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Abstract — Internet has become an essential component of our 

everyday social and financial activities. Nevertheless, internet-users 

may be vulnerable to different types of web-threats which may 

cause financial damages, identity theft, loss of private information, 

brand reputation damage and loss of customer’s confidence in e-

commerce and online banking. Phishing is considered as a form of 

web-threats that is defined as the art of impersonating a website of 

an honest enterprise aiming to obtain confidential information such 

as usernames, passwords and social security number. So far, there 

is no single solution that can capture every phishing attack. In this 

article, we proposed an intelligent model for predicting phishing 

attacks based on Artificial Neural Network “ANN” particularly 

self-structuring neural networks. Phishing is a continuous problem 

where features significant in determining the type of webpages are 

constantly changing. Thus, we need to constantly improve the 

network structure in order to cope with these changes. Our model 

solves this problem by automating the process of structuring the 

network and shows high acceptance for noisy data, fault tolerance 

and high prediction accuracy. Several experiments were conducted 

in our research, the number of epochs differs in each experiment. 

From the results, we find that all produced structures have high 

generalization ability. 

 

Keywords- Web Threat, Phishing, Information Security, Neural 

Network, Data Mining. 

1. INTRODUCTION 
 

Internet is not only important for individual users but also for 

organizations doing business online, these organizations 

normally offer online trading [1]. Nevertheless, internet-users 

may be vulnerable to different types of web-threats that may 

cause financial damages, identity theft, loss of private 

information, brand reputation damage and loss of customer’s 

confidence in e-commerce and online banking. Therefore, 

internet suitability for commercial transactions becomes 

doubtful. Phishing is considered a form of web-threats that is 

defined as the art of impersonating a website of an honest 

enterprise aiming to acquire private information such as 

usernames, password’s and social security numbers [2]. 

Phishing websites are created by dishonest persons to 

impersonate webpages of genuine websites. These websites 

have high visual similarities to the legitimate ones in an attempt 

to defraud the honest internet-users. Social engineering and 

technical tricks are commonly combined together in order to 

start a phishing attack [2].  Phishing websites have become a 

serious problem not only because of the increased number of 

these websites but also the smart strategies used to design such 

websites, therefore even users having good experience in the 

computer security and internet might be deceived. Typically, 

phishing attack starts by sending an e-mail that seems to be from 

an authentic organisation to victims urging them to update or 

validate their information by following a URL link within the e-

mail. E-mails have remained the main spreading channel for 

phishing links since 65% of phishing attacks start by visiting a 

link received within an e-mail [3]. Other methods of distributing 

phishing URLs include, Black Hat search engine optimization 

(Black Hat SEO) [4], Peer-to-peer file sharing, vulnerable 

websites such as blogs, forums, instant messaging (IM), Internet 

Relay Chat (IRC), etc. 

There are many ways to combat phishing, among them: 

 

• Legal solutions: Followed by many countries, the 

United States was the first to enact laws against phishing 

activities and many phishers have been arrested and sued. 

Phishing has been added to the computer crime list for the first 

time on January 2004 by “Federal Trade Commission” “FTC” 

which is a U.S government agency aims to promote consumer 

protection. In March 2005, the “Anti-Phishing Act” was 

introduced in the U.S Congress by senator “Patrick Leahy”. In 

2006, the UK government strengthened its legal arsenal against 

fraud by prohibiting the development of phishing websites and 

enacted penalties of up to 10 years. In 2005, the Australian 

government signed a partnership with Microsoft to teach the 

law enforcement officials how to combat different cybercrimes. 

Nevertheless, criminal act does a fragile job of preventing 

phishing attacks since it is very difficult to trace phishers. 

Moreover, phishing attacks can be performed quickly, later the 

phisher may disappear into cyberspace and thus the law 

enforcement authorities must quickly respond because on 

average the phishing website lives for only 54 hours [5]. 

 



• Education: The key principle in combating phishing 

and information security threats is consumer’s education. If 

internet-users could be convinced to inspect the security 

indicators within the website then the problem is simply gone 

away. However, the most important advantage for phishers to 

successfully con internet-users is that most internet-users lack 

basic knowledge of current online threats that may target them 

and how the online sites are formally contacting their 

consumers in case of maintenance and information update 

issues. In addition, users may ignore checking the security-

indicators within the website such as the existence of the SSL 

protocol, since they are focused on their main tasks, while 

paying attention to security indicators is considered secondary 

task [6]. Moreover, some users do not know what SSL-protocol 

and some other security indicators mean. Generally speaking, 

although education is an effective technique; getting rid of 

phishing by teaching  would be hard that is since users are 

required to spend a long time learning phishing methods, and 

phishers becoming more talented in mimicking legitimate 

websites and creating new phishing techniques; which makes 

security experts sometimes deceived.  

 

• Technical solution: Weaknesses that appeared when 

relying on previously mentioned solutions led to the emergence 

need to innovative solutions. Several academic studies, 

commercial and non-commercial solutions are offered these 

days to handle phishing. Moreover, some non-profit 

organizations such as “APWG”, “PhishTank” and 

“MillerSmiles” provide forums of opinions as well as 

distribution of the best practices that can be organized against 

phishing. Furthermore, some security enterprises; for example 

“MacAfee” and “Symantec” offered several commercial anti-

phishing solutions. The success of anti-phishing techniques 

mainly depend on recognizing phishing websites accurately 

and within an acceptable timescale. Although a wide variety of 

anti-phishing solutions are offered, most of these solutions 

were unable to make decisions perfectly on whether the 

website is phishy or not, causing the rise of false positive 

decisions, which means labelling legitimate site as phishing.. 

 

Hereunder we preview the most popular approaches in 

designing technical anti-phishing solutions. 

 

• Blacklist Approach: Where the requested URL is 

compared with a predefined phishing URLs. The downside of 

this approach is that the blacklist usually cannot cover all 

phishing websites since a newly created fraudulent website 

takes considerable time before it is being added to the list. This 

gap in time between launching and adding the suspicious 

website to the list may be enough for the phishers to achieve 

their goals. Hence, the detection process should be extremely 

quick, usually once the phishing website uploaded and before 

the user starts submitting his credentials. 

 

• Heuristic Approach: The second technique is known as 

heuristic-based approaches, where several features are 

collected from the website to classify it as either phishy or 

legitimate. In contrast to the blacklist method, a heuristic-based 

solution can recognize freshly created phishing websites in 

real-time [7]. The effectiveness of the heuristic-based methods, 

sometimes called features-based methods, depends on picking 

a set of discriminative features that could help in distinguishing 

the type of website [8]. 

2. MOTIVATION 

 

Phishing websites are expected to be more stylish in the future. 

Therefore, a promising solution that must be improved 

constantly needed to keep pace with this continuous evolution.  

As internet-users feel safe of being phished if they utilize anti-

phishing tools. This throws a great obligation on the anti-

phishing tools to be accurate in predicting phishing websites. 

