
University of Huddersfield Repository

Iqbal, Saqib

Aspects and Objects: A Unified Software Design Framework

Original Citation

Iqbal, Saqib (2013) Aspects and Objects: A Unified Software Design Framework. Doctoral thesis,
University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/18094/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Aspects and Objects:

A Unified Software Design Framework

A thesis submitted to the University of Huddersfield

in partial fulfilment of the requirements for

the degree of Doctor of Philosophy

By

SAQIB IQBAL

July 2012

Department of Informatics

The University of Huddersfield

 2

Abstract

Aspect-Oriented Software Development provides a means to modularize concerns of a

system which are scattered over multiple system modules. These concerns are known as

crosscutting concerns and they cause code to be scattered and tangled in multiple system

units. The technique was first proposed at the programming level but evolved up through to

the other phases of the software development lifecycle with the passage of time. At the

moment, aspect-orientation is addressed in all phases of software development, such as

requirements engineering, architecture, design and implementation. This thesis focuses on

aspect-oriented software design and provides a design language, Aspect-Oriented Design

Language (AODL), to specify, represent and design aspectual constructs. The language has

been designed to implement co-designing of aspectual and non-aspectual constructs. The

obliviousness between the constructs has been minimized to improve comprehensibility of

the models. The language is applied in three phases and for each phase a separate set of

design notations has been introduced. The design notations and diagrams are extensions of

Unified Modelling Language (UML) and follow UML Meta Object Facility (UML MOF)

rules. There is a separate notation for each aspectual construct and a set of design diagrams

to represent their structural and behavioural characteristics.

In the first phase, join points are identified and represented in the base program. A distinct

design notation has been designated for join points, through which they are located using

two diagrams, Join Point Identification Diagram and Join Point Behavioural Diagram. The

former diagram identifies join points in a structural depiction of message passing among

objects and the later locates them during the behavioural flow of activities of the system.

In the second phase, aspects are designed using an Aspect Design Model that models the

structural representation of an aspect. The model contains the aspect‟s elements and

associations among them. A special diagram, known as the pointcut-advice diagram, is

nested in the model to represent relationship between pointcuts and their related advices.

The rest of the features, such as attributes, operations and inter-type declarations are

statically represented in the model.

In the third and the final phase, composition of aspects is designed. There are three

diagrams included in this phase. To design dynamic composition of aspects with base

classes, an Aspect-Class Dynamic Model has been introduced. It depicts the weaving of

advices into the base program during the execution of the system. The structural

representation of this weaving is modelled using Aspect-Class Structural Model, which

represents the relationships between aspects and base classes. The third model is the

Pointcut Composition Model, which is a fine-grained version of the Aspect-Class Dynamic

Model and has been proposed to depict a detailed model of compositions at pointcut-level.

Besides these models, a tabular specification of pointcuts has also been introduced that

helps in documenting pointcuts along with their parent aspects and interacting classes.

AODL has been evaluated in two stages. In the first stage, two detailed case studies have

been modelled using AODL. The first case study is an unimplemented system that is

forward designed using AODL notations and diagrams, and the second is an implemented

system which is reverse engineered and designed in AODL. A qualitative evaluation has

been conducted in the second stage of evaluation to assess the efficacy and maturity of the

language. The evaluation also compares the language with peer modelling approaches.

 3

Copyright Statement

I. The author of this thesis (including any appendices and/or schedules to this thesis)

owns any copyright in it (the “Copyright”) and s/he has given The University of

Huddersfield the right to use such Copyright for any administrative, promotional,

educational and/or teaching purposes.

II. Copies of this thesis, either in full or in extracts, may be made only in accordance

with the regulations of the University Library. Details of these regulations may be

obtained from the Librarian. This page must form part of any such copies made.

III. The ownership of any patents, designs, trademarks and any and all other intellectual

property rights except for the Copyright (the “Intellectual Property Rights”) and any

reproductions of copyright works, for example graphs and tables (“Reproductions”),

which may be described in this thesis, may not be owned by the author and may be

owned by third parties. Such Intellectual Property Rights and Reproductions cannot

and must not be made available for use without the prior written permission of the

owner(s) of the relevant Intellectual Property Rights and/or Reproductions.

 4

Acknowledgements

First and foremost I would like to extend my sincerest thanks to my supervisor, Dr. Gary

Allen, whose expertise, experience and knowledge taught me the meaning of research and

the way good research can be carried out. I am extremely grateful for his invaluable

guidance, mentorship and more importantly his patience with me. Without his consistent

support and encouragement, this thesis would not have become a reality.

Secondly, I would like to appreciate my university and my department for generously

funding this research. I deeply commend their efforts to support PhD students for making a

strong research base in the university. I also owe them thanks for financially supporting me

to attend conferences during the period of this research.

I would also like to thank my friends and research fellows, Mr. Munir Naveed and Mr.

Shahin Shah, for always being out there for me whenever I found myself down and

depressed due to the burden of this research.

And finally I would thank my parents and would like to dedicate this work to them who

stood by me with their persistent encouragement and motivation in toughest of times.

 5

Table of Contents

ABSTRACT.. 2

COPYRIGHT STATEMENT .. 3

ACKNOWLEDGEMENTS.. 4

TABLE OF CONTENTS ... 5

LIST OF FIGURES.. 7

LIST OF TABLES ... 9

CHAPTER 1: INTRODUCTION ... 11

1.1 INTRODUCTION ... 11

1.2 RESEARCH GOALS AND OBJECTIVES .. 13

1.3 APPROACH.. 14

1.4 CONTRIBUTION ... 15

1.5 STRUCTURE OF THE THESIS .. 17

CHAPTER 2: ASPECT-ORIENTATION AND REQUIREMENTS ENGINEERING......................... 19

2.1 INTRODUCTION ... 19

2.2 SEPARATION OF CONCERNS .. 20

2.3 CROSSCUTTING CONCERNS .. 21

2.3.1 Scattered Code and Tangled Code Problems ... 21

2.4 ASPECT-ORIENTATION ... 22

2.5 ASPECT-ORIENTED PROGRAMMING ... 23

2.5.1 Aspects and Key Elements .. 24

2.6 SYMMETRIC AND ASYMMETRIC ASPECT-ORIENTATION ... 25

2.6.1 Symmetric Aspect-Oriented Approaches ... 25

2.6.2 Asymmetric Aspect-Oriented Approaches ... 27

2.7 COMPARISON OF ASPECT-ORIENTED REQUIREMENTS ENGINEERING APPROACHES 30

2.8 DISCUSSION .. 31

2.9 CHAPTER SUMMARY .. 31

CHAPTER 3: ASPECT-ORIENTED DESIGN APPROACHES ... 33

3.1 SOFTWARE DESIGN .. 33

3.2 ASPECT-ORIENTED DESIGN .. 33

3.3 ASPECT-ORIENTED DESIGN AND MODELLING APPROACHES .. 34

3.3.1 Aspect-Oriented Design Modelling (AODM)... 38

3.3.2 Theme/UML Design Methodology ... 42

3.3.3 Motorola Weavr Approach ... 45

3.3.4 Aspect-Oriented Architecture Modelling (AAM) ... 47

3.3.5 Aspect-Oriented Software Development with Use Cases (AOSD/UC) 50

3.3.6 The JAC Design Notation .. 53

3.3.7 Klein’s Approach for Behavioural Aspect Weaving .. 55

3.3.8 State Chart and UML Profile (SUP) Approach ... 57

3.4 DISCUSSION ... 59

3.5 CHAPTER SUMMARY .. 59

CHAPTER 4: ASPECT-ORIENTED DESIGN LANGUAGE ... 60

 6

4.1. INTRODUCTION ... 60

4.2. MOTIVATION .. 61

4.3. ASPECT-ORIENTED DESIGN LANGUAGE (AODL) ... 62

4.3.1. How to use AODL .. 65

4.3.2. Join Point Design ... 66

4.3.3. Pointcut Design .. 75

4.3.4. Aspect Design ... 86

4.3.5. Weaving Process Design .. 89

4.3.6. Pointcut Table .. 96

4.5. CHAPTER SUMMARY ... 97

CHAPTER 5: APPLICATION OF AODL ... 98

5.1. INTRODUCTION ... 98

5.2. CASE STUDY: CAR CRASH CRISIS MANAGEMENT SYSTEM ... 99

5.4.2. Crisis Scenario of a Car Crash Crisis Management System .. 99

5.4.3. Identified Aspects ... 100

5.4.4. Use Case Diagram of Car Crash Case Study .. 101

5.4.5. Application of AODL to Car Crash Crisis Management .. 101

5.4.6. Discussion .. 117

5.3. SPACEWAR GAME CASE STUDY ... 118

5.5.2. Identified Aspects in the System .. 118

5.5.3. Application of AODL to SpaceWar Game ... 118

5.4. DISCUSSION .. 139

5.5. CHAPTER SUMMARY ... 140

CHAPTER 6: QUALITATIVE EVALUATION OF AODL .. 141

6.1. INTRODUCTION ... 141

6.2. THE QUALITATIVE EVALUATION CRITERIA .. 141

6.3. EVALUATION OF AODL .. 149

6.5.2. Basic Design ... 149

6.5.3. Design Language ... 158

6.5.4. Concern Representation... 163

6.5.5. Concern Composition .. 169

6.5.6. Effectiveness ... 176

6.5.7. Tool Support ... 185

6.4. DISCUSSION .. 189

6.5. CHAPTER SUMMARY ... 190

CHAPTER 7: CONCLUSIONS AND FUTURE WORK ... 191

7.3. ACHIEVED GOALS OF THE RESEARCH ... 191

7.4. CONTRIBUTION ... 193

7.5. LIMITATIONS .. 195

7.6. FUTURE WORK ... 196

7.7. CLOSING REMARKS .. 197

REFERENCES ... 198

APPENDIX A: AODL METAMODELS ... 208

 7

List of Figures

Figure 2.1: Example of Crosscutting Concerns ... 21

Figure 2.2: An example of a tangled code .. 22

Figure 2.3: Concern-Oriented Requirements Engineering Process .. 26

Figure 2.4: A typical use case in AOSD with Use Cases Approach ... 28

Figure 2.5: Theme/Doc Process ... 29

Figure 2.6: The process model for AORE with Arcade approach ... 30

Figure 3.1: Structural Similarities between a pointcut, an advice and an operation ... 38

Figure 3.2: Representation of an aspect in AODM .. 39

Figure 3.3: Representation of structural crosscutting in AODM .. 39

Figure 3.4: Join Point Indication Diagram ... 40

Figure 3.5: Weaving Collaborations ... 40

Figure 3.6: An Example of a Theme depicted in Theme/UML ... 43

Figure 3.7: The Theme/UML Composed Model ... 44

Figure 3.8: The Observer aspect represented in Motorola Weavr approach .. 46

Figure 3.9: The Observer Aspect Model depicted in AAM .. 48

Figure 3.10: A Composed Model in AAM .. 49

Figure 3.11: Weaving Aspectual Behaviour in AAM ... 49

Figure 3.12: The Observer aspect modelling using AOSD/UC notations ... 52

Figure 3.13: The observer aspect modelled using the JAC design notation .. 54

Figure 3.14: A modelling of Observer aspect in Klein‟s Approach .. 56

Figure 3.15: An Example of a Composed Model in Klein‟s Approach .. 56

Figure 3.16: A representation of Observer aspect using SUP approach .. 58

Figure 4.1: AODL Diagrammatic Model .. 63

Figure 4.2: Join Point Representation ... 68

Figure 4.3: Join Point Identification Diagram ... 70

Figure 4.4: Join Point Behavioural Diagram ... 73

Figure 4.5: A Pointcut Example .. 76

Figure 4.6: Pointcut-Advice Diagram in Authentication Aspect ... 80

Figure 4.7: Pointcut Composition Model .. 85

Figure 4.8: Aspect-Design Diagram for Authentication Aspect ... 89

Figure 4.9: Aspect-Class Dynamic Diagram ... 92

Figure 4.10: Aspect-Class Structure Diagram ... 95

Figure 5.1: CCCM System: A Standard Use Case Diagram ... 101

Figure 5.2: Join Point Identification Diagram for “Capture Witness Report” ... 103

Figure 5.3: Join Point Identification Diagram for “Assign Internal Resource” ... 103

Figure 5.4: Join Point Identification Diagram for “Execute Super Observer Mission” use case 104

Figure 5.5: Join Point Identification Diagram for “Authenticate User” .. 105

Figure 5.6: Aspect Design Diagram for Mission Status aspect ... 106

Figure 5.7: Aspect Design Diagram for WitnessObserver aspect ... 106

Figure 5.8: Aspect Design Diagram for Persistence aspect ... 107

Figure 5.9: Aspect Design Diagram for Authentication aspect ... 107

Figure 5.10: Aspect-Class Structure Diagram for Car Crash Crisis Management System.............................. 108

Figure 5.11: Join Point Behavioural Diagram for “Capture Witness Report” module 109

Figure 5.12: Join Point Behavioural Diagram for “Assign Internal Resource” module 110

Figure 5.13: Join Point Behavioural Diagram for “Super Observer‟s Mission” module 110

Figure 5.14: Join Point Behavioural Diagram for “Authentication” module .. 111

Figure 5.15: Aspect-Class Dynamic Diagram for “Capturing Witness Report” ... 112

Figure 5.16: Aspect-Class Dynamic Diagram for “Assigning Internal Resource” ... 113

Figure 5.17: Aspect-Class Dynamic Diagram for “Execute Super Observer Mission” 113

file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078740
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078741
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078745
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078746
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078747
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078748
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078749
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078750
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078751
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078752
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078753
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078754
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078755
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078757
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078758
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078759
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078760
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078761
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078764
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078765
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078766
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078767
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078768
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078769
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078770
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078771
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078772
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078773
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078774
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078775
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078776
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078777
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078778
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078779
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078780
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078781
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078782
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078783
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078784
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078785
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078786
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078787
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078788

 8

Figure 5.18: Aspect-Class Dynamic Diagram for “Authentication” ... 114

Figure 5.19: Pointcut Composition Model of Persistence and WitnessObserver aspects 115

Figure 5.20: Pointcut Composition Model of MissionStatus and Authentication aspects 116

Figure 5.21: Join Point Identification Diagram for “Start Game” use case ... 120

Figure 5.22: Join Point Identification Diagram for “Move Ship” use case ... 121

Figure 5.23: Join Point Identification Diagram for “Thrust” use case .. 121

Figure 5.24: Join Point Identification Diagram for “Fire” use case .. 122

Figure 5.25: Join Point Identification Diagram for “Handle Collision” use case .. 123

Figure 5.26: Aspect Design Diagram for Coordinator and its child aspects ... 124

Figure 5.27: Aspect Design Diagram for DisplayAspect aspect ... 125

Figure 5.28: Aspect Design Diagram for EnsureShipIsALive aspect ... 126

Figure 5.29: Aspect Design Diagram for RegistrationProtection aspect ... 126

Figure 5.30: Aspect Design Diagram for Debug aspect .. 127

Figure 5.31: Aspect-Class Structure Diagram for SpaceWar game .. 128

Figure 5.32: Join Point Behavioural Diagram for Start Game .. 129

Figure 5.33: Join Point Behavioural Diagram for Move Ship ... 129

Figure 5.34: Join Point Behavioural Diagram for Fire .. 129

Figure 5.35: Join Point Behavioural Diagram for Handle Collision ... 130

Figure 5.36: Join Point Behavioural Diagram for Thrust .. 130

Figure 5.37: Aspect-Class Dynamic Diagram for “Start Game” ... 132

Figure 5.38: Aspect-Class Dynamic Diagram for “Rotate the Ship” .. 132

Figure 5.39: Aspect-Class Dynamic Diagram for “Fire” .. 133

Figure 5.40: Aspect-Class Dynamic Diagram for “Handle Collision” .. 134

Figure 5.41: Aspect-Class Dynamic Diagram for “Thrust” .. 134

Figure 5.42: Pointcut Composition Model of Coordinator, RegistrySynchronization, GameSynchronization

and RegistryProtection aspects .. 136

Figure A- 1: Aspect Design Metamodel .. 208

Figure A- 2: Pointcut Composition Metamodel .. 209

file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078789
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078790
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078791
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078793
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078797
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078798
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078799
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078800
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078801
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078802
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078803
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078804
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078805
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078806
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078807
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078808
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078809
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078810
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078811
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078812
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078813
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078813
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078814
file:///C:/Saqib/The%20Final/THe%20THE%20Final/Thesis_Final.docx%23_Toc352078815

 9

List of Tables

Table 2.1: Explanation of aspectual terms .. 24

Table 3.1 - Graphic Nodes included in Join Point Identification Diagrams ... 35

Table 4.1 - Graphic Nodes included in Join Point Identification Diagrams .. 69

Table 4.2 - Graphic Paths included in Join Point Identification Diagrams ... 69

Table 4.3 - Graphic Nodes included in Join Point Behavioural Diagrams .. 71

Table 4.4 - Graphic Paths included in Join Point Behavioural Diagrams ... 73

Table 4.5- Graphic Nodes included in Join Point Behavioural Diagrams ... 79

Table 4.6 - Graphic Paths included in Pointcut-Advice Diagrams .. 79

Table 4.7 - Graphic Nodes included in Pointcut Composition Model... 82

Table 4.8 - Graphic Paths included in Pointcut Composition Model .. 83

Table 4.9 - Graphic Nodes included in Aspect-Design Diagrams ... 88

Table 4.10 - Graphic Paths included in Pointcut-Advice Diagrams .. 88

Table 4.11 - Graphic Nodes included in Aspect-Class Dynamic Diagram ... 91

Table 4.12 - Graphic Paths included in Aspect-Class Dynamic Diagram ... 92

Table 4.13 - Graphic Nodes included in Aspect-Class Structure Diagram ... 94

Table 4.14 - Graphic Paths included in Aspect-Class Dynamic Diagram ... 94

Table 4.15 - Example Pointcut Table .. 96

Table 5.1 - Pointcut Table for Car Crash Crisis Management System .. 116

Table 5.2 - Pointcut Table for SpaceWar game .. 138

Table 6.1 - Summary of Evaluation Criteria ... 147

Table 6.2 - Comparison of all approaches based on Platform and Language ... 150

Table 6.3 - Comparison of all approaches based on Comprehensiveness criterion... 151

Table 6.4 - Comparison of all approaches based on Structural andBehavioural ... 153

Table 6.5 - Comparison of all approaches based on Design Process criterion .. 155

Table 6.6 - Summary of evaluation of the approaches against Basic Design criteria 156

Table 6.7 - Comparison of the approaches based on Design Notations criterion .. 158

Table 6.8 - Comparison of the approaches based on Design Representation criterion 159

Table 6.9 - Comparison of the approaches based on Design Semantics criterion ... 161

Table 6.10 - Summary of evaluation of the approaches against Design Language/Approach 162

Table 6.11 - Comparison of the approaches based on Symmetric vs Asymmetric criterion 164

Table 6.12 - Comparison of the approaches based on Concern Representation criterion 165

Table 6.13 - Summary of evaluation of the approaches against Concern ... 167

Table 6.14 - Comparison of the approaches based on Aspect Composition criterion 169

Table 6.15 - Comparison of the approaches based on Rules to resolve conflictscriterion 172

Table 6.16 - Summary of evaluation of the approaches against Concern Composition criteria 174

Table 6.17 - Comparison of the approaches based on Comprehensibility criterion .. 176

Table 6.18 - Comparison of the approaches based on Extensibility criterion ... 179

Table 6.19 - Comparison of the approaches based on Traceability criterion .. 181

Table 6.20 - Comparison of the approaches based on Scalability criterion .. 182

Table 6.21 - Summary of evaluation of the approaches against Effectiveness criterion 184

Table 6.22 - Comparison of the approaches based on Modelling Support criterion 185

Table 6.23 - Comparison of the approaches based on Composition Support criterion 186

Table 6.24 - Comparison of the approaches based on Code Generation criterion .. 187

Table 6.25 - Summary of evaluation of the approaches against .. 188

 10

 11

Chapter 1:

Introduction

This chapter describes the problem and motivation behind the conception and initiation of

this research. It describes the goals and objectives set for this study and the approaches

adopted to achieve these objectives. This chapter also provides a list of contributions

which have been made to knowledge through this research. The chapter concludes with a

description of the structure of the thesis.

1.1 Introduction

Dijkstra (1982) coined the term separation of concerns to divide a system into multiple

separately manageable parts to make the system easy to specify, implement and document.

This approach helps in identifying, designing, implementing, tracing and managing

software in an easy way by providing encapsulation of distinct concerns into independent

modules. Many approaches, including object-oriented programming, were invented on this

very principle (Booch, 1982). Object-Oriented programming decomposesa system into only

one dimension,a class hierarchy, which creates a problem commonly known as tyranny of

the dominant decomposition (Tarr et. al, 1999). This problem results in some concerns

being scatteredover multiple classes with theirlogic distributed over several modules. These

concerns are known ascrosscutting concernsas they affect multiple modules and

compositional units.Examples of such concerns include logging (Kiczales et al., 1997),

authentication (Vanderperren et al., 2003), security (Win et al., 2002) and business rules

(Cibran et al., 2003). The logic of these concerns cannot be captured by independent units,

such as classes, and is represented in several classes redundantly, causing “scattered” and

“tangled” code problems. The scattered code problem arises when code of a particular

concern is found in multiple modules, and the tangled code problem happens when such

scattered code causes logic of a concern to be present in a module where it does not belong.

These problems make systems hard to understand, modify and maintain.

 12

Aspect-Oriented Programming (AOP) (Kiczales et al., 1997) was invented to address this

problem at implementation-level. It provides a way of modularizing crosscutting concerns

into independent modules. Such concerns are implemented independently from other

system concerns, and are linked with themautomatically during the execution of the system.

As a result, redundant implementation of these concerns is removed and the system

becomes more modular and comprehensible. The identified concerns are called aspects.

Their implementation is in the form of a piece of code (called an advice) which is run at

predefined points (called join points) during the execution of the system. These aspects

merge with the implementation of the base modules during executionthrough a process

called weaving, which is defined in terms of composition techniques specific to the aspect-

oriented technology in use.

Since AOP was originally proposed as an implementation solution so a lot ofwork has been

dedicated to developing new and improved implementation technologies.As a result

implementation tools like AspectJ (Eclipse, 2012), AspectWerkz (Boner, 2004),JBoss AOP

(JBoss, 2012), and Spring AOP (Spring, 2011) were created. With the passage of

time,demand for strategies to support the analysis and design phases of aspect-

orientedsoftware development started arising. As a result, strategies such asAODM (Stein,

Hanenberg and Unland, 2002), Theme/UML (Baniassad and Clarke, 2004b), SUP

(Aldawudet al., 2002) and AAM (Clarke and Walker, 2002) were introduced to facilitate

the designof aspects. They all design aspects in different styles. But most of these

existingdesign strategies do not provide a common design framework for both aspectualand

non-aspectual concerns of the system. This limitation forces the designerto design these

concerns in two different design strategies, which makes thewhole design hard to

understand, maintain and extend.

The purpose of this PhD work is to develop a unified design framework for aspectual and

non-aspectual concerns (objects in the case of object-oriented paradigm). This study aims to

develop techniques to represent and design concerns with the help of design notations and

design diagrams. The primary hypothesis of this research can be stated as:

A unified design approach for aspectual and non-aspectual concerns of a system

improves quality of the design and makes it comprehensible and effective.

The rest of this chapter provides a description about the objectives of the study, approach

applied for this research and contributions of this thesis.

 13

1.2 Research Goals and Objectives

This research aims to achieve following goals:

1. Comprehensibility: It has been observed in the existing design methodologies that

comprehensibility of the design is not properly addressed (discussed in detail in

Chapter 3). The proposed notations and models are not developed to improve

readability, which becomes even more cumbersome when the system is complex

and distributed. The majority of these methodologies propose different sets of

notations to model aspect-oriented and object-oriented constructs, which forces

designers to learn and adapt to two entirely different design models for a single

system. This study aims to propose design notations for aspect-oriented constructs

which are similar in nature to those used for object-oriented constructs in UML.

2. Co-Designing aspectual and non-aspectual constructs: A unified design

framework, which provides a single platform to model both aspect-oriented and

object-oriented constructs, can improve the modelling of associations among both

the concepts and can also provide a better platform to design the weaving process.

This capability of the design methodology can also help in improving

comprehensibility.

3. Achieving Modularity and Composability by breaking Obliviousness: Steimann

(2005) proposed that obliviousness is a fundamental property that must be

implemented in every AOSD approach. His proposition was based on the arguments

presented in favour of quantification and obliviousness in aspect-oriented

programming in (Filman and Friedman, 2000). The proposal was rejected by Rashid

and Moreira (2006), who argued that abstraction, modularity and composability are

more fundamental properties than quantification and obliviousness. This research

will follow Rashid and Moreira (2006) and will focus on achieving better modelling

techniques for modularity and composability.

To prove the hypothesis and achieve abovementioned goals, a number of objectives have

been set.The primary objective of this research is to provide a unified design framework for

objects and aspects. Due to the lack of design languages for the aspect-oriented paradigm,

designers struggle to find a good approach to specify, represent, design and document

aspects along with objects in the same design environment. The existing aspect-oriented

 14

design techniques either lack comprehensiveness or provide separate techniques to handle

objects and aspects thatmakeit difficult for the designers to learn and adopt these

techniques.

This study aims to achieve the following research objectives:

 To develop a unified design framework for objects and aspects to co-design both the

constructs.

 To design notations for aspects similar to those for objects (UML notations) to

represent them during the development life cycle

 To develop design diagrams for aspects similar to those for objects (UML diagrams)

to be represented and designed properly

 To evaluate and test the design notations and design diagrams by qualitative

methods and by applying them to a range of case studies to verify their suitability,

efficacy, scalability and comprehensiveness.

1.3 Approach

This study was initiated to provide a unified design approach for aspects and objects. It has

been felt that the existing design approaches force designers to adopt two different design

methodologies for aspect-oriented and object-oriented constructs. UML is the widely used

design language for object-oriented constructs, and most of the designers use this language

while designing the base constructs. Whereas for aspect-oriented constructs, a number of

design approaches are available, the majority of which are different from UML. The

designers have to use two different design languages to design one system which makes it

hard for these new aspect-oriented design languages to be adopted. The purpose of this

research was to find new ways to unify design of both objects and aspects together in one

design environment and co-design both the constructs using similar design notations and

diagrams. This property will not only improve the effectiveness of the design but will also

enhance comprehensibility of all the models.

The project started with the exploration of aspect-oriented analysis and design techniques.

A number of approaches, such as View Point based approach (Rashid et al., 2003), Goal

based approach (Yu et al., 2004), Use Case based approach (Jacobson and Pan-Wei, 2005),

Scenario based approach (Whittle et al., 2003) and Multiple Dimension Separation of

Concerns approach (Tarr et. al, 1999), were studied and analysed in the first stage of the

research.

 15

Design of aspects is one area of research that has attracted less attention since the inception

of aspect-oriented programming. Although there are a number of aspect-oriented design

approaches such as, AODM (Stein et al., Unland, 2002a), Theme/UML (Baniassad and

Clarke, 2004b), SUP (Aldawudet al., 2002) and AAM (Clarke and Walker, 2002), which

have been proposed over the last decade, a comprehensive design approach is still required.

All of these approaches lack a unified design approach for both aspectual concerns and

non-aspectual concerns that forces designers to adopt two different design approaches.

Multiple design methodologies do not only misguide the designers but also create problems

in documenting and representing all concerns properly.

This study has been carried out to find a solution to this problem by introducing a unified

design framework that provides similar types of notations for both aspectual and non-

aspectual concerns to be represented and designed in a single design environment. A new

design language, AODL, has been developed to accommodate representation of aspects and

objects together. This language works along with Unified Modelling Language (UML) and

provides design notations and design diagrams for aspects, pointcuts, advices and weaving

associations of aspects. The design notations and diagrams follow Meta Object Facility

(MOF) rules and resemble UML in syntax and semantics.

1.4 Contribution

This PhD study contributes a design language for aspect-oriented software development to

represent and design the aspects. It is called Aspect-Oriented Design Language (AODL).

This language is similar to Unified Modelling Language (UML) and works seamlessly with

it. The following are the main contributions of this study:

 An Aspect-Oriented Design Language (AODL) (Iqbal and Allen, 2011) has

been developed that specifies and designs aspectual components. The language

has been designed by keeping the syntax, semantics and design constructs

similar to those of UML so that traditional UML designers and novice designers

should feel comfortable while using it for designing aspects along with base

objects.

 AODL provides notational support to all the aspectual components, such as

aspects, pointcuts, join points, advices and weaving associations. Each notation

is diagrammatically designed and it contains characteristics and feature of the

notation.

 16

 The language provides design models to model pointcuts, aspects and their

relationships with other aspectual constructs. These models represent the

internal structure of the modelling constructs and their associations and

relationships with related constructs.

 An aspect composition technique has been proposed that provides support for

aspect-to-aspect and aspect-to-base compositions. The technique contains design

notations and design diagrams that can be applied to capture these compositions

and demonstrate the weaving process in a notational and diagrammatic way. The

inner-aspect composition has also been supported in the approach. A new set of

notations and diagrams have been developed to compose pointcuts with advices

and pointcuts with each other. There are separate diagrams for structural and

dynamic compositions for all the constructs.

 This thesis provides a detailed evaluation of the proposed design notations and

design diagrams of AODL. The evaluation has been carried out in two stages. In

the first stage, a qualitative evaluation of AODL has been performed. A

comparison has been made between AODL and existing design and modelling

approaches. In the second stage, AODL has been applied to two case studies.

One case study system is designed using forward engineering technique and the

other is designed in a reverse engineering method.

 A tool is under development for AODL which is aimed to provide an automated

environment to use AODL. The tool will also be capable of generating code for

visualized models.

 One refereed journal paper and 5 refereed conference papers have been

published so far on the work carried out during this research.

 Two more Journal papers have been submitted to refereed journals.

The following are the lists of the publications during this research:

Journal Papers:

1. Iqbal, S. and Allen, G. (2011) „Designing Aspects with AODL‟ International

Journal of Software Engineering. ISSN 1687-6954

2. Iqbal, S. and Allen, G. (2012) „Application of AODL: A Case Study‟, Software:

Practice and Experience, (Submitted).

3. Iqbal, S. and Allen, G. (2012) „Composition of Aspects in AODL‟, Journal of

Systems and Software, (Submitted).

 17

Conference Papers:

1. Iqbal, S. and Allen, G. (2012) „Pointcut Design with AODL‟. In: The Twenty-

Fourth International Conference on Software Engineering and Knowledge

Engineering (SEKE 2012), July 1-3, 2012. Redwood City, California, USA. (In

Press)

2. Iqbal, S. and Allen, G. (2010) „Aspect-Oriented Modelling: Issues and

Misconceptions‟. In: Proceedings of Software Engineering Advances (ICSEA),

2010 Fifth International Conference. : IEEE. Nice, France. pp. 337-340. ISBN 978-

1-4244-7788-3

3. Iqbal, S. and Allen, G. (2010) „A notational Design of Join Points‟. In: Future

Technologies in Computing and Engineering: Proceedings of Computing and

Engineering Annual Researchers' Conference 2010: CEARC‟10. Huddersfield:

University of Huddersfield. pp. 27-30. ISBN 9781862180932

4. Iqbal, S. and Allen, G. (2009) „On identifying and representing aspects‟. In:

SERP'09 - The 2009 International Conference on Software Engineering Research

and Practice, July 13-16, Las Vegas, USA

5. Iqbal, S. and Allen, G. (2009) „Representing Aspects in Design‟. In: Theoretical

Aspects of Software Engineering, 2009 TASE 2009, theThird IEEE International

Symposium on. : IEEE. China, pp. 313-314. ISBN 978-0-7695-3757-3

6. Iqbal, S. and Allen, G. (2009) „Aspect-oriented design model.‟ In: Proceedings of

Computing and Engineering Annual Researchers' Conference 2009: CEARC‟09.

Huddersfield: University of Huddersfield. pp. 137-141. ISBN 9781862180857

1.5 Structure of theThesis

The rest of the thesis is structured as follows:

Chapter 2 presents a detailed survey of aspect-oriented software development

techniques. It provides a comprehensive survey of the past, existing and on-going

research in the field of AOSD.

Chapter 3 contains a detailed description of aspect-oriented design methodologies.

It describes in detail the different methodologies proposed so far for designing

aspects. A comprehensive survey of the past, contemporary and on-goingresearch in

this field has been provided in this chapter.

http://eprints.hud.ac.uk/13593/

 18

Chapter 4 describes aspect-oriented design language (AODL), which was

developed during this research. A full description about the inception, design and

development of the language has been provided. Description about each design

notation is provided along with explanation about its usage. A simple case study has

been designed using AODL to illustrate the language.

Chapter 5provides a description of the evaluation of AODL by application. The

selected case studies have been explained. The process of application of AODL on

these case studies has been explained in detail. The results gathered during this

evaluation have been presented and explained.

Chapter 6contains a description of the evaluation strategies and their

implementation on AODL. A detailed description is provided about the selection of

evaluation strategies and their implementation on AODL. Evaluation has been

carried out by defining evaluation factors which were implemented on existing peer

strategies and AODL to test the efficacy of AODL against its competitive

methodologies. A comprehensive description has been provided on the selection of

case studies for the evaluation.

