
University of Huddersfield Repository

Mohammad, Rami, Thabtah, Fadi and McCluskey, T.L.

Predicting phishing websites based on self-structuring neural network

Original Citation

Mohammad, Rami, Thabtah, Fadi and McCluskey, T.L. (2014) Predicting phishing websites based
on self-structuring neural network. Neural Computing and Applications, 25 (2). pp. 443-458. ISSN
0941-0643

This version is available at http://eprints.hud.ac.uk/id/eprint/19220/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Predicting Phishing Websites based on Self-Structuring

Neural Network

Rami M. Mohammad

School of Computing and Engineering

University of Huddersfield

Huddersfield, UK.
rami.mohammad@hud.ac.uk

Fadi Thabtah

School of MIS

Philadelphia University

Amman, Jordan.

fadi@cud.ac.ae

Lee McCluskey

School of Computing and Engineering

University of Huddersfield

Huddersfield, UK.

t.l.mccluskey@hud.ac.uk

Abstract — Internet has become an essential component of our

everyday social and financial activities. Nevertheless, internet-users

may be vulnerable to different types of web-threats which may

cause financial damages, identity theft, loss of private information,

brand reputation damage and loss of customer’s confidence in e-

commerce and online banking. Phishing is considered as a form of

web-threats that is defined as the art of impersonating a website of

an honest enterprise aiming to obtain confidential information such

as usernames, passwords and social security number. So far, there

is no single solution that can capture every phishing attack. In this

article, we proposed an intelligent model for predicting phishing

attacks based on Artificial Neural Network “ANN” particularly

self-structuring neural networks. Phishing is a continuous problem

where features significant in determining the type of webpages are

constantly changing. Thus, we need to constantly improve the

network structure in order to cope with these changes. Our model

solves this problem by automating the process of structuring the

network and shows high acceptance for noisy data, fault tolerance

and high prediction accuracy. Several experiments were conducted

in our research, the number of epochs differs in each experiment.

From the results, we find that all produced structures have high

generalization ability.

Keywords- Web Threat, Phishing, Information Security, Neural

Network, Data Mining.

1. INTRODUCTION

Internet is not only important for individual users but also for

organizations doing business online, these organizations

normally offer online trading [1]. Nevertheless, internet-users

may be vulnerable to different types of web-threats that may

cause financial damages, identity theft, loss of private

information, brand reputation damage and loss of customer’s

confidence in e-commerce and online banking. Therefore,

internet suitability for commercial transactions becomes

doubtful. Phishing is considered a form of web-threats that is

defined as the art of impersonating a website of an honest

enterprise aiming to acquire private information such as

usernames, password’s and social security numbers [2].

Phishing websites are created by dishonest persons to

impersonate webpages of genuine websites. These websites

have high visual similarities to the legitimate ones in an attempt

to defraud the honest internet-users. Social engineering and

technical tricks are commonly combined together in order to

start a phishing attack [2]. Phishing websites have become a

serious problem not only because of the increased number of

these websites but also the smart strategies used to design such

websites, therefore even users having good experience in the

computer security and internet might be deceived. Typically,

phishing attack starts by sending an e-mail that seems to be from

an authentic organisation to victims urging them to update or

validate their information by following a URL link within the e-

mail. E-mails have remained the main spreading channel for

phishing links since 65% of phishing attacks start by visiting a

link received within an e-mail [3]. Other methods of distributing

phishing URLs include, Black Hat search engine optimization

(Black Hat SEO) [4], Peer-to-peer file sharing, vulnerable

websites such as blogs, forums, instant messaging (IM), Internet

Relay Chat (IRC), etc.

There are many ways to combat phishing, among them:

• Legal solutions: Followed by many countries, the

United States was the first to enact laws against phishing

activities and many phishers have been arrested and sued.

Phishing has been added to the computer crime list for the first

time on January 2004 by “Federal Trade Commission” “FTC”

which is a U.S government agency aims to promote consumer

protection. In March 2005, the “Anti-Phishing Act” was

introduced in the U.S Congress by senator “Patrick Leahy”. In

2006, the UK government strengthened its legal arsenal against

fraud by prohibiting the development of phishing websites and

enacted penalties of up to 10 years. In 2005, the Australian

government signed a partnership with Microsoft to teach the

law enforcement officials how to combat different cybercrimes.

Nevertheless, criminal act does a fragile job of preventing

phishing attacks since it is very difficult to trace phishers.

Moreover, phishing attacks can be performed quickly, later the

phisher may disappear into cyberspace and thus the law

enforcement authorities must quickly respond because on

average the phishing website lives for only 54 hours [5].

• Education: The key principle in combating phishing

and information security threats is consumer’s education. If

internet-users could be convinced to inspect the security

indicators within the website then the problem is simply gone

away. However, the most important advantage for phishers to

successfully con internet-users is that most internet-users lack

basic knowledge of current online threats that may target them

and how the online sites are formally contacting their

consumers in case of maintenance and information update

issues. In addition, users may ignore checking the security-

indicators within the website such as the existence of the SSL

protocol, since they are focused on their main tasks, while

paying attention to security indicators is considered secondary

task [6]. Moreover, some users do not know what SSL-protocol

and some other security indicators mean. Generally speaking,

although education is an effective technique; getting rid of

phishing by teaching would be hard that is since users are

required to spend a long time learning phishing methods, and

phishers becoming more talented in mimicking legitimate

websites and creating new phishing techniques; which makes

security experts sometimes deceived.

• Technical solution: Weaknesses that appeared when

relying on previously mentioned solutions led to the emergence

need to innovative solutions. Several academic studies,

commercial and non-commercial solutions are offered these

days to handle phishing. Moreover, some non-profit

organizations such as “APWG”, “PhishTank” and

“MillerSmiles” provide forums of opinions as well as

distribution of the best practices that can be organized against

phishing. Furthermore, some security enterprises; for example

“MacAfee” and “Symantec” offered several commercial anti-

phishing solutions. The success of anti-phishing techniques

mainly depend on recognizing phishing websites accurately

and within an acceptable timescale. Although a wide variety of

anti-phishing solutions are offered, most of these solutions

were unable to make decisions perfectly on whether the

website is phishy or not, causing the rise of false positive

decisions, which means labelling legitimate site as phishing..

Hereunder we preview the most popular approaches in

designing technical anti-phishing solutions.

• Blacklist Approach: Where the requested URL is

compared with a predefined phishing URLs. The downside of

this approach is that the blacklist usually cannot cover all

phishing websites since a newly created fraudulent website

takes considerable time before it is being added to the list. This

gap in time between launching and adding the suspicious

website to the list may be enough for the phishers to achieve

their goals. Hence, the detection process should be extremely

quick, usually once the phishing website uploaded and before

the user starts submitting his credentials.

• Heuristic Approach: The second technique is known as

heuristic-based approaches, where several features are

collected from the website to classify it as either phishy or

legitimate. In contrast to the blacklist method, a heuristic-based

solution can recognize freshly created phishing websites in

real-time [7]. The effectiveness of the heuristic-based methods,

sometimes called features-based methods, depends on picking

a set of discriminative features that could help in distinguishing

the type of website [8].

2. MOTIVATION

Phishing websites are expected to be more stylish in the future.

Therefore, a promising solution that must be improved

constantly needed to keep pace with this continuous evolution.

As internet-users feel safe of being phished if they utilize anti-

phishing tools. This throws a great obligation on the anti-

phishing tools to be accurate in predicting phishing websites.