Predicting and stopping fraudulent websites is a critical step 

toward protecting online transactions. Several approaches were 

proposed to discover and prevent these attacks and as we 

mentioned earlier anti-phishing measures may take several 

forms including legal, education and technical solutions. The 

technical solutions are the subject of our interest, particularly, 

heuristic-based phishing detection approach. The accuracy of 

the heuristic-based solution mainly depends on a set of 

discriminative criteria’s extracted from the website. Hence, the 

way in which those features are processed plays an extensive 

role in classifying websites correctly. Therefore, an effective 

and fast knowledge retrieval method is essential for making a 

good decision. Data mining is one of the techniques that can 

make use of the features extracted from the websites to find 

patterns as well as relations among them [9]. Data mining is 

important for decision-making since decisions may be made 

based on the patterns and rules achieved by the data-mining 

algorithm. Although plenty of applications offered for 

combating phishing websites, few of them make use of data 

mining techniques in distinguishing phishing websites from 

legitimate ones. Besides, most of these suggested methods are 

inapplicable, inaccurate and produce an improper level of false 

positive rates [10]. Phishing detection problem is a type of 

classification task. The classification task goal is to assign each 

test data to one of the predefined classes. Phishing is considered 

a binary classification problem since the target class has two 

possible values “Phishy” or “Legitimate”. Once a webpage is 

loaded on the browser a set of features will be extracted from it. 

Those features have a strong influence in determining the type 

of the webpage. An example of such features includes “IP 

address, long URL, uses ‘@’, https and SSL, age of domain, 

etc”. Those features will be stored in a data storage called vector. 

A data-mining model then will process the data in vector, make 



some calculations and finally classify the webpage to either 

“Phishy” or “Legitimate”.  

Classification in data mining is commonly used to solve 

classification problems; which is learning from historical data 

patterns in order to classify new data accurately. Phishing 

detection falls within the scope of this type. 

However, when data mining applications are spoken about these 

days most likely people are talking about either decision trees or 

neural networks. 

Neural network “NN” is a well-known classification technique. 

NN is a model of the human brains and nervous system, since 

human brain and the neural network are composed of 

interconnected processing units called neurons [11]. The link 

that connects neurons to each other has a value that signifies the 

relative importance of each input to a neuron and it is called 

connections weights [11] that are the crucial elements in any 

neural network model. Connections weights are adjusted 

repeatedly during the training phase until reaching an acceptable 

solution. A trained neural network is considered as an expert in 

the field of information to which it is applied. 

 

The neural network is an example of non-linear prediction 

methods that has been used in many domains like pattern 

recognition, speech recognition, handwriting recognition, 

biological classification and documents classification. Neural 

network proved its superiority for many reasons, among them: 

 

• Nonlinearity: NN is an effective technique in modelling 

classification problems where the output values are not 

directly related to its input. 

• Adaptive: NN has the ability to adjust the weights based on 

the changes of its surrounding environments.  

• Generalisation: NN is able to find the correct output for the 

unseen inputs. 

• Fault-tolerance: NN performance does not significantly 

affected under difficult circumstances such as losing the 

connection between some neurons, noisy or missing data.  

• Identical designing steps: The same principles, scheme and 

methodological steps are employed in designing ANN in all 

domains [12].  

 

The motivation behind our study is to build a robust and 

effective model based on neural network to detect phishing 

websites on the fly.  

In this article, we try to answer the following research questions: 

 

1- The applicability of neural network in predicting phishing 

websites. 

2- What is the best neural network architecture for predicting 

phishing websites? 

3- How neural network can be trained to achieve a high 

predictive performance.  

 

This article structured as follows: Section III discusses related 

works and highlights different phishing detection methods 

presented in the literature. Section IV describes the features used 

in our model. Section V, introduces traditional neural network 

modelling techniques. Section VI details the description of our 

model. Sections VII conduct several experiments and we 

conclude in Section XI. 
 

3. RELATED WORK 
 

Although several solutions were offered to tackle phishing, most 

of these solutions are not capable to make a decision perfectly 

thus increasing the false positive rate. In this section, we review 

current intelligent anti-phishing approaches as well as the 

techniques they utilize in developing solutions.  

One approach employed in [13]is based on experimentally 

contrasting associative classification algorithms. The authors 

have gathered 27 different features from various websites as 

shown in Table 1. Those features ranged among three fuzzy set 

values “Legitimate, Genuine and Doubtful”. To evaluate the 

selected features, the authors conducted experiments using the 

following data mining techniques, MCAR [14], CBA [15], C4.5 

[16], PRISM [17], PART [9] and JRip [9]. The results showed 

an important relation between “Domain Identity” and “URL” 

features. There was insignificant impact of the “Page Style” on 

“Social Human Factor criteria”.  

Later on [18], the authors used the 27 features to build a model 

to predict websites type based on fuzzy data mining. Although, 

their method is a promising solution it did not clarify how the 

features were extracted from the website and specifically 

features related to human factors “Much Emphasis on Security 

and Response, Generic Salutation and Buying Time to Access 

Accounts”. Furthermore, their model works on multilayered 

approach i.e. each layer should have its own rules; however, it 

was not clear if the rules were established based on human 

experience, which is one of the problems we aim to resolve in 

this article, or extracted in an automated manner.  Moreover, the 

authors classified the website as very-legitimate, legitimate, 

suspicious, phishy or very-phishy, but they did not clarify what 

is the fine line that separate one class from another. Generally, 

fuzzy data mining uses approximations; that does not make good 

candidates for managing systems that require extreme precision 

[19].  

 

Another method proposed in [20] suggested a way to detect 

phishing websites by capturing abnormal behaviours 

demonstrated by these websites. Two components used as 

phishing detectors:  

 

1. The identity extractor: This is the organization’s full name 

abbreviation along with a unique string shown in the 

domain name. 



Table 1 E-BANKING PHISHING CRITERIA 

Features Group Phishing Factor Indicator 

URL & Domain Identity 

 

Using IP Address 

Request URL 

URL of Anchor 

DNS Record 

Abnormal URL 

Security & Encryption 

 

SSL Certificate 

Certification Authority 

Abnormal Cookie 

Distinguished Names Certificate(DN) 

Source Code & Java 

script 

Redirect Pages 

Straddling Attack 

Pharming Attack 

Using onMouseOver 

Server Form Handler 

Page Style & Contents 

 

Spelling Errors 

Copying Website 

“Submit” Button 

Using Pop-Ups Windows 

Disabling Right-Click 

Web Address Bar 

 

Long URL Address 

Replacing Similar Characters for URL 

Adding Prefix or Suffix 

Using the @ Symbol to Confuse 

Using Hexadecimal Character Codes 

Social Human Factor 

 

Much Emphasis on Security and Response 

Generic Salutation 

Buying Time to Access Accounts 

 

2. Page classifier: Some web properties i.e. structural features 

that are relevant to the site identity cannot be fabricated.  

