H

University of
HUDDERSFIELD

University of Huddersfield Repository

McCluskey, T.L., Liu, D. and Simpson, R.M.

GIPO II: HTN planning in a tool-supported knowledge engineering environment
Original Citation

McCluskey, T.L., Liu, D. and Simpson, R.M. (2003) GIPO II: HTN planning in a tool-supported
knowledge engineering environment. In: Proceedings of the Thirteenth International Conference on
Automated Planning and Scheduling. AAAI Press, Menlo Park, California, pp. 92-101. ISBN
1577351878

This version is available at http://eprints.hud.ac.uk/id/eprint/1886/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

* The authors, title and full bibliographic details is credited in any copy;
* A hyperlink and/or URL is included for the original metadata page; and
* The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

GIPO II: HTN Planning in a Tool-supported Knowledge Engineering
Environment

T. L. McCluskey, D. Liu and R. M.Simpson
School of Computing and Mathematics
The University of Huddersfield, Huddersfield HD1 3DH, UK
lee,scomdl12,ron@zeus.hud.ac.uk

Abstract

In this paper we explore a principled, integrated ap-
proach to the process of creating complex planning
applications and introduce and evaluate a new hybrid
task-reduction planner called HyHTN. In the short
term our work is leading to an experimental research
platform for investigating the synergy of integrated
tools. The approach is centred around the use of a
GUI called GIPO-II (based on the previously released
GIPO GUI). The major innovation in GIPO-II is the
ability create and maintain ‘ hierarchical” domain spec-
ifications, and verify them using a structural property
checker, and plan using the fast forward hybrid task-
reduction planner HyHTN.

Keywords: knowledge engineering techniques for
planning and scheduling, planning with hierarchical
task networks

Introduction

In this paper we describe work in progress concerning
an experimental environment for engineering and pro-
totyping HTN planning applications. In contrast to
operational planners which are aimed at solving real
problems and applications (such as in the O-Plan de-
velopment (Currie & Tate 1991)), we are trying to de-
velop a platform that on the one hand can deal with
structurally complex domains, but is also transparent
and portable enough to be used for research and exper-
imental use. Further, we are researching into a wide
spectrum of planner development - the acquisition and
the engineering of planning knowledge as well as the
generation of plans. We introduce GIPO-II, a contin-
uation of the work on GIPO (McCluskey, Richardson,
& Simpson 2002). GIPO-II supports the building of
hierarchical domain models, encoded in OCL}, and in-
corporates powerful static validation techniques. For
HTN planning in particular, we have implemented a
semantic check on hierarchically-defined operators that
allows users to evaluate the transparency property on
them (McCluskey & Kitchin 1998). To dynamically test
domains GIPO-II has an API for third party planners.
In this paper we additionally describe GIPO-II’s default
planner, HyHTN. This is a new hybrid planner which

exploits the advantages of state-advancing planners
such as SHOP (Nau et al. 1999) and the efficiency of
classical forward-search planners such as FF (Hoffmann
2000). Our experimental results suggest that, in the ex-
perimental domains used, HyHTN is at least an order
of magnitude more efficient than the EMS (McCluskey
2000) planner, and at least as fast as the state-of-the-art
heuristic planner SHOP. In both cases we used the test-
ing scenarios supplied with these planners. HyHTN'’s
code, its tests and test results, can be downloaded
from http://scom.hud.ac.uk/planform/gipo. GIPO-II
is planned for release in December 2002 and will be
available from the same website.

