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Abstract

In the field of domain-independent planning, several powerful planners implementing
different techniques have been developed. However, no one of these systems outperforms
all others in every known benchmark domain. In this work, we propose a multi-planner
approach that automatically configures a portfolio of planning techniques for each given
domain. The configuration process for a given domain uses a set of training instances to:
(i) compute and analyze some alternative sets of macro-actions for each planner in the
portfolio identifying a (possibly empty) useful set, (ii) select a cluster of planners, each
one with the identified useful set of macro-actions, that is expected to perform best, and
(iii) derive some additional information for configuring the execution scheduling of the
selected planners at planning time. The resulting planning system, called PbP (Portfolio-
based Planner), has two variants focusing on speed and plan quality. Different versions of
PbP entered and won the learning track of the sixth and seventh International Planning
Competitions. In this paper, we experimentally analyze PbP considering planning speed
and plan quality in depth. We provide a collection of results that help to understand PbP’s
behavior, and demonstrate the effectiveness of our approach to configuring a portfolio of
planners with macro-actions.

1. Introduction

During the last fifteen years, the field of automated plan generation has achieved significant
advancements, and several powerful domain-independent planners are today available (e.g.,
for propositional planning, FF (Hoffmann & Nebel, 2001), LPG (Gerevini, Saetti, & Se-
rina, 2003), SGPlan (Chen, Hsu, & Wah, 2006), FastDownward (Helmert, 2006) and LAMA
(Richter & Westphal, 2010)). Moreover, while each of such systems performs very well on
a (more or less large) class of planning domains and problems, it is well-known that no
one outperforms all the others in every available benchmark domain – see, e.g., (Roberts
& Howe, 2009). It would then be useful to have a multi-planner system that automatically
selects and combines the most efficient planner(s) in a portfolio for each given domain.
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The performance of the current planning systems is typically affected by the structure
of the search space, which depends on the considered planning domain. For many domains,
the planning performance can be improved by exploiting some knowledge about the domain
structure that is not explicitly given as part of the input formalization, but that can be
automatically derived from it. In particular, several approaches encoding additional knowl-
edge in the form of macro-actions have been proposed, e.g., (Botea, Enzenberger, Müller,
& Schaeffer, 2005; Newton, Levine, Fox, & Long, 2007). A macro-action (macro for short)
is a sequence of actions that can be planned at one time like a single action. When using
macros there is an important tradeoff to consider. While their use can speedup the planning
process, because it reduces the number of search steps required to reach a solution, it also
increases the search space size, which could slow down the planning process. Moreover,
it is known that the effectiveness of macros can depend on the planning algorithm: a set
of macros can increase the performance of a planner, but decrease it, or be irrelevant, for
another.

In this paper, we propose an approach to automatically configuring a portfolio of existing
planners, possibly using a useful set of macros for each of them. The configuration relies on
a statistical analysis of the performance of the planners in the portfolio and the usefulness of
some automatically generated sets of macros, considering a set of training problem instances
in a given domain. The configuration knowledge that is automatically generated by this
analysis consists of a cluster of planners defined by: an ordered subset of the planners in
the initial portfolio, which at planning time are combined using a round-robin strategy; a
set of useful macros for each planner; and some sets of planning time slots. The planning
time slots specify the amount of CPU time to be allocated to each planner in the cluster
during planning. The resulting planning system is called PbP (Portfolio-based Planner).

The current implementation of PbP incorporates two systems for the generation of
macros and nine efficient planners, but its architecture is open to consider any other (current
or future) planner as an additional or alternative system. If PbP is used without configu-
ration knowledge, all planners in the portfolio are scheduled (without macros) by a simple
round-robin strategy where some predefined CPU-time slots are assigned to the (randomly
ordered) planners. If PbP is used with the configuration knowledge for the domain un-
der consideration, only the selected cluster of planners (possibly using the relative selected
sets of macros) is scheduled, their ordering favors the planners that during configuration
performed best, and the planning time slots are defined by the computed configuration
knowledge. As for the selection and exploitation of macros in PbP, it is worth noting that
the planners in the portfolio configured by PbP do not necessarily use the macros learned
for them. In the configuration process, the system evaluates each planner in the portfolio
with each set of macros computed for it, as well as with the empty macro set, as if they
were independent planning systems.

PbP has two main variants: PbP.s, focusing on speed, and PbP.q, focusing on plan
quality. A preliminary implementation of PbP.s (Gerevini, Saetti, & Vallati, 2009) entered
the learning track of the sixth international planning competition (IPC6) and was the overall
winner of this competition track (Fern, Khardon, & Tadepalli, 2011).1 More recently, a

1. As observed by the IPC6 organizers, surprisingly, for the IPC6 problems the use of the configuration
knowledge does not considerably speedup this version of PbP.s. The reasons are some implementa-
tion bugs concerning both the configuration phase and the planning phase, and the inefficient use of
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revised and optimized version of PbP with both the speed and quality variants entered
the learning track of the seventh competition (IPC7), and it was again the winner of this
competition track (Coles, Coles, Olaya, Celorrio, López, Sanner, & Yoon, 2012).

A large experimental analysis presented in this paper provides a collection of results that
help to understand the performance behavior of PbP and the effectiveness of its portfolio
configuration methods. In particular, the analysis (i) confirms the very good performance
of PbP in the context of the IPC6-7 benchmarks, (ii) compares PbP with other existing
approaches to configure a planner portfolio, (iii) evaluates the accuracy of PbP’s approach
to identify an effective cluster of planners and the strength of using a (configured and
unconfigured) multi-planner with respect to a single planner, (iv) investigates the usefulness
of macros in the considered benchmarks, showing that PbP selects useful macro sets, and
(v) examines the execution scheduling configuration of PbP for the selected planners in the
configured portfolio, demonstrating that its default strategy works well compared to other
possible strategies considered in the analysis.

Several ideas and techniques investigated in the context of PbP use or build on previous
work. Besides presenting and evaluating an effective approach to configuring a planner
portfolio, the research presented in this paper corroborates, validates or evaluates some
“hunches” and empirical studies done by other researchers in planning. In particular, our
experimental analysis confirms that certain sets of macros can be very useful to accelerate
planning speed or improve plan quality (Botea et al., 2005; Coles & Smith, 2007; Newton
et al., 2007) while others are harmful, that diversity of the planning techniques is important
in the construction of an effective planner portfolio, as observed by, e.g., Roberts and Howe
(2009), and that the round-robin scheduling of the planner execution times is a robust
strategy for a planner portfolio (Howe, Dahlman, Hansen, vonMayrhauser, & Scheetz, 1999;
Roberts & Howe, 2006).

The remainder of the paper is organized as follows. Section 2 discusses related work;
Section 3 describes the PbP approach; Section 4 presents the results of our experimental
study; finally, Section 5 gives the conclusions.

2. Related Work

In this section, after a brief presentation of the most prominent work on algorithm portfolio
design in automated reasoning, we describe related work by others on planner portfolio
design in the automated planning, pointing out some important differences between PbP
and the most related work. Other specific differences and similarities will be indicated in
the following sections presenting our technical results.

2.1 Algorithm Portfolio Design in Automated Reasoning

In the field of automated reasoning, the idea of using a portfolio of techniques has been
investigated by several researchers. A prominent example is the work by Gomes and Selman
(2001), who conducted a theoretical and experimental study on the parallel run of stochastic
algorithms for solving computationally hard search problems. Their work shows under what

some Linux shell scripts (evident especially for small or easy problems), which were corrected after the
competition obtaining much better results (Gerevini et al., 2009).
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conditions running different stochastic algorithms in parallel can give a computational gain
over running multiple copies of the same stochastic algorithm in parallel.

Many papers on algorithm portfolio design concern the definition of models to select
the best algorithm(s) for an instance of a certain problem according to the values of some
predetermined features of the instance (Rice, 1976). For example, algorithm portfolios have
been designed with this aim to solve instances of SAT, MaxSAT, and QBF (Matos, Planes,
Letombe, & Marques-Silva, 2008; Pulina & Tacchella, 2007; Xu, Hutter, Hoos, & Leyton-
Brown, 2008). SATzilla is a prominent example of an algorithm portfolio designed for SAT
(Xu et al., 2008). SATzilla uses machine learning techniques to build a predictor of the
runtime of a class of SAT solvers. When SATzilla attempts to solve an instance of the SAT
problem, it computes the values of some features of the instance, predicts the performance
of the SAT solvers it incorporates, selects the most promising SAT solvers and order them
accordingly to their predicted performance, and finally runs the selected SAT solvers using
the established ordering and the predicted required CPU times.

Matos et al. (2008) propose an algorithm portfolio solving the MaxSAT problem. The
portfolio computes the values of several features of a given instance of the MaxSAT problem,
estimates the runtime for each solver in the portfolio, and then solves the instance with
the estimated fastest solver. The estimation is done using a (linear) model configured by
performing ridge regression (Marquardt & Snee, 1975). Similarly, Pulina and Tacchella
(2007) study an algorithm portfolio solving the QBF problem. They identify some features
of the QBF problem, and investigate the usage of four inductive models to select the best
solver to use according to the values of the identified features.

2.2 Planner Portfolio Design in Automated Planning

Regarding automated planning, some prominent planners combining one or more algorithms
have been proposed. Blackbox (Kautz & Selman, 1999) can use a variety of satisfiability en-
gines (the initial version also included the Graphplan algorithm), and FF (Hoffmann & Nebel,
2001), LPG (Gerevini et al., 2003; Gerevini, Saetti, & Serina, 2006) and SGPlan5 (Chen et al.,
2006) include a “backup strategy” using an alternative search technique that is run when
the default method fails. The algorithm combination in these systems is straightforward
and does not use an automatic portfolio configuration.

Previous work on planner portfolios includes the approach proposed by Howe and col-
laborators (Howe et al., 1999; Roberts & Howe, 2007, 2009; Roberts, Howe, Wilson, &
desJardins, 2008). In the rest of the paper, we will refer to Howe and collaborators’ ap-
proach using the name of their first planner portfolio, BUS (Howe et al., 1999), although
our analysis of this approach will consider their most recent techniques for the planner
portfolio configuration. Their approach learns models of performance for a set of planners.
At planning time, the round-robin policy is used to schedule the runs of the planners in
such a set, and the learned models are exploited to determine the order of the runs. The
configuration-knowledge derived by this approach is domain-independent: the performance
models of the planners are built by using several predictive models of the WEKA data
mining package (Witten & Frank, 2005), and the set of planners forming the portfolio is de-
termined through a set covering algorithm over the solved training problems across several
different planning domains.
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The work on BUS originally inspired our approach. PbP has some similarities with it, but
it computes and uses very different configuration knowledge, and the methods for selecting
and ordering the portfolio planners are considerably different. The portfolio configuration
of PbP generates domain-optimized clusters of planners, and the selection and ordering of
PbP is based on a statistical analysis of the planners’ performance over a set of training
problems using the Wilcoxon sign-rank test, also known as the “Wilcoxon matched pairs
test” (Wilcoxon & Wilcox, 1964).2 Finally, their system does not compute, analyze or use
macros, and does not consider plan quality.

Similarly to the work of (Howe et al., 1999; Roberts & Howe, 2007), the techniques
in (Cenamor, de la Rosa, & Fernàndez, 2013) and (Fawcett, Vallati, Hutter, Hoffmann,
Hoos, & Leyton-Brown, 2014) learn models of performance of a set of planners according
to some predetermined features. In (Cenamor et al., 2013), such features are derived from
the SAS+ representation of the planning problem. In this approach, the learned models
are used to determine which planners should be run, in which order, and for how long. The
selected planners run sequentially either using an amount of CPU time uniformly assigned
or determined from the predicted execution time. The experimental results in (Cenamor
et al., 2013) show that for problems in domains different from those used to learn the models,
the configured portfolios perform worse than running an unconfigured portfolio consisting
of all the incorporated planners with uniform CPU time assigned to each of them.

The work described in (Fawcett et al., 2014) is focused on generating models for accu-
rately predicting planners runtime. Such models exploit a large set of instance features,
derived from the PDDL and SAS+ representations of the problem, a SAT encoding of the
planning problem, and (short) runs of planners. The experimental results in (Fawcett et al.,
2014) indicate that the generated performance models are able to produce very accurate
runtime predictions.

FastDownward Stone Soup (here abbreviated FDSS) is an approach to selecting and com-
bining a set of forward-state planning techniques (Helmert, Röger, & Karpas, 2011). Using
the IPC6 scoring function, FDSS evaluates a class of candidate techniques on the basis
of their performance over a set of training problem instances from different domains, and
builds a domain-independent sequential portfolio of forward planners by a hill-climbing al-
gorithm searching a space of possible sequential combinations of the evaluated candidate
techniques. The automatic portfolio configuration in FDSS and PbP aims at building dif-
ferent types of planning systems: a single efficient domain-independent planner portfolio
in FDSS; an efficient domain-optimized portfolio planner for each given domain in PbP.
The configuration processes and the resulting configured portfolios of FDSS and PbP are
significantly different. In particular, PbP configures a portfolio of generic planners (using
different styles of planning), each one with a (possibly empty) set of useful learned macros,
which are not considered in FDSS because of its domain-independent purpose. Moreover,
the execution scheduling strategy of PbP runs the selected planners in round-robin rather
than sequentially.

ParLPG (Vallati, Fawcett, Gerevini, Hoos, & Saetti, 2013b) and FastDownward-autotune
(Fawcett, Helmert, Hoos, Karpas, Röger, & Seipp, 2011) configure the parameters of plan-

2. In the context of planning, the Wilcoxon sign-rank test has been previously used also in (Long & Fox,
2003; Gerevini, Haslum, Long, Saetti, & Dimopoulos, 2009; Gerevini et al., 2009; Roberts & Howe,
2009).
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Figure 1: An example of the round-robin scheduling of PbP when running portfo-
lio {〈P1,M1, 〈10, 40, 160, . . . 〉〉, {〈P2,M2, 〈20, 60, 180, . . . 〉〉} on a given planning
problem, assuming that planner P1 using macros M1 takes a total of 80 CPU-
time units to terminate and P2 with M2 takes a total of 120 CPU-time units.

ners LPG and FastDownward (Helmert, 2006), respectively, using a set of training problems
of a given domain in order to obtain combinations of parameters for these two planners that
perform especially well in the given domain. Both these frameworks uses the stochastic local
search procedure ParamILS to search for high-performance configurations of parameters by
evaluating promising configurations (Hutter, Hoos, & Stützle, 2007; Hutter, Hoos, Leyton-
Brown, & Stützle, 2009). An extended version of FDSS (Seipp, Braun, Garimort, & Helmert,
2012) involves twenty one configurations of FastDownward, obtained by configuring its pa-
rameters through FastDownward-autotune for twenty one different domains (Fawcett et al.,
2011), that are combined by several alternative sequential strategies allocating the CPU
times to them.

ASAP (Vallati, Chrpa, & Kitchin, 2013a) is a recent system for selecting the most promis-
ing planner from a set of candidates planners that derives much of its power from the use
of entanglements (Chrpa & Barták, 2009; Chrpa & McCluskey, 2012). Entanglements are
relations between planning operators and predicates used to reformulate the domain model
by removing unpromising operator instances or restricting the applicability of some actions
to certain states. A problem over the resulting modified domain can become significantly
easier to solve for a planner. On the other hand, since ASAP uses an approximate method to
decide entanglements, which is PSPACE-complete (Chrpa, McCluskey, & Osborne, 2012), a
problem that is solvable with the original domain can become unsolvable with the reformu-
lated domain. Given a planning domain modified by entanglements and a set of planners,
ASAP identifies the most promising of these planners as the one with the highest IPC score
(Jiménez, Coles, & Coles, 2011) over a set of training problems.

3. Automated Planner Portfolio Design in PbP

In this section, after introducing some preliminaries defining the problem of configuring a
planner portfolio and its execution to solve planning problems, we describe the architecture
and techniques of our approach to configure and execute a planner portfolio.

3.1 Preliminaries on Configuring and Executing a Planner Portfolio

Differently from most of the existing work on algorithm portfolio design of which we are
aware, PbP does not design the planner portfolio for solving a specific instance of the
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planning problem according to the values of some predetermined features of the instance.
Instead, planning problems are gathered according to their planning domains, and the plan-
ner portfolio is designed for the whole domain. The basis of this choice is the empirical
observation that often there exists a single planner or a combination of planners that per-
forms generally better for all or most of the problems of a domain. This seems something
peculiar to automated planning that does not hold for other types of reasoning problems,
and it makes PbP somewhat atypical in the general literature on algorithm portfolio design.

Let D be a planning domain, T a CPU-time limit, and P a set of n planners (initial
portfolio), each of which with its predefined parameter values. The problem of configuring
P for D consists of computing a set of triples {〈Pi,Mi, Si〉 | i = 1 . . .m}, where: 1 ≤ m ≤ n,
Pi ∈ P, Mi is a (possibly empty) set of macro operators learned for Pi in domain D, and Si
is a sequence of increasing CPU times. These CPU times (real numbers) are called planning
time slots, and are such that each time is lower than or equal to T .

The output set of triples identified by a portfolio configuration algorithm is the configured
(planner) portfolio of P for D, which in the rest of the paper will also be called a selected
planner cluster (or simply cluster). Depending on how planners, macros and planning
time slots are chosen, there can be many candidate solutions to a portfolio configuration
problem. A special case, that we call the unconfigured (planner) portfolio, is defined as
{〈Pi, ∅, Spre〉 | i = 1 . . . |P|}, where Spre is predefined as 〈0.1, 1, 10, 100, 1000〉 (in seconds).

Like BUS, PbP uses the round-robin policy for scheduling the runs of the planners in the
configured portfolio. Let Π = {〈Pi,Mi, Si〉 | i = 1 . . .m} be a planner portfolio configured
for a domain D. Portfolio Π is executed to solve a planning problem in D by a round-
robin scheduling of m processes where: each process corresponds to running a planner Pi

with macros Mi (Pi + Mi for short), according to an order and time slices derived from
sequences S1...m. More precisely, the circular order of the m planners in Π is determined
by considering the m values t1...m defined by the first planning time slot in each of the m
sequences S1 . . . Sm. If ti < tj Pi is ordered before Pj ; if ti = tj the relative order of Pi and
Pj is arbitrarily decided (i.e., in this case Pi runs before Pj iff i < j), for every i, j ∈ 1 . . .m
with i 6= j. Each planner Pi +Mi is initially run until the total CPU time allocated to this
process is ti, or the planner terminates earlier. If a planner Pi + Mi does not terminate
within the assigned planning time slot ti, then it is suspended, and it resumes the next time
a time slot is assigned to it. No additional CPU time is assigned to those processes that
have already terminated. When, according to the circularity of the order, a planner Pi +Mi

resumes its execution, the total CPU time assigned to it (from the start of its execution)
is equal to the next unprocessed time slot in Si (i.e., the j-th value of Si for the j-th time
Pi +Mi runs).