Structured website consists of “W3C DOM” features [21]. The 

authors have selected six structural features: 

(Abnormal URL, abnormal DNS record, abnormal anchors, 

Server form handler, abnormal cookies and abnormal certificate 

in SSL). Support-Vector-Machine classifier “Vapnik’s” [22] 

was used to determine whether the website is phishy or not. 

Experiments on a dataset consist of 279 phishing websites and 

100 legitimate websites showed that the “Identity Extractor” 

performs better in dealing with phishing pages because the 

legitimate websites are independent from each other, whereas 

some of the phishing sites are correlated. Moreover, “The Page 

Classifier” performance mainly depends on the result extracted 

from “Identity Extractor”. The classification accuracy in this 

method was 84%, which is relatively considered low. However, 

this method snubs important features that can play a key role in 

determining the legitimacy of the website, which explains the 

low detection rate. One solution to improve this method could 

be by using additional features such as security related features. 

 

The method proposed in [10] suggested utilizing “CANTINA” 

which is a content-based technique to detect phishing websites 

using the term-frequency-inverse-document-frequency (TF-IDF) 

measures [23]. CANTINA stands for “Carnegie Mellon Anti-

phishing and Network Analysis Tool” and it checks the webpage 

content then decides whether it is phishing or not by using TF-

IDF. TF-IDF produces weights that assess the word importance 

to a document, by counting its frequency. CANTINA works as 

follows: 

 

1. Calculate the TF-IDF for a given webpage. 

2. Take the five highest TF-IDF terms and add them to the 

URL to find the lexical signature. 

3.  The lexical signature is fed into a search engine. 

 

If the N tops search results having the current webpage, it is 

considered a legitimate webpage. If not, it is a phishing webpage. 

N was set to 30 in the experiments. If the search engine returns 

zero result, thus the website is labelled as phishy, this point was 

the main drawback of using such technique since this would 

increase the false positive. To overcome this weakness, the 

authors combined TF-IDF with some other features those are: 

(Age of domain, known images, suspicious URL, IP address, 

dotes in URL and Forms). 

A limitation of this classification method is that some legitimate 

websites consist mostly of images so using the TF-IDF may not 

be right. In addition, this approach does not deal with hidden 

texts which might be effective in detecting the type of the 

webpage. 

 

Another approach that utilizes CANTINA with an additional 

attributes proposed in [24]. The authors have used 100 phishy 

websites and 100 legitimate ones, which are considered limited 

in their experiments. According to CANTINA, there are eight 

features have been used for detecting phishing websites (domain 

age, known image, suspicious URL, suspicious link, IP address, 

dots in URL, Forms and TF-IDF”). Some changes to the 

features have been performed during the experiments as follow: 

 

1. The “Forms” feature is considered as a filter to start the 

process of decision-making about the legitimacy of the 

website since fraud websites that may cause users’ 

information to be lost must contain “Forms” with input 

blocks.   

2. The "Known image" and “Domain age” features are ignored 

since they are insignificant according to the authors.  

3. A new feature that shows the similarity between doubtful 

webpage and top-page of its domain is suggested.  

 

The authors have performed three types of experiments against 

their dataset where the first one evaluated a reduced CANTINA 

feature set “dots in URL, IP address, suspicious URL and 

suspicious link”, and the second experiment involved testing 

whether the new features “domain top-page similarity” are 

significant enough to play a key role in detecting website type. 

The third experiment evaluated the results after adding the new 

suggested feature to the reduced CANTINA features utilized in 



Table 2 Features added to PILFER to classify websites 

Phishing Factor Indicator Feature Clarification 

Site in browser history If a site not in the history list then it is 

expected to be phishing. 

Redirected site Forwarding users to new webpage. 

tf-idf (term frequency-inverse 

document frequency) 
Searching for the key terms on a page 

and checking whether the current page is 

present in the result. 

 

the first experiment. By comparing the newly model 

performance after adding the new feature the results of all 

compared classification algorithms showed that the new feature 

played a key role in detecting the type of the website. The best 

accurate algorithm was neural network with an error rate equals 

to 7.5%, followed by SVM and random-forest with an error rate 

equals to 8.5%, and daboost with 9.0% and J48 with 10.5%, 

whereas Naïve Bayes gave the worst result with a 22.5 % error 

rate.  

 

In [25], the authors compared a number of commonly used 

machine-learning methods including SVM, rule-based 

techniques, decision trees, and Bayesian techniques. A random 

forest algorithm was implemented in “PILFER”. PILFER stands 

for (Phishing Identification by Learning on Features of email 

Received) which essentially aim to detect phishing emails. A 

dataset consisting of 860 phishing emails and 6950 legitimate 

emails was used in the experiments. The proposed technique 

correctly detected 96% of the phishing emails with a false 

positive rate of 0.1%. The authors used 10 features for detecting 

phishing email’s those are: 

“IP based URL’s, age of domain, non-matching URL’s, having 

a link within the e-mail, HTML emails, number of links within 

the e-mail, number of domains appears within the e-mail, 

number of dot’s within the links, containing JavaScript and 

spam filter output” 

PILFER can be applied towards classifying websites by 

combining all the 10 features except “Spam filter output” with 

those shown in Table II. For assessment; the authors utilized 

exactly the same dataset in both PILFER and SpamAssassin 

version 3.1.0 [26]. One other goal of using SpamAssassin was 

actually to extract “Spam filter output” feature. The results 

revealed that PILFER has a false positive rate of 0.0022% if it is 

being installed without a spam filter. If PILFER is joined with 

SpamAssassin the false positive rate decreased to 0.0013%, and 

the detection accuracy rises to 99.5%.  

 

One promising approach proposed by [27] detected type of 

websites based on visual similarity by comparing phishing 

websites with the legitimate ones. This technique initially 

decomposed the webpage into salient block regions depending 

on “visual cues.” The visual similarity between phishing 

webpage and legitimate one is then evaluated using three 

metrics: block level similarity; layout similarity, and overall 

style similarity based on the matching of the salient block 

regions. A webpage is considered phishy if any metric has a 

value higher than a predefined threshold. The authors collected 

8 phishing webpages and 320 official bank pages and they 

conducted their experiment which shows a 100% true positive 

and 1.25% false positive. Although the results were impressive, 

this work suffers from subsequent weaknesses:  

 

1. The dataset size was relatively considered very low. 

2. Potential instability attributed to the high flexibility of 

the layout within the HTML documents. 