Chapter 7 concludes the research by providing a comprehensive discussion on the

achievements and learning from the research. This chapter also discusses the

possible areas of application of the proposed language along with the limitations

and weaknesses of the language. It also provides a description of the possible future

research that can be carried out to improve and extend AODL.

 19

Chapter 2:

Aspect-Orientation and Requirements

Engineering

This chapter introduces the Aspect-Oriented Programming (AOP) paradigm, the reasoning

behind its inception, the parameters on which it was invented and all the concepts, terms

and terminologies of AOP. The chapter covers details about the separation of concerns,

concepts and progress in this area. The chapter also provides a brief survey of aspect-

oriented requirements engineering approaches. Aspect-oriented design is discussed

separately in Chapter 3.

2.1 Introduction

Aspect-Oriented Programming (AOP) (Kiczales et al, 1997) is used to implement a system

in a modular way by separating crosscutting concerns into independent modules. AOP is a

programming language which implements concerns that crosscut the system due to their

scattered logic in multiple modules. These concerns are known as crosscutting concerns and

they affect several modules or units of the system. Crosscutting concerns are not captured

in other peer technologies such as functional programming and object-oriented

programming and as a result they create problems like redundancy and replication of code

and tangling of code. AOP was introduced to address these problems by introducing a new

construct, called an aspect, to capture and modularize a crosscutting concern into a distinct

construct and to implement it separately from other concerns of the system.

AOP was proposed based on the 1997 PhD thesis by Christina Lopes, titled “D: A

Language Framework for Distributed Programming” (Lopes, 1997). Later, George Kiczales

and his team formalized the paradigm and introduced this concept to the world in their

paper, “Aspect-Oriented Programming” published in 1997 (Kiczales et al, 1997). They

argued that although other programming paradigms implement separation of concerns by

implementing concerns in distinct units, for example, as objects in object-oriented

 20

programming and as procedures in procedural programming, they overlook implementing

crosscutting concerns into distinct modules which violates the encapsulation principle of

programming and decreases modularity of the system. AOP, on the other hand, implements

crosscutting concerns in distinct constructs called aspects and weaves them with other

system concerns through composition rules. Consequently, the system becomes modular

and reusable.

2.2 Separation of Concerns

The term Separation of Concerns was coined by Dijkstra in his paper “On the role of

scientific thought" (Dijkstra, 1982). His proposition was to identify and implement all the

concerns of the system separately by making each unit do one and only one thing. This idea

is a basic founding pillar of most of the implementation paradigms, for instance, object-

oriented paradigm separates concerns of the system in the form of objects, service-oriented

design separates them in form of services, functional programming separates them as

functions and procedural programming as procedures. Similarly, aspect-oriented

programming has been designed to separately design and implement these concerns in the

form of aspects. The biggest challenge in this kind of development is to pin down what a

concern is. Some suggest a concern is a functionality of the system and some consider any

piece of interest as a concern. Following are some of the examples of concerns which have

frequently been pointed out in the literature (Chitchyan et al., 2005):

 Functional/Application-Dependent Concerns: They are the core functionalities of

the system. The examples may include transaction management in a banking system

or calculation of toll in a toll system.

 Quality Concerns: These are the concerns responsible for the quality management of

the system. These include performance, ease-of-use, reliability, etc.

 Policy Concerns: These concerns are related to policy implementation of the system

such as security, user management, access rights, etc.

 System Concerns: These concerns implement efficiency of the system. They include

performance management, memory management, efficiency, fault-tolerance, etc.

In the perspective of aspect-oriented software development, there are two types of

concerns, core concerns and crosscutting concerns. Core concerns are functional

requirements of the system and crosscutting concerns are such functional or non-functional

requirements whose implementation is scattered over multiple core concerns.

 21

2.3 Crosscutting Concerns

Some concerns are normally linked with each other or are dependent on each other, which

makes their implementation complicated. For example, in a banking system, every

transaction has to be logged in the logger and it has to be checked for security. Tracing is

also performed on every transaction. If we want to implement this system in an object-

oriented technology we might have to implement logging, security and tracing concerns

along with the implementation of all transactions. This way, we are implementing logic

where it does not belong which clearly violates principles of separation of concerns and

encapsulation (as shown in Figure 1). These concerns are known as crosscutting concerns

because they crosscut the system by overlapping on multiple implementations (Kiczales et

al, 1997).

Several studies have proved that handling crosscutting concerns properly and separating

them from other concerns improves quality of the system (Kulesza et al., 2006; Lippert and

Lopes, 2000; Lopes and Bajracharya, 2005, Tsang et al., 2004). But separating crosscutting

concerns is never easy. Most of the concerns are abstract and they are not properly defined

in the requirements or design of the system (Eisenbarth, 2003; Sutton and Rouvellou, 2005)

which makes it hard to identify and separate them from other concerns. The crosscutting

concerns problem creates two more problems in the system, scattered code problem and

tangled code problem.

2.3.1 Scattered Code and Tangled Code Problems

Crosscutting concerns reside at multiple places and they also reside in places where they do

not belong as specified in the business logic of the system. Their presence in multiple

Withdraw Deposit
Transacti

on

Transfer

Crosscutting

Concerns

Logging

Tracing

Security

 Figure 2.1: Example of Crosscutting Concerns

 22

modules, components and functions causes the scattered code problem (Figueiredo et al,

2005). Scattered code is an anomaly that results in inconsistencies and maintenance

problems (Lopes and Bajracharya, 2005). It also makes code hard to test and document

because of the replicated code.

The other problem crosscutting concerns generate is the tangled code problem. The code is

tangled if it is present in functions, modules or components where it does not belong

according to the specified business logic (Kiczales et al., 1997).

Figure 2 shows an example of tangled code. There are three concerns, Authentication,

Transaction and Logging, which do not belong to this particular method according to the

business logic of the method but they are yet present in the code.

2.4 Aspect-Orientation

Software Engineering is an evolving field and it keeps on improving with the innovation

and new ideas to improve modularity, reusability and extensibility of the systems. Kiczales

(1997) suggested that contemporary approaches follow a dominant decomposition criterion

which cannot capture all the existing concerns. The problem was named as tyranny of the

dominant decomposition by Tarr et al (1999) who described that once a decomposition

criterion is decided, all the concerns are captured according to that particular criterion

Figure 2.2: An example of a tangled code (Source: Brito, 2008)

 23

leaving other concerns scattered if they do not meet the criterion. History tells us that the

majority of development techniques are introduced at the programming level and later are

extended to the other phases of the development life cycle. For example, the most

renowned technique, object-oriented programming, was introduced in a language named

SIMULA-67 but today requirement analysis and design notations have also been developed

for the object-oriented paradigm, such as Unified Modelling Language.

Aspect-Orientation was also introduced at the programming level. It started with the

introduction of an extended C language named as Composition Filters by researchers at the

University of Twente, Netherlands in 1992 (Bosch and Aksit, 1992), followed by Adaptive

Programming (Lieberherr, 1996) and Aspect-Oriented Programming (Kiczales, 1997).

With the passage of time, Requirements analysis and design strategies were also introduced

for all these programming paradigms.

There are two different approaches to separation of concerns, Symmetric and Asymmetric

(Harrison et al., 2002). Symmetric approaches employ a single type of construct for both

crosscutting and non-crosscutting concerns, thus maintaining symmetry in the

representation of both types of concerns, whereas Asymmetric approaches employ two (or

more) different kinds of constructs (more detail is given in section 2.6).

2.5 Aspect-Oriented Programming

Object-Oriented programming (Meyer, 1988) is probably the most popular programming

paradigm today. The reason behind this paradigm‟s popularity is its ability of encapsulation

and separation of concerns in the form of objects to promote reusability. However, after

enjoying two decades of popularity, object-oriented programming started to be questioned

as well, just like functional programming and structured programming, on its inability to

capture non-functional concerns in separate implementation units (in OO case, objects). As

discussed in the earlier section, there are some concerns, such as security and persistence,

which cannot be contained in single objects. Their scattered nature compels object-oriented

programmers to write them redundantly in multiple places in the program.

Kiczales and his team raised these questions on object-oriented programming in their paper

(Kiczales et al, 1997) and displayed the shortcomings of object-oriented programming in

handling such concerns properly. They presented a solution in the form of a programming

technique, named Aspect-oriented programming (AOP), to address these problems. AOP

separates scattering concerns from the system and implements them in distinct system

 24

constructs called aspects. This way these concerns are easily identified, implemented,

documented and maintained and they are also easily reused and extended.

The following sections provide a detailed description of aspects and their key constituent

elements, such as join points, pointcuts and advices. For the sake of consistency, the

banking example will be followed to learn the concepts of an aspect and its key elements.

2.5.1 Aspects and Key Elements

As described earlier, a crosscutting concern is a functional or non-functional concern of the

system whose implementation is spread over multiple system modules. Such concerns have

a scattered nature and cause code tangling problems. Aspect-Oriented programming

separates crosscutting concerns from the system and implements them as distinct modular

constructs called aspects.

Aspects contain the implementation of the crosscutting concern in the form of advices.

Advices are just like methods and are executed at join points in the base system. A join

point is a point where a particular aspect has to run its behaviour. Sometimes there are

multiple join points where a particular advice of an aspect has to run so these join points are

gathered in a set called a pointcut. Definitions of key terms of aspect are given in Table 1.

Table 2.1: Explanation of aspectual terms

Term Explanation

Aspect

An abstraction of a crosscutting concern in a program. It contains

pointcuts to indicate execution points in the base program and

advices to run on those execution points

Advice The behaviour of a crosscutting concern

Join Point An execution point where an advice is supposed to execute.

Pointcut A set of predicates to define related join points

Weaving
A process of incorporating aspect‟s behaviour (an advice) into

base program at a specified execution point (join point).

 25

2.6 Symmetric and Asymmetric Aspect-Orientation

Symmetric approaches treat all concerns of the system equally without dealing with any

construct differently because of its nature. The asymmetric approaches, on the other hand,

provide different techniques for specifying, designing and implementing aspect-oriented

constructs (aspects) and non-aspect-oriented constructs (base elements). Such approaches

additionally provide composition rules to compose both types of constructs together at the

implementation level.

Symmetry is usually implemented on composable entities, join points and composition

relationships (Harrison et al., 2002). The symmetry in designing composable entities entails

component-component composition, where each entity is represented as a component. Each

component is similar in nature, behaviour and associations. The examples of such

components include subjects (Clarke et al., 1999) and Themes (Clarke and Baniassad,

2005). The asymmetric design, on the other hand, implements aspect-component

composition, where aspects and components are designed using different methods. The

composition of both the constructs is then modelled using composition rules. Aspect

technology is a prime example of implementation of asymmetric entities. Join Point

symmetry is only defined on the static composition of aspect-oriented constructs (when the

composition is performed on lexical basis) (Bálik and Vranić, 2012), so existing AO

approaches hardly apply it. The relationship asymmetry is implemented by an element if it

defines within its body other elements that it is supposed to be composed with (as AspectJ

has aspects that define composable elements in form of pointcuts). The symmetry in

relationship is achieved when the information about relationship is kept outside the body of

elements (Bálik and Vranić, 2012).

In the following subsections, we will discuss AO approaches that implement symmetric and

asymmetric aspect-orientations.

2.6.1 Symmetric Aspect-Oriented Approaches

As stated above, symmetric approaches implement all elements equally by declaring

composition rules separately from the bodies of these elements. HyperJ is a symmetric

language, which ended at the prototype level and was never used at the industrial level

(Ossher and Tarr, 2002). CaesarJ is another language that was based on aspect-oriented

symmetry but just like HyperJ could not be adopted on a large scale in industry, except for

 26

one controlled experiment mentioned by Rashid et al., (2010). Subject-Oriented

programming is also a symmetric language.

Symmetry in aspect-orientation starts from the requirements engineering phase. Some of

the aspect-oriented requirements engineering approaches that implement symmetric aspect-

orientation are discussed below:

Concern-Oriented AORE Approach

Concern Oriented approach was proposed by Moreira et al (2005a, 2005b) to address the so

called tyranny of dominant decomposition. This approach views a system as a set of various

concerns which are subsets of abstract concerns.

Figure 2.3: Concern-Oriented Requirements Engineering Process (Source: Moreira, 2005a)

As shown in Figure 5, the process of this approach starts with the identification of concerns

using any existing requirements capturing approach. The identified concerns are

represented in templates and their relationships are identified by representation in a matrix.

The crosscutting behaviour is represented using composition rules. The conflicts are

identified using a contribution matrix where each concern makes either negative (-) or

positive (+) contribution to other concerns. Conflicts are removed by revising requirement

specifications until all conflicts are resolved. At the end, dimensions of each concern are

identified using mapping and influence techniques which have also been used in Early

Aspect approach (Rashid et al., 2003).

 27

2.6.2 Asymmetric Aspect-Oriented Approaches

PARC AOP ((Kiczales et al., 1997) and AspectJ are the prime examples of tools

implementing asymmetry of constructs. AspectJ defines aspect-oriented constructs

separately and composes them with base classes during the weaving process.

Grundy (1999) and Rashid et al. (2002, 2003) are considered to be some of the earliest

approaches that introduction aspect-orientation in requirements engineering. Some of the

other renowned requirements engineering approaches that implemented asymmetric aspect-

orientation are discussed below:

Use Cases Based AORE Approach

Jacobson (2003) proposed that systems should be designed by breaking down use case

diagrams into use case slices and use case modules as overlay on top of classes. These

overlays can then be composed using any suitable aspect-oriented technology to form a

complete system. Jacobson (2003) suggested that use cases are crosscutting concerns as

their realization spans over multiple classes.

In (Jacobson and Ng, 2005) the authors have also presented a method for aspect-oriented

software development with use cases. They have extended traditional use cases with two

more elements, pointcuts and artefacts for use case slices and use case modules:

 Pointcuts have been represented as sets of related join points which are represented

by extension points (Jacobson, 2003)

 A use case slice contains information about a particular use case at a given phase of

development and a use case module contains all types of information about the use

case throughout the development cycle.

http://www.informit.com/authors/bio.aspx?a=0c1654ed-ad1a-4d73-9ddc-44a2067e9977

 28

Figure 2.4: A typical use case in AOSD with Use Cases Approach

(Source: Jacobson and Pan-Wei, 2005)

Figure 4 shows a typical description of a use case in this approach. The template <Perform

Transaction> represents capturing of a non-functional requirement. A non-functional

requirement is represented as an extension of a use case. The advantage of representing

non-functional requirement in a template is that it helps in visualizing the context of a

requirement and it also aids in identification of extension points.

AORE Using Theme/Doc

Theme/Doc (Baniassad and Clarke, 2004a; Clarke and Baniassad 2005) proposed a

requirement engineering approach for aspect-oriented systems. In this approach Theme is

the core concept which represents a distinct and meaningful unit of the system. Themes are

similar to functionalities of the system. They are represented as Theme/Doc at the

requirement level and Theme/UML at the design level. Theme/Doc is supported by a tool

which captures four views of the requirements to identify themes (shown in Figure 6).

These views are (i) action, (ii) clipped, (iii) theme and (iv) theme augmentation (Chitchyan

et al, 2005).

 29

Figure 2.5: Theme/Doc Process (Adopted from: Chitchyan et al, 2005)

The Theme/Doc approach supports identification of aspects by capturing concerns with

shared requirements at action view. It then verifies the design decision at the augmentation

view. The approach provides good traceability as one can map requirements from

Theme/Doc views to Theme/UML models.

AORE Component-Based Approach

In this approach, components are identified using any component based requirements

analysis approach and then aspects are identified either by separating crosscutting features

in the components or by using component specification and design information (Filman,

2005). The approach was introduced to identify aspects in reusable components. This is an

asymmetric aspect-oriented approach as it only handles crosscutting concerns (Brito, 2008).

AORE with Arcade

This is a view-based approach that extends the traditional viewpoint method along with

design notations for crosscutting concerns and their composition. This approach introduced

the renowned “Early Aspect” (Rashid et al., 2002) term to denote identification of aspects

at the requirements engineering level. The approach uses viewpoints and provides a multi-

dimensional separation of concerns through the software development life cycle (Rashid et

al., 2002, 2003). An XML-based composition mechanism complements the technique to

separate and compose aspectual requirements. The process model of AORE with Arcade

approach is shown in Figure 3. Concerns are modularized and composed by producing a

requirements specification document which ensures consistency by detecting conflicts

through requirements composition (Rashid et al., 2003).

 30

2.7 Comparison of Aspect-Oriented Requirements Engineering

Approaches

There are weaknesses in almost all of the AORE approaches mentioned above. An

overview of problems with each approach is given below:

The Aspect-Oriented Component Requirements Engineering Approach is only specific to

component-based development and does not support other development paradigms. In

addition, the approach does not help in identifying aspects from every component and it

also lacks tool support.

AORE with Arcade is the most cited aspect-orientedrequirements engineering approach. It

is a simple and straight forward approach that provides a multi-dimensional separation of

concerns through the development lifecycle, which makes it more traceable compared to

other AORE approaches.

AORE with Use Cases approach is similar to UML. It does not provide any mechanism to

handle conflicts. Since this approach forms use case slices and use case modules for all the

concerns of the system so it can be regarded as a symmetric approach.

Concern-Oriented AORE approach provides a multi-dimensional mechanism to separate

concerns from requirements. As this technique is applied on all concerns so it can be

regarded as a symmetric approach. It provides support to effectively manage early trade-

Figure 2.6: The process model for AORE with Arcade approach

(Source: Rashid et al., 2003)

 31

offs and negotiations among stakeholders. This approach is also equipped with a tool

support.

Theme/Doc AORE approach is although a mature approach, it still lacks in providing

support to specify and compose concerns in a systematic way despite being useful at the

requirements analysis level. It also does not support traceability scalability as the technique

becomes so complicated and cumbersome due to the size of Theme Views required for large

systems.

2.8 Discussion

It is hard to say which approach is better, symmetric or asymmetric. If we look at the record

of adoption of both the approaches, asymmetric approaches have received more recognition

and have been adopted in industry more than symmetric approaches. The reason probably is

the traditional Separation of Concerns concept. It is always more convenient and rather

comprehensible to keep crosscutting and non-crosscutting concerns separate during the

entire development life cycle until they are composed with each other dynamically. In one

of the current research projects by Bálik and Vranić (2012), it has been argued that there are

always concepts in the proclaimed asymmetric approaches that can be considered as

symmetric. For example, peer uses case and features in the analysis and design techniques

and traits (Scala), open classes (Ruby), or prototypes (JavaScript) in the programming

languages. Similarly, inter-type declarations and advices can also be considered as

symmetric concepts if everything is modelled using aspects and the base code is kept as

thin as possible. In this case, intertype declarations can be used to define structure and

initial method bodies. Advices can then implement the behaviour. This correlation suggests

that asymmetric approaches can always be evolved to be symmetric if it is desired. It is also

suggested that neither approach can be hailed to be better than the other; rather it is their

functionality and efficacy that matters.

2.9 Chapter Summary

This chapter starts with the introduction of the term Separation of Concerns. It describes in

detail how concerns are handled in different programming paradigms. Core concerns and

crosscutting concerns have been described and the differences between the two have been

shown with the help of examples. Definition of an aspect and how it is implemented in an

aspect-oriented system has been described in detail with the help of an example. Key

elements of an aspect, such as join points, pointcuts and advices have also been described

 32

with examples. A banking example has been selected to demonstrate implementation of an

aspect and its constituent elements.

The chapter then explains the symmetry of aspect-orientation and the languages and

requirements engineering techniques that follow either symmetric or asymmetric

approaches. The chapter then provides an in-depth analysis of aspect-oriented requirements

engineering approaches. Each approach has been described and compared to show the

strengths and weaknesses of the approaches. The next chapter will discuss contemporary

Aspect-Oriented Design (AOD) approaches in detail.

 33

Chapter 3:

Aspect-Oriented Design Approaches

Aspect-Oriented design has been perceived differently by different researchers. Some put

modularity of the system as their first objective and some consider composition of aspects

with base constructs as the most important factor. This chapter discusses some of the well-

known aspect-oriented design approaches in the light of these different characteristics, and

provides a detailed literature survey of this area of the research.

3.1 Software Design

One of the pioneering software design methodologists, J. Christopher Jones, commented in

his book, Design Methods: Seeds of Human Futures (Jones, 1970), that design

methodologies have been moving away from „drawings and patterns‟ in the notion of

design. The same applies to contemporary design methodologies. Software Design

methodologies started appearing in 1950s and 1960s and with time it became an established

scientific field. Many researchers have described design in their own way. Lawson (1980)

and Dasgupta (1989) described design projects as a combination of real or perceived needs

where a need acts as a motivational starting factor for initiating a design project. Similar

description has been provided by Willem (1990) who says that integral feature of a design

is devising of a plan or prototype for the development of something new. Some design

methodologists believe that software design is a symbolic representation of an artefact for

implementation (Zhu, 2005) and some consider design as a simulation of a work that we

want to do for a number of times until we develop the final product (Freeman, 1980).

Simon (1973) explained design as the restructuring of a current product to develop a

preferred product and Page (1966) described design as an „imaginative jump from present

facts to future possibilities‟.

3.2 Aspect-Oriented Design

Software design is the structural and behavioural representation of the requirements

 34

specification. Requirements are shaped into implementable elements, entities or functions

in a software design. Due to the complexity of contemporary systems, software design must

provide support for the abstraction of system elements and separation of concerns. Object-

oriented programs are usually designed in the Unified Modelling Language (UML). UML

provides both behavioural and structural representation of the system. For example, for

behavioural representation interaction diagrams and state diagrams are used and for

structural representation object and class diagrams. UML also allows designers to show the

abstraction level of the classes of the system. If we evaluate the ability of UML for

separation of concerns, we will have to evaluate object-oriented programming first since

UML is an object-oriented modelling language. Object-orientation encapsulates the

business logic of concerns within objects. Objects are the units of development in Object-

Oriented Programming (OOP). There are some concerns of the system which are not fully

handled in OOP, such as performance, persistence, fault-tolerance, etc. Such concerns

affect or have connection with more than one object, thus, their representation and code is

scattered over the system. Such scattered nature of code causes tangling problem of code.

To counter these problems, aspect-oriented programming (AOP) has been proposed that

implements such tangled and scattered elements as aspects.

To design aspects, a number of aspect-oriented design approaches have been introduced

over the years. Aspect-oriented design (AOD) approaches allow designers to design

aspects, their constituent elements, features and associations. They also provide

mechanisms to connect aspects‟ behaviour (advices) to their corresponding join points in

the base program. Some of the well-known AOD approaches are discussed in detail in the

following sections.

3.3 Aspect-Oriented Design and Modelling Approaches

There are a number of aspect-oriented design approaches currently available. Each

approach sees crosscutting concerns in its own way and proposes a methodology to design

them. There are two types of recognized AO design methodologies, symmetric and

asymmetric. The design languages that propose modelling techniques for both crosscutting

and non-crosscutting concerns and designs both of them in a same design framework are

called symmetric approaches. Whereas, those design languages that only support design of

crosscutting concerns are known as asymmetric approaches.

 35

The other common property among existing modelling approaches is extension of UML

notations. Some of them have used UML profiles while some extended UML metamodels.

There are only a few which are not based on UML, such as Sutton and Rouvellou, (2005)

and Suvee´ et al. (2005). To the best of our knowledge, there are thirty UML-based

approaches, namely; Grundy (2000), Ho et al. (2002), Zakaria et al. (2002), Stein et al.

(2002a), Kande et al. (2003), Rausch et al. (2003), Von (2004), Ivers et al. (2004), Clarke

and Baniassad (2005), Elrad et al. (2005), Pawlak et al. (2005), Reddy et al. (2006a),

Coelho and Murphy (2006), Cottenier et al. (2007a), Fuentes et al. (2007), Jacobson and Ng

(2005), Krechetov et al. (2006), Katara and Katz (2007), Klein et al. (2007), Lau et al.

(2007), Paula and Batista (2007), Bustos and Eterovic (2007), Fuentes et al. (2007), Whittle

et al. (2007), Albunni and Petridis (2008), Cui and Xu (2009), Li et al. (2010), Guessi et al.

(2011), Gupta et al. (2011) and Evermann et al. (2011). We will only be discussing eight

out of these thirty approaches. The reason behind the selection of these approaches is their

maturity (number of publications and total citations), and similarity with AODL with

respect to proposed notations. A brief summary of notational dependency and number of

publications of these eight approaches has been provided in Table 3.1.

Table 3.1 - Graphic Nodes included in Join Point Identification Diagrams

Approach

Notational

Dependency

Publications

Notable Publications

Most Cited

Publication, citations

AODM
AspectJ,

UML
4

Stein et al., 2002a, 2002b,

2003, 2006
Stein et al., 2002a, 194

Theme/UML
AspectJ,

UML
>15

Clarke et al., 1999, Baniassad

& Clarke, 2004a, 2004b,

Clarke & Baniassad, 2005

Clarke & Baniassad,

2005, 338

Motorola

Weavr

Motorola

Weaver
9

Cottenier et al., 2007a, 2007b,

2007c

Cottenier et al., 2007b,

74

AAM UML >10

France et al., 2004, Reddy et

al., 2006, Kim et al., 2004,

Solberg et al., 2005, Muller et

al. (2005)

France et al., 2004, 197

AOSD/UC UML 3 Jacobson and Ng, 2005
Jacobson and Ng, 2005,

369

JAC Design

Notations
UML 3 Pawlak et al., 2002, 2005 Pawlak et al., 2002, 76

 36

Klein‟s

Approach
UML 9 Klein et al., 2005, 2006, 2007 Klein et al., 2006, 90

SUP MSC 5 Aldawud et al., 2003; Elrad et

al., 2005

Aldawud et al., 2003,

132

There are a number of properties that an AOD approach must possess to be considered as

an effective approach. A number of evaluation criteria for aspect-oriented modelling

approaches have been proposed based on these properties, some of the noted ones are by

Wimmer et al. (2011), Blair et al. (2005), Chitchyan et al. (2005), Op de beeck et al. (2006),

and Reina et al. (2004). We have chosen some of the most important properties and have

assessed the selected eight approaches against each property. AODL has also been

evaluated against these properties (along with some additional general software design

properties) in Chapter 6. These properties are as follows:

 Language: There are some means adopted by AOD approaches to specify and

design concerns. Some approaches adapt or extend a modelling language, such as

UML, and some propose their own language or design methodology. The language

contains artefacts, notations and diagrams to specify and model concerns, their

behaviour and associations. The languages that adapt UML either utilize UML

notations or extend some of the notations to specify constructs.

 Design process: A design approach must follow a defined design process,

containing a set of activities to design concerns from specification to composition.

Some approaches offer a well-defined design process and some suggest an implicit

way of designing concerns in the form of manuals and guidelines. This parameter

has also been adopted by Op de beeck et al. (2006) and Wimmer et al (2011) to

evaluate AOD approaches.

 Concern Specification: The language must also provide support for specification

and representation of crosscutting concerns and their associations. The specification

can be in the form of design notations, diagrams or textual narrations. In any case,

properties and relationships of the concerns must be well-represented.

 37

 Modelling of Structural and Behavioural Crosscuttings: A design methodology

offers support for both structural and behavioural modelling of concerns and their

constituent elements. For instance, in UML, class diagram, component diagram and

object diagram are used to depict structural associations and state machines, activity

diagrams and interaction diagrams are used to show behavioural properties of the

system. Similarly, an AOD language must also offer both types of representation for

system concerns.

 Concern Composition: Once crosscutting concerns are modelled as aspects, they

are composed with base classes through predicates defined in their pointcuts. The

composition is required to be modelled before implementation so that aspect

interference and conflicts are identified and resolved.According to Kojarski and

Lorenz (2006) there are two types of asymmetric compositions, pointcut-advice

composition and static crosscutting composition and one type of symmetric

composition usually known as compositor. The pointcut-advice composition

provides a representation of internal compositions of an aspects and static

crosscutting depicts the relationships between aspects and base classes. The

compositor mechanism, on the other hand, contains identification of composable

element, specification of match method and development of integration strategy

describing how the matched elements will proceed after composition (Wimmer et

al., 2011).

 Conflict Resolution: Conflicts arise as a result of aspect composition. There could

be a number of general, domain-related or application-related conflicts that can be

encountered during aspect compositions but we will only talk about two of the most

common conflicts. One is the shared join point problem, which occurs when two

aspects try to impose their behaviour at a join point simultaneously. The second is

aspect interference, which arises when an aspect changes or disturbs the definition

of a join point or an aspect. The modelling approaches which propose composition

strategies must also support conflict resolutions.

The following sections discuss the selected aspect-oriented design approaches in light of

these properties:

 38

3.3.1 Aspect-Oriented Design Modelling (AODM)

The Aspect-Oriented Design Modelling (AODM) approach proposed by Stein at al., (2002a

and 2002b) is an asymmetric design approach which was developed initially for the AspectJ

programming language. It later evolved into a more generic approach by providing support

for composition filters and adaptive programming besides AspectJ (Stein et al., 2002c,

2003, 2006).

Language

UML has been adopted as the basis for representation and specification of aspects. New

notations and diagrams have been introduced which are extended versions of UML

artefacts. Though there have been some efforts for turning the approach into a generic one,

it still relies heavily on AspectJ platform.

Design Process

The design process is missing in AODM. There are no guidelines provided about the order

of usage of the diagrams. The approach does address the majority of the design issues of

aspect-oriented design, such as static crosscutting, dynamic crosscutting and composition,

but it does not provide a step-wise set of activities to design these issues in order.

Concern Specification

AODM argues that an aspect is similar in structure to a UML class. It also considers

pointcuts and advices similar to UML operations. Figure 3.1 shows these claimed

similarities.

(a) Similarity between a pointcut and an operation (b). Similarity between ad advice and an operation

Aspects are contained in a class-like container and are represented with a

stereotype<<aspect>> to distinguish them from classes (as shown in Figure 3.2).

Figure 3.1: Structural Similarities between a pointcut, an advice and an operation (Stein et al., 2002a)

 39

Modelling of Structural and Behavioural Crosscuttings

AODM supports both structural and behavioural types of crosscuttings. The structural

crosscutting, which is also known as static crosscutting, involves the introduction of new

data types or members of the base class. These additional base characteristics used to be

known as “Introductions” in the earlier versions of AspectJ, but now they are known as

Inter-type declarations. AODM uses UML parameterized template collaboration diagrams

as containers to hold the depiction of structural crosscuttings, as shown in Figure 3.3. UML

class diagrams and sequence diagrams are exploited to represent the crosscutting, and

templates of the collaboration are used to hold information about the base types.

AODL represents behavioural crosscutting by specifying advices with a stereotype

<<advice>>, as shown in Figure 3.2. As stated before, AODM considers advices similar to

UML operations so they are represented like them. The problem is that they do not have a

distinct identifier; they are represented with the signature of the pointcut they are related

with. To counter this problem, AODM introduces pseudo identifiers.

Figure 3.2: Representation of an aspect in AODM (Stein et al., 2002a)

Figure 3.3: Representation of structural crosscutting in AODM (Stein et al., 2002a)

 40

Concern Composition

In AODM, composition is captured in a package that contains two types of diagrams

(shown in Figure 3.4). The first diagram, which is shown at the left side of Figure 3.4,

represents the structure of join points with the help of class diagrams where aspectual

behaviour will be woven in. The right side of diagram depicts the behaviour of the join

points with the help of sequence diagrams. The crosscutting is depicted in a class diagram

with a “crosscutBy” property shown against the operation that contains the join point. The

template of the package diagram contains the information about the aspect that is

crosscutting the base classes. The join point is depicted with the help of sequence diagrams

where the actual location of a join point is indicated with the help of stereotypes, for

instance, in Figure 3.4, <<call>> of op1() has been depicted.

Figure 3.5 shows how a collaboration containing a join point is split into three sub-

collaborations to show the insertion of advices at before, around and after a method call.

Figure 3.4: Join Point Indication Diagram (Stein et al., 2002c)

Figure 3.5: Weaving Collaborations (Stein et al., 2002b)

 41

Conflict Resolution

There is no comprehensive conflict resolving mechanism provided by AODM. There is

only support for resolving conflicts regarding priority of execution of aspects with the help

of a stereotype <<dominates>> (Stein et al., 2002a). This stereotype points from an aspect

whose priority is greater to the one with lesser priority.

Limitation and Weakness of AODM Approach

AODM treats aspects as UML classes which is a problematic comparison. The issue has

been discussed in detail in (Iqbal and Allen, 2009). As discussed in this paper, classes are

object-oriented elements. They are fundamentally encapsulating, inheritable and

instantiable constructs. If we assess aspects based on these properties, we first of all find

aspects contradicting the basic principle of encapsulation (or data-hiding). Aspects do have

their own data but they also access other classes‟ private data to perform their functionality.

For example, Security and Logging aspects need to access the private data of the interacting

base classes, which is a clear violation of object-oriented encapsulation. Secondly,

Inheritance can partially be implemented in aspects. Aspects can have child aspects but

child aspects cannot override advices of the parent aspect because parent aspect‟s advices

do not have unique signatures or identifiers. Finally, instantiation of aspects is not similar to

that of classes either. Aspects are instantiated on need, not on demand like classes and

objects. Their instantiation cannot be coded within the program; rather their instantiation

depends on defined control points (join points) during the execution of the program. This

dynamic nature of aspects‟ instantiation again contradicts the behaviour of classes and

objects.

