H

University of
HUDDERSFIELD

University of Huddersfield Repository

Faber, Wolfgang, Pfeifer, Gerald and Leone, Nicola

Semantics and complexity of recursive aggregates in answer set programming
Original Citation

Faber, Wolfgang, Pfeifer, Gerald and Leone, Nicola (2011) Semantics and complexity of recursive
aggregates in answer set programming. Artificial Intelligence, 175 (1). pp. 278-298. ISSN 0004-
3702

This version is available at http://eprints.hud.ac.uk/id/eprint/18492/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

* The authors, title and full bibliographic details is credited in any copy;
* A hyperlink and/or URL is included for the original metadata page; and

* The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Semantics and Complexity of Recursive Aggregates
in Answer Set Programming

Wolfgang Faber, Gerald Pfeifer, Nicola Leone

Department of Mathematics, University of Calabria, 87030 Rende (G8),

Abstract

The addition of aggregates has been one of the most relevant enhasémibe language
of answer set programming (ASP). They strengthen the modelling powe&®fn terms of

natural and concise problem representations. Previous semantic desitytiically agree
in the case of nonrecursive aggregates, but the picture is less demge@gates involved
in recursion. Some proposals explicitly avoid recursive aggregates,atiess differ, and

many of them do not satisfy desirable criteria, such as minimality or coincidertbe

answer sets in the aggregate-free case.

In this paper we define a semantics for programs with arbitrary aggre@atasding
monotone, antimonotone, and nonmonotone aggregates) in the full ASR¢gngilowing
also for disjunction in the head (disjunctive logic programming — DLP). Thisssgics is a
genuine generalization of the answer set semantics for DLP, it is definachétural vari-
ant of the Gelfond-Lifschitz transformation, and treats aggregate amaggregate literals
in a uniform way. This novel transformation is interesting per se also in theeggte-free
case, since it is simpler than the original transformation and does not ndétetentiate
between positive and negative literals. We prove that our semanticsweresdhe minimal-
ity (and therefore the incomparability) of answer sets, and we demonstaaiedbincides
with the standard answer set semantics on aggregate-free programs.

Moreover, we carry out an in-depth study of the computational complekitigeolan-
guage. The analysis pays particular attention to the impact of syntactit@ttiess on
programs in the form of limited use of aggregates, disjunction, and negatibite the
addition of aggregates does not affect the complexity of the full DLP lagguit turns
out that their presence does increase the complexity of normal (i.e.,isjoimative) ASP
programs up to the second level of the polynomial hierarchy. Howeweshow that there
are large classes of aggregates the addition of which does not causeraplexity gap
even for normal programs, including the fragment allowing for arbitraryobane, arbi-
trary antimonotone, and stratified (i.e., non-recursive) nonmonotonegags. The anal-
ysis provides some useful indications on the possibility to implement aggregatesting
reasoning engines.

Key words: Nonmonotonic Reasoning, Answer Set Programming, Aggregates,
Computational Complexity.

Preprint submitted to Elsevier Science 12 October 2009

1 Introduction

Around 1960, McCarthy proposed the uselogical formulasas a basis for a
knowledge representation language [3,4]. It was soonzedlihowever, that clas-
sical logic is not always adequate to model commonsenseni®g[5]. As an al-
ternative, it has been suggested to represent commonsssmning using logical
languages with nonmonotonic consequence relations, velliclv new knowledge
to invalidate some of the previous conclusions. This olzg@n has led to the de-
velopment and investigation of new logical formalismenmonotonic logicsThe
most famous of these are circumscription [6,7], defaulid§8], and nonmonotonic
modal logics [9—-11]. More recently, from cross fertilizats between the field of
nonmonotonic logics and that of logic programming, anoti@mmonotonic lan-
guage, called Answer Set Programming (ASP) [12,13], hasgade

Answer Set Programs [12,13], also called Disjunctive Ldtjiegrams (DLP) [14],
are logic programs where (nonmonotonic) negation may oicctive bodies, and
disjunction may occur in the heads of rules. This languagerg expressive in a
precise mathematical sense: it allows to express everyepropf finite structures
that is decidable in the complexity clagd (NPY) [15]. The high expressive
power of the language, along with its simplicity, and theiladality of a number
of efficient ASP systems [16—23], has encouraged the usag&Bfand the in-
vestigation of new constructs enhancing its capabiliti&se of the most relevant
improvements to the language of answer set programmingdersthe addition of
aggregates [24-37].

Aggregates significantly enhance the language of answ@regtamming (ASP),
allowing for natural and concise modelling of many problehsn-recursive (also
called stratified) aggregates have clear semantics andreaptarge class of mean-
ingful problem specifications. However, there are releyanblems for which re-
cursive (unstratified) aggregate formulations are nattiraCompany Controbrob-
lem, illustrated next, is a typical example, cf. [24—26,29]

Example 1.1 We are given a set of facts for predicatenpany(X), denoting the
companies involved, and a set of facts for predicatesStk(C'1, C2, Perc), de-
noting the percentage of shares of compél2y which is owned by compang'1.
Then, company’'1 controls company’?2 if the sum of the shares @f2 owned ei-
ther directly byC'1 or by companies, which are controlled 6y, is more thar50%.
This problem has been encoded as the following progPasm by many authors in

* Parts of this work have been published in preliminary form in the procesdifghe
conferences JELIA04 [1] and IJCAI'05 [2].

Email addressed: aber @t . uni cal . i t (Wolfgang Faber),
ger al d@f ei f er. com(Gerald Pfeifer)] eone@rmat . uni cal . i t (Nicola Leone).

the literature [24—26,29].

controlsStk(C1,C1,C2, P) : - ownsStk(C1,C2, P).
controlsStk(C1,C2,C3, P) : - company(C1), controls(C1,C2), ownsStk(C2,C3, P).
controls(C1,C3) : - company(C1), company(C3),

#sum{ P, C2 : controlsStk(C1,C2,C3, P)} > 50.

Intuitively, controlsStk(C'1,C2,C3, P) denotes that company1 controls P per-
cent of C3 shares “through” compang2 (as C1 controlsC2, andC2 owns P
percent ofC3 shares). Predicat@ntrols(C'1, C2) encodes that compariy1 con-
trols companyC'2. For two companies, sayl andc3, controls(cl, ¢3) is derived if
the sum of the elements in timeultiset{{ P | 3C2 : controlsStk(cl,C2,c3, P)}}
is greater than 50. Note that in the adopted DLV syntax thikigat is expressed by
{P,C2 : controlsStk(cl,C2,c3, P)} where the variabl€2 avoids that duplicate
occurrences oP are eliminated. O

The encoding oCompany Controtontains a recursive aggregate (since predicate
controlsStk in the aggregate depends on the head predieate-ols). Unfortu-
nately, however, recursive aggregates are not easy todyardl their semantics is
not always straightforward.

Example 1.2 Consider the following two programs:

Py :{p(a):- #count{X : p(X)} > 0.} Py : {p(a):- #count{X : p(X)} < 1.}

In both casep(a) is the only atom fop which might be true, so, intuitively, follow-
ing the closed-world assumption, one may expectthatunt{X : p(X)} > 0is
true iff p(a) is true; while#count{X : p(X)} < 1 should be true iffp(a) is false.
Thus, the above programs should, respectively, behavehééollowing standard
programs:

P} :{p(a):- p(a).} P :{p(a):- not p(a).}

This is not always the case in the literature, and there idbatdeon the best seman-
tics for recursive aggregates. O

There have been several attempts for defining a suitablergesfor recursive ag-
gregates [25,27-30,34-37]. However, while previous séimdafinitions typically

agree in the non-recursive case, the picture is not so deaeursion. Some pro-
posals explicitly avoid recursive aggregates, many ottiiéfier, and several of them

I Throughout this paper, we adopt the concrete syntax of the DLV layegfi38] to express
aggregates in the examples.

do not satisfy desirable criteria, such as minimalitfror a more detailed analysis
we refer to Section 5.

In this paper, we make a step forward and provide a fully datlse semantics
which works for disjunctive programs and arbitrary aggtegaMoreover, we carry
out an in-depth analysis of the computational complexitASP with aggregates,
which pays particular attention to the impact of syntadtiestrictions on programs
in the form of limited use of aggregates, disjunction, angatien.

The main contributions of the paper are the following:

e We provide a definition of the answer set semantics for dtjua programs with
arbitrary aggregates (including monotone aggregatesnanotone aggregates,
and aggregates which are neither monotone nor antimonofbime semantics is
fully declarative and is given in the standard way for anssets, by a generaliza-
tion of the well-known Gelfond-Lifschitz transformatiowhich treats aggregate
and non-aggregate literals in a uniform way. This noveldfarmation is inter-
esting per se also in the aggregate-free case, since it gdesithan the original
transformation and does not differentiate between thestygpbditerals (positive
and negative) in the program. Interestingly, the genegralithis transformation
allows for defining the semantics of arbitrary linguistidensions of ASP, and
has already been applied also in other contexts (see Sé>ion

e We study the properties of the proposed semantics, and stevollowing re-
sults:

- Our answer sets are subset-minimal models, and therefeyeatie incompa-
rable to each other, which is generally seen as an importapepty of non-
monotonic semantics [32,29].

- For aggregate-free programs, our semantics coincideshdatstandard answer
set semantics.

- From a semantic viewpoint, monotone aggregate literalamagous to posi-
tive standard literals, while antimonotone aggregatesaasogous to negative
standard literals. We provide a rewriting from standarddqgograms with
negation to positive programs with antimonotone aggregtaes.

e We carry out an in-depth analysis of the computational cexipyl of disjunctive
programs with polynomial-time computable aggregate fionstand fragments
thereof, deriving a full picture of the complexity of the A$#hguages where
negation and/or disjunction are combined with the diffe¥eénds of aggregates
(monotone, antimonotone, nonmonotone, stratifie@he analysis brings many
interesting results, including the following:

2 The subset-minimality of answer sets, which holds in the aggregate-freeanasfor

the main nonmonotonic logics [31], also guarantees that answer sets@rg@ble, and
allows to define the transitive closure — which becomes impossible if minimality is lost
[29].

3 Note that the results mentioned here refer to the complexity of propositiongiams.

In Section 4.2, however, we discuss also the complexity of non-growgigms.

- The addition of aggregates does not increase the compleikitye full ASP
language. Cautious reasoning on full ASP programs (withuddjon and
negation) including all considered types of aggregatemfitame, antimono-
tone, and nonmonotone) even unstratified, remBificomplete, as for stan-
dard DLP.

- The “cheapest” aggregates, from the complexity viewpairg,the monotone
ones, the addition of which does never cause any compledtease, even for
negation-free programs, and even for unstratified moncaggeegates.

- The “hardest” aggregates, from the complexity viewpoing, #@e nonmono-
tone ones: even on non-disjunctive positive programs (defirorn clauses),
their addition causes a big complexity jump frdPup to I1}". Instead, an-
timonotone aggregates behave like negation: on non-disyenpositive pro-
grams their presence increases the complexity firolm co-NP.

- The largest set of aggregates which can be added to nomdlisiel ASP with-
out inducing a complexity overhead consists of arbitrarynotone, arbitrary
antimonotone, and stratified nonmonotone aggregates. \\dumgthese kinds
of aggregates to non-disjunctive ASP, the complexity ofogéng remains in
co-NP.

Importantly, the above mentioned complexity results gisevaluable information
about intertranslatability of different languages, havielevant implications also
on the possibility to implement aggregates in existing eaasy engines, or using
rewriting-based techniques (like those employed in ASS29] pr Cmodels [20])

for their implementation (see Section 4.2).

The sequel of the paper is organized as follows. Section aetethe syntax and
the formal semantics, based on the notion of answer set, &*BLour exten-
sion of DLP with aggregates. Section 3 studies the semardjoepties of DLP,;
while Section 4 carries out the computational complexitglgsis, and Section 5
discusses related work. Section 6 draws our conclusion.

