
University of Huddersfield Repository

Vallati, Mauro, Chrpa, Lukáš and Crampton, Andrew

Underestimation vs Overestimation in SAT-based Planning

Original Citation

Vallati, Mauro, Chrpa, Lukáš and Crampton, Andrew (2013) Underestimation vs Overestimation in 
SAT-based Planning. In: Proceedings of the XIII Conference of the Italian Association for Artificial 
Intelligence (Ai*iA-13). Lecture Notes in Computer Science, 8249 . Springer, Turin, Italy, pp. 276-
287. ISBN 978-3-319-03524-6 

This version is available at http://eprints.hud.ac.uk/id/eprint/18284/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



Underestimation vs Overestimation in SAT-based
Planning

Mauro Vallati, Lukáš Chrpa, and Andrew Crampton

School of Computing and Engineering
University of Huddersfield, United Kingdom

{m.vallati,l.chrpa,a.crampton}@hud.ac.uk

Abstract. Planning as satisfiability is one of the main approaches to finding par-
allel optimal solution plans for classical planning problems. Existing high perfor-
mance SAT-based planners are able to exploit either forward or backward search
strategy; starting from an underestimation or overestimation of the optimal plan
length, they keep increasing or decreasing the estimated plan length and, for each
fixed length, they either find a solution or prove the unsatisfiability of the corre-
sponding SAT instance.
In this paper we will discuss advantages and disadvantages of the underestimating
and overestimating techniques, and we will propose an effective online decision
system for selecting the most appropriate technique for solving a given planning
problem. Finally, we will experimentally show that the exploitation of such a
decision system improves the performance of the well known SAT-based planner
SatPlan.

1 Introduction

Planning as satisfiability is one of the main approaches to solving the classical planning
problem in AI. Planning as satisfiability is commonly used for finding parallel opti-
mal solution plans, and it gives the advantage of reusing the large corpus of efficient
SAT algorithms and makes good use of the extensive advancement in SAT solvers. Ap-
proaches using this technique compile a classical planning problem into a sequence
of SAT instances, with increasing plan length [10–12, 8, 9, 16]. The forward level ex-
pansion search keeps increasing the estimated plan length and for each fixed length
finds a solution or proves the unsatisfiability of the SAT instance. While exploiting this
approach, most of the search time is spent proving unsatisfiability of generated SAT
instances, which could be expensive because the entire search space may need to be
explored.

A different approach to SAT-based planning is exploited in MaxPlan [21]. This
planner estimates an upper bound of the optimal plan length, by using the suboptimal
domain-independent planner FF [7], and then exploits a backward search strategy until
the first unsatisfiable SAT instance is reached.

Since both the approaches (the forward and the backward search) have advantages
and disadvantages, which will be discussed in the paper, we designed a technique for
combining them by selecting online the technique to exploit. The resulting system is
called SPUO (SatPlan Under-Overestimating).



We focus our study on SatPlan [10–12], one of the most popular and efficient SAT-
based optimal planning systems. Our experimental analysis will show that SPUO is
able to efficiently select the most promising strategy, and that it is able to improve the
performance of SatPlan.

The rest of the paper is organized as follows. We first provide some background and
further information on SatPlan and SAT-based planning. Next, we describe the forward
and backward approaches and we present in detail our experimental analysis and results,
followed by concluding remarks and a discussion of some avenues for future work.

2 Background

A classical planning problem can be described as a tuple 〈F,G, I, A〉, where F is a
set of facts (or state variables) that represent the state of the world, G is a set of facts
representing the goal, I is a set of facts describing the initial state and A is a set of
actions, that represents the different possibilities of changing the current state, described
by their preconditions and effects.

A valid solution plan is a sequence 〈A1, . . . , An〉 of sets of actions, where the i-th
set Ai represents the actions that can be executed concurrently at the i-th time step of
the plan. An optimal (parallel) plan solving a classical planning problem is formed by
the shortest sequence of action sets, and hence it can be executed using the minimum
number n of time steps.

A well known and efficient optimal parallel planner for classical planning is SatPlan,
which essentially computes the optimal plan by encoding the planning problem into a
set of SAT problems that are solved by a generic SAT solver.