Another similar problem is relating pointcuts and advices with UML operations. Pointcuts

cannot return values like operations. They have parameters passed by the base classes to

establish a join point, but there is no need of returning any type which is contrary to

operations (a problem also pointed by AODM team in (Stein et al., 2002a)). Secondly,

pointcuts cannot have local data variables; the reason behind this is that they do not process

anything. They are merely used to represent join points as predicates in the program. Now

looking at advices, they also have some remarkable behavioural differences to the class‟s

operations. First, they do not have unique and identifiable signatures. This is the reason that

aspects do not allow overridden advices in the child aspects. Second, they are dependent on

the declaration of a corresponding pointcut. AODM does not provide design notations to

specify pointcuts and advices. There is no diagrammatic support either for associations

 42

among these constructs. Finally, the approach lacks a design process and there are no

guidelines to define the order in which models should be designed.

3.3.2 Theme/UML Design Methodology

Theme/UML (Baniassad and Clarke, 2004b, Clarke and Baniassad, 2005) is a design

approach which is implemented on identified Themes in the system with the help of a

Theme/Doc (Baniassad and Clarke, 2004a) approach. Themes are concerns of the system

which include both crosscutting and non-crosscutting concerns. Theme approach, being a

symmetric design approach, designs all concerns of the system as Themes. There are two

separate techniques for capturing and designing Themes. The Theme/Doc approach finds

Themes from the requirements specification document and the Theme/UML approach

designs them.

Language

The approach was developed for the first time for subject-oriented programming paradigm

(Clarke et al., 1999). Later, it evolved to accommodate composition filters (Clarke, 2002),

AspectJ and HyperJ technologies as well. The current Theme/UML approach is a heavy

weight extension of the UML metamodel 3.1 (Clarke and Baniassad, 2005).

Design Process

A three-phased design process has been proposed for Theme approach (Clarke and

Baniassad, 2005) that provides step-wise processes to capture and design Themes from

analysis to implementation phase. The first phase is the analysis phase in which themes are

identified. The second phase is the design phase where identified themes are specified and

technically represented. The third and final phase is the composition phase where

composition of themes is specified and designed.

Concern Specification

Since Theme/UML is a symmetric approach so it designs both aspectual and base concerns

as Themes and represents them in the UML package diagram. The diagram contains the

<<theme>> stereotype to identify Themes.

There is a slight difference in aspect and base themes representations. The aspect Theme is

 43

represented in a parameterized template package whereas base theme is represented in a

simple package diagram. Figure 3.6 depicts representation of an aspect Theme.

Parameter contains crosscutting information. A join point can be declared in the parameter

as shown in Figure 3.6 where a tracedop() operation of TracedClass shows that the join

point is defined on this particular operation.

Modelling of Structural and Behavioural Crosscuttings

Both structural and behavioural types of crosscutting are depicted within the Theme

package. As shown in Figure 3.6, structural crosscutting is represented with the help of a

UML class diagram. The aspect Trace is related with TracedClass which is a base class

through an operation tracedOp(). The behavioural representation of this relationship is

depicted in a UML sequence diagram, as is shown in Figure 3.6.

Concern Composition

The semantics of theme composition have been described in detail in Clarke (2001). A

composed <<theme>> is generated by composing related themes. An example of an

ObserverLibrary theme is shown in Figure 3.7 in which the Observer theme is composed

with the Library theme. Besides theme-level compositions, the approach also offers

composition at more fine-grained level, for instance, compositions at attributes and class

levels.

Figure 3.6: An Example of a Theme depicted in Theme/UML (Clarke and Baniassad, 2005)

 44

Conflict Resolution

The conflict resolution is performed by tagging the theme templates (Clarke and Baniassad,

2005). For example, “prec” tag defines the precedence of themes and resolves the ordering

clashes, and in the case of theme-level conflicts, “resolve” tag allows users to add more

elements to themes (such as visibility attributes) in order to resolve them. The “resolve” tag

also allows defining some special elements in themes to resolve any type of theme-level

conflicts.

Limitations and Weaknesses of Theme/UML Approach

The approach is well-defined in the available literature but it is too complex to be adopted

by UML designers. The diagrams in Theme/UML become even more complicated when the

system is complex and distributed. One of the major reasons is the design notations of

Theme/UML, which are different from those of UML. Although parameterized templates

are used as the primary notation to represent themes, the extensions to the template make it

different from UML and reduce its adoptability. Another reason adding to the complexity

of Theme/UML models is a lack of a proper technique to model interactions between

concern modules. There are composition relationships, borrowed from UML metaclass

relationships, which are used for fine grained interactions but notational support for

representing association among abstract constructs would have been a better solution to

Figure 3.7: The Theme/UML Composed Model (Clarke and Baniassad, 2005)

 45

reduce the complexity.

Theme/UML does not provide support for gradual refinement of design models. It is

probably because Theme/UML is currently not supporting architectural design. Another

weakness of Theme/UML is limited support for modelling all types of join points. At the

moment, only execution join points are being supported. The biggest problem of all

isabsence of a detailed resultant model after composition of concerns. The composition

process is well-defined but if concerns are separated, it becomes hard to picture the overall

system. A resultant composition model would have sorted this problem out. The approach

also lacks design representation for aspectual elements such as join points, pointcuts,

advices and inter-type declarations.

3.3.3 Motorola Weavr Approach

The Motorola Weavr approach (Cottenier et al., 2007a, 2007b, and 2007c) has been

developed in a telecom software industry and is aided with a tool that implements all the

semantics and design techniques of the approach. It is an asymmetric design approach

which means it only supports specification and design of crosscutting concerns (aspects).

Language

The approach is based on the Specification and Description Language (SDL). Composite

structure diagrams and transition-oriented state machines of UML 2.0 are used to design

aspects. Since SDL has some other design constructs as well besides the ones used in UML,

so a UML profile has also been proposed to support design of such constructs. The design

approach was initially designed for telecommunication industry, but with the passage of

time it has evolved into a platform-independent approach.

Design Process

The approach is comprehensive providing support for representation of all constructs;

however, the only problem is that no design process or guidelines are provided to support a

procedural way of designing.

Concern Specification

Aspects are represented in transition-oriented state machines. An example representation of

BookCopy is shown in Figure 3.8(e) which uses UML notations and the same

representation is modelled using transition-oriented state machines in 8(f). The basic design

 46

representation is captured using UML class diagrams but the approach also uses composite

structure diagrams to refine models designed in class diagrams (Wimmer et al., 2011).

Modelling of Structural and Behavioural Crosscuttings

The behavioural crosscutting is modelled using transition-oriented state machines (as

shown in Figure 3.8(c) and 8(f)) and the SDL action language. The UML sequence

diagrams are also used to define test cases. The composition of the concern modules can be

represented in an extended version of the UML deployment diagram. The structural

crosscutting is modelled using transition-oriented state machines and class diagrams.

Concerns Composition

Aspects are represented with a stereotype <<Aspect>>. The aspects are composed with

each other and with base classes. The composition of pointcuts with advices is also

supported which is represented along with aspect compositions. The approach follows

composition asymmetry which means aspects can be composed with base classes but not

the other way around (Cottenier et al, 2007c). The aspect-class association is represented

with a stereotype <<crosscuts>> in the composition model. Only the static weaving of

aspects into base models is supported. The concern composition semantics, however, are

clearly defined.

Figure 3.8: The Observer aspect represented in Motorola Weavr approach (Adopted from Wimmer

et al., 2011)

 47

Conflict Resolution

A conflict resolving technique has also been proposed in (Cottenier et al, 2007c) in which a

keyword <<follows>> has been introduced in order to resolve ordering issues among

aspects. The approach has claimed that the shared join point problem can also be resolved

using this technique (Zhang et al., 2007d).

Limitations and Weaknesses of Motorola Weavr Approach

One of the modelling weaknesses of Motroala Weavr, also pointed out by Zhang et al.,

(2007d), is the loosely decoupled nature of pointcuts and advices. The advices are named

and are not tightly coupled with only one pointcut as is the case in AspectJ. This approach

has certain advantages and makes the design model more comprehensible but the problem

arises in the modelling views when Motorola Weavr allows joining of multiple pointcuts

with one advice as long as their interfaces are compatible. The model allows dragging and

dropping of an advice onto multiple pointcuts inducing them to create direct reference to

one advice.

Another related problem is the limited advice type. There is support for only one advice

type in the modelling of pointcuts and that is around, which is also used for before and after

types (Zhang et al., 2007d). This limitation increases complexity in the modelling of

pointcuts with advices.

There is also no support provided by the approach for intra-aspect compositions. The

approach is also missing a design process.

3.3.4 Aspect-Oriented Architecture Modelling (AAM)

Aspect-oriented Architecture Modelling (AAM) approach (France et al., 2004; Reddy et al.,

2006) was proposed to specify concerns from middle to high design levels. This approach

follows role-based metamodelling and is defined on UML 2.0.

Language

An extension to UML, known as UML-based pattern language, is used to design role-based

constructs in AAM. Aspects are defined into two types, context free and context-specific.

Context free aspects are represented at high design level and are reusable types of aspects.

Context specific aspects are instances of context free aspects and are specified according to

their role during the design process. The language used in AAM approach is platform-

 48

independent.

Design Process

The approach was primarily proposed for architectural solutions for aspect-oriented

systems. It lacks detailed design support for concern representation and composition. The

composition strategies proposed by the approach focus on architectural composition of

concerns only.

Concern Specification

Parameterized template package diagrams are used to specify high-level aspect. The

approach is very much similar to Theme/UML with respect to use of templates. The

template model elements are marked with a special element „|‟ to distinguish them from

general templates. This notation has been borrowed from Role-Based Metamodelling

Language (France et al., 2004; Kim et al., 2004).

Modelling of Structural and Behavioural Crosscuttings

Aspect models and base models are designed differently from each other. Aspect models

are designed using template diagrams which are described by parameterized packages. The

models are explained with the help of class diagram as shown in Figure 3.9(a),

communication diagram as shown in Figure 3.9(b) and sequence diagram templates as

shown in Figure 3.10. The structural crosscutting is represented with class diagrams while

behavioural crosscutting is depicted in communication diagrams.

Figure 3.9: The Observer Aspect Model depicted in AAM (Adopted from Wimmer et al., 2011)

 49

Concern Composition

Initially, a compositor composition strategy similar to the Theme/UML approach was

adopted. Recently, however, new diagrams based on UML sequence diagrams have been

introduced (Reddy et al., 2006; Solberg et al., 2005). Both aspect and base models are

specified in UML packages, these packages are then composed together based on textual

binding that composes context-related template packages together. Figure 3.10 and 11show

static and dynamic composition of the models respectively.

Figure 3.11: Weaving Aspectual Behaviour in AAM Adopted from Wimmer et al., (2011)

Conflict Resolution

Syntactical conflicts can be detected using operationalized techniques proposed by Muller

et al. (2005). The paper has also introduced composition semantics and directives to help

with composition and conflict detection. Dependencies among aspects are resolved with the

Figure 3.10: A Composed Model in AAM Adopted from Wimmer et al., (2011)

 50

help of two stereotypes <<hidden_by>> and <<dependent_on>>.

Limitations and Weaknesses of AAM Approach

The approach was primarily proposed for architectural solutions for aspect-oriented

systems, which is why it lacks detailed design support for concern representation and

composition. The composition strategies proposed by the approach focus on architectural

composition of concerns only. There is no formal design process available either which

makes it hard to model and document concerns properly. No diagrammatic or notational

support has been provided for specifying and modelling inner-aspect components such as

pointcuts, advices and inter-type declarations. To make the approach more comprehensible,

France et al., (2004) and Kim et al. (2004) has proposed notations based on Role-Based

Metamodelling language with an additional symbol „|‟ to distinguish the constructs from

those of the language. This approach hampers the comprehensibility even further rather

than improving it as the exploited language is less-known and all the aspectual constructs

are not well-represented by the proposed notations. The approach primarily focuses on

architectural representation; hence traceability from analysis to implementation phase is not

supported. As far as internal traceability is concerned, it is only limited to tracing concerns

from requirements engineering stage to architecture modelling stage. The scalability of the

approach has also not been addressed in the available literature. The approach is yet to be

tested on complex systems involving several concerns. The approach lacks tool support as

well.

3.3.5 Aspect-Oriented Software Development with Use Cases (AOSD/UC)

AOSD/UC (Jacobson and Ng, 2005) is a software development method based on use cases

which is an extension of UML 2.0 metamodel. It is a symmetric approach which means it

provides design support for all the concerns of the system. Use cases represent concerns of

the system. This method identifies crosscutting concerns and non-crosscutting concerns

from the use case diagrams and provides a systematic approach to specify and design them

throughout the software development cycle.

Language

An extension to UML 2.0 metamodel has been proposed to represent aspectual constructs.

The approach is influenced by AspectJ and HyperJ technologies. The notations and

semantics of both the technologies have been mentioned in the literature and used in the

 51

development of the proposed techniques.

Design Process

AOSD/UC follows a design process which separates concerns from the analysis phase

down to implementation phase in form of use case slices.

Concern Specification

All concerns are modelled with a stereotype <<use case slice>>. The crosscutting

concerns are represented from analysis phase down to implementation phase. There are a

number of UML diagrams that are utilized to identify, specify and design concerns. An

Aspect is considered as a classifier and is represented with a stereotype <<aspect>>. A

graphical notation, in the form of a box with two internal compartments, has been

designated to represent an aspect which also contains pointcut declarations and class

extensions. Utility and reusable aspects are represented with parameterized template

packages.

Modelling of Structural and Behavioural Crosscuttings

Class diagrams are used to represent structural crosscutting and sequence diagrams are

utilized to depict behavioural crosscuttings. Figure 3.12 shows a depiction of an Observer

aspect that shows the structural and behavioural representation of crosscutting.

 52

Concern Composition

There is no composed model provided by the approach. AspectJ‟s rules of composition are

followed. No strategies have been provided to compose aspects with base classes. Aspect to

aspect composition is supported but there is no support available for pointcut to pointcut

compositions.

Conflict Resolution

Although a clear approach for resolving conflicts has not been presented in the literature,

some refactoring methods have been suggested to remove conflicts from the design models.

Limitations and Weakness of AOSD/UC Approach

The approach provides support to design aspects comprehensively but aspectual elements

are not separately represented and designed. As far as composition of concerns is

concerned, there is no formal method to do it and regarding inner-aspect compositions, only

pointcut-advice composition is supported. There is no mechanism available for pointcut-

pointcut composition. The approach is comprehensible in a sense that it utilizes UML

notations and diagrams but there are some relationships, such as crosscutting and execution

precedence among aspects, which cannot be captured by traditional UML semantics.

Figure 3.12: The Observer aspect modelling using AOSD/UC notations (Jacobson and Ng, 2005)

 53

Similarly, aspects, pointcuts, advices and inter-type declarations require new notations to be

represented because of their different nature from object-oriented constructs. There is no

tool-support available for the approach either.

3.3.6 The JAC Design Notation

The JAC Design Notation method (Pawlak et al., 2002, 2005) has been designed for the

JAC Framework, which has a complete IDE and supports modelling of aspectual

components.

Language

The approach presents a light-weight extension of UML. The authors do not claim full

compliance with UML rules but assert the simplicity and intuitive nature of the notations.

The approach uses UML 1.0 metamodels to extend the diagrams.

Design Process

There is no defined design process proposed by the approach.

Concern Specification

Aspects are specified just like UML classes. A stereotype <<aspect>> is used to

distinguish them from classes. Just like classes, they contain methods and attributes with

additional information about crosscutting.

Modelling of Structural and Behavioural Crosscuttings

The approach only uses class diagrams. Both structural and behavioural crosscuttings are

represented by class diagrams with additional stereotypes. Stereotypes <<role>> and

<<replace>> are used for representation of structural crosscutting and

<<before>>,<<after>> and <<around>> are used for behavioural crosscutting. Figure

3.13 demonstrates both types of crosscutting for an observer aspect.

 54

Concern Composition

Aspects are composed with each other and with base classes on the structural level using

class diagrams. However, there is no support for intra-aspect compositions provided by the

approach.

Conflict Resolution

There is no support provided by the approach for resolving any type of conflicts.

Limitations and Weaknesses of JAC Design Notation Approach

Aspectual elements (such as pointcuts, advices and inter-type declarations) are statically

represented in this approach. There is no notational support for modelling these elements,

which reduces the comprehensibility a great deal. This limitation also increases coupling of

the elements with base classes and with other aspectual elements.

The approach implements a light extension of UML profiles. Just like AODM, aspects are

modelled in a similar fashion as classes of the base program are designed in UML. It has

been discussed before in the limitation of AODM that aspects and classes are altogether

different constructs. The former is a non-object construct whereas later is a pure object-

oriented. Modelling them in a similar way raises a number of problems and confusions.

There is no also support for designing aspectual elements. The approach only uses class

diagrams to design structural representation of concerns. There is no support for developing

detailed design models. It does not offer a design process either. Although structural

Figure 3.13: The observer aspect modelled using the JAC design notation (Adopted from Wimmer

et al., 2011)

 55

representation of crosscutting is represented with class diagrams, no support is available for

behavioural representation. The approach also does not provide diagrammatic or notational

support for representing aspectual elements. Regarding composition of concerns, there is no

support for inner-aspect compositions, such as pointcut-advice and pointcut-pointcut

compositions. Moreover, no rules have been proposed by the approach for resolving

aspectual conflicts.

3.3.7 Klein’s Approach for Behavioural Aspect Weaving

Klein‟s Approach (Klein et al., 2006, 2007) only provides technique for behavioural

modelling of weaving process of aspects. It does not address specification of aspects and

crosscutting at all.

Language

The approach is based on Message Sequence Charts (MSC) which is a scenario based

language. The UML 2.0 sequence diagram has been largely used. Scenarios are represented

using sequence diagrams. A simplified UML metamodel for sequence diagrams have been

provided by Klein et al., (2007). The approach is also platform-independent.

Design Process

There is no formal design process provided for the approach.

Concern Specification

The approach does not provide any support for specifying aspectual components. It only

deals with representing behavioural modelling of weaving in sequence charts which are

then modelled using sequence diagrams.

Modelling of Structural and Behavioural Crosscuttings

There is no support available for modelling of structural or behavioural crosscutting. The

approach is still immature and only deals with weaving process.

Concern Composition

In Klein‟s approach, each aspect contains two distinct scenarios. One defines the behaviour

of the aspect (represented by pointcuts) which is then completed or replaced by advices (an

 56

example is shown in Figure 3.14).

The same process is repeated for every pointcut of the aspect. Composition is performed in

two phases. In the first phase, join points defined in pointcuts are detected in the base

program. While in the second phase, advices are composed with the base behaviour as

specified in the pointcut and advices. An example of a composed model is shown in Figure

3.15 below.

Conflict Resolution

The approach does not provide any method to resolve conflicts and issues arising as a result

of aspect compositions.

Limitations and Weaknesses of Klein’s Approach

The approach does not suggest any method to specify concerns and no diagrammatic and

notational support is available to represent structural or behavioural characteristics of

Figure 3.14: A modelling of Observer aspect in Klein‟s Approach

Figure 3.15: An Example of a Composed Model in Klein‟s Approach (Adopted from Wimmer et

al., 2011)

 57

concerns. The approach only offers modelling solutions for composition of aspects. There

is no method proposed to design structural or behavioural crosscutting and there is no

design process or guidelines available to formalize modelling. Inner-aspect compositions

are also not supported by the approach. No conflict resolving techniques are available for

aspect compositions and there is no tool-support provided for the approach.

3.3.8 State Chart and UML Profile (SUP) Approach

The SUP approach (Aldawud et al., 2003; Elrad et al., 2005) is an analysis and design

approach for capturing and designing aspects. It is complemented with an aspect-oriented

design language as well which is based on a UML profile. It is a platform-independent

approach.

Language

The language of the approach is based on UML 1.x. A UML profile has also been proposed

to introduce new aspectual constructs in UML modelling. The approach uses class diagrams

extensively along with state machines. Each class diagram is refined step-by-step to a state

machine representation.

Design Process

A set of guidelines has been provided on modelling the aspectual behaviour. There is a

step-wise design process to refine class diagrams to state machines.

Concern Specification

Aspects are specified in class diagrams. A specific stereotype <<aspect>> is allocated to

represent aspects. There are two types of aspects, synchronous which can alter the control

flow and asynchronous, which cannot alter the control flow. Both types of aspects bear a

specific tag (<synchronous> or <asynchronous>) to represent their nature. Once the class

diagram representation is refined into state diagrams, aspects are represented in state

machines.

Modelling of Structural and Behavioural Crosscuttings

Structural crosscutting is represented in class diagrams and behavioural crosscutting is

modelled using state charts, use cases, state machines and collaboration diagrams. Figure

3.16 provides an illustration of modelling using SUP approach.

 58

Concern Composition

Concerns are composed through linking events in the state diagrams. The process happens

on the flow of events from one state to another. Links are established among events when

related states interact with each other. There are no formal guidelines on the process, rather

informal composition semantics have been described in Elrad et al. (2005).

Conflict Resolution

The state charts provide sequence of events which can be considered as a solution to the

ordering problem so one can say that an implicit conflict-resolving mechanism is provided.

Limitations and Weaknesses of SUP Approach

The approach does not provide high-level abstractions and has not yet been tested on

complex systems to suggest scalability. No support has been provided for diagrammatic or

notational representation of aspectual elements, such as pointcuts, advices and inter-type

declarations. Similarly, no technique is provided to compose inner-aspect elements either.

The light-weight extension is possible as UML profiling does allow introducing new

features, attributes and relationships other than what are already defined but no support for

heavy-weight extension is provided. The approach uses UML profiling, which does not

allow introduction of new non object- oriented constructs. External traceability is supported

from the requirements to design phase but there is no support for internal traceability

available. The approach also does not have tool-support available yet.

Figure 3.16: A representation of Observer aspect using SUP approach (Adopted from Wimmer et

al., 2011)

 59

3.4Discussion

As gathered from the findings in the Limitation and Weaknesses section of each aspect-

oriented modelling approach, no approach is mature enough to be adopted comprehensively

yet. There are limitations attached to every approach. One property that is missing in almost

all of the discussed approaches is the notational support for inner-aspect components and

intra-aspect compositions. The other property that is lacked by the majority of the

approaches is provision of a design process. AODL possesses both of these properties. A

detailed evaluation of AODL against these properties and some additional software design

properties is provided in Chapter 6.

3.5 Chapter Summary

This chapter surveys the available literature on contemporary aspect-oriented design and

modelling approaches. Only those approaches have been discussed which are similar to

AODL. Each approach has been discussed in light of vital characteristics which should be

possessed by an effective aspect-oriented design methodology. The limitations and

weaknesses of each approach have also been summarized.

 60

Chapter 4:

Aspect-Oriented Design Language

This chapter describes the main contribution of this research, Aspect-Oriented Design

Language (ADOL), which has been developed to specify, represent, design and document

aspects, aspectual elements, associations and relationships between aspects and base

elements and compositions of aspects with the base design. The chapter starts with the

objectives and motives behind the language followed by the explanation about each design

notation and related design diagrams.

4.1. Introduction

Aspects are identified and captured during the requirements engineering and analysis phase.

A number of requirements engineering approaches have been proposed for identification of

aspects over the years (details in chapter 2). This thesis does not follow a specific aspect

capturing technique rather aspects are assumed to have been identified using a suitable

methodology. This thesis only discusses a design language for aspects, which provides

design notations and design diagrams to specify, represent, design and document the

identified aspects. The language is called Aspect-Oriented Design Language (AODL) and it

primarily focuses on providing a design technique, a method and a set of notations and

diagrams to effectively design aspects along with base constructs. Following are the

primary objectives which have been achieved during the development of the language:

1. To unify design of aspects and objects in a single framework.

2. To develop design notations for aspects and constituent elements.

3. To represent structural and behavioural characteristics of aspects diagrammatically.

4. To develop a language that provides comprehensive design solutions for aspects and

their relationships with objects.

5. To design a diagrammatic approach to model both intra-aspect and aspect-base

compositions.

 61

4.2. Motivation

Object-oriented systems can be effectively designed in the Unified Modelling Language

(UML). UML (OMG, 2012) provides design notations and diagrams to form design models

to identify, represent, design and implement objects and data entities. Aspects are

implemented along with the object-oriented base system using implementation tools like

AspectJ. When implementing such a system, which involves objects and aspects together,

we need to have a design technology that can represent and design both artefacts in the

same environment. UML is an object-oriented modelling language which does not allow

representation of non-OO concepts. One way of designing aspects with objects is to extend

UML and another way is to come up with a new language which can accommodate the

representation of both objects and aspects and their mutual relationships. Either option must

maintain the fundamental software design principles such as:

Separation of Concerns: Parnas (1972) and Dijkstra (1976) regarded separation of

concerns a vital design principle to manage the complexity of ever-growing

systems. The idea is to divide a complicated system into small designable

independent units. These units are designed and implemented separately without

having a knowledge about each other and then combined together to form a single

system. A new design language for aspect-oriented development would be assumed

to follow this approach not only because separation of concerns is a basic design

principle for all software languages but also because AOP was conceived and

proposed based on this very principle.

Comprehensibility: As described by Parnas (1972), comprehensibility of a

software design is “the ability to understand one part of the system at a time”.

Aspects are tangled in nature with other modules of the system so understanding

aspects and their behaviour without having knowledge of other units of the system

is not easy. We suggest that any new design paradigm for aspect-oriented systems

must have the ability to represent aspects in their entirety, as separately as possible,

while their relationships with the system modules must also be designed

independently.

Loose coupling: Aspects are tightly coupled with other system modules because of

their direct in-line implementation. As aspect-oriented programming (Kiczales et

al., 1997) provides a way of representing aspects as separate modules to reduce such

 62

coupling, so their design strategies must also follow the same rule. Any new design

language must have the capability of designing aspects and objects separately with

minimal dependency on each other. Some of the problems caused by the tightly

coupled nature of aspects are outlined in (Iqbal and Allen, 2010).

Maintainability: A comprehensible design of aspects should be easy to maintain. If

aspects are tangled in multiple units of the system, their modification, addition and

deletion can result in inconsistencies and high regressive overhead. A good software

design strategy will represent and design all the units as separate and easily

manageable units which will improve their maintainability and reusability.

Reusability: One of the main objectives of aspect-oriented programming is to

modularize aspects so that they can be used in other systems as reusable modules.

However, this ability of aspects is hard to attain because of their cohesive nature and

high coupling with other units of the system (Elrad et al., 2001). An ideal design

paradigm will design aspects as separate modules with minimal direct referencing to

the rest of the system.

4.3. Aspect-Oriented Design Language (AODL)

The importance of a standard design language and specialized designed notations for

aspect-oriented software development has been emphasized by a number of researchers

(Clarke and Walker, 2002; Stein et al., 2002a; Dahiya and Dahiya, 2008). In the presence of

Unified Modelling Language (UML) for object-oriented design, it becomes imperative to

have a de-facto language for properly designing aspects along with the base objects. A

number of design approaches have been proposed since the advent of AOP, which have

been discussed in detail in chapter 3. Every approach has strived to fill gaps in the earlier

proposed design approaches to provide a comprehensive design solution for aspects.

However, one aspect of design has been left unaddressed in almost all of these approaches

and that is the unification of aspects and objects in one design framework. Aspects cannot

be separated completely from base objects due to the tightly coupled nature of pointcuts

(Koppen and Stoerzer, 2004; Shonle et al., 2005) to the base program‟s structure and

behaviour. Aspects are thus required to be designed along with their interacting base

objects. Most of the existing design approaches propose separate design techniques for both

of the constructs which makes the design susceptible to inconsistencies.

 63

A language similar to UML is required to represent and design aspects and their elements.

As mentioned in the motivation above, UML has been chosen to be extended to

accommodate aspects for many reasons. One important reason is its popularity as a

modelling language. It is used as a standard object-oriented modelling language and since

aspects are implemented along with objects (in AspectJ) so an extended version of UML

becomes the first choice to design aspects. An altogether new design language will not only

make it hard for the designers to adopt but will also force designers to work in two different

design languages for objects and aspects. Another important reason is UML‟s extensibility

which makes it easy to introduce new notations (provided Meta-Object-Facility (MOF)

rules are followed, for details see (MOF, 2012) and use them with its core notations.

Therefore, Aspect-Oriented Design Language (AODL) takes the liberty of introducing

some new notations for aspects and their elements. AODL is based on AspectJ technology.

It introduces design notations for the main constructs of AspectJ such as aspects, join

points, pointcuts and advices. Design notations are used in the AODL models to describe

structure and behaviour of an aspect and its elements. Metamodels for AODL have been

provided in Appendix A.

Figure 4.1 shows AODL diagrammatic model which depicts the three phase

implementation of AODL constructs. There are two diagrams for modelling join points,

called Join Point Identification Diagram and Join Point Behavioural Diagram, there is one

diagram for designing aspects, called Aspect Design Diagram, and there are two diagrams

to design the weaving process of aspects and base classes, called Aspect-Class Static

Diagram and Aspect-Class Dynamic Diagram.

Join Point Modelling Aspect Modelling Aspect-Class Composition

Figure 4.1: AODL Diagrammatic Model

Join Point

Identification

Diagram

Base

Model

Aspect Design

Diagram

Join Point

Behavioural

Diagram

Base Model

Aspect-Class Static

Diagram

Aspect-Class

Dynamic Diagram

 64

Join Point Modelling

The specification document of aspects, which is generated during the requirements

engineering phase, provides a list of join points where a particular aspect will superimpose

its behaviour. The Join Point Identification Diagram (discussed in 4.3.1.2) is used to

identify the locations of these join points in sequence diagrams. A join point is represented

with a designated design notation at the exact location within the control flow of objects.

This diagram helps in representing the interactions of aspects with the base system at early

design stage.

The Join Point Behavioural Diagram (discussed in 4.3.1.3) is another diagram that can be

used to represent the location of join points and the corresponding aspects that interact on

those locations. This diagram, however, is used when representation is required to be

shown in the behavioural model of activities of the system.

Aspect Modelling

The aspect modelling phase starts with the modelling of pointcuts and advices. Both the

constructs are represented with distinct notations. The inner structure is modelled using

special associations that are distinguished from each other with the help of labelled

stereotypes. Each pointcut is modelled using a Pointcut Composition Model that designs

each predicate using nested a Collaboration Diagram, details can be found in 4.3.2.

The second phase of modelling designs aspects along with their constituent elements. There

is a diagram, the Aspect Design Diagram (discussed in 4.3.3.2), that helps in designing

aspects and their associations with the base classes. The diagram contains a designated

structural container that represents the internal structure of the aspects and their constituent

elements, such as pointcuts and advices. Each construct is represented with a distinct

notation and associations among them are denoted by specialized stereotypes.

Composition Modelling

The composition is partially designed during the pointcut composition stage (discussed in

4.3.2.4), which is performed while designing pointcuts in the Aspect Modelling phase. The

Pointcut Composition Diagram models inner composition of pointcuts where each predicate

of a pointcut is modelled using a UML collaboration diagram. Interacting pointcuts are then

composed with each other and with their related advices using composition associations.

 65

The second phase of composition addresses aspect-class associations. The dynamic

composition of both the constructs are modelled with the help of an extended Collaboration

Diagram that contains specialized notations and associations to represent dynamic weaving

of aspects‟ advices on specified join points in the base program. The diagram is discussed

in detail in 4.3.4.2. Along with dynamic composition, a structural model has been proposed

that captures crosscutting association between aspects and classes on an abstract level. The

model is designed using Aspect-Class Structure Diagram (discussed in 4.3.4.3). The

diagram is an extended version of the UML Class diagram and shows the relationships

among interacting aspects and classes with the help of specialized crosscutting associations.

Every AODL design diagram serves a particular specialized purpose. The selection of

diagrams depends on the nature of the system and requirements of the design model.

4.3.1. How to use AODL

The following guidelines have been set in the light of application of AODL (discussed in

Chapter 5) for designers who wish to adopt AODL.

AODL provides structural and behavioural modelling support for all aspectual components.

There are diagrams to help in modelling different perspective of these components. It

depends on the designer to use the most suitable diagram for the desired model.

Behavioural diagrams can ideally be used to design internal flow of the components and

their associations with base constructs (objects or classes) at behavioral level. These

diagrams are based on behavioural UML diagrams, such as activity diagram and

collaboration diagram. Similarly, structural model of the system can be designed using the

diagrams that capture structural representation of the components and their associations

with base constructs on the structural level. For instance, Aspect Design Diagram presents a

structural model where all the features and associations of an aspect are represented in a

structural notation. Another example is Aspect-Class Structural Diagram that provides a

black box view of relationships between aspects and base classes.

Some critical and safety systems might need more behavioural representation of the system

to have better test case generation, and some systems might have emphasis on structural

design to understand the relationships between aspectual and base components. It is up to

the designer to choose the most suitable diagram to model a system.

 66

The following section provides a detailed description of AODL design notations and

AODL diagrams.

The following sections describe aspectual constructs, concepts, associations and elements

in detail. The description style has been borrowed from UML‟s specification provided in

(OMG, 2012).

4.3.2. Join Point Design

AODL defines join points with a design notation and provides two diagrams, Join Point

Identification Diagram and Join Point Behavioural Diagram, to identify, specify, design and

document join points. The join point and related diagrams have been described in detail in

the following sub-sections.

4.3.2.1.Join Point

A join point is a point in the program where aspects execute their behaviour and perform a

specified task.