2 TheDLPA Language

In this section, we provide a formal definition of the syntaxi aemantics of the
DLP# language — an extension of Disjunctive Logic ProgrammingRPby set-
oriented functions (also called aggregate functions). fadher background on
DLP, we refer to [13,18].

2.1 Syntax

We assume sets ghriables constantsandpredicatego be given. Similar to Pro-
log, we assume variables to be strings starting with upgertsters and constants
to be integers or strings starting with lowercase lettersdiéates are strings start-
ing with lowercase letters or symbols such=gs<, > (so called built-in predicates
that have a fixed meaning). Aarity (non-negative integer) is associated with each
predicate.

Standard Atoms and Literals. A termis either a variable or a constant.séan-
dard atomis an expression(ty, .. .,t,), wherep is a predicateof arity n and
t1,... 1, are terms. Astandard literal is either a standard atorh (in this case, it
is positive or a standard ator preceded by the default negation symhet (in
this case, it i;iegative. A conjunction of standard literals is of the fori, . . ., L,
where each; (1 < i < k) is a standard literal.

An expression (e.g. standard atom, standard literal, ootipn) is ground, if nei-
ther the expression itself nor any of its subexpressiontagorariables.

Set Terms. A (DLP+) set termis either a symbolic set or a ground setsym-
bolic setis a pair{ Vars : Conj}, where Vars is a list of variables and’on; is a
conjunction of standard atonfsA ground sets a set of pairs of the forrt: Cony),
wheret is a list of constants and'on;j is a ground (variable free) conjunction of
standard atoms.

Aggregate Functions. An aggregate functioris of the formf(S), whereS' is a
set term, and is anaggregate function symhdhtuitively, an aggregate function
can be thought of as a (possibly partial) function mappindtisais® of constants
to a constant.

Example 2.1 The following aggregate functions are quite common, andetitly
supported also by the DLV systegtmin (minimal term, undefined for empty set),
#max (maximal term, undefined for empty sef)count (number of terms)}sum
(sum of integers), angt-times (product of integers). O

4 Intuitively, a symbolic se{ X :a(X,Y),p(Y)} stands for the set ok -values making
a(X,Y),p(Y) true, i.e. {X |3V s.t. a(X,Y),p(Y) is true}.

°> Note that aggregate functions are evaluated on the valuation of a (§rseina.r.t. an
interpretation, which is a multiset, cf. Section 2.2.

Aggregate Literals. An aggregate atons f(S) o T', where f(.S) is an aggre-
gate functionp € {=, <, <,>,>,#} is a comparison operator, afitis a term
(variable or constant).

We note that our choice for the notation of aggregate atompsnsarily motivated
by readability. One could define aggregate atoms as an ampitelation over a
sequence of aggregate functions and terms. In fact, aggeegaDLV and cardi-
nality and weight constraints for Smodels can be of the f@imm f(.S) o U, but

semantically this is a shorthand for the conjunctiod’af f(.S) andf(S) o U.

Example 2.2 The following are aggregate atoms in DLV notation, wherdaltter
contains a ground set and could be a ground instance of tiveefor
#max{Z :r(Z),a(Z,V)} > Y
#max{(2:r(2),a(2,2)),(2:7(2),a(2,y))} > 1
O
An atomis either a standard (DLP) atom or an aggregate atoiitefal L is an

atom A or an atomA preceded by the default negation symhek; if A is an
aggregate atoni, is anaggregate literal

DLP# Programs. A (DLP#) rule r is a construct

ay V .-V ay - bi,...,bg, not bgyq,..., not by,.
whereay,---,a, are standard atoms;,---,b,, are atoms, anch > 0, m >
k > 0, n+ m > 0. The disjunctiora; V --- V a, is referred to as thbead

of r, while the conjunctiorb,, ..., b;, not by,1,...,not b,, is thebodyof r. Let
H(r) =Aay,...,a.}, Bt (r) = {b1,..., b}, B (r) = {not byy1,...,n0t b, },
andB(r) = B*(r) U B~ (r). Furthermore lePred(c) denote the set of predicates
that occur ino, wheres may be a program, a rule, a set of atoms or literals, an atom
or a literal. Whenever it is clear that this set has one elerffenstandard atoms
and literals),Pred(o) may also denote a single predicate(lALP+) programis a

set of DLP* rules.

2.1.1 Syntactic Properties

A local variable ofr is a variable appearing solely in an aggregate functior in
a variable ofr which is not local is callegjlobal. A nestedatom ofr is an atom
appearing in an aggregate atomrofan atom ofr which is not nested is called
unnested

Definition 2.1 (Safety) A rule r is safeif the following conditions hold: (i) each
global variable ofr appears in a positive standard unnested literal of the bddy o
r; (i) each local variable ofr that appears in a symbolic s€t/ars : Conj} also
appears inConj. Finally, a program is safe if all of its rules are safe.

Condition (i) is the standard safety condition adopted iraldagt, to guarantee that
the variables are range restricted [40], while Conditiopiispecific for aggre-
gates.

Example 2.3 Consider the following rules:

p(X):- ¢(X,Y, V), Y < #max{Z : r(Z),a(Z,V)}.
p(X):- q(X,Y, V), Y < #sun{Z : a(X, 5)}.
p(X):-q(X,Y, V), T< #min{Z : r(Z),a(Z,V)}.

The first rule is safe, while the second is not, since locabhdes” violates con-
dition (ii). The third rule is not safe either, since the giblvariableT" violates
condition (i). O

Definition 2.2 (Aggregate-stratification) A DLP# programP is stratified on an
aggregate atom if there exists a level mapping || from Pred(P) to ordinals,
such that for each rule € P and for eachu € Pred(H (r)) the following holds:

(1) Foreachb € Pred(B(r)): |[b]] < |]all,
(2) if A € B(r), then for eactb € Pred(A): ||b|| < ||al||, and
(3) foreachb € Pred(H(r)): ||b]] = ||al]-

A DLP# programP is aggregate-stratifieil it is stratified on all aggregate atoms
inP.

Intuitively, aggregate-stratification forbids recursibnough aggregates. While the
semantics of aggregate-stratified programs is more or eed upon, different

and disagreeing semantics for aggregate-unstratified-gameghave been defined
in the past, see for instance the discussion in [29]. In tasep we shall provide a

novel characterization which directly extends well-kndiwmulations of seman-

tics for aggregate-free programs.

Example 2.4 Consider the program consisting of a set of facts for preeszaand
b, plus the following two rules:

q(X):- p(X),#count{Y : a(Y, X),b(X)} < 2. p(X):- q(X),b(X).

The program is stratified offcount{Y : a(Y, X),b(X)} < 2, as the level map-
ping |la|l| = |16l =1, |lp|| = |l¢|| = 2 satisfies the required conditions. The

program is therefore aggregate-stratified.

If we add the ruleb(X): - p(X), then no such level-mapping exists and the pro-
gram becomes aggregate-unstratified. a

Definition 2.3 (Negation-stratification) A programP is callednegation-stratified
[41,42], if there exists a level mapping||, for Pred(P) such that for each rule
r € P and for eachu € Pred(H (r)) the following holds:

(1) Foreachb € Pred(B(r)): ||b]] < ||all,
(2) for each standard literal. € B~ (r): ||Pred(L)|| < ||al|, and
(3) foreachb € Pred(H(r)): ||b]| = ||al]-

We note that when dealing with ground programs, one can densi program
in which each ground standard atom is replaced by a uniquicate with arity

0. This program is clearly equivalent to the original pragranodulo the renam-
ing. One can then consider the rewritten program for det@ngiaggregate- and
negation-stratification.

Example 2.5 Consider the following ground program:

p(a):- not p(b). p(a):- #count{(c: p(c))} > 0.

While it is neither aggregate-stratified nor negation-gteat according to the defi-
nition, as it only considers the predicate sympgalts renamed variant

pa - not pb. pa:- F#count{{c: pc)} > 0.

is, however, aggregate-stratified and negation-stratiied so we may consider
also the original program as being aggregate-stratifiechagdtion-stratified. O

2.2 Semantics

Universe and Base. Given a DLP* program?P, let Uy denote the set of con-
stants appearing i?, and Bp the set of standard atoms constructible from the
(standard) predicates @f with constants irUp. Given a setX, let 2% denote the
set of all multisets over elements from. Without loss of generality, we assume
that aggregate functions mapZq(the set of integers).

Example 2.6 Let us look at common domains for the aggregate functionsxef E
ample 2.1:#count is defined oveR"” #sum over?2’, #times over2” #min and
#max are defined ovez” \ {0}. O

Instantiation. A substitutionis a mapping from a set of variablesi. A sub-
stitution from the set of global variables of a rulgto Up) is aglobal substitu-
tion for r; a substitution from the set of local variables of a symbekt S (to
Up) is alocal substitution forS. Given a symbolic set without global variables
S = {Vars : Conj}, theinstantiation ofS is the following ground set of pairs
inst(S):

{{y(Vars) : v(Conj)) | v is a local substitution forS'}. ¢

A ground instanceof a ruler is obtained in two steps: (1) a global substitution
o for r is first applied over; (2) every symbolic sef in o(r) is replaced by its
instantiationinst(.S). The instantiatiorzround(P) of a programP is the set of all
possible instances of the rules®f

Example 2.7 Consider the following prograr;:

q(1) Vp(2,2). q(2) Vp(2,1). t(X):- q(X),#sun{Y : p(X,Y)} > 1.

HereUp, = {1,2} and the instantiatiotiround(P,) is the following:

q(1) v p(2,2). t(1) - q(1), #sum{(1: p(1,1)),(2: p(1,2))} > 1.
q(2) v p(2,1). t(2):- q(2), #sum{(1: p(2,1)),(2: p(2,2))} > L.

Interpretation. An interpretationfor a DLPA programP is a set of standard
ground atomd C Bp. A standard ground atomis true w.r.t. an interpretation,
denoted! | a, if a € I; otherwise it is false w.r.tI. A standard ground literal
not a is true w.r.t. an interpretatioh, denoted’ = not q, if I }~ a, otherwise it is
false w.r.t. I.

An interpretation also provides a meaning to (ground) ssjgregate functions
and aggregate literals, namely a multiset, a value, andtla value, respectively.
Let f(S) be a an aggregate function. The valuatid®) of S w.r.t. I is the mul-
tiset /(S) defined as follows: LetS; = {(t1,....tn) | (t1,...,tn : Conj) € S A
Conj is true w.r.t./}, then(S) is the multiset obtained as the projection of the
tuples ofS; on their first constant, that i§.S) = {{t, | (¢t1,....tn) € Sr}}.

The valuation/(f(S)) of an aggregate functiofi(S) w.r.t. I is the result of the
application off 7 on1(.9). If the multiset/(S) is not in the domain of , I(f(S)) =
1 (where_L is a fixed symbol not occurring iR).

6 Given a substitutioa and a DLP* objectObj (rule, set, etc.), we denote byObj) the
object obtained by replacing each variallén Obj by o(X).
7 We assume that has a fixed interpretation.

10

An instantiated aggregate atorh = f(S) o k is true w.r.t. an interpretatiof,

denotedl | A if: (i) I(f(S)) # L, and, (i) I(f(S)) o k holds®; otherwise,A

is false. An instantiated aggregate litetalt A = not f(5) o k is true w.r.t. an
interpretation/, denoted = not A, if (i) I(f(S)) # L, and, (i) I(f(S)) o k does
not hold; otherwisepot A is false.

Example 2.8 Let I be the interpretatiofif (1), g(1,2), g(1,3), g(1,4), g(2,4), h(2),
h(3), h(4)}. With respect to the interpretatidnand assuming that all variables are
local, we can check that:

- #count{X : ¢g(X,Y)} > 2is false, becausg; for the corresponding ground
setis{(1), (2)}, sol(S) = {{1,2}} and#count({{1,2}}) = 2.

- #count{X,Y : g(X,Y)} > 2is true, because hets = {(1,2), (1,3), (1,4),
(2,4)}, I(S) ={{1,1,1,2}} and#count({{1,1,1,2}}) = 4.

