
University of Huddersfield Repository

Faber, Wolfgang, Pfeifer, Gerald and Leone, Nicola

Semantics and complexity of recursive aggregates in answer set programming

Original Citation

Faber, Wolfgang, Pfeifer, Gerald and Leone, Nicola (2011) Semantics and complexity of recursive
aggregates in answer set programming. Artificial Intelligence, 175 (1). pp. 278-298. ISSN 0004-
3702

This version is available at http://eprints.hud.ac.uk/id/eprint/18492/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Semantics and Complexity of Recursive Aggregates
in Answer Set Programming

Wolfgang Faber, Gerald Pfeifer, Nicola Leone

Department of Mathematics, University of Calabria, 87030 Rende (CS),Italy

Abstract

The addition of aggregates has been one of the most relevant enhancements to the language
of answer set programming (ASP). They strengthen the modelling power ofASP in terms of
natural and concise problem representations. Previous semantic definitions typically agree
in the case of nonrecursive aggregates, but the picture is less clear for aggregates involved
in recursion. Some proposals explicitly avoid recursive aggregates, most others differ, and
many of them do not satisfy desirable criteria, such as minimality or coincidencewith
answer sets in the aggregate-free case.

In this paper we define a semantics for programs with arbitrary aggregates(including
monotone, antimonotone, and nonmonotone aggregates) in the full ASP language allowing
also for disjunction in the head (disjunctive logic programming – DLP). This semantics is a
genuine generalization of the answer set semantics for DLP, it is defined by a natural vari-
ant of the Gelfond-Lifschitz transformation, and treats aggregate and non-aggregate literals
in a uniform way. This novel transformation is interesting per se also in the aggregate-free
case, since it is simpler than the original transformation and does not need todifferentiate
between positive and negative literals. We prove that our semantics guarantees the minimal-
ity (and therefore the incomparability) of answer sets, and we demonstrate that it coincides
with the standard answer set semantics on aggregate-free programs.

Moreover, we carry out an in-depth study of the computational complexity of the lan-
guage. The analysis pays particular attention to the impact of syntactical restrictions on
programs in the form of limited use of aggregates, disjunction, and negation.While the
addition of aggregates does not affect the complexity of the full DLP language, it turns
out that their presence does increase the complexity of normal (i.e., non-disjunctive) ASP
programs up to the second level of the polynomial hierarchy. However, we show that there
are large classes of aggregates the addition of which does not cause any complexity gap
even for normal programs, including the fragment allowing for arbitrary monotone, arbi-
trary antimonotone, and stratified (i.e., non-recursive) nonmonotone aggregates. The anal-
ysis provides some useful indications on the possibility to implement aggregatesin existing
reasoning engines.

Key words: Nonmonotonic Reasoning, Answer Set Programming, Aggregates,
Computational Complexity.

Preprint submitted to Elsevier Science 12 October 2009

1 Introduction

Around 1960, McCarthy proposed the use oflogical formulasas a basis for a
knowledge representation language [3,4]. It was soon realized, however, that clas-
sical logic is not always adequate to model commonsense reasoning [5]. As an al-
ternative, it has been suggested to represent commonsense reasoning using logical
languages with nonmonotonic consequence relations, whichallow new knowledge
to invalidate some of the previous conclusions. This observation has led to the de-
velopment and investigation of new logical formalisms,nonmonotonic logics. The
most famous of these are circumscription [6,7], default logic [8], and nonmonotonic
modal logics [9–11]. More recently, from cross fertilizations between the field of
nonmonotonic logics and that of logic programming, anothernonmonotonic lan-
guage, called Answer Set Programming (ASP) [12,13], has emerged.

Answer Set Programs [12,13], also called Disjunctive LogicPrograms (DLP) [14],
are logic programs where (nonmonotonic) negation may occurin the bodies, and
disjunction may occur in the heads of rules. This language isvery expressive in a
precise mathematical sense: it allows to express every property of finite structures
that is decidable in the complexity classΣP

2 (NPNP) [15]. The high expressive
power of the language, along with its simplicity, and the availability of a number
of efficient ASP systems [16–23], has encouraged the usage ofASP and the in-
vestigation of new constructs enhancing its capabilities.One of the most relevant
improvements to the language of answer set programming has been the addition of
aggregates [24–37].

Aggregates significantly enhance the language of answer setprogramming (ASP),
allowing for natural and concise modelling of many problems. Non-recursive (also
called stratified) aggregates have clear semantics and capture a large class of mean-
ingful problem specifications. However, there are relevantproblems for which re-
cursive (unstratified) aggregate formulations are natural; theCompany Controlprob-
lem, illustrated next, is a typical example, cf. [24–26,29].

Example 1.1 We are given a set of facts for predicatecompany(X), denoting the
companies involved, and a set of facts for predicateownsStk(C1, C2, P erc), de-
noting the percentage of shares of companyC2, which is owned by companyC1.
Then, companyC1 controls companyC2 if the sum of the shares ofC2 owned ei-
ther directly byC1 or by companies, which are controlled byC1, is more than50%.
This problem has been encoded as the following programPctrl by many authors in

⋆ Parts of this work have been published in preliminary form in the proceedings of the
conferences JELIA’04 [1] and IJCAI’05 [2].

Email addresses:faber@mat.unical.it (Wolfgang Faber),
gerald@pfeifer.com (Gerald Pfeifer),leone@mat.unical.it (Nicola Leone).

2

the literature [24–26,29].1

controlsStk(C1, C1, C2, P):- ownsStk(C1, C2, P).

controlsStk(C1, C2, C3, P):- company(C1), controls(C1, C2), ownsStk(C2, C3, P).

controls(C1, C3):- company(C1), company(C3),

#sum{P, C2 : controlsStk(C1, C2, C3, P)} > 50.

Intuitively, controlsStk(C1, C2, C3, P) denotes that companyC1 controlsP per-
cent ofC3 shares “through” companyC2 (asC1 controlsC2, andC2 ownsP
percent ofC3 shares). Predicatecontrols(C1, C2) encodes that companyC1 con-
trols companyC2. For two companies, say,c1 andc3, controls(c1, c3) is derived if
the sum of the elements in themultiset{{P | ∃C2 : controlsStk(c1, C2, c3, P)}}
is greater than 50. Note that in the adopted DLV syntax this multiset is expressed by
{P,C2 : controlsStk(c1, C2, c3, P)} where the variableC2 avoids that duplicate
occurrences ofP are eliminated. 2

The encoding ofCompany Controlcontains a recursive aggregate (since predicate
controlsStk in the aggregate depends on the head predicatecontrols). Unfortu-
nately, however, recursive aggregates are not easy to handle, and their semantics is
not always straightforward.

Example 1.2 Consider the following two programs:

P1 : {p(a):-#count{X : p(X)} > 0.} P2 : {p(a):-#count{X : p(X)} < 1.}

In both casesp(a) is the only atom forp which might be true, so, intuitively, follow-
ing the closed-world assumption, one may expect that#count{X : p(X)} > 0 is
true iff p(a) is true; while#count{X : p(X)} < 1 should be true iffp(a) is false.
Thus, the above programs should, respectively, behave likethe following standard
programs:

P ′
1 : {p(a):- p(a).} P ′

2 : {p(a):- not p(a).}

This is not always the case in the literature, and there is a debate on the best seman-
tics for recursive aggregates. 2

There have been several attempts for defining a suitable semantics for recursive ag-
gregates [25,27–30,34–37]. However, while previous semantic definitions typically
agree in the non-recursive case, the picture is not so clear for recursion. Some pro-
posals explicitly avoid recursive aggregates, many othersdiffer, and several of them

1 Throughout this paper, we adopt the concrete syntax of the DLV language [38] to express
aggregates in the examples.

3

do not satisfy desirable criteria, such as minimality2 . For a more detailed analysis
we refer to Section 5.

In this paper, we make a step forward and provide a fully declarative semantics
which works for disjunctive programs and arbitrary aggregates. Moreover, we carry
out an in-depth analysis of the computational complexity ofASP with aggregates,
which pays particular attention to the impact of syntactical restrictions on programs
in the form of limited use of aggregates, disjunction, and negation.

The main contributions of the paper are the following:

• We provide a definition of the answer set semantics for disjunctive programs with
arbitrary aggregates (including monotone aggregates, antimonotone aggregates,
and aggregates which are neither monotone nor antimonotone). This semantics is
fully declarative and is given in the standard way for answersets, by a generaliza-
tion of the well-known Gelfond-Lifschitz transformation,which treats aggregate
and non-aggregate literals in a uniform way. This novel transformation is inter-
esting per se also in the aggregate-free case, since it is simpler than the original
transformation and does not differentiate between the types of literals (positive
and negative) in the program. Interestingly, the generality of this transformation
allows for defining the semantics of arbitrary linguistic extensions of ASP, and
has already been applied also in other contexts (see Section5).

• We study the properties of the proposed semantics, and show the following re-
sults:
· Our answer sets are subset-minimal models, and therefore they are incompa-

rable to each other, which is generally seen as an important property of non-
monotonic semantics [32,29].

· For aggregate-free programs, our semantics coincides withthe standard answer
set semantics.

· From a semantic viewpoint, monotone aggregate literals areanalogous to posi-
tive standard literals, while antimonotone aggregates areanalogous to negative
standard literals. We provide a rewriting from standard logic programs with
negation to positive programs with antimonotone aggregateatoms.

• We carry out an in-depth analysis of the computational complexity of disjunctive
programs with polynomial-time computable aggregate functions and fragments
thereof, deriving a full picture of the complexity of the ASPlanguages where
negation and/or disjunction are combined with the different kinds of aggregates
(monotone, antimonotone, nonmonotone, stratified).3 The analysis brings many
interesting results, including the following:

2 The subset-minimality of answer sets, which holds in the aggregate-free case and for
the main nonmonotonic logics [31], also guarantees that answer sets are incomparable, and
allows to define the transitive closure – which becomes impossible if minimality is lost
[29].
3 Note that the results mentioned here refer to the complexity of propositional programs.
In Section 4.2, however, we discuss also the complexity of non-ground programs.

4

· The addition of aggregates does not increase the complexityof the full ASP
language. Cautious reasoning on full ASP programs (with disjunction and
negation) including all considered types of aggregates (monotone, antimono-
tone, and nonmonotone) even unstratified, remainsΠP

2 -complete, as for stan-
dard DLP.

· The “cheapest” aggregates, from the complexity viewpoint,are the monotone
ones, the addition of which does never cause any complexity increase, even for
negation-free programs, and even for unstratified monotoneaggregates.

· The “hardest” aggregates, from the complexity viewpoint, are the nonmono-
tone ones: even on non-disjunctive positive programs (definite horn clauses),
their addition causes a big complexity jump fromP up to ΠP

2 . Instead, an-
timonotone aggregates behave like negation: on non-disjunctive positive pro-
grams their presence increases the complexity fromP to co-NP.

· The largest set of aggregates which can be added to non-disjunctive ASP with-
out inducing a complexity overhead consists of arbitrary monotone, arbitrary
antimonotone, and stratified nonmonotone aggregates. When adding these kinds
of aggregates to non-disjunctive ASP, the complexity of reasoning remains in
co-NP.

Importantly, the above mentioned complexity results give us valuable information
about intertranslatability of different languages, having relevant implications also
on the possibility to implement aggregates in existing reasoning engines, or using
rewriting-based techniques (like those employed in ASSAT [39] or Cmodels [20])
for their implementation (see Section 4.2).

The sequel of the paper is organized as follows. Section 2 defines the syntax and
the formal semantics, based on the notion of answer set, of DLPA– our exten-
sion of DLP with aggregates. Section 3 studies the semantic properties of DLPA;
while Section 4 carries out the computational complexity analysis, and Section 5
discusses related work. Section 6 draws our conclusion.

2 The DLPA Language

In this section, we provide a formal definition of the syntax and semantics of the
DLPA language – an extension of Disjunctive Logic Programming (DLP) by set-
oriented functions (also called aggregate functions). Forfurther background on
DLP, we refer to [13,18].

5

2.1 Syntax

We assume sets ofvariables, constants, andpredicatesto be given. Similar to Pro-
log, we assume variables to be strings starting with uppercase letters and constants
to be integers or strings starting with lowercase letters. Predicates are strings start-
ing with lowercase letters or symbols such as=, <, > (so called built-in predicates
that have a fixed meaning). Anarity (non-negative integer) is associated with each
predicate.