Encoding OCL, models with GIPO-II

OCLy, is a structured, formal language for the capture of
hierarchical, HTN-like domains (McCluskey & Kitchin
1998). As with OCL (Liu & McCluskey 2000), it is
based on the idea of engineering a planning domain so
that the universe of potential states of objects are de-
fined first, before operator definition. This approach has
several advantages, not least that operator schema can
be induced from examples, helping Knowledge Acqui-
sition (McCluskey, Richardson, & Simpson 2002). The
fact that OCL has traditionally used a different syn-
tax from PDDL is largely irrelevant as GIPO-II insu-
lates the user from detailed syntax, displaying for ex-
ample object class hierarchies graphically. PDDL can
be generated when required by export tools as demon-
strated in reference (McCluskey, Richardson, & Simp-
son 2002). What is relevant and additional to the
ATPS-2002 version of PDDL is that OCLy, is object cen-
tred, and designed for capturing domains hierarchically.
These kinds of pragmatic additions draw a distinction
between languages for communicating the physics of a
domain and a more natural, graphical language for do-
main modelling.

A knowledge engineer uses GIPO-II to encode an
OCL}, domain model firstly by grouping objects within
classes under a class hierarchy. Each class in the hier-
archy may have a “behaviour” in the sense that objects
of that class have changeable properties and relations.
An object may inherit behaviour from each class above
it in the hierarchy. Thus in a transport logistics appli-

Update Delete Edit ZoomIn Zoom Out

i} oy | 2

D

(P.D}
iting(F)
ertifiediP)

[T

[[»]

Dlcommmmnasmeminaen 0
File Method Design&Edit View
=] 1K @ @ & = @ (- &
Commit Restore Werify Verify current Preview Print Close New Add
S carry_direct |
5] Allsors
physical_obj
[E] lvcation at(P 0}
[Z] route naiting(P)
reglon ertified(P)
Substates List is_of sort(P,package)
is_of_sort(¥,truck)
at{p,L) n_city(0,GY)
n_city(D €V
CH|
(23 Pre-condition 3 Index) Static ® Select |

X Delete H 2 undo H & Redo

load_package

Figure 1: Method Transition Editor (top) with Decomposition Representation (bottom)

cation if an object is a train-engine, it has a changeable
relationship ‘pulling’ with train-cars. As it is a physical
object, it inherits a changeable property of ‘position’
higher in the hierarchy. Thus objects have changeable
states at various levels of the hierarchy. This type of
representation is beneficial in knowledge-based applica-
tions, as more generic knowledge is stored at high levels
in the hierarchy. Estlin et al forcefully argue this point
in reference (Estlin, Chien, & Wang 2001). GIPO-II
helps the user to specify these changeable states at
each level in a similar fashion to the ‘flat’ version of
GIPO (Simpson et al. 2001). After inputing an initial
specification of states as described above, the user then
uses the environment to specify primitive and hierar-
chical operators (the latter we call methods), via basic
GUI tools or with the help of an induction tool (Mc-
Cluskey, Richardson, & Simpson 2002). Operators and
methods contain statements about transitions of typical

objects of an object class, where a transition is written
LHS = RHS, and specified in various ways, as follows:

1. identity transition: this means an object must be in
a certain (set of) state(s) before the operator can be
executed and stays that way; this is equivalent to a
operator ‘prevail’ condition

2. unspecified RHS transition: this means an object
must be in a certain (set of) state(s) before the op-
erator can be executed and it is not specified what
the final state of the object is; this is equivalent to a
pre-condition

3. unspecified LHS transition: this means an object
must be in a certain (set of) state(s) after a certain
point in execution - it is not specified what the initial
state of the object is; this is equivalent to posing an
‘achieve-goal’ in state space planning

4. specified, necessary transition: this means an ob-

ject must be in a certain (set of) state(s) and goes
through a transition to a certain (set of) new states;
this necessary transition contains both pre- and post
conditions

5. conditional transition: this means an object may be
in a certain (set of) state(s); if this is the case at exe-
cution time then the object goes through a transition
to a certain (set of) new state(s).