- 23 < #times{Y : f(X),9(X,Y)} <= 24 is true; in this cas&; = {(2), (3),
M}, 1(S) = {{2,3,4}} and#times({{2,3,4}}) = 24.

- #sum{A : ¢g(A,B),h(B)} <= 3is true, as we have thal; = {(1),(2)},
I(S) ={{1,2}} and#sum({{1,2}}) = 3.

- #sum{A, B : g(A, B),h(B)} <= 3 is false, since5; = {(1,2), (1,3), (1,4),
(2,4}, 1(S) ={{1,1,1,2}} and#sum({{1,1,1,2}}) = 5.

- #min{ X : f(X),g(X)} >= 2 s false because the evaluation of (the instantia-
tion of) {X : f(X), g(X)} w.r.t. I yields the empty set, which does not belong
to the domain of#min (we have thaf (#min{}) = L). O

Arule r is satisfied w.r.t/, denoted | r if some head atom is true w.rk.(3h €
H(r) : I = h) whenever all body literals are true w.dt(vb € B(r) : I |= b).

Example 2.9 Consider the atoml = #sum{(1:p(2,1)),(2:p(2,2))} > 1 from
Example 2.7. Leb be the ground setiA. For the interpretation = {¢(2), p(2,2),t(2)},
I(S) = {{2}}, the application ofsum over{{2}} yields2, and thereford = A,
since2 > 1. O

Definition 2.4 A ground literal? is

e monotoneif for all interpretations!, .J, such that/ C J, I |= ¢ impliesJ = ¢;
e antimonotoneif for all interpretations/, J, such that/ C J, J = ¢ implies
I E¢;

e nonmonotongif it is neither monotone nor antimonotone.

Note that positive standard literals are monotone, wheregative standard literals
are antimonotone. Aggregate literals may be monotoneanantbtone or nonmono-
tone, regardless whether they are positive or negative.

Example 2.10 All ground instances of the following aggregate literals arono-

8 Again, we assume thathas a fixed interpretation.

11

tone

#count{Z : r(Z)} > 1 not #count{Z : r(Z)} < 1

while the following are antimonotone:

#count{Z : r(Z)} < 1 not #count{Z : r(Z)} > 1

Nonmonotone literals include the sum over (possibly nggatntegers and the av-
erage. Also, most monotone or antimonotone functions coetbwith the equality

operator yield nonmonotone literals, which however may eeothposed into a
conjunction of a monotone and an antimonotone aggregate. a

2.3 Answer Sets

We will next define the notion of answer sets for Di Brograms. While usually
this is done by first defining the notion of answer sets for fp@sprograms (co-
inciding with the minimal model semantics) and then for riegaprograms by

a stability condition on a reduct, once aggregates have twohsidered, the no-
tions of positive and negative literals are in general neaclif only monotone and
antimonotone aggregate atoms were considered, one cogbdysireat monotone
literals like positive literals and antimonotone literbke negative ones, and follow
the standard approach, as hinted at in [29]. Since we alssid@mnonmonotone
aggregates, such a categorization is not feasible, andlywena definition which

always employs a stability condition on a reduct.

The subsequent definitions are directly based on modelsn#empretationM is
a model of a DLP program?P, denotedM = P, if M | r for all rulesr €
Ground(P). An interpretation)/ is a subset-minimal model @ ifno I C M is
a model ofG'round(P).

Example 2.11 It can be verified thafq(2), p(2, 2),t(2)} is a model of the program
of Example 2.7. O

Next we provide the transformation by which the reduct of augid program
w.r.t. an interpretation is formed. Note that this defimtis a generalization of
the Gelfond-Lifschitz transformation for DLP programs&sEheorem 3.6). The
intuition is, however, very similar: Treating an inter@gon as an assumption, cre-
ate the part of the program which is relevant according t@then interpretation.
In particular, we consider any rule whose body is not satisigirrelevant.

Definition 2.5 Given a groundDLP4 programP and an interpretatiory, let P’
denote the transformed program obtained frerby deleting rules in which a body

12

literal is false w.r.t.I:
Pl={r|reP,vbe B(r):I b}

Example 2.12 Consider Example 1.2:

Ground(Py) = {p(a): - #count{(a : p(a))} > 0.}
Ground(P,) = {p(a): - #count{(a : p(a))} < 1.}

With interpretationd; = {p(a)} andl, = () we obtain:

Ground(P))"" = Ground(P;)
Ground(Py)"? = ()
Ground(P,)" = ()
Ground(P,)2 = Ground(P,)

We are now ready to formulate the stability criterion for\massets.

Definition 2.6 (Answer Sets forDLP4 Programs) Given aDLP# programP, an
interpretationA of P is an answer set if it is a subset-minimal modet@bund(P)4.

It should be noted that this definition grasps the originativation for answer
sets or stable models, in that an interpretation is a stabldehor an answer set
if and only if it is a non-redundant explanation of the partloé program which
is relevant to it. Looking in particular at aggregates, wseaskie that aggregates
are treated as “black boxes” or “monoliths,” that is whenattreg stability they
are either present in their entirety or missing altogetfiéairs is one of the main
and distinguishing features of our semantics. Indeed, ati@e5 we will discuss
that some other approaches to semantics for programs smgaiggregates do not
treat aggregates as monoliths.

It is also worth noting that this definition is very generahce it treats all atoms
as black boxes. In fact, it is applicable to programs comgirbitrary forms of

atoms, as long as their satisfaction by an interpretationbmadetermined. That
means that the syntax adopted for aggregate literals isvaet for the definition,

and that this definition can and indeed has been used (cio8dgtfor programs

containing arbitrary kinds of atoms.

Example 2.13 For the programs of Example 1.2, of Example 2.12 is the only
answer set of?, (becausd, is not a minimal model ofiround(P;)™), while P,

13

admits no answer sef(is not a minimal model of:round(P)", andl, is not a
model of Ground(P,) = Ground(P)"™).

For Example 1.1 and the following input facts

company(a). company(b). company(c).

ownsStk(a, b,40). ownsStk(c, b, 20). ownsStk(a, ¢,40). ownsStk(b, ¢, 20).

only the setd = { controlsStk(a, a, b, 40), controlsStk(a, a, c,40), controlsStk(b, b, c, 20),
controlsStk(c, c,b,20)} (omitting facts) is an answer set, which means that no com-
pany controls another company. Note tAat= A U { controls(a,b), controls(a, c),
controlsStk(a, b, c, 20), controlsStk(a, c, b, 20)} IS not an answer set, which is reason-
able, since there is no basis for the truth of literalglin— A. O

This definition is somewhat simpler than the definitions giire[43,32]. In partic-
ular, different to [32], we define answer sets directly onddfhe notion of models
of DLPA programs, rather than transforming them to a positive @nogr

3 Semantic Properties

We first note two simple consequences of Definition 2.6.
Proposition 3.1 Any answer setl of a DLPA program?P is a model ofP.

Proof. SinceGround(P)* C Ground(P), A satisfies all rules iround(P)4,
and rules inGround(P) — Ground(P)# are satisfied w.r.t4 by the definition of
Ground(P)4. O

Moreover, each answer set is an answer set of its progranstredu

Proposition 3.2 Any answer setd of a DLPA program P is an answer set of
Ground(P)4.

Proof. We note thatiround(Ground(P)?) = Ground(P)* and thaGround(P)AA =
Ground(P)4. Since A is an answer set oP, it is a subset-minimal model of
Ground(P)?4 = Ground(Ground(P)*)A, O

A generally desirable and important property of nonmonigtgemantics is mini-
mality [32,29], in particular a semantics should refine tbgan of minimal mod-
els. We now show that our semantics has this property.

Theorem 3.3 Answer Sets of ®LP“ programP are subset-minimal models of
P.

14

Proof. Our proof is by contradiction: Assume that is a model ofP, I5 is
an answer set oP and that/; C I,.? Sincel, is an answer set oP, it is a
subset-minimal model of/round(P)" by Definition 2.6. Therefore]; is not a
model of Ground(P)*2 (otherwise,l, would not be a subset-minimal model of
Ground(P)™). Thus, some rule € Ground(P)™ is not satisfied w.r.t/,. Since
Ground(P)™ C Ground(P), r is also inGround(P) and thereford; cannot be
a model ofP, contradicting the assumption. a

As a consequence of this theorem, we get incomparabilitpsivar sets.

Corollary 3.4 Answer sets of ®LP4 programP are incomparable (w.r.t. set in-
clusion) among each other.

Theorem 3.3 can be refined for DEPrograms containing only monotone literals.

Theorem 3.5 The answer sets of BLPA program P, whereP contains only
monotone literals, are precisely the minimal model#®of

Proof. Let P be a DLP* program containing only monotone literals, ahdbe
a minimal model ofP. Clearly, I is also a model ofP!. We again proceed by
contradiction and show that nbcC I is a model ofP’: Assume that such a model
J of P exists and satisfies all rules @round(P)!. All rules in Ground(P) —
Ground(P)! are satisfied by because their body is false w.rit. But sinceP
contains only monotone literals, each false literal it also false in/ C I, and
henceJ also satisfies all rules i6round(P) — Ground(P)" and would therefore
be a model ofP, contradicting the assumption thiats a minimal model. Together
with Theorem 3.3, the result follows. O

Clearly, a very desirable feature of a semantics for an egtghguage is that it
properly extends agreed-upon semantics of the base laags@athat the semantics
are equal on the base language. Therefore we next show tht#® programs,
our semantics coincides with the standard answer set smsiaNbte that not all
semantics which have been proposed for programs with agtgegneet this re-
qguirement, cf. [29].

Theorem 3.6 Given aDLP program?P, an interpretation/ is an answer set dP
according to Definition 2.6 iff it is an answer set Bfaccording to the standard
definition via the classic Gelfond-Lifschitz transfornoat{12].

Proof. (=): Assume that is an answer set w.r.t. Definition 2.6, i.eis a min-
imal model of Ground(P)”. Let us denote the standard Gelfond-Lifschitz trans-
formed program byG L(Ground(P), I). For eachr € Ground(P)’ somer’ &
GL(Ground(P), I) exists, which is obtained from by removing all negative lit-
erals. Since € Ground(P)!, all negative literals of are true in/, and also in all

9 Throughout the papet; denotesstrict set inclusion.

15

J C I. For rules of which an” € GL(Ground(P), I) exists but no corresponding
rule inGround(P)!, some positive body literal of’ is false w.r.t.I (hence” is not
included inGround(P)!), and also false w.r.t. all C I. Therefore (i) is a model
of GL(Ground(P),I) and (ii) noJ C I is a model ofGL(Ground(P),I), as it
would also be a model afround(P)! andI thus would not be a minimal model
of Ground(P)’. Hencel is a minimal model of7L(Ground(P), I) whenever it
is a minimal model otZround(P)*.

(«<=): Now assume that is a standard answer set®f that is,/ is a minimal model
of GL(Ground(P), I). By similar reasoning as if=) aruler € GL(Ground(P),I)
with true body w.r.t. has a corresponding ruté € Ground(P)! which contains
the negative body of the original rul¢ € Ground(P), which is true w.r.t. all
J C I.Any ruler” € GL(Ground(P), I') with false body w.r.t] is not contained
in Ground(P)’, but it is satisfied in eacti C I. Therefore (i)/ is a model of
Ground(P)! and (i) noJ C I is a model ofGround(P)! (otherwiseJ would
also be a model of7 L(Ground(P), I)). As a consequencé,is a minimal model
of Ground(P)! whenever it is a minimal model & L(Ground(P), I). O

4 Computational Complexity
4.1 Complexity Framework

We analyze the complexity of DL-Pon Cautious Reasoninga main reasoning
task in nonmonotonic formalisms, amounting to the follogvotecision problem:
Given a DLP* programP and a standard ground atas is A true in all answer
sets of P?

For identifying fragments of DL, we use the notation L whereL C {not, VV}
andA C {M,, M, A;, A, N, N}.