Predicting and stopping fraudulent websites is a critical step

toward protecting online transactions. Several approaches were

proposed to discover and prevent these attacks and as we

mentioned earlier anti-phishing measures may take several

forms including legal, education and technical solutions. The

technical solutions are the subject of our interest, particularly,

heuristic-based phishing detection approach. The accuracy of

the heuristic-based solution mainly depends on a set of

discriminative criteria’s extracted from the website. Hence, the

way in which those features are processed plays an extensive

role in classifying websites correctly. Therefore, an effective

and fast knowledge retrieval method is essential for making a

good decision. Data mining is one of the techniques that can

make use of the features extracted from the websites to find

patterns as well as relations among them [9]. Data mining is

important for decision-making since decisions may be made

based on the patterns and rules achieved by the data-mining

algorithm. Although plenty of applications offered for

combating phishing websites, few of them make use of data

mining techniques in distinguishing phishing websites from

legitimate ones. Besides, most of these suggested methods are

inapplicable, inaccurate and produce an improper level of false

positive rates [10]. Phishing detection problem is a type of

classification task. The classification task goal is to assign each

test data to one of the predefined classes. Phishing is considered

a binary classification problem since the target class has two

possible values “Phishy” or “Legitimate”. Once a webpage is

loaded on the browser a set of features will be extracted from it.

Those features have a strong influence in determining the type

of the webpage. An example of such features includes “IP

address, long URL, uses ‘@’, https and SSL, age of domain,

etc”. Those features will be stored in a data storage called vector.

A data-mining model then will process the data in vector, make

some calculations and finally classify the webpage to either

“Phishy” or “Legitimate”.

Classification in data mining is commonly used to solve

classification problems; which is learning from historical data

patterns in order to classify new data accurately. Phishing

detection falls within the scope of this type.

However, when data mining applications are spoken about these

days most likely people are talking about either decision trees or

neural networks.

Neural network “NN” is a well-known classification technique.

NN is a model of the human brains and nervous system, since

human brain and the neural network are composed of

interconnected processing units called neurons [11]. The link

that connects neurons to each other has a value that signifies the

relative importance of each input to a neuron and it is called

connections weights [11] that are the crucial elements in any

neural network model. Connections weights are adjusted

repeatedly during the training phase until reaching an acceptable

solution. A trained neural network is considered as an expert in

the field of information to which it is applied.

The neural network is an example of non-linear prediction

methods that has been used in many domains like pattern

recognition, speech recognition, handwriting recognition,

biological classification and documents classification. Neural

network proved its superiority for many reasons, among them:

• Nonlinearity: NN is an effective technique in modelling

classification problems where the output values are not

directly related to its input.

• Adaptive: NN has the ability to adjust the weights based on

the changes of its surrounding environments.

• Generalisation: NN is able to find the correct output for the

unseen inputs.

• Fault-tolerance: NN performance does not significantly

affected under difficult circumstances such as losing the

connection between some neurons, noisy or missing data.

• Identical designing steps: The same principles, scheme and

methodological steps are employed in designing ANN in all

domains [12].

The motivation behind our study is to build a robust and

effective model based on neural network to detect phishing

websites on the fly.

In this article, we try to answer the following research questions:

1- The applicability of neural network in predicting phishing

websites.

2- What is the best neural network architecture for predicting

phishing websites?

3- How neural network can be trained to achieve a high

predictive performance.

This article structured as follows: Section III discusses related

works and highlights different phishing detection methods

presented in the literature. Section IV describes the features used

in our model. Section V, introduces traditional neural network

modelling techniques. Section VI details the description of our

model. Sections VII conduct several experiments and we

conclude in Section XI.

3. RELATED WORK

Although several solutions were offered to tackle phishing, most

of these solutions are not capable to make a decision perfectly

thus increasing the false positive rate. In this section, we review

current intelligent anti-phishing approaches as well as the

techniques they utilize in developing solutions.

One approach employed in [13]is based on experimentally

contrasting associative classification algorithms. The authors

have gathered 27 different features from various websites as

shown in Table 1. Those features ranged among three fuzzy set

values “Legitimate, Genuine and Doubtful”. To evaluate the

selected features, the authors conducted experiments using the

following data mining techniques, MCAR [14], CBA [15], C4.5

[16], PRISM [17], PART [9] and JRip [9]. The results showed

an important relation between “Domain Identity” and “URL”

features. There was insignificant impact of the “Page Style” on

“Social Human Factor criteria”.

Later on [18], the authors used the 27 features to build a model

to predict websites type based on fuzzy data mining. Although,

their method is a promising solution it did not clarify how the

features were extracted from the website and specifically

features related to human factors “Much Emphasis on Security

and Response, Generic Salutation and Buying Time to Access

Accounts”. Furthermore, their model works on multilayered

approach i.e. each layer should have its own rules; however, it

was not clear if the rules were established based on human

experience, which is one of the problems we aim to resolve in

this article, or extracted in an automated manner. Moreover, the

authors classified the website as very-legitimate, legitimate,

suspicious, phishy or very-phishy, but they did not clarify what

is the fine line that separate one class from another. Generally,

fuzzy data mining uses approximations; that does not make good

candidates for managing systems that require extreme precision

[19].

Another method proposed in [20] suggested a way to detect

phishing websites by capturing abnormal behaviours

demonstrated by these websites. Two components used as

phishing detectors:

1. The identity extractor: This is the organization’s full name

abbreviation along with a unique string shown in the

domain name.

Table 1 E-BANKING PHISHING CRITERIA

Features Group Phishing Factor Indicator

URL & Domain Identity

Using IP Address

Request URL

URL of Anchor

DNS Record

Abnormal URL

Security & Encryption

SSL Certificate

Certification Authority

Abnormal Cookie

Distinguished Names Certificate(DN)

Source Code & Java

script

Redirect Pages

Straddling Attack

Pharming Attack

Using onMouseOver

Server Form Handler

Page Style & Contents

Spelling Errors

Copying Website

“Submit” Button

Using Pop-Ups Windows

Disabling Right-Click

Web Address Bar

Long URL Address

Replacing Similar Characters for URL

Adding Prefix or Suffix

Using the @ Symbol to Confuse

Using Hexadecimal Character Codes

Social Human Factor

Much Emphasis on Security and Response

Generic Salutation

Buying Time to Access Accounts

2. Page classifier: Some web properties i.e. structural features

that are relevant to the site identity cannot be fabricated.

Structured website consists of “W3C DOM” features [21]. The

authors have selected six structural features:

(Abnormal URL, abnormal DNS record, abnormal anchors,

Server form handler, abnormal cookies and abnormal certificate

in SSL). Support-Vector-Machine classifier “Vapnik’s” [22]

was used to determine whether the website is phishy or not.

Experiments on a dataset consist of 279 phishing websites and

100 legitimate websites showed that the “Identity Extractor”

performs better in dealing with phishing pages because the

legitimate websites are independent from each other, whereas

some of the phishing sites are correlated. Moreover, “The Page

Classifier” performance mainly depends on the result extracted

from “Identity Extractor”. The classification accuracy in this

method was 84%, which is relatively considered low. However,

this method snubs important features that can play a key role in

determining the legitimacy of the website, which explains the

low detection rate. One solution to improve this method could

be by using additional features such as security related features.

The method proposed in [10] suggested utilizing “CANTINA”

which is a content-based technique to detect phishing websites

using the term-frequency-inverse-document-frequency (TF-IDF)

measures [23]. CANTINA stands for “Carnegie Mellon Anti-

phishing and Network Analysis Tool” and it checks the webpage

content then decides whether it is phishing or not by using TF-

IDF. TF-IDF produces weights that assess the word importance

to a document, by counting its frequency. CANTINA works as

follows:

1. Calculate the TF-IDF for a given webpage.

2. Take the five highest TF-IDF terms and add them to the

URL to find the lexical signature.