Standard Atoms and Literals. A term is either a variable or a constant. Astan-
dard atom is an expressionp(t1, . . .,tn), wherep is a predicateof arity n and
t1,. . . ,tn are terms. Astandard literalL is either a standard atomA (in this case, it
is positive) or a standard atomA preceded by the default negation symbolnot (in
this case, it isnegative). A conjunction of standard literals is of the formL1, . . . , Lk

where eachLi (1 ≤ i ≤ k) is a standard literal.

An expression (e.g. standard atom, standard literal, conjunction) is ground, if nei-
ther the expression itself nor any of its subexpressions contain variables.

Set Terms. A (DLPA) set termis either a symbolic set or a ground set. Asym-
bolic setis a pair{Vars : Conj}, whereVars is a list of variables andConj is a
conjunction of standard atoms.4 A ground setis a set of pairs of the form〈t :Conj 〉,
wheret is a list of constants andConj is a ground (variable free) conjunction of
standard atoms.

Aggregate Functions. An aggregate functionis of the formf(S), whereS is a
set term, andf is anaggregate function symbol. Intuitively, an aggregate function
can be thought of as a (possibly partial) function mapping multisets5 of constants
to a constant.

Example 2.1 The following aggregate functions are quite common, and currently
supported also by the DLV system:#min (minimal term, undefined for empty set),
#max (maximal term, undefined for empty set),#count (number of terms),#sum

(sum of integers), and#times (product of integers). 2

4 Intuitively, a symbolic set{X :a(X, Y), p(Y)} stands for the set ofX-values making
a(X, Y), p(Y) true, i.e.,{X |∃Y s.t . a(X, Y), p(Y) is true}.
5 Note that aggregate functions are evaluated on the valuation of a (ground) set w.r.t. an
interpretation, which is a multiset, cf. Section 2.2.

6

Aggregate Literals. An aggregate atomis f(S) ◦ T , wheref(S) is an aggre-
gate function,◦ ∈ {=, <, ≤, >,≥, 6=} is a comparison operator, andT is a term
(variable or constant).

We note that our choice for the notation of aggregate atoms isprimarily motivated
by readability. One could define aggregate atoms as an arbitrary relation over a
sequence of aggregate functions and terms. In fact, aggregates in DLV and cardi-
nality and weight constraints for Smodels can be of the formT ◦ f(S) ◦ U , but
semantically this is a shorthand for the conjunction ofT ◦ f(S) andf(S) ◦ U .

Example 2.2 The following are aggregate atoms in DLV notation, where thelatter
contains a ground set and could be a ground instance of the former:

#max{Z : r(Z), a(Z, V)} > Y

#max{〈2 : r(2), a(2, x)〉, 〈2 : r(2), a(2, y)〉} > 1

2

An atom is either a standard (DLP) atom or an aggregate atom. Aliteral L is an
atom A or an atomA preceded by the default negation symbolnot; if A is an
aggregate atom,L is anaggregate literal.

DLPA Programs. A (DLPA) rule r is a construct

a1 ∨ · · · ∨ an :- b1, . . . , bk, not bk+1, . . . , not bm.

wherea1, · · · , an are standard atoms,b1, · · · , bm are atoms, andn ≥ 0, m ≥
k ≥ 0, n + m > 0. The disjunctiona1 ∨ · · · ∨ an is referred to as thehead
of r, while the conjunctionb1, ..., bk, not bk+1, ..., not bm is the body of r. Let
H(r) = {a1, . . . , an}, B+(r) = {b1, . . . , bk}, B−(r) = {not bk+1, . . . , not bm},
andB(r) = B+(r) ∪B−(r). Furthermore letPred(σ) denote the set of predicates
that occur inσ, whereσ may be a program, a rule, a set of atoms or literals, an atom
or a literal. Whenever it is clear that this set has one element(for standard atoms
and literals),Pred(σ) may also denote a single predicate. A(DLPA) programis a
set of DLPA rules.

2.1.1 Syntactic Properties

A local variable ofr is a variable appearing solely in an aggregate function inr;
a variable ofr which is not local is calledglobal. A nestedatom ofr is an atom
appearing in an aggregate atom ofr; an atom ofr which is not nested is called
unnested.

7

Definition 2.1 (Safety) A rule r is safeif the following conditions hold: (i) each
global variable ofr appears in a positive standard unnested literal of the body of
r; (ii) each local variable ofr that appears in a symbolic set{Vars : Conj} also
appears inConj . Finally, a program is safe if all of its rules are safe.

Condition (i) is the standard safety condition adopted in datalog, to guarantee that
the variables are range restricted [40], while Condition (ii) is specific for aggre-
gates.

Example 2.3 Consider the following rules:

p(X):- q(X, Y, V), Y < #max{Z : r(Z), a(Z, V)}.

p(X):- q(X, Y, V), Y < #sum{Z : a(X, S)}.

p(X):- q(X, Y, V), T < #min{Z : r(Z), a(Z, V)}.

The first rule is safe, while the second is not, since local variablesZ violates con-
dition (ii). The third rule is not safe either, since the global variableT violates
condition (i). 2

Definition 2.2 (Aggregate-stratification) A DLPA programP is stratified on an
aggregate atomA if there exists a level mapping|| || from Pred(P) to ordinals,
such that for each ruler ∈ P and for eacha ∈ Pred(H(r)) the following holds:

(1) For eachb ∈ Pred(B(r)): ||b|| ≤ ||a||,
(2) if A ∈ B(r), then for eachb ∈ Pred(A): ||b|| < ||a||, and
(3) for eachb ∈ Pred(H(r)): ||b|| = ||a||.

A DLPA programP is aggregate-stratifiedif it is stratified on all aggregate atoms
in P.

Intuitively, aggregate-stratification forbids recursionthrough aggregates. While the
semantics of aggregate-stratified programs is more or less agreed upon, different
and disagreeing semantics for aggregate-unstratified programs have been defined
in the past, see for instance the discussion in [29]. In this paper we shall provide a
novel characterization which directly extends well-knownformulations of seman-
tics for aggregate-free programs.

Example 2.4 Consider the program consisting of a set of facts for predicatesa and
b, plus the following two rules:

q(X):- p(X), #count{Y : a(Y, X), b(X)} ≤ 2. p(X):- q(X), b(X).

The program is stratified on#count{Y : a(Y,X), b(X)} ≤ 2, as the level map-
ping ||a|| = ||b|| = 1, ||p|| = ||q|| = 2 satisfies the required conditions. The

8

program is therefore aggregate-stratified.

If we add the ruleb(X):- p(X), then no such level-mapping exists and the pro-
gram becomes aggregate-unstratified. 2

Definition 2.3 (Negation-stratification) A programP is callednegation-stratified
[41,42], if there exists a level mapping|| ||n for Pred(P) such that for each rule
r ∈ P and for eacha ∈ Pred(H(r)) the following holds:

(1) For eachb ∈ Pred(B(r)): ||b|| ≤ ||a||,
(2) for each standard literalL ∈ B−(r): ||Pred(L)|| < ||a||, and
(3) for eachb ∈ Pred(H(r)): ||b|| = ||a||.

We note that when dealing with ground programs, one can consider a program
in which each ground standard atom is replaced by a unique predicate with arity
0. This program is clearly equivalent to the original program, modulo the renam-
ing. One can then consider the rewritten program for determining aggregate- and
negation-stratification.

Example 2.5 Consider the following ground program:

p(a):- not p(b). p(a):-#count{〈c : p(c)〉} > 0.

While it is neither aggregate-stratified nor negation-stratified according to the defi-
nition, as it only considers the predicate symbolp, its renamed variant

pa:- not pb. pa:-#count{〈c : pc〉} > 0.

is, however, aggregate-stratified and negation-stratified, and so we may consider
also the original program as being aggregate-stratified andnegation-stratified. 2

2.2 Semantics

Universe and Base. Given a DLPA programP, let UP denote the set of con-
stants appearing inP, andBP the set of standard atoms constructible from the
(standard) predicates ofP with constants inUP . Given a setX, let 2

X denote the
set of all multisets over elements fromX. Without loss of generality, we assume
that aggregate functions map toZ (the set of integers).

Example 2.6 Let us look at common domains for the aggregate functions of Ex-
ample 2.1:#count is defined over2UP, #sum over2Z, #times over2Z, #min and
#max are defined over2Z

\ {∅}. 2

9

Instantiation. A substitutionis a mapping from a set of variables toUP . A sub-
stitution from the set of global variables of a ruler (to UP) is a global substitu-
tion for r; a substitution from the set of local variables of a symbolicset S (to
UP) is a local substitution forS. Given a symbolic set without global variables
S = {Vars : Conj}, the instantiation ofS is the following ground set of pairs
inst(S):
{〈γ(Vars) : γ(Conj)〉 | γ is a local substitution forS}. 6

A ground instanceof a rule r is obtained in two steps: (1) a global substitution
σ for r is first applied overr; (2) every symbolic setS in σ(r) is replaced by its
instantiationinst(S). The instantiationGround(P) of a programP is the set of all
possible instances of the rules ofP.

Example 2.7 Consider the following programP1:

q(1) ∨ p(2, 2). q(2) ∨ p(2, 1). t(X):- q(X), #sum{Y : p(X, Y)} > 1.

HereUP1
= {1, 2} and the instantiationGround(P1) is the following:

q(1) ∨ p(2, 2). t(1):- q(1), #sum{〈1 : p(1, 1)〉, 〈2 : p(1, 2)〉} > 1.

q(2) ∨ p(2, 1). t(2):- q(2), #sum{〈1 : p(2, 1)〉, 〈2 : p(2, 2)〉} > 1.

2

Interpretation. An interpretation for a DLPA programP is a set of standard
ground atomsI ⊆ BP . A standard ground atoma is true w.r.t. an interpretationI,
denotedI |= a, if a ∈ I; otherwise it is false w.r.t.I. A standard ground literal
not a is true w.r.t. an interpretationI, denotedI |= not a, if I 6|= a, otherwise it is
false w.r.t. I.

An interpretation also provides a meaning to (ground) sets,aggregate functions
and aggregate literals, namely a multiset, a value, and a truth value, respectively.
Let f(S) be a an aggregate function. The valuationI(S) of S w.r.t. I is the mul-
tiset I(S) defined as follows: LetSI = {〈t1, ..., tn〉 | 〈t1, ..., tn : Conj 〉 ∈ S ∧
Conj is true w.r.t.I}, thenI(S) is the multiset obtained as the projection of the
tuples ofSI on their first constant, that isI(S) = {{t1 | 〈t1, ..., tn〉 ∈ SI}}.

The valuationI(f(S)) of an aggregate functionf(S) w.r.t. I is the result of the
application off 7 onI(S). If the multisetI(S) is not in the domain off , I(f(S)) =
⊥ (where⊥ is a fixed symbol not occurring inP).

6 Given a substitutionσ and a DLPA objectObj (rule, set, etc.), we denote byσ(Obj) the
object obtained by replacing each variableX in Obj by σ(X).
7 We assume thatf has a fixed interpretation.

10

An instantiated aggregate atomA = f(S) ◦ k is true w.r.t. an interpretationI,
denotedI |= A if: (i) I(f(S)) 6= ⊥, and, (ii) I(f(S)) ◦ k holds8 ; otherwise,A
is false. An instantiated aggregate literalnot A = not f(S) ◦ k is true w.r.t. an
interpretationI, denotedI |= not A, if (i) I(f(S)) 6= ⊥, and, (ii)I(f(S)) ◦ k does
not hold; otherwise,not A is false.

Example 2.8 Let I be the interpretation{f(1), g(1, 2), g(1, 3), g(1, 4), g(2, 4), h(2),
h(3), h(4)}. With respect to the interpretationI, and assuming that all variables are
local, we can check that:

- #count{X : g(X,Y)} > 2 is false, becauseSI for the corresponding ground
set is{〈1〉, 〈2〉}, soI(S) = {{1, 2}} and#count({{1, 2}}) = 2.

- #count{X,Y : g(X,Y)} > 2 is true, because hereSI = {〈1, 2〉, 〈1, 3〉, 〈1, 4〉,
〈2, 4〉}, I(S) = {{1, 1, 1, 2}} and#count({{1, 1, 1, 2}}) = 4.

- 23 < #times{Y : f(X), g(X,Y)} <= 24 is true; in this caseSI = {〈2〉, 〈3〉,
〈4〉}, I(S) = {{2, 3, 4}} and#times({{2, 3, 4}}) = 24.

- #sum{A : g(A,B), h(B)} <= 3 is true, as we have thatSI = {〈1〉, 〈2〉},
I(S) = {{1, 2}} and#sum({{1, 2}}) = 3.

- #sum{A,B : g(A,B), h(B)} <= 3 is false, sinceSI = {〈1, 2〉, 〈1, 3〉, 〈1, 4〉,
〈2, 4〉}, I(S) = {{1, 1, 1, 2}} and#sum({{1, 1, 1, 2}}) = 5.