Description

A join point is a point in the control flow of the base program. It could be defined on

initialization, setting or getting of an attribute. It could also be defined on throwing or

handling of an exception or it could be defined on the entire span of life of an object. A set

of predicates defined on join points is called a pointcut.

AODL designates a notational symbol to represent a join point. The majority of the

contemporary languages do not provide modelling support or a designated design notation

for a join point. The reason is that they consider a join point a base program element and do

not consider its modelling representation along with aspectual components. AODL, on the

other hand, advocates design of join point as the key aspectual component, a pointcut, is

made up of join points and if a join point is not modelled properly, the related pointcut may

have some overlooked design issues.

Constraints

No constraints

 67

Semantics

A join point is considered as a design element in AODL. It represents a direct relationship

between an aspect(s) and an object(s). AODL denotes a design notation for join points

which can be shown along with the description of interacting aspect in a stereotype

convention.

Notation

A join point is represented by a Circle and a dot within the circle. The dot represents a point

which connects associations from multiple aspects to multiple base classes in the system.

Naming Convention

Join points appear in the Join Point Identification Diagram with a label explaining the point

in the base program. Some of these labels are <<call>>, <<execution>>, <<initialization>>,

<<constructor_call>>, etc. A join point may appear in design diagrams in the form of a

stereotype along with the related aspect‟s name.

<<JP_AspectName>>

Example

Figure 4.2 shows a general example of two join points defined on two methods of an object

of Class A, one on the call of method1() and the second on the execution of method2().

AspectX runs its behaviour on these two points in this particular example.

 68

Figure 4.2: Join Point Representation

Rationale

The notational representation of a join point is very important to indicate the exact

location(s) of join points in a design model. The notational representation also helps in

understanding the weaving mechanism of aspects with objects by indicating merging

points.

Purpose of the Notation

AODM (Stein et al., 2002a; 2006) represent join points as links. They don‟t offer a

notational support rather represent them with stereotypes, such as <<call>>,

<<execution>>. AODL on the other hand provides a design notation for join points so that

they are distinctly represented along with other aspectual constructs. The notation for

pointcut also carries this notation to show that pointcuts are predicates defined on join

points. This way, join points and pointcuts are co-designed and make the design more

comprehensible.

4.3.2.2.Join Point Identification Diagram

Description

The Join Point Identification Diagram has been developed to identify join points and to

locate them at their exact locations in the system design. This diagram is based on UML‟s

sequence diagram where join points are represented with the help of design notations along

with the message passing among system objects.

Join Point

Symbol

<<call>>

<<execution>> Join Point Label

 69

Graphic Nodes

The graphic nodes included in Join Point Identification Diagrams are shown in Table 4.1.

Besides these nodes, the diagrams may also have other nodes which are permissible in

UML 2.4.1 for a sequence diagram.

Table 4.1 - Graphic Nodes included in Join Point Identification Diagrams

Node Type Notation Explanation

Object Object is an instance of a class which is represented

in this diagram to show the message passing

between number of lifelines. (Borrowed from

(OMG, 2012)

LifeLine In UML 2.4.1 (OMG, 2012) ExecutionOccurence

represents moments in time when a particular

message is passed between two objects. Borrowed

from (OMG, 2012).

Join Point A join point indicates the location where an aspect

executes its behaviour.

Aspect Aspects are denoted with a design notation

discussed later in the chapter. Aspects are shown

along with objects whose join points are identified

in the diagram.

Graphic Paths

Graphic paths between the graphic nodes have been shown in Table 4.2

Table 4.2 - Graphic Paths included in Join Point Identification Diagrams

Node Type Notation Explanation

Message These message notations are for

call, method and reply taken from

UML‟s sequence diagram.

(Borrowed from (OMG, 2012)

:lifeLine

:class

Aspect

code

method

 70

Aspect Indication Link Aspects are indicated with the

help of join point notation and

aspect indication link in the Join

Point Identification Diagram. The

links contains stereotypes to

declare the type of join point.

Example

Two Join Points have been represented in the ATM example shown in Figure 4.3. One is

defined on the call of checkBalance() method and the other is on the call of withdraw().

With every join point link there is a stereotype to declare the nature of the join point. For

instance, both join points in the given example have <<call>>stereotypes. Corresponding

aspects of both the join points have also been shown along with the base objects.

Rationale

AODL does not explicitly support the identification of aspects from the requirements of the

system. It assumes that aspects have been identified in the requirement analysis phase using

any suitable crosscutting concerns capturing approach. It also assumes that the base system

is being modelled in the UML technology. In UML, Sequence diagrams show the

Authentication Logging

Aspect

Indication

Join Point

Aspect

<<call>>

<<Joinpointtype>>

<<call>>

Figure 4.3: Join Point Identification Diagram

 71

communication among the objects in the form of methods and control flows. These

diagrams can provide a base environment to locate the join points where aspects will insert

their behaviour.

Purpose of the Diagram

This diagram has been proposed to identify join points within the message passing among

objects. The purpose is to locate join points exactly where they are and represent them with

a notation so that they are designed in detail in the low-level design of aspects.

4.3.2.3.Join Point Behavioural Diagram

Description

This diagram helps in identifying and representing join points during the flow of activities

in the system. For the purpose, UML‟s activity diagram has been modified to accommodate

join points along with the activity‟s actions and control flows.

Graphic Nodes

The graphic nodes included in Join Point Behavioural Diagrams are shown in Table 4.3.

The table also includes all other UML 2.4.1‟s notations for activity diagrams which have

not been mentioned here.

Table 4.3 - Graphic Nodes included in Join Point Behavioural Diagrams

Node Type Notation Explanation

Action Activities are made up of actions.

This box represents an action which

is the same as used in UML (OMG,

2012).

Join Point Join points indicate the location

where an aspect executes its

behaviour.

InitialNode Initial node represents the start of

actions in an activity diagram. It is

the same as in UML 2.4.1. (OMG,

2012).

 72

ActivityFinal This notation represents the end of

an activity. It has been kept different

from UML‟s notation to avoid

confusion with join point.

DecisionNode A decision node chooses the

outgoing flow. It is same as the

UML‟s decision node (OMG, 2012).

ForkNode A fork node splits a control flow into

multiple flows. It is same as the

UML‟s fork node notation (OMG,

2012).

JoinNode A joinNode synchronizes multiple

flows into one control flow. It is

same as the UML‟s notation for join

node (OMG, 2012).

MergeNode Merge node chooses one flow from

multiple incoming control flows. It

is same as the UML‟s notation for

the Merge node (OMG, 2012).

ObjectNode ObjectNode is used to define object

flow within an activity. It is same as

the UML‟s Object node notation

(OMG, 2012).

Graphic Paths

Graphic paths between the graphic nodes in a Join Point Behavioural Diagram have been

shown in Table 4.4

 73

Table 4.4 - Graphic Paths included in Join Point Behavioural Diagrams

Node Type Notation Explanation

ControlFlow A Control Flow starts an activity

node after previous node is

finished. (Borrowed from (OMG,

2012).

ObjectFlow An Object Flow starts an object

node after an activity node.

(Borrowed from (OMG, 2012).

JoinPointFlow A JoinPointFlow is an edge which

shows the location of a join point

during the activities.

Example

A general example of a Join Point Behavioural Diagram is shown in Figure 4.4. The join

points are represented along with system activities.

Rationale

The existing design approaches do not represent join points in the behavioural design of the

base system. If a system is requiredto show the control flow among activities and join

points are required to be identified within this flow, this diagram can help in locating join

points.

Activity1 Activity2

Objecti1 Activity1 Activity2

Activity1 Activity2

Join Point

Activity1

JP_aspectName

Activity 2

Activity3

JP_aspectName

Figure 4.4: Join Point Behavioural Diagram

 74

Purpose of the Diagram

Once join points have been identified, they are required to be shown within the system

flow. For this purpose, a behavioural diagram is proposed which extends UML‟s Activity

diagram. This diagram assists in identifying the location of join points along with system‟s

activities so that join points identified in the Identification diagram can be verified and their

exact occurrences can be confirmed with the help of their representation within system

flow. We show join points with the help of their join point design notation along with the

name of interacting aspect(s). This diagram helps in understanding the weaving process of

advices within the flow of system activities.

 75

4.3.3. Pointcut Design

AODL defines Pointcuts with a design notation. It also provides a design notation for the

pointcut‟s corresponding advice. The relationship between pointcut and advice is

represented in a diagram, called Pointcut-Advice Diagram. The specification and definition

of pointcuts are represented in a table, called Pointcut Table.

All these constructs and related diagrams have been described in detail in the following

sub-sections.

4.3.3.1.Pointcut

A pointcut is a set of predicates defined on join points in the base program. It is used to

expose data of the base program on particular join points to help run advices.

Description

A pointcut can have multiple predicates joined together through logical functions, such as

AND, OR, NOT, etc. Multiple advices can execute their behaviour on a particular pointcut

as defined in the aspect.

Constraints

(1) A Pointcut must have a name.

(2) A Pointcut must have at least one related Advice.

Semantics

The pointcut is considered as a key aspectual element and a design construct in AODL. It is

represented along with its constituent join points. A pointcut is designed along with its

associations with the related advice and the parent aspect. This design is usually shown

within an Aspect-Design Diagram (discussed in the following section). The reason is that

they constitute key elements of an aspect and their associations with the base constructs are

always through their parent aspects.

 76

Notation

The pointcut is represented with a rectangle which contains its name and a list of join

points. To distinguish it from other constructs, the rectangle has got a join point symbol on

top of it. The rectangular box in the notation symbolizes a container that contains a

pointcut‟s specification and the join point symbol reflects the association of pointcut with

join points.

Presentation Option

The notational box for a pointcut has two compartments. The top compartment contains the

name of the pointcut and the second compartment holds a list of join points.

Naming Convention

The pointcut‟s name is preceded by its parent aspect‟s name.

AspectName_PoincutName

Example

Figure 4.5 shows a general example of a pointcut along with representation of its related

advices and join points.

Rationale

A pointcut is a vital element in aspect-oriented design. Pointcuts decide how aspects

execute and how they interact with the base program. AODL considers pointcut as a

distinct design construct which has its characteristics and associations with the base

 Join points

AspectName_PointcutName

Ad01

Ad02

before

after

 Join points

pointcutName

 Pointcut

 Advice

Figure 4.5: A Pointcut Example

 77

constructs. That is why separate notations and diagrams have been developed to design

pointcuts along with their related advices.

Purpose of the Notation

Pointcuts are represented in several AODL diagrams. That is the reason that a distinct

notation has been designated to them.

4.3.3.2.Advice

An advice is a piece of behaviour of an aspect which is inserted into the base program at

specified locations (join points).

Description

An advice contains the implementation of an aspect. Advice can run before, after or around

the locations defined by join points in a pointcut. An advice is tightly connected to its

related pointcut which contains the set of join points where the advice is required to run.

Constraints

(1) An advice must have an id.

(2) An advice must have a related pointcut.

Semantics

An advice is initiated when a pointcut‟s predicates are satisfied. In other words, an advice is

executed when join points of the related pointcut are reached during the execution of the

program.

AODL designs an advice along with its pointcut and assigns a design notation to it. The

Advice is considered as a combined construct along with its pointcut and occurrence type

(before, after and around).

Notation

The design notation for an advice is a rectangular box. It contains keyword <<advice>> to

distinguish from UML notations used for objects and classes. It contains an advice‟s id

along with the name of the parent aspect. The functionality of advices may also be shown in

textual narration in some of AODL models. The details are provided in the explanation of

individual models.

 78

Naming Convention

Advice is represented with a unique ID. The id could be a numbered one, such as Ad01,

Ad02 or it could have a number along with the aspect‟s name, such as AdLog_01,

AdLog_02 (For example, when the Aspect is Logging).

Example

An example of the representation of an advice is shown in Figure 4.5.

Rationale

The advice construct has to be represented in the design to show the behaviour of the parent

aspect. AODL, therefore, assigns a distinct design notation to it and represents it along with

the related pointcut.

Purpose of the Notation

Advices are represented in multiple AODL diagrams. That is the reason that they have been

assigned a distinct design notation.

4.3.3.3.Pointcut-Advice Diagram

The association between a pointcut and its related advices are represented in a pointcut-

advice diagram.

Description

This diagram helps in representing and designing relationships between a pointcut and its

related advices. The diagram has been designed to represent an aspect‟s behaviour, which is

implemented by advices, and to show aspect‟s interacting points with the base program,

which are represented by pointcuts.

Graphic Nodes

The graphic nodes included in Pointcut-Advice Diagrams are shown in Table 4.5.

<<advice>>
className_Ad01

 79

Table 4.5- Graphic Nodes included in Join Point Behavioural Diagrams

Node Type Notation Explanation

Pointcut This is a pointcut notation which has

been described in detail in 4.3.3.2

Advice This is the design notation for advice,

which has been discussed in detail in

4.3.3.2.

Graphic Paths

Graphic paths between the graphic nodes in a Pointcut-Advice Diagram have been shown

in Table 4.6

Table 4.6 - Graphic Paths included in Pointcut-Advice Diagrams

Node Type Notation Explanation

Pointcut-Advice

Association

 A pointcut is associated with an

advice through a simple line with

occurrence type defined on top of

it.

Example

Figure 4.6 shows an example of an Authentication aspect in an ATM system. It contains a

pointcut-advice diagram which shows a pointcut authenticateUser associated with an

advice Ad01.

 Join points

Pointcut name

<<advice>>
aspect_Ad01

before/after/around

 80

Rationale

As surveyed in Chapter 3 and evaluated in Chapter 6, there is not a single existing design

approach that provides modelling support for depicting relationships between pointcuts and

their related advices. AODL offers distinct design notations for these constructs and

provides this Pointcut-Advice Diagram to model the relationships between them.

Purpose of the Diagram

The Pointcut-Advice Diagram helps in representing and designing a complete structure of

pointcuts and their related advices in one diagram. It helps in understanding the relationship

between a pointcut and an advice. The diagram also helps in designing an aspect along with

its pointcuts and advices.

4.3.3.4.Pointcut Composition Model

A detailed model of the composition process is captured in this diagram. Pointcuts are

designed and represented with their related advices and parent aspects.

Description

Pointcuts are composed dynamically when aspects are woven into the system. Advices are

executed on the defined join points in the pointcut, and pointcuts combine together to

identify the exact locations where advices are supposed to run. AODL designs each join

point with the help of a behavioural diagram. The diagrams are based on the UML

communication diagram. Communication diagrams (previously known as collaboration

diagrams) help in designing the dynamic collaboration of objects with each other in UML.

Pointcut-Advice

Diagram

Authentication

Attributes
Operations

<<crosscuts>>

<<crosscuts>>

Account

CashDispenser

before

 Ad01
authenticate

Authentication_authentic
ateUser

call(*.checkBalance()) ||

call (*.withdraw())

Figure 4.6: Pointcut-Advice Diagram in Authentication Aspect

 81

The interaction is shown in the form of message passing among objects. AODL exploits

this diagram for the join points‟ selection during the composition of aspects.

Types of Pointcuts

Before explaining the pointcut composition, we introduce categories of pointcuts. We have

categorized Pointcuts used in AspectJ into four types.

Scope Pointcuts: The pointcuts that define a scope of selection of join points in the

base system are included in this category. For example, pointcuts defined with

within and cflow keywords are meant to define a scope in the base system for

selecting join points. Some other examples include withincode(), cflowbelow(),

this(), target() and args().

Method Pointcuts: The pointcuts that are defined on methods and constructors of

classes of the base system are part of this category. Some of the pointcuts defined in

this category are call(), execution(), get(), set(), call(const), execution(const),

initialization(), preinitialization(), staticinitialization(), and handler().

Peer Pointcuts: Peer pointcuts select other pointcuts defined in the same aspect or a

related aspect. These pointcuts are defined on already defined pointcuts. Some of

the examples in this category are pointcutID(), !pointcut(), pointcut 0 && pointcut1,

pointcut0 || pointcut1 and (pointcut).

Conditional Pointcuts: Conditional pointcuts are defined on join points satisfying a

Boolean condition. These pointcuts may define all kinds of Boolean operators such

as AND, OR, NOT etc. The if(Boolean) expression is also part of this category.

Graphic Nodes

The graphic nodes included in Pointcut Composition Model are shown in Table 4.7.

 82

Table 4.7 - Graphic Nodes included in Pointcut Composition Model

Node Type Notation Explanation

Aspect

 Details about aspect‟s notation are

provided in 4.3.3.3.

Pointcut This is a pointcut notation which has

been described in detail in 4.3.3.2

Advice This is the design notation for advice,

which has been discussed in detail in

4.3.3.2.

Join Point

Collaboration for

Method Call

This type of collaboration contains a

join point defined on the call of a

method. In this example collaboration,

join point is defined on the call of

method m1(int) of class A.

Join Point

Collaboration for

Method Execution

 This type of collaboration contains a

join point design which is defined on

the execution of a method. In this

example, a join point is defined on the

execution of method m1() of class A.

Join Point

Collaboration for

Pointcut Reference

 This type of collaboration contains a

pointcut which is used as a predicate in

the main pointcut. In this example

collaboration, pointcutgetinfo() of

Trace aspect is depicted.

<<advice>>
aspect_Ad01

Trace_getinfo()

<<execution>>

m1()

A

m1(int)

<<call>>
A *

 83

Join Point

Collaboration for

Exception Handler

Call

 This type of collaboration contains a

call to an exception handler. In this

example collaboration, a call is made to

Foo Exception.

Class

 Base classes are represented with their

conventional UML notations (OMG,

2012).

Graphic Paths

Graphic paths between the graphic nodes in a Pointcut Composition Model have been

shown in Table 4.8.

Table 4.8 - Graphic Paths included in Pointcut Composition Model

Node Type Notation Explanation

Pointcut-Pointcut

Referencing Association

 This association links a pointcut with a

related pointcut. The relationship can

be because of direct referencing to

each other in the pointcut definition.

Pointcut-Pointcut

Overriding Association

 This association links an implemented

pointcut to its abstract pointcut in the

parent aspect.

Aggregation

 Aggregation is an enumeration type

used in UML 2.4.1 to specify literals

for defining aggregation property

between objects (OMG, 2012).

Composition

 Composition association is the same

as used in UML 2.4.1 (OMG, 2012).

<<includes>>

<<implements>>

<<handler>>

Foo
Exception

 84

Generalization

 Generalization association is the same

as used in UML 2.4.1 (OMG, 2012).

In addition, this association is also

used for describing generalization in

aspects.

Example

Figure 4.7 shows a Pointcut Composition Model for Tracing system taken from the Eclipse

AspectJ Programming Guide (2012).The example implements a tracing system. There are

two aspects, Trace and TraceMyClasses. TraceMyClasses is a child aspect of Trace. It

contains one pointcut myClass(Obj) which implements abstract pointcut

Trace_myClass(Obj j) of Trace aspect. Trace aspect contains two pointcuts myMethod and

myConstructor(Obj j). Each pointcut has two related advices.

The Pointcut Composition Model in Figure 4.7 designs these pointcuts and shows their

compositions with each other and with their related advices and parent aspects.

 85

Rationale

The contemporary aspect-oriented design methodologies overlook intra-aspect

compositions. These compositions include joinpoint-joinpoint compositions, pointcut-

pointcut compositions and pointcut-advice compositions. The modelling of these

compositions help in designing pointcuts and overall composition of aspects with each

other and with base constructs.

Scope:

Trace_myConstructor(Obj j)

TraceMyClasses

_myClass(obj

<<execution>>

new(..)

*

AND

before <<advice>>
Trace_Ad01
traceEntry()

<<advice>>
Trace_Ad02

traceExit()

after

TraceMyClasses

Trace

before after

<<advice>>
Trace_Ad04

traceExit()

<<advice>>
Trace_Ad03

traceEntry()

<<includes>>

<<implements>>

Scope:

Trace_myClass(Obj j)

Scope: this(obj) &&

within(TwoDShape) ||

within(Circle) || within(Square)

TraceMyClasses_myClass(Obj j)

<<includes>>

Scope:

Trace_myMethod

TraceMyClasses

_myClass(obj

<<execution>>

*(..)

*

AND

AND

String toString()

<<!execution>>

*

Figure 4.7: Pointcut Composition Model

 86

4.3.4. Aspect Design

This section introduces AODL‟s design notations and design diagrams for aspects and their

relationships with the base design constructs.

4.3.4.1.Aspect

Description

An aspect is a feature of the system which is designed separately from other features. Its

implementation is scattered and crosscuts multiple modules which makes its design hard to

implement and understand. That is the reason that it is separated from base modules of the

system and is designed as a separate design unit. It is woven back into the system during

execution.

Constraints

No constraints

Semantics

An aspect is designed separately in AODL. It is represented with a design notation and a

design diagram. Aspectual elements are also represented along with the aspect. The

relationship of an aspect with base objects is shown through crosscutting association. The

design diagram provides all related information and specification of an aspect in a structural

fashion.

Notation

Aspect is represented in a rectangular box which is similar to the symbol used for a

classifier in UML. Each aspect must be assigned a name. The rectangular box is topped

with a crosscutting circular symbol to distinguish it from other design constructs and

UML‟s classifiers.

AspectName

AttributesOperations
Inter-type Declarations

Pointcuts
Advices

 87

Presentation Options

The rectangular box used for an aspect‟s notation is divided into three compartments. The

first compartment holds the name of the aspect. The second compartment contains a list of

attributes, operations and inter-type declarations. And the third compartment contains a list

of pointcuts and advices or a pointcut-advice diagram (in Aspect-Design Models).

Naming conventions

Aspect‟s name is centred and bold faced. Each word in the name starts with capital letter

and has no space in between. Naming conventions for attributes and operations is the same

as is used in UML (OMG, 2012). Pointcuts and advices follow the same naming style as is

applicable for operations in UML 2.4.1.

Example

An example representing an aspect is shown in Figure 4.8 in the following section

Rationale

An aspect is a primary construct in aspect-oriented software development. It is required to

be represented with a distinct design notation. AODL, therefore, assigns a design notation

to an aspect which contains all the features of an aspect.

Purpose of the Notation

Aspect is represented in all AODL diagrams. That is the reason that a distinct design

notation has been designated to this construct.

4.3.4.2.Aspect-Design Diagram

This diagram represents features of an aspect and its associations with base classes.

Description

The aspect-design diagram helps in representing complete information of an aspect. An

aspect is represented along with its primary features such as attributes, operations, pointcuts

and advices. The relationship between pointcuts and advices is represented with the help of

a pointcut-advice diagram. The associated base classes are also represented with the aspect

through <<crosscuts>> stereotypes.

 88

Graphic Nodes

The graphic nodes included in Aspect-Design Diagrams are shown in Table 4.9.

Table 4.9 - Graphic Nodes included in Aspect-Design Diagrams

Node Type Notation Explanation

Aspect Details about aspect‟s notation are

provided in 4.3.3.3.

Pointcut This is a pointcut notation which has

been described in detail in 4.3.3.2

Advice This is the design notation for advice,

which has been discussed in detail in

4.3.3.2.

Class Base classes are represented with their

conventional UML notations (OMG,

2012).

Graphic Paths

Graphic paths between the graphic nodes in a Pointcut-Advice Diagram have been shown

in Table 4.10.

Table 4.10 - Graphic Paths included in Pointcut-Advice Diagrams

Node Type Notation Explanation

Pointcut-Advice

Association

 A pointcut is associated with an

advice through a simple line with

occurrence type defined on top of

it.

AspectName

Attributes
Operations
Inter-typeDeclarations

Pointcut-Advice

Diagrams

 Join points

pointcutName

<<advice>>
Ad01

Class Name

 89

Crosscutting Association

 This association shows

relationship between an aspect

and its interacting base classes.

Example

Figure 4.8 shows an example of an Authentication aspect in an ATM system. It contains a

pointcut-advice diagram which shows a pointcut authenticateUser associated with an

advice Ad01.

Rationale

A structural design diagram is required to represent the internal structure of an aspect.

Although a simple aspectual notation is used in all of the AODL diagrams and models, a

detailed structural diagram is still required to design complete structure of an aspect.

Purpose of the Diagram

The Aspect-Design Diagram has been developed to represent an aspect along with its

features and associations. This diagram helps in understanding the structure of an aspect

and its structural relationships with base classes.

4.3.5. Weaving Process Design

This section introduces the design method for weaving of aspects into the base program

adopted in AODL. There is a weaving association and two design diagrams, Aspect-Class

Dynamic Diagram and Aspect-Class Structure Diagram which are used to design a

complete weaving process in AODL.

Authentication

Attributes
Operations

<<crosscuts>>

<<crosscuts>>
Account

CashDispenser

before

<<advice>>
authenticate

authenticateUser

call(*.checkBalance()) ||
call (*.withdraw())

<<crosscuts>>

Figure 4.8: Aspect-Design Diagram for Authentication Aspect

 90

4.3.5.1.Weaving Association

Description

Weaving is a process where aspects‟ behaviours are woven into the base program during its

execution. The location of weaving is decided by pointcuts of the aspect which contains

join points of the base program. Weaving association indicates the locations in the dynamic

diagram where an aspect‟s behaviour is inserted.

Constraints

This association can only be used to depict a weaving association between an aspect and a

base object.

Semantics

The association between an aspect and objects is shown with the help of this notation which

has been designed to reflect the type of association both constructs have. The association

also contains information regarding the behaviour of the aspect which is to be inserted into

the base program and the location where this weaving process happens.

Notation

The association is represented by a line with a head made up of a circle with + sign. The

circle resembles the aspect‟s circular symbol and the + sign shows the appending process of

the aspect‟s behaviour.

Presentation Options

The association may contain the advice‟s name and information about the method in which

the advice is supposed to be inserted.

Example

The usage of weaving association notation has been shown in Figure 4.9.

 91

Rationale

The weaving association has been designed to distinguish it from other UML associations

which are used between objects. An aspect‟s association with an object is required to be

shown as a special relationship where an advice‟s implementation is to be inserted.

4.3.5.2.Aspect-Class Dynamic Diagram

This diagram shows the weaving process at a dynamic level.

Description

This diagram has been developed to represent the weaving process of aspects with objects

during the execution of the program. The communication diagram of UML 2.4.1 (OMG,

2012) has been selected as a base for this diagram. Some extensions have been introduced

to the communication diagram to accommodate representation of aspects and aspectual

elements and to represent the weaving process. The reason behind selecting the

communication diagram is its ability to provide a dynamic picture of the system. Since

weaving is a dynamic process which happens during the execution of the program so this

diagram is an ideal choice to represent the weaving process.

Graphic Nodes

The graphic nodes included in an Aspect-Class Dynamic Diagram are shown in Table 4.11.

Table 4.11 - Graphic Nodes included in Aspect-Class Dynamic Diagram

Node Type Notation Explanation

Aspect Details about aspect‟s notation are

provided in 4.3.3.3.

Object Base objects are represented with their

conventional UML notations (OMG,

2012).

 92

Graphic Paths

Graphic paths between the graphic nodes in an Aspect-Class Dynamic Diagram have been

shown in Table 4.12.

Table 4.12 - Graphic Paths included in Aspect-Class Dynamic Diagram

Node Type Notation Explanation

Message This path indicates the method‟s

information along with method‟s name

and order of occurrence. The arrow

head indicates the direction of the

flow. The representation is similar to

the one used in conventional UML

(OMG, 2012).

Weaving Association This association shows that a piece of

code (advice) is being appended to the

object. The association has occurrence

type (before, after or around) followed

by number of method and advice id.

Example

Figure 4.9 shows a general Aspect-Class Dynamic Diagram which shows the aspects‟

weaving with the base objects during the execution of the system.

 1:method()

 {after, before or around} 1 : ad01 ()

 Weaving

Association

3: methodbD()

Aspect A

after 1: ad01()

Object A Object B

1: methodaB()

Object C

Aspect B

before 1: ad01()

Object D

after 3: ad02()

2: methodbC()

 Occurrence type,

location and advice

An Aspect

Figure 4.9: Aspect-Class Dynamic Diagram

 93

Rationale

Weaving is a dynamic process that happens at the run time. A dynamic model is required to

capture this run-time weaving of advices into the objects‟ internal control flow.

Purpose of the Diagram

The weaving process is a crucial design document in aspect-oriented software development.

The Aspect-Class Dynamic Diagram shows how we can show the appending of advices

with the base objects during the dynamic flow of the system. The diagram provides a way

of simulating the weaving process using UML‟s communication diagram. A

communication diagram is used to show the dynamic flow of the system in the unified

modelling language. Since the weaving process is also dynamic so representation of the

aspects‟ superimposed behaviour can be captured by representing insertion of advices at the

specified join points along with the class‟ method execution.

4.3.5.3.Aspect-Class Structure Diagram

This diagram shows the structure of an aspect-oriented system. It presents a static model of

aspects and system classes in one diagram.

Description

This diagram has been developed to represent structural representation of aspects along

with system classes. The diagram extends UML‟s class diagram which is used in UML to

show structure of classes (OMG, 2012).

The diagram helps in presenting a structural picture of the system where aspects and their

relationships with classes are shown at a static level.

Graphic Nodes

The graphic nodes included in Aspect-Class Structure Diagram are shown in Table 4.13.

 94

Table 4.13 - Graphic Nodes included in Aspect-Class Structure Diagram

Node Type Notation Explanation

Aspect

 Details about aspect‟s notation are

provided in 4.3.2.3.1.

Class

 Base classes are represented with their

conventional UML notations (OMG,

2012).

Graphic Paths

Graphic paths between the graphic nodes in an Aspect-Class Dynamic Diagram have been

shown in Table 4.14. The UML 2.4.1 class paths which have not been provided here in this

table are also applicable to the Aspect-Class Dynamic Diagrams.

Table 4.14 - Graphic Paths included in Aspect-Class Dynamic Diagram

Node Type Notation Explanation

Aspect-Class Association This association links an aspect with a

class in the diagram.

Association Association defines links between two

instances of the same kind in UML

2.4.1 (OMG, 2012).

Aggregation Aggregation is an enumeration type

used in UML 2.4.1 to specify literals

for defining aggregation property

between objects (OMG, 2012).

Composition Composition association is the same as

used in UML 2.4.1 (OMG, 2012).

 95

Generalization Generalization association is the same

as used in UML 2.4.1 (OMG, 2012). In

addition, this association is also used

for describing generalization in

aspects.

Example

Figure 4.10 shows a general Aspect-Class Structure Diagram which shows static

relationshipsbetween aspects and base classes.

Purpose of the Diagram

The aspect-class relationships are designed in a static model in AODL. Aspect-Class Static

Model shows the interacting aspects and base classes in one diagram which helps in

identifying the entities participating in the weaving process. The crosscutting relationship is

denoted by a <<crosscuts>> stereotype, which shows class-directional association

between an aspect and a base class.

Aspect-Class structure diagram also helps in developing a blue print of the structure of the

system depicting the main constructs of the system (aspects and classes) and relationships

among them. The diagram also helps in translating the system design into implementable

code.

<<crosscuts>> <<crosscuts>> <<crosscuts>>

Aspect-Class Association

An Aspect

A Class
 Class A Class B

 Aspect A

 Aspect B Aspect C Aspect D

Figure 4.10: Aspect-Class Structure Diagram

 96

4.3.6. Pointcut Table

Defining and documenting pointcuts properly ensures consistency of the program. AODL

proposes a pointcut table to document pointcuts along with their related advices, aspects

and base classes. The table defines pointcuts in vertical columns by indicating the join

points of the base system horizontally. The columns of the table provide list of aspects and

complete definition of their pointcuts along with their related advices. The rows, on the

other hand, show the base system attributes, methods and execution points where join

points have been identified. The execution order of advices on a single join point is

declared in the last column, named Order.

An example pointcut table shown in Table 4.15 specifies following pointcuts:

AspectA:

P1:this(X) && (execution(mX1) || call (mY1)) &&(P2)

P2:exception(type)

Aspect B:

P3:execution(mX1) || call(mY1) && !P4

P4: call(mX2) || call(mY2)

{ mX1 = Method 1 of Class X, mY1 = method1 of Class Y}

Table 4.15 - Example Pointcut Table

<<aspect>>

Aspect A

<<aspect>>

Aspect B
Precedence

<<advice>>

AdA1

(Before)

<<advice>>

AdA2

(After)

<<advice>>

AdB1

(Before)

<<advice>>

AdB2

(around)

Class X this

constructor

method1 execution execution AdA1,AdB1

method2 call

getX()

Class Y

method1 call call AdB1,AdA1

method2 exception(type) call

Pointcut

Definition

this(X) &&
(exec(mX1) || call

(mY1))

exception(type)
execution(mX1) ||

call(mY1)

call(mX2) ||

call(mY2)

Pointcut P1 P2 P3 P4

Pointcut Trigger (P2) !(P4)

Complete

Definition

this(X) &&
(exec(mX1) || call

(mY1)) &&(P2)

exception(type)
execution(mX1) ||

call(mY1) && !P4

call(mX2) ||

call(mY2)

 97

The above tale provides a simple example to explain the pointcut table. Chapter 5 provides

an in-depth application of the table to two case studies to explain it in more detail with

examples. The table has been tested and verified to represent all types of legitimate

AspectJ pointcuts, as defined in (Iqbal and Allen, 2012).If the system is highly complex and

contains a number of aspects, the table can be broken into multiple smaller tables to

improve readability.

Purpose of Pointcut Table

The table provides a means to specify pointcuts in a detailed manner along with their

related advices, pointcuts and base constructs. The table also helps in identifying and

resolving conflicts. It explicitly overcomes the shared join point problem by prioritizing

order of execution of advices.