Hence this abstraction uniformly encompasses goal
conditions, pre-conditions, necessary and conditional
effects; further, this formulation is ‘hybrid’ in the sense
that it is useful for both HTN and operator-based for-
mulations. Primitive operators have the general form
of being a set of parameterised transitions where each
transition refers to one object. In practice we limit the
scope of these operators to fit in with the planner tech-
nology we are using. OCL,, primitive operators have
transitions of type 1., 4., and 5., and are assumed de-
terministic, so that whenever the LHS of a transition
is instantiated, the RHS must specify a unique state of
that object at one or more levels in the object hierarchy.
Default persistence works as follows in this scheme for
necessary and conditional transitions: every fact not at-
tached to the levels of the object referred to in the LHS
is assumed to persist. Otherwise the RHS must spec-
ify the new value of the fact. Methods (hierarchically
defined operators) have the form:

(Id, Transitions, Statics, Temps, Decomposition)

An example method from a transport domain model
is as follows (parameters are in capital letters):
(carry-direct(P,0,D),

[(package, P,

[at(P,0), waiting(P), certified(P)] =>

[at(P,D), waiting(P), certified(P)])]
[is-of-sort (P,package), is-of-sort(T,truck),
in-city(0,CY), in-city(D,CY),
road_route(0,D,R)],

[before(1,3), before(2,3),

before(3,4), before(4,5)],

[commission(T,P), achieve((truck,T,[at(T,0)]1)),

load-package(P,T,0), move(T,0,D,R),

unload-package(P,T,D) 1)
Id is the name and parameter list of the method. This
contains all the parameters used in the Transitions.
The latter are transitions of type 2 and 4 (the example
contains only one transition of type 4). Decomposition
contains a list of method names and/or operator names
and/or or ‘achieve-goals’, and together with its con-
straints, forms a task network (the example contains
one achieve-goal and reference to four primitive oper-
ators). Statics is a list of constraints on parameters
in the method, and Temps is a list of temporal con-
straints on the members of Decomposition, where num-
ber n refers to the nth element in the decomposition
list.

Methods require a statement of transition(s) of the
object(s) which are necessarily changed from one state
to another (in the example above, the package P is nec-
essarily changed). An HTN operator may change many

object’s states by its decomposition and execution, and
the final states of objects may depend on which de-
composition is chosen (eg the initial state of an object
may be unknown as is the case for the truck T in the
example above). However there exists a set of objects
which are necessarily changed to a particular state, and
these should be declared in the ‘Transition’ slot of a
method’s definition. In GIPO-II the transitions and
static constraints are assembled in the transition editor
and the decomposition is assembled to produce a graph
as shown in Figure 1.

The Transparency Property

Hierarchical domain models in OCL;, are regulated by
the semantic property of transparency — this ensures the
methods are structured in a coherent manner This prop-
erty should be true for every method in a model. The
technical details of this are given elsewhere (McCluskey
& Kitchin 1998). Key to the property is the idea that
the method’s decomposition into a task network will
necessarily achieve the method’s post-conditions (the
RHS's of the necessary transitions indexing the method)
— if this is the case, the method is called sound. The
transparency property is then as follows: A method
m is transparent if it and every expansion of m, consis-
tent with its static constraints, is sound.

To check that the example method carry-direct
is transparent, we first check that its decomposition
necessarily achieves the post-condition - ie that the
conditions

[at(P, D), waiting(P), certified(P)]

are met. This is done by examining each of the nodes
in the task network and proving that the conditions are
necessarily achieved, using the post-conditions of the
nodes as achievers. An ‘achieve-goal(@)’ is treated as
a transition with an unspecified LHS, where the post-
condition (RHS) is G. After this is proved, we must
study the consistent decompositions of the task net-
work and re-check this property for each such decom-
position. In GIPO-II, all these checks are performed by
the transparency modelling tool which amounts to an
automated verification test for each method.

Figure 2 shows the use of the transparency property
checker in the ”Drumstore World” (Aylett & Doniat
2002). This is a model based on a real world domain of
robots handling and passing radio-active drums to each
other. This scenario shows the finding of a bug during
the actual coding of the HTN methods via GIPO II. The
transparency checker is applied here to an HTN oper-
ator called ’transfer’ whose necessary transitions and
static conditions are shown in Figure 3. ’transfer’ con-
tains a decomposition for transferring an object (Obj)
from one robots gripper (Gripl) to another (Grip2) in
some relation (REL) to position REF (REL can be ’at’
or ’near’ in the current domain model).