LetP € LPj. If not € L, then rules ifP may contain negative literals. Likewise,

if Vv € L, then rules inP may have disjunctive heads. M, € A (resp.,A; €

A, N, € A), then’P may contain monotone (resp. antimonotone, nonmonotone)
aggregates, on whicR is stratified. IfM/ € A (resp.,A € A, N € A), thenP

may contain monotone (resp. antimonotone, nonmonotorgeggtes (on which

P is not necessarily stratified). If a symbol is absent in atbetn the respective
feature cannot occur i, unless another symbol is included which specifies a
more general feature. For exampleFife LPY,,, then antimonotone aggregates
on which?P is stratified may occur if® even if A, is not specified.

For the technical results, we consider ground (i.e., vigiélee) DLP* programs,
and polynomial-time computable aggregate functions (tiwdéall sample aggre-
gate functions appearing in this paper fall into this cladswever, in the overview

16

we also provide a discussion on how results change whendmmsy non-ground
programs or aggregates which are harder to compute.

4.2 Overview of Complexity Results

Table 1 summarizes the complexity results derived in thé sestions for various
fragments LP, where(is specified in columns and in rows. Results for LR,
whereM, € L have been omitted from Table 1 for readability, as they atakip
those of the respective fragment containiviginstead of/\/;.

| | O [fmot} [(v} [fmot,v) | |

{} P | co-NP| co-NP| TIY 1
{M} P | co-NP| co-NP| TIY 2
{Ag} P |co-NP| II¥ ny 3
{Ns} P |co-NP| 1Y ny 4
{M, Ag} P |co-NP| TI¥ g 5
{M, N} P | co-NP| II¥ g 6
{Ag, N} P |co-NP| II¥ ny 7
{M, Ag, Ng} P |co-NP| II¥ g 8
{A} co-NP | co-NP | TII¥ 1y 9
{M, A} co-NP | co-NP | TI¥ ny 10
{A, N} co-NP | co-NP | TII¥ g 11
{M, A,Ng} || co-NP| co-NP| II¥ ny 12
{N} 1z ny ny ny 13
{M,N} g ny g g 14
{Ag, N} ny g ey g 15
{M, As,N} mny mny mny mny 16
{A,N} ny ny ny ny 17
{M, A, N} ny ny e ny 18
| [v+ 2]3] 4 [|

Table 1
The Complexity of Cautious Reasoning in ASP with Aggregates (Completeresdtf
under Logspace Reductions)

An important result is that the addition of aggregates dassncrease the com-
plexity of disjunctive logic programming. Cautious reasanon the full DLP*

language, including all considered types of aggregatem¢ione, antimonotone,
and nonmonotone) even unstratified, remdiscomplete, as for standard DLP.

The “cheapest” aggregates, from the viewpoint of compyexite the monotone

17

ones, the addition of which never causes any complexitygas®, even for negation-
free programs, and even for unstratified monotone aggregate

The largest polynomial-time computable fragmenLEgm Ao No} (positive v-free
programs), suggesting that also the stratified aggregatasd/V, are rather “cheap”.
Indeed, they behave similarly to stratified negation fromm¢bmplexity viewpoint,
and increase the complexity only in the case of positivaidisjve programs (from
co-NP toIl%).

Antimonotone aggregates (unstratified) behave like utifséch negation: In the
positiveV/-free case their presence alone increase the complexity®Prto co-NP.
The complexity remains the same if monotone and stratifiednumotone aggre-

gates are added. The maximal co-NP-computable fragmeatsfaﬁjj .y and

Vv
LP,},.
The most “expensive” aggregates, from the viewpoint of cdexity, are the non-
monotone ones: In the positixvefree case (definite Horn programs) they cause a
big complexity jump fromP to I1Z'. For each language fragment containing non-
monotone aggregates we obtdilj -completeness. Intuitively, the reason is that
nonmonotone aggregates can express properties which carittes using nega-
tion and disjunction in standard DLP.

Note that implemented ASP systems allow for expressing momtone aggregates
such as < #count{X : p(X)} < 3, which however, can be treated like a conjunc-
tion of a monotone and an antimonotone aggregate atoroupt{X : p(X)} > 1,
#count{X : p(X)} < 3). The complexity of nondisjunctive programs with these
constructs is therefore the same as ld??j\;j} (lower thanLP?j\?f}). In [44], a
broad class of nonmonotone aggregates, that can be rewastanonotone and
antimonotone aggregates in this style, is identified. Nudeever, that sum aggre-
gates (weight constraints) over positive and negativgereare nonmonotone and
can in general not be decomposed into monotone and antioremaggregates.

The above complexity results give us valuable informatibowa intertranslata-

bility of different languages, having important impliaati also on the possibil-

ity to implement aggregates in existing reasoning engiResinstance, we know
now that cautious reasoning @P}}‘C}fjj ~.) €an be efficiently translated to UNSAT
(the complement of propositional satisfiability) or to gaus reasoning on non-
disjunctive ASP; thus, arbitrary monotone, arbitrary @suainotone, and stratified
nonmonotone aggregates can be implemented efficientlypoftBAT solvers and

non-disjunctive ASP systems. On the other hand, since noatanic aggregates
(even without negation and disjunction) bring the compieto 112, the existence

of a polynomial translation from cautious reasoning withmonotonic aggregates
to UNSAT cannot exist (unless the polynomial hierarchy ayodles). Therefore, a
rewriting to UNSAT is not viable to implement nonmonotonegegates which

require more powerful solvers.

18

As mentioned above, our results rely on the assumption ggaegate functions are
computable in polynomial time. If one were to allow compiataélly more expen-
sive aggregates, complexity would rise according to thepterity of additional
oracles, which are needed to compute the truth value of aregatg.

We end this overview by briefly addressing the complexity oh4ground pro-
grams. When considering data-complexity (i.e. a prograis fixed, while the in-
put consists only of facts), the results are as for propwsidi programs. If, however,
one considers program complexity (i.e. a prograns given as input), complexity
rises in a similar manner as for aggregate-free programgnAgnound prograr®
can be reduced, by naive instantiation, to a ground instahtiee problem. In the
general case, whef@ is given in the input, the size of the groundi6gound(P)

is single exponential in the size &f. Informally, the complexity of Cautious Rea-
soning increases accordingly by one exponential, fibto EXPTIME, co-NP to
co-NEXPTIME, I to co-NEXPTIME'. For aggregate-free programs complex-
ity results in the non-ground case are reported in [45]. Rerdther fragments,
the results can be derived using complexity upgrading teci@s as presented in
[15,46].

4.3 Proofs of Hardness Results

In this section, we will provide the proofs for all hardneasults of Table 1.

4.3.1 Non-disjunctive Programs

All P-hardness results in the table (rows 1-8 in column 1) followadly from the
well-known result that (positive) propositional logic gramming isP-hard [45].

An important observation is that negation can be simulatedrtiimonotone ag-
gregates. It is therefore possible to turn aggregate-fregrams with negation into
corresponding positive programs with aggregates. Let sisdafine how this sim-
ulation can be achieved.

Definition 4.1 Given a progran’ € LP?}M’V}, let T'(P) be theDLP+ program,
which is obtained by replacing each negative liteialt a in P by #count{ (e :
a)} < 1, wheree is an arbitrary constant.

We can show that an aggregate-free program and its transfbvarsion are equiv-
alent.

Lemma 4.1 Each programP &€ LP?}‘“’V} can be transformed into an equivalent

program['(P) € LP%Z& with aggregate literals (all of which are antimonotone). If

19

P is negation-stratified, thefi(P) LPm}.

Proof. Note that for any interpretatiof, not « is true w.r.t.1 iff #count{(e :
a)} < listruew.r.t.z, and that#count{(c : a)} < 1isanantimonotone aggregate
literal. By virtue of Theorem 3.6, our answer sets semanéissr(Definition 2.6) is
equivalent to the standard answer set semantics. Thus,thievaluation of literals
is equal in? andI'(P), both programs have the same answer sets.

Since aggregates take the place of negative literal3,i#f negation-stratified, then
there exists a level mapping, such that predicates in neghterals map to an
ordinal which is less than the ordinal any head atom maps he. Same level-
mapping can be used for showing tH&tP) is aggregate-stratified on all of its
aggregate literals. O

Moreover, we can show that this transformation has a veryclomvputational cost.

Lemma 4.2 LetP € LP*™". Then (i)T'(P) has the same size (i.e., number of
rules and literals) asP, and (ii) I'(P) is LOGSPACE computable frof

Proof. TheI'(P) transformation replaces each negative literal by an agdeeg
atom; and it does not add any further literal to the prograimer&fore it does
not increase the program size. It is easy to seelffi&) can be computed by a
LOGSPACE Turing Machine. Indeefl{P) can be generated by dealing with one
rule of P at a time, without storing any intermediate data apart frdmeal number
of indices. O

As a consequence of these lemmata, we obtain hardness fivgosn-disjunctive
programs containing antimonotone aggregates.

Theorem 4.3 Cautious reasoning oveLrP&} programs is co-NP-hard.

Proof. Follows from co-NP-hardness of cautious reasoning fortpesilisjunctive
aggregate-free programs (programsLiﬁg}), see Theorem 6.1 in [45], together
with Lemmata 4.1 and 4.2. O

Whenever one allows for nonmonotone aggregates in positredisjunctive pro-
grams, cautious reasoning becomes harder by one levelpotjxeomial hierarchy.

Theorem 4.4 Cautious reasoning ovdrPH\,} programs isl1¥-hard.

Proof. We provide a reduction from deciding the validity of a quaeti boolean
formula (2QBF)Y = V4, ..., 2,3y, . ..,y F. Without loss of generality, we as-
sume that” is a propositional formula in 3CNF format, over preciselyvhgables
Ti,. o T, Y1, - - -, Yn. Deciding if such ab is valid is still TIZ -hard [47]. Observe
that ¥ is equivalent to-V’, whereV’' = Jxq, ..., 2,,Vy1,...,y,E’, andE’ is a
3DNF equivalent to-F, where every literal has reversed polarity w.Etand con-

20

junctions and disjunctions are inverted. Cleatlyjs efficiently constructable from
¥, and we have thab is valid if and only if ¥’ is invalid. To prove the theorem,
we construct a LPN} programlII¥ which cautiously entails an atom if and only
if ¥’ is invalid (i.e.,w is a cautious consequenceldf if and only if ¥ is valid).

Let B/ = (i, Alig Alig) VooV (g1 Al Algg), we define the LFN} program
1Y as follows:

ry: (g, 1) - Fsum{(1:t (2, 1)), (—1:t(zs, —1))} > 0. i€ {l,...,m}
(zi,—1) - #sum{(1:t(x;, 1)), (=1:t(zs, 1))} < 0.5 € {1,...,m}
(yi, 1) - #sum{ (1:(y;, 1)), (—1:t(y;, 1))} >0. i€ {l,...,n}

ry: t(y, —1):- #sum{(1:t(y;, 1)), (= 1:t(y;, —1))} <0. i € {1,...,n}
(
(

rog i t

ry i

r5: t(yi;, 1) - satE'(1). ie{l,...,n}

re : t(yi,—1):- satE'(1). ied{l,...,n}
r7 satE’(l) i- M(li,l)yﬂ(li,Q)yﬂ(li,S)- 1€ {1, ceey k}
rg: w:- #sum{(1:satE'(1)), (—1:satE'(-1))} <0. i€ {1,...,k}

wherepu(l) is t(a, 1) if [= a is positive, andu(l) is t(a, —1) if | = —a is negative.
Intuitively, for each propositional variableappearing int’, there are two atoms in
1Y, namelyt(a, 1) andt(a, —1), representing, respectively, the truth and the falsity
of a. Atom satE’(1) is derivable from a ruleatE'(1) : - pu(li1), p(li2), p(ls3) in Y

if the corresponding clausé Al;2 Al;3) is true inE’.