 

In [28], a new method, called “Dynamic Security Skins” was 

disseminated. Since both; system designers and phishers rely on 

user interface to protect or deceive users; this approach used a 

shared secret image that allows a remote server to prove its 

identity to the user in a way that supports easy verification by 

users. This technique requires the users to make verification 

based on comparing the user expected image with an image 

generated by the server. The authors implement their schema by 

developing an extension to “Mozilla Firefox browser”. The main 

disadvantage of this schema is that the users bear the burden of 

deciding whether the website is phishing or not, thus users need 

to be conscious of the phishing and look for signs that the 

website he is visiting is in fact a spoof website. This approach 

also suggests a fundamental change in the web infrastructure for 

both servers and clients, so it can succeed only if the whole 

industry’s support it. In addition, this technique does not provide 

security if the users logged-in from a public computers. 

 

In 2010, a survey presented in [7] aimed to evaluate the 

performance of machine-learning-based-detection-methods 

including: “AdaBoost, Bagging, SVM, Classification and 

Regression Trees, Logistic Regression, Random Forests, NN, 

Naive Bayes and Bayesian Additive Regression Trees” showed 

that 7 out of 9 of machine-learning-based-detection-methods 

outperformed CANTINA in predicting phishing websites those 

are: 

“AdaBoost, Bagging, Logistic Regression, Random Forests, 

Neural Networks, Naive Bayes and Bayesian Additive 

Regression Trees”. A dataset consisting of 1500 phishing 

websites and 1500 legitimate websites used in the experiments. 

The evaluation based on eight heuristics presented in CANTINA. 

A set of pre-experiments decision was taken as follows: 

 

• The number of trees in Random Forest is set to 300.  

• For all experiments need to be analysed iteratively the 

iteration time was set to 500. 

• Threshold value was set to zero for some machine-learning 

techniques such as Bayesian Additive Regression Trees 

(BART). 



• Radial based function was used in SVM. 

• The number of hidden neurons was set to five in the NN 

experiments. 

4. PHISHING WEBSITES FEATURES 
 

There are several features distinguish phishing websites from 

legitimate ones. In our study we used 17 features taking either a 

binary or a ternary value. Binary value features hold either 

“Phishy” or “Legitimate” since the existence or lack of the 

feature within the website determines the value assigned to that 

feature. Whereas for ternary value features one more value has 

been added this is “Suspicious”. For ternary value features, the 

existence of the feature in a specific ratio determines the value 

assigned to that feature. The features used in our study were 

explained below. 

1. Using IP address: Using IP address in the hostname 

part of the URL address means users can almost be sure 

someone is trying to steal his personal information. This 

feature is a binary feature. 

An example of using IP address is as follows: 

http://91.121.10.211/~chems/webscr/verify 

Sometimes the IP address is transformed to hexadecimal form 

as follows: 

http://0x58.0xCC.0xCA.0x62 

 

2. Long URL: Phishers resort to hide the suspicious part 

of the URL, which may redirect the information submitted by 

the users or redirect the uploaded page to a suspicious domain. 

Scientifically, there is no reliable length distinguishes 

phishing URLs from legitimate ones. As in [29], the proposed 

length of the legitimate URLs is 75. However, the authors did 

not justify the reason behind this value. In our previous article 

[30] we find that if the URL length is less than 54 characters 

then the URL is classified as “Legitimate”, and if the URL 

length ranges from 54 to 75 the website is classified as 

“Suspicious”, otherwise the website is classified as “Phishing”. 

This feature is a ternary feature. 

 

3. URLs having “@” symbol: As we stated earlier, 

phishers attempt to hide the suspicious part of the URL. One 

of the things that cause suspicion is the existence of the “@” 

symbol in the URL.  However, the “@” symbol leads the 

browser to ignore everything prior the “@” symbol and 

redirect the user to the link typed after it. This feature is a 

binary feature. 

 

4. Adding Prefixes and Suffixes to URL: Phishers try to 

deceive users by reshaping the URL to look like the legitimate 

ones. A technique used to do so is by adding prefix or suffix 

to the legitimate URL thus the user may not notice any 

difference. This feature is a binary feature. 

 

5. Sub-domain(s) in URL: Another technique used by the 

phishers to deceive the users is by adding sub-domain(s) to 

the URL thus the users may believe that they are dealing with 

a credited website. As we mentioned in our previous article 

[30] this feature is a ternary feature that is since the URL 

address is considered “Suspicious” if it has one sub-domain, 

and considered “Phishy” if the sub-domains within the URL is 

more than one. Whereas, for the URLs that do not have sub-

domains “Legitimate” value will be assigned. 

 

6. Misuse of HTTPs: The existence of the HTTPs every 

time sensitive information is being transferred reveals that the 

user certainly connected with an honest website. However, 

phishers may use fake HTTPs so that the users may be 

deceived. In our previous article [30] we recommended to 

check if the HTTPs is offered by a trusted issuer such as 

“GeoTrust, GoDaddy, Network Solutions, Thawte, and 

VeriSign”. For this feature, if the HTTPs exists but the 

certificate issuer is not within the trusted issuer list we will 

assign “Suspicious”. Whereas, if the HTTPs is not existing at 

all we will assign “Phishy”. Otherwise, we will assign 

“Legitimate”. This feature is a ternary feature. 

 

7. Request URL: A webpage consists of a text and some 

objects such as images and videos. Typically, these objects 

are loaded on the webpage from the same domain where the 

webpage exists. If the objects are loaded from a domain 

different from the domain typed in the URL address bar then 

the webpage is potentially compromised a phishing suspicion. 

The ratio of the objects loaded from a different domain 

identifies the value assigned to this feature. In our previous 

article [30] if the ratio is less than 20% then this website is 

considered “Legitimate”, but if the ratio ranges between 20% 

to 50% then this website is considered “Suspicious”, 

otherwise the website is considered “Phishy”. This feature is a 

ternary feature. 

 

8. URL of Anchor: An anchor is an element defined by 

the <a> tag. This feature is treated exactly as “Request URL” 

but for this feature the links within the webpage might refer to 

a domain different from the domain typed on the URL address 

bar. This feature is a ternary feature and treated exactly as 

“Request URL”. 

 

9. Server Form Handler “SFH”: Once the user submits his 

information, that information will be transferred to a server to 

be processed. Normally, the information is processed from the 

same domain where the webpage is being loaded. Phishers 

resort to make the server form handler either empty or the 

submitted information is transferred to somewhere different 

from the legitimate domain. As we mentioned in our previous 

article [30] there are three possible cases for this feature those 

are:  



• The SFH is empty and then we will assign “Phishy”. 

• The SFH refers to a different domain and then we will 

assign “Suspicious”. 

• The SFH is associated to the same domain shown in the 

address bar and then we will assign “Legitimate”. 

 

10. Abnormal URL: If the website identity does not match 

its record shown in the WHOIS database [31] then the website 

is classified as “Phishy”. This feature is a binary feature. 