The top diagram of Figure 2 shows the checker being
called. It checks that the preconditions of the decom-

~Check Messages

Cioing Method Transparency Check

Checking method transfer{Qbj, Grip1 REL REF ,Grip2)

STEF OFPERATOR sense(Obj,REL,REF Roh2)
STEF OPERATOR grab_frorn{Rob2 REL,REF,Obj,Rob1,Grip1,Grip2)
The predicate object_in{Qbj,Grip2) is not asserted in the current state

Wariable Editing Windowr

METHOD NAME transfer(Obj,Grip1 REL,REF,Grip2)
belonas_tolRob1,Gript)
STATICS belongs tolRob2, Grip2)
sense_on{Rob2)
LIST S5 position{Rob2 REL,REF)
LIST OP sense(Obj,REL,REF,Rob)
LIST OP grab_from{Rob2 REL,REF,Obj,Rob1,Grip1,Grip2)

Figure 2: Steps Showing the Application of the Transparency Tool

position are necessarily achieved, before checking that
the post-conditions of the transfer method are met. The
box shows that this is true for operator ’sense’ but when
it examines method ‘grab_from’, it detects that predi-
cate ‘object_in’ has not been achieved. ‘grab_from’is a
primitive operator which simulates the exchange of an
object from one robot to another, when the robots are
next to each other.

The bottom diagram (Variable Editing Window)
shows the construction window for unifying the
variables within the decomposition of a method - this
is essential in order to ‘link up’ all the components
of the decomposition. It lists the decomposition of
’transfer’ which starts with an achieve-goal

sense_on(Rob2)&position(Rob2, REL, REF)

The variable parameters of achieve-goal, and ‘sense’
i.e. REL, REF, Rob2, Obj, have been unified together
and with corresponding ones in ‘grab_from’ which in-
dicates that they will instantiate to the same object.
Unfortunately this process is not straightforward, and

in this case the checker uncovers the error to do with
the object and gripper in ’grab_from’. The user re-
verts to the graphical window (bottom diagram), clicks
on 'grab_from’ and proceeds with an inspection of the
transition identified by the object (Obj) and gripper
(Grip2). This shows that the parameters Gripl and
Grip2 have been entered in the wrong order in the Vari-
able Editing Window, inhibiting the ‘object_in’ predi-
cate from being achieved. With this error removed the
checker proceeds successfully. This example shows the
uncovering of an error in the unification of variable pa-
rameters - in fact the checker can find other modes of
error such as missing parts of a decomposition.

GIPO 1II includes other static tools present in the
GIPO release - these check that
(a) the object class hierarchy is consistent
(b) object state descriptions satisfy invariants
(c) predicate structures and operator schema are
mutually consistent
(d) task specifications are consistent with the domain
model.

sense_oniRob) pos
ition({Rob2 REL REF)

biect_in{Obj Gripl)
osttion{Ohj REL REF)
g(Gripl,GripZ)

elongs_to(Rob1 Gripd) 1
elongs_tofRoh2 Grip2)

¥ grab_from K

-
Lt

biect_in{Obj Grip2)
osfion{Obj REL REF)

|

Figure 3: The ’transfer’ Method (bottom) and its decomposition (top)

The process of building up a domain in GIPO-II, as it
guarantees these properties, prevents the occurrence of
many of the errors present in hand crafted models, and
is particularly useful when importing domain models.