3. The lexical signature is fed into a search engine.

If the N tops search results having the current webpage, it is

considered a legitimate webpage. If not, it is a phishing webpage.

N was set to 30 in the experiments. If the search engine returns

zero result, thus the website is labelled as phishy, this point was

the main drawback of using such technique since this would

increase the false positive. To overcome this weakness, the

authors combined TF-IDF with some other features those are:

(Age of domain, known images, suspicious URL, IP address,

dotes in URL and Forms).

A limitation of this classification method is that some legitimate

websites consist mostly of images so using the TF-IDF may not

be right. In addition, this approach does not deal with hidden

texts which might be effective in detecting the type of the

webpage.

Another approach that utilizes CANTINA with an additional

attributes proposed in [24]. The authors have used 100 phishy

websites and 100 legitimate ones, which are considered limited

in their experiments. According to CANTINA, there are eight

features have been used for detecting phishing websites (domain

age, known image, suspicious URL, suspicious link, IP address,

dots in URL, Forms and TF-IDF”). Some changes to the

features have been performed during the experiments as follow:

1. The “Forms” feature is considered as a filter to start the

process of decision-making about the legitimacy of the

website since fraud websites that may cause users’

information to be lost must contain “Forms” with input

blocks.

2. The "Known image" and “Domain age” features are ignored

since they are insignificant according to the authors.

3. A new feature that shows the similarity between doubtful

webpage and top-page of its domain is suggested.

The authors have performed three types of experiments against

their dataset where the first one evaluated a reduced CANTINA

feature set “dots in URL, IP address, suspicious URL and

suspicious link”, and the second experiment involved testing

whether the new features “domain top-page similarity” are

significant enough to play a key role in detecting website type.

The third experiment evaluated the results after adding the new

suggested feature to the reduced CANTINA features utilized in

Table 2 Features added to PILFER to classify websites

Phishing Factor Indicator Feature Clarification

Site in browser history If a site not in the history list then it is

expected to be phishing.

Redirected site Forwarding users to new webpage.

tf-idf (term frequency-inverse

document frequency)
Searching for the key terms on a page

and checking whether the current page is

present in the result.

the first experiment. By comparing the newly model

performance after adding the new feature the results of all

compared classification algorithms showed that the new feature

played a key role in detecting the type of the website. The best

accurate algorithm was neural network with an error rate equals

to 7.5%, followed by SVM and random-forest with an error rate

equals to 8.5%, and daboost with 9.0% and J48 with 10.5%,

whereas Naïve Bayes gave the worst result with a 22.5 % error

rate.

In [25], the authors compared a number of commonly used

machine-learning methods including SVM, rule-based

techniques, decision trees, and Bayesian techniques. A random

forest algorithm was implemented in “PILFER”. PILFER stands

for (Phishing Identification by Learning on Features of email

Received) which essentially aim to detect phishing emails. A

dataset consisting of 860 phishing emails and 6950 legitimate

emails was used in the experiments. The proposed technique

correctly detected 96% of the phishing emails with a false

positive rate of 0.1%. The authors used 10 features for detecting

phishing email’s those are:

“IP based URL’s, age of domain, non-matching URL’s, having

a link within the e-mail, HTML emails, number of links within

the e-mail, number of domains appears within the e-mail,

number of dot’s within the links, containing JavaScript and

spam filter output”

PILFER can be applied towards classifying websites by

combining all the 10 features except “Spam filter output” with

those shown in Table II. For assessment; the authors utilized

exactly the same dataset in both PILFER and SpamAssassin

version 3.1.0 [26]. One other goal of using SpamAssassin was

actually to extract “Spam filter output” feature. The results

revealed that PILFER has a false positive rate of 0.0022% if it is

being installed without a spam filter. If PILFER is joined with

SpamAssassin the false positive rate decreased to 0.0013%, and

the detection accuracy rises to 99.5%.

One promising approach proposed by [27] detected type of

websites based on visual similarity by comparing phishing

websites with the legitimate ones. This technique initially

decomposed the webpage into salient block regions depending

on “visual cues.” The visual similarity between phishing

webpage and legitimate one is then evaluated using three

metrics: block level similarity; layout similarity, and overall

style similarity based on the matching of the salient block

regions. A webpage is considered phishy if any metric has a

value higher than a predefined threshold. The authors collected

8 phishing webpages and 320 official bank pages and they

conducted their experiment which shows a 100% true positive

and 1.25% false positive. Although the results were impressive,

this work suffers from subsequent weaknesses:

1. The dataset size was relatively considered very low.

2. Potential instability attributed to the high flexibility of

the layout within the HTML documents.

In [28], a new method, called “Dynamic Security Skins” was

disseminated. Since both; system designers and phishers rely on

user interface to protect or deceive users; this approach used a

shared secret image that allows a remote server to prove its

identity to the user in a way that supports easy verification by

users. This technique requires the users to make verification

based on comparing the user expected image with an image

generated by the server. The authors implement their schema by

developing an extension to “Mozilla Firefox browser”. The main

disadvantage of this schema is that the users bear the burden of

deciding whether the website is phishing or not, thus users need

to be conscious of the phishing and look for signs that the

website he is visiting is in fact a spoof website. This approach

also suggests a fundamental change in the web infrastructure for

both servers and clients, so it can succeed only if the whole

industry’s support it. In addition, this technique does not provide

security if the users logged-in from a public computers.

In 2010, a survey presented in [7] aimed to evaluate the

performance of machine-learning-based-detection-methods

including: “AdaBoost, Bagging, SVM, Classification and

Regression Trees, Logistic Regression, Random Forests, NN,

Naive Bayes and Bayesian Additive Regression Trees” showed

that 7 out of 9 of machine-learning-based-detection-methods

outperformed CANTINA in predicting phishing websites those

are:

“AdaBoost, Bagging, Logistic Regression, Random Forests,

Neural Networks, Naive Bayes and Bayesian Additive

Regression Trees”. A dataset consisting of 1500 phishing

websites and 1500 legitimate websites used in the experiments.

The evaluation based on eight heuristics presented in CANTINA.

A set of pre-experiments decision was taken as follows:

• The number of trees in Random Forest is set to 300.

• For all experiments need to be analysed iteratively the

iteration time was set to 500.

• Threshold value was set to zero for some machine-learning

techniques such as Bayesian Additive Regression Trees

(BART).

• Radial based function was used in SVM.

• The number of hidden neurons was set to five in the NN

experiments.

4. PHISHING WEBSITES FEATURES

There are several features distinguish phishing websites from

legitimate ones. In our study we used 17 features taking either a

binary or a ternary value. Binary value features hold either

“Phishy” or “Legitimate” since the existence or lack of the

feature within the website determines the value assigned to that

feature. Whereas for ternary value features one more value has

been added this is “Suspicious”. For ternary value features, the

existence of the feature in a specific ratio determines the value

assigned to that feature. The features used in our study were

explained below.

1. Using IP address: Using IP address in the hostname

part of the URL address means users can almost be sure

someone is trying to steal his personal information. This

feature is a binary feature.

An example of using IP address is as follows:

http://91.121.10.211/~chems/webscr/verify

Sometimes the IP address is transformed to hexadecimal form

as follows:

http://0x58.0xCC.0xCA.0x62

2. Long URL: Phishers resort to hide the suspicious part

of the URL, which may redirect the information submitted by

the users or redirect the uploaded page to a suspicious domain.