4.5. Chapter Summary

This chapter has discussed Aspect-Oriented Design Language in detail which has been

proposed to define, specify, represent and design aspects and their constituent elements

along with base program‟s constructs. AODL has been proposed on the primary motivation

of providing a unified design framework to design both aspects and objects together in one

environment. For this purpose a unified language has been proposed which extends UML

with some new design notations for aspects and their key elements. This chapter has

discussed the motivation behind the language in detail. It has provided description of

language formalism which has been adopted for all the design notations and diagrams

included in AODL. UML‟s specification templates were modified and used to describe

each notation and diagram in detail.

 98

Chapter 5:

Application of AODL

This chapter evaluates AODL in terms of application of the language to real-world case

studies. The language has been applied to two case studies which have been selected on the

basis of adequate level of complexity to cover all the proposed notations and design

models. The first case study is a Car Crash Crisis Management system, which is a standard

case study for the evaluation of aspect-oriented design approaches. The second case study

is an implemented game, SpaceWar, borrowed from the AspectJ Tutorials, which, has been

selected to apply AODL by reverse engineering an implemented system. The chapter

discusses and assesses the efficacy of the language in light of its application to both these

case studies.

5.1. Introduction

The evaluation of AODL has been divided into two phases, through qualitative analysis,

which is discussed in Chapter 6, and through applying the notations to case studies, which

will be the topic of this chapter. It has been demonstrated in detail in Chapter 6 that AODL

covers all the basic quality criteria of an aspect-oriented design language. The basic

requirements for an effective AO design methodology, such as support for static and

dynamic crosscutting, traceability, extensibility and reusability have been assessed in depth

in that chapter. However, a design language cannot be deemed effective unless it is

demonstrated to design a complex system adequately.

This chapter demonstrates the application of AODL to two case studies. The first case study

is a Car Crash Crisis Management system, which was a theme case study for aspect-

oriented modelling approaches for a special edition of Transactions on Aspect-Oriented

Software Development VII (Kienzle et al., 2010). The case study is a detailed

implementation of a crisis management system which has enough complexity to exploit all

the proposed notations and design models of AODL. The second case study is an example

 99

game, called SpaceWar, implemented by the AspectJ Team and is available on AspectJ‟s

eclipse plugin (AspectJ, 2012). This case study provides a way to assess AODL by reverse

engineering the design of an implemented system using AODL notations and design

models.

The rest of the chapter is structured as follows: section 5.2 explains the Car Crash Crisis

Management system and describes the design of the system using AODL. Section 5.3

explains the SpaceWar game and the reverse engineered design of the game using AODL.

Section 5.4 discusses the application of AODL to both case studies and provides the results

and findings. The last section, section 5.5 concludes the chapter with a chapter summary.

5.2. Case Study: Car Crash Crisis Management System

The Crisis Management System (CMS) case study was the theme of a special edition of

Transactions on Aspect-Oriented Software Development VII (Kienzle et al., 2010). The

purpose of a common case study was to have a comparative research repository of the

existing aspect-oriented software development techniques. CMS is software that facilitates

and brings together all the related parties and stakeholders who are involved in handling a

crisis. CMS is required to handle many types of crises, such as accidents, attacks, natural

disasters, etc. by interacting with external services like hospitals, emergency services,

military and police services. More details on the case study can be obtained from (Shmuel

and Mezini, 2010; Kienzle et al., 2010). In this chapter, the focus will be on designing a

specialized form of CMS that is Car Crash Crisis Management (CCCM).

5.4.2. Crisis Scenario of a Car Crash Crisis Management System

This section will provide only a brief introduction to the system, for more details consult

(Kienzle et al., 2010).

A crisis management task is initiated by a coordinator on a crisis report made by a witness

at the scene. A coordinator oversees the crisis management system and is responsible for

utilizing all the required resources to resolve the crisis. The surveillance system is an

external system placed on highways and other busy locations in the form of cameras. Video

feeds from the surveillance system may be acquired on the request of crisis management

system. A super observer is assigned by the system to observe the crisis scene and make a

report on the crisis and to identify the need for internal and external resources depending on

the nature and severity of the crisis. The tasks are identified by the super observer and

 100

deployed in the form of crisis missions. Crisis missions may include internal and external

resources depending on the demands of the crisis.

5.4.3. Identified Aspects

The following functional and non-functional aspects from the car crash crisis management

system have been identified:

5.2.2.1. Functional Aspects

1. Witness Validation: This aspect validates authenticity of the witness who is

reporting a crisis. The aspect may contact external resources for the validity

check.

2. Mission Status: This aspect is responsible for updating the status of the mission

and to inform whether the mission is active, finished, failed, terminated or

interrupted at a certain point of time.

3. Resource Monitor: This aspect is responsible for setting off an alarm when a

minimum threshold value of resources is reached.

4. National Crisis Center Informer: This aspect is responsible for informing

NCC when a) no internal or external resource is available, b) mission is

interrupted or terminated without being completed and no replacement is

available c) mission fails d) mission needs assistant from NCC.

5. Employee Authentication: This aspect authenticates every employee who is

part of the reporting, deployment or handling of the crisis.

6. Witness Report Observer: If the witness call gets disconnected in the middle

of the report being made, this aspect is responsible for gathering as much

information as has been provided by the witness and for collecting more

information from the surveillance system in the form of a video feed. It is also

responsible for initiating the emergency aid service on the basis of collected data

from the witness report and surveillance system.

5.2.2.2. Non-Functional Aspects

1. Fault-Tolerance: This aspect starts a back-up system if the current system shuts

down or hangs for over 30 seconds.

 101

2. Persistence: This aspect is responsible for storing critical information about the

crisis such as witness report, crisis type, location, available resources, deployed

resources and start and finish time of crisis.

3. Security: This aspect prompts employees to re-authenticate if they are idle for

more than 30 minutes.

4. Logging: This aspect is responsible for keeping logs about all types of

activities.

5.4.4. Use Case Diagram of Car Crash Case Study

A detailed use case diagram of the summary-level goal Resolve Crisis has been shown in

Figure 5.1. For details of all the use cases that are related to the Resolve Crisis use case,

consult (Kienzle et al., 2010).

5.4.5. Application of AODL to Car Crash Crisis Management

As described in the overview of AODL, CCCM system will be designed in three phases. In

the first phase, aspects will be represented in the join point identification diagram and their

behaviour will be represented along with the behaviour of other objects of the related

module in the join point behavioural model. In the second phase, aspects will be designed

along with their pointcuts and advices. The relationship between pointcuts and advices will

Figure 5.1: CCCM System: A Standard Use Case Diagram (Source: Kienzle et al., 2010)

 102

also be captured using an aspect-advice relationship diagram. In the third phase, the

weaving process of aspects with their related classes will be designed using an aspect-class

composition model that contains an aspect-class dynamic model to represent the weaving

process of aspects with base objects, and an aspect-class static diagram to capture the

structural relationships between aspects and classes.

5.2.4.1. AODL Structural Model

This section provides structural diagrams of Car Crash Crisis Management system designed

in AODL.

5.2.4.1.1. Join Point Identification Diagrams

A Join Joint Identification Diagram is an extension to the UML‟s sequence diagram. It

helps in identifying points or locations where an aspect superimposes its behaviour. There

are a few technologies (Stein et al., 2002a; Stein et al., 2004)] which consider join points as

links and do not provide design support for them. AODL, on the other hand, considers join

points as execution points that define the location for aspects to interact with the base

system, so it is imperative to define and represent them while designing an aspect‟s

interaction with the base system.

UML‟s sequence diagram shows the message passing among the objects representing the

execution flow of the system. That is why AODL extends sequence diagrams to define and

represent join points along with the corresponding objects and aspects which meet at that

particular point (more details in (Iqbal and Allen, 2011).

The following sections contain join point identification diagrams for those use cases of

CCCM system which contain interaction with the identified aspects. A full list of use cases

can be found in (Shmuel and Mezini, 2010).

Use Case: Capture Witness Report

This use case is related to the reporting done by a car crash‟s Witness and the receiving and

recording of that report by the Coordinator in the reporting office. Figure 5.2 shows the join

point identification diagram for this scenario which shows the message passing between the

“Coordinator” and “Crisis Manager” objects.

 103

When the witness report is provided to the coordinator, as an extension to the success

scenario, witness might not be a credible source and the report could be a hoax. To avoid

this situation, the witness must be validated. The aspect WitnessValidation inserts its

behaviour at this point and validates the witness‟s credibility by verifying the phone

number from the phone company.

In another extension, the witness report can be incomplete if the call is dropped while the

report is being made by the witness. In this scenario, WitnessObserver aspect provides

video recordings from the surveillance cameras. Once the report is successfully recorded, a

persistence record must be maintained which is performed by the Persistence aspect.

Use Case: Assign Internal Resource

This use case is responsible for finding and assigning a mission to the most appropriate and

available resource.

Authentication

Resource
Monitor

Persistence

Surveillanc
e

Witness
Observer

Witness
Validation

validation

Figure 5.2: Join Point Identification Diagram for “Capture Witness Report”

Figure 5.3: Join Point Identification Diagram for “Assign Internal Resource”

 104

In this scenario, a join point has been identified at execution point of the assignResource()

method, which assigns a mission to the employee (as shown in Figure 5.3). This join point

is used by the Authentication aspect to check if the employee is authorized and logged in to

the system. At the same join point, another aspect ResourceMonitor updates its record

about the number of assigned resources because this aspect sets off an alarm when a

threshold value of resources have been assigned to the missions to avoid shortage of

resources.

Use Case: Execute Super Observer Mission

This use case is related to the SuperObserver who observes the situation at the crisis site

and requests a suitable mission. The join point identification diagram (Figure 5.4) shows

two identified join points on two methods where aspects NCCInformer and MissionStatus

insert their behaviours.

The NCCInformer aspect is responsible to inform the National Crisis Cell in case of non-

availability of a required resource, and the MissionStatus aspect is responsible for assigning

an appropriate flag to the mission, which is invoked once the mission is added to the

system.

Use Case: Authenticate User

This use case is responsible for authenticating and authorizing employees who access the

system. The join point identification diagram for this scenario (Figure 5.5) shows that

NCC
Informer

Mission
Status

Figure 5.4: Join Point Identification Diagram for “Execute Super Observer Mission” use case

 105

aspect Authentication can handle this job whenever a login attempt is made by an

employee.

The aspect Authentication superimposes its behaviour on a join point which is at the

execution of the validateLogin() method.

5.2. 4.1.2. Aspect Design Diagrams

Aspect Design Diagrams are used to represent the structure of an aspect. An aspect may

contain pointcuts, advices, attributes and operation. Pointcuts and advices are tightly

coupled with each other (Iqbal and Allen, 2011) and their cohesive nature is represented

with a pointcut-advice diagram in AODL. Pointcut-advice diagrams represent the structure

in which the two are related to each other and it also shows the occurrence attribute (before,

after and around) along with the advice to represent the point where advice is supposed to

execute.

Aspect Design Diagrams of Car Crash Crisis Management System are explained in the

following section.

Aspect Design Diagram for MissionStatus aspect

The MissionStatus aspect is responsible for updating the status of the mission. As shown in

Figure 5.6, the Aspect Design Diagram of the MissionStatus aspect contains a pointcut-

advice diagram which shows the relationship between pointcut setMissionStatus and advice

updateSatus. This aspect inserts its behaviour in the CrisisManager class and the SuperObser

Authentication

Figure 5.5: Join Point Identification Diagram for “Authenticate User”

 106

class, which are also shown in the diagram to represent the crosscutting behaviour of the

aspect.

Aspect Design Diagram for WitnessObserver aspect

The WitnessObserver aspect is responsible for validating a witness report. If the report is

incomplete or contains inadequate information, it takes feeds from surveillance cameras

installed at the location of the crisis. The Aspect Design Diagram for the WitnessObserver

aspect (Figure 5.7) shows that it contains a pointcut verifyReport which defines join points

in the system where the advice updateReport will insert its behaviour. Two classes,

Coordianator and Survelliance, are also shown as they will be crosscut by the

WitnessObserver aspect.

Aspect Design Diagram for Persistence aspect

The Persistence aspectmaintains a persistent record of events and saves information about

the important transactions. The Aspect Design Diagram for the Persistence aspect (Figure

5.8) shows that it has a saveReport advice which is connected to the saveReport pointcut

MissionStatus

 CrisisManager

SuperObserver updateStatus

after

execute(*.assignMission())||
execute(*.finishMission()) ||
execute(*.abortMission())

setMissionStatus

WitnessObserver

Coordinator

Surveillance

update

Report

after

execute(Coordinator.sub
mitReport())

verifyReport

Figure 5.6: Aspect Design Diagram for Mission Status aspect

Figure 5.7: Aspect Design Diagram for WitnessObserver aspect

 107

with an “after” occurrence type that indicates that the saveReport advice will run after join

points in the saveReport pointcut successfully execute.

Aspect Design Diagram for Authentication aspect

The Authentication aspect helps in authenticating all the users who interact with the system.

The Aspect Design Diagram for Authentication (Figure 5.9) shows that whenever an object

of CrisisManager class or ResourceManager class makes a transaction, Authentication

aspect executes to verify the users. There is a pointcut checkLogin consisting of join points

which identify the locations for the Authentication aspect to run the authenticateEmp

advice.

5.2. 4.1.3. Aspect-Class Structure Diagram

This diagram helps in organizing all the entities (aspects and objects) which are involved in

an executing process. This diagram shows the structure of the module with a representation

of aspects interacting with classes. Figure 5.10 shows the Aspect-Class Structure diagram

for CCCM system.

Persistence

 Coordinator

saveReport

after

execute(Coordinator.sub
mitReport())

saveReport

esourceManager

 CrisisManager

Authentication

authenticateEmp

after

execute(*.login()) ||
execute(*.assignResource
())||execute(*.validateLogi
n())

checkLogin

Figure 5.8: Aspect Design Diagram for Persistence aspect

Figure 5.9: Aspect Design Diagram for Authentication aspect

 108

The diagram shows how aspects of CCCM system are connected with the base classes. The

diagram helps in representing the structure of the aspectual and base constructs and also

helps in depicting crosscutting structure of the system.

5.2.4.2. AODL Behavioural Model

AODL‟s behavioural model is responsible for designing the behaviour of an aspect, its

elements and its weaving process. This model has two diagrams, Join Point Behavioural

Diagram and Aspect-Class Dynamic Model. These diagrams show how the behaviour of an

aspect and aspectual elements can be represented along with the behaviour of objects and

their respective classes.

The following section will provide a complete AODL behavioural model for CCCM

system.

5.2.4.2.1. Join Point Behavioural Diagrams

Join point behavioural diagrams help in identifying and representing the location of a join

point, where aspects of the system insert their behaviour, within execution flow of the

system. The activity diagram of UML is extended to show join points along with the

activities of the system.

Join Point Behavioural diagrams for CCCM system are explained in the following sections.

<<crosscuts>>

<<crosscuts>>

<<crosscuts>>

<<cr

ossc

uts>>

<<cr

ossc

uts>>

WitnessObserver

 Coordinator

<<cr

ossc

uts>>

Persistence

<<crosscuts>>

NCCInformer

Authentication

esourceMonitor

 MissionStatus

<<crosscuts>>

 Mission

CrisisManager SuperObserver

ResourceManager

 Employee

EngagedResource

 MissionManager

WitnessValidatio

Figure 5.10: Aspect-Class Structure Diagram for Car Crash Crisis Management System

 109

Capturing Witness Report

In CCCM system, when a report is made by the witness from the site of a crash, a report is

collected and recorded. At this point, the witness is validated by an aspect

WitnessValidation. During the recording process of the report, if the report is not fully

gathered due to either the witness‟s call being dropped or the incompletion of the report, the

WitnessObserver aspect provides extra information from the surveillance cameras installed

at the site of the crash. The join point for Persistence is also shown in the Figure 5.11,

which records all the data at the end of the process.

Assign Internal Resource

Figure 5.12 shows the Joint Point Behavioural Diagram for the “Assign Internal Resource”

module, which finds a suitable resource for the required job. The diagram helps in locating

the join points for the ResourceMonitor aspect, which checks if there are enough resources

remaining after a resource is engaged, and the Authentication aspect, which asks users to

reenter authentication details if they are not logged in.

Figure 5.11: Join Point Behavioural Diagram for “Capture Witness Report” module

JP_WitnessValidation

WitnessR

eport

Get Witness

Report

Record Witness

Report

ReportInc

omplete

JP_Witness
Observer

JP_Persistence

 110

Super Observer Mission

The Join Point behavioural diagram shown in Figure 5.13 is for “Super Observer‟s

Mission”. It indicates two join points for MissionStatus and NCCInformer aspects. The

MissionStatus aspect assigns a status to a mission. It happens once a mission is successfully

added. There is another aspect, NCCInformer which is responsible for contacting NCC

(National Crisis Center) in case of unavailability of a resource.

Authentication

The Join Point Behavioural model for the Authentication module shows how the

Authentication aspect interacts during the execution flow of the Authentication process.

JP_Resource
 Monitor

JP_Authentication

Employee

Required

Request

Get Employee

Request

Find

Employee

Assign

Employee

Emp Not

Logged in

Figure 5.12: Join Point Behavioural Diagram for “Assign Internal Resource” module

Figure 5.13: Join Point Behavioural Diagram for “Super Observer‟s Mission” module

JP_MissionStatus

Crisis Info

Get Crisis

Info

Add

Crisis

Find

Resource

No

Resource

JP_NCCInformer

Add

Mission

 111

Figure 5.14 shows that once the validate login starts the Authentication aspect interacts with

the base system and checks the login details of the user. If the details match with saved

details, the process completes successfully, but where the details do not match, new details

are asked and the whole process is repeated.

5.2.4.2.2. Aspect-Class Dynamic Model

The weaving process starts at the execution of the system. The behaviour (advices) of

aspects run at predefined points (join points). It is imperative to depict this process in the

system design to understand the weaving process and locations in the system flow where

aspects interact with the base system. The Aspect-Class Dynamic Model is used to capture

this information. Details about the model can be found in Iqbal and Allen (2011). The

following section shows the Aspect-Class dynamic diagrams for the CCCM system.

Capturing Witness Report

Capturing of witness report involves collecting information from a witness and initiating

the process of assigning a mission for the incident. As Figure 5.15 shows the coordinator

receives the report from a witness and passes that information to the CrisisManager to start

the process of assigning a suitable mission. During this flow, multiple aspects execute their

behaviours, such as WitnessValidation which verifies the authenticity of the witness,

WitnessObserver which provides surveillance feeds in case the report is incomplete,

MissionStatus which updates the status of the mission and Persistence ensures all the

important data is kept persistent.

JP_Authentication

Login Details

Get Login

Details

Validate

Login

Login

Unsuccessful

Login

Successful

Figure 5.14: Join Point Behavioural Diagram for “Authentication” module

 112

Figure 5.15 shows how aspects insert their behaviour at join points. For instance, the

Persistence aspect and the WitnessObserver aspect interact with the CrisisManager object

after submitReport() method finishes execution. The MissionStatus aspect runs its advice

ad01() after assignMission() method of the Mission object finishes execution. And, the

WitnessValidation aspect runs two of its advices ad01() and ad02() before execution of

submitReport() method of the CrisisManager object, and assignMission() of the Mission

object respectively.

Assigning Internal Resource

The ResourceManager starts a process to find suitable resources for the mission. As Figure

5.19 shows the Employee class finds a suitable employee who is assigned to the mission

and is updated as an engaged resource in the system. During the execution of this process

the Authentication aspect verifies the authentication of all assigned employees and ensures

all the users are properly logged in. The MissionStatus aspect updates the status of the

mission once a mission has been assigned.

after 1: ad02()

after2: ad02()

after 1: ad01()

2: assignMission()

:Mission

after2: ad01()

Persistence

MissionStatus

1: submitReport()

:Coordinator : CrisisManager

:Surveillance

before 1: ad01()

WitnessValidat

ion

Witness

Observer

Figure 5.15: Aspect-Class Dynamic Diagram for “Capturing Witness Report”

 113

The model also shows the join points where these aspects interact with the base objects. For

instance, the Authentication aspect runs its advice ad01() before assignResource() method of

the EngagedResource object is called and the MissionStatus aspect runs its advice ad01()

after this method finishes its execution.

Execute Super Observer Mission

Figure 5.17 shows a flow of execution of super observer‟s mission. Super observer collects

information from the site of the incident which is used to identify a suitable mission. The

CrisisManager adds a new mission on the basis of the information provided by super

observer. There are two aspects, NCCInformer and MissionStatus, which interact with the

system at this point. The NCCInformer is responsible for contacting national crisis center in

case a suitable resource is not found and the MissionStatus keeps the status of the mission

updated. The following Figure 5. 17 shows the weaving process of both the aspects into the

base system.

To demonstrate the exact locations of aspect interactions, a notation is associated with

weaving association. For instance, to show the join point where the NCCInformer aspect

after2: ad01()
before2: ad01()

2: assignResource()

:EngagedResource
MissionStatus

Authentication

1: findEmp()

1.1: returnEmp()

:ResourceManager : Employee

after4: ad01() after 3: ad01()

3:addMission()

MissionManager NCC

Informer

1: getCrisisInfo()

2: addCrisis()

:CrisisManager :

SuperObserver

 : Mission
4: addMission() MissionStat

us

Figure 5.16: Aspect-Class Dynamic Diagram for “Assigning Internal Resource”

Figure 5.17: Aspect-Class Dynamic Diagram for “Execute Super Observer Mission”

 114

inserts its behaviour (advice ad01()) after addMission() method of MissionManager object

finishes its exectution, after 3: ad01() is labeled on the weaving association. Similarly,

ad01() of the MissionStatus aspect has also been shown being inserted after addMission()

method of Mission object finishes its execution.

Authentication

Authentication aspect weaves its behaviour when the employees are verified to be properly

logged in. The aspect checks the login session and details and prompts a reentry message if

a validation process fails.

The model in Figure 5.18 shows that, after 3: ad01() is labeled on weaving association

between the Authentication aspect and the CrisisManager object. It can be translated as: the

advice ad01() of the Authentication aspect will be executed once validate() method of the

CrisisManager object finishes its execution.

5.2.4.3. Pointcut Composition Model

The pointcut composition model shown in Figure 5.19 provides a design of pointcuts of

Persistence aspect and WitnessObserver aspect. Each aspect has one pointcut which has

one related advice. As shown in the figure, these aspects have a shared join point conflict.

Both of them run their advice after the execution of submitReport() method of Coordinator

class. This model resolves this conflict by associating both aspects with a <<precedence>>

stereotype which demonstrates that WitnessObserver aspect will have priority over

Persistence aspect.

3: validate ()

after 3: ad01()

Authentication

1: requestLogin()

2: enterLogin()

:CrisisManager : Employee

Figure 5.18: Aspect-Class Dynamic Diagram for “Authentication”

 115

Similarly, a pointcut composition model for MissionStatus aspect and Authentication

aspect has been shown in Figure 5.20. The model shows that MissionStatus aspect has one

pointcut that contains three join point predicates. Similarly, Authentication aspect has one

pointcut and that pointcut contains three join point predicates. Each join point predicate has

been designed separately and the composition among them has been modelled using the

notations of pointcut composition model.

<<advice>>
WitnessObserver
_submitReport

Scope:

after

<<execution>>

submitReport()

Coordinator

WitnessObserver_verifyReport

<<precedes>>

Persistence

<<advice>>
Persistence_
saveReport

after

Witness

Observer

e:

Scope:

<<execution>>

submitReport()

Persistence_saveReport

Coordinator

Figure 5.19: Pointcut Composition Model of Persistence and WitnessObserver aspects

 116

5.2.4.4. Pointcut Table

Table 5.1 shows specification of pointcuts of all of the aspects. There are no identified

clashes among aspects so Precedence column remains empty.

Table 5.1 - Pointcut Table for Car Crash Crisis Management System

<<aspect>>

MissionStatus

<<aspect>>

Persistence

<<aspect>>

Authentication

<<aspect>>

WitnessObserver
Precedence

<<advice>>

updateStatus

<<advice>>

saveReport

<<advice>>

authenticateEmp

<<advice>>

updateReport

Class

CrisisManager

login() execute

assignMission() execute

AbortMission execute

Class

SuperObserver

Scope:

MissionStatus_setMissionStatus

<<execution>>

assignMission()

*

OR

OR

<<execution>>

finishMission()

*

abortMission()

<<execution>>

*

MissionStatus

<<advice>>
MissionStatus_
updateStatus

traceExit()

after

after

<<advice>>
Authentication_
authenticateEmp

Authentication

Scope:

<<execution>>

login()

*

OR

OR

validateLogin()

<<execution>>

*

Authentication_checkLogin

<<execution>>

assignResource()

*

Figure 5.20: Pointcut Composition Model of MissionStatus and Authentication aspects

 117

finishMission() execute

abortMission() execute

Class

Coordinator

submitReport() execute

Class

ResourceManager

login() execute

assignResource() execute

Class

Surveillance

submitReport() execute

Pointcut Definition

execute(*.assignMission())||

execute(*.finishMission())||

execute(*.abortMission())

execute(Coordinator.su

bmitReport())

execute(*.login())||

execute(*.assignRes

ource())||execute(*.v

alidateLogin())

execute(Coordinator.

submitReport())

Pointcut Name setMissionStatus() saveReport() checkLogin() verifyReport()

5.4.6. Discussion

This section has demonstrated application of AODL to the Car Crisis Management System

case study. All the identified aspects have been designed using AODL design notations and

design diagrams. Each model depicts different perspective of the design of aspectual

constructs and their relationships with the base constructs. The application provides sound

evidence that AODL can be applied to a complex system involving multiple aspects. The

case study also provided a demonstration of usage of all the notations and diagrams of

AODL.

 118

5.3. SpaceWar Game Case Study

The game has been chosen from the example projects provided by AspectJ plugin for

eclipse (AspectJ, 2012). The traditional SpaceWar game has been implemented using

aspect-oriented AspectJ programming.

5.5.2. Identified Aspects in the System

There are two types of aspects identified in the system, functional aspects and non-

functional aspects.

Functional Aspects:

The following are the functional aspects of the game:

1. DisplayAspect: This aspect provides the look and display of the game. This

aspect is also responsible for displaying messages, modifications, updates,

exceptions and the game itself.

2. EnsureShipIsAlive: This aspect ensures the ship is alive after every change and

progress in the game.

3. GameSynchronization: This aspect is responsible for synchronizing the access

to the methods of the game. The aspect executes with every movement of the

ship or any change in the game concerning the ship.

Non-Functional Aspects:

The following are non-functional aspects of the game:

1. RegistrySynchronization: This aspect is responsible for synchronized access to

the registry methods during the game.

2. RegistryProtection: This aspect keeps track of every space object in the game.

3. Debug: This aspect is responsible for displaying all information related to the

debugging process on the main display screen.

5.5.3. Application of AODL toSpaceWar Game

The system is designed in two phases, structural design and behavioural design. The

following sections present a complete design of the system.

 119

5.3.2.1. AODL Structural Model

This section provides structural diagrams of the SpaceWar game designed in AODL.

5.3.2.1.1. Join Point Identification Diagrams

Join Point Identification Diagrams help in identifying join points early in the design of the

system. They are defined on the sequence diagrams of UML. The following sections show

JPIDs for SpaceWar game.

Use Case: Start Game

In the Start Game use case, the player enters the command to start the game. The scenario is

shown in Figure 5.21, where there are three aspects that interact with the base program's

objects. The DisplayAspect starts the initial energy scores of the player and timer of the

game. This has been shown in the figure in the form of two join points identified at the

execution of the producePacket() and runTimer() method.

The DisplayAspect also displays the game Robot once it starts as a result of execution of

the startRobot() method of the Robot object, which has also been shown in the figure

below.

 120

Figure 5.21: Join Point Identification Diagram for “Start Game” use case

The GameSynchronization aspect executes its behaviour at the execution of createShip()

method which has also been depicted in the JPID shown in Figure 5.21.

Use Case: Move Ship

This use case captures the Move Ship command by the user. AODL identifies a join point

for the EnsureShipIsAlive aspect around the rotate(string dir) method. The JPID model

shown in Figure 5.22 depicts the join point before call of the method and after the execution

of the method. As this join point is set around the method so the identification diagram

captures both the points around the method.

DisplayAspect

Game

Synchronization Display

Aspect

 121

Use Case: Thrust

The use case Thrust captures the scenario where the player commands the ship to thrust. To

ensure the ship is alive before the command is made and after the thrust is performed, the

aspect EnsureShipIsAlive executes its advice to find out whether the ship is alive. An

around join point is identified on the thrust(true) method where this aspect executes its

advice. The JPID shown in Figure 5.23 captures the location of the join point at the call of

the method and after its execution.

Figure 5.23: Join Point Identification Diagram for “Thrust” use case

EnsureShip
IsAlive

EnsureShip
IsAlive

Figure 5.22: Join Point Identification Diagram for “Move Ship” use case

 122

Use Case: Fire

This use cases captures the scenario of Fire command by the player. Before fire() message

is executed, EnsureShipIsAlive aspect checks whether the ship is still alive. The join point

for the aspect is around the call of the method. The JPID shown in Figure 5.24 depicts the

join point before the call of fire() method and after the execution of the method.

Figure 5.24: Join Point Identification Diagram for “Fire” use case

Use Case: Handle Collision

Once the ship collides with a space object or a space object collides with other space

objects, the system handles the collision as shown in the sequence diagram of Handle

Collision use case in Figure 5.25. When the System object calls the handleCollision()

method of the Game object, GameSynchrnoization aspect synchronizes the call in the

presence of all thread calls of the game. The aspect‟s join point has been shown in the

figure at the execution of the handleCollision() method.

EnsureShip
IsAlive

 123

Figure 5.25: Join Point Identification Diagram for “Handle Collision” use case

If one of the colliding objects is the ship, the bounce() method of the Ship object is called.

At this point, EnsureShipIsAlive aspect makes sure that the ship is still alive. The aspect

executes around the bounce() method which has been shown in JPID in Figure 5.25 in form

of two join points. One is at the call of bounce() method and one is on the execution of the

method.

5.3.2.1.2. Aspect Design Diagrams

Aspect Design Diagrams are used to represent the structure of an aspect. An aspect may

contain pointcuts, advices, attributes and operation. The diagrams help in capturing

structural properties of the aspects and structural crosscutting of the system.

Coordinator, RegistrySynchronization and GameSynchronization Aspects

The Coordinator aspect has two child aspects, RegistryShnchronization aspect and

GameSynchronization aspect, as shown in Figure 5.26. The aspect design model for all the

aspects are shown in the figure. The relationships between pointcuts and their advices are

depicted with the help of pointcut-advice diagrams.

EnsureShip
IsAlive

Game

Synchronization

 124

The structural crosscutting is depicted by <<crosscuts>> stereotype with Game and

Registry classes.

DisplayAspect

The DisplayAspect is responsible for printing messages on the display screen about the

change in the game and calculations of energy and time of the game. The aspect design

model for this aspect is shown in Figure 5.27, which contains pointcut-advice diagrams to

Coordinator

Hashtable methods
Vector exclusion

Coordinator()
addSelfex(String methName)
removeSelfex(String methName)
addMutex(String[] methNames)
removeMutex(String[] methNames)
guardedEntry(String methName)
guradedEntry(String methName, Condition condition)
guardedEntry(String methName, CoordinationAction action)
guardedEntry(String methName, Condition condition, CoordinationAction action)
guardedEntryWithTimeout(String methName, long millis)
guardedEntryWithTimeout(String methName,Condition condition,long millis)
guardedEntryWithTimeout(String methName,CoordinationAction action,long millis)
guardedEntryWithTimeout(String methName,Condition condition,
CoordinationAction action,long millis)
guardedExit(String methName)
guardedExit(String methName,CoordinationAction action)

updateStatus

synchronizationPoint()

after

updateStatus

before

RegistrySynchronization

RegistrySynchronization()

call(void Registry.register(..)) ||
call(void Registry.unregister(..))||
call(SpaceObject[]
Registry.getObjects(..)) ||
call(Ship[] Registry.getShips(..))

synchronizationPoint() updateStatus

after

updateStatus

before

<<crosscuts>>

Registry

GameSynchronization

GameSynchronization()

call(void
Game.handleCollisions(..))
|| call(Ship
Game.newShip(..))

synchronizationPoint()
updateStatus

after

updateStatus

befor

e

<<crosscuts>>

Game

Figure 5.26: Aspect Design Diagram for Coordinator and its child aspects

 125

show the relationships between pointcuts and advices and a crosscuts relationship that

shows the structural relationships of the aspect with Game, Player and Display classes.

EnsureShipIsAlive Aspect

This aspect is responsible for ensuring whether the ship is alive before a new command is

passed to the Ship class. The aspect design model for the aspect is shown in Figure 5.28. It

shows pointcuts and advices of the aspect in a pointcut-advice diagram. The structural

relationship of the aspect with the Ship class is shown with the help of <<crosscuts>>

relationship stereotype.

DisplayAspect

returning(Player player)

displayPlayer

call(Player+.new(..))

Anonymous_02

after

returning(Display

display)

displayChang
e

call(Display+.new(..))