Tasks Specification and Animation

A task specification in OCLj, has three components:
(i) a task network, where a task is the name of a method
or a condition on an object to be achieved (ii) an initial
world state (iii) a set of constraints on the task net-
work. The first component is thus similar to that used
in Estlin et al’s integrated planner framework (Estlin,
Chien, & Wang 2001). Their ‘activity-goals’ are the
same as method tasks, and their ‘state-goals’ are like
our ‘achieve goals’. An example task comprising a task
network containing two achieve goals and a method, is
as follows:

([achieve(ss(traincar,traincaril,

[at (traincarl,cityl-ts1)]1)),
transport (pk-5-z,city3-cll-z,city2-cll),
achieve (ss(package,pk-5,

[at (pk-5,X) ,delivered(pk-5)])) 1,

[before(1,3)],
[serves(X,city3-x)])

Use of parameter X means the third node in the net-
work can be paraphrased as ‘deliver pk-5 to any des-
tination X where X is a town centre location serving
city3-x’. Tasks which are solved by a planner connected
to GIPO-II are animated as shown in Figure 4. This
shows a graph representing the decomposition of meth-
ods and solutions to achieve-goals, with the primitive
ground operators forming a solution occurring at the
leaves. As with GIPO, GIPO II incorporates a stepper
allowing the user to plan manually. This is predom-
inantly used in the domain debugging phase, as this
incremental activity isolates bugs that have not been
uncovered by the static checking tools.

Hierarchical Animator YWindow

File Yiewr

i i L = =

Load Save Prewview Print Close

oclHT
T ask.
trans ort
@

load_p
ackage

unload _
package

[»]

| ., Zoom In " =, Zoom Out |

Figure 4: Partial Animation of an HTN Planner’s Output

Dynamic Testing: The HyHTN Planner

HTN planning domain models have been used over the
years to represent detailed domain-dependent heuristic
information, but within a language that (up to a point)
has a semantics independent of the target planning en-
gine. An example of such pragmatic features is the con-
dition types of O-Plan where conditions on the use of
an action can have a range of modalities (Currie & Tate
1991). To a large extent an HTN planner is only as effi-
cient as its heuristics encoded in the domain model. For
example, if the domain model’s compound tasks con-
tained no temporal constraints on its decomposition,
then efficiency is likely to be adversely affected. Or if
the methods are not available which establish goal con-
ditions then (in the absence of pre-condition planning)
the task specification will fail. Hence, the completeness
of the planning application is as dependent on the com-
pleteness of the method set as it is on the completeness
of the planner’s search strategy. Indeed, Kambampati
uses the term ‘operator completeness’ specifically for
HTN domain models, in contrast to the usual ‘planner
completeness’ for algorithms (Kambhampati, Mali, &
Srivastava 1998).

Over the past few years so-called Hybrid Plan-
ners (Kambhampati, Mali, & Srivastava 1998; et al.
2002) have been developed to reason with languages
allowing the combination of both task specifications
and goal conditions within problem specifications and
method decompositions. Whereas HTN planners pre-
dominantly work through task expansion and con-
straint satisfaction, classical planners work through
goal achievement. Hybrid planners are those that work
with a combination of refinement strategies. Hybrid
planners span the two extreme situations; at the pre-
condition planning end, there is the specification of do-

main dynamics (and nothing else), and at the other,
HTN methods that are essentially domain specific so-
lutions.

Within a knowledge engineering environment it is im-
portant that a planning system used for dynamic test-
ing should be able to cope with both these extremes,
for the benefit of flexibility and so that operator-
completeness is not an issue. HyHTN is a planner
which has achieved a high level of performance, yet it
inputs an expressive task language and can act as an
HTN and/or a pre-condition planner. The power of
HyHTN lies in two key features:

e it is a hybrid planner that combines two efficient
techniques - it uses a state-advancing HTN reduc-
tion strategy for hierarchical refinements, and a
fast forward search for ‘achieve-goal’ (pre-condition)
achievement.

e it is fed with a statically-checked domain model
whose methods are encased in pre- and post condi-
tions and engineered a priori via GIPO-II to conform
to the transparency property.

A particular advantage that we have exploited with
a forward state advancing HTN planner is that heuris-
tic state-space search can be used to establish ‘achieve-
goal’ conditions. Thus the performance of SHOP-like
algorithms in HTN planning, and the performance of
FF-like algorithms in pre-condition planning can be
combined into a flexible, efficient hybrid system. Sec-
ondly, the transparency property reduces the possibil-
ity of choosing methods that lead to dead - ends, as
every decomposition that satisfies its static constraints
is guaranteed to achieve its post-conditions.