We claim thatw is a cautious consequencel®f if and only if ¥ is valid. We can
equivalently prove thatatE’(1) is a brave consequence ¥ if and only if ¥’ is
valid, since we have that: (1) a cautious consequencel®f if and only if sat E'(1)

is not a brave consequencel®f (note thatsatE'(—1) is false in every answer set
and, under answer set semantics, nés then equivalent ta : - not satE’(1)),
and (2)V is valid if and only if ¥’ is invalid.

Thus, we next show that? has an answer set containing E'(1) if and only if ¥’
is valid.

Assume first thafl¥ has an answer set containingsatE’(1). Observe that
contains exactly one of(z;,1) or t(x;,—1) for eachl < ¢ < m (if none held
for somei, a rule would not be satisfied, if both held,would not be a minimal
model of the reduct). Thereforé encodes a truth assignmeptfor =4, ..., x,,
(p(x;) = true if t(x;,1) € A; p(x;) = false if t(x;,—1) € A). Furthermore A must
contain botht(y;,1) andt(y;, —1) for eachl < i < n, otherwise some rules of
r5 andrg would be unsatisfied w.r.4 (as the body is true w.r.td which contains
satE’(1)). SinceA is a minimal model of1%*, it follows that noA’, which contains

21

an encoding ofp and an arbitrary truth assignment fgar, . . ., y,, but notsatE’(1),

is a model ofiT¥". So there must be at least one of the class of nedés ITY such
that each body literal is id’ (thus forcingsatE’(1)). This in turn means that each
extension ofp to y,, . . ., y,, satisfiesk’ and thus thaf’ is valid.

Assume now thafl’ is valid, so there exists a truth assignmenfor x4, ..., z,,

such that for each extension ¢fto v, ..., y,, F' is satisfied. Letl be the inter-
pretation containing the encoding of i.e. t(z;, 1) iff x; is assigned true ip and
t(z;, —1) iff z; is assigned false ip, in additiont(y;, 1), t(y;, —1) foreachl <i: <n

andsatE’(1) (and nothing else)I¥’ contains all rules of[” except

satE'(1): - #sum{(l:satE’'(1)), (—1:satE'(—1))} < 0.

Interpretation/ is clearly a model ofI?’. To prove its minimality, assume that a
model [’ C [exists. It must contain the encoding ofin order to satisfy the first
two groups of rulesiq andr,). Furthermore]’ must contain at least an encoding
of a truth assignment fay,, . . ., y,, in order to satisfy the third and fourth groups of
rules. Then, sincé” is satisfied by any such truth assignment, algd’(1) must
be inI’" in order to satisfy all of the group of rules. However, that means that all
of t(y;, 1), t(y;, —1) for 1 < i < n must be inl’ in order to satisfy the groups of
rulesrs andrg. Sol’ = I, contradictingl’ C I, and! is therefore an answer set of
1Y (and clearly containsatE’(1)). O

We note that a related result — deciding whether an answexgsts for a positive,
non-disjunctive program with weight constraints over [agsnegative integers
is ¥¥-complete — has been shown in [37]. Weight constraints camdeotone,
antimonotone, or nonmonotone aggregate atoms.

Leveraging results in the literature, we get hardness prtmfall fields for non-
disjunctive programs in Table 1.

Theorem 4.5 All fields in column 1 and all fields in column 2 of Table 1 states
the respective hardness of cautious reasoning for the spording fragment of
DLPA.

Proof. P-hardness results for the fields in rows 1 to 8 in column 1 wlicom the
fact that cautious reasoning over ngrograms isP-hard [45] and that all corre-

sponding languages are supersets of}L@o-NP-hardness for the fields in rows 9
to 12 in column 1 stem from Theorem 4.3, as all correspondinguages are su-
persets of LI{%}. The co-NP-hardness for the fields in rows 1 to 12 in columre2 ar

based on Theorem 6.7 in [48], which states that cautiou®néag over LF{'}‘“} is

co-NP-hard. All languages corresponding to the fields gpersets of LI?}““}. All
I17-hardness results for the fields in rows 13 to 18 in columngii2zare backed by

Theorem 4.4, and the fact that all corresponding languagesupersets of L}F}V}.
O

22

4.3.2 Disjunctive Programs

Exploiting Lemma 4.1, which says that any aggregate-fregnam with negation
can be transformed to an equivalent program with antimoreaggregates, con-
verting negation-stratification to aggregate-stratifaatwe can showlZ -hardness

for cautious reasoning over ([}, programs.

Theorem 4.6 Cautious reasoning ovder} programs isl1}’-hard.

Proof. Follows fromII£-hardness of cautious reasoning on standard literal cpierie
for positive disjunctive aggregate-free (gli) programs, see Theorem 36 of [49].
Given such a prograr® and a literal (of the forma ornot a, whereqa is a standard
ground atom), leP’ = P U {q: - I.}, whereg is a ground atom that does not occur
in P. Obviously,P’ € LP?}‘“’V} is negation-stratified, and cautious reasoning on
overP’ is equivalent to cautious reasoninglooverP. Together with Lemmata 4.1
and 4.2, the result follows. O

Next, we note that any program containing only stratifiednaohotone aggregates
can be transformed into an equivalent program containimgsiratified nonmono-
tone aggregates.

Lemma 4.7 EachLP}:":}’V} program can be transformed into an equivalemg‘\,‘f}’”
program.

Proof. W.l.o.g. we will consider a ground prograf. We transform each anti-
monotone aggregate literatontaining the aggregate atof\S) o & to I’ contain-
ing f1(S") o k. We introduce three fresh constamts, andv and a new predicate
symbolIl. Let f! be undefined for the multise{d7}} and{{r, ¢, v}} and return
a value makingd’ true for {{r, ¢}} (such a value does always exist); otherwjée
is equal tof. FurthermoreS’ is obtained by addingr : II(7)), (¢ : TI(¢)), and
(v : II(v)) to the ground sef. The transformed prograr®’ contains only non-
monotone aggregates, all of which are stratified®rand is clearly equivalent to
P. O

As a consequencél}’-hardness holds also for I,{r}?} programs.

Corollary 4.8 Cautious reasoning ovérP%};} programs isl1¥-hard.

Proof. Follows directly from Theorem 4.6 and Lemma 4.7. O

These results, together with results from the literature,safficient to show all
hardness results in columns 3 and 4 in Tablel.

Theorem 4.9 Each field in columns 3 and 4 of Table 1 states the respectinde ha
ness of cautious reasoning for the corresponding fragmebti.dP4.

23

Proof. co-NP-hardness for the fields in rows 1 and 2 in column 3 relyloeo-
rem 6.1 of [45], which states that cautious reasoning ovéﬁ_ﬁ’rograms is co-NP-
hard, and the fact thdtPg} - LP}X}}. I15'-hardness for the fields in rows 3 to
18 in column 3 follow from Theorem 4.6 and Corollary 4.8 and thet that all

corresponding languages are supersets (ifﬂ_}R)r LPLVV};}. I17-hardness for all
fields in column 4 follows from Theorem 6.2 in [45], which &atthat cautious
reasoning over LEW’V} is I1Y-hard, and the fact that all corresponding languages

are supersets of L"), 0

In total, we have proved all hardness results for Table 1.

4.4 Proofs of Membership Results

For the membership proofs, we will go in the reverse orded, fast prove results
for richer languages, which cover also several resultsdblasiguages.

In the membership proofs, we will implicitly use the follavg lemma:

Lemma 4.10 Given an interpretatior for a DLP4 programP, the truth valuation
of an aggregate atom is computable in polynomial time.

Proof. Let L = f(T') o k. To determine the truth valuation @f, we have to: (i)
compute the valuatiodi(7") of the ground sef” w.r.t. I, (i) apply the aggregate
function f on I(T"), and (iii) compare the result gf(/(7)) with k& w.r.t. o.

Computing the valuation of a ground sEtonly requires scanning each element
(t1,...,t, : Cong) of T, addingt, to the result multiset i on; is true w.r.t.I. This

is evidently polynomial, as is the application of the agatedgunction on/(7") in
our framework (see Section 4.1). The comparison wjttinally, is straightforward.

O

4.4.1 Disjunctive Programs

Let us first focus on the full language. Let us first show thatgoblem of answer
set checking is in co-NP.

Lemma 4.11 Checking whether an interpretatialy is an answer set of an arbi-
trary DLP+ program? is in co-NP.

Proof. To prove that)M is not an answer set g%, we guess an interpretatiavi’

of P, and check that (at least) one of the following condition&dh¢) A’ is a
model of PM, and M’ c M, or (ii) M is not a model ofP*. The checking of

24

both conditions above is clearly in polynomial time, and pieblem is therefore
in co-NP. O

Using this result, we are able to give a “guess and check’rdltgo for proving
membership ifdl%.

Theorem 4.12 Cautious reasoning ovdrP}‘ﬁfAYJ}V} programs is inll5’.

Proof. We verify that a ground atom is not a cautious consequence of a DLP
programP as follows: Guess an interpretatidh C Bp and check that (1)/ is
an answer set foP, and (2)A is not true w.r.t.M. Task (2) is clearly polynomial,
while (1) is in co-NP by virtue of Lemma 4.11. The problem #fere lies inIl1}.

O

Concerning disjunctive programs, for most fragments castieasoning is ihl},
with two exceptions which are in co-NP. The reason is thaiferespective classes
it is sufficient to look at an arbitrary model, rather than aswer set or a minimal
model.

Lemma 4.13 Let P be aLP{,), program, a standard ground atoris not a cau-
tious consequence @1, if and only if there exists a modéf of P which does not
containA. 19

Proof. Observe first that, sincP does not contain negation and only monotone
aggregate literals, each literal appearingPims monotone.

(«<): The existence of a modél/ of P not containingA, implies the existence of
a minimal modelM’ of P (with A" C M) not containingA. By virtue of Theorem
3.5, M’ is an answer set d?. Therefore A is not a cautious consequenceff

(=): Since A is not a cautious consequencef by definition of cautious rea-
soning, there exists an answer gétof P which does not contair. By Proposi-
tion 3.1, M is also a model oP. O

This lemma allows us to prove co-NP-membership for cautimasoning over
these programs.

Theorem 4.14 Cautious reasoning oveerg}} programs is in co-NP.
Proof. By Lemma 4.13 we can check whether a ground atbim nota cautious
consequence of a prograf as follows: (i) Guess an interpretatidd of P, (ii)

check thatM/ is a model and: ¢ M. The check is clearly polynomial-time com-
putable, and the problem is therefore in co-NP. O

10 Note thatM can beanymodel, possibly non-minimal, &P.

25

These results are sufficient to show all hardness resultslimmns 3 and 4 in Ta-
ble 1.

Theorem 4.15 Each field in columns 3 and 4 of Table 1 states the respective me
bership of cautious reasoning for the corresponding fragtod DLPA.

Proof. Membership inllZ for all the fields in column 4 and fields in rows 3 to 18
of column 3 follow from Theorem 4.12, because all corresprappdanguages are
subsets of LE"AZTAY]}V}. Membership in co-NP for the fields in row 1 and 2 of column

3 follow from Theorem 4.14 and the fact thaP})’ C LP}} . O

4.4.2 Non-disjunctive Programs

I17-memberships for non-disjunctive programs already folfawn the respective
result for disjunctive programs, and it remains to show ¢d-BhdP-memberships.

Let us first consider the less complex language LR . ,. We can show that
programs in this fragment have either one or no answer skishwan be computed
efficiently.

Lemma 4.16 An LP%LA&NS} program has at most one answer set and the answer
sets of a-Pg\/[,AS,NS} program can be computed in polynomial time.

Proof. For a L#{L,AS,NS} programP, let us define an operat@»> on interpreta-
tions of P as follows:Tp(I) = {h | r € P,I |= B(r),h € H(r)}. Furthermore,
given an interpretatiod, let the sequenc€T’ (1) }.cn be defined ag% (1) = 1
andT5, = Tp(T% (1)) for i > 0. SinceTp is monotone and the number of inter-
pretations forP is finite, the sequence reaches a fixpdaift(/).