Figure 1 shows an example of the round-robin scheduling for portfolio {〈P1,M1,
〈10, 40, 160, . . . 〉〉, 〈P2,M2, 〈20, 60, 180, . . . 〉〉}, assuming that P1 +M1 terminates after using
80 CPU time units, and P2 + M2 after using 120 CPU time units. P1 + M1 runs before
planner P2 + M2, because the first time slot of P1 + M1 (i.e., 10) is lower than the first
time slot of P2 +M2 (i.e., 20). The round-robin scheduler suspends P1 +M1 after 10 time
units, and gives P2 + M2 20 time units of CPU time. This process is repeated suspending
P1 +M1 when the total execution of P1 +M1 has consumed 40 time units, and suspending
P2 + M2 when the total execution of P2 + M2 has consumed 60 time units. At the next
iteration, P1 +M1 should be suspended when its total execution time reaches 80 time units,
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but, before the end of its third time slot, i.e., at time 140, P1 + M1 terminates and needs
no more CPU time. Then, P2 + M2 resumes its run, and terminates at time 200. In this
example, the planners of the portfolio use only their first three time slots.

Given a set of training problems in a domain D, we propose an approach to configuring
an initial planner portfolio for D through a statistical analysis about the performance of
the planners in the initial portfolio with some alternative sets of computed macros. The
effectiveness of the determined configured portfolios can then be evaluated over a set of test
problems in D, that in our experimental analysis are disjoint from the training problem set
and that, if not specified otherwise, are always formed by known benchmark problems.

The proposed approach is implemented in a planning system called PbP (Portfolio-based
Planner). In the following, depending on the context, PbP will be used to indicate either
its method for configuring the planner portfolio, or the generated configured portfolio. In
the experimental evaluation of the configured portfolios generated by PbP, as a baseline
planner portfolio, we will use the unconfigured planner portfolio, that will be also called
the unconfigured version of PbP and denoted with PbP-nok (while PbP will indicate the
generated configured planner portfolio).

3.2 Architecture and Components of PbP

The architecture of PbP consists of the following five main components, which are combined
as described in Figure 2.

Macro-actions computation. For each integrated planner, PbP computes some sets of
alternative macros using the following two approaches.

• Wizard, PhD thesis version (Newton et al., 2007). This system implements three
learning techniques based on offline evolutionary methods, which use genetic operators
to compute macros for a given planner from the plans solving a set of training problem
instances of an input domain. The three learning techniques are called chunking,
bunching, and clumping: chunking learns individual macros from the original domain
operators; bunching learns bunches of macros from a given pool of macros (such
as the macros learned by the chunking process); and clumping learns both individual
macros and sets of macros simultaneously. The learned macros are filtered by a fitness
value. The fitness value reflects some filtering criteria including the number of solved
problems and the CPU time required to solve the training problems using the domain
operators augmented with the learned macros. For each computed macros, if the
fitness value of a macro is lower than a threshold, the macro is discarded. Therefore,
for each planner incorporated into PbP (expect Macro-FF), PbP using Wizard can
generate at most three sets of macros for the planner. In order to determine the sets
of macros to be used in the configured portfolio, the performance of the planner will
then be evaluated by PbP with/without using the sets of learned and filtered macros
over the training problems. This evaluation is performed by the “Planner cluster
selection and ordering” component. For simplicity, the sets of learned macros will be
identified by the names of the techniques used to derive them.

• Macro-FF (Botea et al., 2005; Botea, Müller, & Schaeffer, 2007b). The approach
implemented in Macro-FF (Botea et al., 2005) computes macros by analyzing the solu-
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Figure 2: A sketch of PbP’s architecture.

tions of a set of training problem instances, so that the macros that appear frequently
and that significantly reduce the required search effort are preferred. In particular,
first Macro-FF solves the training problems using an enhanced version of FF; then
it generates macros by considering the frequency the sequences of actions forming
macros appear in the computed solutions.3 After the macro generation, Macro-FF
solves the training problems using the computed macros, ranks the macros in terms
of the obtained search effort gain, and using this ranking selects at most five sets of
macros M1..5, where Mi with i = 1..5 is the set of macros formed by the i best learned
macros. The version of the approach integrated into PbP contains the enhancements
described in (Botea et al., 2007b). Since the macros learned by Macro-FF are coded
using an ad-hoc language, in PbP the five learned sets of macros M1..5 are used only
by the Macro-FF planner.

Planner performance measurement. This is the most expensive computation step in
the configuration of the portfolio. PbP runs each integrated planner expect Macro-FF with
and without the three sets of macros learned for it by Wizard on the input training prob-
lem set, using the input CPU time limit T for each planner run. Similarly, Macro-FF runs
with and without the five sets of macros learned by itself. The current implementation
of PbP incorporates eight well-known successful planners, FastDownward (Helmert, 2006),
LAMA (Richter & Westphal, 2010), LPG-td (Gerevini et al., 2006), Macro-FF (Botea et al.,
2005, 2007b), Marvin (Coles & Smith, 2007), Metric-FF (Hoffmann, 2003), SGPlan5 (Chen
et al., 2006), YAHSP (Vidal, 2004) and a recent version of LPG (ParLPG) using a dedicated

3. In our experiments presented in Section 4, we observed that Macro-FF computes no macros only if the
enhanced version of FF solves no training problem.
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configuration phase to automatically optimize the setting of a collection of parameters gov-
erning the behavior of several parts of the system (Vallati et al., 2013b). Basically, running
ParLPG consists in running LPG using a domain-specific parameter configuration. Every
other incorporated planner runs using its default parameter configuration. For Marvin, this
implies that during planning it can learn and memorize macros to escape from plateaus. For
each run, PbP measures the planner performance in terms of: number of problems solved
within T , CPU time required for solving the training problems, and quality of the computed
solutions. For the incremental planners, i.e., LPG, ParLPG and LAMA, PbP measures the
quality of all the solutions generated for each problem and the corresponding CPU times.
Finally, note that for the macro-actions computation Macro-FF and Wizard already run
the incorporated planners and hence, in principle, the performance of the planners with
macros could be measured when Macro-FF and Wizard compute them. However, this has
some technical difficulties and, for simplicity, PbP duplicates the runs of the (incorporated)
planners.

Planning time slots computation. The method for computing the planning time slots
in PbP is a variant of the CPU-time allocation strategy proposed by Roberts and Howe
(2007) for the round-robin planner scheduling. Let 〈p1, . . . , pn〉 be a sequence of increasing
percentages, and tpi (i ∈ {1, . . . , n}) the minimum CPU time required by a planner P with
a set of macros M learned for it (P +M for short) in order to solve a percentage of training
problems equal to pi. During PbP’s configuration of the planner portfolio, the planning
time slots S of P +M are defined as S = 〈tp1 , . . . , tpn〉.

The difference between the planning time slots in PbP and in the approach of Roberts
and Howe can be explained by the following example. Assume that the computed planning
time slots for planner A using macros MA (A+MA) are 〈0.20, 1.40, 4.80, 22.50, . . . 〉 and that
those for planner B using macros MB (B + MB) are 〈14.5, 150.8, . . . 〉. Then, for this pair
of planners, differently from the approach of Roberts and Howe, PbP extends the first time
slot for A+MA (0.20) to 4.80, i.e., to the greatest time slot of A+MA which is smaller than
the first time slot of B +MB; similarly for the subsequent time slots. If the first time slot
of A+MA were not extended, the slowest planner B +MB would initially run for a CPU
time much greater than the CPU time initially assigned to the fastest planner A + MA,
and for many problems that planner A+MA quickly solves (e.g., using one CPU second),
PbP would perform much slower. It is worth noting that using this time slot extension we
observed a high performance gain only for small and easy problems.

In the rest of the paper, the sequence of increasing percentages 〈p1, ..., pn〉 used to define
the planning time slots is called the problem coverage percentage vector (PCPV). The default
PCPV in PbP is the sequence 〈25, 50, 75, 80, 85, 90, 95, 97, 99〉 (n = 9), which is the same
used in (Roberts & Howe, 2007).

Planner cluster selection and ordering. This is the last step of the configuration
process of PbP. PbP selects a cluster of planners in the initial portfolio (as described
in Section 3.3), each one with a (possibly empty) set of useful macros, according to the
measured performance and the computed planning time slots.

As for the macro selection, note that PbP has no explicit independent mechanism for
selecting the macros to be used in the configured portfolio, and that macros are not shared
between planners because the tools used to learn them (Wizard and Macro-FF) generate
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macro sets for a specific input planner. Planners and their macro sets are selected together,
since the planner cluster selection of PbP considers a candidate planner using two different
sets of macros learned for it as two different candidate planners.

The execution order of the planners in the selected cluster is implicitly defined by the
increasing first planning time slots associated with the planners. Section 3.3 describes the
planner cluster selection in detail.

Multi-planner by round-robin scheduling. After PbP has configured the planner port-
folio for the domain under consideration, when a problem instance of this domain is encoun-
tered, PbP runs the selected ordered cluster of planners (each one using the relative selected
set of macro-actions) by a round-robin scheduling algorithm using the computed planning
time slots, that is similar to the one investigated in (Howe et al., 1999; Roberts & Howe,
2006, 2007) and many portfolio algorithms. Alternative planner scheduling strategies are
possible, such as sequential execution or/and using configured planning time slots. How-
ever, according to the experimental results that will be presented in Section 4.8, the default
round-robin strategy with the planning time slots derived from the default PCPV is robust
and performs generally well. Concerning termination of the resulting multi-planner, PbP.s
terminates if either a given (execution) CPU-time limit t is exceeded, returning failure, or
one among the selected planners computes a solution (output of PbP.s); PbP.q terminates
if either time t is exceeded, or all the selected planners terminate. If PbP.q generates no
solution within t, it returns failure; otherwise, it returns the best computed solution.

3.3 Selecting a Planner Cluster

After the performance measurement and time slot computation phases, PbP analyzes the
obtained results to identify the best cluster of planners and macros for the domain under
consideration and the given CPU-time limit T . This is done by simulating, for every cluster
C of at most k planners, each with a (possibly empty) set of macros, the round-robin exe-
cution of the planners in C for solving the same training problems used in the performance
measurement phase.4 The simulation is done using the data from the runs conducted for
the performance measurement phase (the planners are not re-run), ignoring the data of the
planners that always perform worse than another incorporated planner (i.e., any planner
that performs worse than another one across all the training problems of the domain is
discarded). The CPU-time limit for each simulated execution of a cluster is T (the same
time given to each run of a single planner during the performance measurement phase). The
performances of the simulated cluster runs are compared by a statistical analysis based on
the Wilcoxon sign-rank test (Wilcoxon & Wilcox, 1964). This test applies to a set of paired
observations (a sample from a larger population), and tells us if it is plausible to assume
that there is no correlation between the pairwise observed quantities. In our case, these
paired observations are, e.g., the simulated runtimes of two clusters on the same training
problem instance, and “no correlation” between them means it is equally likely that we will

4. In our experiments parameter k is set to 3. If k were greater than 3, we experimentally observed that
for the considered benchmark domains and problems the cluster selected by PbP would be the same.
The maximum number of possible combinations between the planners currently incorporated into PbP
and the considered sets of macros is 38; hence, with k = 3, the maximum number of clusters that can be
evaluated by run simulation is

∑i=k
i=1

(
38
i

)
= 9177. This is the number of clusters with at most 3 different

combinations of planners and macros over the 38 in the current implementation.
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see one cluster solving a problem faster than the other as it is that we will see the opposite
on a sample of problems.

For our purposes, the Wilcoxon sign-rank test is appropriate because it does not require
us to know the sample distribution, and makes no assumption about this distribution. That
is, we have no way to know a priori how hard a planning problem is, and hence we have
no distribution of the simulated performance of the clusters. Consequently, as stated in
(Gibbons & Chakraborti, 2003), it is critical that we use a non-parameterized test, such
as the Wilcoxon sign-rank test. We have also investigated the usage of other methods to
compare the performance of the simulated runs of planner clusters, including the IPC score
function that was also used by Vallati et al. (2013a). However, we experimentally observed
that, for the IPC7 domains, such a method is less effective than the usage of the Wilcoxon
sign-rank test.

In PbP, the performance measure considers either the CPU time (PbP.s) or the plan
quality (PbP.q). The data for carrying out the test in PbP.s are derived as follows. For
each planning problem, the system computes the difference between the simulated execution
times of the compared clusters. If a planner cluster does not solve a problem, the corre-
sponding simulated time is twice the CPU-time limit;5 if no cluster solves the problem,
this problem is not considered. The difference between the simulated times is normalized
by the value of the best simulated time under comparison (e.g., if cluster C1 requires 200
seconds and cluster C2 220, then the difference is 10% in favor of C1). The absolute values
of these differences are then ranked by increasing numbers, starting from the lowest value.
(The lowest value is ranked 1, the next lowest value is ranked 2, and so on.) The ranks
of the positive differences and the ranks of the negative differences are summed, yielding
two values r+ and r−, respectively. If the performance of the two compared clusters is not
significantly different, then the number of the positive differences r+ is approximately equal
to the number of the negative differences r−, and the sum of the ranks in the set of the
positive differences is approximately equal to the sum of the ranks in the other set. Intu-
itively, the test considers a weighted sum of the number of times a cluster performs better
than the other compared one. The sum is weighted because the test uses the performance
gap to assign a rank to each performance difference.

When the number of samples is sufficiently large, the T-distribution used by the Wilcoxon
sign-rank test is approximately a normal distribution, which is characterized by two param-
eters called the z-value and the p-value. The higher the z-value, the more significant the
difference of the performance is. The p-value represents the level of significance in the
performance gap. If the p-value is greater than 0.05, then the null hypothesis that the
performance of the compared pair of planners is statistically similar is refused, and the al-
ternative hypothesis that their performance is statistically different is accepted. Otherwise,
there is no statistically significant evidence that they perform differently, and PbP considers
that they perform pretty much similarly.

The results of the Wilcoxon sign-rank test are used to form a directed graph where
the nodes are the compared clusters, and an edge from a cluster C1 to another cluster C2

indicates that C1 performs better than C2. Such a graph has already been used by Long

5. This is the minimum value that ensures the performance gap for a problem solved by one cluster of
planners and unsolved by the other compared cluster is bigger than the performance gap for any problem
solved by both the compared clusters.
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and Fox to present the results of the 3rd International Planning Competition (Long & Fox,
2003). Each strongly connected component of this graph is collapsed into a single node
representing the elements in the clusters of the collapsed nodes. From the resulting DAG,
PbP considers only the nodes without incoming edges (the graph root nodes). If there is
only one root node, this is the selected cluster, otherwise PbP uses some secondary criteria
to select the most promising cluster among the root nodes. These criteria are the number of
solved problems, the sums of the ratios between the (simulated) CPU times of the planners
in the compared clusters, and the first planning CPU-time slots of the involved planners.
Specifically, PbP selects the cluster among the root nodes such that its simulation solves the
highest number of training problems. To break the ties, for every pair of selected clusters x

and y PbP computes the ratio
|sx−sy |

max{sx,sy} , where sx and sy are the sums of the (simulated)

CPU times of clusters x and y, respectively; if such a ratio is greater than threshold 0.05,
the compared cluster with the worst sum of CPU times is discarded. If the number of
remaining clusters is still greater than one, PbP selects the cluster with the lowest first
planning CPU-time slots of the involved planners. Finally, the remaining ties are broken by
selecting the cluster randomly, but in our experiments no cluster has ever been randomly
selected.

The method used to select a cluster of planners and macros in PbP.q is similar, but it
applies to the plan qualities resulting from the cluster execution simulation, rather than to
the CPU times as done by PbP.s. For this simulation, PbP.q considers also the intermediate
solutions (i.e., those that are generated before the last one, which has the best quality)
and the relative CPU times computed by the basic incremental planners in the considered
clusters. If these solutions were ignored, the simulated plan quality for the clusters including
incremental planners could be much worse than the actual quality. For example, assume
that the CPU-time limit is 900 seconds, FF computes a solution with quality 50 using 100
seconds, LAMA computes two solutions with quality 20 and 19 using 120 and 880 seconds,
respectively. If the intermediate solutions of LAMA were ignored, the estimated plan quality
for the cluster formed by planners FF and LAMA would be equal to the quality of the plan
generated by FF (the second solution generated by LAMA could be computed by the cluster
using 980 seconds, but this is greater than the CPU time limit), although the intermediate
(first) solution of LAMA is much better than the FF’s solution.

Finally, note that if the performance of the incorporated planners is measured with
CPU-time limit T , then the portfolio of PbP.s/q can be (re)configured for any time limit
t ≤ T by simply ignoring the solutions computed after time t in the simulation of the
planner cluster performance. If t ≥ T , then t−T is equally distributed among the planners
in the selected cluster. If a planner terminates before its allocated time, the remaining time
is also equally distributed to the other planners that are still running.

3.4 The Integrated Basic Planners

In this subsection, we give a very brief description of each of the nine basic planners that
are currently incorporated in PbP. Much more detailed information is available from the
corresponding referred papers.

Metric-FF (Version 2.1; Hoffmann, 2003). Metric-FF inherits the main ideas used in FF
(Hoffmann & Nebel, 2001). FF’s search strategy is a variation of hill-climbing over the space
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of the world states, and in FF the goal distance is estimated by solving a relaxed task for
each successor world state. Compared to the first version of FF, Metric-FF is enhanced with
goal orderings pruning techniques and with the ordering knowledge provided by the goal
agenda. Moreover, it deals with level 2 of pddl2.1 (Fox & Long, 2003), i.e., numerical state
variables, numerical action preconditions and effects.

YAHSP (Version 1.1; Vidal, 2004). YAHSP extends the search procedure of FF with some
information extracted from FF’s relaxed plan. For each evaluated world state, YAHSP
exploits a look-ahead strategy in a complete best-first search by employing actions from the
relaxed plans in order to find the beginning of a valid plan that can lead to a reachable
world state.

MacroFF (Botea et al., 2005, 2007b). Macro-FF extends FF with support for using macro-
operators during the search, and with engineering enhancements. One of the main features
of the planner version integrated into PbP is the use of iterative macros (Botea et al., 2007b),
i.e., runtime combinations of macro operators, which are instantiated by attempting to use
as many actions from FF’s relaxed plan as possible. In the search procedure of FF, the
iterative macros that can be successfully instantiated are considered for the generation of
the next world states.

Marvin (Release 1; Coles & Smith, 2007). Marvin is another planner based on FF. The
main improvement w.r.t. FF is memorizing the plateau-escaping action sequences discovered
during the (local) search of FF. These action sequences form macros, which can be applied
later when plateaus are once-again encountered by FF’s search in order to escape from these
plateaus quickly.