- #min{X : f(X), g(X)} >= 2 is false because the evaluation of (the instantia-
tion of) {X : f(X), g(X)} w.r.t. I yields the empty set, which does not belong
to the domain of#min (we have thatI(#min{}) = ⊥). 2

A rule r is satisfied w.r.t.I, denotedI |= r if some head atom is true w.r.t.I (∃h ∈
H(r) : I |= h) whenever all body literals are true w.r.t.I (∀b ∈ B(r) : I |= b).

Example 2.9 Consider the atomA = #sum{〈1 : p(2, 1)〉, 〈2 : p(2, 2)〉} > 1 from
Example 2.7. LetS be the ground set inA. For the interpretationI = {q(2), p(2, 2), t(2)},
I(S) = {{2}}, the application of#sum over{{2}} yields2, and thereforeI |= A,
since2 > 1. 2

Definition 2.4 A ground literalℓ is

• monotone, if for all interpretationsI, J , such thatI ⊆ J , I |= ℓ impliesJ |= ℓ;
• antimonotone, if for all interpretationsI, J , such thatI ⊆ J , J |= ℓ implies

I |= ℓ;
• nonmonotone, if it is neither monotone nor antimonotone.

Note that positive standard literals are monotone, whereasnegative standard literals
are antimonotone. Aggregate literals may be monotone, antimonotone or nonmono-
tone, regardless whether they are positive or negative.

Example 2.10 All ground instances of the following aggregate literals are mono-

8 Again, we assume that◦ has a fixed interpretation.

11

tone

#count{Z : r(Z)} > 1 not #count{Z : r(Z)} < 1

while the following are antimonotone:

#count{Z : r(Z)} < 1 not #count{Z : r(Z)} > 1

Nonmonotone literals include the sum over (possibly negative) integers and the av-
erage. Also, most monotone or antimonotone functions combined with the equality
operator yield nonmonotone literals, which however may be decomposed into a
conjunction of a monotone and an antimonotone aggregate. 2

2.3 Answer Sets

We will next define the notion of answer sets for DLPA programs. While usually
this is done by first defining the notion of answer sets for positive programs (co-
inciding with the minimal model semantics) and then for negative programs by
a stability condition on a reduct, once aggregates have to beconsidered, the no-
tions of positive and negative literals are in general not clear. If only monotone and
antimonotone aggregate atoms were considered, one could simply treat monotone
literals like positive literals and antimonotone literalslike negative ones, and follow
the standard approach, as hinted at in [29]. Since we also consider nonmonotone
aggregates, such a categorization is not feasible, and we rely on a definition which
always employs a stability condition on a reduct.

The subsequent definitions are directly based on models: An interpretationM is
a model of a DLPA programP, denotedM |= P, if M |= r for all rulesr ∈
Ground(P). An interpretationM is a subset-minimal model ofP if no I ⊂ M is
a model ofGround(P).

Example 2.11 It can be verified that{q(2), p(2, 2), t(2)} is a model of the program
of Example 2.7. 2

Next we provide the transformation by which the reduct of a ground program
w.r.t. an interpretation is formed. Note that this definition is a generalization of
the Gelfond-Lifschitz transformation for DLP programs (see Theorem 3.6). The
intuition is, however, very similar: Treating an interpretation as an assumption, cre-
ate the part of the program which is relevant according to thegiven interpretation.
In particular, we consider any rule whose body is not satisfied as irrelevant.

Definition 2.5 Given a groundDLPA programP and an interpretationI, let PI

denote the transformed program obtained fromP by deleting rules in which a body

12

literal is false w.r.t.I:

PI = {r | r ∈ P,∀b ∈ B(r) : I |= b}

Example 2.12 Consider Example 1.2:

Ground(P1) = {p(a):-#count{〈a : p(a)〉} > 0.}

Ground(P2) = {p(a):-#count{〈a : p(a)〉} < 1.}

With interpretationsI1 = {p(a)} andI2 = ∅ we obtain:

Ground(P1)
I1 = Ground(P1)

Ground(P1)
I2 = ∅

Ground(P2)
I1 = ∅

Ground(P2)
I2 = Ground(P2)

2

We are now ready to formulate the stability criterion for answer sets.

Definition 2.6 (Answer Sets forDLPA Programs) Given aDLPA programP, an
interpretationA ofP is an answer set if it is a subset-minimal model ofGround(P)A.

It should be noted that this definition grasps the original motivation for answer
sets or stable models, in that an interpretation is a stable model or an answer set
if and only if it is a non-redundant explanation of the part ofthe program which
is relevant to it. Looking in particular at aggregates, we observe that aggregates
are treated as “black boxes” or “monoliths,” that is when checking stability they
are either present in their entirety or missing altogether.This is one of the main
and distinguishing features of our semantics. Indeed, in Section 5 we will discuss
that some other approaches to semantics for programs containing aggregates do not
treat aggregates as monoliths.

It is also worth noting that this definition is very general, since it treats all atoms
as black boxes. In fact, it is applicable to programs containing arbitrary forms of
atoms, as long as their satisfaction by an interpretation can be determined. That
means that the syntax adopted for aggregate literals is irrelevant for the definition,
and that this definition can and indeed has been used (cf. Section 5) for programs
containing arbitrary kinds of atoms.

Example 2.13 For the programs of Example 1.2,I2 of Example 2.12 is the only
answer set ofP1 (becauseI1 is not a minimal model ofGround(P1)

I1), while P2

13

admits no answer set (I1 is not a minimal model ofGround(P2)
I1, andI2 is not a

model ofGround(P2) = Ground(P2)
I2).

For Example 1.1 and the following input facts

company(a). company(b). company(c).

ownsStk(a, b, 40). ownsStk(c, b, 20). ownsStk(a, c, 40). ownsStk(b, c, 20).

only the setA = {controlsStk(a, a, b, 40), controlsStk(a, a, c, 40), controlsStk(b, b, c, 20),
controlsStk(c, c, b, 20)} (omitting facts) is an answer set, which means that no com-
pany controls another company. Note thatA1 = A ∪ {controls(a, b), controls(a, c),
controlsStk(a, b, c, 20), controlsStk(a, c, b, 20)} is not an answer set, which is reason-
able, since there is no basis for the truth of literals inA1 − A. 2

This definition is somewhat simpler than the definitions given in [43,32]. In partic-
ular, different to [32], we define answer sets directly on topof the notion of models
of DLPA programs, rather than transforming them to a positive program.

3 Semantic Properties

We first note two simple consequences of Definition 2.6.

Proposition 3.1 Any answer setA of a DLPA programP is a model ofP.

Proof. SinceGround(P)A ⊆ Ground(P), A satisfies all rules inGround(P)A,
and rules inGround(P) − Ground(P)A are satisfied w.r.t.A by the definition of
Ground(P)A. 2

Moreover, each answer set is an answer set of its program reduct.

Proposition 3.2 Any answer setA of a DLPA programP is an answer set of
Ground(P)A.

Proof. We note thatGround(Ground(P)A) = Ground(P)A and thatGround(P)AA
=

Ground(P)A. SinceA is an answer set ofP, it is a subset-minimal model of
Ground(P)A = Ground(Ground(P)A)A. 2

A generally desirable and important property of nonmonotonic semantics is mini-
mality [32,29], in particular a semantics should refine the notion of minimal mod-
els. We now show that our semantics has this property.

Theorem 3.3 Answer Sets of aDLPA programP are subset-minimal models of
P.

14

Proof. Our proof is by contradiction: Assume thatI1 is a model ofP, I2 is
an answer set ofP and thatI1 ⊂ I2. 9 SinceI2 is an answer set ofP, it is a
subset-minimal model ofGround(P)I2 by Definition 2.6. Therefore,I1 is not a
model ofGround(P)I2 (otherwise,I2 would not be a subset-minimal model of
Ground(P)I2). Thus, some ruler ∈ Ground(P)I2 is not satisfied w.r.t.I1. Since
Ground(P)I2 ⊆ Ground(P), r is also inGround(P) and thereforeI1 cannot be
a model ofP, contradicting the assumption. 2

As a consequence of this theorem, we get incomparability of answer sets.

Corollary 3.4 Answer sets of aDLPA programP are incomparable (w.r.t. set in-
clusion) among each other.

Theorem 3.3 can be refined for DLPA programs containing only monotone literals.

Theorem 3.5 The answer sets of aDLPA programP, whereP contains only
monotone literals, are precisely the minimal models ofP.

Proof. Let P be a DLPA program containing only monotone literals, andI be
a minimal model ofP. Clearly, I is also a model ofPI . We again proceed by
contradiction and show that noJ ⊂ I is a model ofPI : Assume that such a model
J of P exists and satisfies all rules inGround(P)I . All rules in Ground(P) −
Ground(P)I are satisfied byI because their body is false w.r.t.I. But sinceP
contains only monotone literals, each false literal inI is also false inJ ⊂ I, and
henceJ also satisfies all rules inGround(P) − Ground(P)I and would therefore
be a model ofP, contradicting the assumption thatI is a minimal model. Together
with Theorem 3.3, the result follows. 2

Clearly, a very desirable feature of a semantics for an extended language is that it
properly extends agreed-upon semantics of the base language, so that the semantics
are equal on the base language. Therefore we next show that for DLP programs,
our semantics coincides with the standard answer set semantics. Note that not all
semantics which have been proposed for programs with aggregates meet this re-
quirement, cf. [29].

Theorem 3.6 Given aDLP programP, an interpretationI is an answer set ofP
according to Definition 2.6 iff it is an answer set ofP according to the standard
definition via the classic Gelfond-Lifschitz transformation [12].

Proof. (⇒): Assume thatI is an answer set w.r.t. Definition 2.6, i.e.I is a min-
imal model ofGround(P)I . Let us denote the standard Gelfond-Lifschitz trans-
formed program byGL(Ground(P), I). For eachr ∈ Ground(P)I somer′ ∈
GL(Ground(P), I) exists, which is obtained fromr by removing all negative lit-
erals. Sincer ∈ Ground(P)I , all negative literals ofr are true inI, and also in all

9 Throughout the paper,⊂ denotesstrict set inclusion.

15

J ⊆ I. For rules of which anr′′ ∈ GL(Ground(P), I) exists but no corresponding
rule inGround(P)I , some positive body literal ofr′′ is false w.r.t.I (hencer′′ is not
included inGround(P)I), and also false w.r.t. allJ ⊆ I. Therefore (i)I is a model
of GL(Ground(P), I) and (ii) noJ ⊂ I is a model ofGL(Ground(P), I), as it
would also be a model ofGround(P)I andI thus would not be a minimal model
of Ground(P)I . HenceI is a minimal model ofGL(Ground(P), I) whenever it
is a minimal model ofGround(P)I .
(⇐): Now assume thatI is a standard answer set ofP, that is,I is a minimal model
of GL(Ground(P), I). By similar reasoning as in(⇒) a ruler ∈ GL(Ground(P), I)
with true body w.r.t.I has a corresponding ruler′ ∈ Ground(P)I which contains
the negative body of the original rulero ∈ Ground(P), which is true w.r.t. all
J ⊆ I. Any ruler′′ ∈ GL(Ground(P), I) with false body w.r.t.I is not contained
in Ground(P)I , but it is satisfied in eachJ ⊆ I. Therefore (i)I is a model of
Ground(P)I and (ii) noJ ⊂ I is a model ofGround(P)I (otherwiseJ would
also be a model ofGL(Ground(P), I)). As a consequence,I is a minimal model
of Ground(P)I whenever it is a minimal model ofGL(Ground(P), I). 2

4 Computational Complexity

4.1 Complexity Framework

We analyze the complexity of DLPA on Cautious Reasoning, a main reasoning
task in nonmonotonic formalisms, amounting to the following decision problem:
Given a DLPA programP and a standard ground atomA, is A true in all answer
sets ofP?

For identifying fragments of DLPA, we use the notation LPLA, whereL ⊆ {not,∨}
andA ⊆ {Ms,M,As, A,Ns, N}.

LetP ∈ LPL
A. If not ∈ L, then rules inP may contain negative literals. Likewise,

if ∨ ∈ L, then rules inP may have disjunctive heads. IfMs ∈ A (resp.,As ∈
A, Ns ∈ A), thenP may contain monotone (resp. antimonotone, nonmonotone)
aggregates, on whichP is stratified. IfM ∈ A (resp.,A ∈ A, N ∈ A), thenP
may contain monotone (resp. antimonotone, nonmonotone) aggregates (on which
P is not necessarily stratified). If a symbol is absent in a set,then the respective
feature cannot occur inP, unless another symbol is included which specifies a
more general feature. For example, ifP ∈ LP

{}
{A}, then antimonotone aggregates

on whichP is stratified may occur inP even ifAs is not specified.