Consider a level mapping|| such that for each rule € P, for which H(r) = {h}
and an antimonotone or nonmonotone aggregate literalB(r), it holds for each
predicatep nested inA that||p|| < ||p’||, wherep' is the predicate of. Moreover,
llp|] < ||p|| holds for any pair of predicatgsandp’ such thap’ occurs in the head
andp in the body of a rule. Without loss of generality, we assuneeciirdomain of
||| to beO, ..., n.

Based oni| ||, we define a partitiofP, . . ., P,,, Peonstr Of P (Wheren is the max-
imum of the co-domain off || — sinceP is a finite, this is an integer) as follows:
P, ={r|reP,H(r) = {h},||Pred(h)|| = i}, Peonstr = {r | r € P,H(r) =
0}. Furthermore, we definBPp = T (0) andF P, = T3 (FPp) for0 < i < n,
and letF'Pp = FPp. If FPp is a model ofP.st, let FMp = {F Pp}, otherwise
FMp = 0.

In the sequel we will use the shorthatti’P) = {h | 3r € P : h € H(r)} to

26

denote the set of head atoms of a program.

We next show by induction that P, = A for each answer set of P. The base is
FPNH(Py) = AN H(P,) for each answer set of P.

To proveF'PR N H(Py) € AN H(P,), we use another induction ovét, (0). The
base here i, ()) = () € A for each answer set of P. Then, assuming that
S C A for each answer set of P, we can show thdl'p, (S) C A for each answer
setA of P: Eachruler € P, is also inP and sinced is a model by Proposition 3.1,
wheneverS = b for all b € B(r), then also for any answer sdt A = b, as
B(r) may not contain antimonotone or nonmonotone aggregatalitetherwise
llp|| < 0 for some predicate in such an aggregate would hold. Siheg = {h},

h must be contained in each answer set. It follows & = T3 C A. Itis easy
to see that' Py C H(P,), SOF PR N H(Py) C AN H(Py).

Now assume thak = (AN H(Py)) \ (FP3 N H(P,)) # 0. We show that then
A\ X is a model ofP4, contradicting the assumption thatis an answer set. Each
rule in P4 N Py is clearly satisfied byd \ X, because it is satisfied byP3. Now
recall that each rule in P4 \ P, has a true body w.r.t4, which is either true or
false w.rt.A\ X. SinceH(r) N X = () (becauseX C H(P,) and by the definition
of the partitionHd (Py) N H(P \ Py) = 0), r is also satisfied byl \ X. ThereforeA

is not an answer set 6% if X # (), and soF P2 N H(Py) 2 AN H(P,). We have
shown the base of the inductioR Py N H(P,) = AN H(Py).

For the inductive step, we assuni&’s N H(P,) = A N H(Px) holds for all

k < i, > 0 and each answer set. In order to showF'P, N H(P;)) = AN
H(P;), we use yet another induction ovef, (F'P5'). The base i§%, (FPp ') =
FP5 ' C Afor each answer set, which holds by the inductive hypothesis of the
“larger” induction. Now, we assume tha{, (FP5 ') C A holds for each answer
set, and show thdf,, (T%;i(FPgl)) C A holds for each answer set. We observe
that each rule- € P; is also in? and sinceA is a model by Proposition 3.1,
whenevelT, (FP5) [= bforall b € B(r), then also for any answer séf A =

b, because the only antimonotone or nonmonotone literalaggeegates which,
however, contain only atoms formed by predicate®or which ||p|| < i. Any of
these atoms are however H(P;) for k& < i and so by the inductive hypothesis
(of the “larger” induction), T} (FP5 ") N H(Py) = AN H(Py). In total, we get
FPh =Ty C A

It remains to show that P, N H(P;) 2 AN H(P;). Similar to the base case of the
“larger” induction, we assum& = (AN H(P;)) \ (FPp N H(P;)) # 0. We show
that thend \ X is a model ofP4, contradicting the assumption thatis an answer
set. Each rule ifPANP; is clearly satisfied byl \ X, because it is satisfied dyPs.
Now recall that each rulein P4\ P; has a true body w.r.4, which is either true or
false w.r.t.A\ X. SinceH (r) N X = () (becauseX C H(P;) and by the definition
of the partitionH (P;) N H(P \ P;) = 0), r is also satisfied byl \ X. ThereforeA

27

is not an answer set @ if X # (), and soF P, N H(P;) 2 AN H(P;). We have
shown the step of the inductioh, P, N H(P;) = AN H(P;) for each answer set
A.

In total, for FPp we haveFPp N (U, H(P;)) = An (U, H(P;)) for each
answer setd of P. It is easy to see that each answer sePa$ also an answer set
of (UL, H(P;)) = P \ Peonsir- Therefore, for each answer sétof P, we know
that A = F Pp. It follows that? has at most one answer set.

Moreover, note that any rules iB..,.s;» can only be satisfied if one of its body
literals is false (as the heads are empty). Now siAi¢& is an answer set dpP \
Peonstrs it is @ minimal model of(P \ P.onsr)07, If FPp satisfies all rules in
Peonstrs theN(P \ Peopstr) 1P = PFPP andF Pp is an answer set ¢P. If any rule

of P..nsir €Xists which is not satisfied b¥ Pp, this rule also occurs i®?7, and
thereforel’ P» cannot be a model @?'77, and hence it cannot be an answer set of
‘P in this case. In total, we get that)/» is the set of answer sets .

ComputingF Pr and FMp usingTp is clearly feasible in polynomial time in the
size of the program. O

Given that we can compute the set of answer sets in polyndimialand that the
cardinality of this set is at most 1, cautious reasoning eaddne easily over the
computed answer sets.

Theorem 4.17 Cautious reasoning oveLrP{MA N,y isinP.

Proof. This is a simple consequence of Lemma 4.16. We compute tloé seswer
sets in polynomial time. If it is empty, all atoms are a causiconsequence. If there
is one answer set, check in polynomial time whether it costthe query atomd

Let us now focus on the co-NP-memberships. For doing so, Wlerevuse the
fact that answer sets L%B 4.,n,) Programs are computable in polynomial time.
The point is that for checking whether an interpretatiors an answer set of a
LPE‘}th programP, we can form the reducP’, which is also a LIB‘A;th}
program. The crucial point is that for checking whetlias a minimal model of
P! (in which case it is an answer set), one can eliminate antitoo literals from

P

Lemma 4.18 Given aLPE\ij’NS} program’P and an interpretationf C Bp, I is

a subset-minimal model @¥ iff it is a subset-minimal model dff (P7), which is
derived fromP’ by deleting all antimonotone literals.

Proof. (=) If I is a minimal model ofP’, it is obviously also a model of (P').
Moreover, each interpretatioN C I is not a model ofP’, so there is at least one
ruler € P!, for which N }£ r, that is all body atoms are true w.rl¥. but all head
atoms are false w.r.tV. Now there is a rule’ € ¥(P!) with H(r) = H(+') and

28

B(r) 2 B(r'). So also the body af is true w.r.t. N, and hence’ is not satisfied
by N. As a consequencé is not a model oft (P7), and thereford is a minimal
model of & (P7).

(<) Let I be a minimal model off (P7). We first note that no rule i®’ has a
body literal which is false w.r.t by construction of?!, and therefore also no rule
in ¥(P7) has a body literal which is false w.rf. So for any rule in¥(P7), all
body literals are true w.r.f., and hence one of its head atoms is true wi.since
I is a model. Since each rule In(P’) has a corresponding rule &’ with equal
head, and since no rule iR’ has a body literal which is false w.rf, I is also a
model of P7.

Now, consider an arbitrary interpretatidh C 7. N is not a model of(P!), that
is, there is a rule € W(P’) for which all body literals in- are true w.r.tV, and all
head atoms im are false w.r.tN. Now consider the corresponding rutec p!, for
which B(r) C B(r"). By construction ofp!, all literals ofr’ are true w.r.t.I, and
since each deleted body literake B(r') \ B(r) is an antimonotone literal (either
a negative standard literal or an antimonotone aggredatalli,/ is also true w.r.t.
N. Hence, the body af is true w.r.t.V, and sincef{ (') = H(r), each head atom
of r' is false w.r.t.N. Hencer’ is not satisfied and is not a model of??, and we
obtain that/ is a minimal model ofP”. O

So answer set checking for a g\?j,m} program can be done by checking whether

an interpretation is a minimal model for a QVIRN_S} program, which in this case is
equivalent to checking whether it is an answer set. We haeady shown earlier
that this task is polynomial.

Theorem 4.19 Cautious reasoning ovdrPg‘\jijs} IS in co-NP.

Proof. We guess an interpretatial) and check whether it is an answer set and
does not contain the queried atom. The latter check is glgati/nomial. Answer
set checking amounts to checking whethés a subset-minimal model G#'. Be-
cause of Lemma 4.18,is a subset-minimal model ¥ iff I is a subset-minimal
model of ¥ (P7), in which all negative standard and antimonotone aggréigatals
have been deleted (this transformation is obviously patyia). Because of Propo-
sition 3.2, is a subset-minimal model @? if I is an answer set ¢P!, hence if
I'is an answer set of(P’). Now since¥(P!) € LP},, v, C LPY, , . we
know by Lemma 4.16 that its answer sets (at most one) are daimpun polyno-
mial time. So we can compute the set of minimal model® P’) in polynomial
time. If it is empty,/ is not an answer set; otherwise there is exactly one minimal
model, and we check whether it is equalltdf it is, I is an answer set, otherwise
it is not. Checking whethef is an answer set is therefore feasible in polynomial
time. O

We have therefore proved all membership results of Tabler hdm-disjunctive

29

programs.

Theorem 4.20 Each field in columns 3 and 4 of Table 1 states the respective me
bership of cautious reasoning for the corresponding fragtod DLPA.

Proof. Membership inIl} for all the fields in rows 13 to 18 in columns 1 and
2 follow from Theorem 4.12, because all corresponding laggs are subsets of
LP{37'k,- Membership in co-NP for the fields in rows 9 to 12 of column # an
in rows 1 to 12 of column 2 are a consequence of Theorem 4.4 sill corre-
sponding languages are subsets oﬁ}‘;ﬁm}. Finally, membership irP for the
fields in rows 1 to 8 of column 1 are due to Theorem 4.17, sinosoatesponding
languages are subsets ofﬁEAS’NS}. O

5 Related Work

There have been considerable efforts to define semantidsdiar programs with
aggregates. For a historical background, we refer to [5@}eHve will focus on
work which has been proposed in the field of Answer Set Progriagnfor defining
semantics for recursive aggregates. Several of these wonssder only monotone
aggregates, such as [31,33,30]. We will not go into furthetaits with respect to
these approaches, as their focus is either on having aggraigens in rule heads (a
feature which is absent in our framework) or on working ogeakraic methods for
disjunctive programs. Moreover, semantically, monotoggregates in rule bod-
ies are straightforward to handle, as they perfectly cpoed to standard positive
atoms in their behavior. We also note that most of the relatedks do not con-
sider disjunctive programs. A thorough discussion of pra$eons for the various
approaches for recursive aggregates has been given ir[36]3

The approaches of [25,27,28] basically all admit non-malianswer sets. In par-
ticular, programP; of Example 1.2 would hav@ and {p(a)} as answer sets. As
shown in Example 2.13 (also by Theorem 3.3), the semantayzoged in this pa-
per only admitg), and always guarantees the minimality of answer sets. Thk wo
in [51] deals with the more abstract concept of generalizeantfiers, and the
semantics therein also allows for non-minimal answer sets.

The approach of [43] is defined on non-disjunctive prograntls particular kinds

of aggregates (called cardinality and weight constraimsiich basically corre-
spond to programs witbountand sumfunctions. As shown in [29] and [52], in
presence of negative weights or negative literals insideexgtes' , the semantics
in [43] can lead to unintuitive results. For example, thegpamn{a : - #sum{(—1 :

' Note that while negative literals inside aggregates are not allowed in auefvark,
negative integers are allowed and correctly dealt with.