SGPlan (Version 5.22; Chen et al., 2006) with domain-modification script (Coles & Coles,
2011). SGPlan5 exploits a partition-and-resolve strategy to partition the mutual-exclusion
constraints of a planning problem by its subgoals into subproblems, solves the subprob-
lems individually using a modified version of the Metric-FF planner, and resolves those
violated global constraints iteratively across the subproblems. It has been observed that
the performance of SGPlan are affected by some rules detecting the domain name and the
number of domain operators (Coles & Coles, 2011). In our work, we intend to consider the
available implemented systems that have chances to perform well (possibly in combination
with others) for at least one domain over a range of varied existing benchmark domains.
SGPlan is definitely one of these systems. However, in order to prevent the usage of the
domain-specific detection rules in SGPlan that, differently from the other planners incor-
porated in PbP, would make SGPlan domain-specific for some domains, we have induced
SGPlan to behave domain-independently by a domain modification script, as proposed by
Coles and Coles (2011). Such a script changes the domain name, adds a never-applicable
action to the domain, and then runs SGPlan over the obtained domain. In addition, our
domain-modification script also changes the names of domain operators.

Fast Downward (Version 1.0.1; Helmert, 2006). Fast Downward (abbreviated with FD)
translates the input pddl problem specification into its multi-valued state variable repre-
sentation SAS+ (Bäckström & Nebel, 1995), and searches for a plan in the space of the
world states using a heuristic derived from the causal graph, a particular graph representing
the causal dependencies of SAS+ variables. PbP integrates the 2006 version of the planner.
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The main improvement compared to the earlier version of the planner that in 2004 won the
propositional satisficing track of IPC4 is the addition of safe abstraction, a form of problem
simplification that allows the planner to solve certain kinds of simple problems without
search.

LAMA (Version 2008; Richter & Westphal, 2010). LAMA is built on Fast Downward, using
SAS+ state variables and multi-heuristic search. Its core feature is the use of a pseudo-
heuristic derived from landmarks, propositions that must be true in every solution of a
planning task. Moreover, a weighted A? search is used with iteratively decreasing weights,
so that the planner continues to search for plans of better quality.

LPG-td (Gerevini et al., 2006). LPG-td inherits the main ideas used in LPG (Gerevini et al.,
2003). LPG uses stochastic local search in a space of partial plans represented through action
graphs. The search steps are certain graph modifications transforming an action graph into
another one. LPG-td includes more accurate heuristics for selecting the graph modifications
than those in LPG.

ParLPG (Version IPC7; Vallati et al., 2013b). ParLPG is a recent system based on the
idea of automatically configuring a generic, parameterized planner using a set of training
planning problems in order to obtain speed-optimized planners that perform especially well
for the domains of these problems. ParLPG uses the FocusedILS variant of the off-the-shelf,
state-of-the-art automatic algorithm configuration procedure ParamILS (Hutter et al., 2007,
2009), and the planning system LPG (ver. 1.0), which has several components that can be
configured very flexibly via many exposed configurable parameters.

4. Experimental Analysis

In this section, we present the results of a large experimental study about PbP with the
following main goals:

(G1) describing the configured portfolios and analyzing the configuration process of PbP
(Section 4.2);

(G2) analyzing the efficiency of PbP.s/q in terms of speed and plan quality in the context
of the planning competitions IPC6-7 (Section 4.3);

(G3) comparing the performance of the planner portfolio configured by PbP.s/q versus other
planning systems based on planner portfolios (Section 4.4);

(G4) evaluating the effectiveness of using the (automatically computed) domain-specific
configuration knowledge in PbP.s/q (Section 4.5);

(G5) comparing the performance of the planner portfolio configured by PbP.s/q versus the
single basic planners in the portfolio, and evaluating the accuracy of the planner
cluster selection in PbP.s/q (Section 4.6);

(G6) analyzing which kind of macros is selected by PbP for the planners in the configured
portfolio, evaluating the effectiveness of using the selected macro set, and understand-
ing PbP.s/q’s accuracy for selecting the most useful set (Section 4.7);
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(G7) investigating some possible alternative methods for scheduling the execution of the
planners in the selected cluster, and understanding the effectiveness of the default
round-robin strategy in PbP.s/q (Section 4.8).

This experimental study uses various versions of PbP, the most important of which
are listed in Table 1. For G1, we show the CPU time of each configuration step, and we
evaluate if the size of the training problem set can be important to derive effective configured
portfolios. For G2, PbP is compared with the planners that entered the learning track of
IPC6-7 and the winner of the deterministic track of IPC7. For G3, the performance of
PbP is analyzed w.r.t. FDSS (Seipp et al., 2012) and BUS, the portfolio approach proposed
by Roberts and Howe (2007). Although both BUS and FDSS propose to design domain-
independent planner portfolios, in principle they can also be used, like PbP, to generate
domain-optimized planning systems. We will experimentally investigate also such an use of
these approaches, comparing them with PbP. For G4, we show the results of three different
experimental comparisons: comparison between PbP configured using the learned domain-
specific knowledge (DSK), the unconfigured version of PbP (PbP-nok) and the randomly
configured version of PbP (PbP-rand); comparison of the performance gaps of PbP and
PbP-nok w.r.t. the gaps of the IPC6-7 planners with/without their learned knowledge; and
comparison of PbP using the DSK, PbP configured for a single domain but without using
macros, and PbP configured across all IPC7 domains (PbP-allD). For G5, we have conducted
three experiments in which: the performance of PbP and of each incorporated planners are
compared; the performance of PbP is analyzed w.r.t. the best incorporated planner (without
using macros) for every IPC7 domain; and, finally, PbP is compared with the best cluster of
incorporated planners (possibly using macros) for every IPC7 domain. For G6, we compare
the performance of the planners forming the clusters selected by PbP using (i) no macros,
(ii) the set of macros selected by PbP, and (iii) the best performing set of macros; moreover,
we show and comment some features of the sets of macros selected and used by PbP. Finally,
for G7 we perform two experimental analysis: comparison of the clusters selected by PbP
using some different scheduling strategies, and comparison of the performance of PbP using
different PCPVs (PbP with R1-R2/S1-S2).

Before presenting and discussing the results of the experimental analysis, we describe
the experimental settings.

4.1 Experimental Settings

The experiment evaluating PbP.s/q with respect to the other IPC6-7 planners considers
all IPC6-7 benchmark domains (Fern et al., 2011; Jiménez et al., 2011), while the other
experiments focus on the most recent IPC7 domains. Regarding the training problems used
in the experiments, for the IPC6 domains they are the same as those of IPC6; for the IPC7
domains, they are a set of 540 problems of various sizes (60 problems for each IPC7 domain,
unless otherwise specified for the particular experiment under consideration) that have been
generated using the problem generator made available by the organizers of IPC7 (for IPC7,
no explicit set of training problems was provided). The training problems are used for both
learning macros and configuring the portfolio. Since the learning procedure of Wizard can
run a planner over the training problems several times, in order to make the training not
too much time consuming, half of the training problem set was designed to be formed by
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PbP versions
PbP (default) Last version of PbP configured by computing the domain-specific knowledge (DSK)
PbP-IPC6 Version of PbP that entered IPC6 configured using DSK
PbP-IPC7 Version of PbP that entered IPC7 configured using DSK
PbP-nok Unconfigured portfolio
PbP-rand Randomly configured portfolio
PbP-noM Configuration without macros
PbP-allD Configuration without macros and across all IPC7 domains

PbP with S1 Configuration using sequential scheduling of the planners with uniform time slots
PbP with S2 Configuration using sequential scheduling of the planners with non-uniform time slots

PbP with R1 ≡ PbP Configuration using round-robin scheduling of the planners with the default PCPV
PbP with R2 Configuration using round-robin scheduling of the planners with different PCPVs

PbP with 10/30/60 Configuration using 10/30/60 training problems

Table 1: Main variants of PbP generating different types of planner portfolio configurations
used in the experimental analysis.

problems that took up to 30 seconds to solve by some planner; the other half is formed by
problems that took up to about 450 seconds (half of the CPU time limit used in the testing
phase) to solve.

Regarding the test problems, we used the same problems as those used in IPC6-7: the
IPC6 test problems were used for evaluating the performance of PbP.s/q with respect to
the planners that entered IPC6; the IPC7 test problems, that are generally larger and much
more difficult than the IPC6 problems, were used for evaluating PbP.s/q with respect to
the IPC7 planners, as well as for all other experiments in our analysis.

All our experiments have been conducted using the last version of PbP.s/q, which is
not exactly the same as the one that entered and won IPC7 (PbP-IPC7 for short) for
three reasons:6 (a) PbP-IPC7 was not properly compiled because of the lack of some C-
libraries on the competition machine, which was discovered only after competition; (b)
PbP-IPC7 contains a very minor syntax bug about the format of the output plans that for
few IPC7 domains made all generated plans invalid to the program validating them used in
the competition (Howey, Long, & Fox, 2004); and (c) PbP-IPC7.s uses SGPlan5 without the
domain-modification script that induces SGPlan5 to behave domain-independently. Points
(a) negatively affected the performance of PbP-IPC7.s/q, because one of the incorporated
planners (Macro-FF) could not run when selected. For (b), many valid plans generated
by PbP-IPC7.s/q were rejected by the plan validator of IPC7. Point (c) changed the com-
position of some clusters selected by PbP-IPC7.q that include SGPlan5, but it does not
make the performance of PbP.q and PbP-IPC7.q substantially different. The only difference
between the planner clusters selected by PbP-IPC7.s and those of PbP.s concerns domain
Blocksworld, as the cluster of PbP-IPC7.s consists of ParLPG without macros, while the
cluster selected by PbP.s is ParLPG using the Bunching set of macros computed by Wizard.

For the comparison with the IPC6 planners, the results of PbP.s/q were obtained by
running its last version on a machine similar to (same CPU frequency and amount of RAM)
the one used to obtain the official IPC6 data (an Intel Core(tm) Quad-processor Q6600 with
3 Gbytes of RAM). For the comparison of PbP.s/q and the IPC7 planners, all systems were
run using the same machine of IPC7 (a Quad-core Intel Xeon 2.93 GHz with 4 Gbytes of

6. The code of the last version of PbP is available from http://chronus.ing.unibs.it/pbp/.
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RAM) that the IPC-organizers made available to us for this experiment. Unless otherwise
specified, the other experiments were conducted using a Quad-core Intel Xeon(tm) 3.16
GHz with 4 Gbytes of RAM.

The experimental analysis required many days of CPU time. Unless otherwise indicated,
as in IPC6-7, the CPU-time limit of each run of PbP.s/q was 15 minutes, PbP.s/q used the
default configuration process (the CPU-time limit for each simulated execution of a planner
cluster was 15 minutes), and the planners of the configured portfolio were run by the round-
robin scheduling described in Section 3.2. The performance data of each planner in PbP.s/q
incorporating a randomized algorithm (i.e., LPG, ParLPG and LAMA) were obtained by a
single run for each considered problem instance.

The experimental comparisons with the test instances will generally use three alternative
methods: the average of the performance data, the IPC7 score function (Jiménez et al.,
2011), and the same Wilcoxon sign-rank test used for the planner cluster selection during
configuration. Given two compared planners and a problem set, the average CPU time of
each planner is computed over the problems in the set that are solved by at least one of the
compared planners, and using the CPU-time limit (900 seconds) as the CPU time of the
planner when it does not solve a problem; the average plan quality is computed over the
problems solved by both the compared planners.

The IPC7 score function is defined as follows. Concerning planning speed, if a planner
P solves a problem π using t CPU time, it gets a time score equal to 1

1+log10(t/t∗) , where

t∗ is the best time over the times required by the planners under comparison for solving
π. Concerning plan quality, if P generates a plan with l actions solving π, it gets a quality
score equal to l∗

l , where l∗ is the number of actions in the shortest plan over those computed
by the compared planners for π. If P does not solve π, then it gets zero score (both for
speed and quality). Given a domain D, the time (quality) score of planner P for D is the
sum of the time (quality) scores assigned to P over all the considered test problems in D.
The IPC7 score function for speed is a refinement of the IPC6 score function. Both the
IPC6 and IPC7 time scores are defined according to how much slower a planner performs
than the best performing one, but the IPC6 score penalizes slowdowns more heavily than
the IPC7 score. For our experiments, we observed that using the IPC6 function, instead of
the IPC7 function, gives similar general results that are slightly more favorable to PbP.s.

As for the Wilcoxon sign-rank test, the null hypothesis is that the performance of a
compared pair of planning systems is statistically similar. The level of confidence we used
is p = 0.001. If the analysis involves the comparison of more than two planning systems,
then, in order to maintain the confidence level used when only one hypothesis is tested
(i.e., only a pair of planners is compared), the confidence level has been modified by the
Bonferroni’s correction (Shaffer, 1995). For our analysis, the usage of the Bonferroni’s
correction implies that, if the experimental result we obtain by the Wilcoxon sign-rank test
derives from the comparison of n planning systems, then the used confidence level is 0.001

n−1 .
Moreover, for the plan quality comparison using the Wilcoxon sign-rank test, the quality of
the plans computed by two compared planners is normalized by the length of the best plan
for all the test problems solved by these planners. Since the Wilcoxon sign-rank test uses a
ranking of the differences between values in each sample pair, if we compared the absolute
plan length directly, without normalization, such differences in values between domains
could result in an unintended bias, with small relative differences in a benchmark domain
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Domains PbP.s PbP.q
IPC6 domains
Gold-miner YAHSP (Cl) Macro-FF (M1), LAMA (B), LPG (0)
Matching-BW ParLPG (–) Marvin (0), LAMA (–), LPG (B)
N-puzzle ParLPG (–) FastDownward (–), LAMA (–), LPG (0)
Parking Macro-FF (M2) FF (0), LAMA (–)
Sokoban ParLPG (–) Macro-FF (M2), LPG (B)
Thoughtful FF (–), YAHSP (–) Macro-FF (M5), Marvin (–), LAMA (–)
IPC7 domains
Barman SGPlan5 (B) SGPlan5 (Cl), FF (–), LAMA (–)
Blocksworld ParLPG (B) ParLPG (–), LPG (B)
Depots Macro-FF (M2), ParLPG (0) Macro-FF (M2), ParLPG (0), SGPlan5 (Ch)
Gripper ParLPG (–) Marvin (–), ParLPG (–)
Parking Macro-FF (M2) FF (0), LAMA (–)
Rovers ParLPG (–) LAMA (–), ParLPG (–)
Satellite ParLPG (–) ParLPG (–), Marvin (0)
Spanner ParLPG (–) LPG (–)
TPP Macro-FF (M1) LAMA (–), SGPlan5 (Ch)

Table 2: Planners and sets of macros (in round brackets) in the cluster selected by PbP
for the IPC6-7 domains. “–” and “0” indicate that no macros was generated and
selected, respectively; “Ch”, “B” and “Cl” abbreviate the three sets of macros
Chunking, Bunching and Clumping generated by Wizard, respectively; M1–M5 are
the five sets of macros generated by Macro-FF. The order of the planners listed in
the clusters corresponds to the order in which they run.

with large solution plans weighted as more important than larger relative differences in a
domain with small plans.

4.2 Overview of the Configured Portfolios Generated by PbP

This section concerns experimental goal G1: we give some information about the config-
ured portfolios (multi-planners) generated by the default version of PbP.s/q (see Table 1),
the relative CPU times used for the automated portfolio configuration, and the size of the
training problem set used for configuring PbP. Table 2 shows the planners in the clus-
ters selected by PbP for every IPC6-7 domain. For each planner in the cluster, the table
also indicates in brackets the sets of macros selected by PbP, which are available from
http://chronus.ing.unibs.it/pbp (the computed planning time slots in the clusters are
omitted for brevity and clarity). For example, for Depots, PbP.q selects the cluster formed
by (i) Macro-FF with the two learned macros that most frequently appear in the Macro-FF’s
plans solving the training problems, (ii) ParLPG without any of the computed macros, and
(iii) SGPlan5 with the set of macros obtained by the chunking macro generation method of
Wizard. From the configured portfolios in Table 2 we can derive the following observation:

Experimental result 4.2.1 The planner clusters selected by PbP often are formed by dif-
ferent sets of planners and macros: overall all nine basic planners are helpful (each of them
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is selected by PbP.s/q at least once), and different sets of macros are considered more helpful
than others, including, in few cases, the empty set.

Concerning planning speed, we observe that for most domains PbP.s relies on a single
planner possibly using a set of macros. In particular, for 7 of the 15 considered domains
ParLPG outperforms the other incorporated planners, and hence for these domains the
selected cluster contains only ParLPG. The main reason of the better performance of ParLPG
is that it uses LPG with a parameter configuration that is (automatically) optimized for
every considered domain, and this can greatly speedup the planner (Vallati et al., 2013b).
We observed that, in a previous version of PbP that entered IPC6 without ParLPG, the
selected clusters were even more varied.

It is interesting to observe that when PbP selects Macro-FF for the configured portfolio
this planner always uses a non-empty set of macros. The fact that in the selected clus-
ter Macro-FF always uses one among the learned sets of macros indicates that the macro
construction and exploitation methods incorporated into Macro-FF are effective for this
planning system.

Table 3 gives the CPU times used by PbP.s for the different phases of the portfolio
configuration applied to the IPC7 domains, for which a machine with a Quad-core Intel
Xeon(tm) 3.16 GHz and 4 Gbytes of RAM was used.7 The configuration times of PbP.q
are similar to those of PbP.s for the macro extraction and cluster simulation phases, while
they are higher for the performance measurement, because the incorporated incremental
planners can use the whole CPU-time limit in order to find good quality plans. Although
configuring PbP for a specific domain requires a considerable amount of CPU time, it should
be considered that such a configuration needs to be done only once, since the generated
configured portfolio (selected planner cluster) can be used for all the problems in the domain.

Finally, in order to understand if small sets of training problems can be sufficient to
derive informative DSK for test problems that are larger than the training ones, we have
compared the performance of PbP configured using the default number of 60 training prob-
lems and using half and one-sixth of these training problems. (The range of the problem
size is the same for each of the three sets of training problems.) The results of this analysis
are in Table 4. Of course, the lower the number of training problems is, the cheaper the
training of PbP is. On the other hand, the DSK computed using few training problems can
sometime be much less effective and informative than the DSK obtaining using larger sets.

For Depots, PbP.s with the DSK derived from 60 training problems performs much
better than with the DSKs derived from 30 and 10 training problems; for all the other
domains, the performance of PbP.s with the three compared DSKs is similar or the same. It
is interesting to observe that Depots is the only domain for which the cluster of PbP.s has two
planners. For this domain, the cluster of PbP.s derived from 60 training problems consists
of Macro-FF and ParLPG: for 16 training problems ParLPG hands a solution to PbP.s, while
for the other 44 training problems the solution of PbP.s is obtained by Macro-FF. If the
DSK is derived from 30 or 20 training problems, either Macro-FF or ParLPG is not part of
the configured cluster of PbP.s and this makes PbP.s performing worse.