Scientifically, there is no reliable length distinguishes

phishing URLs from legitimate ones. As in [29], the proposed

length of the legitimate URLs is 75. However, the authors did

not justify the reason behind this value. In our previous article

[30] we find that if the URL length is less than 54 characters

then the URL is classified as “Legitimate”, and if the URL

length ranges from 54 to 75 the website is classified as

“Suspicious”, otherwise the website is classified as “Phishing”.

This feature is a ternary feature.

3. URLs having “@” symbol: As we stated earlier,

phishers attempt to hide the suspicious part of the URL. One

of the things that cause suspicion is the existence of the “@”

symbol in the URL. However, the “@” symbol leads the

browser to ignore everything prior the “@” symbol and

redirect the user to the link typed after it. This feature is a

binary feature.

4. Adding Prefixes and Suffixes to URL: Phishers try to

deceive users by reshaping the URL to look like the legitimate

ones. A technique used to do so is by adding prefix or suffix

to the legitimate URL thus the user may not notice any

difference. This feature is a binary feature.

5. Sub-domain(s) in URL: Another technique used by the

phishers to deceive the users is by adding sub-domain(s) to

the URL thus the users may believe that they are dealing with

a credited website. As we mentioned in our previous article

[30] this feature is a ternary feature that is since the URL

address is considered “Suspicious” if it has one sub-domain,

and considered “Phishy” if the sub-domains within the URL is

more than one. Whereas, for the URLs that do not have sub-

domains “Legitimate” value will be assigned.

6. Misuse of HTTPs: The existence of the HTTPs every

time sensitive information is being transferred reveals that the

user certainly connected with an honest website. However,

phishers may use fake HTTPs so that the users may be

deceived. In our previous article [30] we recommended to

check if the HTTPs is offered by a trusted issuer such as

“GeoTrust, GoDaddy, Network Solutions, Thawte, and

VeriSign”. For this feature, if the HTTPs exists but the

certificate issuer is not within the trusted issuer list we will

assign “Suspicious”. Whereas, if the HTTPs is not existing at

all we will assign “Phishy”. Otherwise, we will assign

“Legitimate”. This feature is a ternary feature.

7. Request URL: A webpage consists of a text and some

objects such as images and videos. Typically, these objects

are loaded on the webpage from the same domain where the

webpage exists. If the objects are loaded from a domain

different from the domain typed in the URL address bar then

the webpage is potentially compromised a phishing suspicion.

The ratio of the objects loaded from a different domain

identifies the value assigned to this feature. In our previous

article [30] if the ratio is less than 20% then this website is

considered “Legitimate”, but if the ratio ranges between 20%

to 50% then this website is considered “Suspicious”,

otherwise the website is considered “Phishy”. This feature is a

ternary feature.

8. URL of Anchor: An anchor is an element defined by

the <a> tag. This feature is treated exactly as “Request URL”

but for this feature the links within the webpage might refer to

a domain different from the domain typed on the URL address

bar. This feature is a ternary feature and treated exactly as

“Request URL”.

9. Server Form Handler “SFH”: Once the user submits his

information, that information will be transferred to a server to

be processed. Normally, the information is processed from the

same domain where the webpage is being loaded. Phishers

resort to make the server form handler either empty or the

submitted information is transferred to somewhere different

from the legitimate domain. As we mentioned in our previous

article [30] there are three possible cases for this feature those

are:

• The SFH is empty and then we will assign “Phishy”.

• The SFH refers to a different domain and then we will

assign “Suspicious”.

• The SFH is associated to the same domain shown in the

address bar and then we will assign “Legitimate”.

10. Abnormal URL: If the website identity does not match

its record shown in the WHOIS database [31] then the website

is classified as “Phishy”. This feature is a binary feature.

11. Redirect Page: This feature is commonly used by

phishers by hiding the real link and ask the users to submit

their information to a suspicious website. Nevertheless, some

legitimate websites may redirect the user to a new website to

submit his credentials. The fine line that distinguishes the

phishing websites from the legitimate ones is the number of

redirect pages used within the website. As we mentioned in

our previous article [30] if a website is redirected less than 2

times then the website is classified as “Legitimate”, but if the

website is redirected 2,3 or 4 times then the website is

considered “Suspicious”, and if the website is redirected more

than 4 times then the website is considered “Phishy”.

12. Using Pop-up Window: It is unusual to find a

legitimate website asks users to submit their credentials

through a popup window, this feature is a binary, since if the

website asks the users to submit their credentials through a

popup window we will assign “Phishy” otherwise we will

assign “Legitimate”.

13. Hiding the Suspicious Links: Phishers resort to hide the

suspicious link by showing a fake link on the status bar of the

browser or by hiding the status bar itself. This can be

achieved by tracking the mouse cursor and once the user

arrives to the suspicious link the status bar content is changed.

This feature is a binary feature since if the website code

contains “onMouseOver” and the code assigned to that event

cause the URL shown on the status bar to be changed then we

will assign “Phishy” otherwise we will assign “Legitimate”.

14. DNS Record: If the DNS record is empty or not found

then the website is classified as “Phishy”, otherwise it is

classified as “Legitimate”. Phishers aim to acquire sensitive

information as fast as possible, that is since the phishing

website lasts for a short period of time and then the URL is

not valid any more. DNS record provides information about

the domain that is still alive, while the deleted domains are not

available on the DNS record. This feature is a binary feature.

15. Website Traffic: Legitimate websites are usually

having high web traffic since they are visited regularly.

Phishing websites having a relatively short life thus their web

traffic is either not exists or their web traffic rank is less than

the limit that gives it the legitimate status. In our previous

article [30] we assigned “Legitimate” for the websites ranked

among the top 100,000 websites, and we assigned “Suspicious”

for the websites ranked more than 100,000. If the website has

no traffic record or not being recognized by Alexa database

we will assign “Phishy”. This feature is a ternary feature.

16. Age of Domain: For this feature and as we stated in our

previous article [30] the website is considered “Legitimate” if

the domain aged more than 2 years. However, if the domain

age is less than 2 years and more than 1 year we will assign

“Suspicious”. Otherwise, the website is considered “Phishy”.

This feature is a ternary feature.

17. Disabling Right Click: Phishers use JavaScript to

disable the right click function so that users cannot view and

save the source code. As we stated in our previous article [30]

this feature is not commonly used by phishers since it

appeared only 40 times on a dataset consist of 2500 instances.

However, the website is classified as “Phishy” if the right

click is disabled. Otherwise, the website is classified as

“Legitimate”. This feature is a binary feature.

5. TRADITIONAL MODELLING OF NEURAL NETWORKS

In this section, we explain what NN is and we review a set of

concepts related to it.

The main objective of this study is to automate the process of

developing a neural network model that can be used to predict

phishing attacks. A number of sub-goals have been identified

towered this end, those are:

• Collecting the dataset patterns that will be used in our

experiments and pre-process them into a form that is

suitable for training neural networks.

• Determine the neural network architecture as well as the

learning rate that will yield the best predictive performance.

• Show that neural networks can be used as a valid and

effective approach to predict phishing websites.

Although there are several definitions of neural networks, they

all agreed on that the neural network model consists of a set of

simple processing units called neurons and a set of weighted

connections between these neurons. These weighted connections

are repeatedly adjusted during training of the network until

reaching a suitable solution. How the neurons are connected and

the strength of these connections defines the behaviour of the

neural network. The following steps describe the overall tasks

involved in constructing a neural network model.

A. Data Collection and Preperation

Our 17 features presented in section IV were used to represent

the input neurons. A dataset consists of 1400 phishing and

legitimate websites were used to extract the 17 features using

our own tool [30] [32]. The dataset composed of 600-legitimate

website collected from yahoo directory [33] and starting point

directory [34], and 800-phishing website collected from

Phishtank archive [35] and Millersmiles archive [36]. The

collected dataset holds categorical values those are

“Legitimate”, ”Suspicious” and “Phishy”, these values should be

converted to numerical values, so that the neural network can do

its calculations thus we will replace the values 1,0 and -1 instead

of “Legitimate”, “Suspicious” and “Phishy” respectively.