30

a)} < —1.} should intuitively have only) as an answer set, d&} would not
be minimal and the truth od is not founded. However, according to [43], both
() and{a} are answer set$. Our semantics only allows fdi as an answer set,
according to the intuition. However, in [37] it has been shaWwat the semantics
of [43] is equal to the answer set semantics as in Definiti6rod. programs with
#sum (respectively weight constraints) over positive integéns extension to the
approach of [43] has been presented in [32], which allowsfbitrary aggregates
in non-disjunctive programs. A difference with respect48,B2] is also that these
languages allow for aggregate atoms in rule heads, whictovm@ticonsider in this
paper.

A major contribution to the understanding of aggregates3f*Aas been presented

in [37]. The author provides a way to represent (ground) egages by means of
propositional formulas, building on earlier work reported[52]. Together with

the reduct-based semantics for propositional formulasgmied in [37] (which are
called answer sets as well), this yields a semantics forrprog with aggregates

as well. In Theorem 3 of [37], Ferraris proves that this setinarcoincides with

the one presented in this paper in Definition 2.6 on what Ferrefers to as-LP-
programs(ground DLP* programs in which aggregate atoms are not preceded by
not).

It should be noted that the representation in [37] is donecaraful way in order to

guarantee monolithic stability justification capabil#tief aggregates. In particular,
when forming the reduct with respect to an interpretati@s defined in [37], any
formula representing an aggregate not satisfied will be completely replaced by
L (falsity), rendering the corresponding rule irrelevanthe reduct. On the other
hand, a formula representing an aggregate satisfievayl stay in the reduct as

is. This behavior precisely coincides with the main motamtfor the reduct of

Definition 2.5, and distinguishes this approach from othesliscussed below.

However, there is a difference with respect to the semamtif37] when negated
aggregate atoms occur in the program. This is because in otk we treat the
negation operator simply as a complement operator for gg¢ge, while in [37] it
is treated as a negation-as-failure operator. The diftares best shown using an
example.

Example 5.1 Given the program

T a:- not #count{(l:a)} < 1.

there is one answer sdf)(with respect to Definition 2.6, while [37] would allow
for two answer setd and{a}.

12 Interestingly,| par se (version 1.0.17) andnodel s (version 2.32), the software im-
plementing the semantics of [43], computes dhly

31

So in the presence of negated literals, the semantics ofglBX¥s non-minimal
answer sets. Both ways of dealing wiitit in front of aggregates can be motivated:
For our language it is seen as a shorthand for the complerht#re aggregate, and
the above rule is equivalent to:

r’ a:- #count{(l:a)} > 1.

In [37], ruler is viewed as equivalent to

r’ . a:- not not a.

which also has two answer sétsind{a} according to [53]. O

It is however notable that even though the language corexidar{37] is very gen-
eral and its semantics has been defined independently, wittawing the DLP*
language in mind, the two semantics coincide for the modt [gé view this as a
confirmation of the robustness of our semantics.

In [37], the author has also given some complexity resultgpdrticular, he has
shown that deciding whether a (non-disjunctive) prograr wieight constraints
(a #sum-aggregate in our notation) has an answer setfiscomplete. This is
strictly related to our result that cautious reasoning @v@rogram inLng} is
[17-complete.

Recently, in [54] a language called RASPL-1 has been definethvdssentially
allows for (possibly non-ground) counting aggregates. 3émantics of this lan-
guage is defined analogously to [37], but in this case by mefsansepresentation as
a first-order formula which is then interpreted using a seroafor arbitrary first-
order formulas which has been presented in [55]. Also theas¢ins of RASPL-1
has been shown to coincide with Definition 2.6 on a large comlanguage frag-
ment; we refer to [54] for detalils.

We would furthermore like to point out that the reduct and skenantics defined
in this paper has already spread in the scientific commumityres been used in
the work of others. Indeed one main advantage of our semdetfinition in this
respect is its generality. Being based on a definition of reducich does not re-
fer to aggregates or special structures at all, it allowsl&gming the semantics of
arbitrary linguistic extensions. Indeed, in [56,57] théhaws use Definition 2.5 for
defining a semantics for programs with higher order and patlrdefined atoms.
This work is set in the context of reasoning in the Semantibd \(Véhere “aggre-
gates” involve querying ontologies, for example), and carséen as a variant of
our semantics for that framework.

However, there are also other suggestions for the semafficegrams with aggre-

32

gates. Most representative of those, in [29,34], severaaséics for non-disjunctive
programs with aggregates have been defined, the closesi threedemantics in this
paper being thé-stable semanticdn [36,35] the notions ofixpoint answer set
andunfolding answer sdtave been defined for non-disjunctive programs with ag-
gregates, which, in [35], have been shown to be equivaleatebVer, theD-stable
semantics and fixpoint answer sets are also equivalent,camsh [36,35]. Also

for the D-stable semantics, minimality and coincidence with anssess in the
aggregate-free case is guaranteed. Another equivalenttaefifor programs with
c-atoms (which are essentially extensional represenwatibaggregate atoms) has
been given in [58].

In Theorem 4 in [36] and Proposition 8.1 in [34] it has beenghthat anyD-stable
model is also an answer set as defined in Definition 2.6. Howaweanswer set as
defined in Definition 2.6 is not necessarilyjfastable model, as noted in [36,34].
In his doctoral thesis [50], Pelov also defines various seics&for disjunctive pro-
grams with aggregates, among them one which is close toldavgever, the same
differences as for th®-stable model semantics surface.

To see these differences, let us consider Example 9 of [36].

Example 5.2 Given the program

p(1):- #sum{X : p(X)} > 0. p(1):- p(—1). p(—=1):- p(1).

we obtain one answer séb(1), p(—1)} with respect to Definition 2.6, but rib-
stable model.

The authors of [36] argue that the program should be equivédethe aggregate-
free program

p(1):- not p(—1). p(1):- not p(1),not p(—1). p(1):- p(1),not p(—1).
p():-pQ). p(1):-pQ),p(=1). p1):-p(=1). p(=1):- p(1).

Here, when forming the reduct w.r{to(1), p(—1)}, the first three rules are deleted.
This is against our intuition that any literal, and in pauter aggregate literals are
to be considered as a monolithic structure when verifyiadisity. Indeed, in this
example only some part of the representation of the aggragaktained in the
reduct. This is a situation which cannot occur in our seftany aggregate is either
relevant in its entirety or has no effect at all. Interedinglso the semantics of
[37] shares precisely our view and yields the (unique) ansegp(1), p(—1)} on
this program. O

As this example shows, our approach is in line with the seitamf [37], and
differs from [36,34] in the assumption how an aggregatedlteay justify an an-

33

swer set. We believe that both approaches can be motivatetharchoice of the
“right” semantics depends on how one interprets the juatific capabilities of an
aggregate. However, if one accepts our assumption thaegaigs must serve as
justifiers in a monolithic way, these other semantics do mbtave in an intuitive
way. Indeed, as shown in Example 5.2 it is unclear why one avalibw only for
some part of an aggregate to give stability to an answer sdidate. Moreover, our
“monolithic” approach has the advantage to be generallyicgige, since it is not
specific to aggregates, but it depends only on basic saimfaof the expressions
in the language.

In [50], Pelov provides also a complexity analysis for reasg tasks in the setting
of the semantics proposed in that work. In particular, trebf@m of model exis-
tence is studied, which is related to the query answeringlpros studied in this
work. Pelov does not differentiate among the types of litsesia we do, but differen-
tiates among the semantics defined and the evaluation ceitypdé the aggregate
literals. Also [35] contains a similar analysis. The resalte compatible to the ones
derived in this paper, model existence being located on tiggind second level of
the polynomial hierarchy.

6 Conclusions

Concluding, we have proposed a declarative semantics foh8P programs with
arbitrary aggregates (DLPprograms). This semantics generalizes the answer set
semantics for standard ASP in a simple and elegant way,ghramew definition of
reduct which is simpler than the original one and treats tnghterals, positive lit-
erals, and aggregates literals in a fully uniform mannerh@ie demonstrated that
our semantics is endowed with desirable properties: itajuaes subset-minimality
(and therefore the incomparability) of answer sets, andiria@des with the stan-
dard answer set semantics on aggregate-free programs.W¥ahalyzed the com-
putational complexity of the language in depth, drawinglbdicture of the com-
plexity of the ASP fragments where negation and/or disjoncire combined with
different kinds of aggregates (monotone, antimonotonamumotone, stratified).
Importantly, we proved that aggregate literals do not iaseethe computational
complexity of full (disjunctive) ASP programs in our appcbawhile they do in-
crease the complexity of normal (non-disjunctive) progsamp toIlZ. We have
singled out, however, relevant classes of aggregates vdactot cause any com-
plexity overhead even for normal programs, and can be etftigianplemented in
normal ASP systems.

Acknowledgements This work has greatly benefited from interesting discussion
with and comments of Paolo Ferraris, Michael Gelfond, \WadiLifschitz, Niko-
lay Pelov. We are also grateful to the competent commentsaggestions in the

34

reviews. The work was partially supported by M.l.U.R. undegjgcts “Potenzia-
mento e Applicazioni della Programmazione Logica Disguajt “Sistemi basati
sulla logica per la rappresentazione di conoscenza: ésteedecniche di ottimiz-
zazione,” and “tocai.it: Tecnologie Orientate alla Conogeeper Aggregazioni di
Imprese in Internet”.

References

[1] W. Faber, N. Leone, G. Pfeifer, Recursive aggregates in ditiggmlogic programs:
Semantics and complexity, in: J. J. Alferes, J. Leite (Eds.), Proceedinie ®th
European Conference on Atrtificial Intelligence (JELIA 2004), Vol232f Lecture
Notes in Al (LNAI), Springer Verlag, 2004, pp. 200-212.

[2] F. Calimeri, W. Faber, N. Leone, S. Perri, Declarative and CompualiBroperties
of Logic Programs with Aggregates, in: Nineteenth International Joint€Zence on
Artificial Intelligence (IJCAI-05), 2005, pp. 406—411.

[3] J. McCarthy, Programs with Common Sense, in: Proceedings of thdiniggdn
Conference on the Mechanization of Thought Processes, Her Maj&tgtionery
Office, 1959, pp. 75-91.

[4] J. McCarthy, P. J. Hayes, Some Philosophical Problems from thedbant of
Artificial Intelligence, in: B. Meltzer, D. Michie (Eds.), Machine Intelligende
Edinburgh University Press, 1969, pp. 463-502, reprinted in [59].

[5] M. Minsky, A Framework for Representing Knowledge, in: P. H. Wars(Ed.), The
Psychology of Computer Vision, McGraw-Hill, 1975, pp. 211-277.

[6] J. McCarthy, Circumscription — a Form of Non-Monotonic Reasonifgjficial
Intelligence 13 (1-2) (1980) 27-39.

[7] J. McCarthy, Applications of Circumscription to Formalizing Common-Sense
Knowledge, Artificial Intelligence 28 (1) (1986) 89—-116.

[8] R. Reiter, A Logic for Default Reasoning, Artificial Intelligence 13-2) (1980) 81—
132.

[9] D. V. McDermott, J. Doyle, Non-Monotonic Logic I, Atrtificial Intelligeecl3 (1-2)
(1980) 41-72.

[10] D. V. McDermott, Non-Monotonic Logic 1l: Nonmonotonic Modal Théss, Journal
of the ACM 29 (1) (1982) 33-57.

[11]1R. C. Moore, Semantical Considerations on Nonmonotonic Logic, gigtfi
Intelligence 25 (1) (1985) 75-94.

[12] M. Gelfond, V. Lifschitz, Classical Negation in Logic Programs anigjinctive
Databases, New Generation Computing 9 (1991) 365—-385.

35

[13] C. Baral, Knowledge Representation, Reasoning and Declafatmelem Solving,
Cambridge University Press, 2003.