7. For every IPC7 domain, the parameter configuration of ParLPG required about 1400 hours.
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IPC7 Macro Extraction Performance Simulation & Total
Domains Macro-FF Wizard Measure Selection
Barman 37.5 28.5 121.6 0.02 187.6
Blocksworld 16.4 44.2 92.7 0.02 153.4
Depots 7.1 82.9 92.4 0.02 182.4
Gripper 45.3 12.9 96.8 0.02 155.0
Parking 23.8 86.5 163.0 0.02 273.3
Rovers 18.2 0.0 57.3 0.02 75.6
Satellite 14.1 41.3 60.0 0.02 115.4
Spanner 5.25 0.8 110.7 0.02 116.8
TPP 19.3 3.9 34.5 0.02 57.8

Table 3: CPU hours used by the configuration of PbP.s for the IPC7 domains: extraction of
macros with Macro-FF and Wizard (2nd and 3rd columns), performance measure-
ment phase (4th column), cluster run simulation and best cluster selection (5th
column), total configuration time (6th column).

For Depots, Satellite and TPP, PbP.q with the DSK derived from 60 training problems
performs much better than with the DSK derived from 30 or 10 training problems. For all
the other domains, the performance of PbP.q is similar or the same.

4.3 Performance of PbP and the IPC6-7 Planners

This section concerns experimental goal G2: we experimentally evaluate the performance
of PbP in the context of IPC6-7 with the aim of showing that it is competitive with other
recent planning systems using domain specific learned knowledge. Since at the time of
writing several IPC6-7 planners and the relative domain specific knowledge are not available,
for this experiment we used the official competition data (CPU times, plan qualities and
number of solved problems) and the results we obtained by running the last version of PbP.

In the learning track of IPC6 and IPC7, the competing teams were not aware of the
domains used for the evaluation before submitting their systems. After code submission,
the contest had two phases. In the first phase, the domains were released and the learning
parts of the planners were run to automatically derive, for each domain, some additional
knowledge using a set of training problems in the domain. In the second phase, after sub-
mitting the learned knowledge to the IPC organizers, the planners were run with the relative
learned knowledge, and the resulting performance data were compared using the IPC score
function. The interested reader can find more details about the IPC6-7 organization as
well as a collection of short papers describing the IPC6-7 planners that entered the learning
track in (Fern et al., 2011; Jiménez et al., 2011).

For PbP, the knowledge derived in the first phase of the competition is the portfo-
lio configuration knowledge described in the previous section of the paper. The knowl-
edge learned by IPC6 planner ObtuseWedge consists of some special patterns, that extend
the notion of an “n-gram” to include argument relations, and are used with the aim of
speeding up the enforced hill-climbing search (Yoon, Fern, & Givan, 2008). The IPC6
planning systems Wizard+FF and Wizard+SGPlan learn a set of macro actions for plan-
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IPC7 Time score Mean CPU time # solved problems
Domains 60 30 10 60 30 10 60 30 10

Depots 26.0 2.6 2.6 31.9 312.5 312.5 26 4 4
Parking 7.4 4.9 5.8 172.8 127.7 281.3 8 5 7

All domains 33.4 7.0 8.4 110.2 209.8 292.6 34 9 11

IPC7 Quality score Mean plan length # solved problems
Domains 60 30 10 60 30 10 60 30 10

Blocksworld 29.9 29.6 29.6 269.9 272.8 272.8 30 30 30
Depots 24.7 8.6 9.2 151.7 156.2 151.2 26 10 10
Parking 4.8 2.8 2.0 76.0 61.0 61.0 5 3 2
Satellite 29.6 0.0 27.8 – – – 30 0 28
TPP 14.8 7.7 0.0 – – – 15 8 0

All domains 133.8 78.7 98.6 325.3 326.6 326.0 136 81 100

Table 4: Time/quality score, average CPU time/plan length and number of solved problems
of PbP.s/q configured with DSK computed by using a set of either 60 (default
version of PbP), 30 or 10 training problems. The domains considered are the
IPC7 domains for which the training phase of PbP.s/q derives different DSKs for
training problem sets with different sizes.

ners FF and SGPlan5, respectively. As for the IPC7 planners, Bootstrap-Planner learns a
domain-specific heuristic by combining a set of existing heuristics with weights obtained
by evaluating the performance of the heuristics on the training problems (Arfaee, Zilles, &
Holte, 2010). Finally, the knowledge learned by OALDAEYASHP (Brendel & Schoenauer,
2011), ParLPG, FastDownward-autotune-speed and FastDownward-autotune-quality (Fawcett
et al., 2011) consists of domain-specific parameter configurations.

Table 5 gives an overall experimental evaluation of the best-performing planners in
IPC6 (using the IPC6 domains) and of the best-performing planners in IPC7 (using the
IPC7 domains), in terms of percentage of solved problems, planning speed and plan quality.
All compared planners were run with the relative learned knowledge. From the data in
Table 5, the following general experimental result can be derived.

Experimental result 4.3.1 For the IPC6-7 domains and problems, PbP.s is generally
faster than the compared IPC6-7 planners, PbP.q performs generally better in terms of plan
quality, and PbP.s/q solves many more problems.8

Remarkably, PbP.s/q solves a very high percentage of the IPC6-7 benchmark problems
within 15 CPU minutes, and PbP.q almost always computes a plan that is better than the
plan computed by any other competitor. In contrast, the time score of PbP.q is low, since
PbP.q usually runs more than one planner and stops only when all the selected planners
terminate or the CPU-time limit is exceeded.

8. The version of PbP used for the comparison does not suffer the technical problems indicated in Section
4.1 that affected the performance of PbP at IPC7. At IPC7 other planners may have suffered similar
problems, and their implementation might also have improved versions which we have not considered.
However, we note that even the version of PbP.s/q that entered IPC7 performs generally better than the
other competing planners.
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Best IPC6 planners Problem Solved Time score Quality score
(%) (max = 180) (max = 180)

PbP.s 97.0 105.5 111.2
PbP.q 95.0 6.89 169.1
ObtuseWedge 65.0 73.5 75.6
PbP-IPC6.s 95.6 88.2 111.4
PbP-IPC6.q 92.8 6.43 132.3
RFA1 47.2 14.7 52.3
Wizard+FF 56.7 47.3 72.4
Wizard+SGPlan 51.1 56.1 65.2

Best IPC7 planners Problem Solved Time score Quality score
(%) (max = 270) (max = 270)

PbP.s 87.4 232.7 202.5
PbP.q 83.7 76.2 221.7
Bootstrap-Planner 4.07 3.28 10.93
FastDownward-autotune-speed 77.0 110.0 170.8
FastDownward-autotune-quality 32.2 35.3 64.3
OALDAEYASHP 7.41 5.70 3.76
ParLPG 57.04 104.0 146.0
PbP-IPC7.s 71.48 178.1 172.5
PbP-IPC7.q 70.37 71.1 192.7
LAMA-2011 37.67 37.9 (1st sol.) 82.4 (last sol.)

Table 5: Percentage of solved problems within 15 CPU minutes, and time and quality scores
of PbP.s/q and the (best performing) planners that took part in the learning track
of IPC6-7 for the domains and problems of IPC6-7. Larger scores indicate better
performances. PbP-IPC6 and PbP-IPC7 indicate the versions of PbP that took part
in IPC6 and IPC7, respectively; LAMA-2011 is the winner of the deterministic track
of IPC7.

An analysis of the competition results (planner CPU times and plan qualities) using the
Wilcoxon sign-rank test instead of the IPC score functions for the performance comparison
confirms that PbP.q generates significantly better quality plans (z = −3.920, p < 0.001

7 ). The
p-value obtained by this analysis is 0.004 (with z-value equal to −2.846). Since the p-value is
not below the adjusted critical value of 0.001

7 , the null hypothesis (the performance of PbP is
similar to the performance of the other IPC6-7 planners in terms of speed) is accepted, and
thus the research hypothesis (the performance of PbP is statistically different) is rejected.
However, it is worth pointing out that the critical value of 0.001 is quite hard to reach,
especially given that we also apply an experiment-wise error adjustment. If we had set a
less stringent critical value, say 0.05, then the adjusted critical value would be 0.05

7 = 0.0071,
and p-value of 0.004 would be significant.

Table 6 gives details about the performance comparison for each IPC7 domain. In
terms of speed, PbP.s has the best performance in eight out of the nine domains consid-
ered in the analysis; the only domain where it does not perform best is Parking, where
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IPC7 Planners Solved problems
Barman BW Depots Gripper Parking Rovers Sat Spanner TPP

Bootstrap-Planner 0 11 0 0 0 0 0 0 0
FDA-speed 30 29 20 30 20 30 19 0 30
FDA-quality 0 27 0 1 9 30 7 0 14
OALDAEYASHP 0 20 0 0 0 0 0 0 0
ParLPG 0 30 17 30 0 27 30 30 15
PbP-IPC7.s 29 29 26 30 0 27 30 30 0
PbP-IPC7.q 30 30 10 30 5 30 30 30 0
PbP.s 30 30 26 30 8 27 30 30 25
PbP.q 30 30 26 30 5 30 30 30 15
LAMA-11 2 29 0 0 5 30 13 0 20

IPC7 Planners Time score
Barman BW Depots Gripper Parking Rovers Sat Spanner TPP

Bootstrap-Planner 0.0 3.28 0.0 0.0 0.0 0.0 0.0 0.0 0.0
FDA-speed 14.3 12.1 10.9 9.84 18.7 13.5 6.39 0.81 23.5
FDA-quality 0.0 9.31 0.0 0.55 5.67 11.4 1.92 0.51 5.96
OALDAEYASHP 0.0 5.70 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ParLPG 0.0 16.3 9.18 15.3 0.0 17.5 17.7 16.2 11.9
PbP-IPC7.s 28.8 17.3 25.1 30.0 0.0 27.0 30.0 30.0 0.0
PbP-IPC7.q 22.9 8.27 3.05 8.47 2.62 8.21 10.2 7.34 0.0
PbP.s 28.8 30.0 25.1 30.0 7.14 27.0 30.0 30.0 24.8
PbP.q 22.9 8.27 7.95 8.47 2.62 8.21 10.2 7.34 7.37
LAMA-11 (1st sol.) 0.52 10.6 0.0 0.0 2.8 10.0 3.5 0.0 10.5

IPC7 Planners Quality score
Barman BW Depots Gripper Parking Rovers Sat Spanner TPP

Bootstrap-Planner 0.0 3.76 0.0 0.0 0.0 0.0 0.0 0.0 0.0
FDA-speed 26.9 13.2 20.0 28.8 17.2 24.2 15.7 0.0 24.8
FDA-quality 0.0 13.3 0.0 0.0 9.00 22.8 6.67 0.0 12.6
OALDAEYASHP 0.0 10.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ParLPG 0.0 21.7 8.31 28.6 0.0 21.4 28.5 30.0 7.54
PbP-IPC7.s 28.4 24.1 16.8 27.5 0.0 19.3 26.5 30.0 0.0
PbP-IPC7.q 30.0 29.8 9.01 29.9 4.09 30.0 30.0 30.0 0.0
PbP.s 28.4 21.1 16.8 27.5 9.08 19.3 26.5 30.0 23.9
PbP.q 30.0 29.8 23.0 29.9 4.09 30.0 30.0 30.0 14.9
LAMA-11 (last sol.) 1.86 21.8 0.0 0.0 3.8 24.7 11.0 0.0 19.3

Table 6: Number of solved problems, and time/quality scores of the (best performing)
IPC7 planners for each IPC7 domain. FDA, LAMA-11, BW and Sat abbreviate
FastDownward-Autotune, LAMA-2011, Blocksworld and Satellite, respectively.

FastDownward-Autotune-speed performs better. Similarly, in terms of quality, PbP.q has
the best performance in seven out of nine domains, it performs as well as ParLPG and
PbP.q in one domain (Spanner), and it performs worse than FastDownward-Autotune-speed
in two domains (Parking and TPP). It is worth noting that in principle a portfolio approach
should incorporate the planners most promising for attempting the problems of a domain.
The current version of PbP integrates the planners that have established the state-of-the-art
when PbP was developed, and at that time FastDownward-Autotune-speed was not avail-
able. The results in Table 6 indicate that our portfolio-based approach would reach better
performance, if it also incorporated such a planner. For instance, it is likely that PbP would
select this planner for domain Parking, greatly improving its performance for this domain.
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Finally, we comment on the relative performance of PbP and the winner of the deter-
ministic satisficing track of IPC7, the 2011 version of LAMA. Of course, we cannot expect
that a domain-independent planner, such LAMA, performs better than a planner exploiting
(learned) specific domain knowledge. On the other hand, it is definitely a desired property
that the other way around holds: a planning system that uses some form of (automatically
acquired) domain specific knowledge is effective only if it performs better than a state-of-
the-art domain-independent planner that does not use such additional knowledge.

The last lines of Tables 5 and 6 indicate the global and domain-by-domain performance
of LAMA-2011 with respect to the planners of the learning track of IPC7, considering the
score functions of this competition track.9 For this comparison, the CPU time limit used
to run LAMA is 15 minutes, the same time limit as the one used to run PbP.s/q and the
other planners that took part in the learning track of IPC7. It is worth noting that the
IPC7 domains of the learning track are propositional, and the IPC7 problems do not require
the optimization of an explicit specified plan metric; for these problems, both LAMA and
PbP minimize the number of actions. It can be seen that PbP.s/q performs substantially
better than LAMA-2011. The results in Table 5 show that PbP.s/q solves many more IPC7
problems, and it achieves considerably better overall time and quality scores with respect
to LAMA-2011’s first and best quality solutions, respectively. The results in Table 6 show
that: PbP.s has a much higher speed performance for every domain, and a much higher
quality performance for most of the domains; PbP.q has a much higher quality performance
for seven domains, while it performs similarly for the other two domains, and it has a much
higher speed performance for most of the domains.

Moreover, since in the deterministic track of IPC7 the CPU-time limit was 30 minutes,
we compared LAMA-2011 and PbP.s/q over the problems of the learning track using this
limit for the first planner, but keeping 15 CPU minutes for the second. The extra CPU
time for LAMA-2011 does not considerably change the results of the comparison: overall,
the total time scores of LAMA-2011 and PbP.s/q are 61.9 and 231.9/116.5, respectively;
the total quality scores of LAMA-2011 and PbP.s/q are 80.7 and 227.6/206.2, respectively;
LAMA-2011 solves 101 problems while PbP.s/q solve 238/230 problems.

The previous experimental analysis of PbP.s/q and LAMA-2011 is summarized in the
following claim, suggesting that if a portfolio-based planner is (automatically) configured for
a given domain, it can perform much better than a state-of-the-art fully domain-independent
planner.

Experimental result 4.3.2 For the benchmark domains of the learning track of IPC7,
the configured versions of PbP.s/q perform better than the IPC7 winner of the deterministic
track.

Since PbP without configuration knowledge (PbP-nok) is a fully domain-independent
planner, it is also interesting to see how well PbP-nok performs w.r.t. LAMA-2011. For this
experimental comparison, we also used the benchmark domains and problems of the deter-
ministic track of IPC7, with the same CPU-time limit of IPC7 for each run (30 minutes).

9. Although the experimental comparison considers both planning time scores and plan quality scores, it
should be noted that the deterministic track of IPC7 focused on plan quality, and hence LAMA-2011 has
presumably been developed focusing on quality rather than speed. In this sense, the results about plan
quality in our comparison with LAMA-2011 are more meaningful than those about planning speed.
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Moreover, since the deterministic track of IPC7 focused on plan quality, measured as total
action cost, we considered only the quality version of PbP-nok. While LAMA-2011 optimizes
total action cost, PbP-nok.q and the incorporated planners consider number of actions for
plan quality. Although our analysis relies on the total action cost, and hence is somewhat
in favor of LAMA-2011, we observed that PbP-nok.q is competitive with LAMA-2011. For
the problems of the IPC7 deterministic track, the total quality score and number of solved
problems are slightly lower for PbP-nok.q than for LAMA-2011 (214.8 against 232.2, and
239 against 250, respectively). The lower quality score of PbP.q is mainly because of two of
the fourteen IPC7 domains (Elevator and Parcprinter), where PbP-nok.q obtains much
lower scores (1.0 against 19.0 and 3.0 against 19.6, respectively). For the test problems of
the learning track of IPC7, PbP-nok.q performs even better than LAMA-2011 (IPC quality
score: 168.8 versus 97.5; solved problems: 181 versus 105).

Experimental result 4.3.3 For the benchmark domains of the deterministic and learning
tracks of IPC7, PbP.q without configuration knowledge is competitive with the winner of the
IPC7 deterministic track.

Given that PbP.q without configuration performs already well, a performance improve-
ment obtained by exploiting the computed configuration knowledge is even more notable.
Section 4.5 shows that the portfolio configuration of PbP.s/q is very useful to improve
performance.

4.4 Performance of PbP and Other Planner Portfolios

This section concerns experimental goal G3: we compare PbP with two planner portfolio
approaches: FDSS (Helmert et al., 2011) and BUS (Roberts & Howe, 2007).

4.4.1 PbP versus FDSS

Table 7 shows the performance of PbP.s/q w.r.t. FDSS with and without using macros.10

The results of this comparison can be summarized as follows.

Experimental result 4.4.1 For the benchmark domains of the learning track of IPC7, in
terms of number of solved problems PbP.s/q performs always better than FDSS, except for
domains Rovers and TPP, where FDSS solves few problems more than PbP.s and PbP.q,
respectively. In terms of time score, PbP.s always performs better than FDSS. In terms of
quality score, PbP.q performs always better except for TPP.

