the results were shown in Table III.  

From this Table, the TOL=0.1×10-7 is obviously satisfied the accuracy requirement, and the 

TOL=0.1×10-3 is too big than the expected value, say 1%, due to the high exponential or power law 

relationship between stress level and creep strain rate. It can be seen that when TOL value is 0.1E-05 is 

a very good choice.  

TABLE III error rate 

TOL Percentage errors of strain at failure 

0.1E-01 21636% 

0.1E-02 824% 

0.1E-03 8.43% 

0.1E-04 0.51% 

0.1E-05 0.38% 

0.1E-06 0.37% 

0.1E-07 0.37% 

 

3.1.4 Efficiency analysis  

In order to test the efficiency of this subroutine, 10,000 times calling was supposed, and the total 

calculation times following different TOL value were recorded and used for comparison. This 

constitutive equations subroutine offered the solutions of strain and damage value in each given 

durations. Once the subroutine running, an integration point would be solved in the finite element 

analysis processing. Basic that, a complete finite element analysis will call this subroutine over all the 

integration points and time iterations, typically in the order of thousands times thousands. This is the 

reason to call the subroutine 10,000 times. 

 

The Euler’s method was also tested for efficiency following the same experimental setting. The results 

are shown in Table IV and Table V.  

  

TABLE IV RKM running time 

Runge-Kutta Method Test 

TOL Programme Running Time (s) 

0.1 NONE 

0.1×10-1 10.2649 

0.1×10-2 15.2569 

0.1×10-3 15.7717 

0.1×10-4 15.8653 

0.1×10-5 16.1149 

0.1×10-6 16.4113 

0.1×10-7 17.0665 



0.1×10-8 (Over Load) 1.56×10-2 

 

TABLE V Euler’s running time 

Euler’s method test 

Time interval Programme running time (s) 

1 1.5600100E-02 

0.1 0.1716011 

0.01 1.7628113 

0.001 17.6593132 

0.0001 175.64153 

For a similar accuracy, the Euler’s method will cost about 10% more computing time. This is 

demonstrated by the following. It can be seen from Table IV, when TOL = 0.1×10-5, the programme 

running time is 16.1149s. From Table VIII, when time interval is 0.001h, the programme running time 

is 17.6593132s. It can be defined a speed percentage like: 

percentage =
17.6593132 − 16.1149

16.1149
= 9.58% 

As mentioned before, the accuracy of Euler’s method at interval 0.001h can be derived as 0.13%; 

however, the absolute error is similar with R-K method at TOL of 0.1E-05. 

 

From the above discussion, it is clear that, based on the balance of accuracy and efficiency, the Euler 

method should not be used, and the TOL of 0.1E--04 or 0.1E-05 is a good choice for R-K method on 

the balance of accuracy and computing efficiency. It is also further noted that further reducing the value 

of TOL does increase the accuracy significantly without much increase of computing time.  

 

It does not seem to show that Euler’ method is the best; it is only the first attempt. The R-K method will 

be implemented and examined in real case where the stress re-distribution may affect the time step 

allowed which will be discussed next. 

 

3.2 Time step control 

Following previous researchers’ step [9, 10, 12], a time step control concept will be adopted in this 

research. In order to guarantee the accuracy of integration result, make sure each integration step will 

not more than 0.1% of total strain, a result checking subroutine was designed and named ‘time step 

control’. In the first integration step, the time increment will be set as big as possible such as a constant 

50 (hours), and the checking criteria can be expressed as: 

∆εe

εe
< 0.001 

Where ∆εe , εe arre creep equivalent strain increment and creep equivalent strain respectively; 

If the result is satisfied this criterion then the loops will go on; if not, the time increment will reduce 

half and re-do this loop until the result satisfied the criteria. 

 

For the consequent steps, the time increment will follow the previous one, and was fitted in the criterion 

in each integration step. 

 

4. Future Work 



A number of researchers developed new constitutive equations or conducted FE application for 

weldments [18, 19, 20]. The future work will include 1) the development and implementation of time 

step control; 2) expansion of types of creep damage constitutive equations into library3) input data 

structure need to be expanded to accommodate for other types of constitutive equations and other type 

of elements; 4) real test of current integration subroutines, et al. Future progress will be reported in due 

course. 

 

5. Conclusion 

This paper reports to date progress in the developing computational system for creep deformation and 

damage analysis for weldments. It covered the requirement of computational tools of creep damage 

analysis, development of data transfer interfaceand constitutive equations’ numerical integration 

scheme. The future work has been outlined.  
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