For the technical results, we consider ground (i.e., variable-free) DLPA programs,
and polynomial-time computable aggregate functions (notethat all sample aggre-
gate functions appearing in this paper fall into this class). However, in the overview

16

we also provide a discussion on how results change when considering non-ground
programs or aggregates which are harder to compute.

4.2 Overview of Complexity Results

Table 1 summarizes the complexity results derived in the next sections for various
fragments LPLA, whereL is specified in columns andA in rows. Results for LPLA,
whereMs ∈ L have been omitted from Table 1 for readability, as they are equal to
those of the respective fragment containingM instead ofMs.

{} {not} {∨} {not,∨}

{} P co-NP co-NP ΠP
2 1

{M} P co-NP co-NP ΠP
2 2

{As} P co-NP ΠP
2 ΠP

2 3

{Ns} P co-NP ΠP
2 ΠP

2 4

{M,As} P co-NP ΠP
2 ΠP

2 5

{M,Ns} P co-NP ΠP
2 ΠP

2 6

{As,Ns} P co-NP ΠP
2 ΠP

2 7

{M,As,Ns} P co-NP ΠP
2 ΠP

2 8

{A} co-NP co-NP ΠP
2 ΠP

2 9

{M,A} co-NP co-NP ΠP
2 ΠP

2 10

{A,Ns} co-NP co-NP ΠP
2 ΠP

2 11

{M,A,Ns} co-NP co-NP ΠP
2 ΠP

2 12

{N} ΠP
2 ΠP

2 ΠP
2 ΠP

2 13

{M,N} ΠP
2 ΠP

2 ΠP
2 ΠP

2 14

{As,N} ΠP
2 ΠP

2 ΠP
2 ΠP

2 15

{M,As,N} ΠP
2 ΠP

2 ΠP
2 ΠP

2 16

{A,N} ΠP
2 ΠP

2 ΠP
2 ΠP

2 17

{M,A,N} ΠP
2 ΠP

2 ΠP
2 ΠP

2 18

1 2 3 4
Table 1
The Complexity of Cautious Reasoning in ASP with Aggregates (Completeness Results
under Logspace Reductions)

An important result is that the addition of aggregates does not increase the com-
plexity of disjunctive logic programming. Cautious reasoning on the full DLPA

language, including all considered types of aggregates (monotone, antimonotone,
and nonmonotone) even unstratified, remainsΠP

2 -complete, as for standard DLP.

The “cheapest” aggregates, from the viewpoint of complexity, are the monotone

17

ones, the addition of which never causes any complexity increase, even for negation-
free programs, and even for unstratified monotone aggregates.

The largest polynomial-time computable fragment isLP
{}
{M,As,Ns}

(positive∨-free
programs), suggesting that also the stratified aggregatesAs andNs are rather “cheap”.
Indeed, they behave similarly to stratified negation from the complexity viewpoint,
and increase the complexity only in the case of positive disjunctive programs (from
co-NP toΠP

2).

Antimonotone aggregates (unstratified) behave like unstratified negation: In the
positive∨-free case their presence alone increase the complexity from P to co-NP.
The complexity remains the same if monotone and stratified nonmonotone aggre-
gates are added. The maximal co-NP-computable fragments are LP

{not}
{M,A,Ns}

and

LP
{∨}
{M}.

The most “expensive” aggregates, from the viewpoint of complexity, are the non-
monotone ones: In the positive∨-free case (definite Horn programs) they cause a
big complexity jump fromP to ΠP

2 . For each language fragment containing non-
monotone aggregates we obtainΠP

2 -completeness. Intuitively, the reason is that
nonmonotone aggregates can express properties which can bewritten using nega-
tion and disjunction in standard DLP.

Note that implemented ASP systems allow for expressing nonmonotone aggregates
such as1 < #count{X : p(X)} < 3, which however, can be treated like a conjunc-
tion of a monotone and an antimonotone aggregate atom (#count{X : p(X)} > 1,
#count{X : p(X)} < 3). The complexity of nondisjunctive programs with these
constructs is therefore the same as forLP

{not}
{M,A} (lower thanLP

{not}
{N}). In [44], a

broad class of nonmonotone aggregates, that can be rewritten as monotone and
antimonotone aggregates in this style, is identified. Note,however, that sum aggre-
gates (weight constraints) over positive and negative integers are nonmonotone and
can in general not be decomposed into monotone and antimonotone aggregates.

The above complexity results give us valuable information about intertranslata-
bility of different languages, having important implication also on the possibil-
ity to implement aggregates in existing reasoning engines.For instance, we know
now that cautious reasoning onLP

{not}
{M,A,Ns}

can be efficiently translated to UNSAT
(the complement of propositional satisfiability) or to cautious reasoning on non-
disjunctive ASP; thus, arbitrary monotone, arbitrary antimonotone, and stratified
nonmonotone aggregates can be implemented efficiently on top of SAT solvers and
non-disjunctive ASP systems. On the other hand, since nonmonotonic aggregates
(even without negation and disjunction) bring the complexity to ΠP

2 , the existence
of a polynomial translation from cautious reasoning with nonmonotonic aggregates
to UNSAT cannot exist (unless the polynomial hierarchy collapses). Therefore, a
rewriting to UNSAT is not viable to implement nonmonotone aggregates which
require more powerful solvers.

18

As mentioned above, our results rely on the assumption that aggregate functions are
computable in polynomial time. If one were to allow computationally more expen-
sive aggregates, complexity would rise according to the complexity of additional
oracles, which are needed to compute the truth value of an aggregate.

We end this overview by briefly addressing the complexity of non-ground pro-
grams. When considering data-complexity (i.e. a programP is fixed, while the in-
put consists only of facts), the results are as for propositional programs. If, however,
one considers program complexity (i.e. a programP is given as input), complexity
rises in a similar manner as for aggregate-free programs. A non-ground programP
can be reduced, by naive instantiation, to a ground instanceof the problem. In the
general case, whereP is given in the input, the size of the groundingGround(P)
is single exponential in the size ofP. Informally, the complexity of Cautious Rea-
soning increases accordingly by one exponential, fromP to EXPTIME, co-NP to
co-NEXPTIME,ΠP

2 to co-NEXPTIMENP. For aggregate-free programs complex-
ity results in the non-ground case are reported in [45]. For the other fragments,
the results can be derived using complexity upgrading techniques as presented in
[15,46].

4.3 Proofs of Hardness Results

In this section, we will provide the proofs for all hardness results of Table 1.

4.3.1 Non-disjunctive Programs

All P-hardness results in the table (rows 1–8 in column 1) follow directly from the
well-known result that (positive) propositional logic programming isP-hard [45].

An important observation is that negation can be simulated by antimonotone ag-
gregates. It is therefore possible to turn aggregate-free programs with negation into
corresponding positive programs with aggregates. Let us first define how this sim-
ulation can be achieved.

Definition 4.1 Given a programP ∈ LP
{not,∨}
{} , let Γ(P) be theDLPA program,

which is obtained by replacing each negative literalnot a in P by #count{〈ǫ :
a〉} < 1, whereǫ is an arbitrary constant.

We can show that an aggregate-free program and its transformed version are equiv-
alent.

Lemma 4.1 Each programP ∈ LP
{not,∨}
{} can be transformed into an equivalent

programΓ(P) ∈ LP
{∨}
{A} with aggregate literals (all of which are antimonotone). If

19

P is negation-stratified, thenΓ(P) ∈ LP
{∨}
{As}

.

Proof. Note that for any interpretationI, not a is true w.r.t.I iff #count{〈ǫ :
a〉} < 1 is true w.r.t.I, and that#count{〈ǫ : a〉} < 1 is an antimonotone aggregate
literal. By virtue of Theorem 3.6, our answer sets semantics (as in Definition 2.6) is
equivalent to the standard answer set semantics. Thus, since the valuation of literals
is equal inP andΓ(P), both programs have the same answer sets.

Since aggregates take the place of negative literals, ifP is negation-stratified, then
there exists a level mapping, such that predicates in negative literals map to an
ordinal which is less than the ordinal any head atom maps to. The same level-
mapping can be used for showing thatΓ(P) is aggregate-stratified on all of its
aggregate literals. 2

Moreover, we can show that this transformation has a very lowcomputational cost.

Lemma 4.2 LetP ∈ LP
{not,∨}
{} . Then (i)Γ(P) has the same size (i.e., number of

rules and literals) asP, and (ii) Γ(P) is LOGSPACE computable fromP.

Proof. The Γ(P) transformation replaces each negative literal by an aggregate
atom; and it does not add any further literal to the program. Therefore it does
not increase the program size. It is easy to see thatΓ(P) can be computed by a
LOGSPACE Turing Machine. Indeed,Γ(P) can be generated by dealing with one
rule ofP at a time, without storing any intermediate data apart from afixed number
of indices. 2

As a consequence of these lemmata, we obtain hardness for positive non-disjunctive
programs containing antimonotone aggregates.

Theorem 4.3 Cautious reasoning overLP{}
{A} programs is co-NP-hard.

Proof. Follows from co-NP-hardness of cautious reasoning for positive disjunctive
aggregate-free programs (programs inLP

{∨}
{}), see Theorem 6.1 in [45], together

with Lemmata 4.1 and 4.2. 2

Whenever one allows for nonmonotone aggregates in positive,non-disjunctive pro-
grams, cautious reasoning becomes harder by one level in thepolynomial hierarchy.

Theorem 4.4 Cautious reasoning overLP{}
{N} programs isΠP

2 -hard.

Proof. We provide a reduction from deciding the validity of a quantified boolean
formula (2QBF)Ψ = ∀x1, . . . , xm∃y1, . . . , ynE. Without loss of generality, we as-
sume thatE is a propositional formula in 3CNF format, over precisely thevariables
x1, . . . , xm, y1, . . . , yn. Deciding if such aΨ is valid is still ΠP

2 -hard [47]. Observe
that Ψ is equivalent to¬Ψ′, whereΨ′ = ∃x1, . . . , xm∀y1, . . . , ynE ′, andE ′ is a
3DNF equivalent to¬E, where every literal has reversed polarity w.r.t.E and con-

20

junctions and disjunctions are inverted. Clearly,Ψ′ is efficiently constructable from
Ψ, and we have thatΨ is valid if and only ifΨ′ is invalid. To prove the theorem,
we construct a LP{}{N} programΠΨ which cautiously entails an atomw if and only
if Ψ′ is invalid (i.e.,w is a cautious consequence ofΠΨ if and only if Ψ is valid).

Let E′ = (l1,1 ∧ l1,2 ∧ l1,3) ∨ . . . ∨ (lk,1 ∧ lk,2 ∧ lk,3), we define the LP{}{N} program
ΠΨ as follows:

r1 : t(xi, 1):-#sum{〈1: t(xi, 1)〉, 〈−1: t(xi,−1)〉} ≥ 0. i ∈ {1, . . . ,m}

r2 : t(xi,−1):-#sum{〈1: t(xi, 1)〉, 〈−1: t(xi,−1)〉} ≤ 0. i ∈ {1, . . . ,m}

r3 : t(yi, 1):-#sum{〈1: t(yi, 1)〉, 〈−1: t(yi,−1)〉} ≥ 0. i ∈ {1, . . . , n}

r4 : t(yi,−1):-#sum{〈1: t(yi, 1)〉, 〈−1: t(yi,−1)〉} ≤ 0. i ∈ {1, . . . , n}

r5 : t(yi, 1):- satE′(1). i ∈ {1, . . . , n}

r6 : t(yi,−1):- satE′(1). i ∈ {1, . . . , n}

r7 : satE′(1):-µ(li,1), µ(li,2), µ(li,3). i ∈ {1, . . . , k}

r8 : w :-#sum{〈1:satE′(1)〉, 〈−1:satE′(−1)〉} ≤ 0. i ∈ {1, . . . , k}

whereµ(l) is t(a, 1) if l = a is positive, andµ(l) is t(a,−1) if l = ¬a is negative.
Intuitively, for each propositional variablea appearing inE ′, there are two atoms in
ΠΨ, namelyt(a, 1) andt(a,−1), representing, respectively, the truth and the falsity
of a. Atom satE′(1) is derivable from a rulesatE′(1):-µ(li,1), µ(li,2), µ(li,3) in ΠΨ

if the corresponding clause(li,1 ∧ li,2 ∧ li,3) is true inE ′.