B. Network Architecture

This includes the types of connections within the network, the

order of the connections and the values of the weights.

One class of neural network architectures is the feed-forward

networks. For this class, the data always propagate in

unidirectional form starting from the input layer down to the

output layer.

The other class of neural network architecture is the recurrent

neural network, which contains feedback connections from units

in the subsequent layers to units in the preceding layers.

Recurrent networks have feedback connections between neurons

of different layers or loop type self-connections. This implies

that the output of the network not only depends on the external

inputs, but also on the state of the network in the previous

training iteration. Determining the network architecture is one of

the difficult tasks in constructing any model but one of the most

essential steps to be taken. The neural network architecture

employed in this study is feed-forward with one hidden layer,

which sometimes called multi-layered perceptron. The

advantage of multi-layered perceptron is that the number of

neurons in the hidden layer can be changed to adapt to the

complication of the relationships between input and output

variables. Although neural network construction has been

widely researched, there is no known procedure or algorithm for

the general case. However, one of the experimental objectives of

this study was to conclude the size of the hidden layer that

produces the best predictive performance.

C. Network topology

The topology of a network is specified by the number of layers,

number of neurons in every layer and the weighted connections

among all neurons. These types of layers are the input, hidden

and output layer.

In feed-forward network, data always propagates in one way

from input layer to output layer passing through the hidden

layer(s) if any. The input layer receives input data from external

world and a neuron in this layer is called an input neuron. In the

network architecture, the input neurons symbolize the data

presented to the network for processing. In our model the 17

features shown in section IV represent the input neurons,

whereas, the website visited by the user represent the external

world from which these features are extracted.

The layer following the input layer is the hidden layer, and

neurons in this layer are called hidden neurons. The hidden layer

receives inputs from the previous layer, transforms those inputs

into nonlinear combinations and passes the results to the next

layer for further processing. The hidden layer can consist of one

or more layers of neurons. Commonly, the networks with one

hidden layer are used in modelling since it has been found that

more than one hidden layer does not produce a major

improvement in the neural network performance [11]. Moreover,

using more than one hidden layer makes the neural network

computationally complex. In our model, we used only one layer

of hidden neurons while the number of neurons within this layer

was changeable.

Two approaches have been proposed in specifying the number

of neurons in the hidden layer those are:

• Pruning: By starting with a large number of neurons, and

then progressively some of these neurons removed during

training until the desired performance is met.

• Constructive: By starting with a small number of neurons,

and then increase the number of neurons during training

until the performance of the network reaches an acceptable

level.

The constructive approach was adopted in this study since this

method is more suitable to our problem and was shown to be

more successful [37].

The output layer is the final layer of the network, and the

neurons in this layer are called output neurons. The neurons in

this layer represent the output of the network.

The network size must be considered when constructing a

network that is since the smaller network size requires fewer

storage and have higher processing during training but such

network sometimes contains several local minima [38]. Larger

networks have a tendency to learn fast in term of training

iterations required and have increased ability to avoid local

minima, but they need a large number of training samples in

order to reach better generalisation ability [39].

D. Network Parameters

The main goal of training a network is to adjust its weight vector.

The step size taken to adjust the weights during the training is a

function of a set of network parameters.

The network parameters include “learning rate, momentum

value, error function, epoch size and transfer functions”.

Normally, preparing the network parameters starts by

initializing the weights. In our model, the weight adjustment is

achieved by an error-correction learning rule called the delta

rule or “Widrow-Hoff learning rule” as shown in Equation 1.

Where “∆W” is the weight-adjustments value for the “i-th” input

variable. “err” is the error value and “x” is the input value.

“η” is a constant value specified by the user defines the learning

rate. The learning rate plays a very important role in the learning

process, since it controls the speed at which the neural network

finds the optimal solution. However, if the learning rate value is

very big then the learning will be very fast but with the risk that

the network will diverge from the solution. On the other hand, a

small value learning rate means that the network will take a very

long time to converge to the final solution. The delta rule can be

modified by adding a momentum term as shown in Equation 2

to increase the convergence of the model without affecting the

network stability, where “α” denotes the momentum value, and

∆W(i - 1) is the weight-adjustment value during the previous

adjustment step. Typically, the momentum value is set to a

positive value ranged between 0.1 and 1 [40].

 ∆���� = �. 	

���. ���� +
. ∆��� − 1� (2)

After calculating the adjustment weight, we find the new weight

as follow: New weight= old weight + adjustment weight.

An important parameter that is commonly taken into

consideration in neural network is the error function, which is

the function that is to be improved during training. In our study,

the mean square error “MSE” is used because it is calculated

easily and because it is penalise large errors. The mean square

error is calculated based on Equation 3:

!"# = $
% ∑ �'
	(�)*	(+,-.	/ − (0�
	(+,-.	/�1%/2$ (3)

Where “N” is the total number of training examples,

“'
	(�)*	(+,-.	/” Is the value produced by the network for

training-example “I” and “(0�
	(+,-.	/” Is the actual value.

E. Training the Network

A correct mapping of input to output requires determining the

correct weights for the neural network. Optimizing the

connection weights is identified by training or learning the

network. The network learns by adapting the strength of its

connection weights by examining the training patterns presented

to it based on a specific training algorithm. The main goal of

training the neural network is to reduce the error in the network

output by adjusting the weight vector. Two learning approaches

can be used to learn the neural networks namely, supervised

approach and un-supervised approach. In supervised learning

approach, a set of training examples is given along with the

desired output of each example. While in un-supervised

approach, training examples are supplied without any

information about the desired output. Supervised learning

approach is hence used in application where a desired output is

known and where the network performance can be assessed by

comparing the network outputs with the desired output. For

phishing detection, supervised approach is used since the desired

output is provided with each training example.

Back-Propagation algorithm is adopted in our study to adjust the

network weights. The back-propagation algorithm is described

as the following pseudocode:

Initialize the weights vector

S = the training set fed to the network

Repeat

 For each “input-output” pair denoted by P in S

 In = input pattern in P

 Out = desired output

 Compute network output (netout)

 network error = Out – netout

 End For

 Find weight change for weights connecting hidden to output

 Find weight change for weights connecting input to hidden

 Update weights

 Until reaching (a satisfactory network error value OR maximum

iteration)

6. PREDICTING PHISHING BASED ON SELF-

STRUCTURING NEURAL NETWORK

As we mentioned earlier, one of the difficult tasks associated

with building a neural network model is that it is necessary to

specify the network architecture in terms of the number of

hidden layers and the number of neurons in each hidden layer.

In addition, a set of parameters (learning rate, momentum, epoch

size) should be specified in advance in order to build a good

model. Unfortunately, it is hard to identify in advance the

appropriate network structure for a particular application, and

that could be reached by trial and error.

A neural network that is structured incorrectly may produce an

under-fitted model. On the other hand, exaggeration in

restructuring the system to suit every item in the training dataset

may cause the system to be overfitted. For overfitted models, the

error value of the training dataset is small, but when new data

fed to the model, the error is big. One possible solution to the

overfitting problem is by adding new neurons to the hidden

layer, or sometimes adding a new layer to the network.

Overfitting caused by the noisy data, which occurs whenever

there are irrelevant features presented within the training dataset.

However, acquire a noisy free dataset is a difficult task, and so,

an acceptable error margin should be specified while building

the model. Which itself considered a problem, since the user

may not be able to determine the acceptable error rate.