In particular, SatPlan first estimates an initial bound k on the length of the optimal
plan by constructing the planning graph of the problem, as defined in GraphPlan [2].
A planning graph is a directed acyclic levelled graph representing, for each time step
until the estimated horizon, the sets of facts that can be achieved, the set of actions that
can be planned/executed, including special actions called “no-ops” used to propagate
the facts forward in time across the time steps, and sets of mutually exclusive relations
(called mutex relations) between facts and actions. Then, SatPlan encodes the planning
problem with horizon equal to k into a propositional formula in Conjunctive Normal
Form (CNF), and solves the corresponding SAT problem. Finally, SatPlan uses an in-
corporated SAT solver to solve this SAT problem. If the CNF is satisfiable, the solution
to the SAT problem is translated into a plan, otherwise, SatPlan generates another CNF
using an increased value for the planning horizon, and so on, until it generates the first
satisfiable CNF. The unsolvability of the planning problem can be proved during the
construction of the planning graph.

SatPlan has a modular architecture; it can work with different alternative SAT
solvers and methods for encoding the planning problem into a CNF. In this work we
consider, respectively, PrecoSAT [1] and the SAT-MAX-PLAN encoding [18]. PrecoSAT
was the winner of the Application Track of the 2009 SAT Competition1 and has been
successfully exploited in several SAT-based approaches for planning, e.g., [18, 9, 19].

1 http://www.satcompetition.org/



It uses a version of the DPLL algorithm [4] optimized by ignoring the “less impor-
tant” generated clauses and by using on-the-fly self-subsuming resolution to reduce the
number of newly generated clauses. The SAT-MAX-PLAN encoding is a very compact
encoding that is directly derived from the planning graph structure. The variables used
in the encoding represent time-stamped facts, actions and no-ops; the clauses are: unit
clauses representing the initial and final state, clauses representing the link between ac-
tions to their preconditions and effects, and clauses expressing a compact representation
of the mutex relations between actions and between facts in the planning graph. This
encoding has been designed for both reducing the size of the SAT instance, by removing
redundant clauses, and promoting unit propagation during the solving process.

3 Forward and Backward Approaches

As described in the previous section, the SatPlan planning system follows an incre-
mental scheme. It starts to solve a planning problem by estimating a lower bound k
of the length of the optimal plan, and moves forward until it finds the first satisfiable
CNF. In this way SatPlan is able to find the optimal solution or to fail. This forward
search approach has three main advantages: (i) it does not require any knowledge on
the length of the optimal solution of the planning problem, (ii) the demonstration of op-
timality of the solution found is given by the planning process; a valid solution shorter
than the one found does not exist, and (iii) it avoids the generation of a big CNF corre-
sponding to a longer, w.r.t. the number of time steps encoded, planning graph. The last
consideration is especially true while using old encoding strategies (e.g. [11]). On the
other hand, new, compact encodings based on the planning graph structure have been
proposed (e.g., SAT-MAX-PLAN encoding or the one proposed in [16]), so the size of
the CNF is no longer a very constraining element of the SAT-based planning approach.
Moreover, there is another fact that should be considered:

– It has been proven that on random SAT instances, unsatisfiable instances tend to be
harder, w.r.t. the CPU-time needed, than satisfiable ones [14]. One reason for this
behavior is that on satisfiable instances the solver can stop as soon as it encoun-
ters a satisfying assignment, whereas for unsatisfiable instances it must prove that
no satisfying assignment exists anywhere in the search tree. No studies about the
hardness of instances, w.r.t. satisfiability, have been done on structured instances,
where propagation and clause learning techniques may have a lot more leverage.

Given this consideration, it seems reasonable that instead of starting from a lower
bound of the optimal plan length, it could also be useful to overestimate the optimal
plan length and start from a satisfiable SAT instance. This approach, that was first pro-
posed in MaxPlan, has a number of distinct characteristics that make it very interesting.
(i) The planning system, even if it does not find the optimal solution, can output sub-
optimal good quality solution(s), (ii) it is possible to avoid many hard, unsatisfiable
instances, that become harder and harder as the system gets closer to the phase tran-
sition on solvability, (iii) it is possible to find a preliminary suboptimal solution plan
and apply optimisation techniques, as done in MaxPlan, and (iv) it is possible to jump;
while overestimating it could happen that the SAT-solver finds a satisfying variable



assignment that corresponds to a valid solution plan that is shorter than the actual con-
sidered plan length. This means that some time steps are composed only by no-ops or
unnecessary (w.r.t. the goal facts) actions. In this case it is possible to remove these
actions, generate a shorter plan and jump closer to the optimal length.