We think there are at least four reasons why in our experiments PbP performed generally
better than FDSS. The main reason is that, while PbP is separately configured for every
considered domain, FDSS always uses the same configuration determined from the problem
instances of IPC1–6, that were designed using problem distributions quite different from
those of the learning track of IPC7 (Seipp et al., 2012). Other reasons are (a) the diversity
of the planning methods implemented in the planners incorporated into PbP and FDSS, (b)
the usage of macros in PbP.s/q, and (c) the different portfolio configuration techniques of

10. The version of FDSS that was run in this experiment uses 15 of the 38 variants of FastDownward analyzed
by Helmert et al. (2011).
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Planners # solved problems
Barman BW Depots Gripper Parking Rovers Sat Spanner TPP Total

PbP.s 30 30 26 30 8 27 30 30 25 236
PbP.q 30 30 26 30 5 30 30 30 15 226
FDSS 0 21 0 0 0 28 14 0 17 80
FDSS+M 0 10 0 0 0 28 14 0 17 69
PbP-nok.s 23 17 8 24 0 20 11 13 7 123
PbP-nok.q 23 18 8 25 0 17 11 13 10 125

Planners Time score
Barman BW Depots Gripper Parking Rovers Sat Spanner TPP Total

PbP.s 30.0 30.0 26.0 30.0 7.8 27.0 30.0 30.0 23.7 234.5
PbP.q 23.0 8.27 8.03 8.47 2.54 8.21 10.2 7.3 7.1 83.2
FDSS 0.0 9.7 0.0 0.0 0.0 17.1 8.8 0.0 8.5 44.1
FDSS+M 0.0 3.6 0.0 0.0 0.0 17.1 8.8 0.0 9.0 38.5
PbP-nok.s 6.7 7.1 5.1 10.3 0.0 9.8 4.7 5.3 3.2 52.2
PbP-nok.q 6.2 5.4 3.0 7.9 0.0 5.8 4.1 5.3 3.8 41.5

Planners Quality score
Barman BW Depots Gripper Parking Rovers Sat Spanner TPP Total

PbP.s 28.4 21.3 17.2 27.6 5.4 18.2 26.3 30.0 20.3 194.7
PbP.q 30.0 29.9 26.0 30.0 5.0 27.9 29.5 30.0 14.2 222.5
FDSS 0.0 13.4 0.0 0.0 0.0 24.9 12.2 0.0 16.1 66.6
FDSS+M 0.0 12.9 0.0 0.0 0.0 24.9 12.2 0.0 15.4 65.4
PbP-nok.s 22.5 10.3 7.6 18.1 0.0 18.7 8.9 13.0 6.3 105.4
PbP-nok.q 22.5 12.3 7.4 19.9 0.0 15.8 9.8 13.0 9.3 110.0

Table 7: Number of solved problems, and time/quality scores of PbP, PbP-nok, FDSS
with/without using macros for each IPC7 domain. FDSS+M, BW and Sat ab-
breviate FDSS using macros, Blocksworld and Satellite, respectively.

the two compared systems. Concerning (a), if we consider for instance domain Spanner,
PbP.s/q outperforms FDSS because PbP’s configured portfolios use ParLPG/LPG (see Table
2). While every planner incorporated into FDSS uses heuristic forward search techniques,
ParLPG/LPG uses heuristic techniques searching a space of partial plans, which seems more
effective for this domain. As for (b), we tried to learn macros for FDSS using Wizard, but
unfortunately no useful macro was learned for this planning system. Therefore, we tested
the performance of FDSS using the same macros learned by Wizard and selected by PbP.s/q
for the planners in the configured portfolios (see Table 2). The results in Table 7 indicate
that, while using these macros sometimes greatly improves the performance of PbP, they
are not really effective for FDSS.

Finally, in order to better understand the importance of (c), we also developed and com-
pared with PbP a new variant of FDSS, called FDSSd, restricting the differences between
FDSS and PbP to their configuration techniques. Specifically, FDSSd has the following sim-
ilarities and differences w.r.t. the original FDSS. While FDSSd uses the same configuration
techniques of FDSS, it configures the planner portfolio separately for each input domain
(instead of for a set of domains altogether), uses macros, and integrates the same planners
as PbP (instead of a set of forward-state planners). Then, the most important differences
between PbP and FDSSd are the method for the planner cluster selection and the scheduling
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IPC7 Domain FDSS.qd

Barman S (Cl),FF, L,M
Blocksworld M (B),FF (Ch),MFF (M1),FF (B),P, L, LPG (Ch), LPG (B)
Depots LPG,M,FF (Ch),MFF (M1),FF (Cl),S (Ch),S (Cl),P,MFF (M2), L
Gripper M,P
Parking FF (Ch),FF, L
Rovers FF,MFF (M1), L, LPG
Satellite P,M
Spanner P
TPP L (–),S (Ch)

Table 8: Planners and sets of macros (in round brackets) in the cluster selected by FDSSd

for the IPC7 domains. S, L, M, MFF and P abbreviate SGPlan5, LAMA, Marvin,
Macro-FF and ParLPG, respectively; “Ch”, “B” and “Cl” are the three sets of
macros Chunking, Bunching and Clumping generated by Wizard; M1–M5 are the
five sets of macros generated by Macro-FF.

strategy used for running the planners forming the clusters that, as described in Section 2,
are substantially different.

Like for PbP, we computed two sets of domain-optimized portfolio configurations of
FDSSd: FDSS.sd focusing on speed, and FDSS.qd focusing on plan quality. For all the IPC7
domains except Depots, the planner clusters selected by FDSS.s are the same as those of
PbP.s. For Depots, the cluster of FDSS.s consists of Macro-FF using macro set M1 and
Macro-FF using macro set M2, while the cluster of PbP.s consists of ParLPG using no macro
and Macro-FF using macro set M2. For all domain in which FDSS.s and PbP.s have the
same cluster, the cluster is formed by a single planner. Hence, running it by the sequential
scheduling and by the round-robin scheduling is the same thing, and the compared planner
portfolios have the same performance.

The planner clusters selected by FDSS.q are in Table 8. For domains Gripper, Satellite
and TPP, they are the same as those of PbP.q but, in these cases they are formed by more
than one planner. For domains Satellite and Gripper we observed that FDSS.q performs
differently from PbP.q because of the different scheduling strategy. Table 9 shows the re-
sults of the experimental comparison between PbP and FDSSd (results are omitted when
the compared clusters are the same and they are formed by a single planner). Overall, we
can derive the following observation.

Experimental result 4.4.2 For almost all the benchmark problems and domains of the
learning track of IPC7, PbP.s is as fast as FDSS.sd, and for Depots it is slightly faster;
PbP.q computes plans that are always as good as or better than those computed by FDSS.qd,
and solves more problems.

The performance gap between PbP and FDSSd is lower than the gap between PbP and
FDSS, but for Depots PbP.s performs slightly better in terms of speed and number of
solved problems, and over all the IPC7 domains PbP.q performs considerably better in
terms of plan quality. A rationale for this behavior is that, as we will show in Section 4.6,
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IPC7 Max Time score Mean CPU time # solved problems

Domains score PbP.s FDSS.sd PbP.s FDSS.sd PbP.s FDSS.sd

Depots 30 22.2 20.1 53.1 126.3 26 23

IPC7 Max Quality score Mean plan length # solved problems

Domains score PbP.q FDSS.qd PbP.q FDSS.qd PbP.q FDSS.qd

Barman 30 30.0 30.0 448.3 448.3 30 30
Blocksworld 30 30.0 14.4 233.5 340.2 30 20
Depots 30 24.2 19.2 159.9 169.1 26 21
Gripper 30 30.0 23.7 574.0 581.7 30 24
Parking 30 4.8 2.8 70.6 71.7 5 3
Rovers 30 29.8 17.3 580.3 600.2 30 18
Satellite 30 30.0 25.0 775.2 775.2 30 25
Spanner 30 30.0 30.0 326.0 326.0 30 30
TPP 30 15.0 15.0 370.1 370.1 15 15
All domains 270 223.8 177.4 433.1 448.7 226 186

Table 9: Maximum score, time/quality score, average CPU time/plan length and number
of solved problems of PbP and FDSSd on benchmark problems from Depots for
planning speed, and from all the IPC7 domains for plan quality.

running planner clusters by a round-robin scheduling can be more robust than running them
sequentially using possibly inadequate values of planning time slots. Another explanation,
especially for the high performance difference in terms of plan quality, is the different way
in which PbP and FDSSd explore their portfolio configuration spaces. FDSSd searches the
planner cluster to use by a hill-climbing algorithm over the space of possible clusters, while
PbP explores the whole space of possible clusters (with a bound on the number of planners
in clusters). The selected clusters of PbP.s and FDSS.sd are almost always the same because
for the IPC7 domains and the considered training problems configuring the planner portfolio
focusing on speed is quite easy, as in most cases a single planner (possibly using macros)
outperforms every other planner. On the contrary, for these domains and the training
problems, configuring the planner portfolio focusing on plan quality is more difficult for
FDSSd, because its search space contains local minima that prevent FDSSd from finding the
best-performing configuration (planner cluster), while a complete exploration of the search
space allows PbP to identify it.

It is worth noting that the space of the planner clusters of PbP is much smaller than the
spaces of FDSS and FDSSd, since in the space of PbP there cannot be two different clusters
formed by the same planners and the same relative macros, but different relative sequences
of planning time slots (the sequence of planning time slots for a planner with the relative
set of macros is derived according to the default PCPV). If this were not the case, the space
of the clusters of PbP would be orders of magnitude greater, and the time required by PbP
for simulating the cluster execution would not be negligible w.r.t. the time for the other
configuration phases (see Table 3).

The performance comparison of PbP.s and FDSSd using the Wilcoxon sign-rank test
gives a statistical result that is compatible with the performance data in Table 9 and
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Experimental result 4.4.2: over all the IPC7 domains, there is no statistical difference
between the planning CPU times of PbP.s and FDSS.sd (z = −1.257, p = 0.209), while,
in terms of plan quality, PbP.q performs significantly better than FDSS.qd (z = −5.767,
p < 0.001).

4.4.2 PbP versus BUS

Although BUS was originally designed to generate a domain-independent configured plan-
ner portfolio, like FDSS, in principle it can also be used to build domain-specific configured
portfolios. Domain specificity can be obtained simply by having all the training prob-
lems over the same domain. A fully-automated executable of BUS is not available, as the
experimental results presented by Roberts and Howe (2007) were derived by simulation
(Roberts & Howe, 2012). Thereby, in order to compare PbP and BUS, we implemented the
BUS approach using the same planners and macros integrated into PbP, and we generated
domain-specific configured portfolios using this implementation of BUS.

BUS selects the planners for the configured portfolio through a greedy set covering
approximation algorithm over the sets of problems solved by the incorporated planners,
and then the planners forming the clusters are ordered according to the ranking algorithm
by Simon and Kadane (1975). The greedy set covering approximation algorithm iteratively
selects a planner and reduces the set covering problem into a smaller one, until the original
input set is fully covered (Cormen, Stein, Rivest, & Leiserson, 2001). Let D be the planning
domain, P the set of selected planners, and S the set of test problems to cover. Initially, P
is empty and S contains all 60 training problems. At each iteration, the algorithm chooses
the planner with the largest set of solved problems in S, removes these problems from
S, and adds the selected planner to P . If the number of planners with the largest set of
solved problems in S is greater than one, the algorithm selects the first evaluated planner
(the planner evaluation order is random). The process terminates when S is empty. The
resulting set P contains the planners of the configured portfolio.

We experimentally observed that for almost every considered domain, since more than
one incorporated planner solves all training problems in the domain, the set of planners
forming the cluster selected by BUS for the domain consists of only one planner (except
for domain Parking that has two selected planners, LAMA and FF using macro set Clump-
ing). Moreover, the choice of this planner among those that solve all training problems is
drastically affected by the random order in which the greedy set covering approximation
algorithm evaluates the coverage of the planners. Hence, to derive an indication about the
performance that can be reached by our implementation of BUS, we ran the portfolio con-
figuration of BUS nine times, tested the obtained nine configured portfolios, and analyzed
three sets of experimental results for the CPU time and three sets of experimental results
for the plan quality. These three sets were derived using: the median performing configured
portfolio over the nine generated for each considered domain, and the best/worst perform-
ing configured portfolio over all the possible portfolios that can be generated by the greedy
set covering approximation algorithm of BUS. The results of this experimental comparison
are given in Table 10 and summarized in the following observation.

Experimental result 4.4.3 For the benchmark domains of the learning track of IPC7, in
terms of time score and average CPU time, PbP.s/q performs much better than the worst
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IPC7 Time score Mean CPU time # solved problems
Domains PbP.s BUS PbP.s BUS PbP.s BUS

W.s M.s B.s W.s M.s B.s W.s M.s B.s

Barman 30.0 0.0 27.3 30.0 2.0 900.0 2.7 2.0 30 0 30 30
Blocksworld 29.8 7.4 16.1 23.5 9.9 603.2 135.1 19.7 30 10 30 30
Depots 20.6 7.6 14.3 21.1 191.4 590.9 205.0 132.5 26 11 22 26
Gripper 29.5 17.3 17.5 28.9 18.2 183.8 87.3 18.3 30 25 30 30
Parking 7.9 7.2 7.2 7.2 364.1 428.1 428.1 428.1 8 8 8 8
Rovers 26.9 1.7 8.7 26.9 50.5 840.4 411.5 50.5 27 5 18 27
Satellite 30.0 0.0 0.0 23.0 28.3 900.0 900.0 70.2 30 0 0 30
Spanner 30.0 15.0 22.4 30.0 16.9 208.1 151.1 16.9 30 30 30 30
TPP 25.0 0.0 8.2 21.3 121.2 900.0 508.6 175.3 25 0 15 25

All domains 229.7 56.2 121.7 211.9 63.2 627.0 299.6 70.3 236 89 183 236

IPC7 Quality score Mean plan length # solved problems
Domains PbP.q BUS PbP.q BUS PbP.q BUS

W.q M.q B.q W.q M.q B.q W.q M.q B.q

Barman 30.0 0.0 29.5 30.0 – – – – 30 0 30 30
Blocksworld 29.9 9.4 29.7 29.9 198.4 210.6 198.4 198.4 30 10 30 30
Depots 24.4 6.0 13.5 22.8 143.7 175.8 231.8 190.5 26 11 22 26
Gripper 29.0 15.2 15.2 29.9 577.0 876.6 876.6 554.7 30 30 30 30
Parking 4.3 7.8 7.8 7.8 87.8 77.4 77.4 77.4 5 8 8 8
Rovers 25.1 4.4 16.9 29.0 498.8 482.8 522.4 420.0 29 5 18 29
Satellite 30.0 0.0 0.0 28.5 – – – – 30 0 0 30
Spanner 30.0 30.0 30.0 30.0 326.0 326.0 326.0 326.0 30 30 30 30
TPP 14.5 0.0 14.7 21.5 – – – – 15 0 15 25

All domains 217.2 72.8 157.9 229.4 367.6 459.8 464.9 358.7 226 94 183 238

Table 10: Time/quality score, mean CPU time/plan length and number of solved problems
of PbP.s/q, and the worst, median and best portfolios that can be derived by
using BUS for each IPC7 domains. W.s, M.s and B.s denote the worst, median
and best portfolios among those that BUS can derive with the lowest, median, and
highest time score for each considered IPC7 test problems, respectively; similarly
W.q, M.q and B.q denote the worst, median and best portfolios with the lowest,
median, and highest quality score, respectively.

and the median configured portfolios derived by BUS; PbP.s performs slightly better than
the best configured portfolio that an oracle would select among those that can be derived by
BUS, while PbP.q performs slightly worse. In terms of problem coverage (the criterion used
by BUS to select the planners in the cluster), PbP.s solves the same number of problems as
the best configured portfolio that can be derived by BUS.

The results of Table 10 show that the performance obtained by the configured portfolios
generated by BUS varies greatly, indicating that the planner-selection method of BUS is
not very accurate to derive efficient domain-specific configured portfolios. We think that
the main reason of this is that for the planner selection BUS only considers the problem
coverage and ignores the CPU time and plan quality of the incorporated planners. However,
it is important to note that the planner-selection method of BUS was originally proposed for
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Figure 3: Time score (left plot) and quality score (right plot) of PbP, PbP-nok and PbP-rand
with respect to an increasing CPU-time limit T (ranging from 1 to 1000 seconds)
for the IPC7 domains.

different kinds of data sets (problem instances over a set of domains considered altogether
and different from those used in our experiment) and with a different purpose (generating a
domain-independent planner portfolio), for which BUS is a prominent approach that showed
good performance (Roberts & Howe, 2009).

4.5 Effectiveness of the Computed Configuration Knowledge

This section concerns experimental goal G4. In order to understand the effectiveness of the
automated portfolio configuration in PbP, we compare the performance of PbP with the
computed configuration knowledge (PbP.s/q), with no configuration (PbP-nok.s/q), and
with a random configuration (PbP-rand.s/q). In PbP-nok.s/q, all planners in the initial
portfolio are selected, macros are not used, the planning time slots are the same for all
planners, and their execution order is random. PbP-rand.s/q, is the same as PbP-nok.s/q
except that a subset of at most three randomly chosen planners with a (possibly empty)
randomly chosen set of learned macros is used, instead of all planners, and a different
random configuration of PbP.s/q has been generated for every IPC7 problem.

Figure 3 gives an overall picture of the results for all problems in the IPC7 domains
considering different amounts of CPU times for the portfolio configuration; specifically, the
time on the x-axis is the CPU-time limit given to each run of a planner (with a set of
macros) during the performance measurement simulation phase, to each (simulated) run of
the candidate clusters of planners during the planning cluster selection and ordering phase,
and to each run of the configured portfolio during the test phase. The marked points on the
curves for PbP.s/q correspond to performance scores of the different configured portfolios
obtained for the different considered CPU-time limits. These results indicate that, for every
considered CPU-time limit in the configuration phase, PbP.s/q clearly performs better than
PbP-nok and PbP-rand. Moreover, a refined analysis considering each domain separately
shows that PbP.s/q has the best performance also for every single considered domain, and
that in terms of problem coverage for every considered CPU-time limit the gaps between
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PbP.s/q and the other two compared version of PbP are very similar to the gaps in the plots
of Figure 3.

Experimental result 4.5.1 The computed configuration knowledge can considerably im-
prove the performance of PbP.s/q w.r.t. the unconfigured and randomly configured versions
of PbP (PbP-nok and PbP-rand, respectively).

In terms of planning speed, the performance comparison of the three considered ver-
sions of PbP.s/q, using the Wilcoxon sign-rank test gives a similar general result: PbP.s
is statistically faster than the other versions (z = −12.578, p < 0.001

2 ). In terms of plan
quality, PbP.q performs statistically better than the unconfigured version (z = −13.205,
p < 0.001

2 ). For the comparison between PbP.q and PbP-rand.q, we analyzed 47 out of the
230 problems solved by PbP.q, because PbP-rand.q solves few problems and for the plan
quality comparisons we consider only problems that are solved by both the compared plan-
ners. The results of the Wilcoxon test indicates that PbP.q performs similarly to PbP-rand.q
(z = −1.662, p = 0.096). However, it should be noted that the low number of considered
problems makes the statistical comparison through the Wilcoxon sign-rank test not very
accurate and informative for deriving general conclusions about the relative performance in
this case.

We have also tested a version of PbP-nok in which the incorporated planners are run
using the predetermined time slot sequence Spre and the planner runs are ordered using
the same method used by PbP, which considers the relative performance of the planners on
the set of the training problems instead of the random order. Overall the performance of
PbP-nok remains much worse than the performance of (the planner cluster selected by) the
configured version of PbP.