Anonymous_03
after

after(Display display)

returning()

displayChang
e

call(void setSize(..))
&&target(display)

Anonymous_04

after

returning

displayElemen
ts

call(void
Game.clockTick())

Anonymous_05

returning(Game

game)

modeSelectio
n

call(Game+.new(String)

) && args(mode)

Anonymous_01

after

Game

Player

Display

<<crosscuts>>

<<crosscuts>>

<<crosscuts>>

Figure 5.27: Aspect Design Diagram for DisplayAspect aspect

 126

RegistrationProtection Aspect

The aspect RegistrationProtection handles exceptions thrown by the register() and

unregister() methods of the Registry class. The aspect design model depicted in Figure 5.29

shows the pointcuts and advices of the aspect and its relationship with Registry class.

Aspect Design Model for Debug Aspect

The aspect Debug is responsible for displaying messages about the control flow during the

debug process. The aspect design model for the Debug aspect, depicted in Figure 5.30,

shows the relationship between pointcuts and advices with the help of pointcut-advice

diagrams. The structural relationships with the base classes have been shown with the help

of associations with <<crosscuts>> stereotypes.

EnsureShipIsAlive

proceed(ship)

Ship.helmCommands

Cut(Ship)

Anonymous_01

around

checkShipStatu
s

<<crosscuts>>

Ship

RegistrationProtection

<<crosscuts>>

Registry

returning()

 (call(void Registry.register
(SpaceObject)) ||call(void
Registry.unregister
(SpaceObject))) &&
!(within(SpaceObject) &&
(withincode(new(..)) ||
withincode(void die())))

Anonymous_01

after
IllegalError
Exception

Figure 5.28: Aspect Design Diagram for EnsureShipIsALive aspect

Figure 5.29: Aspect Design Diagram for RegistrationProtection aspect

 127

Debug

after(Registry registry)

returning

printRegistry

Message

target(registry) &&
(call(void register(..)) ||
call(void unregister(..)))

Anonymous_02

after(Object

obj)

returning

printTickeing

Message

(target(obj) &&
target(Game) ||
target(Registry) ||
target(SpaceObject)))
&&call(void clockTick())

Anonymous_01

printBeginCon
structingMess
age

call((spacewar.* &&
!(Debug+ ||
Infowin+)).new(..))

allConstructorsCut()

returning

before

printDoneCon
structingMess
age

after

printBeginIniti
alizingMessag
e

initialization((spacewar.*
&& !(Debug+ ||
Infowin+)).new(..))

allInitializationCut()

returning

before

printDoneInitia

lizingMessage

after

printEntering

Message

execution(* (spacewar.*
&& !(Debug+ ||

Infowin+)).*(..))

allMethodsCut()

returning

before

printExiting

Message

after

after()

returning

printFiring

Message

call(void Ship.fire())

Anonymous_03

after(Ship shipA, Ship shipB)

returning

printBouncing
Message

execution(void
Ship.bounce(Ship,
Ship)) &&args(shipA,

shipB)

Anonymous_05 after(Ship ship,

SpaceObject obj))

returning

printCollision

Message

call(void
Ship.handleCollision(Sp
aceObject)) &&
target(ship) &&
args(obj)

Anonymous_04

before(Ship ship,

double amount)
printDamageShip

Message

call(void
Ship.inflictDamage(dou
ble)) && target(ship) &&

args(amount)

Anonymous_06

<<crosscuts>>

Debug Game Registry Ship SpaceWar

Figure 5.30: Aspect Design Diagram for Debug aspect

 128

5.3.2.1.3. Aspect-Class Structure Diagram

AODL shows structural relationships among all the aspects of the system and base classes

in an aspect-class structure diagram. The diagram depicted in Figure 5.31 shows the base

classes along with their interacting aspects. The diagram helps in understanding the

structural characteristics of the system and aids in establishing the overall relationships

among classes and between aspects and classes.

5.3.2.2. AODL Behavioural Diagrams

The behavioural diagrams of AODL help in capturing and designing aspect-oriented

elements within the behavioural models of the base program. There are two types of

diagrams included, Join Point Behavioural Diagrams and Aspect-Class Dynamic Models.

5.3.2.2.1. Join Point Behavioural Diagrams

These diagrams help in locating join points within the activity diagrams of the base system.

The following are the join point behavioural diagrams for SpaceWargame.

Start Game

There are three join points identified in this module. The first join point is located at the

completion of “run Energy Packet Producer” and “run Timer” activities and is used by

DisplayAspect. The second join point is located at the end of “make ship” activity and is

used by GameSynchronization aspect and the third and the last join point is located at the

end of “make player” activity and is used by both DisplayAspect and

GameSyncrhnoization. The Figure 5.32 shows the join point behavioural diagram that

captures these join points with the flow of activities of this module.

<<crosscuts>>

SpaceObject

<<crosscuts>>

Game
Synchronization

EnsureShipIsAlive

System

Game

Ship

<<crosscuts>>

<<crosscuts>>

 DisplayAspect EnergyPacket
Producer

Timer

KeyMapping Robot

Player

<<crosscuts>>

Figure 5.31: Aspect-Class Structure Diagram for SpaceWar game

 129

Move Ship

The join point behavioural diagram shown in Figure 5.33 depicts a joint point within the

flow of activities of Move Ship module. The join point is located around “decode the key”

activity and is used by EnsureShipIsAlive aspect.

Fire

In this module, a join point is located around “decode the key” activity, which is used by

EnsureShipIsAlive aspect. This join point has been shown along with the activities of the

module in Figure 5.34 below.

JP_Game
Synchronization

start Robot

JP_DisplayAspect
 start

request

get request run Timer

run Energy

Packet producer

make

Ship

make

Player

JP_Display
Aspect

JP_EnsureShip
IsAlive

Key

get the pressed

key

decode the

key

move the

ship

JP_EnsureShip
IsAlive

Key

get the pressed

key

decode the

key

Fire

Figure 5.32: Join Point Behavioural Diagram for Start Game

Figure 5.33: Join Point Behavioural Diagram for Move Ship

Figure 5.34: Join Point Behavioural Diagram for Fire

 130

Handle Collision

In this module, there are two aspects that interact with the base program and insert their

behaviour. The join point behavioural diagram shown in Figure 5.35 depicts the locations

of join points of both the aspects within the flow of activities. The join point for

GameSynchronization aspects is located at the completion point of activity “Access

colliding objects” and join point for EnsureShipIsAlive is located around “bounce the ship”

activity.

Thrust

The join point behavioural diagram shown in Figure 5.36 depicts a join point, identified

around “decode the key” activity in the flow of activities of thrust module. The join point is

used by EnsureShipIsAlive aspect.

JP_EnsureShip
IsAlive

Key

get the pressed

key

decode the

key

Thrust

JP_EnsureShip
IsAlive

 Ship

space object

JP_Game
Synchronization

Assess colliding

objects

rotate the

space object

bounce the

ship

Figure 5.35: Join Point Behavioural Diagram for Handle Collision

Figure 5.36: Join Point Behavioural Diagram for Thrust

 131

5.3.2.2.2. Aspect-Class Dynamic Model

This model captures the weaving process of aspects with the base program dynamically.

The UML communication diagrams are used to capture dynamic behaviour of objects while

showing message passing at run time. These diagrams have been extended to include

aspectual behavioural as well. The details about the model are provided in chapter 4.

The following sections present aspect-class dynamic models for the SpaceWargame.

Start Game

The Figure 5.37 shows an aspect-class dynamic model for the start game module. The

model captures weaving of EnsureShipIsAlive, DisplayAspect and Game Synchronization

aspects with the base objects at run time. The game starts by the Player object calling start()

methods of EnergyPacketProducer and Timer classes. Both the classes run their internal

methods to create energy packets and timer for the game. At this point, the DisplayAspect

weaves its behaviour after the internal methods of both classes complete their execution.

The Player object then starts the robot by calling makeNewRobot() method of the class. At

this point again, an aspect EnsureShipIsAlive weaves its behaviour after internal method,

startRobot() of Robot class, completes its execution. The Robot class in return calls

methods of Player and Ship classes to create a new player and a new ship respectively. An

aspect GameSynchrnization weaves its behaviour after the createShip() method of Ship

class at this point.

The diagram shown in Figure 5.37 captures this message passing at the dynamic level to

demonstrate the weaving of all three aspects during message passing among the objects.

 132

Rotate the Ship

The command to rotate the ship is started by the Player object which is mapped by

KeyMapping class. The Player class, upon receiving the code of the key, calls for the rotate

(string dir) method of Ship class. Figure 5.38 shows an aspect-class dynamic model which

captures this message passing at the execution level. The model captures the weaving of the

EnsureShipIsAlive aspect which superimposes its behaviour around rotate(string dir)

method.

:Ship
around 2: checkShip

2: rotate(string dir)

EnsureShip IsAlive

1: command(int key)

1.1: keyCode(string code)

: Player : KeyMapping

after 10: checkShip
8: makeNewShip()

: Ship EnsureShip

IsAlive

9:createShip()

10: startRobot()

after 4: checkShip

after 2: checkShip

2: prodcuePacket()

DisplayAspect Game

Synchronzation

5: makeNew

Robot()

after 9: synchronizeGame

7: create

Player()

3: start()

1: start()
6: makeNew

Player()

4: runTimer()

: EnergyPacket

Producer

: Timer

: Robot

: Player

Figure 5.37: Aspect-Class Dynamic Diagram for “Start Game”

Figure 5.38: Aspect-Class Dynamic Diagram for “Rotate the Ship”

 133

Fire

The Player object receives the command to fire from the player and sends the key to

KeyMapping class to decode it. The KeyMapping class returns the code of the command

back to Player. The Player object then calls fire() method of Ship class to do the firing from

the ship. Figure 5.39 captures this scenario at the dynamic level in an aspect-class dynamic

model. The weaving of aspect EnsureShipIsAlive is depicted in the model around the fire()

method.

Handle Collision

Figure 5.40 shows an aspect-class dynamic model for the Handle Collision module. The

model captures the dynamic flow of messages between objects and demonstrates dynamic

weaving of GameSynchronization and EnsureShipIslAlive aspects. The model shows that

the System class calls the handleCollision() method of Game class to start the process. At

this point, GameSynchronization aspect inserts its behaviour after the completion of

handleCollision() method. The System class also calls handleCollision() method of

SpaceObject class. The Game class in return calls bounce() method of Ship class which is

covered by an around advice of EnsureShipIsAlive aspect to check whether ship remains

alive during the process.

:Ship
around 2: checkShip

2: fire()

EnsureShip

IsAlive

1: command(int key)

1.1: keyCode(string code)

: Player : KeyMapping

Figure 5.39: Aspect-Class Dynamic Diagram for “Fire”

 134

Thrust

In this model (shown in Figure 5.41), the dynamic flow of messages has been shown in

which weaving of aspect EnsureShipIsAlive has been depicted around the thrust(true)

method of the Ship class. The process is initiated from the Player object, which sends the

pressed key to the KeyMapping class to get the code of the key. The Player object then

calls thrust(true) method of the Ship class to perform thrust by the ship.

5.3.2.3. Pointcut Composition Model

A composition model for Coordinator, RegistrySynchronization, GameSynchronization and

RegistryProtection aspects has been depicted in Figure 5.42. There are three other aspects

of the system as well, EnsureShipIsAlive, DisplayAspect and Debug, but their models have

not be included in this section as the purpose of this chapter is to demonstrate application of

AODL on complex associations and conflicts in the system which are demonstrated in the

model shown in Figure 5.42.

:Ship

around 2:

checkShip

2: thrust(true)

EnsureShip

IsAlive

1: command(int key)

1.1: keyCode(string code)

: Player : KeyMapping

:SpaceObject

around3:

checkShip

2: handleCollision()

EnsureShip

IsAlive

1: handleCollision() : System : Game

:Ship

3: bounce()

after1:

synchronize

 Gam

e

Game

Synchronization

Figure 5.40: Aspect-Class Dynamic Diagram for “Handle Collision”

Figure 5.41: Aspect-Class Dynamic Diagram for “Thrust”

 135

The figure shows that RegistrationSychnronization is a child aspect of Coordinator and it

overrides synchronizationPoint pointcut of its parent aspect. Similarly GameSyncronization

is also a child aspect of Coordinator aspect and it overrides the same pointcut as well. The

overriding association is depicted by a stereotype <<implements>>, which shows that a

pointcut implements an abstract pointcut of its parent aspect.

RegistrationProtection aspect has also been depicted here because it has higher precedence

over RegistrationSynchronization. Both the aspects have an execution conflict as they run

their advices after same join points, Register.register() and Register.unregister(),

simultaneously. The Pointcut Composition Model resolves this conflict by introducing

<<precedence>> stereotype that indicates which aspect will execute its advice first.

Scope: !(within(SpaceObject) && (withincode(new(..)) ||

withincode(void die())))

<<call>>

register(..)

*
Registry

<<call>>

unregister(..)

*
Registry

RegistrationProtection_Anonymous01

 OR

 OR

Scope:

RegistrySynchronization_synchPoint

OR

OR

<<call>>

register(..)

*
Registry

<<call>>

unregister(..)

*
Registry

<<call>>

getObjects(..)

*
Registry

<<call>>

getShips(..)

*
Registry

OR

Coordinator

<<implements>>

Registration

Synchronization

<<implements>>

Game

Synchronization

Scope:

RegistrySynchronization_
synchPoint

<<precedes>>

after

Registration

Protection

<<advice>>
RegisSynch_Ille
galErrorExcep

returning

<<advice>>
RegistSynch_
updateStatus

traceExit()

<<advice>>
RegistSynch_
updateStatus

before after

Scope:

GameSynchronization_synchPoint

<<call>>

handleCollision(..)

*
Game

<<call>>

newShip(..)

*
Game

OR

Figure 5.42: Pointcut Composition Model of Coordinator, RegistrySynchronization, GameSynchronization and RegistryProtection aspects

5.3.2.4. Pointcut Table

Table 5.2 shows a pointcut table that contains specification of the pointcuts of all the aspects

included in the designed system. The system does not have any clashes among aspects so the

Precedence column is blank.

Table 5.2 - Pointcut Table for SpaceWar game

<<aspect>>

GameSynchronization

<<aspect>>

EnsureShipIsAlive

<<aspect>>

DisplayAspect
Precedence

<<advice>>

updateStatus

(before)

<<advice>>

updateStatus

(after)

<<advice>>

checkShipStatus

(around)

<<advice>>

modeSelection

(after)

<<advice>>

displayPlayer

(after)

<<advice>>

displayChange

(after)

<<advice>>

displayChange

(after)

<<advice>>

displayElements

(after)

Class

 Game

game() call

clockTick() call

handleCollisions(Ship

s, SpaceObj so)
call call

handleCollision(Space

Obj so, SpaceObj soj)
call call

Class

Ship

helmCommandsCut(S

hip)
 call

newShip() call call

Class

Player

player() call

Class

Display

display() call

setSize() call

Pointcut Definition

call(void

Game.handleCollisions(..)) ||

call(Ship Game.newShip(..))

call(void

Game.handleCollisions(..)) ||

call(Ship Game.newShip(..))

Ship.helmCommands

Cut(ship)

call(Game+.

new(String))

call(Player+.

new(..))
call(Display+.new(..)

call(void Display.

setSize(..)

call(void

Game.clockTick())

Pointcut Name synchronizationPoint() synchronizationPoint() Anonymous_01() Anonymous_01() Anonymous_02() Anonymous_03() Anonymous_04() Anonymous_05()

 139

5.4. Discussion

The purpose of this chapter was to demonstrate the application of AODL notations and

design diagrams to case studies. This chapter applies AODL techniques on two case studies

which are well-known in aspect-oriented research community and contain enough

complexity to address almost all types of aspect-oriented modelling issues.

The first case study, Car Crash Crisis Management System, is a well-known example

which was specially designed to assess aspect-oriented modelling approaches. It was a

standard case study for a special edition of Transactions on Aspect-Oriented Software

Development VII (Shmuel and Mezini, 2010). The case study contains an adequate number

of aspects and a detailed model of their interaction with the base classes. The second case

study is a game, SpaceWar (AspectJ, 2012), which is part of the AspectJ sample code on the

eclipse plug-in. This case study is again a well-known system which has been adopted by a

number of research articles as a standard example. The complexity of the game makes it a

good choice to assess the efficacy of AODL. The reason behind selecting these two case

studies is to evaluate AODL in both forward and reverse engineering styles. The crisis

management case study is not an implemented study so it has been adopted to design a

system from the scratch using AODL techniques. The game case study, on the other hand, is

an implemented system, which has been designed in AODL to demonstrate a reverse

engineered design of a system.

The case studies have been successfully designed in this chapter. The application

demonstrates that AODL can cover all types of design requirements of an aspect-oriented

system and provides design notations and diagrams to model a comprehensive design of a

complex system. Besides designing the aspect-oriented constructs, AODL also provides

support to identify and resolve aspect interferences and conflicts. The pointcut table and

pointcut composition models help in identifying the shared join point problems (Nagy et al.,

2005) and provide a priority mechanism to set aspects‟ precedence during the design phase.

The pointcut table also specifies aspects in a detailed manner along with interacting base

classes and their features.

 140

Findings:

The following findings have been gathered from the application of AODL in this chapter:

 AODL can be used to design a complex aspect-oriented system and can be used to

address some of the aspect interferences (such as Shared Join Points) effectively.

 AODL can be used to capture the design of a legacy system using a reverse

engineering technique.

 AODL can address all of the design requirements and can help in designing all kinds

of aspect-oriented constructs.

 AODL offers a Pointcut Composition Model that helps in designing join point

predicates of pointcuts and also helps in resolving the shared join point problem at

the design level.

5.5. Chapter Summary

This chapter has presented an evaluation of AODL by its application to case studies. The

chapter starts with the introduction of the purpose of the chapter and an explanation about

the case studies and their selection. The case studies are explained further in the following

sections with details about the systems and identified aspects and base constructs. The

application of AODL to these case studies has been described in detail, with commentary on

every design notation and design diagram which has been adopted in the system design. A

discussion section concludes the chapter by explaining the purpose of the chapter and the

findings gathered from the chapter.

 141

Chapter 6:

Qualitative Evaluation of AODL

The chapter is about a qualitative evaluation of Aspect-Oriented Design Language. The

chapter starts with description of the qualitative criteria. The criteria discussedare applied

to AODL and eight other selected aspect-oriented design approaches. A comparison is made

among the approaches and the strengths and weaknesses of AODL are identified. The

purpose of this evaluation is to judge the efficacy and maturity of AODL among

contemporary design approaches.

6.1. Introduction

In this chapter, the language is assessed qualitatively by selecting a set of criteria which

evaluates efficacy and performance of the language. The criteria are inspired from similar

studies conducted by Wimmer et al. (2011) and Chitchyan et al., (2005) to assess the quality

of an aspect-oriented design language. Each criterion included in the set of criteria evaluates

the language from a specific perspective and judges its ability to effectively provide a design

solution to a particular need of the system. The language is also compared with other related

modelling languages using the same evaluation criteria. A comparison with the existing

approaches provides an insight into AODL and reveals its strengths and weaknesses.

The rest of the chapter is structured as follows: section 6.2 explains the qualitative criteria

and outlines how the approaches are evaluated using these criteria, section 6.3 explains the

evaluation and provides results, section 6.4 provides the discussions on the acquired results

and 6.5 concludes the chapter with a summary.

6.2. The Qualitative Evaluation Criteria

Software design consists of a set of models which are developed to specify and design

constructs included in the system. A software design methodology usually contains a design

process and a language (Chitchyan et al., 2005). The design process defines the set of

activities and the order in which these activities are performed to develop a design model.

 142

The language defines the design notations and design diagrams to help in producing the

design model in terms of representation of the designed constructs and relationships among

them. AODL includes an informal design process and a design language. The design process

is in the form of guidelines about the usage of the design diagrams defined in 4.3.1. The

language of AODL is explained in detail in Chapter 4, which contains design notations and

design diagrams to specify, represent, design and document aspect-oriented design

constructs.

To qualitatively evaluate AODL, criteria have been proposed, which can be applied to any

design language that models aspect-oriented constructs. Some of the criteria have also been

used by similar studies conducted by Wimmer et al. (2011) and Chitchyan et al. (2005). The

selection of criteria and description of each criterion is provided below.

6.2.1. Evaluation Criteria

1. Basic Design

There are four parameters identified in this criterion. The description of each parameter

is provided below:

a) Platform and Language Dependencies: Most of the existing aspect-oriented

design languages are based on UML and AspectJ. The reason behind UML‟s

selection is the de-facto standard status of the language for designing object-

oriented systems. Since both the UML and OOP are the most familiar languages

for designers as well as implementers so the choice is inevitable. AspectJ was the

first technology proposed for the implementation of aspect-oriented systems

which makes it the ultimate choice as a foundation technology. The criterion will

assess AODL and eight other selected approaches to find out the dependency of

each approach. The criterion has been inspired from the similar kind of criteria

proposed by Reina et al. (2004) and Wimmer et al (2011).

b) Comprehensiveness: A design language has to be comprehensive in a sense that

it covers all the constructs and related elements in the design. This criterion

evaluates if the language offer notations and diagrams to specify, represent and

design all the aspectual elements such as aspects, pointcuts, join points, advices,

inter-type declarations and composition semantics.

 143

c) Representation of Structural and Behavioural Crosscutting: This criterion

evaluates whether the language offers design diagrams to design both structural

and behavioural crosscutting of the design constructs. A design language for

aspect-oriented systems must provide a means to design structural and

behavioural crosscutting along with dependencies among the constructs.

d) Design Process: A design process is a set of activities or processes to design the

system. This criterion will evaluate if the language has a defined design process

for modelling aspectual constructs step by step. The criterion is inspired from the

similar type of approaches adopted by Op de beeck et al. (2006) and Wimmer et

al (2011).

2. Design Language

There are four parameters included in this criterion. The description about each

parameter is provided below:

a) Design Notations: An AOD design language must offer distinct design notations

to represent aspects and their constituent elements. The design notations also

ought to depict the characteristics of the constructs. This criterion will evaluate if

the language offers effective design notations for all the basic aspectual

constructs.

b) Design Representation (Rules, Models or Diagrams): This criterion evaluates

the language in terms of its ability to offer a set of rules, models or design

diagrams to specify and design aspectual elements along with their relationships

and associations. This criterion has been used by both Chitchyan et al., (2005)

and Wimmer et al., (2011).

c) Design Semantics: The language must provide explanations of the semantics of

the proposed notations. This criterion evaluates if the language provides manuals

or guides explaining semantics, syntax and usage of the notations.

3. Concern Representation

This criterion consists of two parameters, descriptions of which are provided below:

 144

a) Symmetric vs Asymmetric: AOD languages can be distinguished in terms of

representation of concerns. There are two different types of approaches that are

followed by AOD languages for representing concerns. One is the symmetric

approach where both crosscutting and non-crosscutting concerns are designed

and the other is the asymmetric approach, where only crosscutting concerns are

represented and designed.

b) Concern representation: this criterion will evaluate if the language provides:

i. An Abstract Concern Model

ii. An Aspectual model

iii. Structural and behavioural representation of Aspects, Join Points,

Pointcuts and Advices.

4. Concern Composition:

This criterion evaluates if the language offers:

a) Aspect Composition: Support for composition of aspects as well as aspectual

elements and techniques to compose aspectual elements with each other. For

instance, support for pointcut-pointcut, pointcut-advice and aspect-aspect

composition.

b) Rules to resolve conflicts: The rules to resolve aspect interference and

conflicts must also be provided by the language. This criterion has also been

proposed by Blair et al. (2005) and Wimmer et al., (2011).

5. Efficacy and Maturity

There are five parameters that assess the quality of the approaches against this general

criterion. The description of each parameter is provided below:

a) Extensibility

There are two types of extensibility:

i. Heavy Weight Extension: The criterion evaluates if the language

supports extension of the language with the introduction of

components other than aspects. For example, the UML is a language

 145

that supports heavy weight extension with the help of UML

metamodels.

ii. Light Weight Extension: This criterion evaluates if the language

offers to extend the components with attributes, properties or

associations other than those mentioned in the specification of the

language. UML profiling is an example of this type of extension

provided by UML.

b) Traceability:

There are two types of traceability:

i. External Traceability: The traceability of design components

(aspects) from the requirements engineering phase to the

implementation phase of the development life cycle is called external

traceability. This criterion will evaluate if the language provides a

technique to trace aspects from any of the earlier phases to the later

phases in the development life cycle.

ii. Internal Traceability: This type of traceability refers to the

techniques to trace a component from an abstract model to a refined

model.

c) Scalability: Scalability measures whether a language has the ability to handle

growth. The language will be evaluated on the basis of available literature

indicating implementation of small and large systems with equal expressivity.

d) Comprehensibility: This criterion helps in evaluating whether all the

artefacts and semantics of the language are comprehensible and provide

logical explanation about their notations and representations.

6. Tool Support:

The following parameters are included in this criterion. The criteria are inspired from

Wimmer et al., (2011).

 146

a) Modelling Support – The criterion measures whether the language allows

models to be designed using a tool. All the design notations, design diagrams

and associations included in the language ought to be supported by the tool.

b) Composition Support – The criterion evaluates whether the language offers

complete visualization and simulation of the composition process.

c) Code Generation: This criterion measures whether a tool cangenerate code

against a visualized model.

The following table presents a summary of the criteria used in this evaluation:

 147

Table 6.1 - Summary of Evaluation Criteria

Basic Criterion Extensions Explanation

Basic Design

Platform and Language

Dependencies

This criterion discusses the dependency of the design

methodology on design and programming frameworks.

Comprehensiveness
This criterion evaluates the design notations and design models

provided by the design methodology.

Representation of

Structural and

Behavioural

Crosscutting

This criterion assesses the design methodology in terms of

support for designing and modelling both structural and

behavioural types of crosscutting.

Design Process
This criterion evaluates whether the design methodology offers a

design process to follow.

Design

Language

Design Notations
This criterion finds out the notational support provided by the

design methodology for representing the system constructs.

Design Representation
This criterion assesses the rules, models and diagrammatic

support provided by the design methodology.

Design Semantics

This criterion finds out whether the design methodology

provides explanation of design semantics of the notational

constructs.

Concern

Representation

Symmetric vs

Asymmetric

This criterion finds out the type of the design methodology in

terms of supporting concerns of the system.

Concern Representation

This criterion evaluates the ability of the design approach in

terms of providing support for representation of an aspect and its

constituent key elements.

Concern

Composition

Aspect Composition

This criterion evaluates whether the design approach provides

strategies, rules and design models to compose aspects with each

other and with base constructs.

Rules to Resolve

Conflicts

This criterion evaluates whether the design approach provides

rules to resolve conflicts which arise as a result of aspect

compositions

Efficacy and

Maturity

Extensibility
This criteria assesses the support for both heavy-weight and light

weight extensions provided by the design approach.

Traceability
This criterion assesses the support for internal and external

traceability provided by the design methodology.

Scalability
This criterion finds out the scalability of the design approach by

assessing the provided literature on the approach.

Comprehensibility
This criterion assesses the logical explanation of the design

notations provided by the design approach.

Tool Support Modelling Support
This criterion measures whether the design approach provide

 148

tool support to model all the design constructs

Composition Support
This criterion evaluates whether the language provides

automated support to compose design components.

Code Generation
This criterion assesses the ability of the tool provided by the

design approach to generate code against visualized models.

 149

6.3. Evaluation of AODL

The qualitative evaluation of AODL has been carried out by assessing the language against

the criteria which are discussed above. From the literature, eight existing approaches have

been selected which will also be assessed against each criterion. These approaches are

AODM (Stein et al., 2002c), Theme/UML ((Baniassad and Clarke, 2004b), AOSD/UC

(Jacobson and Ng, 2005), Motorola Weavr (Cottenier et al., 2007a), AAM (France et al.,

2004), JAC Design Notations (Pawlak et al., 2002, 2005), Klein‟s Weaving Approach (Klein

et al., 2006, 2007) and SUP Approach (Aldawud et al., 2001; Elrad et al., 2005). These

approaches have been discussed in detail in Chapter 3. The selection of the approaches is

based on the maturity and efficacy of the approaches and their similarity with AODL. A

detailed description about each approach is also provided in Chapter 3. The assessment of

AODL along with these approaches will provide a way to analyse the quality of the language

and its effectiveness against contemporary approaches.

The criteria discussed above are now applied to AODL and selected approaches below:

6.5.2. Basic Design

a) Platform and Language Dependencies:

Existing AO design approaches have been designed targeting particular aspect-oriented

programming languages. Most of the approaches were initially dependent on AspectJ,

the first programming language for aspect-oriented development. The choice was

obvious as AspectJ was designed by the very team that developed aspect-oriented

programming in the first place (Kiczales et al., 1997). For modelling aspect-oriented

constructs and aspect-class compositions, UML was widely adopted because of its

popularity and extension mechanisms which can be adopted for introducing new design

components, elements, attributes and properties.

In Table 6.2, we evaluate AODL along with other selected AOD approaches in this

criterion to find out the platform and language dependencies.

 150

Table 6.2 - Comparison of all approaches based on Platform and Language

Dependencies criterion

Approach
Platform and Language Dependencies

AODL AODL is dependent on AspectJ programming technology. It offers design

solutions for modelling constructs included in AspectJ. The language also relies

on UML 2.4.1 and extends some of its notations and diagrams to develop new

artefacts.

AODM AODM was initially developed to provide design notations for AspectJ. It uses

semantics of AspectJ and provides notations and diagrams to design these

semantics. Later, it was evolved to be a generic approach by providing support

for other technologies as well, such as composition filters and adaptive

programming.

Theme/UML The approach was developed initially to support subject-oriented programming

paradigm. Later, it was evolved to accommodate composition filters, AspectJ

and HyperJ technologies.

AOSD/UC The approach is influenced by AspectJ and HyperJ technologies. The notations

and semantics of both the technologies have been mentioned in the literature and

used in the development of proposed techniques.

Motorola Weavr

Approach

A general-purpose modelling approach has been proposed, which is based on

Motorola Weaver technology.

AAM The approach has been developed as a platform-independent approach. The

notations and diagrams have been borrowed from UML 2.0.

JAC Design

Notations

JAC design notations were proposed for JAC design framework so they depend

heavily on the framework‟s notations and semantics.

Klein‟s Weaving

Approach

The approach is based on a scenario-based language called message sequence

charts.

SUP Approach The approach is not based on any particular platform and is also independent of

implementation technology.

We can observe that most of the approaches are either dependent on AspectJ or some

other programming languages such as HyperJ and Motorola Weavr. There are only

two approaches, AAM and SUP which are language-independent. Regarding the

 151

modelling dependability, most of the approaches depend heavily on UML. They

either use the notations and diagrams of the language or extend them to propose new

design constructs.

AODL is also based on AspectJ programming language. It provides modelling

solutions for notations and design constructs of AspectJ using newly proposed

constructs which have been specially designed for each construct, including an aspect

and its constituent elements. The proposed notations and diagrams are developed

along with UML design models thus providing a unified design approach where both

aspects and objects can be designed in parallel.

b) Comprehensiveness:

This is an important criterion because most of the design languages are incomplete

because they do not provide design solutions for each aspect-oriented construct. An

AOD language or design approach should ideally provide support for designing

every construct and their composition with the base program. Table 6.3 provides an

assessment of AODL along with the selected approaches regarding the

comprehensiveness of the design techniques.

Table 6.3 - Comparison of all approaches based on Comprehensiveness criterion

Approach
Comprehensiveness

AODL AODL is comprehensive as far as availability of design solutions for majority

of the design constructs is concerned. It provides distinct design notations for

aspects join points, advices, pointcuts and inter-type declarations. The

language also proposes design diagrams to specify, design and compose these

constructs. The strategies and design solutions proposed by the language for

composition of constructs also address composition-related conflicts and

aspect interference. It proposes design solutions to reduce aspect interference

and resolve conflicts.

A design process has also been proposed along with the language to

formalize the design activity. The only deficiency is lack of tool-support

which is part of the future research.

AODM The approach does not provide design notations or diagrams to represent

some constituent elements of an aspect such as pointcuts and advices,

although representation for join points and introductions has been supported.

The approach lacks a design process.

 152

The approach lacks scalability as no examples have been provided to suggest

the opposite.

Theme/UML The approach lacks design representation for aspectual elements such as join

points, pointcuts, advices and inter-type declarations.

AOSD/UC The approach provides support to design aspects comprehensively but

aspectual elements are not separately represented and designed.

Motorola

Weavr

Approach

The approach is quite comprehensive regarding providing support for

representation of all constructs; however, the only problem is that no design

process or guidelines are provided to support procedural way of designing.

AAM The approach was primarily proposed for architectural solutions for aspect-

oriented systems. It lacks detailed design support for concern representation

and composition. The composition strategies proposed by the approach focus

on architectural composition of concerns only.

JAC Design

Notations

The approach has not matured yet. There is no support for designing

aspectual elements. The approach only uses class diagrams to develop

structural diagrams. There is no support for developing detailed design

models. It does not offer a design process either.

Klein‟s

Weaving

Approach

The approach only offers modelling solutions for composition of aspects.

There is no method proposed to design structural or behavioural crosscuttings

and there are no design process or guide lines available to formalize the

modelling.

SUP Approach The approach does not provide higher-level abstraction and has not been

implemented on complex systems to suggest scalability.

Most of the approaches discussed in Table 6.3 lack a design process. There are no

guidelines provided by these approaches on how to carry out modelling of the

constructs in given order. The examples of these approaches are AODM, Motorola

Weavr approach, JAC Design Notations and Klein‟s Weaving Approach. On the

contrary, AODL provides a design process which defines the order of development

of each design construct from specification to composition.