 

11. Redirect Page: This feature is commonly used by 

phishers by hiding the real link and ask the users to submit 

their information to a suspicious website. Nevertheless, some 

legitimate websites may redirect the user to a new website to 

submit his credentials. The fine line that distinguishes the 

phishing websites from the legitimate ones is the number of 

redirect pages used within the website. As we mentioned in 

our previous article [30] if a website is redirected less than 2 

times then the website is classified as “Legitimate”, but if the 

website is redirected 2,3 or 4 times then the website is 

considered “Suspicious”, and if the website is redirected more 

than 4 times then the website is considered “Phishy”. 

 

12. Using Pop-up Window: It is unusual to find a 

legitimate website asks users to submit their credentials 

through a popup window, this feature is a binary, since if the 

website asks the users to submit their credentials through a 

popup window we will assign “Phishy” otherwise we will 

assign “Legitimate”. 

 

13. Hiding the Suspicious Links: Phishers resort to hide the 

suspicious link by showing a fake link on the status bar of the 

browser or by hiding the status bar itself.  This can be 

achieved by tracking the mouse cursor and once the user 

arrives to the suspicious link the status bar content is changed. 

This feature is a binary feature since if the website code 

contains “onMouseOver” and the code assigned to that event 

cause the URL shown on the status bar to be changed then we 

will assign “Phishy” otherwise we will assign “Legitimate”. 

 

14. DNS Record: If the DNS record is empty or not found 

then the website is classified as “Phishy”, otherwise it is 

classified as “Legitimate”. Phishers aim to acquire sensitive 

information as fast as possible, that is since the phishing 

website lasts for a short period of time and then the URL is 

not valid any more. DNS record provides information about 

the domain that is still alive, while the deleted domains are not 

available on the DNS record. This feature is a binary feature. 

 

15. Website Traffic: Legitimate websites are usually 

having high web traffic since they are visited regularly. 

Phishing websites having a relatively short life thus their web 

traffic is either not exists or their web traffic rank is less than 

the limit that gives it the legitimate status. In our previous 

article [30] we assigned “Legitimate” for the websites ranked 

among the top 100,000 websites, and we assigned “Suspicious” 

for the websites ranked more than 100,000. If the website has 

no traffic record or not being recognized by Alexa database 

we will assign “Phishy”. This feature is a ternary feature. 

 

16. Age of Domain: For this feature and as we stated in our 

previous article [30] the website is considered “Legitimate” if 

the domain aged more than 2 years. However, if the domain 

age is less than 2 years and more than 1 year we will assign 

“Suspicious”. Otherwise, the website is considered “Phishy”. 

This feature is a ternary feature. 

 

17. Disabling Right Click: Phishers use JavaScript to 

disable the right click function so that users cannot view and 

save the source code. As we stated in our previous article [30] 

this feature is not commonly used by phishers since it 

appeared only 40 times on a dataset consist of 2500 instances. 

However, the website is classified as “Phishy” if the right 

click is disabled. Otherwise, the website is classified as 

“Legitimate”. This feature is a binary feature. 

 

 

5. TRADITIONAL MODELLING OF NEURAL NETWORKS  
 

In this section, we explain what NN is and we review a set of 

concepts related to it. 

The main objective of this study is to automate the process of 

developing a neural network model that can be used to predict 

phishing attacks. A number of sub-goals have been identified 

towered this end, those are: 

 

• Collecting the dataset patterns that will be used in our 

experiments and pre-process them into a form that is 

suitable for training neural networks. 

• Determine the neural network architecture as well as the 

learning rate that will yield the best predictive performance.  

• Show that neural networks can be used as a valid and 

effective approach to predict phishing websites. 

 

Although there are several definitions of neural networks, they 

all agreed on that the neural network model consists of a set of 

simple processing units called neurons and a set of weighted 

connections between these neurons. These weighted connections 

are repeatedly adjusted during training of the network until 

reaching a suitable solution. How the neurons are connected and 

the strength of these connections defines the behaviour of the 

neural network. The following steps describe the overall tasks 

involved in constructing a neural network model. 



A. Data Collection and Preperation 

Our 17 features presented in section IV were used to represent 

the input neurons. A dataset consists of 1400 phishing and 

legitimate websites were used to extract the 17 features using 

our own tool [30] [32]. The dataset composed of 600-legitimate 

website collected from yahoo directory [33] and starting point 

directory [34], and 800-phishing website collected from 

Phishtank archive [35] and Millersmiles archive [36]. The 

collected dataset holds categorical values those are 

“Legitimate”, ”Suspicious” and “Phishy”, these values should be 

converted to numerical values, so that the neural network can do 

its calculations thus we will replace the values 1,0 and -1 instead 

of “Legitimate”, “Suspicious” and “Phishy” respectively.  
 

B. Network Architecture 

This includes the types of connections within the network, the 

order of the connections and the values of  the weights.  

One class of neural network architectures is the feed-forward 

networks. For this class, the data always propagate in 

unidirectional form starting from the input layer down to the 

output layer.  

The other class of neural network architecture is the recurrent 

neural network, which contains feedback connections from units 

in the subsequent layers to units in the preceding layers. 

Recurrent networks have feedback connections between neurons 

of different layers or loop type self-connections. This implies 

that the output of the network not only depends on the external 

inputs, but also on the state of the network in the previous 

training iteration. Determining the network architecture is one of 

the difficult tasks in constructing any model but one of the most 

essential steps to be taken. The neural network architecture 

employed in this study is feed-forward with one hidden layer, 

which sometimes called multi-layered perceptron. The 

advantage of multi-layered perceptron is that the number of 

neurons in the hidden layer can be changed to adapt to the 

complication of the relationships between input and output 

variables. Although neural network construction has been 

widely researched, there is no known procedure or algorithm for 

the general case. However, one of the experimental objectives of 

this study was to conclude the size of the hidden layer that 

produces the best predictive performance.  

 

C. Network topology 

The topology of a network is specified by the number of layers, 

number of neurons in every layer and the weighted connections 

among all neurons. These types of layers are the input, hidden 

and output layer.  

In feed-forward network, data always propagates in one way 

from input layer to output layer passing through the hidden 

layer(s) if any. The input layer receives input data from external 

world and a neuron in this layer is called an input neuron. In the 

network architecture, the input neurons symbolize the data 

presented to the network for processing. In our model the 17 

features shown in section IV represent the input neurons, 

whereas, the website visited by the user represent the external 

world from which these features are extracted.  

The layer following the input layer is the hidden layer, and 

neurons in this layer are called hidden neurons. The hidden layer 

receives inputs from the previous layer, transforms those inputs 

into nonlinear combinations and passes the results to the next 

layer for further processing. The hidden layer can consist of one 

or more layers of neurons. Commonly, the networks with one 

hidden layer are used in modelling since it has been found that 

more than one hidden layer does not produce a major 

improvement in the neural network performance [11]. Moreover, 

using more than one hidden layer makes the neural network 

computationally complex. In our model, we used only one layer 

of hidden neurons while the number of neurons within this layer 

was changeable. 