In order to understand the actual usefulness of the described approaches, we have
modified SatPlan. It is now able to exploit both the underestimation and the overestima-
tion approaches. We decided to use SatPlan for two main reasons: it is well known and
it has a modular architecture. The modular architecture allows us to suppose that the
achieved results could be easily replicated with different combinations of SAT-solver
and encodings. Moreover, since we are comparing search strategies and not planners,
using the same planner should lead to the fairest possible comparison.

3.1 Related Works

The forward strategy was used in the original GraphPlan algorithm [2], and was then
exploited also in SatPlan for finding makespan optimal plans.

The backward strategy, that still preserve the optimality of the solution found, was
firstly presented in MaxPlan.

Alternatives to these strategies were investigated in [17]. In this work two algo-
rithms were proposed: Algorithm A runs the first n SAT problems, generated with in-
creasing time horizons, in parallel, each at equal strength. n is a parameter that can
be tuned. Algorithm B runs all the SAT problems simultaneously, with the ith problem
receiving a fraction of the CPU time proportional to γi, where γ ∈ (0, 1) is a parameter.

In [20], Streeter and Smith proposed an approach that exploits binary search for
optimising the resolution process. The introduced approaches, Algorithms A and B,
and the binary search, were shown to yield great performance improvements, when
compared to the original forward strategy.

The aim of these works is to avoid hard SAT problems, i.e. CNFs that require a
huge amount of CPU time for deciding about their solvability, for finding a satisficing
solution as soon as possible. The solution found by their approaches are not proven to
be optimal.

In this paper we are investigating the possibility of improving the performance of
SAT-based planners from a different perspective. We are interested in preserving the
demonstration of the optimality of solutions found, and we are studying the predictabil-
ity of the slope of hardness of SAT problems from upper and lower bounds, w.r.t. the
first satisfiable CNF of the planning problem.

4 Decision System

We have found that neither forward nor backward approach is always useful in speed-
ing up the resolution process of SatPlan. Intuitively, the forward search is faster in very
easy problems, where the CPU time needed for generating bigger CNFs becomes the
bottleneck, or on problems that allow a lot of actions, where each new step implies a
significant increase in the number of clauses and variables of the SAT instance. The



s5

0.067

s3 s5 s2

s2

s2

s2s3

s5 s3

-0.636 0.869 0.625 -0.544

<45.6 >=45.6 <6.6 >=6.6

0.203 -0.473 0.691 -0.116

-0.496 0.451-0.491 0.562

-0.494 0.588

-0.638 0.468

-0.955 0.525 -0.477 0.612

<6.3

>=33.3 <10.9 >=10.9 <31 >=31 <8.4 >=8.4 <9.4 >=9.4

>=6.3 <9.4 >=9.4 <6.4 >=6.4

<33.3

Fig. 1. The domain-independent online decision system represented as an alternating decision
tree. Decision nodes are represented as ellipses; sY indicates that the decision is taken on the
ratio of the set of clauses Y . Prediction nodes are represented as rectangles. An instance which
obtains a positive score is classified as being suitable for the underestimation approach, otherwise
the overestimation one is exploited.

backward search is faster, intuitively, on problems that have many different valid solu-
tions since satisfiable instances tend to be easy to solve.

For deciding when it is useful to exploit the overestimating approach, and when it
is better to use the underestimating one, we designed a decision system, that is shown
in Figure 1. Firstly, we tried to extract information on the hardness of structured SAT
instances of a given planning problem by evaluating the ratio of clauses to variables,
following [13]. However, this ratio is not suitable for taking decisions because its value
does not change much between different planning problems (especially from the same
domain) and it does not seem to be in a direct relation with the hardness of satisfi-
able SAT instances generated from a planning problem. Instead, we divided the clauses
of the SAT instances into 7 sets, according to information derived from the planning
problem that they are encoding: (1) initial and final state, (2) linking actions to their
preconditions, (3 & 4) linking actions to their positive and negative effects, (5 & 6)
facts are true (false) at time step T if they have been added (removed) before, and (7)
mutually exclusive actions and facts. We considered the ratios between the total number
of clauses and each set of clauses of the SAT instance. This was done for avoiding too
small numbers, that are potentially hard for machine learning techniques and, moreover,
are hard to understand for humans. We considered these ratios because we believe they
can give some insight about the hardness of structured SAT instances.