The second problem is lack of design solutions for all aspect-oriented constructs and

elements. This deficiency has been observed in almost all of the discussed

approaches except AODL. There is a distinct design notation for each construct in

 153

AODL and a separate design diagram has been proposed to model these constructs as

well.

c) Representation of Structural and Behavioural Crosscutting

The aspects crosscut structurally when they introduce inter-type declarations

(previously known as introductions). This type of crosscutting adds new behaviour to

the base constructs and has to be designed properly in the design model. Similarly,

when aspects are composed with base constructs dynamically, they insert new

behaviour into the base code. This type of crosscutting is known as behavioural

crosscutting and it also has to be designed in behavioural models during the aspect-

oriented design process.

This criterion evaluates AODL and other selected approaches in Table 6.4 to find out

if both structural and behavioural crosscuttings are supported by each approach.

Table 6.4 - Comparison of all approaches based on Structural andBehavioural

 Crosscutting Criterion

Approach Structural Crosscutting
Behavioural Crosscutting

AODL Aspect Design Diagrams are used to

define structural crosscutting among

constructs.

Communication diagrams and activity

diagrams are used to depict behavioural

representation of crosscutting concerns.

AODM Class diagrams and sequence

diagrams are used to capture

structural crosscutting.

Collaboration diagrams are used to

model behavioural crosscutting of the

system constructs.

Theme/UML The approach uses package diagrams

and class diagrams for representing

the structural crosscutting in the

system.

Sequence diagrams are used for

depicting behavioural crosscutting.

AOSD/UC In the design phase, component

diagrams are transformed into class

diagrams to depict structural

crosscutting among the models.

For representing behavioural

crosscutting, sequence diagrams have

been utilized.

 154

Motorola

Weavr

Approach

Composite structure diagrams and

class diagrams are used to model

structural crosscutting.

Transition-oriented state machines are

used to depict behavioural characteristics

of the concerns.

AAM The class diagram templates are

utilized to design structural

representation.

Communication diagram templates are

used to depict behavioural representation

of concerns.

JAC Design

Notations

The structural representation is made

using class diagrams.

No support for behavioural

representation is available.

Klein‟s

Weaving

Approach

There is no method provided for

structural representation of concerns.

The approach uses sequence diagrams

for behavioural representation of concern

compositions.

SUP Approach The class diagrams are used to show

the structural dependencies.

State machines, use cases and

collaboration diagrams are utilized to

depict behavioural characteristics of the

concerns

Almost every approach has provided solutions for designing structural and

behavioural crosscutting as is evident from Table 6.4 except JAC Design Notation

approach and Klein‟s Weaving Approach. The former has not provides any method

to design behavioural crosscutting while latter has not provided any design solutions

for structural crosscutting.

AODL proposes design diagrams for both types of crosscutting. An Aspect Design

Diagram has been proposed to design structural representation of an aspect. The

model also provides support for depicting the structural crosscutting of aspects with

the base classes (for details see section 4.3.2.3.2).

For behavioural crosscutting, activity diagrams and communication diagrams are

adapted to design join point behavioural models and dynamic models of composition

(for details see sections 4.3.2.1.2 and 4.3.2.3.3).

d) Design Process:

The design process of an AOD approach defines a set of rules, order of designing

models and guidelines about the usage of the diagrams. A design process supports

 155

step-wise designing of aspectual constructs which ultimately helps in addressing

issues at different levels of modelling.

The following table (Table 6.5) discusses the design processes proposed by AODL

and other selected AOD approaches.

Table 6.5 - Comparison of all approaches based on Design Process criterion

Approach
Design Process

AODL A three phase design process is proposed. Join points are identified and

modelled in the first phase. Aspects, pointcuts and inter-type declaration

are specified and designed in the second phase. The aspect composition

with base construct is modelled in the third phase (For details see section

4.3).

AODM There is no specified design process provided by AODM. There are no

guidelines available to establish the order of design diagrams.

Theme/UML The approach provides a design process that helps in designing the

concerns from the requirement analysis phase to the implementation phase.

AOSD/UC AOSD/UC follows a design process which separates concerns from the

analysis phase down to implementation in the form of use case slices.

Motorola Weavr

Approach

No design process has been proposed yet.

AAM There is no formal design process provided by the approach but some

suggestions have been made in the publications to carry out the design

process in a certain way (France et al., 2004).

JAC Design

Notations

There is no defined design process proposed by the approach.

Klein‟s Weaving

Approach

There is no formal design process provided by the approach.

SUP Approach A design process is provided for the approach which comprises of step-

wise activities to design system modules.

AODL along with three other approaches provide a design process. The rest of the

approaches have not proposed a design process or guidelines about the modelling of

constructs. AODL provides a Diagrammatic Model which proposes a three phase

development of design models. Each phase designs a separate design construct and

 156

provides an input to the next phase until all the design constructs are composed

together in the final phase.

Summary

Table 6.6 summarizes the Basic Design criterion. The table indicates the weaknesses and

strengths of each approach against each criterion.

Table 6.6 - Summary of evaluation of the approaches against Basic Design criteria

 Basic Design

P
la

tf
o

rm
 &

 L
an

g
u

ag
e

D
ep

en
d

en
cy

C
o

m
p

re
h

en
si

v
en

es
s

Representation

D
es

ig
n

 P
ro

ce
ss

S
tr

u
ct

u
ra

l

C
ro

ss
cu

tt
in

g

B
eh

av
io

u
ra

l

C
ro

ss
cu

tt
in

g

AODL AspectJ, UML Middle-High

AODM AspectJ, UML Middle-High

Theme/UML UML High

AOSD/UC UML Middle-High

Motorola Weavr

Approach

Motorola

Weaver
Middle-High

AAM UML Middle-High

JAC Design

Notations
UML

Middle

Klein‟s Weaving

Approach
MSC Low

SUP Approach Independent Middle

Just like other approaches, AODL depends heavily on AspectJ and UML. AODL is

categorized as High as far as comprehensiveness of the approach is concerned. Only

Theme/UML is the other approach which provides representation and composition supports

Legend: = Supported, = Not Supported, Rating: Low, Middle, Middle-High, High

 157

for all the aspectual constructs (these criteria are discussed in the following sections).

Though only two approaches, JAC Design Notations and Klein‟s weaving approach, do not

support both structural and behavioural crosscutting, AODL is among all those approaches

which provide design solutions for representing both types of crosscuttings. Regarding the

availability of a design process, AODL is one of the few approaches that provide a well-

defined design process.

Findings:

The following findings about AODL have been established by this criterion:

Strengths of AODL:

 AODL provides notational representation for all the design constructs of aspect-

oriented design model including aspects, pointcuts, join points, advices and inter-type

declarations.

 AODL provides design diagrams to model each design construct and to model the

composition of each construct with each other and with base constructs.

 AODL supports modelling of both structural and behavioural crosscutting of aspects.

 AODL proposes a design process that defines the design activity of aspects by

adopting a step-wise development of each aspectual construct.

Weaknesses of AODL:

 AODL is dependent on AspectJ notations and semantics, which hampers its usage for

other programming languages such as composition filters, Adaptive Programming

and Spring AOP.

 AODL has extended UML diagrams to develop new diagrams, which again suggests

the dependability of the language on a modelling language. This adaptation is

intentional though because AODL has primarily been developed to unify designing

of aspects and objects together in one design framework. The extended forms of

UML diagrams provide comprehensibility for the designer to work with both

constructs using similar type of design standards.

 158

6.5.3. Design Language

An AOD design language must provide design notations to represent an aspect and its

constituent elements. The language must also define rules, strategies and diagrammatic

representation for all the design elements. Each design notation and diagram must be

described semantically. All these three factors are part of this criterion.

An evaluation of AODL and the eight other selected approaches against each criterion is

provided below.

a) Design Notations:

A design notation is a graphical representation of structural or behaviour

characteristics of a design construct or a relationship. An AOD language is expected

to provide graphical notations to visualize features and relationships of a construct.

This criterion evaluates AODL and other selected approaches to find out if they have

provided design notations for visual representation of design models.

Table 6.7 - Comparison of the approaches based on Design Notations criterion

Approach
Design Notations

AODL AODL proposes new design notations for specifying, representing and

designing an aspect and its constituent elements. There is a distinct design

notation proposed for each construct, which reflects the characteristics and

nature of the construct.

AODM Design notations have been proposed as an extension to UML notations.

Theme/UML New design notations have been introduced. For example, notation Theme

is used to represent an aspect which is composed with base constructs

through structural diagrams.

AOSD/UC Use cases are used as notations for concerns.

Motorola Weavr

Approach

UML notations have been extended.

AAM UML notations are adopted and extended. Notations of Role-Based

Metamodelling Language (RBML) have also been adapted.

JAC Design

Notations

UML notations have been extended.

 159

Klein‟s Weaving

Approach

Design notations of UML‟s sequence diagrams have been adopted.

SUP Approach The approach utilizes notations of UML 1.x.

As evident in Table 6.7, all the approaches compared including AODL provide

design notations for aspects. Most of the approaches have either adopted or extended

UML notations. AODL, on the other hand, has proposed its own notations which

have been developed based on the characteristics and features of the design

constructs. Except AODL and AODM, there is no other approach that provides

design notations for aspectual elements. The elements such as pointcuts, advices and

inter-type declarations are usually represented statically within the notation of an

aspect. AODL, on the contrary, proposes new notations for pointcuts, advices and

inter-type declarations.

b) Design Representation(Rules, Models or Diagrams)

The design notations are represented in visual models containing diagrams to depict

their characteristics and relationships with each other and with the base constructs.

The design approach ought to offer design diagrams for modelling structural and

behavioural features of the design constructs.

This criterion evaluates AODL and other selected approaches to find out whether

design representation has been supported. Table 6.8 provides this analysis.

Table 6.8 - Comparison of the approaches based on Design Representation criterion

Approach
Design Representation

AODL AODL proposes new design notations to represent and design structural and

behavioural features of an aspect and its constituent elements. Some new

diagrams, such as Aspect Design Diagrams and Pointcut-Advice Diagrams,

have been introduced, which reflect the structural characteristics of an

aspect and a pointcut respectively. Some of the design diagrams extend

UML diagrams and introduce new design artefacts, associations and features

to reflect the distinctive nature of the designing construct or relationship.

AODM The approach supports representation of join points with sequence diagrams

and aspect representation with an extended version of class diagram. The

composition has been supported with use case diagrams and collaboration

 160

diagrams.

Theme/UML Theme/UML offers structural modelling with package and class diagrams

and behavioural modelling with the help of sequence diagrams.

AOSD/UC The approach utilizes the component diagram and class diagram of UML for

structural representation and sequence diagram for behavioural

characteristics.

Motorola Weavr

Approach

Class diagrams and composite diagrams are used for structural modelling.

State machines and sequence diagrams are used for behavioural modelling.

The approach also utilizes sequence diagrams for generating test cases.

AAM The approach utilizes many UML diagrams, such as package diagram

templates, class templates, collaboration templates and sequence diagrams.

JAC Design

Notations

The approach uses class diagrams for structural modelling.

Klein‟s Weaving

Approach

Only the sequence diagram is used which is utilized for behavioural

representation of composition of aspects.

SUP Approach Class diagrams have been extensively used to model the structural

representation of concerns. The models are then refined gradually to be

represented in state charts, use cases, state machines and collaboration

diagrams.

Almost all the approaches discussed in Table 6.8 provide diagrammatic support for

representation of structural and behavioural characteristics of design constructs. The

Klein‟s Weaving Approach is the only technique that does not propose any method to

represent structure of an aspect diagrammatically, nor does it support behavioural

representation of the aspect. Another approach, JAC Design Notations, is the only

technique that does not provide diagrams to model the behavioural properties and

relationships of the design constructs.

AODLsuggests new design diagrams for both structural and behavioural

representation of an aspect and proposes diagrams for aspectual elements such as

pointcuts and advices. The relationship between a pointcut and an advice has been

captured in a diagram for the first time in AODL. The diagram is called Pointcut-

Advice Diagram and it represents structural properties of both the elements and

depicts their relationships diagrammatically (for details see section 4.3.2.2.3).

 161

c) Design Semantics

A design approach proposing new design constructs, notations and diagrams has to

semantically describe each artefact. The semantics of the design notations does not

only provide explanation of the construct but also helps it to be extended. This

criterion will evaluate AODL along with other selected approaches to find out

whether such a document has been provided by the approach. Table 6.9 provides a

comparison of all the approaches based on this criterion.

Table 6.9 - Comparison of the approaches based on Design Semantics criterion

Approach
Design Semantics

AODL AODL explains informal semantics of each design notation. A formal set of

semantics is yet to be formalized.

AODM There is no formal manual or a document available describing semantics of

the proposed notations. In one of the papers (Stein et al., 2002a), however,

the purpose and motivations behind the selection of a certain notation have

been described.

Theme/UML The proposed notations are well-described semantically in available

literature.

AOSD/UC The semantics of each design notation are explained thoroughly in the

available literature.

Motorola Weavr

Approach

The semantics of each design notation are well-explained in the available

literature.

AAM The notations have been semantically described in the available publications.

JAC Design

Notations

The notations are semantically described in the publications related to the

approach.

Klein‟s Weaving

Approach

There are no manuals or documents available describing semantics of the

proposed notations.

SUP Approach The notations are semantically described in the available literature.

Almost all the approaches provide documents explaining semantics of the design

construct and design diagrams except for Motorola Weavr Approach and Klein‟s

Weaving Approach. AODL also provides explanation about semantics of each design

notation.

 162

Summary

A summary of the comparison made against each criterion has been presented in Table 6.10.

The table provides comparison of AODL against each criterion as well as each approach.

Table 6.10 - Summary of evaluation of the approaches against Design Language/Approach

 Design Language/Approach

D
es

ig
n

N
o

ta
ti

o
n

s

D
es

ig
n

R
ep

re
se

n
ta

ti
o

n

D
es

ig
n

S
em

an
ti

cs

AODL N + E(UML) N + E(UML)

AODM E(UML) A(UML)

Theme/UML N + E(UML) N + E(UML)

AOSD/UC E(UML) A(UML)

Motorola Weavr

Approach
E(UML) A(UML)

AAM E(UML), A(RBML) A(UML)

JAC Design Notations E(UML) A(UML)

Klein‟s Weaving

Approach
A(UML) A(UML)

SUP Approach A(UML) A(UML)

The summary of the comparison shows that AODL is the only approach besides

Theme/UML that provides new notations and new design diagrams. Both the approaches

also provide some notations extended from UML notations. Aspects are non-object-oriented

constructs in nature and thus cannot be represented with UML‟s object-oriented notations

(Iqbal and Allen, 2009). That is the reason that AODL proposes new notations, which reflect

the nature and characteristics of aspectual constructs.

Legend: = Supported, = Not Supported, N = New, E(x) = extension of x, A(x) = Adaptation of x

 163

Only two approaches, Motorola Weavr Approach and Klein‟s Weaving Approach, have not

provided design semantics. Other than them, all the approaches including AODL explain

each design construct introduced in the approach semantically.

Findings:

On the basis of the comparison, the following strengths and weaknesses of AODL have been

identified based on these criteria.

Strengths:

 AODL introduces new design constructs for aspects and their constituent elements.

 The notations are accompanied by design diagrams that capture structural and

behavioural features of design constructs and their relationships with each other as

well as with base constructs.

 AODL provides comprehensive explanation of the design semantics of each

proposed notation.

Weaknesses

There are no weaknesses found in AODL against these criteria.

6.5.4. Concern Representation

The primary objective of an AOD language is the representation of a concern. The

representation can be made in a symmetric way when all the concerns are equally

represented and in an asymmetric way when only the crosscutting concerns are represented.

The criteria in this section evaluate all the selected approaches and AODL to find out

whether they are asymmetric or symmetric approaches. The criterion also evaluates the

support for representation provided by the approaches for an abstract design model, an

aspect design model and structural and behavioural models for aspectual elements.

a) Symmetric vs Asymmetric:

As described above, asymmetric approaches propose design techniques to model

only crosscutting concerns and symmetric approaches provide design support for all

types of concerns. This section does not discuss which type of approach is better;

rather it categorizes all the selected approaches in these two types.

 164

Table 6.11 - Comparison of the approaches based on Symmetric vs Asymmetric criterion

Approach
Symmetric vs Asymmetric

AODL AODL is an asymmetric approach. The technique designs only crosscutting

concerns whereas non-crosscutting concerns are modelled using UML. The

approach, however, provides a unified design framework where aspects and

objects are designed in parallel thus providing a better representation of

interaction among them.

AODM AODM is an asymmetric design approach. It only provides design techniques

for crosscutting concerns and does not address non crosscutting concerns.

Theme/UML Theme/UML is a symmetric design approach. It allows all types of concerns,

whether they are crosscutting or non-crosscutting, to be modelled using the

same approach.

AOSD/UC AOSD/UC can be categorized as a symmetrical approach which provides

support for both crosscutting and non-crosscutting concerns. Concerns are

implemented as use case slices (Jacobson and Ng., 2005)

Motorola Weavr

Approach

The approach is asymmetric which only provides techniques to model

crosscutting concerns (aspects).

AAM AAM is an asymmetric approach which only provides architectural design

solutions for crosscutting concerns.

JAC Design

Notations

JAC Design notations approach is an asymmetric approach which only provides

support for modelling crosscutting concerns.

Klein‟s Weaving

Approach

The approach is an asymmetric approach which only addresses weaving of

crosscutting concerns.

SUP Approach The approach may be considered as a symmetric approach. It models both base

and aspectual concerns in class diagrams for structural crosscutting and then the

models are refined into state charts and collaboration diagrams.

As can be seen in Table 6.11, there are three approaches which are symmetric,

Theme/UML, AOSD/UC and SUP Approach. Other than these, all approaches along

with AODL are asymmetric approaches. The Klein‟s Weaving Approach is although

an asymmetric approach but it does not provide full support for representation of

 165

concerns in the structural level. The approach only provides technique to weave

crosscutting concerns with base concerns.

b) Concern representation:

This criterion evaluates the representation techniques provided by all approaches.

There could be three types of basic representations of a concern:

i. An Abstract Concern Model

ii. An Aspectual model

iii. Structural and behavioural representation of Aspects, Join Points,

Pointcuts and Advices.

A good AOD language would support all three types of representations as these

representations ensure a comprehensive design and aid in the composition process of

concerns.

Table 6.12 - Comparison of the approaches based on Concern Representation criterion

Approach

Concern representation

Abstract Concern

Model
Aspectual Model

Aspectual Elements’

Representation

AODL Aspect Design

Diagram provides an

abstract concern

model for aspects.

Similarly, Aspect-

Class Dynamic

Model provides an

abstract composition

model for the

weaving process.

Aspect Design

Diagram represents the

structural features of an

aspect.

Each aspectual element is

represented and designed

separately with a distinctive

design notation and a diagram.

Join Points are identified in a

Join Point Identification model

and are represented in a

behavioural model. Pointcuts are

structurally represented in

Pointcut-Advice Diagram and

then are refined into Pointcut-

Composition Model where each

pointcut is represented in a

behavioural model. Intertype-

declarations are also represented

structurally in Aspect Design

 166

Diagram.

AODM Abstract model has

not been proposed.

An Aspect Design

Diagram is proposed

that presents a

structural model of an

aspect.

Aspects join points and

introductions are represented

with the help of design diagrams

but there is no diagrammatic

modelling support for advices

and pointcuts.

Theme/UML Abstract models

have not been

proposed.

An aspect is

represented in the form

of a Theme. A design

diagram is proposed to

show structural and

behavioural

characteristics of a

theme.

Aspects are depicted using

theme model but there is no

diagrammatic representation of

aspectual elements. They are

rather represented statically in an

aspect container.

AOSD/UC Abstract model for

concerns have been

depicted using

component diagrams

Aspectual models are

represented in class

diagrams

There are no distinct notations

for aspectual elements provided

by the approach.

Motorola

Weavr

Approach

Abstract models

have been proposed

which are later

refined into detailed

models using state

machines.

An aspectual model has

been proposed which is

based on UML‟s

package and class

diagram.

Pointcuts are represented along

with advices, though there are no

separate notations for the

aspectual elements.

AAM High level model

views provide high

abstraction of

concerns.

Aspectual models are

designed using class

diagram templates.

There are no separate design

constructs to represent aspectual

elements such as join points,

pointcuts or advices.

JAC Design

Notations

High level models of

aspects are

supported.

Aspectual models are

developed using class

diagrams.

There is no support proposed by

the approach for modelling

aspectual elements.

Klein‟s

Weaving

Approach

No support provided. No support provided. No support provided.

SUP Approach Abstract concern An aspectual model is No separate representation of

 167

models are not

proposed.

designed using class

diagrams.

aspectual elements is supported.

As shown in Table 6.12 AODL is the only design approach that provides support for

representing aspects and their key elements with the help of design notations. All the

rest of approaches either support one model of representation or two and they all lack

in providing support for representation of aspectual elements such as pointcuts,

advices and join points. There are some approaches such as AODM and Theme/UML

that does provide a diagrammatic representation of pointcuts but no design notation

has been provided for any of the aspectual elements by both approaches. The Klein‟s

Weaving Approach is the only approach which does not satisfy any category as this

approach only designs the weaving process of the concerns.

Summary

AODL provides support for representation of all concerns. It is an asymmetric approach like

many other approaches but it does not lack in representing key elements of aspect-oriented

design as many of other approaches do. Table 6.13. Indicates that the majority of the

approaches either provide no support altogether for representing aspectual elements or they

provide only partial support.

Table 6.13 - Summary of evaluation of the approaches against Concern

Representation criteria

 Concern Representation

Symmetric vs

Asymmetric

Concern Representation

A
b

st
ra

ct

C
o

n
ce

rn
 M

o
d

el

A
sp

ec
tu

al

M
o

d
el

A
sp

ec
tu

al

E
le

m
en

t

R
ep

re
se

n
ta

ti
o

n

AODL asymmetric

AODM asymmetric ~

Theme/UML symmetric ~

 168

AOSD/UC symmetric

Motorola Weavr Approach asymmetric ~

AAM asymmetric ~

JAC Design Notations asymmetric ~

Klein‟s Weaving Approach asymmetric

SUP Approach symmetric ~

The table also reveals that there are two approaches, Theme/UML and SUP Approach,

which do not provide an Abstract Design Model for concerns. AODL and majority of the

approaches do provide support for an abstract model and an aspectual model.

Findings:

The following strengths and weaknesses of AODL have been identified in these criteria:

Strengths:

 AODL provides complete representational support with the help of design notations

and diagrams for aspects and their key elements.

 AODL also offers an Abstract Design Model to design a high level design structure

of an aspect which can then be transformed into more detailed design models.

Weaknesses:

There is no weakness of AODL identified in these criteria.

Legend: = Supported, = Not Supported, ~ = Partially Supported

 169

6.5.5. Concern Composition

The crosscutting concerns are composed with base concerns after being modelled in the

design phase. The aspect composition is based on the join points defined in a pointcut in the

aspect. The definition of a join point indicates the base constructs to be composed with the

aspect and the location where this composition will take place in the base system. The

concern composition can involve aspect-aspect composition as well besides aspect-base

composition. An aspect may use or refer to a pointcut defined in another aspect. The

composition model designs this relationship and depicts the composition based on pointcut-

pointcut interaction.

There are two sub criterions included in this general criteria, aspect composition and rules to

resolve conflicts. The aspect composition criterion is further refined into two sub criterions,

aspect composition that evaluates if an approach provides design support for aspect-base

composition and aspect-aspect composition, and inner-aspect composition, which evaluates

whether pointcut-pointcut and pointcut-base composition is supported.

a) Aspect Composition:

Aspect composition is related with integration of aspects with each other and with

base constructs. The composition strategy generally includes design notations,

diagrams, directives for composition and rules to avoid and resolve conflicts. In this

criterion, we will evaluate AODL and other selected approaches against two sub

criterions of aspect composition. In the first criterion, aspect-class and aspect-aspect

composition will be assessed and in the second criterion, pointcut-advice and

pointcut-pointcut composition will be evaluated. Table 6.14 given below provides the

evaluation.

Table 6.14 - Comparison of the approaches based on Aspect Composition criterion

Approach Aspect Compositions
Intra-Aspect Compositions

AODL Aspects are composed with each other

and with base constructs with the help

of Aspect Composition Models.

Structural composition is depicted by

Aspect-Class Structural Model and

behavioural composition is

Pointcuts are composed with each

other using nested communication

diagrams in Pointcut Composition

Model. Pointcut-advicecomposition is

modelled in a Pointcut-Advice

Diagram.

 170

represented by Aspect-Class Dynamic

Model and Pointcut Composition

Model.

AODM Aspect composition is supported. A

keyword <<dominates>> is used for

the representation of dependency

between aspects. It establishes the

order of execution of aspects.

No support is provided for pointcut-

pointcut and pointcut-advice

compositions.

Theme/UML A composition model has been

proposed which depicts structure of

aspects and base classes along with

behavioural of aspects.

There is no support for composing

aspectual elements.

AOSD/UC Aspect-aspect composition is

supported.

Only pointcut-advice composition is

supported. There is no mechanism

available for pointcut-pointcut

composition.

Motorola Weavr

Approach

Aspect-aspect compositions are

supported. A stereotype <<follows>>

has been proposed to decide the order

of execution of aspects (Zhang et al.,

2007d).

Inner aspect composition are well-

supported by the approach (Zhang et

al., 2007d).

AAM The approach supports aspect-base

and aspect-aspect composition.

A composition of pointcut-advice has

been proposed by Solberg et al.

(2005) and Reddy et al. (2006) but

pointcut-pointcut composition is still

not supported.

JAC Design

Notations

Aspects are composed with each other

on the structural level using class

diagrams.

There is no support for inner-aspect

composition provided by the

approach.

Klein‟s Weaving

Approach

The approach allows aspect-base and

aspect-aspect composition with the

help of sequence diagrams.

No inner-aspect composition method

is proposed.

SUP Approach The approach allows aspect-base and

aspect-aspect composition.

The approach does not support inner-

aspect composition.

 171

The table 6.14 indicates that all of the approaches including AODL support aspect

composition. There are different composition strategies offered by each approach but

the majority have adapted class diagrams or sequence diagrams of UML. The

different between AODL and other approaches lies in providing compositional

support for aspectual elements. Other than AODL, Only AOSD/UC and AAM

support pointcut-advice composition in a notational and diagrammatic way. The rest

of the approaches represent this type of composition statically and do not address it

separately from aspect composition.

Although, AOSD/UC and AAM support pointcut-advice composition, they still lack

in supporting pointcut-pointcut composition. AODL is the only approach that

addresses this composition at the modelling level and provides diagrammatic support

in the form of a pointcut-advice diagram.

b) Rules to resolve conflicts:

During the composition of aspects with each other and with base constructs, two

major problems arise, the shared join point problem (Nagy et al., 2005) and aspect

interference problem (Katz and Katz, 2008). The shared join point problem arises

when two or more aspects interact with the base system at the same join point

simultaneously. The solution to the problem is a pre-defined precedence order of

execution. The majority of the approaches leave the solution until the implementation

phase and precedence is declared in the source code. For example, AspectJ provides

a declare precedence keyword to order advices, Composition Filters (Compose,

2012) provides Seq operator to declare precedence, and JAC (Pawlak et al., 2005)

determines the order by implementing wrappers in the classes which are filed in a

wrapper file in an execution sequence (Iqbal and Allen, 2012).

The aspect interference problem is also associated with aspect composition. It arises

when a composition causes drastic changes in the aspect definitions or base program,

such as change in join points, change in value of variables or change in some aspect‟s

behaviour. This problem has also been addressed at the implementation level by most

of the researchers. The notable techniques are by Lagaisse et al. (2004), Nagy et al.,

(2005) and Durr et al., (2005). The contemporary researchers, however, have started

suggesting design solutions to this problem. For example, techniques by Reddy et al.,

 172

(2006), Zhang et al., (2007) and Driver et al., (2008) are among some of the

renowned examples.

This criterion evaluates if AODL and the selected approaches provide any technique

or rules to resolve both the problems at the design level. Table 6.15 assess all the

approaches against this criterion.

Table 6.15 - Comparison of the approaches based on Rules to resolve conflictscriterion

Approach
Rules to resolve conflicts

AODL Aspect-Class Structural model provides a structural representation of

aspect composition. A stereotype <<precedes>> has been introduced

which resolves the priority problem between two executing aspects. The

problem can also be overcome during the specification of pointcuts

which is done in the form of a pointcut table. The table specifies each

pointcut in detail thus providing a mechanism to allocate precedence to

the aspects that have a clash before they are implemented.

The Pointcut Composition Model allows pointcut-pointcut composition

and pointcut-advice composition using communication diagrams. This

model can help in avoiding aspect interference at the design level.

AODM Only conflicts regarding priority of execution of aspects have been

handled by providing <<dominates>> stereotype (Stein et al., 2002a).

This stereotype points from an aspect whose priority is greater to the one

whose priority is lesser.

Theme/UML No conflict resolving technique has been provided by Theme/UML. It is

assumed that designers compose the models by considering their

ordering beforehand.

AOSD/UC Although a clear approach for resolving conflicts has not been presented

in the literature, some refactoring methods have been suggested to

remove conflicts from the design models.

Motorola Weavr

Approach

A conflict resolving technique has been proposed in (Zhang et al.,

2007d) in which a keyword <<follows>> has been introduced to order

the execution of aspects. The approach has claimed that the shared join

point problem can be resolved using this technique.

AAM Syntactical conflicts can be detected using operationalized techniques

proposed by Muller et al. (2005). The paper has also introduced

composition semantics and directives to help with composition and

 173

conflict detection.

JAC Design

Notations

No rules have been proposed by the approach for resolving aspectual

conflicts.

Klein‟s Weaving

Approach

No method to resolve conflicts has been proposed yet.

SUP Approach The state charts provide sequence of events which can be considered as a

solution to the ordering problem so one can say that an implicit conflict-

resolving mechanism is provided.

AODL provides methods to avoid the shared join point problem at the modelling

level. The problem can be overcome with the help of a Pointcut Table where

pointcuts are specified and aspects‟ execution is prioritized. The problem can also be

addressed in the Pointcut Composition Model where a keyword <<precedes>> has

been provided to allocate precedence to the colliding aspects. There are some other

approaches as well that address this problem during the modelling phase, such as

AODM, Motorola Weaver Approach and AAM. These are the approaches besides

AODL, which explicitly provides techniques to resolve shared join point problem.

Other approaches either don‟t address this problem at all or implicitly provide

composition strategies to resolve such conflicts.

As far as the aspect interference problem is concerned, it has not been addressed by

any approach other than AODL and Motorola Weavr Approach. Both approaches

provide pointcut composition strategies that can be utilize to overcome interference.

It is important to note that AODL does not claim to eradicate all kinds of interference

rather it asserts that aspect interference can be reduced if the proposed techniques are

adopted.

Summary

The evaluation against Concern Composition criteria has revealed that AODL is the only

approach other than Motorola Weaver that fulfils all the criterions. As shown in Table 6.16,

AODL provides notational methods to support both aspect and inner-aspect compositions.

The approach also provides strategies to avoid conflicts that arise as a result of a

composition.

 174

Table 6.16 - Summary of evaluation of the approaches against Concern Composition criteria

 Concern Composition

Aspect Composition

C
o

n
fl

ic
t

R
es

o
lu

ti
o

n

A
sp

ec
t

C
o

m
p

o
si

ti
o

n

In
n

er
-A

sp
ec

t

C
o

m
p

o
si

ti
o

n

AODL P-P, P-A

AODM

Theme/UML

AOSD/UC P-A

Motorola Weavr Approach P-P, P-A

AAM P-A

JAC Design Notations

Klein‟s Weaving Approach

SUP Approach

Findings:

The following strengths and weaknesses of AODL have been identified during this analysis:

Strengths:

 AODL offers good notational and graphical methods to compose aspects

 AODL also supports pointcut-advice composition and pointcut-pointcut composition.

 AODL provides techniques to avoid shared join point problem and aspect

interferences

Legend: = Supported, = Not Supported, P-P = Pointcut-Pointcut, P-A = Pointcut-Advice

 175

Weaknesses:

The techniques for conflict resolution are still immature. There is more work required so that

techniques become more robust and can ensure eradication of all types of conflicts and

aspect interferences entirely.

 176

6.5.6. Effectiveness

There can be a number of parameters that can be adopted to evaluate effectiveness of a

design language. We have only selected those criterions that reflect efficacy and maturity of

an aspect-oriented design language. The primary qualities of an AOD Langue are

comprehensibility, extensibility, traceability, and scalability. The following sections evaluate

all the selected approaches against each of these criterions.

a) Comprehensibility

An AOD language is expected to comprise of design notations which are easy to

understand. The characteristics of a construct must be reflected in its assigned

notation. Most of the existing AOD approaches either adapt UML notations or extend

them to propose notations for aspect-oriented constructs. The UML notations are

object-oriented in nature and they can only depict object-oriented properties. Aspect-

oriented constructs, on the other hand, are not pure object-oriented entities and need

to be represented with such notations that could represent all of their features and

relationships. Due to this dilemma, many notations that have been proposed by AOD

researchers hinder the comprehensibility of the design due to their inability to

represent themselves fully in a design model.

Table 6.17 evaluates AOD as well as all the selected approaches to find out the

comprehensibility of the design notations and diagrams proposed by these

approaches.