Two approaches have been proposed in specifying the number 

of neurons in the hidden layer those are: 

 

• Pruning: By starting with a large number of neurons, and 

then progressively some of these neurons removed during 

training until the desired performance is met. 

• Constructive: By starting with a small number of neurons, 

and then increase the number of neurons during training 

until the performance of the network reaches an acceptable 

level.  

 

The constructive approach was adopted in this study since this 

method is more suitable to our problem and was shown to be 

more successful [37]. 

The output layer is the final layer of the network, and the 

neurons in this layer are called output neurons.  The neurons in 

this layer represent the output of the network. 

The network size must be considered when constructing a 

network that is since the smaller network size requires fewer 

storage and have higher processing during training but such 

network sometimes contains several local minima [38]. Larger 

networks have a tendency to learn fast in term of training 

iterations required and have increased ability to avoid local 

minima, but they need a large number of training samples in 

order to reach better generalisation ability [39]. 
 

D. Network Parameters 

The main goal of training a network is to adjust its weight vector. 

The step size taken to adjust the weights during the training is a 

function of a set of network parameters. 

The network parameters include “learning rate, momentum 

value, error function, epoch size and transfer functions”.  

Normally, preparing the network parameters starts by 

initializing the weights. In our model, the weight adjustment is 

achieved by an error-correction learning rule called the delta 

rule or “Widrow-Hoff learning rule” as shown in Equation 1. 



Where “∆W” is the weight-adjustments value for the “i-th” input 

variable. “err” is the error value and “x” is the input value.  

“η” is a constant value specified by the user defines the learning 

rate. The learning rate plays a very important role in the learning 

process, since it controls the speed at which the neural network 

finds the optimal solution. However, if the learning rate value is 

very big then the learning will be very fast but with the risk that 

the network will diverge from the solution. On the other hand, a 

small value learning rate means that the network will take a very 

long time to converge to the final solution. The delta rule can be 

modified by adding a momentum term as shown in Equation 2 

to increase the convergence of the model without affecting the 

network stability, where “α” denotes the momentum value, and 

∆W( i - 1) is the weight-adjustment value during the previous 

adjustment step. Typically, the momentum value is set to a 

positive value ranged between 0.1 and 1 [40]. 
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After calculating the adjustment weight, we find the new weight 

as follow:  New weight= old weight + adjustment weight.  
 

An important parameter that is commonly taken into 

consideration in neural network is the error function, which is 

the function that is to be improved during training. In our study, 

the mean square error “MSE” is used because it is calculated 

easily and because it is penalise large errors.  The mean square 

error is calculated based on Equation 3: 
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Where “N” is the total number of training examples, 

“'
	(�)*	( +,-.	/” Is the value produced by the network for 

training-example “I” and “(	0�
	( +,-.	/” Is the actual value.  

E. Training the Network 

A correct mapping of input to output requires determining the 

correct weights for the neural network. Optimizing the 

connection weights is identified by training or learning the 

network. The network learns by adapting the strength of its 

connection weights by examining the training patterns presented 

to it based on a specific training algorithm. The main goal of 

training the neural network is to reduce the error in the network 

output by adjusting the weight vector. Two learning approaches 

can be used to learn the neural networks namely, supervised 

approach and un-supervised approach. In supervised learning 

approach, a set of training examples is given along with the 

desired output of each example. While in un-supervised 

approach, training examples are supplied without any 

information about the desired output. Supervised learning 

approach is hence used in application where a desired output is 

known and where the network performance can be assessed by 

comparing the network outputs with the desired output. For 

phishing detection, supervised approach is used since the desired 

output is provided with each training example.  

 

Back-Propagation algorithm is adopted in our study to adjust the 

network weights. The back-propagation algorithm is described 

as the following pseudocode: 

 
Initialize the weights vector 

S = the training set fed to the network 

Repeat  

  For each “input-output” pair denoted by P in S 

   In = input pattern in P 

   Out = desired output 

   Compute network output (netout) 

   network error = Out – netout 

  End For 

 Find weight change for weights connecting hidden to output 

 Find weight change for weights connecting input to hidden 

 Update weights 

 Until reaching (a satisfactory network error value OR maximum 

iteration)  
 

6. PREDICTING PHISHING BASED ON SELF-

STRUCTURING NEURAL NETWORK 
 

As we mentioned earlier, one of the difficult tasks associated 

with building a neural network model is that it is necessary to 

specify the network architecture in terms of the number of 

hidden layers and the number of neurons in each hidden layer. 

In addition, a set of parameters (learning rate, momentum, epoch 

size) should be specified in advance in order to build a good 

model. Unfortunately, it is hard to identify in advance the 

appropriate network structure for a particular application, and 

that could be reached by trial and error.  

A neural network that is structured incorrectly may produce an 

under-fitted model. On the other hand, exaggeration in 

restructuring the system to suit every item in the training dataset 

may cause the system to be overfitted. For overfitted models, the 

error value of the training dataset is small, but when new data 

fed to the model, the error is big. One possible solution to the 

overfitting problem is by adding new neurons to the hidden 

layer, or sometimes adding a new layer to the network. 

Overfitting caused by the noisy data, which occurs whenever 

there are irrelevant features presented within the training dataset. 

However, acquire a noisy free dataset is a difficult task, and so, 

an acceptable error margin should be specified while building 

the model. Which itself considered a problem, since the user 

may not be able to determine the acceptable error rate. 

Sometimes the user specifies the acceptable error rate to a value 

that is un-reachable, or even specifies a value that can be 
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improved. For traditional data mining algorithms (C4.5, CBA, 

PART … etc.) the user is not asked to specify the acceptable 

error rate. Moreover, the phishing problem is a continuous 

problem, that means; new features having a strong influence in 

determining the website type are expected to appear in the future 

or even some currently used features may no longer effective in 

predicting the type of the website. Thus, we need to improve the 

network structure constantly to cope with these changes. Our 

model solves this problem by automating the process of 

structuring the network.  

One downside of using neural network is that it is difficult to 

interpret its results and it is regarded as a black box. However, 

we believe that the difficulty in interpreting the results will add a 

positive edge to our model since, as the phisher has the ability to 

design and manage a phishing website; he might have good 

skills in hacking the anti-phishing tool and interpret its content; 

and thus he can circumvent it. Moreover, most users are not 

interested in interpreting the neural network results, all what 

they care about is a way protecting them from phishing. 

Our model shown in Fig 1 will address the aforementioned 

problems; the most important characteristics of our model can 

be summarized as follows: 

 

1- Self-structuring: The model will search for the most 

appropriate structure in terms of the number of hidden 

neurons and the learning rate value.  

2- Minimal number of parameters: In our model, the model-

designer is asked to provide the dataset and the maximum 

number of epochs only, while in traditional neural network 

modelling technique the model-designer must specify too 

many parameters. Moreover, in our model the model-

designer is not involved in specifying the acceptable error 

since the model will search for a structure providing the 

minimum error rate. 