First of all, we did not consider the ratios of set 1. The number of these clauses
is very small (usually around 20–30 in the considered problems) w.r.t. the size of the
CNF (hundreds of thousands), and it does not change significantly across the considered
training problems. On the other hand, we noticed that the value of some of the consid-
ered ratios remains almost the same throughout the SAT instances generated from the
same planning problem, namely ratios of sets 2, 3, 5 and 7. This means that they are re-
lated to the planning problems, and moreover this fact allows us to evaluate only a very
small SAT instance generated from the given planning problem for taking a decision.



Table 1. Min – Max values of each considered set of clauses on training problems of the selected
domains.

Sets Domains
Blocksworld Ferry Matching-Bw Satellite

2 6.4–7.1 6.6–8.1 4.5–5.0 8.7–10.5
3 5.3–7.1 9.0–11.2 5.2–5.8 10.3–13.2
5 21.4–36.2 37.8–48.6 37.2–49.6 49.2–59.3
7 1.8–2.5 1.5–1.7 2.4–2.9 1.4–1.5

In Table 1 the minimum and maximum ratios of the considered clausal sets per do-
main are shown. The set 7 seems to be highly related to the structure of the domain,
since there is no intersection between minimum and maximum values across the do-
mains. Intuitively, one could agree that the information related to the mutexes is related
to the domain. From this point of view, this set of clauses is not informative for an
instance-specific predictive model.

For automatically finding correlations between the ratios and the effectiveness of
the overestimating approach, we exploited an existing machine learning technique: the
alternating decision tree (ADTree) [15], which is included in the well known machine
learning tool Weka [6], due to its good performance on the training set. The resulting
decision system is an alternating decision tree that is composed of decision nodes and
prediction nodes. Decision nodes specify a condition on an attribute of the instance that
is classified. Prediction nodes contain a single number. A new instance is classified by
following all paths for which all decision nodes are true and by summing any prediction
nodes that are traversed.

As training examples for the decision system we selected ten planning problems
from BlocksWorld, Matching-bw, Sokoban and Ferry domains. For each of
the forty problems we generated a SAT instance and extracted the ratios. Each planning
problem has been solved using both forward and backward approaches, and classi-
fied w.r.t. their usefulness. We selected these domains because in BlocksWorld and
Ferry the overestimating approach is very useful, and in the remaining two domains
the underestimating approach is often the best choice. It should be noted that the train-
ing set is small. This is because we believe that it is easy, especially for an automatic
machine learning tool, to extract useful information for classifying the planning prob-
lems. Moreover, a small training data set requires a small amount of CPU time for being
generated and is easy to evolve in case of future improvements of the decision system.

The generated tree is shown in Figure 1; it is domain-independent and can be used
to decide online which approach is better to exploit for the given planning problem. A
new instance is classified by the sum of the prediction nodes that are traversed; pos-
itive values lead to exploiting the underestimating approach, negative values lead to
the overestimating approach. For being used online, the CPU-time needed for taking
this decision is critical; given the fact that the ratios are approximately the same on all
SAT instances generated from the same planning problem, it is enough to generate the
smallest CNF. The decision process usually takes between a tenth and a hundredth of a
second.



By analysing the tree, it is possible to have some insight about which sets of clauses
are relevant for taking the decision. Intuitively, the sets of clauses that are not chang-
ing their value too much through a single planning problem should be considered by the
predictive model. In fact, it is easy to note that clauses encoding the connection between
actions and facts are relevant (sets 2, 3 and 5), while the sets of clauses encoding the
initial and goal states and, surprisingly, clauses encoding the mutually exclusive actions
and facts are not significant for the purposes of this classification. This seems counter-
intuitive; we are, essentially, trying to predict the hardness of satisfiable instances gen-
erated from a planning problem. Intuitively we would imagine some relations between
hardness and mutually exclusive actions, but in fact the machine learning technique
used, and some others tested, always ignore the ratio of this set of clauses since it does
not change much throughout the considered training examples. From a closer look at
the ADTree, we can also derive that, most of the times, the bigger is the number of
clauses from the considered sets (which corresponds to smaller ratio), the most likely is
the decision to overestimate. This lets us suppose that in problems where actions have
many effects and require many preconditions, the overestimate approach is useful for
achieving better performances.