Figure 5 shows the top level of the algorithm, which is
called recursively as methods are expanded in a depth-

first, forward manner. HyHTN is nondeterministic at
step 5: potentially, any of the first nodes of Tasks can
be picked. If any of the branches fail then an alternative
choice can be made.

Procedure ‘method-expand’ (shown in outline) se-
lects an expansion of method T (T is a name and a
list of parameters). In line 1 the full method is repre-
sented with a set of pre-conditions (Pre) which are es-
sentially the LHS of transitions. Note that the Post is
not used in the expansion as we assume that the trans-
parency property assures us that the decomposition will
be achieved.

Procedure ‘apply’ applies a sequence of primitive,
ground operators to a ground state. Objects in the
state are pushed through all the necessary transitions
specified by the operator. If the operator contains any
conditional transitions then objects satisfying the LHS
of these transitions change as specified.

Procedure ‘achieve-expand’ calls a pre-condition
planning algorithm that utilises a fast-forward state
space search similar to FF (Hoffmann 2000).

Experimental Results

To test HyHTN’s efficiency we have compared it with
EMS (McCluskey 2000), an HTN planner that inputs
OCLy,, and SHOP (Nau et al. 1999). SHOP is well
known for its efficiency in HTN domains. EMS was
built primarily to explore the idea of hierarchical sort
abstraction. It searches through a space of task net-
works which are stored with explicit pre- and post con-
ditions. Initially these are the pre- and post condi-
tions of the method that initiated the task network, but
as methods are expanded these ‘guard’ conditions are
added to, as new objects are affected by less abstract
methods. The effects of task networks (which may be
as small as a primitive operator, or as large as a final
solution) are encapsulated in these post-conditions.

HyHTN vs EMS To compare these two planners we
used the 80 tasks that were used to evaluate EMS’s
performance and ability to ‘scale up’ to domains with
many objects (McCluskey 2000). Four transport logis-
tics domains were used, with the simplest containing 31
objects and the most complex containing 145 objects.
EMS and HyHTN both input OCL, tasks and domain
models, and both were run on the same 128 MB Sun
under Solaris for comparison purposes. Table 1 com-
pares the planners stating for each of the four domain
models, the average time to generate a solution, the av-
erage number of nodes searched, the average solution
length, and the maximum length solution in the test
set. The results suggests that HyHTN is 20 - 30 times
more efficient than EMS in these applications. Average
solution sizes are not dissimilar, indicating that the lin-
earity and state advancing quality of HyHTN does not
adversely affect solution size in this case.

HyHTN vs SHOP As both planners are aimed at
tackling structurally complex domains, we chose as a
test the large Translog domain (Andrews et al. 1995).

procedure HyHTN
In Initial World, Decomposition, Temps, Statics
Out Soln= list of primitive operators
Read access domain model
Procedure
Tasks = Decomposition;
Soln =[]
World = Initial World;
WHILE Tasks is not empty
pick and remove T from Tasks
where no other node in Tasks
is necessarilly before T according to Temps;

Ot o

6. IF T is a primitive operator

7. World = apply(T, World);

8. Soln = append(Soln,[T));

10. ELSE IF T is a method

11. call method_expand(World,Statics, T,Soln")
12. Soln = append(Soln, Soln');

13. World = apply(Soln’, World);

14. ELSE IF T is an achieve goal

15. call achieve_expand(World,Statics, T,Soln’)
16. Soln = append(Soln, Soln');

17. World = apply(Soln’, World);

18. END IF

19. END WHILE

20. End.

Procedure method_ezpand
In World,Statics, T
Out Soln= list of primitive operators
Read access domain model
1. Pick method(N,Pre,Post,Statics’, Temps,Decomp)
where N and T unify under substitution ¢, Pre; is
satisfied in World, and

2. constraints § = append(Statics’, Statics); are consistent
3. call HyHTN (World, Decomp, Temps, S, Soln)

4. end.