3- Adaptable: As we stated earlier, the features used in 

predicting the type of a website might be changed, thus 

designing a fixed neural network structure means that some 

of the currently used features could be no longer effective in 

classifying the website. However, since our model is self-

structuring model then the model-designer have just to 

collect a new dataset periodically and fed it to the model, 

thus the new result will be produced. 

4- The model could be installed on a dedicated server, and a 

tool, which is integrated with a web-browser, may contact 

this server frequently to obtain updates if any. 

 

The model works as follow:  

 

Step 1. At the beginning, the model creates the simplest neural 

network structure, which consists of only one neuron in the 

hidden layer. Whereas the number of neurons in the input 

and output layers; is determined based on the problem at 

hand. In our case the number of neurons at the input and 

output layers is set to 17 and 1 respectively. Small non-zero 

random values will be assigned for each connection weight.  

Figure 1 Self-structuring NN model 

We assumed that the learning rate is set to a big value aiming 

to converge quickly to the possible solutions. Hence, this 

value will be adjusted during the network training. For 

traditional neural network modelling techniques, the learning 

rate is set to a fixed value that is not changed during the 

training phase. In our model, we ran quickly to possible 

solutions and then by adjusting the learning rate we slow-

down and examine all possible solutions more deeply. In 

addition, we assumed the initial learning rate is 0.8, and the 

initial desired-error-rate is set to a big value; we assume it 

90%.The model-designer must specify the maximum number 

of epochs.  
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Step 2. In this step, the model will find the calculated error rate 

“CER”. The model will run one epoch only aiming to 

determine what the desired error rate “DER” to be achieved 

in the next iteration(s) is.  

Step 3. Train the network until the “DER” or maximum 

number of epochs is achieved or achieving early stopping. 

Step 4. If “DER” is achieved before reaching the maximum 

epochs, this could be an indication that the current structure 

and current learning rate may be able to improve the network 

accuracy in the next iteration(s), thus we set DER = CER and 

go back to step 3. Else, we go to step 5. 

Step 5. If the maximum number of epochs is reached without 

achieving the “DER”, we maintain the network structure and 

try to improve the network accuracy by adjusting the 

learning rate. Unlike other constructive-neural networks, our 

model attempts to find the optimal solution as well as the 

simplest structure. The traditional constructive neural 

networks attempt to improve the network accuracy by adding 

new neuron to the hidden-layer or add a new hidden layer 

and ignore adjusting the learning rate. Our model leaves the 

network expansion as a last option. However, the main 

reason of adjusting the learning rate is that in some regions 

of the weight-space, the gradient is large and we need a large 

step size; that is why we start with a high learning rate value. 

Whereas, in other regions, the gradient is small and we need 

a small step size, this happens whenever we come closer to a 

local minimum. We assumed to adjust the learning rate by 

decrease it 10% as shown in Equation 4.   

 η′ = η ∗ 0.90 (4) 

 

After adjusting the learning rate we set DER = CER and train 

the network. If DER is achieved then we go back to step 3 

aiming to improve the network performance based on the 

new learning rate. Else, we go to step 6. 

Step 6. If we cannot achieve the “DER” in step 5, then we 

assume that the network ability of processing information is 

insufficient therefore, the model will add a new neuron to the 

hidden layer and train the network. If adding new neuron 

improved the network accuracy then we go to step 3 aiming 

to update the DER or the learning rate before deciding to add 

new neuron. Else, if adding new neuron to the network does 

not improve the network accuracy, then the training process 

will terminated and the final network will be generated.  

7. EXPERIMENTS 

A. Experimental Methodology 
 

An object oriented C++ program was created to implement our 

model. All experiments were conducted in a system with CPU 

Pentium Intel® Core™ i5-2430M @ 2.40 GHz, RAM 4.00 GB. 

The environment is Windows 7 64-bit Operating System. The 

dataset composed of 600-legitimate website and 800-phishing 

website was collected. We are interested in obtaining a model 

with optimal generalisation performance. However, most NN 

models are criticized being overfitting the input data, which 

means, while the error rate on the training dataset decreases 

during the training phase, the error rate on the unseen dataset 

(testing dataset) increases at some point. To overcome this 

problem, we used the “Hold-Out” validation technique, by 

dividing our dataset into training, validation and testing datasets. 

The examples in each dataset were selected randomly. After 

training, we ran the network on the testing dataset. Error on the 

testing dataset offers an unbiased approximation of the 

generalization error. We split our dataset to 20% for testing and 

80% for training. Then the training dataset is divided to 20% for 

validation and 80% for training. Another way to avoid 

overfitting is to stop training as soon as the error on the 

validation dataset starts to increase. However, the validation 

dataset may have many local minima, thus if we stop training at 

the first increase we may lose some points that achieve better 

results because the error rate may decrease again at some points. 

Therefore, we track the validation error, and if the current error 

is less than the previously achieved error then we update the 

weights and keep training the network. On the other hand, if the 

currently achieved error is bigger than the previously achieved 

error we do not update the weights and keep training until the 

fraction between the current error and the smallest error exceeds 

a certain threshold, in our model the threshold is assumed to 

20%. Formula (1) clarifies how the early stopping is handled in 

our model. 

Where, ω^  is the currently achieved error, and ω_  is the 

minimum error.  

In our model, “Log-sigmoid” activation function was used for 

all layers. The momentum value was assumed to 0.7, and the 

initial learning rate was assumed 0.8. However, one of the 

experimental goals is to determine the learning rate value that 

produces the best predictive performance.  The initial weights 

were initialized to random values ranging from -0.5 and +0.5. 

The maximum number of possible neurons in the hidden layer is 

set to 8. 

 

 

 

 



 

A. Experimental Results 

Several experiments were conducted; in each experiment, we 

changed the number of epochs. From the results shown in Table 

3, it is clear that our model was able to design NN with 

acceptable generalization ability. For instance, the results 

obtained when the number of epochs = 500 showed that the 

prediction accuracy of the testing dataset was close to the 

accuracy achieved from training and validation datasets. 

This means while the error decreased on the training dataset it is 

also decreased on testing dataset. 
 

Table 3 Experimental Results 

 
Epochs Optimal 

number 

of HN 

Training 

set 

Accuracy 

Validation 

set 

Accuracy 

Testing 

set 

Accuracy 

MSE Best 

Learning 

Rate 

50 4 91.32% 90.03% 90.35% 0.0629 0.7684 

100 4 92.33% 90.84% 91.35% 0.0453 0.7308 

200 4 93.07% 91.23% 91.80% 0.0922 0.6609 

500 3 93.45% 91.12% 92.48% 0.0280 0.5799 

1000 3 94.07% 91.31% 92.18% 0.0248 0.5799 
 

Fig 2 shows the evolution of the training error when the epoch 

number equals 500. 