Sometimes the user specifies the acceptable error rate to a value

that is un-reachable, or even specifies a value that can be

∆���� = �. 	

���. ���� (1)

improved. For traditional data mining algorithms (C4.5, CBA,

PART … etc.) the user is not asked to specify the acceptable

error rate. Moreover, the phishing problem is a continuous

problem, that means; new features having a strong influence in

determining the website type are expected to appear in the future

or even some currently used features may no longer effective in

predicting the type of the website. Thus, we need to improve the

network structure constantly to cope with these changes. Our

model solves this problem by automating the process of

structuring the network.

One downside of using neural network is that it is difficult to

interpret its results and it is regarded as a black box. However,

we believe that the difficulty in interpreting the results will add a

positive edge to our model since, as the phisher has the ability to

design and manage a phishing website; he might have good

skills in hacking the anti-phishing tool and interpret its content;

and thus he can circumvent it. Moreover, most users are not

interested in interpreting the neural network results, all what

they care about is a way protecting them from phishing.

Our model shown in Fig 1 will address the aforementioned

problems; the most important characteristics of our model can

be summarized as follows:

1- Self-structuring: The model will search for the most

appropriate structure in terms of the number of hidden

neurons and the learning rate value.

2- Minimal number of parameters: In our model, the model-

designer is asked to provide the dataset and the maximum

number of epochs only, while in traditional neural network

modelling technique the model-designer must specify too

many parameters. Moreover, in our model the model-

designer is not involved in specifying the acceptable error

since the model will search for a structure providing the

minimum error rate.

3- Adaptable: As we stated earlier, the features used in

predicting the type of a website might be changed, thus

designing a fixed neural network structure means that some

of the currently used features could be no longer effective in

classifying the website. However, since our model is self-

structuring model then the model-designer have just to

collect a new dataset periodically and fed it to the model,

thus the new result will be produced.

4- The model could be installed on a dedicated server, and a

tool, which is integrated with a web-browser, may contact

this server frequently to obtain updates if any.

The model works as follow:

Step 1. At the beginning, the model creates the simplest neural

network structure, which consists of only one neuron in the

hidden layer. Whereas the number of neurons in the input

and output layers; is determined based on the problem at

hand. In our case the number of neurons at the input and

output layers is set to 17 and 1 respectively. Small non-zero

random values will be assigned for each connection weight.

Figure 1 Self-structuring NN model

We assumed that the learning rate is set to a big value aiming

to converge quickly to the possible solutions. Hence, this

value will be adjusted during the network training. For

traditional neural network modelling techniques, the learning

rate is set to a fixed value that is not changed during the

training phase. In our model, we ran quickly to possible

solutions and then by adjusting the learning rate we slow-

down and examine all possible solutions more deeply. In

addition, we assumed the initial learning rate is 0.8, and the

initial desired-error-rate is set to a big value; we assume it

90%.The model-designer must specify the maximum number

of epochs.

Formula 1

34
56
7 89 < 8/ ;</=>?@ ABCD?<CEFFFFFFFFFFFG H		' *
,�I�IJ

�89 > 8/�,I(L89 < 1.2 ∗ 8/O ;</=>?@ PQ? ABCD?<CEFFFFFFFFFFFFFFG H		' *
,�I�IJ
R*ℎ	
T�U	 → W
,�I�IJ *	
X�I,*	(

Step 2. In this step, the model will find the calculated error rate

“CER”. The model will run one epoch only aiming to

determine what the desired error rate “DER” to be achieved

in the next iteration(s) is.

Step 3. Train the network until the “DER” or maximum

number of epochs is achieved or achieving early stopping.

Step 4. If “DER” is achieved before reaching the maximum

epochs, this could be an indication that the current structure

and current learning rate may be able to improve the network

accuracy in the next iteration(s), thus we set DER = CER and

go back to step 3. Else, we go to step 5.

Step 5. If the maximum number of epochs is reached without

achieving the “DER”, we maintain the network structure and

try to improve the network accuracy by adjusting the

learning rate. Unlike other constructive-neural networks, our

model attempts to find the optimal solution as well as the

simplest structure. The traditional constructive neural

networks attempt to improve the network accuracy by adding

new neuron to the hidden-layer or add a new hidden layer

and ignore adjusting the learning rate. Our model leaves the

network expansion as a last option. However, the main

reason of adjusting the learning rate is that in some regions

of the weight-space, the gradient is large and we need a large

step size; that is why we start with a high learning rate value.

Whereas, in other regions, the gradient is small and we need

a small step size, this happens whenever we come closer to a

local minimum. We assumed to adjust the learning rate by

decrease it 10% as shown in Equation 4.

 η′ = η ∗ 0.90 (4)

After adjusting the learning rate we set DER = CER and train

the network. If DER is achieved then we go back to step 3

aiming to improve the network performance based on the

new learning rate. Else, we go to step 6.

Step 6. If we cannot achieve the “DER” in step 5, then we

assume that the network ability of processing information is

insufficient therefore, the model will add a new neuron to the

hidden layer and train the network. If adding new neuron

improved the network accuracy then we go to step 3 aiming

to update the DER or the learning rate before deciding to add

new neuron. Else, if adding new neuron to the network does

not improve the network accuracy, then the training process

will terminated and the final network will be generated.

7. EXPERIMENTS

A. Experimental Methodology

An object oriented C++ program was created to implement our

model. All experiments were conducted in a system with CPU

Pentium Intel® Core™ i5-2430M @ 2.40 GHz, RAM 4.00 GB.

The environment is Windows 7 64-bit Operating System. The

dataset composed of 600-legitimate website and 800-phishing

website was collected. We are interested in obtaining a model

with optimal generalisation performance. However, most NN

models are criticized being overfitting the input data, which

means, while the error rate on the training dataset decreases

during the training phase, the error rate on the unseen dataset

(testing dataset) increases at some point. To overcome this

problem, we used the “Hold-Out” validation technique, by

dividing our dataset into training, validation and testing datasets.

The examples in each dataset were selected randomly. After

training, we ran the network on the testing dataset. Error on the

testing dataset offers an unbiased approximation of the

generalization error. We split our dataset to 20% for testing and

80% for training. Then the training dataset is divided to 20% for

validation and 80% for training. Another way to avoid

overfitting is to stop training as soon as the error on the

validation dataset starts to increase. However, the validation

dataset may have many local minima, thus if we stop training at

the first increase we may lose some points that achieve better

results because the error rate may decrease again at some points.

Therefore, we track the validation error, and if the current error

is less than the previously achieved error then we update the

weights and keep training the network. On the other hand, if the

currently achieved error is bigger than the previously achieved

error we do not update the weights and keep training until the

fraction between the current error and the smallest error exceeds

a certain threshold, in our model the threshold is assumed to

20%. Formula (1) clarifies how the early stopping is handled in

our model.

Where, ω^ is the currently achieved error, and ω_ is the

minimum error.

In our model, “Log-sigmoid” activation function was used for

all layers. The momentum value was assumed to 0.7, and the

initial learning rate was assumed 0.8. However, one of the

experimental goals is to determine the learning rate value that

produces the best predictive performance. The initial weights

were initialized to random values ranging from -0.5 and +0.5.

The maximum number of possible neurons in the hidden layer is

set to 8.

A. Experimental Results

Several experiments were conducted; in each experiment, we

changed the number of epochs. From the results shown in Table

3, it is clear that our model was able to design NN with

acceptable generalization ability. For instance, the results

obtained when the number of epochs = 500 showed that the

prediction accuracy of the testing dataset was close to the

accuracy achieved from training and validation datasets.