5. End.

Figure 5: The Top Level Design of the HyHTN Algo-
rithm

This domain contains object classes such as cities, re-
gions, packages, trucks, trains, planes, cranes, ramps
etc. As an indication of the size of this domain, the
OCLy, version contains 34 parameterised methods and
58 parameterised primitive operator structures. The
SHOP model is of a similar size. We used the original
100 tasks in the SHOP release (with some small changes
because of the difference in structure between OCLy
and the STRIPS style SHOP structure). The specific
problems concern the transport of up to 10 packages,
with 5 connected cities, 15 locations, 15 cranes to main-
tain one crane at each location, and 11 trucks in one
location in the initial state. The packages were of dif-
ferent types: bulky, liquid, granular, and mail. 100
random tasks in the same complexity range as SHOP
were randomly generated for HyHTN'. The original
location and destination location of each package was

1dentical tasks could not be run on each configuration
because there is a distinction between what the systems call
"domain model’ and what they call 'task’. Hence we used

Model AvTime AvNode AvSoln MSoln
HyHTN | EMS | HyHTN | EMS | HyHTN | EMS | HyATN | EMS

T1 0.09 0.7 26.0 39.5 16.75 19.4 40 53
T2 0.61 15.4 47.9 200.0 | 25.60 24.8 58 56
T3 1.64 55.0 51.1 231.5 | 28.75 26.5 65 64
T4 2.95 88.0 52.3 247.0 | 29.55 27.2 66 62

Table 1: Comparing HyHTN and EMS with the Translog Models

20 T T
15 | —— HyHTN

10—

o 10 20 30 40 50 60 70 80 20 100

o 10 20 30 40 50 60 70 80 20 100

Figure 6: CPU times for HyHTN, SHOP and M-SHOP. The x-axis gives the problem number, and the y-axis displays
the CPU time.

120
>
P %
> DIN
*Hoo B
100 -
s - %%QSDA =
* e *
n o R ¥ =
pavw 3 PANRY-“N AN
Oo A Bk £
80 — ="y [EVAN N
* *
o & X PaN
O 0O o o g %KDD
= Fa PaN
A&k [O
- O, 8 Oghi 260
60 - %,@ o
PR S AN
FS
e O % Hf oo %
% -}
40 = & e © % x
o A R a X
= = s O HyHTN
e o °F * SHOP
20+ Ca Y & o A M-SHOP
%D@K ES
Bl O O
a0 g A& O
o u% = % 1 1 1 1 1 1 1 1 J
o 10 20 30 40 50 60 70 80 90 100

Figure 7: Number of actions in the plans found in Figure 6. The x-axis gives the problem number, and the y-axis
displays the number of actions.

randomly chosen. All the tests were performed on the
same 128MB Sun under Solaris, although SHOP runs
under compiled Common Lisp whereas HyHTN runs
under Sicstus Prolog.

Figure 6 plots the time in seconds against problem
number for 3 configurations. M — SHOP is a varia-
tion of SHOP which allows task decompositions to be
interleaved. This means in general that its solutions
should be shorter than the ‘linear’ planners SHOP and
HyHTN, although the overhead in preventing achieved
conditions from being deleted means that it is signif-
icantly slower. The results suggest that SHOP and
HyHTN are similar in speed, although it is likely that
a compiled Lisp implementation is much more efficient
than Sicstus Prolog. Figure 7 suggests that, at least for
this application, solution sizes for all the configurations
are of a similar size.

Conclusions and Future Work

In this paper we have described an approach to en-
gineer hierarchical planning knowledge, based on the
construction of transparent hierarchical methods, and
introduced the new GIPO-II tool which supports this.
We have introduced a new hybrid planning algorithm
HyHTN which can be used to prototype planning appli-
cations built using GIPO-II. It exploits state-expanding
HTN planning to the full by integrating fast forward
pre-condition search in order to establish achieve-goals.
Finally, we have evaluated the implementation by com-
paring HyHTN against EMS and SHOP, both algo-
rithms published at the AIPS-2000 conference. This
has shown HyHTN to be at least an order of magni-
tude faster on the benchmark domains released with
EMS; and at least as fast as SHOP on its Translog
benchmarks. In both cases HyHTN was not noticeably
poorer in terms of solution size.