5 Experimental Evaluation

All experimental tests were conducted using an Intel Xeon(tm) 3 GHz machine, with 2
Gbytes of RAM. Unless otherwise specified, the CPU-time limit for each run was 30
minutes (1800 seconds), after which termination was forced.

Overall, the experiments consider eight well-known planning domains: BlocksWorld,
Depots, Ferry, Gripper, Gold-miner, Matching-bw, Sokoban and Satellite. These do-
mains were selected because random instance generators are available for them, and
because SatPlan is able to solve not only trivial instances, i.e., that have makespan
shorter than 10 timesteps; very short plans are not significant for the scope of our study.
Four of them, namely BlocksWorld, Ferry, Matching-bw and Satellite, have been con-
sidered for the training of the predictive model. We included them because we are in-
terested in evaluating the performance of the generated model on both training domains
and, obviously, new ones. For each selected domain we generated thirty benchmark
problems using the available generator. These problems are different from those used
for training the predictive model.

The performance of each approach was evaluated using the speed score, the perfor-
mance score function adopted in IPC-7 [3], which is a widely used evaluation criterion
in the planning community.

The speed score of a planning system s is defined as the sum of the speed scores
assigned to s over all the considered problems. The speed score of s for a planning
problem P is defined as:

Score(s, P ) =

0 if P is unsolved
1

1+log10(
TP (s)

T∗
P

)
otherwise



Table 2. Number of problems considered per domain (column 2), mean plan length (column 3),
IPC score (columns 4-6), mean CPU time (columns 7-9) and percentages of solved problems
(columns 10-12) achieved by respectively SatPlan, SPO and SPUO, starting from -10/+10 time
steps w.r.t. the optimal plan length.

Domain # PL IPC Score Mean CPU Time % solved
SPU SPO SPUO SPU SPO SPUO SPU SPO SPUO

BlocksWorld 30 32.4 25.2 28.5 28.6 110.2 81.5 81.8 100.0 100.0 100.0
Ferry 30 29.2 11.1 17.0 17.0 309.4 144.5 144.5 46.7 56.7 56.7
Matching-bw 30 29.3 22.0 14.4 22.0 261.1 636.2 261.1 73.3 70.0 73.3
Satellite 30 23.7 21.2 19.0 21.2 308.0 272.3 305.3 73.3 73.3 73.3
Depots 30 16.3 28.0 12.7 27.0 152.1 724.1 197.9 93.3 70.0 93.3
Gripper 30 11.0 7.3 9.9 9.9 28.9 12.5 12.5 33.3 33.3 33.3
Gold-miner 30 55.2 27.4 28.3 27.7 191.3 207.2 193.1 100.0 100.0 100.0
Sokoban 30 38.7 28.2 27.6 28.4 64.8 64.2 62.3 100.0 100.0 100.0
All 240 24.9 170.4 157.4 181.8 175.3 267.9 162.6 77.5 75.4 78.8

where T ∗
P is the lowest measured CPU time to solve problem P and TP (s) denotes the

CPU time required by s to solve problem P . Higher values of the speed score indicate
better performance. All the CPU times under 0.5 seconds are considered as equal to 0.5
seconds.

In the rest of this experimental analysis, SPO stands for SatPlan exploiting the
overestimation approach and SPU stands for SatPlan exploiting the underestimation
approach. The complete proposed approach is called SPUO; it is composed by the mod-
ified version of SatPlan, which is able to exploit both over/under-estimation, and the de-
cision system for selecting online whether to overestimate or underestimate. The mean
CPU times are always evaluated only on instances solved by all the compared systems.