[14] J. Minker, On Indefinite Data Bases and the Closed World Assumpitior). W.
Loveland (Ed.), Proceeding®” Conference on Automated Deduction (CADE '82),
Vol. 138 of Lecture Notes in Computer Science, Springer, New York21pB. 292—
308.

[15] T. Eiter, G. Gottlob, H. Mannila, Disjunctive Datalog, ACM Transacti@m Database
Systems 22 (3) (1997) 364-418.

[16] P. Simons, I. Niemd, T. Soininen, Extending and Implementing the Stable Model
Semantics, Artificial Intelligence 138 (2002) 181-234.

[17] T. Janhunen, |. Niem@| D. Seipel, P. Simons, J.-H. You, Unfolding Partiality and
Disjunctions in Stable Model Semantics, ACM Transactions on Computatiomngd Lo
7 (1) (2006) 1-37.

[18] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. PerriSEarcello, The
DLV System for Knowledge Representation and Reasoning, ACM Tcéinsa on
Computational Logic 7 (3) (2006) 499-562.

[19] F. Lin, Y. Zhao, ASSAT: computing answer sets of a logic progranSBT solvers.,
Artificial Intelligence 157 (1-2) (2004) 115-137.

[20] Y. Lierler, M. Maratea, Cmodels-2: SAT-based Answer Set Sdirhanced to Non-
tight Programs, in: V. Lifschitz, . Niemal(Eds.), Proceedings of the 7th International
Conference on Logic Programming and Non-Monotonic Reasoning (LRNM Vol.
2923 of LNAI, Springer, 2004, pp. 346—-350.

[21] C. Anger, K. Konczak, T. LinkeNoMoRe: A System for Non-Monotonic Reasoning,
in: T. Eiter, W. Faber, M. Truszchgki (Eds.), Logic Programming and Nonmonotonic
Reasoning — 6th International Conference, LPNMR’01, Vienna, Aaisfeptember
2001, Proceedings, Vol. 2173 of Lecture Notes in Al (LNAI), Springerlag, 2001,
pp. 406—410.

[22] C. Anger, M. Gebser, T. Linke, A. Neumann, T. Schaub, Theom@++ Approach to
Answer Set Solving, in: G. Sutcliffe, A. Voronkov (Eds.), Logic foroBramming,
Artificial Intelligence, and Reasoning, 12th International Confereh&8R 2005,
Vol. 3835 of Lecture Notes in Computer Science, Springer Verlag, 20095-109.

[23] M. Gebser, B. Kaufmann, A. Neumann, T. Schaub, Conflictedrianswer set solving,
in: Twentieth International Joint Conference on Artificial Intelligence ADQ7),
Morgan Kaufmann Publishers, 2007, pp. 386—392.

[24] 1. S. Mumick, H. Pirahesh, R. Ramakrishnan, The magic of dupliGaidsaggregates,
in: Proceedings of the 16th International Conference on Very Largta [Bases
(VLDB90), Morgan Kaufmann, 1990, pp. 264-277.

[25] D. B. Kemp, P. J. Stuckey, Semantics of Logic Programs with Aggesgan: V. A.
Saraswat, K. Ueda (Eds.), Proceedings of the International Sympasiutrogic
Programming (ISLP’91), MIT Press, 1991, pp. 387-401.

36

[26] K. A. Ross, Y. Sagiv, Monotonic Aggregation in Deductive Datdsa Journal of
Computer and System Sciences 54 (1) (1997) 79-97.

[27] M. Gelfond, Representing Knowledge in A-Prolog, in: A. C. KakiasSadri (Eds.),
Computational Logic. Logic Programming and Beyond, Vol. 2408 of LNG#irger,
2002, pp. 413-451.

[28] T. Dell’Armi, W. Faber, G. lelpa, N. Leone, G. Pfeifer, Aggrégd&unctions in DLV,
in: M. de Vos, A. Provetti (Eds.), Proceedings ASP03 - Answer Segfamming:
Advances in Theory and Implementation, Messina, Italy, 2003, pp. BBj}-edline at
http:// CEUR- W&. or g/ Vol - 78/ .

[29] N. Pelov, M. Denecker, M. Bruynooghe, Partial stable modelsldgic programs
with aggregates, in: Proceedings of the 7th International Conferencéogic
Programming and Non-Monotonic Reasoning (LPNMR-7), Vol. 2923 oftlue
Notes in Al (LNAI), Springer, 2004, pp. 207-219.

[30] N. Pelov, M. Truszczgski, Semantics of disjunctive programs with monotone
aggregates - an operator-based approach, in: Proceedings ditthénfiernational
Workshop on Non-monotonic Reasoning (NMR 2004), Whistler, BC, Gan2004,
pp. 327-334.

[31] V. W. Marek, J. B. Remmel, On Logic Programs with Cardinality Constsaiim:
S. Benferhat, E. Giunchiglia (Eds.), Proceedings of the 9th Intern&tgokshop on
Non-Monotonic Reasoning (NMR’2002), Toulouse, France, 20022h9-228.

[32] V. W. Marek, J. B. Remmel, Set Constraints in Logic Programming, irkifgchitz,
I. NiemeR (Eds.), Proceedings of the 7th International Conference on Logic
Programming and Non-Monotonic Reasoning (LPNMR-7), Vol. 2923 ofALN
Springer, 2004, pp. 167-179.

[33] V. W. Marek, I. Niemeh, M. Truszczpski, Logic Programming with Monotone
Cardinality Atom, in: V. Lifschitz, I. Niem&l (Eds.), Proceedings of the 7th
International Conference on Logic Programming and Non-Monotonicséteag
(LPNMR-7), Vol. 2923 of LNAI, Springer, 2004, pp. 154-166.

[34] N. Pelov, M. Denecker, M. Bruynooghe, Well-founded and Bt&emantics of Logic
Programs with Aggregates, Theory and Practice of Logic Programminy (2@87)
301-353.

[35] T. C. Son, E. Pontelli, A Constructive Semantic Characterization ajrégates in
ASP, Theory and Practice of Logic Programming 7 (2007) 355-375.

[36] T. C. Son, E. Pontelli, I. Elkabani, On Logic Programming with AggtegaTech.
Rep. NMSU-CS-2005-006, New Mexico State University (2005).

[37] P. Ferraris, Answer Sets for Propositional Theories, in: CaB&. Greco, N. Leone,
G. Terracina (Eds.), Logic Programming and Nonmonotonic Reasoning — 8th
International Conference, LPNMR'05, Diamante, Italy, September ZB@Eeedings,
Vol. 3662 of Lecture Notes in Computer Science, Springer Verlag, 3819,19-131.

37

[38] T. DellArmi, W. Faber, G. lelpa, N. Leone, G. Pfeifer, Aggrégarunctions in
Disjunctive Logic Programming: Semantics, Complexity, and Implementation in DLV,
in: Proceedings of the 18th International Joint Conference on Atrtifiniglligence
(I3CAI) 2003, Morgan Kaufmann Publishers, Acapulco, Mexico,2@p. 847—-852.

[39] F. Lin, Y. Zhao, ASSAT: Computing Answer Sets of a Logic ProgtanSAT Solvers,
in: Proceedings of the Eighteenth National Conference on Artificial Intailg
(AAAI-2002), AAAI Press / MIT Press, Edmonton, Alberta, Cana2id)2.

[40] J. D. Ullman, Principles of Database and Knowledge Base Systemw@er Science
Press, 1989.

[41] K. R. Apt, H. A. Blair, A. Walker, Towards a Theory of DeclaraiKnowledge,
in: J. Minker (Ed.), Foundations of Deductive Databases and Logigr&naming,
Morgan Kaufmann Publishers, Inc., Washington DC, 1988, pp. 89-148.

[42] T. C. Przymusinski, On the Declarative Semantics of Deductive [Bat and
Logic Programs, in: J. Minker (Ed.), Foundations of Deductive Datdasd Logic
Programming, Morgan Kaufmann Publishers, Inc., 1988, pp. 193-216.

[43] 1. NiemeR, P. Simons, T. Soininen, Stable Model Semantics of Weight Constraint
Rules, in: M. Gelfond, N. Leone, G. Pfeifer (Eds.), Proceedingsabth International
Conference on Logic Programming and Nonmonotonic Reasoning (LPR8)RVol.

1730 of Lecture Notes in Al (LNAI), Springer Verlag, El Paso, TeXaSA, 1999, pp.
107-116.

[44] W. Faber, Decomposition of Nonmonotone Aggregates in Logic Rrogring, in:
M. Fink, H. Tompits, S. Woltran (Eds.), Proceedings of the 20th Worksitopogic
Programming (WLP 2006), Vienna, Austria, 2006, pp. 164-171.

[45] E. Dantsin, T. Eiter, G. Gottlob, A. Voronkov, Complexity and Exjsres Power of
Logic Programming, ACM Computing Surveys 33 (3) (2001) 374-425.

[46] G. Gottlob, N. Leone, H. Veith, Succinctness as a Source of Bsfme Complexity,
Annals of Pure and Applied Logic 97 (1-3) (1999) 231-260.

[47]1L. J. Stockmeyer, A. R. Meyer, Word Problems Requiring ExptinerTime:
Preliminary Report, in: Conference Record of 5th Annual ACM Symposam
Theory of Computing (STOC '73), ACM Press, 1973, pp. 1-9.

[48] V. W. Marek, M. Truszcziiski, Autoepistemic Logic, Journal of the ACM 38 (3)
(1991) 588-619.

[49] T. Eiter, G. Gottlob, On the Computational Cost of Disjunctive LogicgPamming:
Propositional Case, Annals of Mathematics and Artificial Intelligence 15 (28B5)
289-323.

[50] N. Pelov, Semantics of Logic Programs with Aggregates, Ph.D. thiéaifolieke
Universiteit Leuven, Leuven, Belgium (Apr. 2004).

[51] T. Eiter, G. Gottlob, H. Veith, Modular Logic Programming and Geneedliz
Quantifiers, in: J. Dix, U. Furbach, A. Nerode (Eds.), Proceedingshe 4th
International Conference on Logic Programming and Nonmonotonic Riggso
(LPNMR-97), Vol. 1265 of LNCS, Springer, 1997, pp. 290-309.

38

[52] P. Ferraris, V. Lifschitz, Weight constraints as nested expraessideory and Practice
of Logic Programming 5 (1-2) (2005) 45-74.

[53] V. Lifschitz, L. R. Tang, H. Turner, Nested Expressions in Ldgiograms, Annals of
Mathematics and Artificial Intelligence 25 (3—4) (1999) 369-389.

[54] J. Lee, V. Lifschitz, R. Palla, A Reductive Semantics for Countind @oice in
Answer Set Programming, in: D. Fox, C. P. Gomes (Eds.), Proceedfrithe @3rd
National Conference on Artificial Intelligence (AAAI'08), AAAI Pres2008, pp.
472-479.

[55] P. Ferraris, J. Lee, V. Lifschitz, A new perspective on stable et®pdn: Twentieth
International Joint Conference on Artificial Intelligence (IJCAI-02007, pp. 372—
379.

[56] T. Eiter, G. lanni, R. Schindlauer, H. Tompits, A Uniform IntegratadriHigher-Order
Reasoning and External Evaluations in Answer Set Programming, innaitenal
Joint Conference on Atrtificial Intelligence (IJCAI) 2005, Edinburgh, 2005, pp.
90-96.

[57] T. Eiter, G. lanni, H. Tompits, R. Schindlauer, Effective Integnataf Declarative
Rules with External Evaluations for Semantic Web Reasoning, in: Proggedirihe
3rd European Semantic Web Conference (ESWC 2006), 2006, pp2873

[58] T. C. Son, E. Pontelli, P. H. Tu, Answer Sets for Logic Programs withitrary
Abstract Constraint Atoms, Journal of Artificial Intelligence Resea®&(2®07) 353—
389.

[59] J. McCarthy, Formalization of Common Sense, papers by John MuCedited by V.
Lifschitz, Ablex, 1990.

39