We claim thatw is a cautious consequence ofΠΨ if and only if Ψ is valid. We can
equivalently prove thatsatE′(1) is a brave consequence ofΠΨ if and only if Ψ′ is
valid, since we have that: (1)w a cautious consequence ofΠΨ if and only if satE′(1)

is not a brave consequence ofΠΨ (note thatsatE′(−1) is false in every answer set
and, under answer set semantics, ruler8 is then equivalent tow :- not satE′(1)),
and (2)Ψ is valid if and only ifΨ′ is invalid.

Thus, we next show thatΠΨ has an answer set containingsatE′(1) if and only if Ψ′

is valid.

Assume first thatΠΨ has an answer setA containingsatE′(1). Observe thatA
contains exactly one oft(xi, 1) or t(xi,−1) for each1 ≤ i ≤ m (if none held
for somei, a rule would not be satisfied, if both held,A would not be a minimal
model of the reduct). ThereforeA encodes a truth assignmentϕ for x1, . . . , xm

(ϕ(xi) = true if t(xi, 1) ∈ A; ϕ(xi) = false if t(xi,−1) ∈ A). Furthermore,A must
contain botht(yi, 1) and t(yi,−1) for each1 ≤ i ≤ n, otherwise some rules of
r5 andr6 would be unsatisfied w.r.t.A (as the body is true w.r.t.A which contains
satE′(1)). SinceA is a minimal model ofΠΨA

, it follows that noA′, which contains

21

an encoding ofϕ and an arbitrary truth assignment fory1, . . . , yn but notsatE′(1),
is a model ofΠΨA

. So there must be at least one of the class of rulesr7 in ΠΨ such
that each body literal is inA′ (thus forcingsatE′(1)). This in turn means that each
extension ofϕ to y1, . . . , yn satisfiesE ′ and thus thatΨ′ is valid.

Assume now thatΨ′ is valid, so there exists a truth assignmentϕ for x1, . . . , xm

such that for each extension ofϕ to y1, . . . , yn, E ′ is satisfied. LetI be the inter-
pretation containing the encoding ofϕ, i.e. t(xi, 1) iff xi is assigned true inϕ and
t(xi,−1) iff xi is assigned false inϕ, in additiont(yi, 1), t(yi,−1) for each1 ≤ i ≤ n
andsatE′(1) (and nothing else).ΠΨI

contains all rules ofΠΨ except

satE′(1):-#sum{〈1:satE′(1)〉, 〈−1:satE′(−1)〉} ≤ 0.

InterpretationI is clearly a model ofΠΨI

. To prove its minimality, assume that a
modelI ′ ⊂ I exists. It must contain the encoding ofϕ in order to satisfy the first
two groups of rules (r1 andr2). Furthermore,I ′ must contain at least an encoding
of a truth assignment fory1, . . . , yn in order to satisfy the third and fourth groups of
rules. Then, sinceE ′ is satisfied by any such truth assignment, alsosatE′(1) must
be inI ′ in order to satisfy all of the group of rulesr7. However, that means that all
of t(yi, 1), t(yi,−1) for 1 ≤ i ≤ n must be inI ′ in order to satisfy the groups of
rulesr5 andr6. SoI ′ = I, contradictingI ′ ⊂ I, andI is therefore an answer set of
ΠΨ (and clearly containssatE′(1)). 2

We note that a related result — deciding whether an answer setexists for a positive,
non-disjunctive program with weight constraints over possibly negative integers
is ΣP

2 -complete — has been shown in [37]. Weight constraints can bemonotone,
antimonotone, or nonmonotone aggregate atoms.

Leveraging results in the literature, we get hardness proofs for all fields for non-
disjunctive programs in Table 1.

Theorem 4.5 All fields in column 1 and all fields in column 2 of Table 1 states
the respective hardness of cautious reasoning for the corresponding fragment of
DLPA.

Proof. P-hardness results for the fields in rows 1 to 8 in column 1 follow from the
fact that cautious reasoning over LP{}

{} programs isP-hard [45] and that all corre-

sponding languages are supersets of LP{}
{}. co-NP-hardness for the fields in rows 9

to 12 in column 1 stem from Theorem 4.3, as all corresponding languages are su-
persets of LP{}{A}. The co-NP-hardness for the fields in rows 1 to 12 in column 2 are

based on Theorem 6.7 in [48], which states that cautious reasoning over LP{not}{} is

co-NP-hard. All languages corresponding to the fields are supersets of LP{not}{} . All
ΠP

2 -hardness results for the fields in rows 13 to 18 in columns 1 and 2 are backed by
Theorem 4.4, and the fact that all corresponding languages are supersets of LP{}{N}.
2

22

4.3.2 Disjunctive Programs

Exploiting Lemma 4.1, which says that any aggregate-free program with negation
can be transformed to an equivalent program with antimonotone aggregates, con-
verting negation-stratification to aggregate-stratification, we can showΠP

2 -hardness
for cautious reasoning over LP{∨}{As}

programs.

Theorem 4.6 Cautious reasoning overLP{∨}
{As}

programs isΠP
2 -hard.

Proof. Follows fromΠP
2 -hardness of cautious reasoning on standard literal queries

for positive disjunctive aggregate-free (LP{∨}
{}) programs, see Theorem 36 of [49].

Given such a programP and a literall (of the forma ornot a, wherea is a standard
ground atom), letP ′ = P ∪ {q :- l.}, whereq is a ground atom that does not occur
in P. Obviously,P ′ ∈ LP

{not,∨}
{} is negation-stratified, and cautious reasoning onq

overP ′ is equivalent to cautious reasoning onl overP. Together with Lemmata 4.1
and 4.2, the result follows. 2

Next, we note that any program containing only stratified antimonotone aggregates
can be transformed into an equivalent program containing only stratified nonmono-
tone aggregates.

Lemma 4.7 EachLP{not,∨}
{As}

program can be transformed into an equivalentLP{not,∨}
{Ns}

program.

Proof. W.l.o.g. we will consider a ground programP. We transform each anti-
monotone aggregate literall containing the aggregate atomf(S) ◦ k to l′ contain-
ing f l(S ′) ◦ k. We introduce three fresh constantsτ , ǫ, andν and a new predicate
symbolΠ. Let f l be undefined for the multisets{{τ}} and{{τ, ǫ, ν}} and return
a value makingl′ true for{{τ, ǫ}} (such a value does always exist); otherwisef l

is equal tof . Furthermore,S ′ is obtained by adding〈τ : Π(τ)〉, 〈ǫ : Π(ǫ)〉, and
〈ν : Π(ν)〉 to the ground setS. The transformed programP ′ contains only non-
monotone aggregates, all of which are stratified onP, and is clearly equivalent to
P. 2

As a consequence,ΠP
2 -hardness holds also for LP{∨}{Ns}

programs.

Corollary 4.8 Cautious reasoning overLP{∨}
{Ns}

programs isΠP
2 -hard.

Proof. Follows directly from Theorem 4.6 and Lemma 4.7. 2

These results, together with results from the literature, are sufficient to show all
hardness results in columns 3 and 4 in Table1.

Theorem 4.9 Each field in columns 3 and 4 of Table 1 states the respective hard-
ness of cautious reasoning for the corresponding fragment of DLPA.

23

Proof. co-NP-hardness for the fields in rows 1 and 2 in column 3 rely onTheo-
rem 6.1 of [45], which states that cautious reasoning over LP{∨}

{} programs is co-NP-

hard, and the fact thatLP
{∨}
{} ⊆ LP

{∨}
{M}. ΠP

2 -hardness for the fields in rows 3 to
18 in column 3 follow from Theorem 4.6 and Corollary 4.8 and thefact that all
corresponding languages are supersets of LP{∨}

{As}
or LP{∨}

{Ns}
. ΠP

2 -hardness for all
fields in column 4 follows from Theorem 6.2 in [45], which states that cautious
reasoning over LP{not,∨}{} is ΠP

2 -hard, and the fact that all corresponding languages

are supersets of LP{not,∨}{} . 2

In total, we have proved all hardness results for Table 1.

4.4 Proofs of Membership Results

For the membership proofs, we will go in the reverse order, and first prove results
for richer languages, which cover also several results for sublanguages.

In the membership proofs, we will implicitly use the following lemma:

Lemma 4.10 Given an interpretationI for a DLPA programP, the truth valuation
of an aggregate atomL is computable in polynomial time.

Proof. Let L = f(T) ◦ k. To determine the truth valuation ofL, we have to: (i)
compute the valuationI(T) of the ground setT w.r.t. I, (ii) apply the aggregate
functionf on I(T), and (iii) compare the result off(I(T)) with k w.r.t. ◦.

Computing the valuation of a ground setT only requires scanning each element
〈t1, ..., tn : Conj 〉 of T , addingt1 to the result multiset ifConj is true w.r.t.I. This
is evidently polynomial, as is the application of the aggregate function onI(T) in
our framework (see Section 4.1). The comparison withk, finally, is straightforward.
2

4.4.1 Disjunctive Programs

Let us first focus on the full language. Let us first show that the problem of answer
set checking is in co-NP.

Lemma 4.11 Checking whether an interpretationM is an answer set of an arbi-
trary DLPA programP is in co-NP.

Proof. To prove thatM is not an answer set ofP, we guess an interpretationM ′

of P, and check that (at least) one of the following conditions hold: (i) M ′ is a
model ofPM , andM ′ ⊂ M , or (ii) M is not a model ofPM . The checking of

24

both conditions above is clearly in polynomial time, and theproblem is therefore
in co-NP. 2

Using this result, we are able to give a “guess and check” algorithm for proving
membership inΠP

2 .

Theorem 4.12 Cautious reasoning overLP{not,∨}
{M,A,N} programs is inΠP

2 .

Proof. We verify that a ground atomA is not a cautious consequence of a DLPA

programP as follows: Guess an interpretationM ⊆ BP and check that (1)M is
an answer set forP, and (2)A is not true w.r.t.M . Task (2) is clearly polynomial,
while (1) is in co-NP by virtue of Lemma 4.11. The problem therefore lies inΠP

2 .
2

Concerning disjunctive programs, for most fragments cautious reasoning is inΠP
2 ,

with two exceptions which are in co-NP. The reason is that forthe respective classes
it is sufficient to look at an arbitrary model, rather than an answer set or a minimal
model.

Lemma 4.13 LetP be aLP{∨}
{M} program, a standard ground atomA is not a cau-

tious consequence ofP, if and only if there exists a modelM of P which does not
containA. 10

Proof. Observe first that, sinceP does not contain negation and only monotone
aggregate literals, each literal appearing inP is monotone.

(⇐): The existence of a modelM of P not containingA, implies the existence of
a minimal modelM ′ of P (with M ′ ⊆ M) not containingA. By virtue of Theorem
3.5,M ′ is an answer set ofP. Therefore,A is not a cautious consequence ofP.

(⇒): SinceA is not a cautious consequence ofP, by definition of cautious rea-
soning, there exists an answer setM of P which does not containA. By Proposi-
tion 3.1,M is also a model ofP. 2

This lemma allows us to prove co-NP-membership for cautiousreasoning over
these programs.

Theorem 4.14 Cautious reasoning overLP{∨}
{M} programs is in co-NP.

Proof. By Lemma 4.13 we can check whether a ground atomA is nota cautious
consequence of a programP as follows: (i) Guess an interpretationM of P, (ii)
check thatM is a model anda /∈ M . The check is clearly polynomial-time com-
putable, and the problem is therefore in co-NP. 2

10 Note thatM can beanymodel, possibly non-minimal, ofP.

25

These results are sufficient to show all hardness results in columns 3 and 4 in Ta-
ble 1.

Theorem 4.15 Each field in columns 3 and 4 of Table 1 states the respective mem-
bership of cautious reasoning for the corresponding fragment of DLPA.

Proof. Membership inΠP
2 for all the fields in column 4 and fields in rows 3 to 18

of column 3 follow from Theorem 4.12, because all corresponding languages are
subsets of LP{not,∨}{M,A,N}. Membership in co-NP for the fields in row 1 and 2 of column

3 follow from Theorem 4.14 and the fact thatLP
{∨}
{} ⊆ LP

{∨}
{M}. 2

4.4.2 Non-disjunctive Programs

ΠP
2 -memberships for non-disjunctive programs already followfrom the respective

result for disjunctive programs, and it remains to show co-NP- andP-memberships.

Let us first consider the less complex language LP{}
{M,As,Ns}

. We can show that
programs in this fragment have either one or no answer sets, which can be computed
efficiently.

Lemma 4.16 An LP{}
{M,As,Ns}

program has at most one answer set and the answer

sets of aLP{}
{M,As,Ns}

program can be computed in polynomial time.