In Table 2 are shown the results, in terms of IPC score, mean CPU times and percent-
ages of solved problems of a comparison between the original SatPlan underestimating
approach, SPO and SPUO on benchmark instances of selected domains. The overesti-
mating approach starts solving from 10 time steps over the optimal plan length, while
the original SatPlan underestimating approach is starting from 10 time steps lower. If
the optimal plan is shorter than 10 time steps, the system is starting from the lower
bound estimated by SatPlan. We are comparing the CPU times needed for demonstrat-
ing the optimality of the solution, i.e. if the optimal plan length is k, it must demonstrate
the unsatisfiability of the planning problem using k − 1 time steps.

The upper half of Table 2 shows the results on domains that were considered for
training the predictive model exploited by SPUO, while in the lower half shows results
on new domains. As expected, SPUO always achieved the best IPC score in the upper
half. But it is worth noting that also on new domains, it is usually able to achieve very
good results. It is the best approach on two domains and it is very close to best in the
remaining domains.

It is noticeable that in Ferry, the overestimating approach is always the best choice,
since the IPC score has exactly the same value of the number of solved problems. In
Gripper, it is almost the best approach, since on only one problem the underestimating



Table 3. For each considered domain, the percentages of solved instances in which it is better to
apply the underestimating (column 2) or overestimating (column 3) approach, and the percentages
of instances in which SPUO exploited the right (fastest) approach (column 4).

Domain Under Over SPUO

BlocksWorld 33.3 66.7 76.7
Ferry 0.0 100.0 100.0
Matching-bw 100.0 0.0 100.0
Satellite 80.0 20.0 72.3
Depots 100.0 0.0 90.0
Gripper 10.0 90.0 90.0
Gold-miner 50.0 50.0 53.3
Sokoban 60.0 40.0 70.0

approach has achieved better results. On the other hand, in planning problems from the
Matching-bw and Depots domains underestimating is always the best choice. On the re-
maining domains, combining the two techniques is the best choice; in all of them there
is a significant percentage of planning problems in which either the under or overesti-
mating approach is faster.

Although in the presented results we considered only an under/over-estimation of
10 time steps, we experimentally observed that when the best approach is overestimat-
ing the optimal plan length, an overestimation of 20 time steps allows the system to
achieve better results than an underestimation by only 10 time steps. On the other hand,
we also experimentally observed that in the case in which it is better to underestimate,
even an underestimation of 20 time steps allows the planning system to achieve better
results than through even a small overestimation. Intuitively, we believe that this be-
havior derives from the fact that the hardness (or the gradient of the hardness) of SAT
instances on these problems is very different between satisfiable and unsatisfiable ones.

Looking at the column with mean plan length (PL) over considered problems of
each selected domain in Table 2, we can derive that the best strategy to exploit is not
really related to the number of steps of the optimal plan. The overestimating approach
achieved good results on both problems with short optimal plans (Gripper) and long
optimal plans (Gold-miner).

For a better understanding of the relation between the two approaches on each of
the selected domains, in Table 3 are shown the percentages of problems in which it is
better to apply the underestimating or overestimating approach, and the percentages of
instances in which SPUO selected the right approach. The results shown in this table
confirm the ones presented in Table 2; in the Matching-bw and Depots domains, under-
estimating is always the best choice, and in Ferry, overestimating is always better. But it
is interesting to note that also in the other domains there is one technique which is better,
at least in terms of the percentage of problems in which it is faster; this is the case for
Sokoban and Satellite domains, in which underestimating is better, and BlocksWorld
and Gripper, in which the overestimating approach allows us to achieve better results.
In Gold-miner both the approaches are useful for speeding up the planning process on
exactly 50% of the problems. Finally, SPUO is generally able to select the right (fastest)



Table 4. For each considered domain, the IPC score (columns 2-4) and the mean CPU time
(columns 5-7) of the proposed SPUO, an Oracle selecting the best approach on benchmark prob-
lems and a random selection.

Domain IPC Score Mean CPU Time
SPUO Oracle Random SPUO Oracle Random

BlocksWorld 28.6 30.0 26.5 81.8 79.7 110.2
Ferry 17.0 17.0 12.8 144.5 144.5 219.6
Matching-bw 22.0 22.0 14.6 261.1 261.1 512.7
Satellite 21.2 22.0 19.2 305.4 234.1 314.8
Depots 27.0 28.0 19.3 197.9 152.1 301.4
Gripper 9.9 10.0 8.1 12.5 12.5 28.3
Gold-miner 27.7 30.0 27.6 193.1 166.9 210.6
Sokoban 28.4 30.0 27.6 62.3 59.2 66.4
All 181.8 189.0 155.7 161.4 142.0 220.7

approach for solving a given problem. Only in Gold-miner it shows a precision below
70%. This is probably due to the fact that Gold-miner problems have usually a very
similar structure, and that both SPU and SPO approaches lead to performances that are
not significantly different.