From the Fig 2, a set of important observations may be summed 

up as follow: 

• At point “A”, it was clear that the gradient is large while at 

other points when approaching the generalization state the 

gradient is small. That is why we started with a large 

learning rate and adjust it during training. 

• At point “B”, the error on the validation dataset becomes 

smaller, thus the model will save the weights at these 

points and keep training hoping to find better points. At 

other points, the weights are not saved because the error 

rate did not improve. 

• At point “C”, the fraction between the minimum and the 

maximum error rate exceeded our threshold thus the model 

stopped training and it will try to improve the network 

performance either by adjusting the learning rate or by 

adding new neuron(s) or even terminate the training and 

produce the network.  
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Figure 2 Evolution of the Training Error 



 

 

 

 

A. A Practical Example on Predicting Website Class 

In this section, we will explain how the websites are 

classified using our NN model. Suppose that the features 

extracted from a webpage are shown in Table 4 where the 

values “1”, “0” and “-1” denote “Legitimate”, “Suspicious” 

and “Phishy” respectively. 

 
Table 4 Practical Example 

Feature Value 

Using IP address 1 

Long URL 0 

URL having @ Symbol 0 

Adding Prefix and Suffix 1 

Sub-Domain(s) 1 

Misuse of HTTPs  0 

Request URL 1 

URL of Anchor -1 

Server Form Handler 1 

Abnormal URL 1 

Redirect Page -1 

Using Pop-up Window -1 

Hiding Suspicious Link 0 

DNS record 1 

Website Traffic 1 

Age of Domain 0 

Disabling Right Click 1 

 

The final structure produced when the number of epochs is 

set to 500 is shown in Fig 6. In addition, the weights 

produced are shown in Table 7 and Table 8.  

The first step is by finding the net-input for each hidden 

neuron by multiplying each input by its corresponding weight. 

The results are shown in Table 5. 

 
Table 5 Net input for each neuron in the hidden layer 

 

Each net-input is passed to the activation function, which is 

in our model the Log-sigmoid activation function. The result 

produced is shown in Table 6. 

 
Table 6 Results of Log-Sigmoid activation function 

 Hidden Neuron # 1 Hidden Neuron # 

2 

Hidden Neuron # 

3 

Log-

Sig 

0.00004 4.60344-15 0.99943 

 

Then, the net-input is calculated for the output neuron by 

multiplying the results shown in Table 6 by their 

corresponding weights shown in Tabe 8 . The result produced  

“-2.93448056” is passed to the activation function. The final 

result produced is “0.05048” that is then compared to a 

predefined threshold, which is in our model “0.5”. If the final 

result > threshold, then the website is classified as legitimate 

website, otherwise it is classified as a phishy. In our example 

the result is less than the threshold, thus the webpage is 

classified as a phishy. 

 

 Hidden Neuron # 1 Hidden Neuron # 

2 

Hidden Neuron # 

3 

Net 

Input 

-10.208376 -33.011972 7.476011 



 

 

 

 

 
Figure 3 The neural network structure produced when number of epochs = 500 

 

Table 7 Weights produced from input to hidden neurons 

Weights produced connecting input neurons to hidden neurons 

Input First Hidden Neuron Second Hidden Neuron Third Hidden Neuron 

Using IP address -2.788467 -1.732674 -10.499482 

Long URL -1.841950 0.657919 -5.551135 

URL having @ Symbol -25.389151 -18.487131 33.564385 

Adding Prefix and Suffix 0.059755 6.701862 2.325618 

Sub-Domain(s) -1.638793 0.773444 -0.969623 

Misuse of HTTPs  0.765649 3.354878 2.372594 

Request URL -2.053365 9.460433 19.544987 

URL of Anchor 0.380302 -2.597401 -2.085049 

Server Form Handler -8.259405 -16.573597 -8.682610 

Abnormal URL 11.324954 -19.059105 0.296253 

Redirect Page 7.666283 4.066873 -4.492245 

Using Pop-up Window 6.681336 17.623121 -1.630921 

Hiding Suspicious Link 12.627318 -8.031678 1.087805 

DNS record -1.460111 -3.557257 -1.370880 

Website Traffic -0.202345 7.409626 -2.399567 

Age of Domain -10.442993 3.888161 -0.702606 

Disabling Right Click 9.537322 2.657889 1.02310 
 

Table 8 Weights produced from hidden to output 

Weights produced from hidden to output layer 

19.360754 

23.560028 

-2.936857 

 

8. CONCLUSION 
 

It is well known that a good anti-phishing tool should predict the 

phishing attacks in a good time scale. We believe that the 

availability of a good anti-phishing tool at a good time scale is 

also important to increase the proportion of predicting phishing 

websites. This tool should be improved constantly through 

continuous retraining. Actually, the availability of fresh and up 

to date training dataset which may acquired using our own tool 

[30] [32] will help us to retrain our model continuously and 

handle any changes in the features which are influential in 



determining the website class. Although neural network proves 

its ability to solve a wide variety of classification problems, the 

process of finding the optimal structure is very difficult and in 

most cases, this structure is determined by trial and error. Our 

model solves this problem by automating the process of 

structuring a neural network scheme therefore if we build an 

anti-phishing model and for any reasons we need to update it, 

then our model will facilitate this process. That is since our 

model will automate the structuring process and will ask for few 

user-defined parameters. Several experiments conducted in our 

research, the number of epochs differs in each experiment. From 

the results, we find that all produced structures have high 

generalization ability. In addition, results shown in Table 3 

revealed that neural network is a good technique in predicting 

phishing websites. Although the model architecture used in our 

research seems to be slightly difficult, its principle is the 

utilization of an adaptive scheme with four mechanisms: 

structural simplicity, learning rate adaptation, structural design 

adaptation and early stopping technique based on validation 

errors. However, there are three major achievements 

contributing to the better performance of our model: 

• The first achievement is that, our model uses an adaptive 

strategy in designing the network whereas traditional 

modelling techniques rely on trial and error. In most cases, the 

trial and error technique consumes time before achieving a 

network with better generalization ability. 

• The second reason is the training method used in our model 

since we try to improve the network performance as much as 

possible by adjusting the learning rate before deciding to add a 

new neuron to the hidden layer. 

• The third reason is the generalization ability of our model. 

Although several algorithms proposed to automate the neural 

networks design most of them, use a greedy scheme in 

determining the optimal structure by adding a new layer to the 

network or adding a new neuron(s) to the hidden layer. The 

main idea behind our model is to focus on an adaptive scheme 

for both learning rate and network structure. The adaptive 

scheme is more convenient because it is able to handle 

different situations that might be occurred during the 

designing phase. 

One of the future developments of our model is by adding a 

technique to assess the significance of the features before they 

are adopted in building a neural network based anti-phishing 

system. In addition, we are planning to create a toolbar that 

implements our model and integrate it with a web browser. This 

toolbar should be updated periodically to cope with any 

improvements on the weights in case a new model is being 

created.  
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