Proof. For a LP{}{M,As,Ns}
programP, let us define an operatorTP on interpreta-

tions ofP as follows:TP(I) = {h | r ∈ P, I |= B(r), h ∈ H(r)}. Furthermore,
given an interpretationI, let the sequence{Tn

P(I)}n∈N be defined asT0
P(I) = I

andT
i
P = TP(Ti−1

P (I)) for i > 0. SinceTP is monotone and the number of inter-
pretations forP is finite, the sequence reaches a fixpointT

∞
P (I).

Consider a level mapping|| || such that for each ruler ∈ P, for whichH(r) = {h}
and an antimonotone or nonmonotone aggregate literalA ∈ B(r), it holds for each
predicatep nested inA that ||p|| < ||p′||, wherep′ is the predicate ofh. Moreover,
||p|| ≤ ||p′|| holds for any pair of predicatesp andp′ such thatp′ occurs in the head
andp in the body of a rule. Without loss of generality, we assume the co-domain of
|||| to be0, . . . , n.

Based on|| ||, we define a partitionP0, . . . ,Pn,Pconstr of P (wheren is the max-
imum of the co-domain of|| || — sinceP is a finite, this is an integer) as follows:
Pi = {r | r ∈ P, H(r) = {h}, ||Pred(h)|| = i}, Pconstr = {r | r ∈ P, H(r) =
∅}. Furthermore, we defineFP 0

P = T
∞
P0

(∅) andFP i
P = T

∞
Pi

(FP i−1

P) for 0 < i ≤ n,
and letFPP = FP n

P . If FPP is a model ofPconstr, let FMP = {FPP}, otherwise
FMP = ∅.

In the sequel we will use the shorthandH(P) = {h | ∃r ∈ P : h ∈ H(r)} to

26

denote the set of head atoms of a program.

We next show by induction thatFPP = A for each answer setA of P. The base is
FP 0

P ∩ H(P0) = A ∩ H(P0) for each answer setA of P.

To proveFP 0
P ∩H(P0) ⊆ A∩H(P0), we use another induction overT

i
P0

(∅). The
base here isT0

Pi
(∅) = ∅ ⊆ A for each answer setA of P. Then, assuming that

S ⊆ A for each answer setA of P, we can show thatTP0
(S) ⊆ A for each answer

setA of P: Each ruler ∈ P0 is also inP and sinceA is a model by Proposition 3.1,
wheneverS |= b for all b ∈ B(r), then also for any answer setA, A |= b, as
B(r) may not contain antimonotone or nonmonotone aggregate literals, otherwise
||p|| < 0 for some predicate in such an aggregate would hold. SinceH(r) = {h},
h must be contained in each answer set. It follows thatFP 0

P = T
∞
P0

⊆ A. It is easy
to see thatFP 0

P ⊆ H(P0), soFP 0
P ∩ H(P0) ⊆ A ∩ H(P0).

Now assume thatX = (A ∩ H(P0)) \ (FP 0
P ∩ H(P0)) 6= ∅. We show that then

A\X is a model ofPA, contradicting the assumption thatA is an answer set. Each
rule inPA ∩ P0 is clearly satisfied byA \ X, because it is satisfied byFP 0

P . Now
recall that each ruler in PA \ P0 has a true body w.r.t.A, which is either true or
false w.r.t.A \X. SinceH(r)∩X = ∅ (becauseX ⊆ H(P0) and by the definition
of the partitionH(P0)∩H(P \P0) = ∅), r is also satisfied byA \X. ThereforeA
is not an answer set ofP if X 6= ∅, and soFP 0

P ∩ H(P0) ⊇ A ∩ H(P0). We have
shown the base of the induction,FP 0

P ∩ H(P0) = A ∩ H(P0).

For the inductive step, we assumeFP k
P ∩ H(Pk) = A ∩ H(Pk) holds for all

k < i, i > 0 and each answer setA. In order to showFP i
P ∩ H(Pi) = A ∩

H(Pi), we use yet another induction overT
j
Pi

(FP i−1

P). The base isT0
Pi

(FP i−1

P) =
FP i−1

P ⊆ A for each answer setA, which holds by the inductive hypothesis of the
“larger” induction. Now, we assume thatT

j
Pi

(FP i−1

P) ⊆ A holds for each answer
set, and show thatTpi

(Tj
Pi

(FP i−1

P)) ⊆ A holds for each answer set. We observe
that each ruler ∈ Pi is also inP and sinceA is a model by Proposition 3.1,
wheneverTj

Pi
(FP i−1

P) |= b for all b ∈ B(r), then also for any answer setA, A |=
b, because the only antimonotone or nonmonotone literals areaggregates which,
however, contain only atoms formed by predicatesp, for which ||p|| < i. Any of
these atoms are however inH(Pk) for k < i and so by the inductive hypothesis
(of the “larger” induction),Tj

Pi
(FP i−1

P) ∩ H(Pk) = A ∩ H(Pk). In total, we get
FP i

P = T
∞
Pi

⊆ A.

It remains to show thatFP i
P ∩H(Pi) ⊇ A∩H(Pi). Similar to the base case of the

“larger” induction, we assumeX = (A∩H(Pi)) \ (FP i
P ∩H(Pi)) 6= ∅. We show

that thenA \X is a model ofPA, contradicting the assumption thatA is an answer
set. Each rule inPA∩Pi is clearly satisfied byA\X, because it is satisfied byFP i

P .
Now recall that each ruler in PA\Pi has a true body w.r.t.A, which is either true or
false w.r.t.A \X. SinceH(r)∩X = ∅ (becauseX ⊆ H(Pi) and by the definition
of the partitionH(Pi)∩H(P \ Pi) = ∅), r is also satisfied byA \X. ThereforeA

27

is not an answer set ofP if X 6= ∅, and soFP i
P ∩ H(Pi) ⊇ A ∩ H(Pi). We have

shown the step of the induction,FP i
P ∩ H(Pi) = A ∩ H(Pi) for each answer set

A.

In total, for FPP we haveFPP ∩ (
⋃n

i=1 H(Pi)) = A ∩ (
⋃n

i=1 H(Pi)) for each
answer setA of P. It is easy to see that each answer set ofP is also an answer set
of (

⋃n
i=1 H(Pi)) = P \ Pconstr. Therefore, for each answer setA of P, we know

thatA = FPP . It follows thatP has at most one answer set.

Moreover, note that any rules inPconstr can only be satisfied if one of its body
literals is false (as the heads are empty). Now sinceFPP is an answer set ofP \
Pconstr, it is a minimal model of(P \ Pconstr)

FPP . If FPP satisfies all rules in
Pconstr, then(P \Pconstr)

FPP = PFPP , andFPP is an answer set ofP. If any rule
of Pconstr exists which is not satisfied byFPP , this rule also occurs inPFPP , and
thereforeFPP cannot be a model ofPFPP , and hence it cannot be an answer set of
P in this case. In total, we get thatFMP is the set of answer sets forP.

ComputingFPP andFMP usingTP is clearly feasible in polynomial time in the
size of the program. 2

Given that we can compute the set of answer sets in polynomialtime and that the
cardinality of this set is at most 1, cautious reasoning can be done easily over the
computed answer sets.

Theorem 4.17 Cautious reasoning overLP{}
{M,As,Ns}

is in P.

Proof. This is a simple consequence of Lemma 4.16. We compute the setof answer
sets in polynomial time. If it is empty, all atoms are a cautious consequence. If there
is one answer set, check in polynomial time whether it contains the query atom.2

Let us now focus on the co-NP-memberships. For doing so, we will re-use the
fact that answer sets LP{}{M,As,Ns}

programs are computable in polynomial time.
The point is that for checking whether an interpretationI is an answer set of a
LP{not}

{M,A,Ns}
programP, we can form the reductPI , which is also a LP{not}{M,A,Ns}

program. The crucial point is that for checking whetherI is a minimal model of
PI (in which case it is an answer set), one can eliminate antimonotone literals from
PI .

Lemma 4.18 Given aLP{not}
{M,A,Ns}

programP and an interpretationI ⊆ BP , I is
a subset-minimal model ofPI iff it is a subset-minimal model ofΨ(PI), which is
derived fromPI by deleting all antimonotone literals.

Proof. (⇒) If I is a minimal model ofPI , it is obviously also a model ofΨ(PI).
Moreover, each interpretationN ⊂ I is not a model ofPI , so there is at least one
rule r ∈ PI , for whichN 6|= r, that is all body atoms are true w.r.t.N but all head
atoms are false w.r.t.N . Now there is a ruler′ ∈ Ψ(PI) with H(r) = H(r′) and

28

B(r) ⊇ B(r′). So also the body ofr′ is true w.r.t.N , and hencer′ is not satisfied
by N . As a consequence,N is not a model ofΨ(PI), and thereforeI is a minimal
model ofΨ(PI).

(⇐) Let I be a minimal model ofΨ(PI). We first note that no rule inPI has a
body literal which is false w.r.t.I by construction ofPI , and therefore also no rule
in Ψ(PI) has a body literal which is false w.r.t.I. So for any rule inΨ(PI), all
body literals are true w.r.t.I, and hence one of its head atoms is true w.r.t.I, since
I is a model. Since each rule inΨ(PI) has a corresponding rule inPI with equal
head, and since no rule inPI has a body literal which is false w.r.t.I, I is also a
model ofPI .

Now, consider an arbitrary interpretationN ⊂ I. N is not a model ofΨ(PI), that
is, there is a ruler ∈ Ψ(PI) for which all body literals inr are true w.r.t.N , and all
head atoms inr are false w.r.t.N . Now consider the corresponding ruler′ ∈ pI , for
which B(r) ⊆ B(r′). By construction ofpI , all literals ofr′ are true w.r.t.I, and
since each deleted body literalℓ ∈ B(r′) \ B(r) is an antimonotone literal (either
a negative standard literal or an antimonotone aggregate literal),ℓ is also true w.r.t.
N . Hence, the body ofr′ is true w.r.t.N , and sinceH(r′) = H(r), each head atom
of r′ is false w.r.t.N . Hencer′ is not satisfied andN is not a model ofPI , and we
obtain thatI is a minimal model ofPI . 2

So answer set checking for a LP{not}
{M,A,Ns}

program can be done by checking whether

an interpretation is a minimal model for a LP{}
{M,Ns}

program, which in this case is
equivalent to checking whether it is an answer set. We have already shown earlier
that this task is polynomial.

Theorem 4.19 Cautious reasoning overLP{not}
{M,A,Ns}

is in co-NP.

Proof. We guess an interpretationI, and check whether it is an answer set and
does not contain the queried atom. The latter check is clearly polynomial. Answer
set checking amounts to checking whetherI is a subset-minimal model ofPI . Be-
cause of Lemma 4.18,I is a subset-minimal model ofPI iff I is a subset-minimal
model ofΨ(PI), in which all negative standard and antimonotone aggregateliterals
have been deleted (this transformation is obviously polynomial). Because of Propo-
sition 3.2,I is a subset-minimal model ofPI if I is an answer set ofPI , hence if
I is an answer set ofΨ(PI). Now sinceΨ(PI) ∈ LP

{}
{M,Ns}

⊆ LP
{}
{M,As,Ns}

we
know by Lemma 4.16 that its answer sets (at most one) are computable in polyno-
mial time. So we can compute the set of minimal models ofΨ(PI) in polynomial
time. If it is empty,I is not an answer set; otherwise there is exactly one minimal
model, and we check whether it is equal toI. If it is, I is an answer set, otherwise
it is not. Checking whetherI is an answer set is therefore feasible in polynomial
time. 2

We have therefore proved all membership results of Table 1 for non-disjunctive

29

programs.

Theorem 4.20 Each field in columns 3 and 4 of Table 1 states the respective mem-
bership of cautious reasoning for the corresponding fragment of DLPA.

Proof. Membership inΠP
2 for all the fields in rows 13 to 18 in columns 1 and

2 follow from Theorem 4.12, because all corresponding languages are subsets of
LP{not,∨}

{M,A,N}. Membership in co-NP for the fields in rows 9 to 12 of column 1 and
in rows 1 to 12 of column 2 are a consequence of Theorem 4.19, since all corre-
sponding languages are subsets of LP{not}

{M,A,Ns}
. Finally, membership inP for the

fields in rows 1 to 8 of column 1 are due to Theorem 4.17, since all corresponding
languages are subsets of LP{}

{M,As,Ns}
. 2

5 Related Work

There have been considerable efforts to define semantics forlogic programs with
aggregates. For a historical background, we refer to [50]. Here we will focus on
work which has been proposed in the field of Answer Set Programming for defining
semantics for recursive aggregates. Several of these worksconsider only monotone
aggregates, such as [31,33,30]. We will not go into further details with respect to
these approaches, as their focus is either on having aggregate atoms in rule heads (a
feature which is absent in our framework) or on working out algebraic methods for
disjunctive programs. Moreover, semantically, monotone aggregates in rule bod-
ies are straightforward to handle, as they perfectly correspond to standard positive
atoms in their behavior. We also note that most of the relatedworks do not con-
sider disjunctive programs. A thorough discussion of pros and cons for the various
approaches for recursive aggregates has been given in [50,34,36].