In order to evaluate the accuracy of the decision system developed, we compared
SPUO with an Oracle specifying the best approach to exploit for every benchmark prob-
lem and a random approach, that randomly selects the approach to use for the given
problem. The results of this comparison are shown in Table 4. The decision system is
very accurate on domains used for training the predictive model; on two domains it
achieves the same IPC score of an Oracle, and on the remaining it is always very close
to it. Also on new domains the decision system is able to achieve results that are very
close to the Oracle ones. These are very interesting results, considering that the decision
system is instance-based, is very fast, and has been trained on a small training set. The
random selection approach usually achieved a low IPC Score; only in domains in which
forward and backward approaches have similar behavior on considered problems e.g.,
Blocksworld, Gold-miner and Sokoban, its performance is close to the SPUO ones.

In terms of mean CPU times SPUO is almost always very close to the Oracle, while
the random selected approach usually required a considerable amount of CPU time for
solving testing instances. On Satellite the very high mean CPU time of SPUO is mainly
due to only two instances (out of 22 solved) in which the selected approach is very slow.

6 Conclusions and Future Work

In this paper we investigated the usefulness of combining two well known approaches
to planning as satisfiability: overestimating and underestimating. For combining these
approaches, we proposed a machine learning based technique for taking instance-based
domain-independent online decisions about the best strategy to exploit for solving a
new planning problem. The decision system is represented as an alternating decision
tree which evaluates the ratio of three sets of clauses w.r.t. the whole set of clauses of



a SAT instance generated from the given planning problem. We have experimentally
observed that the ratios are fixed throughout all the SAT instances generated from the
same problem, so it is sufficient to generate the smallest one, which corresponds to the
encoding of the first level of the planning graph in which all the goals are true, for
deciding.

An experimental study, which considered 8 different domains and 240 planning
problems, indicates that: (i) the best approach to exploit can be different across plan-
ning problems of the same domain; (ii) in planning problems in which overestimating
is useful, an inaccurate upper bound performs better than a more accurate lower bound;
(iii) the decision system is accurate, even if compared with an Oracle, and helps to ef-
fectively combine the underestimating and overestimating approaches; (iv) the SPUO

system is very efficient and has outperformed SatPlan. We also observed that the over-
estimating approach usually is not useful on SAT encoding techniques that do not con-
sider no-ops (see, e.g., [8]). Such encodings make it impossible to exploit jumps while
overestimating, and moreover, we experimentally observed that it makes satisfiable in-
stances, longer than the optimal one, harder to solve if compared to different encodings.

A limit of the current approach is that we have considered as known the optimal
plan length, however, there already exists works about how to generate an accurate
prediction of the optimal plan length (e.g. [5]) which could be exploited. Moreover,
for overestimating the optimal plan length, the strategy adopted in [21] could be very
useful; using a suboptimal planner to find a suboptimal sequential plan and then paral-
lelize it. Finally, another strategy for overestimating the length of the optimal parallel
plan, could be based on extracting information about the level of the fixed point of the
planning graph of the given problem.

We see several avenues for future work on SPUO. Concerning the optimal plan
length prediction, we are evaluating the possibility of merging the proposed decision
system with a predictive model of the optimal plan length. In this way, after deciding
the approach to use, it can make a “biased” prediction for starting the planning pro-
cess from a lower or an upper bound. Moreover, we are interested in evaluating the
possibility of applying some sort of parallel solver in the proposed backward search;
this has been already done in the SAT-based classical forward search in the well known
Mp planner [16], with very interesting results. Furthermore, we are planning to study
strategies for reusing part of the knowledge learnt by solving a satisfiable SAT instance,
for speeding up the overestimating approach. Finally, we are interested in running ad-
ditional experiments about the impact of the proposed SPUO on SAT-based planning,
and in investigating the relation between the frequency and the length of jumps and the
performance of the backward search.