Planners like SHOP have shown how the combination
of a forward search and hierarchical planning can solve
problems very efficiently. Using a search where the full
world state is pushed forward has many advantages -
not least that the basic representation can be very rich,
predicates can be evaluated and multiple optimisation
criteria can be used to help direct search. We intend to
explore the scope for enriching the domain descriptions
that HyHTN can deal with, and to work on theoretical
conditions for its completeness. With the integration
of this planner into the hierarchical version of GIPO
we believe that we are approaching the point where we
have a tool capable of dealing with practical planning
problems, yet can be used as a extendible research plat-
form.

References

Andrews, S.; Kettler, B.; Erol, K.; and Hendler, J.
1995. UM Translog: A Planning Domain for the De-
velopment and Benchmarking of Planning Systems.

the SHOP test set and randomly generated new tasks for
HyHTN, within the same complexity range

Technical Report CS-TR-3487, University of Mary-
land, Dept. of Computer Science.

Aylett, R. S., and Doniat, C. 2002. Supporting the
Domain Expert in Planning Domain Construction . In
Proceedings of the AIPS’02 Workshop on Knowledge
Engineering Tools and Techniques for AI Planning.

Currie, K., and Tate, A. 1991. O-Plan: the open
planning architecture. Artificial Intelligence 52:49 —
86.

Estlin, T.; Chien, S.; and Wang, X. 2001. Hierar-
chical Task Network and Operator-Based Planning:
Two Complementary Approaches to Real-World Plan-
ning. FEzperimental and Theoretical Artificial Intelli-
gence 13:379 — 395.

et al., E. A. 2002. Efficient use of hierarchical knowl-
edge to improve the performance of a hybrid hierar-
chical planner. The PLANET Newsletter Issue No.
4:5-12.

Hoffmann, J. 2000. A Heuristic for Domain Indepen-
dent Planning and its Use in an Enforced Hill-climbing
Algorithm. In Proceedings of the 14th Workshop on
Planning and Configuration - New Results in Plan-
ning, Scheduling and Design.

Kambhampati, S.; Mali, A.; and Srivastava, B. 1998.
Hybrid planning for partially hierarchical domains. In
Proceedings of the Sizteenth National Conference on
Artificial Intelligence.

Liu, D., and McCluskey, T. L. 2000. The OCL Lan-
guage Manual, Version 1.2. Technical report, Depart-
ment of Computing and Mathematical Sciences, Uni-
versity of Huddersfield .

McCluskey, T. L., and Kitchin, D. E. 1998. A Tool-
Supported Approach to Engineering HTN Planning
Models. In Proceedings of 10th IEEE International
Conference on Tools with Artificial Intelligence.

McCluskey, T. L.; Richardson, N. E.; and Simpson,
R. M. 2002. An Interactive Method for Inducing Op-
erator Descriptions. In The Sizth International Con-
ference on Artificial Intelligence Planning Systems.

McCluskey, T. L. 2000. Object Transition Sequences:
A New Form of Abstraction for HTN Planners. In
The Fifth International Conference on Artificial In-
telligence Planning Systems.

Nau, D.; Cao, Y.; Lotem, A.; and Munoz-Avila, H.
1999. SHOP: Simple Hierarchical Ordered Planner. In
Proceedings of the Sizteenth International Joint Con-
ference on Artificial Intelligence.

Simpson, R. M.; McCluskey, T. L.; Zhao, W.; Aylett,
R. S.; and Doniat, C. 2001. GIPO: An Integrated
Graphical Tool to support Knowledge Engineering in
AT Planning. In Proceedings of the 6th European Con-
ference on Planning.