The approaches of [25,27,28] basically all admit non-minimal answer sets. In par-
ticular, programP1 of Example 1.2 would have∅ and{p(a)} as answer sets. As
shown in Example 2.13 (also by Theorem 3.3), the semantics proposed in this pa-
per only admits∅, and always guarantees the minimality of answer sets. The work
in [51] deals with the more abstract concept of generalized quantifiers, and the
semantics therein also allows for non-minimal answer sets.

The approach of [43] is defined on non-disjunctive programs with particular kinds
of aggregates (called cardinality and weight constraints), which basically corre-
spond to programs withcountandsumfunctions. As shown in [29] and [52], in
presence of negative weights or negative literals inside aggregates11 , the semantics
in [43] can lead to unintuitive results. For example, the program{a:-#sum{〈−1 :

11 Note that while negative literals inside aggregates are not allowed in our framework,
negative integers are allowed and correctly dealt with.

30

a〉} ≤ −1.} should intuitively have only∅ as an answer set, as{a} would not
be minimal and the truth ofa is not founded. However, according to [43], both
∅ and{a} are answer sets12 . Our semantics only allows for∅ as an answer set,
according to the intuition. However, in [37] it has been shown that the semantics
of [43] is equal to the answer set semantics as in Definition 2.6 on programs with
#sum (respectively weight constraints) over positive integers. An extension to the
approach of [43] has been presented in [32], which allows forarbitrary aggregates
in non-disjunctive programs. A difference with respect to [43,32] is also that these
languages allow for aggregate atoms in rule heads, which we do not consider in this
paper.

A major contribution to the understanding of aggregates in ASP has been presented
in [37]. The author provides a way to represent (ground) aggregates by means of
propositional formulas, building on earlier work reportedin [52]. Together with
the reduct-based semantics for propositional formulas presented in [37] (which are
called answer sets as well), this yields a semantics for programs with aggregates
as well. In Theorem 3 of [37], Ferraris proves that this semantics coincides with
the one presented in this paper in Definition 2.6 on what Ferraris refers to asFLP-
programs(ground DLPA programs in which aggregate atoms are not preceded by
not).

It should be noted that the representation in [37] is done in acareful way in order to
guarantee monolithic stability justification capabilities of aggregates. In particular,
when forming the reduct with respect to an interpretationI as defined in [37], any
formula representing an aggregate not satisfied byI will be completely replaced by
⊥ (falsity), rendering the corresponding rule irrelevant inthe reduct. On the other
hand, a formula representing an aggregate satisfied byI will stay in the reduct as
is. This behavior precisely coincides with the main motivation for the reduct of
Definition 2.5, and distinguishes this approach from others, as discussed below.

However, there is a difference with respect to the semanticsin [37] when negated
aggregate atoms occur in the program. This is because in our work we treat the
negation operator simply as a complement operator for aggregates, while in [37] it
is treated as a negation-as-failure operator. The difference is best shown using an
example.

Example 5.1 Given the program

r : a:- not #count{〈1:a〉} < 1.

there is one answer set (∅) with respect to Definition 2.6, while [37] would allow
for two answer sets∅ and{a}.

12 Interestingly,lparse (version 1.0.17) andsmodels (version 2.32), the software im-
plementing the semantics of [43], computes only∅.

31

So in the presence of negated literals, the semantics of [37]allows non-minimal
answer sets. Both ways of dealing withnot in front of aggregates can be motivated:
For our language it is seen as a shorthand for the complement of the aggregate, and
the above rule is equivalent to:

r′ : a:-#count{〈1:a〉} ≥ 1.

In [37], ruler is viewed as equivalent to

r′′ : a:- not not a.

which also has two answer sets∅ and{a} according to [53]. 2

It is however notable that even though the language considered in [37] is very gen-
eral and its semantics has been defined independently, without having the DLPA

language in mind, the two semantics coincide for the most part. We view this as a
confirmation of the robustness of our semantics.

In [37], the author has also given some complexity results. In particular, he has
shown that deciding whether a (non-disjunctive) program with weight constraints
(a #sum-aggregate in our notation) has an answer set, isΣP

2 -complete. This is
strictly related to our result that cautious reasoning overa program inLP

{}
{N} is

ΠP
2 -complete.

Recently, in [54] a language called RASPL-1 has been defined, which essentially
allows for (possibly non-ground) counting aggregates. Thesemantics of this lan-
guage is defined analogously to [37], but in this case by meansof a representation as
a first-order formula which is then interpreted using a semantics for arbitrary first-
order formulas which has been presented in [55]. Also the semantics of RASPL-1
has been shown to coincide with Definition 2.6 on a large common language frag-
ment; we refer to [54] for details.

We would furthermore like to point out that the reduct and thesemantics defined
in this paper has already spread in the scientific community and has been used in
the work of others. Indeed one main advantage of our semanticdefinition in this
respect is its generality. Being based on a definition of reduct, which does not re-
fer to aggregates or special structures at all, it allows fordefining the semantics of
arbitrary linguistic extensions. Indeed, in [56,57] the authors use Definition 2.5 for
defining a semantics for programs with higher order and externally defined atoms.
This work is set in the context of reasoning in the Semantic Web (where “aggre-
gates” involve querying ontologies, for example), and can be seen as a variant of
our semantics for that framework.

However, there are also other suggestions for the semanticsof programs with aggre-

32

gates. Most representative of those, in [29,34], several semantics for non-disjunctive
programs with aggregates have been defined, the closest one to the semantics in this
paper being thẽD-stable semantics. In [36,35] the notions offixpoint answer set
andunfolding answer sethave been defined for non-disjunctive programs with ag-
gregates, which, in [35], have been shown to be equivalent. Moreover, theD̃-stable
semantics and fixpoint answer sets are also equivalent, as shown in [36,35]. Also
for the D̃-stable semantics, minimality and coincidence with answersets in the
aggregate-free case is guaranteed. Another equivalent definition for programs with
c-atoms (which are essentially extensional representations of aggregate atoms) has
been given in [58].

In Theorem 4 in [36] and Proposition 8.1 in [34] it has been shown that anyD̃-stable
model is also an answer set as defined in Definition 2.6. However, an answer set as
defined in Definition 2.6 is not necessarily ãD-stable model, as noted in [36,34].
In his doctoral thesis [50], Pelov also defines various semantics for disjunctive pro-
grams with aggregates, among them one which is close to ours.However, the same
differences as for thẽD-stable model semantics surface.

To see these differences, let us consider Example 9 of [36].

Example 5.2 Given the program

p(1):-#sum{X : p(X)} ≥ 0. p(1):- p(−1). p(−1):- p(1).

we obtain one answer set{p(1), p(−1)} with respect to Definition 2.6, but nõD-
stable model.

The authors of [36] argue that the program should be equivalent to the aggregate-
free program

p(1):- not p(−1). p(1):- not p(1), not p(−1). p(1):- p(1), not p(−1).

p(1):- p(1). p(1):- p(1), p(−1). p(1):- p(−1). p(−1):- p(1).

Here, when forming the reduct w.r.t.{p(1), p(−1)}, the first three rules are deleted.
This is against our intuition that any literal, and in particular aggregate literals are
to be considered as a monolithic structure when verifying stability. Indeed, in this
example only some part of the representation of the aggregate is retained in the
reduct. This is a situation which cannot occur in our setting, any aggregate is either
relevant in its entirety or has no effect at all. Interestingly, also the semantics of
[37] shares precisely our view and yields the (unique) answer set{p(1), p(−1)} on
this program. 2

As this example shows, our approach is in line with the semantics of [37], and
differs from [36,34] in the assumption how an aggregate literal may justify an an-

33

swer set. We believe that both approaches can be motivated and the choice of the
“right” semantics depends on how one interprets the justification capabilities of an
aggregate. However, if one accepts our assumption that aggregates must serve as
justifiers in a monolithic way, these other semantics do not behave in an intuitive
way. Indeed, as shown in Example 5.2 it is unclear why one would allow only for
some part of an aggregate to give stability to an answer set candidate. Moreover, our
“monolithic” approach has the advantage to be generally applicable, since it is not
specific to aggregates, but it depends only on basic satisfaction of the expressions
in the language.

In [50], Pelov provides also a complexity analysis for reasoning tasks in the setting
of the semantics proposed in that work. In particular, the problem of model exis-
tence is studied, which is related to the query answering problems studied in this
work. Pelov does not differentiate among the types of literals as we do, but differen-
tiates among the semantics defined and the evaluation complexity of the aggregate
literals. Also [35] contains a similar analysis. The results are compatible to the ones
derived in this paper, model existence being located on the first and second level of
the polynomial hierarchy.

6 Conclusions

Concluding, we have proposed a declarative semantics for full ASP programs with
arbitrary aggregates (DLPA programs). This semantics generalizes the answer set
semantics for standard ASP in a simple and elegant way, through a new definition of
reduct which is simpler than the original one and treats negative literals, positive lit-
erals, and aggregates literals in a fully uniform manner. Wehave demonstrated that
our semantics is endowed with desirable properties: it guarantees subset-minimality
(and therefore the incomparability) of answer sets, and it coincides with the stan-
dard answer set semantics on aggregate-free programs. We have analyzed the com-
putational complexity of the language in depth, drawing a full picture of the com-
plexity of the ASP fragments where negation and/or disjunction are combined with
different kinds of aggregates (monotone, antimonotone, nonmonotone, stratified).
Importantly, we proved that aggregate literals do not increase the computational
complexity of full (disjunctive) ASP programs in our approach; while they do in-
crease the complexity of normal (non-disjunctive) programs up toΠP

2 . We have
singled out, however, relevant classes of aggregates whichdo not cause any com-
plexity overhead even for normal programs, and can be efficiently implemented in
normal ASP systems.

Acknowledgements This work has greatly benefited from interesting discussions
with and comments of Paolo Ferraris, Michael Gelfond, Vladimir Lifschitz, Niko-
lay Pelov. We are also grateful to the competent comments andsuggestions in the

34

reviews. The work was partially supported by M.I.U.R. under projects “Potenzia-
mento e Applicazioni della Programmazione Logica Disgiuntiva,” “Sistemi basati
sulla logica per la rappresentazione di conoscenza: estensioni e tecniche di ottimiz-
zazione,” and “tocai.it: Tecnologie Orientate alla Conoscenza per Aggregazioni di
Imprese in Internet”.

References

[1] W. Faber, N. Leone, G. Pfeifer, Recursive aggregates in disjunctive logic programs:
Semantics and complexity, in: J. J. Alferes, J. Leite (Eds.), Proceedings of the 9th
European Conference on Artificial Intelligence (JELIA 2004), Vol. 3229 of Lecture
Notes in AI (LNAI), Springer Verlag, 2004, pp. 200–212.

[2] F. Calimeri, W. Faber, N. Leone, S. Perri, Declarative and Computational Properties
of Logic Programs with Aggregates, in: Nineteenth International Joint Conference on
Artificial Intelligence (IJCAI-05), 2005, pp. 406–411.

[3] J. McCarthy, Programs with Common Sense, in: Proceedings of the Teddington
Conference on the Mechanization of Thought Processes, Her Majesty’s Stationery
Office, 1959, pp. 75–91.

[4] J. McCarthy, P. J. Hayes, Some Philosophical Problems from the Standpoint of
Artificial Intelligence, in: B. Meltzer, D. Michie (Eds.), Machine Intelligence4,
Edinburgh University Press, 1969, pp. 463–502, reprinted in [59].

[5] M. Minsky, A Framework for Representing Knowledge, in: P. H. Winston (Ed.), The
Psychology of Computer Vision, McGraw-Hill, 1975, pp. 211–277.

[6] J. McCarthy, Circumscription — a Form of Non-Monotonic Reasoning,Artificial
Intelligence 13 (1–2) (1980) 27–39.

[7] J. McCarthy, Applications of Circumscription to Formalizing Common-Sense
Knowledge, Artificial Intelligence 28 (1) (1986) 89–116.

[8] R. Reiter, A Logic for Default Reasoning, Artificial Intelligence 13 (1–2) (1980) 81–
132.