Acknowledgements. The authors would like to acknowledge the use of the Univer-
sity of Huddersfield Queensgate Grid in carrying out this work.

References

1. Biere, A.: P{re,i}cosat@sc’09. In: SAT Competition 2009 (2009)
2. Blum, A., Furst, M.L.: Fast planning through planning graph analysis. Artificial Intelligence

90, 281–300 (1997)



3. Celorrio, S.J., Coles, A., Coles, A.: Learning track of the 7th International Planning Compe-
tition. http://www.plg.inf.uc3m.es/ipc2011-learning (2011)

4. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commu-
nications of the ACM 5(7), 394–397 (1962)

5. Gerevini, A., Saetti, A., Vallati, M.: Exploiting macro-actions and predicting plan length in
planning as satisfiability. In: Proceedings of the XIIth International Conference of the Italian
Association for Artificial Intelligence (AI*IA-11). pp. 189–200. Springer (2011)

6. Hall, M., Holmes, F.G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining
software: An update. SIGKDD Explorations 11(1), 10–18 (2009)

7. Hoffmann, J.: FF: The Fast-Forward Planning System. AI Magazine 22(3), 57–62 (2001)
8. Huang, R., Chen, Y., Zhang, W.: A novel transition based encoding scheme for planning as

satisfiability. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI-
10). pp. 89–94. AAAI (2010)

9. Huang, R., Chen, Y., Zhang, W.: SAS+ planning as satisfiability. Journal of Artificial Intelli-
gence Research 43, 293–328 (2012)

10. Kautz, H., Selman, B.: Planning as satisfiability. In: Proceedings of the 10th European Con-
ference on Artificial Intelligence (ECAI-92). pp. 359–363. John Wiley and Sons (1992)

11. Kautz, H., Selman, B.: Unifying sat-based and graph-based planning. In: Proceedings of
the 16th International Joint Conference on Artificial Intelligence (IJCAI-99). pp. 318–325.
Morgan Kaufmann (1999)

12. Kautz, H., Selman, B., Hoffmann, J.: SatPlan: Planning as satisfiability. In: Abstract Booklet
of the 5th International Planning Competition (2006)

13. Mitchell, D., Selman, B., Levesque, H.: Hard and easy distributions of SAT problems. In:
Proceedings of the 10th National Conference on Artificial Intelligence (AAAI-92). pp. 459–
465. AAAI (1992)

14. Nudelman, E., Leyton-Brown, K., Hoos, H.H., Devkar, A., Shoham, Y.: Understanding ran-
dom SAT: Beyond the clauses-to-variables ratio. In: Proceedings of the 10th International
Conference on Principles and Practice of Constraint Programming (CP-04). pp. 438–452.
Springer (2004)

15. Pfahringer, B., Holmes, G., Kirkby, R.: Optimizing the induction of alternating decision
trees. In: Proceedings of the 5th Pacific-Asia Conference on Advances in Knowledge Dis-
covery and Data Mining (PAKDD-01). pp. 477–487. Springer (2001)

16. Rintanen, J.: Engineering efficient planners with SAT. In: Proceedings of the 20th European
Conference on Artificial Intelligence (ECAI-12). pp. 684–689. IOS Press (2012)

17. Rintanen, J.: Evaluation strategies for planning as satisfiability. In: Proceedings of the 16th
European Conference on Artificial Intelligence (ECAI-04). pp. 682–687. IOS Press (2004)

18. Sideris, A., Dimopoulos, Y.: Constraint propagation in propositional planning. In: Proceed-
ings of the 20th International Conference on Automated Planning and Scheduling (ICAPS-
10). pp. 153–160. AAAI (2010)

19. Sideris, A., Dimopoulos, Y.: Propositional planning as optimization. In: Proceedings of the
20th European Conference on Artificial Intelligence (ECAI-12). pp. 732–737. IOS Press
(2012)

20. Streeter, M.J., Smith, S.F.: Using decision procedures efficiently for optimization. In: Pro-
ceedings of the 17th International Conference on Automated Planning and Scheduling
(ICAPS-07). pp. 312–319. AAAI (2007)

21. Xing, Z., Chen, Y., Zhang, W.: MaxPlan: Optimal planning by decomposed satisfiability and
backward reduction. In: Proceedings of the 5th International Planning Competition (IPC-5)
(2006)