Table 11 analyzes the impact on performance of using DSK (i.e., for PbP, the computed
configuration knowledge) in the best-performing planners that entered the learning track of
IPC6-7. The results of this comparison confirm the strong positive impact of PbP’s DSK.

Experimental result 4.5.2 For the IPC6 domains and problems, the DSK computed for
PbP.s and PbP.q has the strongest impact among the DSK of the IPC6 planners in terms
of improved speed (∆time) and plan quality (∆quality), respectively. The DSK computed
for ObtuseWedge has the strongest impact in terms of percentage of additional solved IPC6
problems.

The reason why the impact of the DSK computed by PbP is quite low in terms of additional
solved IPC6 problems is that PbP.s/q solves almost all these problems even without DSK.

Experimental result 4.5.3 For the IPC7 domains and problems, the DSK computed for
PbP.s has the strongest impact in terms of improved speed (∆time) among the DSK of the
IPC7 planners. The use of the computed DSK in FastDownward-Autotune-speed has the
strongest impact in terms of percentage of additional solved problems and improved plan
quality.

Although in terms of percentage of additional solved problems and improved plan qual-
ity the use of DSK in PbP.s/q has not the highest impact, it leads to high improve-
ments also in PbP.s/q, allowing it to achieve performance that is generally better than
FastDownward-Autotune-speed (see the “Quality Score” column of Table 5).
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Planner ∆Solved (%) ∆Time ∆Quality
Best IPC6 planners
ObtuseWedge +17.3 +34.1 +23.7
PbP-IPC6.s +3.6 + 65.2 −3.0
PbP-IPC6.q +0.9 +5.8 +0.7
Wizard+FF −6.6 +21.0 −15.2
Wizard+SGPlan −1.7 +17.6 −3.1
PbP.s +5.0 +82.5 −3.2
PbP.q +3.3 +6.3 +37.5

Best IPC7 planners
BootstrapPlanner +4.1 +3.3 +10.9
FastDownward-autotune-speed +43.3 +65.3 +99.1
FastDownward-autotune-quality +14.1 +16.0 +26.4
OALDAEYASHP −18.9 −17.3 −40.4
ParLPG-speed +9.3 +42.1 +15.6
PbP-IPC7.s +5.6 +116.5 +16.8
PbP-IPC7.q +7.4 +24.3 +40.9
PbP.s +21.48 +171.1 +46.8
PbP.q +20.74 +29.4 +69.8

Table 11: Performance gaps of the best-performing IPC6-7 planners with/without DSK in
terms of percentage of solved problems, time and quality scores for the IPC6-7
benchmark domains and problems. Planner RFA1 is omitted because it works
only with DSK.

Finally, we conducted an experiment to understand if configuring PbP for a specific do-
main generates DSK that leads to better performance w.r.t. configuring the planner portfolio
over a set of domains altogether. Table 12 compares the performance of PbP.s/q with the
DSK, the DSK obtained without using macros (PbP-noM.s/q), and the configuration knowl-
edge computed across all IPC7 domains (PbP-allD.s/q). The planner cluster of PbP-allD.s
is formed by LPG and SGPlan5, while the planner cluster of PbP-allD.q is formed by LAMA,
Marvin and SGPlan5. The results in Table 12 indicate that, even without considering the
usage of macros, the portfolio configuration over all the considered domains together greatly
decreases the performance of PbP.

Experimental result 4.5.4 For the IPC7 domains, in terms of time score, average CPU
time and number of solved problems, PbP.s performs much better than both PbP-noM.s and
PbP-allD.s. In terms of quality score and number of solved problems, PbP.q performs much
better than both PbP-noM.q and PbP-allD.q. In terms of average plan length, both PbP.q
and PbP-noM.q perform usually better than PbP-allD.q.

The results of the Wilcoxon sign-rank test applied to the comparison between PbP
and PbP-noM confirm that, over all the IPC7 domains, PbP.s is significantly faster than
PbP-noM.s (z = −7.699, p < 0.001) and, in terms of plan quality, PbP.q performs signifi-
cantly better than PbP-noM.q (z = −5.465, p < 0.001). The high performance gap between
PbP and PbP-noM, that is in favor of PbP, clearly indicates the usefulness of using macros,
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IPC7 Time score Mean CPU time # solved problems
Domains PbP.s noM allD PbP.s noM allD PbP.s noM allD

Barman 30.0 12.0 10.9 2.0 72.9 138.6 30 30 30
Blocksworld 30.0 17.3 8.3 5.9 48.1 311.4 30 30 21
Depots 22.3 16.5 8.7 28.3 49.3 134.8 26 21 13
Gripper 30.0 30.0 15.0 18.2 18.2 175.1 30 30 30
Parking 7.8 6.2 0.0 – – – 8 7 0
Rovers 27.0 27.0 13.6 16.9 16.9 192.7 27 27 26
Satellite 30.0 30.0 18.3 28.3 28.3 151.0 30 30 30
Spanner 30.0 30.0 11.3 13.5 13.5 272.0 30 30 25
TPP 23.7 11.9 0.0 – – – 25 13 0

All domains 232.3 181.3 86.1 25.8 44.7 194.4 236 219 175

IPC7 Quality score Mean plan length # solved problems
Domains PbP.q noM allD PbP.q noM allD PbP.q noM allD

Barman 29.9 29.8 0.0 – – – 30 30 0
Blocksworld 29.9 18.5 13.4 222.6 307.0 340.8 30 26 16
Depots 25.8 7.2 2.8 153.0 163.5 171.0 26 9 3
Gripper 30.0 30.0 21.4 578.9 578.9 675.9 30 30 25
Parking 4.8 4.8 2.0 76.0 76.0 61.0 5 5 2
Rovers 29.6 29.6 22.1 634.9 634.9 650.6 30 30 23
Satellite 29.9 29.9 8.8 715.1 715.1 731.9 30 30 9
Spanner 30.0 30.0 8.0 284.8 284.8 284.8 30 30 8
TPP 14.8 14.8 12.3 370.1 370.1 374.5 15 15 13

All domains 224.7 194.5 91.2 484.5 498.8 535.4 226 205 99

Table 12: Time/quality score, average CPU time/plan length and number of solved prob-
lems for the speed and quality versions of PbP, PbP-noM (abbreviated with noM)
and PbP-allD (abbreviated with allD) for the IPC7 domains.

showing that a portfolio of planners and macros can be much more efficient than a portfolio
of only planners.

4.6 Accuracy of the Planner Cluster Selection

This section concerns experimental goal G5. In order to test the accuracy of the planner
cluster selection in PbP, we carried out three related experiments in which the performance
of PbP using the computed configuration knowledge was compared with the performance
of (a) every basic planner incorporated in the initial portfolio, (b) the best performing
incorporated planner (without using macros) in each considered domain, and (c) the best
performing planner cluster (possibly using macros) in each considered domain. In the
following, Section 4.6.1 presents experiments (a) and (b), Section 4.6.2 experiment (c).

4.6.1 PbP and the Basic Portfolio Planners

Figure 4 gives an overall picture of the performance of PbP.s/q w.r.t. the performance of the
basic planners (without macros) in terms of speed and plan quality, using a CPU-time limit
for each run ranging from 1 to 1000 seconds. The time/quality scores of each compared
system was derived by summing up the corresponding scores obtained by the system in each
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Figure 4: Time (left plot) and quality (right plot) scores of PbP.s/q with the relative com-
puted configuration knowledge compared to the time and quality scores of the
basic incorporated planners for the IPC7 domains, using an increasing CPU-time
limit. FD abbreviates FastDownward.

IPC7 domain. This analysis indicates that, for every considered CPU-time limit, PbP.s with
DSK is generally much faster than the incorporated basic planners, and PbP.q generates
better quality plans.

Experimental result 4.6.1 For the IPC7 domains, there is no basic planner in the con-
sidered input portfolio of PbP that achieves an overall performance better than or similar
to the performance of PbP.s for speed, and of PbP.q for plan quality (except for very low
CPU-time limits, where all compared planners perform similarly in terms of plan quality).

The results of the Wilcoxon sign-rank test applied to this experiment confirm that PbP.s
is significantly faster than every incorporated planner (z = −5.773, p < 0.001

9 ), and that
in terms of plan quality PbP.q performs significantly better than all them (z = −3.920,
p < 0.001

9 ) except ParLPG. According to the Wilcoxon sign-rank test, there is no statistical
difference between the quality performances of PbP.q and ParLPG. The discrepancy between
the results of this analysis and those in Figure 4 is generated by the different ways in which
unsolved problems are handled by the quality score function and the Wilcoxon sign-rank
test for comparing plan quality performance: the first considers all problems attempted by
the compared planners (explicitly penalizing a planner with zero score for each unsolved
problem), while the second considers only the subset of the test problems solved by both
the compared planners; PbP.q solves many more problems than ParLPG (230 against 179),
and this is reflected in the relative curves of Figure 4 for plan quality.

We observed that for domains Rovers, Satellite and Gripper all solutions of PbP.q
are computed by ParLPG; for domains Blocksworld and Depots, PbP.q using ParLPG solves
5 and 3 problems, respectively; for the other considered domains, ParLPG is not part of the
selected cluster of running planners. To better understand the importance of ParLPG in PbP,
we have analyzed the performance of a version of PbP that does not incorporate ParLPG.
For the IPC7 domains, if PbP.s/q does not incorporate ParLPG, the problems solved by
PbP.s/q decrease by about 10/12%, and, in terms of time score, PbP.s without ParLPG
performs worse than ParLPG (156.1 vs. 176.5). However, in terms of quality score, PbP.q
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without ParLPG performs still much better than ParLPG (183.1 vs. 144.5). The results of
this analysis show that the performance of PbP in terms of speed is drastically affected by
ParLPG. On the other hand, the importance of having ParLPG in PbP.q is limited because
the parameter configuration of ParLPG focused on speed.

The two main reasons explaining the observation derived from Experimental result 4.6.1
about the globally best performance of PbP.s/q are that no basic incorporated planner
(even ParLPG) outperforms all the others in every considered benchmark domain, and that
PbP effectively selects and combines the most efficient planners for each domain under
consideration (possibly using a useful set of macro-actions).

One may wonder if the picture can be different when PbP.s/q is compared with the basic
incorporated planners using a (possibly empty) set of macros. Figure 5 shows the results
of this comparison, using a CPU-time limit for each run ranging from 1 to 1000 seconds.
For the sake of readability, the names of the 38 combinations of basic incorporated planners
and sets of macros (learned by Wizard and Macro-FF) have been omitted. The time/quality
scores of each compared system was derived by summing up the corresponding scores ob-
tained by any compared system in each IPC7 domain. If for a domain the combination of
a planner P and a macro set M has M empty, then for that domain the combination is
restricted to P .

The results in Figure 5 show that, in terms of CPU time, for the IPC7 domains there is
no basic planner in PbP that, by using a learned macro set, achieves an overall performance
better than or similar to the performance of PbP.s (except for very low CPU-time limits,
where some compared planners with macros perform similarly). In terms of plan quality, for
CPU-time limits lower than 20 seconds, there exist some basic incorporated planners using
macros that perform better than PbP.q; for high CPU-time limits, PbP.q performs much
better than every compared planner with macros. The combinations of basic incorporated
planners and sets of macros that for low CPU-time limits perform better than PbP.q are
SGPlan5 using any set of learned macros, ParLPG using macro set “bunching” and YAHSP
using macro set “clumping”. For low CPU-time limits, these combinations of planners and
macros have an overall performance better than PbP.q, essentially because they dominate
over a single domain: Barman for SGPlan5, Blocksworld for ParLPG and YAHSP.

Since the analysis of Figure 4 considered the test domains altogether, in order to verify
the supposition that also for a given single domain PbP performs better or not worse than
every basic incorporated planner, we have compared PbP.s/q with the best-performing basic
planner (according to the test problems and the relative IPC scores) for each considered
domain. Such a planner, indicated with “BestP.s/q”, is the single planner (without macros)
that we would use if we had an oracle specifying the best basic incorporated planner for the
test problems of a specific domain. The results of this experiment are shown in Table 13.

For domains Gripper, Rovers, Satellite and Spanner the planner cluster of PbP.s is
the same as BestP.s. For the other considered domains, the time score and the average
CPU time of PbP.s are much better than BestP.s. In terms of problem coverage, for three
domains PbP.s solves a much higher number of problems; while for the other domains
problem coverage is the same as BestP.s. These results show that, in order to achieve
higher planning speed, using a cluster of planners or a useful set of macro-actions selected
by PbP.s can be much better than using a single planner without macros. Sections 4.6.2
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Figure 5: Time (left plot) and quality (right plot) scores of PbP.s/q with the relative com-
puted configuration knowledge compared to the time and quality scores of the 38
combinations of incorporated planners and sets of macros for the IPC7 domains.

and 4.7 will study the usefulness of using a properly selected cluster of planners and a
non-empty set of macros, respectively.

Experimental result 4.6.2 There is no IPC7 domain for which any basic planner in the
considered input portfolio of PbP.s is faster, achieves better time score, or solves more
problems than PbP.s.

Concerning plan quality, BestP.q contributes a great deal to the success of PbP.q, since
for all domains except Barman and Spanner it is included in the cluster selected by PbP.q
(see Table 2). For Barman, Gripper, Parking, Rovers, Satellite, Spanner, and TPP, in
most cases BestP.q provides the solution to PbP.q.

Experimental result 4.6.3 For the IPC7 domains, in terms of plan quality, the relative
performance of PbP.q and the best-performing basic planner (BestP.q) that an oracle would
choose is generally slightly in favor of PbP.q: for Blocksworld and Depots PbP.q performs
better, for Parking BestP.q performs slightly better, and in the rest of the IPC7 domains
they perform similarly.

Concerning Parking, Table 13 shows that, for the used benchmark problems, the
BestP.q-planner is FF, which is correctly contained in the cluster selected by PbP.q for this
domain (see Table 2). However, this cluster also includes an additional planner (LAMA)
that, for the tested problems and the considered CPU-time limit, does not give a useful
contribution to PbP.q (no solution is found by LAMA), introducing some “noise” in the
cluster selection. This and the fact that for Parking no useful set of macros is computed by
PbP.q are the main reasons why PbP.q performs slightly worse than the BestP.q-planners
for the considered test problems in domain Parking.

Finally, the Wilcoxon sign-rank test applied to this experiment confirms that, overall,
PbP.s is significantly faster than the BestP.s-planner of each domain (z = −3.134, p ≈
0.001); while in terms of plan quality, the test results indicate that the performances of
PbP.q and the BestP.q-planner are not significantly different (z = −1.157, p = 0.247); in
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IPC7 BestP.s Max Time score Mean CPU time # solved problems
Domains score PbP.s BestP.s PbP.s BestP.s PbP.s BestP.s
Barman SGPlan5 30 30.0 12.0 2.0 72.9 30 30
Blocksworld ParLPG 30 30.0 17.3 9.9 95.3 30 30
Depots ParLPG 30 23.6 18.3 109.5 229.7 26 21
Gripper ParLPG 30 30.0 30.0 18.2 18.2 30 30
Parking FF 30 6.8 3.0 364.1 460.9 8 7
Rovers ParLPG 30 27.0 27.0 25.1 25.1 27 27
Satellite ParLPG 30 30.0 30.0 28.3 28.3 30 30
Spanner ParLPG 30 30.0 30.0 16.9 16.9 30 30
TPP ParLPG 30 24.4 11.2 121.2 531.4 25 14
All domains – 270 232.8 178.8 39.9 79.3 236 219

IPC7 BestP.q Max Quality score Mean plan length # solved problems
Domains score PbP.q BestP.q PbP.q BestP.q PbP.q BestP.q
Barman SGPlan5 30 30.0 29.8 449.3 452.9 30 30
Blocksworld ParLPG 30 29.9 29.9 269.9 272.8 30 30
Depots ParLPG 30 24.5 10.4 160.1 163.1 26 11
Gripper ParLPG 30 29.0 29.9 577.3 570.1 30 30
Parking FF 30 4.8 6.8 79.0 80.6 5 7
Rovers ParLPG 30 30.0 30.0 694.7 694.7 30 30
Satellite ParLPG 30 29.6 29.8 785.2 782.8 30 30
Spanner ParLPG 30 30.0 30.0 326.0 326.0 30 30
TPP LAMA 30 14.6 14.7 370.1 366.3 15 15
All domains – 270 222.4 210.8 472.6 481.8 226 213

Table 13: Maximum score, time/quality score, average CPU time/plan length, and number
of problems solved by PbP.s/q and the best planner (BestP.s/q) for the IPC7
domains.

other words, the test cannot derive that one system performs statistically better than the
other.

Finally, we have compared PbP.s/q and the best-performing combination P + M of a
basic planner P with a non-empty set M of macros learned for P in each IPC7 domain,
except Spanner for which no macro are computed. In this experiment, the best macro set
M for P in a domain D was chosen considering the performance of P +M over the training
problems of D. Overall, in terms of speed score and problem coverage, PbP.s performs
similarly to P + M in five domains, while it performs much better in three domains; in
terms of quality score, PbP.q performs similarly in four domains and much better in other
four domains. One of the reasons why P + M can perform worse than PbP.s/q is that in
some domains macros are harmful, and PbP.s/q correctly decides not to use them. This
will be discussed also in the context of an experiment presented in Section 4.7, where we
analyse the usefulness of macros and the accuracy of their selection in PbP.s/q.
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4.6.2 PbP and the Best-Performing Portfolio Configuration

In order to test the accuracy of the planner cluster selection in PbP.s/q, we have also
compared PbP with the computed configuration knowledge and the best-performing cluster
of planners (with the useful macros) for each considered test domain. (The worst-performing
cluster solves no problem.) Table 14 shows the results of this experiment considering two
best-performing clusters with at most three planners: for each considered IPC7 domain,
BestC.s is the planner cluster with the highest time score among those that can be obtained
by PbP.s using the default PCPV; similarly, BestC.q is the planner cluster with the highest
quality score. Therefore the data in the time/quality score columns “BestC.s/q” are the
maximum values over the time/quality score sums of all planner clusters for the set of test
problems of each IPC7 domain.

For every domain except Depots, the time score of PbP.s is the same as the one of the
best cluster and is much greater than zero (and thus much better than the score of the
worst cluster). Also in terms of average CPU time and problem coverage the performance
of PbP.s and the best cluster are almost always the same. Only for domain Depots PbP.s
and BestC.s perform slightly differently; in this case, the planners and relative macros in
the cluster of PbP.s are different from those in BestC.s. In particular, Macro-FF is selected
with a different set of macros, and this makes PbP.s slightly slower.

Concerning PbP.q, overall, in terms of plan quality there is no high performance gap
with respect to the best cluster, although PbP.q performs worse for domain TPP. For this
domain, the training problems used by PbP.q are not informative enough. This observation
is supported by the fact that the best cluster computed using the training problems, instead
of the test problems, is different from the one derived for the test problems. On the other
hand, we observed that, if the size of the training problems is similar to the size of the test
problems, the configured portfolios of PbP.q and BestC.q are the same.