[9] D. V. McDermott, J. Doyle, Non-Monotonic Logic I, Artificial Intelligence 13 (1–2)
(1980) 41–72.

[10] D. V. McDermott, Non-Monotonic Logic II: Nonmonotonic Modal Theories, Journal
of the ACM 29 (1) (1982) 33–57.

[11] R. C. Moore, Semantical Considerations on Nonmonotonic Logic, Artificial
Intelligence 25 (1) (1985) 75–94.

[12] M. Gelfond, V. Lifschitz, Classical Negation in Logic Programs and Disjunctive
Databases, New Generation Computing 9 (1991) 365–385.

35

[13] C. Baral, Knowledge Representation, Reasoning and DeclarativeProblem Solving,
Cambridge University Press, 2003.

[14] J. Minker, On Indefinite Data Bases and the Closed World Assumption,in: D. W.
Loveland (Ed.), Proceedings6th Conference on Automated Deduction (CADE ’82),
Vol. 138 of Lecture Notes in Computer Science, Springer, New York, 1982, pp. 292–
308.

[15] T. Eiter, G. Gottlob, H. Mannila, Disjunctive Datalog, ACM Transactions on Database
Systems 22 (3) (1997) 364–418.

[16] P. Simons, I. Niemelä, T. Soininen, Extending and Implementing the Stable Model
Semantics, Artificial Intelligence 138 (2002) 181–234.

[17] T. Janhunen, I. Niemelä, D. Seipel, P. Simons, J.-H. You, Unfolding Partiality and
Disjunctions in Stable Model Semantics, ACM Transactions on Computational Logic
7 (1) (2006) 1–37.

[18] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, F.Scarcello, The
DLV System for Knowledge Representation and Reasoning, ACM Transactions on
Computational Logic 7 (3) (2006) 499–562.

[19] F. Lin, Y. Zhao, ASSAT: computing answer sets of a logic program by SAT solvers.,
Artificial Intelligence 157 (1–2) (2004) 115–137.

[20] Y. Lierler, M. Maratea, Cmodels-2: SAT-based Answer Set Solver Enhanced to Non-
tight Programs, in: V. Lifschitz, I. Niemelä (Eds.), Proceedings of the 7th International
Conference on Logic Programming and Non-Monotonic Reasoning (LPNMR-7), Vol.
2923 of LNAI, Springer, 2004, pp. 346–350.

[21] C. Anger, K. Konczak, T. Linke,NoMoRe: A System for Non-Monotonic Reasoning,
in: T. Eiter, W. Faber, M. Truszczyński (Eds.), Logic Programming and Nonmonotonic
Reasoning — 6th International Conference, LPNMR’01, Vienna, Austria, September
2001, Proceedings, Vol. 2173 of Lecture Notes in AI (LNAI), SpringerVerlag, 2001,
pp. 406–410.

[22] C. Anger, M. Gebser, T. Linke, A. Neumann, T. Schaub, The nomore++ Approach to
Answer Set Solving, in: G. Sutcliffe, A. Voronkov (Eds.), Logic for Programming,
Artificial Intelligence, and Reasoning, 12th International Conference,LPAR 2005,
Vol. 3835 of Lecture Notes in Computer Science, Springer Verlag, 2005,pp. 95–109.

[23] M. Gebser, B. Kaufmann, A. Neumann, T. Schaub, Conflict-driven answer set solving,
in: Twentieth International Joint Conference on Artificial Intelligence (IJCAI-07),
Morgan Kaufmann Publishers, 2007, pp. 386–392.

[24] I. S. Mumick, H. Pirahesh, R. Ramakrishnan, The magic of duplicatesand aggregates,
in: Proceedings of the 16th International Conference on Very Large Data Bases
(VLDB’90), Morgan Kaufmann, 1990, pp. 264–277.

[25] D. B. Kemp, P. J. Stuckey, Semantics of Logic Programs with Aggregates, in: V. A.
Saraswat, K. Ueda (Eds.), Proceedings of the International Symposiumon Logic
Programming (ISLP’91), MIT Press, 1991, pp. 387–401.

36

[26] K. A. Ross, Y. Sagiv, Monotonic Aggregation in Deductive Databases, Journal of
Computer and System Sciences 54 (1) (1997) 79–97.

[27] M. Gelfond, Representing Knowledge in A-Prolog, in: A. C. Kakas, F. Sadri (Eds.),
Computational Logic. Logic Programming and Beyond, Vol. 2408 of LNCS, Springer,
2002, pp. 413–451.

[28] T. Dell’Armi, W. Faber, G. Ielpa, N. Leone, G. Pfeifer, Aggregate Functions in DLV,
in: M. de Vos, A. Provetti (Eds.), Proceedings ASP03 - Answer Set Programming:
Advances in Theory and Implementation, Messina, Italy, 2003, pp. 274–288, online at
http://CEUR-WS.org/Vol-78/.

[29] N. Pelov, M. Denecker, M. Bruynooghe, Partial stable models forlogic programs
with aggregates, in: Proceedings of the 7th International Conference on Logic
Programming and Non-Monotonic Reasoning (LPNMR-7), Vol. 2923 of Lecture
Notes in AI (LNAI), Springer, 2004, pp. 207–219.

[30] N. Pelov, M. Truszczýnski, Semantics of disjunctive programs with monotone
aggregates - an operator-based approach, in: Proceedings of the 10th International
Workshop on Non-monotonic Reasoning (NMR 2004), Whistler, BC, Canada, 2004,
pp. 327–334.

[31] V. W. Marek, J. B. Remmel, On Logic Programs with Cardinality Constraints, in:
S. Benferhat, E. Giunchiglia (Eds.), Proceedings of the 9th International Workshop on
Non-Monotonic Reasoning (NMR’2002), Toulouse, France, 2002, pp. 219–228.

[32] V. W. Marek, J. B. Remmel, Set Constraints in Logic Programming, in: V.Lifschitz,
I. Niemel̈a (Eds.), Proceedings of the 7th International Conference on Logic
Programming and Non-Monotonic Reasoning (LPNMR-7), Vol. 2923 of LNAI,
Springer, 2004, pp. 167–179.

[33] V. W. Marek, I. Niemel̈a, M. Truszczýnski, Logic Programming with Monotone
Cardinality Atom, in: V. Lifschitz, I. Niemel̈a (Eds.), Proceedings of the 7th
International Conference on Logic Programming and Non-Monotonic Reasoning
(LPNMR-7), Vol. 2923 of LNAI, Springer, 2004, pp. 154–166.

[34] N. Pelov, M. Denecker, M. Bruynooghe, Well-founded and Stable Semantics of Logic
Programs with Aggregates, Theory and Practice of Logic Programming 7 (3) (2007)
301–353.

[35] T. C. Son, E. Pontelli, A Constructive Semantic Characterization of Aggregates in
ASP, Theory and Practice of Logic Programming 7 (2007) 355–375.

[36] T. C. Son, E. Pontelli, I. Elkabani, On Logic Programming with Aggregates, Tech.
Rep. NMSU-CS-2005-006, New Mexico State University (2005).

[37] P. Ferraris, Answer Sets for Propositional Theories, in: C. Baral, G. Greco, N. Leone,
G. Terracina (Eds.), Logic Programming and Nonmonotonic Reasoning — 8th
International Conference, LPNMR’05, Diamante, Italy, September 2005, Proceedings,
Vol. 3662 of Lecture Notes in Computer Science, Springer Verlag, 2005,pp. 119–131.

37

[38] T. Dell’Armi, W. Faber, G. Ielpa, N. Leone, G. Pfeifer, Aggregate Functions in
Disjunctive Logic Programming: Semantics, Complexity, and Implementation in DLV,
in: Proceedings of the 18th International Joint Conference on ArtificialIntelligence
(IJCAI) 2003, Morgan Kaufmann Publishers, Acapulco, Mexico, 2003, pp. 847–852.

[39] F. Lin, Y. Zhao, ASSAT: Computing Answer Sets of a Logic Programby SAT Solvers,
in: Proceedings of the Eighteenth National Conference on Artificial Intelligence
(AAAI-2002), AAAI Press / MIT Press, Edmonton, Alberta, Canada,2002.

[40] J. D. Ullman, Principles of Database and Knowledge Base Systems, Computer Science
Press, 1989.

[41] K. R. Apt, H. A. Blair, A. Walker, Towards a Theory of Declarative Knowledge,
in: J. Minker (Ed.), Foundations of Deductive Databases and Logic Programming,
Morgan Kaufmann Publishers, Inc., Washington DC, 1988, pp. 89–148.

[42] T. C. Przymusinski, On the Declarative Semantics of Deductive Databases and
Logic Programs, in: J. Minker (Ed.), Foundations of Deductive Databases and Logic
Programming, Morgan Kaufmann Publishers, Inc., 1988, pp. 193–216.

[43] I. Niemel̈a, P. Simons, T. Soininen, Stable Model Semantics of Weight Constraint
Rules, in: M. Gelfond, N. Leone, G. Pfeifer (Eds.), Proceedings of the 5th International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’99), Vol.
1730 of Lecture Notes in AI (LNAI), Springer Verlag, El Paso, Texas, USA, 1999, pp.
107–116.

[44] W. Faber, Decomposition of Nonmonotone Aggregates in Logic Programming, in:
M. Fink, H. Tompits, S. Woltran (Eds.), Proceedings of the 20th Workshopon Logic
Programming (WLP 2006), Vienna, Austria, 2006, pp. 164–171.

[45] E. Dantsin, T. Eiter, G. Gottlob, A. Voronkov, Complexity and Expressive Power of
Logic Programming, ACM Computing Surveys 33 (3) (2001) 374–425.

[46] G. Gottlob, N. Leone, H. Veith, Succinctness as a Source of Expression Complexity,
Annals of Pure and Applied Logic 97 (1–3) (1999) 231–260.

[47] L. J. Stockmeyer, A. R. Meyer, Word Problems Requiring Exponential Time:
Preliminary Report, in: Conference Record of 5th Annual ACM Symposiumon
Theory of Computing (STOC ’73), ACM Press, 1973, pp. 1–9.

[48] V. W. Marek, M. Truszczýnski, Autoepistemic Logic, Journal of the ACM 38 (3)
(1991) 588–619.

[49] T. Eiter, G. Gottlob, On the Computational Cost of Disjunctive Logic Programming:
Propositional Case, Annals of Mathematics and Artificial Intelligence 15 (3/4) (1995)
289–323.

[50] N. Pelov, Semantics of Logic Programs with Aggregates, Ph.D. thesis,Katholieke
Universiteit Leuven, Leuven, Belgium (Apr. 2004).

[51] T. Eiter, G. Gottlob, H. Veith, Modular Logic Programming and Generalized
Quantifiers, in: J. Dix, U. Furbach, A. Nerode (Eds.), Proceedings of the 4th
International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR-97), Vol. 1265 of LNCS, Springer, 1997, pp. 290–309.

38

[52] P. Ferraris, V. Lifschitz, Weight constraints as nested expressions, Theory and Practice
of Logic Programming 5 (1–2) (2005) 45–74.

[53] V. Lifschitz, L. R. Tang, H. Turner, Nested Expressions in LogicPrograms, Annals of
Mathematics and Artificial Intelligence 25 (3–4) (1999) 369–389.

[54] J. Lee, V. Lifschitz, R. Palla, A Reductive Semantics for Counting and Choice in
Answer Set Programming, in: D. Fox, C. P. Gomes (Eds.), Proceedings of the 23rd
National Conference on Artificial Intelligence (AAAI’08), AAAI Press, 2008, pp.
472–479.

[55] P. Ferraris, J. Lee, V. Lifschitz, A new perspective on stable models, in: Twentieth
International Joint Conference on Artificial Intelligence (IJCAI-07),2007, pp. 372–
379.

[56] T. Eiter, G. Ianni, R. Schindlauer, H. Tompits, A Uniform Integrationof Higher-Order
Reasoning and External Evaluations in Answer Set Programming, in: International
Joint Conference on Artificial Intelligence (IJCAI) 2005, Edinburgh,UK, 2005, pp.
90–96.

[57] T. Eiter, G. Ianni, H. Tompits, R. Schindlauer, Effective Integration of Declarative
Rules with External Evaluations for Semantic Web Reasoning, in: Proceedings of the
3rd European Semantic Web Conference (ESWC 2006), 2006, pp. 273–287.

[58] T. C. Son, E. Pontelli, P. H. Tu, Answer Sets for Logic Programs withArbitrary
Abstract Constraint Atoms, Journal of Artificial Intelligence Research 29 (2007) 353–
389.

[59] J. McCarthy, Formalization of Common Sense, papers by John McCarthy edited by V.
Lifschitz, Ablex, 1990.

39