This means while the error decreased on the training dataset it is

also decreased on testing dataset.

Table 3 Experimental Results

Epochs Optimal

number

of HN

Training

set

Accuracy

Validation

set

Accuracy

Testing

set

Accuracy

MSE Best

Learning

Rate

50 4 91.32% 90.03% 90.35% 0.0629 0.7684

100 4 92.33% 90.84% 91.35% 0.0453 0.7308

200 4 93.07% 91.23% 91.80% 0.0922 0.6609

500 3 93.45% 91.12% 92.48% 0.0280 0.5799

1000 3 94.07% 91.31% 92.18% 0.0248 0.5799

Fig 2 shows the evolution of the training error when the epoch

number equals 500.

From the Fig 2, a set of important observations may be summed

up as follow:

• At point “A”, it was clear that the gradient is large while at

other points when approaching the generalization state the

gradient is small. That is why we started with a large

learning rate and adjust it during training.

• At point “B”, the error on the validation dataset becomes

smaller, thus the model will save the weights at these

points and keep training hoping to find better points. At

other points, the weights are not saved because the error

rate did not improve.

• At point “C”, the fraction between the minimum and the

maximum error rate exceeded our threshold thus the model

stopped training and it will try to improve the network

performance either by adjusting the learning rate or by

adding new neuron(s) or even terminate the training and

produce the network.

A

B

C

Figure 2 Evolution of the Training Error

A. A Practical Example on Predicting Website Class

In this section, we will explain how the websites are

classified using our NN model. Suppose that the features

extracted from a webpage are shown in Table 4 where the

values “1”, “0” and “-1” denote “Legitimate”, “Suspicious”

and “Phishy” respectively.

Table 4 Practical Example

Feature Value

Using IP address 1

Long URL 0

URL having @ Symbol 0

Adding Prefix and Suffix 1

Sub-Domain(s) 1

Misuse of HTTPs 0

Request URL 1

URL of Anchor -1

Server Form Handler 1

Abnormal URL 1

Redirect Page -1

Using Pop-up Window -1

Hiding Suspicious Link 0

DNS record 1

Website Traffic 1

Age of Domain 0

Disabling Right Click 1

The final structure produced when the number of epochs is

set to 500 is shown in Fig 6. In addition, the weights

produced are shown in Table 7 and Table 8.

The first step is by finding the net-input for each hidden

neuron by multiplying each input by its corresponding weight.

The results are shown in Table 5.

Table 5 Net input for each neuron in the hidden layer

Each net-input is passed to the activation function, which is

in our model the Log-sigmoid activation function. The result

produced is shown in Table 6.

Table 6 Results of Log-Sigmoid activation function

 Hidden Neuron # 1 Hidden Neuron #

2

Hidden Neuron #

3

Log-

Sig

0.00004 4.60344-15 0.99943

Then, the net-input is calculated for the output neuron by

multiplying the results shown in Table 6 by their

corresponding weights shown in Tabe 8 . The result produced

“-2.93448056” is passed to the activation function. The final

result produced is “0.05048” that is then compared to a

predefined threshold, which is in our model “0.5”. If the final

result > threshold, then the website is classified as legitimate

website, otherwise it is classified as a phishy. In our example

the result is less than the threshold, thus the webpage is

classified as a phishy.

 Hidden Neuron # 1 Hidden Neuron #

2

Hidden Neuron #

3

Net

Input

-10.208376 -33.011972 7.476011

Figure 3 The neural network structure produced when number of epochs = 500

Table 7 Weights produced from input to hidden neurons

Weights produced connecting input neurons to hidden neurons

Input First Hidden Neuron Second Hidden Neuron Third Hidden Neuron

Using IP address -2.788467 -1.732674 -10.499482

Long URL -1.841950 0.657919 -5.551135

URL having @ Symbol -25.389151 -18.487131 33.564385

Adding Prefix and Suffix 0.059755 6.701862 2.325618

Sub-Domain(s) -1.638793 0.773444 -0.969623

Misuse of HTTPs 0.765649 3.354878 2.372594

Request URL -2.053365 9.460433 19.544987

URL of Anchor 0.380302 -2.597401 -2.085049

Server Form Handler -8.259405 -16.573597 -8.682610

Abnormal URL 11.324954 -19.059105 0.296253

Redirect Page 7.666283 4.066873 -4.492245

Using Pop-up Window 6.681336 17.623121 -1.630921

Hiding Suspicious Link 12.627318 -8.031678 1.087805

DNS record -1.460111 -3.557257 -1.370880

Website Traffic -0.202345 7.409626 -2.399567

Age of Domain -10.442993 3.888161 -0.702606

Disabling Right Click 9.537322 2.657889 1.02310

Table 8 Weights produced from hidden to output

Weights produced from hidden to output layer

19.360754

23.560028

-2.936857

8. CONCLUSION

It is well known that a good anti-phishing tool should predict the

phishing attacks in a good time scale. We believe that the

availability of a good anti-phishing tool at a good time scale is

also important to increase the proportion of predicting phishing

websites. This tool should be improved constantly through

continuous retraining. Actually, the availability of fresh and up

to date training dataset which may acquired using our own tool

[30] [32] will help us to retrain our model continuously and

handle any changes in the features which are influential in

determining the website class. Although neural network proves

its ability to solve a wide variety of classification problems, the

process of finding the optimal structure is very difficult and in

most cases, this structure is determined by trial and error. Our

model solves this problem by automating the process of

structuring a neural network scheme therefore if we build an

anti-phishing model and for any reasons we need to update it,

then our model will facilitate this process. That is since our

model will automate the structuring process and will ask for few

user-defined parameters. Several experiments conducted in our

research, the number of epochs differs in each experiment. From

the results, we find that all produced structures have high

generalization ability. In addition, results shown in Table 3

revealed that neural network is a good technique in predicting

phishing websites. Although the model architecture used in our

research seems to be slightly difficult, its principle is the

utilization of an adaptive scheme with four mechanisms:

structural simplicity, learning rate adaptation, structural design

adaptation and early stopping technique based on validation

errors. However, there are three major achievements

contributing to the better performance of our model:

• The first achievement is that, our model uses an adaptive

strategy in designing the network whereas traditional

modelling techniques rely on trial and error. In most cases, the

trial and error technique consumes time before achieving a

network with better generalization ability.

• The second reason is the training method used in our model

since we try to improve the network performance as much as

possible by adjusting the learning rate before deciding to add a

new neuron to the hidden layer.

• The third reason is the generalization ability of our model.

Although several algorithms proposed to automate the neural

networks design most of them, use a greedy scheme in

determining the optimal structure by adding a new layer to the

network or adding a new neuron(s) to the hidden layer. The

main idea behind our model is to focus on an adaptive scheme

for both learning rate and network structure. The adaptive

scheme is more convenient because it is able to handle

different situations that might be occurred during the

designing phase.

One of the future developments of our model is by adding a

technique to assess the significance of the features before they

are adopted in building a neural network based anti-phishing

system. In addition, we are planning to create a toolbar that

implements our model and integrate it with a web browser. This

toolbar should be updated periodically to cope with any

improvements on the weights in case a new model is being

created.

REFERENCES

[1] J. Liu and Y. Ye, “Introduction to E-Commerce Agents: Marketplace

Solutions, Security Issues, and Supply and Demand,” in E-Commerce Agents,

Marketplace Solutions, Security Issues, and Supply and Demand, London, UK.,

2001.

[2] APWG, G. Aaron and R. Manning, “APWG Phishing Reports,” APWG,

1 February 2013. [Online]. Available:

http://www.antiphishing.org/resources/apwg-reports/. [Accessed 8 February

2013].