The Wilcoxon sign-rank test confirms that, overall, the performance of PbP.s/q and the
best cluster is not statistically significantly different (z = −0.422, p = 0.673, for the speed
analysis; z = −2.432, p = 0.015, for the quality analysis). Moreover, we have also observed
that PbP.s/q without configuration (PbP-nok.s/q) performs generally much worse than the
best cluster for speed and quality. Overall, from our experimental results we can derive the
following observation.

Experimental result 4.6.4 For the IPC7 benchmarks, in terms of time score, average
CPU time and problem coverage, PbP.s performs as well as or, for Depots, similarly to
BestC.s. In terms of quality score, average plan length and problem coverage, PbP.q per-
forms as well as or similarly to BestC.q, except for TPP in which the plan quality score and
problem coverage of PbP.q are worse.

Table 14 also shows that very often an oracle would use a single planner to either quickly
solve the IPC7 problems or compute high-quality plans for them. Hence, one may argue
that using clusters formed by more than one planner (possibly with a set of useful macros)
is not useful. The rationale why the best clusters in Table 14 are formed by a single planner
is that often any incorporated planner (even using macros) requires almost all the CPU
time to solve each IPC7 test problem (except for domain Depots); thus the remaining time
is usually not enough to improve the coverage or the quality of the (first) computed plan
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IPC7 BestC.s Max Time score Mean CPU time # solved probs
Domains score PbP.s BestC.s PbP.s BestC.s PbP.s BestC.s
Barman SGPlan5 (B) 30 30.0 30.0 2.0 2.0 30 30
Blocksworld ParLPG (B) 30 30.0 30.0 9.9 9.9 30 30
Depots Macro-FF (M1) 30 21.2 24.5 165.9 82.5 26 28
Gripper ParLPG (–) 30 30.0 30.0 18.2 18.2 30 30
Parking Macro-FF (M2) 30 8.0 8.0 364.1 364.1 8 8
Rovers ParLPG (–) 30 27.0 27.0 25.1 25.1 27 27
Satellite ParLPG (–) 30 30.0 30.0 28.3 28.3 30 30
Spanner ParLPG (–) 30 30.0 30.0 16.9 16.9 30 30
TPP Macro-FF (M1) 30 25.0 25.0 121.2 121.2 25 25
All domains – 270 231.2 234.5 47.4 36.7 236 238

IPC7 BestC.q Max Quality score Mean plan length # solved probs
Domains score PbP.q BestC.q PbP.q BestC.q PbP.q BestC.q
Barman SGPlan5 (Cl) 30 29.9 30.0 449.3 448.3 30 30
Blocksworld ParLPG (–) 30 29.9 29.9 269.9 272.8 30 30
Depots MFF(M1),MFF(M2) 30 23.9 26.7 160.1 165.1 26 28
Gripper ParLPG (–) 30 29.0 29.9 577.3 570.1 30 30
Parking FF (0) 30 4.8 6.8 79.0 80.6 5 7
Rovers ParLPG (–) 30 30.0 30.0 694.7 694.7 30 30
Satellite ParLPG (–) 30 29.5 29.8 785.2 782.8 30 30
Spanner LPG (–) 30 30.0 30.0 326.0 326.0 30 30
TPP Macro-FF (M1) 30 14.8 24.4 370.1 379.5 15 25
All domains - 270 221.8 237.5 461.2 487.6 226 240

Table 14: Maximum score, time/quality score, average CPU time/plan length, and number
of problems solved by PbP.s/q and the best cluster (BestC.s/q) for the IPC7
domains. MFF abbreviates Macro-FF. The order of the planners listed in the
cluster for Depots corresponds to the order in which they are run.

by running more than one planner. For the purpose of computing high-quality plans, if we
use a set of test problems smaller than the IPC7 problems, then the picture is different.
Table 15 compares the performance of PbP and the best performing cluster of planners for
some sets of randomly generated medium-size problems of the IPC7 domains (i.e., with
size ranging between the largest training problems and the smallest testing problems). In
this table, BestC.s/q indicates the clusters that an oracle would use to solve these sets of
medium-size problems.

Experimental result 4.6.5 For test problems over the IPC7 domains with sizes ranging
between the training problem sizes and the IPC7 test problem sizes, for most of the IPC7
domains the best planner clusters for deriving high quality plans are formed by more than
one planner.

In general, a cluster of planners containing a certain planner performs worse than this
planner alone when most of the planning problems of the domain for which the planner
portfolio is configured are efficiently solved by the planner alone, and thus running also the
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IPC7 domains BestC.s Time score Mean CPU time # solved probs
(medium probs) PbP.s BestC.s PbP.s BestC.s PbP.s BestC.s
Barman S (B) 30.0 30.0 1.5 1.5 30 30
Blocksworld ParLPG (B) 30.0 30.0 7.3 7.3 30 30
Depots MFF (M1), ParLPG (0) 28.9 29.7 57.4 52.5 30 30
Gripper ParLPG (–) 30.0 30.0 13.2 13.2 30 30
Parking MFF (M2) 22.0 22.0 308.7 308.7 22 22
Rovers ParLPG (–) 30.0 30.0 17.6 17.6 30 30
Satellite ParLPG (–) 30.0 30.0 14.3 14.3 30 30
Spanner ParLPG (–) 30.0 30.0 13.6 13.6 30 30
TPP Macro-FF (M1) 30.0 30.0 93.6 93.6 30 30
All domains – 260.9 261.7 50.9 50.4 262 262

IPC7 domains BestC.q Quality score Mean plan length # solved probs
(medium probs) PbP.q BestC.q PbP.q BestC.q PbP.q BestC.q
Barman S (Cl), FF (–), M (–) 29.7 29.8 327.2 327.1 30 30
Blocksworld P (–), MFF (M1), LPG (B) 29.5 29.6 174.7 173.2 30 30
Depots MFF (M1), P (–), LPG (–) 26.4 28.5 143.1 145.4 28 30
Gripper ParLPG (–) 30.0 30.0 472.3 472.3 30 30
Parking FF (–), LAMA (–) 20.0 20.0 63.1 63.1 20 20
Rovers ParLPG (–) 30.0 30.0 694.7 694.7 30 30
Satellite ParLPG (–), Marvin (–) 30.0 30.0 524.6 524.6 30 30
Spanner LPG (–) 30.0 30.0 257.2 257.2 30 30
TPP MFF (M1), L (–), S (CH) 24.9 29.3 219.4 220.3 25 30
All domains – 221.8 237.5 462.6 463.2 226 240

Table 15: Time/quality score, average CPU time/plan length, and number of problems
solved by PbP.s/q and the best cluster (BestC.s/q) for sets of medium-size
problems of the IPC7 domains. S, M, MFF, P, L abbreviate SGPlan5, Marvin,
Macro-FF, ParLPG, and LAMA, respectively. The order of the planners listed in
the clusters corresponds to the order in which they run.

other planners of the cluster is a waste of CPU time. A cluster formed by more than one
planner performs better than any single portfolio planner only if for the considered domain
there is no planner dominating all others in terms of either problem coverage and CPU
time, or problem coverage and plan quality.

Interestingly, we observed that sometimes the cluster selected by PbP.q and the best
cluster for the intermediate-size test problems are formed by a planner that solves all the
problems, but produces low-quality plans, and other planners that produce higher-quality
plans, but solve few problems. This is the case for Barman and TPP. For these domains,
although the quality of the plans of SGPlan5 is low, having SGPlan5 in the cluster is very
useful because it contributes to greatly improve the problem coverage of the cluster.

Finally, the results in Table 15 also indicate that sometimes the effectiveness of the
configured portfolio can be greatly affected by the difference between the size/hardness of the
training problems and the size/hardness of the test problems. In particular, the performance
gap between PbP.q and the best cluster for the considered randomly generated intermediate-
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size problems of domain TPP is lower than between PbP.q and the best cluster for the IPC7
test problems of TPP. This indicates that, in terms of plan quality, the effectiveness of the
planner portfolio configuration in PbP.q computed using relatively small training problems
can gradually decrease when the size/hardness of the test problems is increased.

4.7 Macro Usefulness and Selection Accuracy

This section concerns experimental goal G6: we analyze the effectiveness of using the set
of macros selected by PbP for each planner, and the accuracy of PbP for selecting the most
useful set of macros among those computed by Wizard or Macro-FF for each planner in the
configured portfolio. While it has been shown that Wizard and Macro-FF can often generate
useful sets of macros that speed up planners (Botea et al., 2007b; Newton et al., 2007), it
is also known that there is no guarantee that using macros always leads to improving the
speed of a planner, and a “bad” set of macros could even make a planner slower. Moreover,
usually the degree of usefulness of a set of macros depends on the specific planner that uses
them.

Concerning macros in PbP.s, for each IPC7 domain with at least one non-empty set of
computed macros and each planner in the selected cluster (see Table 2), we compared the
number of solved problems, number of visited search nodes, average CPU time and time
score using: (a) no macros, (b) the set of macros identified by PbP.s as useful for the planner,
and (c) the set of macros among those computed for the planner that in terms of time score
makes it perform best over the test problems. From the results of this experiment, which
are given in Table 16, the following general observation can be derived.

Experimental result 4.7.1 For the IPC7 domains, very often there is a candidate set of
macros for a planner (computed by Wizard or Macro-FF) that greatly increases the speed
performance of the configured portfolio, and PbP.s correctly selects it.

Table 16 also indicates that, for most of the considered domains, the performance of
the selected planners obtained using their sets of macros identified as useful by PbP.s is
usually the same as the performance they can achieve when using their best sets of macros.
This gives strong positive evidence about the effectiveness of PbP.s’s approach to selecting
a useful set of macros for each planner in the configured portfolio. In particular, the best
set of macros is the same as the set of macros selected by PbP.s (see Table 2). The only
exception where the sets of macros identified by PbP.s is different from the best set is the
case of Macro-FF in domain Depots. However, as shown in Table 2, for Depots PbP.s
selects a cluster that contains both Macro-FF with macro set M2 and ParLPG, obtaining an
overall performance that we experimentally observed to be very similar to the performance
of Macro-FF with the best set of macros, M1. It is worth noting that the candidate sets of
macros computed for ParLPG and Depots are harmful (i.e., they make its speed performance
much worse) and PbP.s correctly detects this, choosing to run ParLPG with zero macros
(denoted with “ParLPG (0)” in Table 2).

The study of computing and using macros has usually been pursued with the main goal
of speeding up planning, possibly making the quality of the computed plan lower than when
macros are not used. Interestingly, in the context of PbP.q, in several cases macros are useful
also for improving plan quality. Specifically, for nine over the fifteen IPC6-7 domains, the
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Domain & with no macros with PbP.s macros with best macros
Planner #S #N T TS #S #N T TS #S #N T TS
Barman

SGPlan5 30 – 72.9 12.0 30 – 1.8 30.0 30 – 1.8 30.0
Blocksworld

ParLPG 30 3361 95.3 17.3 30 218.0 9.9 30.0 30 218.0 9.9 30.0
Depots

Macro-FF 0 242678 – 0.0 26 33654 203.3 22.2 28 21231 105.1 26.2
Parking

Macro-FF 2 1739 406.9 0.6 8 880.9 92.3 8.0 8 880.9 92.3 8.0
TPP

Macro-FF 0 71594 600.0 0.0 25 2990 121.2 25.0 25 2990 121.2 25.0

Table 16: Number of solved problems (#S), number of visited search nodes (#N), average
CPU time (T) and time score (TS) of the planners forming the cluster selected
by PbP.s using no macro, the set of macros selected by PbP.s, and the best per-
forming set of computed macros. The domains considered are the IPC7 domains
with at least one non-empty set of computed macros. We indicate with “–” that
the number of nodes visited by SGPlan5 could not be measured.

configuration phase of PbP.q selects clusters of planners with at least one planner using a
non-empty set of macros (see Table 2). We experimentally observed, with both the training
problems and the test problems, that there are two reasons why macros are useful to PbP.q:

• For some domains there are individual planners for which using macros leads to better
quality plans. This is the case, e.g., for domains Barman and Blocksworld using plan-
ners SGPlan5 and LPG (first solution), respectively. This behavior has been observed
also by (Botea et al., 2005; Coles & Smith, 2007; Newton et al., 2007).

• If the selected cluster includes a planner configured to use a set of macros, usually
such a planner quickly computes a solution. This can be somewhat helpful also for
the test problems that another planner in the cluster can solve with better solutions,
if it has enough CPU time, because a quick termination of the planner with macros
leaves more CPU time to run the other cluster planner(s). Having more CPU time,
can be important especially for the incremental planner(s) included in the selected
cluster, like LAMA and ParLPG. There are many problem instances of domains Depots,
Satellite and TPP for which we observed this behavior.

Experimental result 4.7.2 For the IPC7 domains, the use of the macros selected by
PbP.q can lead to better quality solutions.

In general, the use of macros can make the plan search more effective because, e.g.,
by planning multiple actions in one search step the size of the possible plateaus and the
depth of the local minima can be reduced. On the other hand, if a large number of macros
is added to the domain, the size of the search space can drastically increase, making the
problem harder to solve. In the rest of this section, we analyze the kind and number of
macros selected and used by PbP. We consider both macro operators, i.e., parameterized
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macros defined as sequences of (primitive) domain operators, and macro actions, i.e., macros
derived by instantiating the parameters of the macro operators.

Table 17 describes the macro operators in the sets selected by PbP.s for a planner
in the configured portfolio (see Table 2) in terms of: number of aggregated operators,
number of involved parameters, average numbers of macro-actions and primitive actions in
the augmented domain, average plan lengths obtained by the considered planners without
using macros, and using them but counting each planned macro actions as a single action.

From the data in Table 17, we can derive some interesting observations about the macros
used by PbP for the considered domains. First, the macro operators used by PbP for a
planner are no more than three, and often they aggregate few primitive operators. Secondly,
for the planners that handle macros by simply adding instantiated macro operators to
the domain definition (SGPlan5 and ParLPG), the average number of macro actions in
the augmented domains is much lower or comparable to the number of primitive domain
actions, even for domain Barman where SGPlan5 uses a large macro operators involving
seven primitive operators and six parameters. Hence, for these planners and domains,
macro actions do not drastically increase the search space. The picture is quite different for
Macro-FF, for which the macro operators selected by PbP.s in domains Depots, Parking
and TPP, if instantiated, generate a number of macro actions that on average is one or more
orders of magnitude greater than the number of primitive domain actions. The reason why
Macro-FF can successfully use macro operators even if the number of domain macro actions
is huge is that this planner instantiates macro operators and filters macro actions at search
time, according to a relaxed-plan heuristic applied to the current search state, rather than
simply adding all macro actions to the original domain before planning.

The fact that in our experiment PbP never generates configured portfolios with large
sets of macro actions added to the domain description seems to indicate that, if the number
of macro actions is very high w.r.t. the number of primitive actions, this macro exploitation
method usually makes the performance of a planner using them much worse. This observa-
tion was confirmed by an additional experiment in which we added the PDDL description
of the macro operators learned by Macro-FF for domain Depots to the original description
of Depots, and run Macro-FF using the resulting augmented domain. As shown in Table 17,
for Depots the number of learned macro actions is about one order of magnitude greater
than the number of primitive actions. We experimentally observed that with the augmented
domain Macro-FF (without its own method of using macros) solves no Depots problem.

Moreover, the results about the average plan length in Table 17, show that plans with
macro actions are much shorter than those computed from the original domain, if we count
each macro as a single action. Given that during planning the application to the current
search state of a macro (or possibly a combination of macros in Macro-FF) generates a single
successor state, for the considered planners and domains, on average the distance between
the initial search state and a goal state is much shorter when the search space includes
macros, and hence searching a solution plan in this space can be much faster.

To conclude, we note that the usefulness of macros can also depend on factors different
from those considered in our analysis, such as, e.g., the ratio between the number of use-
ful instantiations of a macro operator (providing shortcuts towards a goal state) and the
number of instantiations that guides the search towards a wrong direction (Botea, Müller,
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Domain & #operators #parameters #grounded #actions Plan length Plan length
Planner for every m. for every m. macros without m. with m.

Barman 7,4 6,4 1645 15610 452 374
SGPlan5+B (397) (3767) (57) (45)

Blocksworld 2,3,2 2,2,2 17757 11983 415 153
ParLPG+B (5812) (5270) (107) (42)

Depots 2,2 5,6 224053 16005 – 119
Macro-FF+M2 (114600) (8269) (26)

Parking 5,2 8,5 billions 243223 143 64
Macro-FF+M2 (billions) (151979) (23) (11)

TPP 6 9 billions 133145 – 238
Macro-FF+M1 (billions) (78545) (51)

Table 17: Number of (primitive) operators forming each of the selected macro operators,
number of parameters in each macro operator, average number of instantiated
macro actions, average number of domain (primitive) actions, average plan length
without using macros, and average plan length using macros and counting each
planned macro action as a single action. Each number in the 2nd and 3rd columns
refers to a different macro operator. Numbers in brackets are standard devia-
tions. The domains considered are the IPC7 domains with at least one non-empty
set of learned macros selected by PbP.s. “B” abbreviates the Bunching macro
set learned by Wizard; M1–M2 are two of the five sets of macros generated by
Macro-FF. We indicate with “–” that no solution was found within the given
CPU-time limit.

& Schaeffer, 2007a). Further factors that might affect the usefulness of macro-operators in
planning are conjectured in the work by McCluskey and Porteous (1997).

4.8 Planner Cluster Scheduling

This section concerns experimental goal G7: we experimentally analyze some possible al-
ternative strategies for scheduling the execution of the planners during the portfolio con-
figuration of PbP and at planning time. In the first experiment, we investigate the use in
PbP of four sequential and round-robin strategies with predefined and configured planning
time slots. In the second experiment, we study the importance of choosing a specific PCPV
defining the planning time slots (as described in Section 3.1) and in particular of PbP’s
default PCPV.

Let T be the input CPU-time limit, k the maximum number of planners in the cluster,
and n the number of single planners, combined with a set of macros, in the portfolio (in
our experiment, T = 900 seconds, k = 3, and 9 ≤ n ≤ 38 depending on the number
of computed macro sets). We experimentally compare the performance of PbP using the
following strategies for the planner cluster execution during the portfolio configuration:11

S1. Sequential execution of each tuple of at most k planners with T
k seconds for the run of

every planner; the number of candidate configured portfolios is
∑k

i=1 i!
(
n
i

)
. For this

11. The planners of each candidate cluster are executed by simulation, as described in Section 3.2.
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and the next (S2) strategies, when a planner terminates before the end of its time
slot, the remaining time of this slot is used to (uniformly) increase the slots of the
subsequently running planners.

S2. For every combination of time slots t1...k such that ti ∈ {0, 90, 180, 270, 360, 450,
540, 630, 720, 810, 900}, i ∈ {1 · · · k} and t1 + · · · + tk = T , sequential execution of
each tuple of k planners with ti seconds for the run of the i-th planner in the sequence;
the number of candidate configured portfolios is

∑k
i=1

(
n
i

)
· O(ui−1), where u is the

number of non-zero planning time slots lower than 900 (in our experiment u = 9).

R1. Round-robin execution of each set of at most k planners with the planning time slots
derived from the default PCPV defined in Section 3.1 (this is PbP’s default scheduling
strategy); the number of candidate configured portfolios is

∑k
i=1

(
n
i

)
.

R2. For every PCPV p = 〈p1, ..., p9〉 in set P (defined below), round-robin execution
of each set of at most k planners with the planning time slots derived from p; the
number of candidate configured portfolios is

∑k
i=1

(
n
i

)
·O(su), where s is the number

of increments considered for each pi (in our experiment s = 4).

Set P in R2 is formed by more than 100,000 PCPVs obtained by setting each percentage
in the PCPV to a value ranging from li to ui, with: l1, ..., l9 equal to 10, 15, 20, 25, 30, 35,
40, 45, 50; u1, ..., u9 equal to 70, 75, 80, 85, 90, 95, 98, 99, 100; and increment step of pi
equal to ui−li

4 . For instance, if i = 1, we have that the increment step of p1 is 70−10
4 = 15.

Consequently, the values used for the first percentage p1 of the considered PCPVs are 10,
25, 40, 55, 70.

Concerning the execution order of the planners in a cluster, for each considered sequence
in strategies S1 and S2, the order is defined by the planner order in the sequence (two
sequences formed by the same planners are considered different clusters if the planners are
differently ordered or they use different time slots); for each cluster of planners in strategies
R1 and R2, the execution order is determined according to the increasing planning time slots
associated with the planners in the cluster (this is the default execution order strategy).

The configuration phase of PbP using each of the four scheduling strategies generates four
alternative clusters of planners, with relative planning time slots, which, at planning time,
are run with the same corresponding scheduling strategies that were used at configuration
time. It should be noted that the portfolio configuration using strategies S2 and R2 is
computationally much heavier than the configuration using S1 and R1, respectively, since
many more candidate configured portfolios are considered. On the other hand, since PbP
with S2 and R2 examines larger portfolio configuration spaces, in principle, it could obtain
more accurate configured portfolios.

Tables 18 and 19 compare the performance of PbP configured using S1-S2 and R1-R2
for solving the IPC7 domains and problems. We observed that, in terms of speed, for
all IPC7 benchmark domains except Depots, the considered scheduling strategies do not
affect the selection of the best cluster, since PbP.s always selects the cluster formed by a
single planner (possibly using macros). For Depots, as shown in Tables 18 and 19, PbP.s
with the round-robin scheduling strategies solves more problems and is faster than with the
sequential scheduling strategies.
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IPC7 Time Score of PbP.s Problems Solved by PbP.s
Domains S1 S2 R1 R2 S1 S2 R1 R2
Depots 20.8 17.8 22.2 21.0 26 20 27 26

IPC7 Quality Score of PbP.q Problems Solved by PbP.q
Domains S1 S2 R1 R2 S1 S2 R1 R2
Barman 30.0 30.0 30.0 30.0 30 30 30 30
Blocksworld 16.7 16.7 30.0 30.0 21 21 30 30
Depots 6.1 6.1 24.4 25.2 8 8 25 27
Gripper 29.9 29.9 28.9 28.9 30 30 30 30
Parking 3.7 4.6 4.3 4.3 4 5 5 5
Rovers 29.0 29.0 25.2 25.2 29 29 30 30
Satellite 29.8 21.0 29.5 29.7 30 21 30 30
Spanner 30.0 30.0 30.0 30.0 30 30 30 30
TPP 13.7 13.7 14.7 12.8 14 14 15 13
All domains 188.9 181.0 217.0 216.1 196 188 225 225

Table 18: Time/quality score and number of solved problems of PbP.s/q using scheduling
strategies S1-S2 and R1-R2 for the IPC7 benchmark domains and problems.

Concerning plan quality, the best cluster selected by PbP.q contains more than one
planner for every IPC7 domain. Overall, the following observation can be derived:

Experimental result 4.8.1 For the IPC7 benchmark domains and problems, PbP.q with
R1-R2 solves more problems than PbP.q with S1-S2 and, in terms of plan quality, overall
it performs similarly to PbP.q with S1-S2.

We think that the explanation why PbP.q with R1-R2 performs better in terms of num-
ber of solved problems is that using a round-robin strategy makes PbP.q more “robust” than
using a sequential strategy with respect to possible incorrect ordering of the planner runs
and inadequate values of the planning time slots decided at configuration time. When the
training problems are not as difficult as those used at testing time (usually they are easier),
some inaccurate estimation about the effectiveness of the learned configuration knowledge
can arise. An under estimation of the time slot values or an incorrect planner execution
order can damage more severely the sequential execution of the planners in the selected
cluster, since each of these planners is run only once, using at most the estimated time slot,
while in the round-robin execution each of them is iteratively run with its (multiple) time
slots, until the total CPU-time limit is reached or all planners terminate.

In terms of plan quality evaluated through the IPC quality scores, PbP.q with R1-R2
tends to perform better than PbP.q with S1-S2. The main reason is that PbP.q with R1-
R2 solves more problems than PbP.q with S1-S2, and the quality score for an unsolved
problem is zero. If we consider the average plan quality (last four columns of Tables 18
and 19), we observe mixed results: in two domains PbP.q with R1-R2 performs best, in
two worse, and in the other ones about the same. The discrepancy in the evaluation results
using quality scores and average plan qualities is only apparent, since the quality score
and the average quality evaluations have different assumptions about the way they consider
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IPC7 Average CPU Time of PbP.s Std. Dev. of CPU Time of PbP.s
Domains S1 S2 R1 R2 S1 S2 R1 R2
Depots 256.2 360.8 185.2 185.0 122.3 250.4 206.1 78.2

IPC7 Average Plan Quality of PbP.q Std. Dev. of plan quality of PbP.q
Domains S1 S2 R1 R2 S1 S2 R1 R2
Barman 449.3 449.3 449.3 449.3 55.3 55.3 55.3 55.3
Blocksworld 310.3 310.3 236.7 236.7 89.1 89.1 68.6 68.6
Depots 220.0 220.0 154.3 159.5 118.2 118.2 32.5 32.8
Gripper 570.1 570.1 588.7 588.7 45.2 45.2 38.0 38.0
Parking 84.0 83.3 82.0 82.0 11.8 27.4 24.8 24.8
Rovers 583.9 583.9 703.4 703.4 158.2 158.2 194.9 194.9
Satellite 747.8 747.8 751.6 751.6 161.3 128.5 183.8 183.8
Spanner 326.0 326.0 326.0 326.0 52.1 52.1 52.1 52.1
TPP 364.0 364.0 362.6 362.6 101.4 101.4 99.1 99.1
All domains 466.8 466.8 477.8 477.6 217.9 188.9 238.4 238.8

Table 19: Average and standard deviation of the CPU time/plan quality of PbP.s/q using
scheduling strategies S1-S2 and R1-R2 for the IPC7 benchmark domains and
problems.

unsolved problems. For the average plan quality, only the subset of the test problems solved
by PbP using all the compared strategies are considered; while for the quality score, all test
problems are considered.

Seipp et al. (2012) show that a sequential portfolio of 21 domain-independent state-
based forward planners can solve more problems when the planning time slots are uniform,
rather than configured over a set of training problems, because, for the considered planners
and test problems, a planner either quickly solves a problem or does not solve it at all. In
our context, we observed that if we sequentially run all n planners of PbP.q (i.e., up to
38 combinations of the 9 basic planners with/without the computed sets of macros) using
uniform time slots, then only 137 test problems are solved (against the 225 solved by PbP);
the n-planners uniform strategy performs as well as PbP.q only if the CPU-time limit is
increased by several times (keeping 900 seconds for PbP.q). Differently from what observed
in (Seipp et al., 2012), our experimental evaluation includes many problems that the n
planners of PbP.q solve using considerable CPU time (e.g., the number of problems that
can be solved by any planner incorporated in PbP (even using macros) within 10 seconds is
only 80). Probably a reason of this different behavior is that the test problems of the IPC7
learning track are on average more difficult than the problems of the IPC7 deterministic
track, which are the test problems used in (Seipp et al., 2012).

On the other hand, if PbP sequentially runs at most 3 planners, as in strategies S1-
S2, instead of all the 38 possible combinations between the incorporated planners and the
learned macros, we obtain a behavior similar to that observed in (Seipp et al., 2012). In
particular, the results in Tables 18 and 19 show that in terms of number of solved problems
and speed, configuring the planning time slots for the sequential scheduling in some cases
can even degrade the performance of PbP w.r.t. using the uniform distribution of CPU time
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(see the results in Tables 18 and 19 of PbP.s using S1 and S2 for Depots and of PbP.q using
S1 and S2 for Satellite). However, in our context the uniform distribution of CPU time
over the planners in the cluster selected by PbP is not the best one, since we experimentally
observed that PbP with S2 clearly outperforms PbP with S1 if the configuration is done
using the test problems rather than the training problems. We believe that the main reason
for this behavior is that in our experiment the training problems are much smaller and
easier than the test problems, which in several cases makes PbP with S2 (configured with
the training problems) underestimate the CPU times required to solve the test problems.

Contrary to PbP with S1-S2, PbP with R1-R2 performs similarly according to all three
evaluation criteria (solved problems, speed and plan quality). This result indicates that
configuring the planning time slots by considering many alternative PCPVs does not lead
to high improvements with respect to using the default predefined planning time slots,
that in PbP configuring the values of the planning time slots is less crucial when using a
round-robin strategy than when using a sequential strategy, and that PbP with R1-R2 is
less sensitive to the different size of the problems used for configuration and testing.

Experimental result 4.8.2 For the IPC7 benchmark domains and problems, PbP.s/q
with R1-R2 is less sensitive to the definition of the planning time slots than PbP.s/q with
S1-S2.

In the rest of this section, we study the problem of configuring the PCPV used to define
the planning time slots in the round-robin planner scheduling of PbP. In particular, we
address the following questions focusing on the IPC7 benchmarks: how important is setting
the PCPV to a particular value for a given domain? If we had an oracle specifying the best
PCPV for the test problems of a specific domain, how good would the default PCPV be with
respect to it?

The data used in this analysis were obtained as follows. For each PCPV p in the set P
defined as well as for the scheduling strategy R2 of the previous experiment, PbP.s/q was
run using the cluster selected by simulating the round-robin scheduling with the planning
time slots derived from p as described in Section 3.1. Thereby PbP.s/q was configured more
than 100,000 times with different predefined PCPVs and, consequently, different predefined
planning time slots. The resulting configured portfolios were then run (by simulation) over
the test problems of the learning track of IPC7.

Figure 6 analyzes the time and quality scores of these configured portfolios through box
and whisker plots. In each plot, the bottom of a whisker is the worst score; the bottom
of a box is the lower quartile score; the band in a box is the median score; the top of a
box is the upper quartile score; the top of a whisker is the best score; finally, each cross is
the score of PbP.s/q for a domain using the default predefined PCPV. In the following, the
PCPV corresponding to the configured portfolio obtaining the best time or quality score for
a domain is called the best-performing PCPV for that domain. Since the best performing
PCPV is derived from the observed performance on the test problems, it can be considered
the best PCPV over P that an oracle would give us. From the experimental data used for
Figure 6, we derive the following observation.

Experimental result 4.8.3 Different IPC7 domains have different best-performing PCPVs
for PbP.
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Figure 6: Distribution of the time (left plot) and quality (right plot) scores of PbP.s/q using
more than 100,000 PCPVs for the IPC7 problems. BW, Grip. and Sat. abbreviate
Blocksworld, Gripper and Satellite, respectively.

For each IPC7 domain where the length of the whisker in Figure 6 is zero, the cluster
selected by PbP.s/q with any PCPV is formed by only a single planner, and hence for these
cases the definition of the PCPV used to derive the planning time slots do not affect the
performance of PbP (all available CPU time is assigned to the single selected planner). In
the plot about speed this happens for all domains except Depots, while in the plot about
plan quality, it happens only in domain Spanner. For domain Barman, all clusters selected
by PbP.q using the configured PCPVs include SGPlan5 with a learned set of macros, and
this is the only planner in the cluster finding solutions for the test problems of this domain.

For the domains in which PbP.s/q does not always select the same singleton planner
cluster for all the PCPVs considered, the specific used PCPV can have a high impact on
PbP’s performance, as shown especially for domains Depots, Gripper and Satellite in
the quality-score plot of Figure 6. Interestingly, we can observe that the default predefined
PCPV used in PbP.s/q is generally a good choice, since very often the crosses in the plots
appear at (or near to) the top position of the corresponding whiskers.

Experimental result 4.8.4 For every IPC7 domain, the cluster selected by PbP.s/q using
the default PCPV 〈25, 50, 75, 80, 85, 90, 95, 97, 99〉 performs similarly to PbP.s/q using the
best-performing PCPV, except for PbP.q in domains Parking and TPP.

For Parking, the best performance is obtained by running planners FF and LAMA with
PCPV equal to 〈10, 15, 60, 65, 70, 75, 80, 95.5, 96.5〉; for TPP it is obtained by running plan-
ners LAMA, Macro-FF and SGPlan5 with PCPV equal to 〈10, 15, 20, 25, 30, 35, 40, 45, 50〉.
For these two domains, PbP.q with the default PCPV does not perform as well as with
the best-performing PCPV (but still better than the median-performing PCPV). The main
reason is that for these domains the IPC7 test problems are much larger (and harder) than
those used for the training, which, as also observed in Section 4.6, can affect the accuracy
of the portfolio configuration for the test problems in terms of the selected planner cluster
and configured PCPVs.

Overall, the results of the experiment about configured and default PCPVs for PbP
indicate that, if the round-robin planner scheduling is used, tuning the PCPV (and conse-
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quently the planning time slots) for a specific IPC7 domain does not greatly improve the
performance of the resulting configured portfolio, since very often the default PCPV per-
forms as well as the best PCPV specified by an oracle. Consequently, given that without the
PCPV tuning the portfolio configuration is much simpler and faster, PbP uses the default
version.

5. Conclusions

The existing automated-planning technology offers a large, growing set of powerful tech-
niques and efficient domain-independent planners, but none of them outperforms all the
others in every planning domain. From a practical perspective, it is then useful to consider
a portfolio-based approach to planning involving several techniques and planners. In this
paper, we have proposed an approach to automatically configuring a portfolio of planners
and learned macros for any given domain, that is implemented in the portfolio-based planner
PbP. The computed configuration knowledge consists of a promising combination of basic
planners in the portfolio, each one with a (possibly empty) set of useful macros, and some
scheduling information for specializing their execution at planning time. The configured
portfolio is obtained through an automated statistical analysis about the performance of a
set of candidate clusters of planners and relative candidate sets of macros, using a collection
of training problems in the given domain. The planner cluster performance is computed by
simulating the cluster execution using the performance data from the runs of the individual
basic planners (and relative sets of macros) in the portfolio.

The proposed approach to the portfolio planner configuration has been evaluated through
a large experimental analysis, focusing on the IPC6-7 domains, with the aim of demonstrat-
ing its high efficiency, understanding the effectiveness of the automatic configuration, and
investigating the importance of the main design choices. Several results have been derived
from the various experiments of this analysis. The most important experimental results
indicate that:

• the configured planner portfolios generated by PbP.s/q perform very well compared
to other state-of-the-art planning systems using learning techniques, and much better
than PbP-nok, i.e., the unconfigured planner portfolio of PbP (which is competitive
with LAMA, a state-of-the-art domain independent planner);

• PbP.s/q performs much better than the other existing domain-independent portfolio-
based planners, and often better than other domain-optimized planner portfolio ap-
proaches;

• the computed configuration knowledge is very useful and the selection of the planner
cluster forming the configured portfolio is generally accurate for the given planning
domain;

• while macros in a planning domain are not always helpful to a planner for improving
its planning speed or plan quality, PbP.s/q generally selects helpful sets of macros;

• in the context of the proposed approach, the round-robin scheduling strategy of the
planner cluster execution is a robust strategy with respect to the execution order of
the cluster planners and their planning time slots; moreover, configuring the planning
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time slots is not crucial given the good default technique for deriving them currently
implemented in PbP.s/q.

Besides evaluating the approach of PbP to configuring a planner portfolio with macros,
the experimental analysis corroborates and validates some results, observations or empirical
studies in previous work on other researchers in planning. These include the usefulness or
harmfulness of macros for a set of prominent existing planners, the importance of diversity
of the planning techniques in the construction of an effective planner portfolio, and the
robustness of the round-robin scheduling of the execution times in a multi-planner system.

While the current version of PbP uses a portfolio formed by a specific set of selected
techniques for plan synthesis, computation of macros and planner-parameter tuning, the
architecture of PbP is open in the sense that additional or alternative (current or future)
techniques can be integrated. Moreover, although we have chosen the Wilcoxon sign-rank
test for comparing the candidate planner clusters and macro sets, demonstrating its effec-
tiveness, other methods could be considered.

A limit of the current approach, which affects also other systems relying on knowledge
learned from examples, is that when the training problem set is not representative of the
test problems (e.g., most problems are much smaller or easier than the test problems), the
computed portfolio configuration might not be very accurate for these problems. Knowing
at configuration time “enough” information characterizing the test problems can obviously
be very useful for generating representative training problem sets. For planning with PbP
we experimentally observed that, when the minimum/maximum number of objects involved
in test problems is known, randomly generated training problem sets under these object
bounds are sufficiently representative for an effective configuration of PbP.

We think that in future work it will be important to study and incorporate into PbP
additional methods supporting the problem-based configuration of the portfolio planner.
Such methods could refine the current domain-based configuration so that problems with
different size or heuristically estimated hardness can have different, specialized configured
portfolios. Moreover, it will also be important to extend PbP.q so that plan quality is
measured in terms of plan action costs rather than number of plan actions.

Other directions for further research are investigating the use of PbP.s/q for optimal
planning and for metric-temporal domains (Fox & Long, 2003), and extending the portfolios
with additional automatically extracted domain-specific knowledge, such as entanglements
(Vallati et al., 2013a). Finally, we intend to investigate the idea of making PbP fully domain-
independent by computing many portfolio configurations (planner clusters) for different
known domains, and using a classifier to match a new domain with the most promising
stored configuration in terms of expected performance for the new domain. A similar idea
was successfully developed for SAT, e.g., (Xu et al., 2008).
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