[3] Kaspersky Lab, “Spam in January 2012: Love, Politics and Sport,” 2013.

[Online]. Available:

http://www.kaspersky.com/about/news/spam/2012/Spam_in_January_2012_Lov

e_Politics_and_Sport. [Accessed 11 February 2013].

[4] seogod, “Black Hat SEO,” SEO Tools, 16 June 2011. [Online].

Available: http://www.seobesttools.com/black-hat-seo/. [Accessed 8 Januery

2013].

[5] R. Dhamija, J. D. Tygar and M. Hearst, “Why Phishing Works.,” in

Proceedings of the SIGCHI conference on Human Factors in computing

systems, Cosmopolitan Montréal, Canada, 2006.

[6] L. F. Cranor, “A framework for reasoning about the human in the loop,”

in UPSEC'08 Proceedings of the 1st Conference on Usability, Psychology, and

Security, Berkeley, CA, USA, 2008.

[7] D. Miyamoto, H. Hazeyama and Y. Kadobayashi, “An Evaluation of

Machine Learning-based Methods for Detection of Phishing Sites,” Australian

Journal of Intelligent Information Processing Systems, pp. 54-63, 2 10 2008.

[8] X. Guang, o. Jason, R. Carolyn P and C. Lorrie, “CANTINA+: A

Feature-rich Machine Learning Framework for Detecting Phishing Web Sites,”

ACM Transactions on Information and System Security, pp. 1-28, 09 2011.

[9] I. H. Witten and E. Frank, “Data mining: practical machine learning tools

and techniques with Java implementations,” ACM, New York, NY, USA, March

2002.

[10] Y. Zhang, J. Hong and L. Cranor, “CANTINA: A Content-Based

Approach to Detect Phishing Web Sites,” in Proceedings of the 16th World Wide

Web Conference, Banff, Alberta, Canada, 2007.

[11] B. Widrow, M. and A. Lehr, “30 years of adaptive neural networks,”

IEEE press, vol. 78, no. 6, pp. 1415-1442, 1990.

[12] I. Basheer and M. Hajmeer, “Artificial neural networks: fundamentals,

computing, design, and application.,” Journal of Microbiological Methods., vol.

43, no. 1, pp. 3-31, 2000.

[13] Aburrous, M, Hossain, M. A., Dahal, K. and Fadi, T, “Predicting

Phishing Websites using Classification Mining Techniques,” in Seventh

International Conference on Information Technology, Las Vegas, Nevada, USA,

2010.

[14] F. Thabtah, C. Peter and Y. Peng, “MCAR: Multi-class Classification

based on Association Rule,” in The 3rd ACS/IEEE International Conference on

Computer Systems and Applications, 2005.

[15] K. Hu, Y. Lu , L. Zhou and C. Shi, “Integrating Classification and

association rule Mining,” in Proceedings of the Fourth International Conference

on Knowledge Discovery and Data Mining (KDD-98, Plenary Presentation),

New York, USA, 1998.

[16] J. R. Quinlan, “Improved use of continuous attributes in c4.5,” Journal of

Artificial Intelligence Research, pp. 77-90, 1996.

[17] J. Cendrowska, “PRISM: An algorithm for inducing modular rule,”

International Journal of Man-Machine Studies, pp. 349-370, 1987.

[18] M. Aburrous, M. A. Hossain, K. Dahal and F. Thabtah, “Intelligent

phishing detection system for e-banking using fuzzy data mining,” Expert

Systems with Applications: An International Journal, pp. 7913-7921, December

2010.

[19] S. A. S., O. S. A. and O. B. A., “Threat Modeling Using Fuzzy Logic

Paradigm,” Informing Science: International Journal of an Emerging

Transdiscipline., vol. 4, no. 1, pp. 53-61, 2007.

[20] Y. Pan and X. Ding, “Anomaly Based Web Phishing Page Detection,” in

In ACSAC '06: Proceedings of the 22nd Annual Computer Security Applications

Conference., Washington, DC, Dec. 2006.

[21] “W3C,” [Online]. Available: http://www.w3.org/TR/DOM-Level-2-

HTML/. [Accessed December 2011].

[22] C. Cortes and V. Vapnik, “Support-Vector Networks,” Machine

Learning, vol. 20, no. 3, pp. 273 - 297, 1995.

[23] C. . D. Manning, P. Raghavan and H. Schütze , Introduction to

Information Retrieval, Cambridge University Press, 2008.

[24] Nuttapong Sanglerdsinlapachai and Arnon Rungsawang, “Using Domain

Top-page Similarity Feature in Machine Learning-based Web,” in Third

International Conference on Knowledge Discovery and Data Mining,

Washington, DC, 2010.

[25] N. Sadeh, A. Tomasic and I. Fette, “Learning to detect phishing emails,”

Proceedings of the 16th international conference on World Wide Web, pp. 649-

656, 2007.

[26] T. A. S. Project, “SpamAssassin,” [Online]. Available:

http://spamassassin.apache.org/. [Accessed January 2012].

[27] L. Wenyin, G. Huang, L. Xiaoyue, Z. Min and X. Deng, “Detection of

Phishing Webpages based on Visual Similarity,” in Proceeding WWW '05

Special interest tracks and posters of the 14th international conference on World

Wide Web , New York, NY, USA , 2005.

[28] R. Dhamija and J. D. Tygar, “The battle against phishing: Dynamic

Security Skins.,” in Proceedings of the 1st Symposium On Usable Privacy and

Security, New York, NY, USA, July, 2005.

[29] S.-J. Horng, P. Fan, M. K. Khan, . R.-S. Run, J.-L. Lai, R.-J. Chen, A.

Sutanto and H. Mingxing, “An efficient phishing webpage detector.,” Expert

Systems with Applications: An International Journal., vol. 38, no. 10, pp. 12018-

12027, 2011.

[30] R. M. Mohammad, F. Thabtah and L. McCluskey, “An Assessment of

Features Related to Phishing Websites using an Automated Technique,” in The

7th International Conference for Internet Technology and Secured Transactions

(ICITST-2012), London, 2012.

[31] “WhoIS,” [Online]. Available: http://who.is/. [Accessed December

2011].

[32] R. M. Mohammad, “Phishing websites Dataset,” December 2012.

[Online]. Available: http://phishingdatasets.wikispaces.com/. [Accessed

December 2012].

[33] “Yahoo Directory,” [Online]. Available: http://dir.yahoo.com/. [Accessed

December 2011].

[34] “Starting Point Directory,” [Online]. Available:

http://www.stpt.com/directory/. [Accessed January 2012].

[35] W. Liu, X. Deng, G. Huang and A. Y. Fu, “An Antiphishing Strategy

Based on Visual Similarity Assessment,” in IEEE Educational Activities

Department Piscataway, NJ, USA , March 2006 .

[36] “MillerSmiles,” [Online]. Available: http://www.millersmiles.co.uk/.

[37] T. M. Nabhan and A. Y. Zomaya , “Toward generating neural network

structures for function approximation,” Elsevier Science Ltd., vol. 7, no. 1, pp.

88-99, 1994.

[38] R. G. Hutchins, “Neural network topologies and training algorithms in

nonlinear system identification,” in Systems, Man and Cybernetics, 1995.

Intelligent Systems for the 21st Century., IEEE International Conference on,

Monterey, CA., 1995.

[39] Z. M. Jacek, Introduction To Artificial Neural Systems., Jaico Publishing

House., 1994.

[40] M. Kantardzic, Data mining: concepts, models, methods, and algorithms,

2, illustrated. ed., John Wiley & Sons., 2011.