Table 6.17 - Comparison of the approaches based on Comprehensibility criterion

Approach
Comprehensibility

AODL The language proposes design notations reflecting characteristics of the

design constructs and elements. For instance, an aspect is represented by a

container with a crossed circular symbol () on top to denote that aspect is

a crosscutting concern and a join point is denoted by a circular symbol

containing a joining dot () suggesting that an aspect will join a base

construct at this point to add its behaviour. Other symbols are similarly

designed reflecting the behaviour and features of the construct.

The design diagrams have also been developed in such a manner that even a

novice designer can easily comprehend the purpose and representation

depicted by the model. For instance, Aspect-Class Dynamic Model shows the

composition of aspects with the base constructs. This composition is denoted

 177

by a weaving association () which depicts the appending process of an

aspectual behaviour with the base program.

AODM The approach uses parameterized templates to represent aspects and

collaborations to depict behavioural features of aspects. The approach is

comprehensible in a way that it uses UML‟s notations but distinguishing

aspectual notations from those of base constructs is not easy. The

comprehensibility provided by the approach, therefore, cannot be considered

as very good.

Theme/UML Theme/UML uses composition patterns which make the individual designs

comprehensible but the integrated design becomes very complex, especially

for large systems (Blair et al., 2005).

AOSD/UC The approach is comprehensible in a sense that it utilizes UML notations and

diagrams but there are some relationships such as crosscutting and execution

precedence among aspects, which cannot be captured by traditional UML

semantics. Similarly, aspect, pointcuts, advices and inter-type declarations

require new notations because of their different nature from object-oriented

constructs.

Motorola Weavr

Approach

Motorola Weavr approach relies heavily on the platform it is built upon,

which is Motorola Weavr. There is an extensive use of state machines to

represent aspects and pointcuts which is not as comprehensible as a notational

representation of these constructs could be.

AAM To make the approach more comprehensible, France et al., (2004) and Kim et

al. (2004) have proposed notations based on Role-Based Metamodelling

language with an additional symbol „|‟ to distinguish the constructs from

those of the language. This approach hampers the comprehensibility even

further rather than improving it as the exploited language is less-known and

all the aspectual constructs are not well-represented by the proposed

notations.

JAC Design

Notations

Pointcuts are represented as static associations among aspects and base

constructs. There is no notational support for pointcuts, advices, join points

and inter-type declarations. The aspect‟s representation is similar to that of a

class with a keyword <<aspect>>, which is also not a complete notation to

represent a construct such as an aspect.

Klein‟s Weaving

Approach

The approach only supports the weaving process and does not support

modelling of the concerns.

 178

SUP Approach The approach denotes aspects with a container similar to a class with

additional stereotype <<aspect>> which is not a good representation of an

aspect as it has contrasting features and non-object-oriented nature if

compared with a class. Similarly, there are no distinct notations to represent

an aspectual element, which reduces the comprehensibility of the approach.

The Theme/UML approach and AODM provide new notations for aspect

representation. These notations are extended version of UML which captures all the

features of an aspect, but they become very complex upon integration especially

when the system is large and complex. Similarly, AOSD/UC and SUP approach

extend UML‟s class diagram notations but as discussed before, aspects cannot be

fully represented with UML notations. The AAM approach and Motorola Weavr

Approach have adopted notation of RBML and Motorola Framework respectively

with some additional characteristics. Their notations are even more complex for new

designers as both the frameworks are less common in use. The second problem

common to all the approaches is the lack of representation of aspectual elements,

such as pointcuts and advices. The system cannot be fully documented or designed

without these elements being represented.

On the contrary, AODL has proposed notations based on the features and

characteristics of design constructs. The comprehensibility of these notations is very

high as each notation is distinct and only represents one design element. AODL has

also proposed notations for pointcuts and advices which again makes the system

more understandable and easy to be designed.

The comprehensibility of AODL has been assessed by comparing its application to

Car Crash Crisis Management Case Study (discussed in section 5.2) with the similar

applications by Shmuel et al., (2012), Mosser et al., (2010), Hölzl et al., (2010),

Landuyt et al., (2010) and Mussbacher et al., (2010). It has been observed that

distinct notational support for every aspectual construct in AODL makes it more

comprehensible and improves the readability of AODL design models. A detailed

comparison can be found in (Iqbal and Allen, 2012b).

 179

b) Extensibility:

Extensibility is important for a design language as the programming languages and

design paradigms keep evolving and new constructs keep creeping in with the

advancement of the technology. An AOD language is expected to support an

extension mechanism to adopt new elements, attributes and relationships. There are

two types of extensions that are provided by an AOD language/approach, a heavy-

weight extension, which allows new components other than aspects to be introduced,

and a light-weight extension that allows the introduction of new elements and

attributes to the existing components.

Most of the approaches discussed in this evaluation extend UML by adopting

profiling or metamodelling. The difference is that the metamodelling approach

allows the introduction of new components other than aspects, while profiling does

not. The approaches following metamodelling may therefore allow both types of

extensions but those following profiling mechanism may only allow light-weight

extensions.

Table 6.18 - Comparison of the approaches based on Extensibility criterion

Approach

Extensibility

Heavy-Weight Extension
Light-Weight Extension

AODL AODL extends UML MOF

metamodels which can be extended

to include new design constructs

other than aspects.

New features, attributes and

features can be introduced to the

designs constructs other than what

are already defined.

AODM It does not support heavy-weight

extension

The approach supports light-weight

extension.

Theme/UML Theme/UML extends UML

metamodels, thus supports heavy-

weight extension.

No support is provided for light-

weight extensions.

AOSD/UC The approach supports heavy-

weight extension as UML 2.0

metamodels are followed.

The light-weight extension is also

supported.

Motorola Weavr

Approach

There is no support available for

heavy-weight extension yet.

The light-weight extension

mechanism is supported by the

approach. New notations and

 180

elements can be introduced in the

UML profile used by the approach.

AAM Heavy weight extension can be

made by introducing new modelling

elements.

Light-weight extensions have not

been supported.

JAC Design

Notations

No extension mechanism has been

proposed or supported by the

approach.

There is no support for light-weight

extension provided by the approach.

Klein‟s Weaving

Approach

No support for heavy-weight

extension is provided yet.

No support for light-weight

extension is provided yet.

SUP Approach No support for heavy-weight

extension is provided. The

approach uses UML profiling

which does not allow introduction

of new non object-oriented

constructs.

The light-weight extension is

possible as UML profiling does

allow introducing of new features,

attributes and relationships other

than what are already defined.

As shown in Table 6.18 Theme/UML and AOSD/UC follows UML metamodelling

which allows these approaches to be accommodating towards the introduction of

heavy-weight extension as well as light-weight extension. AODM only allows light-

weight extension whereas AAM only allows heavy-weight extension. The rest of the

approaches do not support any of the extensions except for SUP Approach which

only supports light-weight extension.

AODL, however, supports both types of extension. AODL is based on aspect-

oriented design models and design constructs which is entirely opposite to all the

other approaches, which all follow either UML profiling or metamodelling. It has

been discussed before that UML is a purely object-oriented design technology which

does not support non object-oriented constructs. That is the reason that AODL‟s

extensibility is much better than other approaches.

c) Traceability:

Traceability refers to the ability of design models to be tracked from an earlier phase

to a later phase in development life cycle. There are two kinds of traceability,

external and internal. The external traceability allows the traceability of concerns

from one phase to another while internal traceability allows detailed models to be

 181

traced to more abstract ones. This criterion assesses the traceability provided by

AODL and other approaches in Table 6.19.

Table 6.19 - Comparison of the approaches based on Traceability criterion

Approach

Traceability

External Traceability
Internal Traceability

AODL The external traceability is not

yet supported in AODL.

There are two abstract models, Aspect

Design Diagram and Aspect-Class

Dynamic Model which are refined into a

more detailed model, Pointcut

Composition Model. Similarly, internal

elements are specified in a Pointcut Table

in detail which also provides support for

refinement mapping.

AODM It supports external traceability

from design to implementation.

Internal traceability is not supported

because there is no mechanism provided

by the approach to map elements from

higher abstraction to detailed design.

Theme/UML The approach provides

modelling support for Themes

from requirements engineering

phase to the implementation

phase, hence, providing a mean

to trace Themes throughout the

development life cycle.

Internal traceability is also supported as the

approach provides both high level and low

level of abstractions.

AOSD/UC The concerns are modelled as

use case slices which can be

traced from requirement

engineering phase to the design

and implementation phase.

The component diagrams are transformed

into class diagrams. This provides a tracing

capability of the approach for internal

elements.

Motorola Weavr

Approach

External Traceability is not

supported.

The structural diagrams depicted in class

diagrams are refined into composite

structure diagrams, thus providing internal

traceability.

AAM The approach primarily focus

on architectural representation,

As far as internal traceability is concerned,

it is only limited to tracing concerns from

 182

hence, traceability from analysis

to implementation phase is not

supported.

requirement engineering approach to

architectures.

JAC Design

Notations

External traceability is possible

on the abstract design level.

There is no support for internal traceability

provided by the approach as the design

models are not refined into detailed ones.

Klein‟s

Weaving

Approach

No support for external

traceability is provided.

No support for internal traceability is

provided.

SUP Approach External traceability is

supported from the

requirements to design.

There is no support for internal traceability

available.

There are only two approaches that support both external and internal traceability.

Other approaches either support only one kind of traceability or support none. AODL

does support internal traceability fully as abstract design models can easily be traced

to more detailed ones. The external traceability is only supported partially though.

Only design to implementation traceability is possible because there is no

requirements analysis approach provided by the language yet.

d) Scalability:

Scalability refers to the ability of a design approach to implement a complex system

as comprehensively as simpler ones. The approach must cover all aspects of system

design thus supporting all types of interactions among design models, even when the

design becomes bigger and more complex.

The scalability of AODL and other approaches have been assessed in Table 6.20.

Table 6.20 - Comparison of the approaches based on Scalability criterion

Approach
Scalability

AODL The approach has been illustrated with the help of a detailed case study,

implementation of a Car Crash Crisis Management system, which supports

the scalability of the approach.

AODM No support for modelling high-level elements provided in the approach.

There are no examples of implementation of the approach on complex

 183

systems available either.

Theme/UML Scalability has been demonstrated with the help of some easy to complex

case studies (Clarke and Baniassad, 2005).

AOSD/UC Besides some easy real world implementations, a complex hotel management

system has been implemented using the AOSD/UC approach. This example

shows that the approach is capable of modelling complex system.

Motorola Weavr

Approach

The approach is scalable which is evident by the examples provided in the

literature. A detailed telecom system has been implemented that shows the

scalable nature of the approach.

AAM The scalability of the approach has not been addressed in the available

literature. The approach is yet to be tested on complex systems involving

several concerns.

JAC Design

Notations

The approach is very limited in addressing all issues related to aspect

modelling. Only class diagrams have been utilized, which only provides

structural view of the system. Consequently, there is no support for

scalability provided by the approach.

Klein‟s Weaving

Approach

There is no example provided by the literature supporting scalability.

SUP Approach The approach has not provided any example proving the scalability.

There are three approaches, Theme/UML, AOSD/UC and Motorola Weavr Approach

other than AODL which provides a high level of scalability. This has been proven

with the help of complex implementation examples which have been provided in the

available literature of the approaches. AODL has been implemented on two complex

case studies, a Car Crash Crisis Management System and a Telecommunication

System and on a number of small systems. The findings have indicated that the

language covers all design aspects of complex systems.

Summary

A summary of all the criterions that make up Effectiveness criterion has been provided in

Table 6.22.

 184

Table 6.21 - Summary of evaluation of the approaches against Effectiveness criterion

Extensibility

Traceability

Scalability Comprehensibility

Heavy-

Weight

Light-

Weight
External Internal

AODL ~ High High

AODM ~ Low Middle

Theme/UML High Middle

AOSD/UC High Middle-High

Motorola Weavr

Approach
 High Middle

AAM Middle Middle-High

JAC Design

Notations
 ~ Low Middle

Klein‟s Weaving

Approach
 Low Low

SUP Approach ~ Low Middle

Findings:

The following findings have been yielded about AODL by the evaluation in this section.

Strengths:

 AODL provides support for internal extensibility of design components as well as

attributes and relationships of existing components.

 AODL provides internal mapping that indicates full support for internal traceability

AODL has been tested on simple as well as complex systems which indicates the

scalable nature of the language

Legend: = Supported, = Not Supported, ~ = Partially Supported, Rating: Low, Middle, Middle-High, High

 185

 Design notations proposed by AODL are comprehensible in nature and improve the

understandability of the overall design of the system.

Weaknesses:

 AODL does not provide complete external traceability as it is a design language and

does not have a sister approach for analysis of the concerns.

 AODL is still an evolving approach and there is more application of the language

required to make it a mature design language.

6.5.7. Tool Support

Tool support is imperative for a new design language to become more mature and to be

adopted in the industry. The tool provides a modelling support that helps in modelling design

constructs in a visual environment thus ensuring syntactical and semantic correctness of the

models. The tool must also provide composition support for integrating design models and

identifying and resolving conflicts among them. And the tool should provide a code

generation capability so that design models are translated into source code easily.

a) Modelling Support

This criterion evaluates whether the tool provides a visual editor to model design

constructs and the relationships among them. Table 6.23 evaluates all the approaches

against this criterion.

Table 6.22 - Comparison of the approaches based on Modelling Support criterion

Approach
Modelling Support

AODL No tool support for modelling concerns is provided yet.

AODM A tool named, M4JPDD, has been developed to design Join Point

Designation Diagrams (Stein and Hanenberg, 2008).

Theme/UML Standard UML editors are used to model aspect concerns, base concerns and

relationships (Clarke, 2012).

AOSD/UC There is no tool available for the approach so no support is provided for

modelling elements using an automated environment.

Motorola Weavr

Approach

The approach is implemented as an extension to the Telelogic TAU MDA

tool which supports modelling of aspectual elements with base elements

 186

using the tool.

AAM There is no tool support available yet, although a number of proposals for

tool development have been presented in some publications (Reddy et al.,

2006; France et al., 2007).

JAC Design

Notations

An IDE based on JAC Framework has been provided which allows

modelling of the design constructs using proposed notations.

Klein‟s Weaving

Approach

No tool support for modelling concerns is provided yet.

SUP Approach No tool support has yet been provided for the approach.

The Theme/UML, Motorola Weaver and JAC Design Notations are the only

approaches that provide a tool support for modelling of design constructs. AODL

along with all other approaches does not have any tool support available yet.

b) Composition Support

This criterion evaluates all the approaches to find out if they provide a tool support

for composing design models. The tool must also be able to identify conflicts arising

as a result of integrations and be able to resolve them. Table 6.24 evaluates all the

approaches against this criterion.

Table 6.23 - Comparison of the approaches based on Composition Support criterion

Approach
Composition Support

AODL No tool support for composition is available yet.

AODM Composition support has not been supported by the AODM tool yet.

Theme/UML An Eclipse plugin has been developed to model composition of concerns

(Clarke, 2012).

AOSD/UC Composition is deferred to the implementation phase in AOSD/UC. Since

there is no tool provided for the approach so no automated support is

available for composition process.

Motorola Weavr

Approach

An extension to the Telelogic TAU MDA has been provided to compose

aspects with base constructs.

 187

AAM There is no tool support available yet.

JAC Design

Notations

There is no support for composition at the design level by the provided tool.

Klein‟s Weaving

Approach

There is no tool support available specifically designed for this approach.

Yet, authors propose to use any UML 2.0 tool to model the weaving

process. Klein et al., (2007) has proposed Omondo UML tool for modelling

weaving process in sequence diagrams.

SUP Approach No tool support has yet been provided for the approach.

Only Theme/UML and Motorola Weaver provide a tool support for composition of

models. The rest of the approaches along with AODL do not have any tool support

available yet.

c) Code Generation

This criterion assesses tool support provided by the approaches to find out whether

tools generate code from the visualized models. Table 6.25 investigates all the

approaches against this criterion.

Table 6.24 - Comparison of the approaches based on Code Generation criterion

Approach
Code Generation

AODL No tool support for code generation from composed models is available yet.

AODM There are tools available to generate code from JPDDs (Hanenberg et al.,

2007; Stein and Hanenberg, 2008; Stricker et al., 2009).

Theme/UML A third-party technology, openArchitectureWare, has been proposed to be

used to generate code from Theme/UML models (Clarke, 2012).

AOSD/UC There is no tool available for AOSD/UC approach.

Motorola Weavr

Approach

An extension to the Telelogic TAU MDA has been developed which also

supports code generation.

AAM There is no tool support available yet.

JAC Design

Notations

The IDE provided by the approach does have the capability to generate code.

 188

Klein‟s Weaving

Approach

No tool support is available to generate code.

SUP Approach No tool support has yet been provided for the approach.

AODL does not provide any tool support and it does not have support available to

generate code from design models. There are four approaches, AODM, Theme/UML

and Motorola Weavr and JAC Design notations that provide tools to generate code

from the models.

Summary:

A summary of all the factors which are part of the Tool Support criteria is given in Table

6.26.

Table 6.25 - Summary of evaluation of the approaches against

Tool Support criterion

Tool Support

M
o

d
el

li
n

g

S
u

p
p

o
rt

C
o

m
p

o
si

ti
o

n

S
u

p
p

o
rt

C
o

d
e

G
en

er
at

io
n

AODL

AODM

Theme/UML

AOSD/UC

Motorola Weavr Approach

AAM

JAC Design Notations

Klein‟s Weaving Approach

SUP Approach

Legend: = Supported, = Not Supported

 189

The summary of the evaluation reveals that most of the languages do not have tool-support

available. AODL does not provide tool-support either.

Findings:

The following findings have been yielded by the evaluation of AODL in this section:

Weaknesses:

AODL does not provide tool-support yet. Tool development is part of future research.

6.4. Discussion

Evaluating a design language is not an easy task. There are many factors that play an

important role in making a design language effective. There are always certain kinds of

factors attached with a design language. For instance, UML provides design solutions for

object-oriented constructs. To evaluate UML one can think of support for encapsulation and

inheritance as these are fundamental properties of object-oriented paradigm. Similarly, an

aspect-oriented design language can be assessed on the parameters such as, support for

representation and design of crosscuttings, level of abstraction and composition techniques.

Keeping in view these qualities, a set of criteria has been developed for the evaluation of

AOD design approaches. The criteria assess fundamental properties of an AOD language

from different perspectives. It includes parameters to assess not only support for designing

structural crosscutting but also behavioural crosscutting. It does not only contain criterions to

assess composition of aspects but also composition of aspectual key elements. A set of

criteria for assessing maturity and efficacy of the language has also been included to find out

how mature and scalable a language or approach is to be adopted in the industry.

Out of the existing AOD approaches, eight most popular approaches have been selected. The

selection is based on maturity of the approaches and similarity with AODL apart from being

popular. All these approaches have been evaluated against the set criteria along with AODL.

A comparison has been made among the approaches, especially between AODL and the

contemporary approaches. The purpose of this kind of evaluation was to find out the

maturity of AODL and its position among existing approaches. The evaluation has also

revealed strengths and weaknesses of AODL.

 190

On average, AODL has scored well. Against many parameters, AODL has been found to be

better than the existing approaches. The most remarkable finding is that AODL covers

majority of the parameters included in this set of criteria.There are, however, some

weaknesses of AODL that has been revealed by this evaluation. First of all, AODL is still

evolving and there are still some modelling areas that could be improved. The prime

example is the composition model, which is lacking a resultant composed model of the

whole system that would show an overall model of the system after aspects are composed

with the base constructs. The second modelling improvement can be in providing modelling

support for static crosscutting (inter-type declarations). Design diagrams for static

associations between aspects and base constructs can be incorporated in the Aspect-Oriented

Design Diagram to complete the design representation of all inner aspectual elements.

AODL is also lacking a formal description of its semantics for all design notations. Keeping

in mind it is still an evolving approach, one can envisage that AODL will improve and will

become more effective and mature with time.

6.5. Chapter Summary

The chapter presents a qualitative evaluation of AODL. A set of criteria has been discussed

which is applied to AODL along with eight existing design methodologies. Each criterion in

the main criteria assesses the design approaches from a certain perspective. The comparison

is made which is then summarized in comparison tables. At the end of evaluation against

each criterion, strengths and weaknesses of AODL have been discussed. The chapter closes

with a discussion on the results found during the evaluation.

 191

Chapter 7:

Conclusions and Future Work

This chapter concludes the study conducted during this research. The chapter explains how

the hypothesis of the study has been proved and what methods have been employed to prove

this hypothesis. The contribution to knowledge made as a result of this study has also been

highlighted. The limitations and weaknesses of AODL, which have been identified in the

evaluation chapters, have been discussed along with the possible improvements that can be

made to rectify these issues. The chapter concludes with an explanation about the future

direction of the research.

7.3. Achieved Goals of the Research

The primary hypothesis of the research was:

A unified design
1
 approach for aspectual and non-aspectual concerns of a system

improves quality
2
 of the design and makes it comprehensible

3
 and effective

4
.

The hypothesis is proved with the help of following findings:

1. AODL was developed to provide a unified design framework for aspects and objects. It

was felt that the existing design approaches force designers to adopt two different design

methodologies for aspect-oriented and object-oriented constructs. UML is the widely used

design language for object-oriented constructs, and most of the designers use this language

while designing the base constructs. Whereas for aspect-oriented constructs, a number of

design approaches are available, the majority of which are different from UML. The

designers have to use two different design languages to design one system which makes it

hard for these new aspect-oriented design languages to be adopted. To fill this gap, AODL

was developed to provide a unified design approach. The intention was to develop a design

approach similar to UML for aspect-oriented constructs. The reason behind not selecting

UML in its current state is that it does not support design of non object-oriented constructs.

Therefore, the solution was to develop a similar language to UML with similar design

 192

notations and design diagrams. AODL utilizes and extends UML diagrams to represent

aspects and their behaviour. The design notations are different from those of UML but are

designed in the similar way.

2. An exhaustive evaluation of AODL has been conducted (explained in Chapter 5 and 6)

which indicates that AODL improves quality of the design by providing a complete design

support for aspectual concerns and their constituent elements in a unified design approach

along with base constructs. During the evaluation of AODL, the quality of the language has

been assessed with a set of 20 criteria. These criteria assess different aspects of the design

approach from the quality perspective. The evaluation has also been applied to eight other

contemporary design approaches and a comparison between AODL and these approaches

has been made to assess the efficacy of the language over existing approaches.

3. The features and nature of each aspectual construct are reflected in its designated AODL

notation which makes it comprehensible and improves the readability and understandability

of the design. The AODL design diagrams have also been developed on the same principle.

Each diagrammatic model contains notations and associations which reflect the purpose of

the diagram. There are separate diagrams for structural and behavioural representation of

aspects and their associations. For instance, the Aspect Design Diagram presents a structural

depiction of an aspect and its association with the base classes, and the Pointcut-Advice

diagram depicts the structural association between pointcuts and advices. For weaving

associations, a structural model, entitled Aspect-Class Structural Model, has also been

proposed that captures structural relationships between aspects and base classes. Similarly,

there are models for behavioural representations as well. For instance, the Joint Point

Behavioural Model captures join points in a behavioural representation of activities and the

Aspect-Class Dynamic Model captures the dynamic process of weaving of aspects with base

objects.

4. Efficacy is a difficult criterion and there is no standard way to calculate it. A number of

sub criteria have been utilized in our evaluation (explained in Chapter 6) to find out the

efficacy of a design methodology. Some of these sub criteria are support for Structural and

Behavioural Crosscutting, Concern Representation, Extensibility, Traceability, and Concern

Composition. The detailed analysis of AODL against these criteria has revealed that AODL

can be considered as an effective language as far as support for these criteria is concerned.

One of the major weaknesses in most of the existing strategies is support for inner-aspect

representation and intra-aspect compositions. The pointcuts and advices are not well-

 193

represented in the majority of the approaches, and composition of these constructs is

overlooked as well. AODL, on the other hand, provides full support for concern

representation and their compositions.

7.4. Contribution

There are a number of aspect-oriented design and modelling approaches available in the

industry, though none of these approaches have been adopted as a standard technique yet. As

described in the motivations of this thesis in Chapter 1 and Chapter 4, there is still room for

new approaches that could provide a unified design approach and that could

comprehensively represent aspects and their constituent elements.

The following are some of the notable contributions of this study:

The research has analysed all the existing aspect-oriented design approaches (some of the

notable ones have been explained and critiqued in Chapter 3). It has been observed that there

are still limitations with the existing design approaches as far as comprehensiveness of the

approach and uniformity of the design standards are concerned. The research has, therefore,

focused on developing a unified approach to design both aspectual and non-aspectual

concerns in a single design framework. Aspect-Oriented Design Language (AODL) is the

resultant design approach that has been proposed as an answer to the problems in the

existing design approaches. It contains a set of design notations to represent each aspectual

concern, such as aspect, advice, pointcut, join point and weaving association, in a notational

way. The notations are then complemented with design diagrams to model structural and

behavioural characteristics of aspects and base constructs. Examples of such diagrams are

Join Point Identification Diagrams (explained in section 4.3.2.1.2), Join Point Behavioural

Diagram (explained in section 4.3.2.1.3) and Pointcut Composition Model (explained in

section 4.3.2.4.4). The relationships and associations among aspectual elements and

constructs can also be represented in diagrams such as Aspect Design Diagram (explained in

4.3.2.3.2), Aspect-Class Structural Model (explained in 4.3.2.4.3) and Aspect-Class

Dynamic Model (explained in 4.3.2.4.2). AODL has been explained in detail in a journal

paper published in 2011 (Iqbal and Allen, 2011).

Pointcuts are vital aspectual elements that define the joining of aspects with the base

constructs. Pointcut modelling is considered an integral part of aspect-oriented design.

AODL provides a pointcut table (explained in 4.3.2.5) to specify each pointcut with a

detailed description of related aspects and base constructs (such as objects and methods).

 194

The table also documents the related advices with the pointcuts to indicate the relationships

between the two. The table also provides a mechanism to define precedence of each aspect

should a join point be shared between two or more aspects. The defined order of execution

can help in avoiding the shared join point problem. The table has also been explained in a

conference paper (Iqbal and Allen, 2012).

The pointcuts are associated with other pointcuts and with the base program‟s methods. The

composition of pointcuts helps in designing the joining of aspects with the base objects at

run time. This composition is designed in AODL with the help of a design model, known as

Pointcut Composition Model (explained in 4.3.2.4.4). Each pointcut is represented

diagrammatically along with their advices and parent aspects. The model can help in

resolving the aspect interference problem (Katz et al., 2008) that can arise as a result of

aspect compositions. The model is also explained in a paper submitted to a journal (Iqbal and

Allen, 2012).

A detailed evaluation of some of the notable aspect-oriented design methodologies has been

provided in Chapter 6. A qualitative set of criteria has been implemented on these

approaches and AODL to assess strengths and weaknesses of each approach. The criteria

provide a set of quality attributes that are vital for an AO design approach and can be

implemented on any design methodology to evaluate the efficacy and maturity of the

approach. Two case studies have also been designed using AODL to provide a

demonstration of applicability of the language.

During this study, the following research publications have been produced:

Journal Papers:

1. Iqbal, S. and Allen, G. (2011) „Designing Aspects with AODL‟ International Journal

of Software Engineering. ISSN 1687-6954

2. Iqbal, S. and Allen, G. (2012) „Application of AODL: A Case Study‟, Software:

Practice and Experience, (Submitted).

3. Iqbal, S. and Allen, G. (2012) „Composition of Aspects in AODL‟, Journal of

Systems and Software, (Submitted).

Conference Papers:

1. Iqbal, S. and Allen, G. (2012) „Pointcut Design with AODL‟. In: The Twenty-Fourth

International Conference on Software Engineering and Knowledge Engineering

(SEKE 2012), July 1-3, 2012. Redwood City, California, USA.

http://eprints.hud.ac.uk/13593/

 195

2. Iqbal, S. and Allen, G. (2010) „Aspect-Oriented Modelling: Issues and

Misconceptions‟. In: Proceedings of Software Engineering Advances (ICSEA), 2010

Fifth International Conference. : IEEE. Nice, France. pp. 337-340. ISBN 978-1-4244-

7788-3

3. Iqbal, S. and Allen, G. (2010) „A notational Design of Join Points‟. In: Future

Technologies in Computing and Engineering: Proceedings of Computing and

Engineering Annual Researchers' Conference 2010: CEARC‟10. Huddersfield:

University of Huddersfield. pp. 27-30. ISBN 9781862180932.

4. Iqbal, S. and Allen, G. (2009) „On identifying and representing aspects‟. In: SERP'09

- The 2009 International Conference on Software Engineering Research and Practice,

July 13-16, Las Vegas, USA. pp. 497-501. ISBN 1-60132-129-5

5. Iqbal, S. and Allen, G. (2009) „Representing Aspects in Design‟. In: Theoretical

Aspects of Software Engineering, 2009 TASE 2009, TheThird IEEE International

Symposium on. : IEEE. China, pp. 313-314. ISBN 978-0-7695-3757-3

6. Iqbal, S. and Allen, G. (2009) „Aspect-oriented design model.‟ In: Proceedings of

Computing and Engineering Annual Researchers' Conference 2009: CEARC‟09.

Huddersfield: University of Huddersfield. pp. 137-141. ISBN 9781862180857

7.5. Limitations

Some of the limitations of AODL, which have been observed during the evaluation process,

are:

 AODL designs aspects identified in the earlier phases of the software development

lifecycle using any suitable aspect-oriented requirements engineering approach.

AODL does not offer any techniques for capturing aspects from the requirements

specifications document at the moment. This limitation affects the results of AODL

design techniques if aspects are not properly identified or if some are overlooked in

the requirements engineering stage.

 In some situations, some new aspects can arise during the design phase. This can

happen due to the introduction of creeping requirements or any modifications to the

original design decisions or business logic. AODL does not provide a means to verify

a new aspect due to the absence of an aspect identification technique.

 The structural characteristics of an aspect are captured in an Aspect Design Diagram

(explained in chapter 4, section 4.3.2.3.2). This diagram does provide a diagrammatic

relationship between pointcuts and advices but there is no diagrammatic

 196

representation provided for static crosscutting (inter-type declarations) at the

moment. The future work will include new diagrams and design notations to

represent this type of crosscutting.

 The weaving process of aspects is captured in an Aspect-Class Dynamic Model

(explained in Chapter 4, section 4.3.2.4.3) and Pointcut Composition Model

(explained in chapter 4, section 4.3.2.4.4). These models do depict composition of

aspectual elements with the base program. However, there is no support available in

AODL yet to show the resultant model that is formed as a result of composition of

aspects and objects. The future work will also address this problem and support will

be provided to develop these kinds of models.

7.6. Future Work

AODL is an evolving approach and there is still room for improvements and extensions. As

is mentioned in section 7.3, new design notations are yet to be developed for designing inter-

type declarations. The reason to have a distinctive notation for this type of construct is that

AODL offers notations and diagrams for all aspectual elements so this construct must also be

represented diagrammatically. Another reason is that inter-type declarations represent static

crosscutting of a base program, which is required to be represented in the Aspect Design

Model to capture associations between the corresponding aspect and involved base

constructs.

The weaving process captured by the Aspect-Class Dynamic Model and Pointcut

Composition Model in AODL can be enhanced to show a complete system design after the

aspects are woven into the base system. The resultant model would show aspectual

behaviour linked with the join points in the base program. It would help in modelling

dynamic composition of aspects with base classes. Due to lack of time and level of

complexity, this model has not been developed during the course of this research. This

model can be developed in the future by extending the weaving models.

An early aspect approach will also be part of the future work. The requirements specification

documents and use case diagrams can provide a means to identify crosscutting concerns in

the requirements engineering phase. The plan is to extend the UML use case diagram with

additional notations to identify those functional requirements that overlap others in the

system. Similarly, overlapping non-functional requirements can also be identified in the

 197

requirements engineering document. A specification document for defining aspects can be

developed to specify aspects and their associations.

Finally, tool-support will be provided for AODL as it is extremely important to aid

application and adaptability of the language. The tool-support will also help in

demonstrating the efficacy of the language over existing design methodologies. Ideally, such

a tool should allow „round trip‟ editing of both the AODL design models and /or the AspectJ

source code.

7.7. Closing Remarks

It cannot be claimed that the presented work is the final product. There are a number of areas

in AODL that can be evolved and extended to make them even better and more mature. One

deficiency that is easily evident is that AODL is needed to be complemented with a

compatible requirements engineering approach. That will complete the analysis and design

of aspectual components. Another thing, which has already been mentioned in section 7.3, is

provision of a detailed aspect composition model that could model and demonstrate the

entire weaving process. This research will obviously not halt here. All the limitations and

deficiencies will be overcome in the future research.

On a closing note, I have learnt in a great deal about aspect-oriented programming in general

and aspect-oriented modelling and design in particular. I will keep on striving with the same

zeal in the future as well to take this work further.

 198

References

Albunni, N. and Petridis, M., 2008. Using UML for Modelling Cross-Cutting Concerns in

Aspect Oriented Software Engineering. In the proceedings of 3rd International Conference

on Information and Communication Technologies: From Theory to Applications, ICTTA

2008. April 2008. pp.1-6, 7-11.

Aldawud O., Bader A., and Elrad T., 2002. Aspect-Oriented Modelling: Bridging the Gap

between Implementation and Design. Presented at Generative Programming and Component

Engineering Conference (GPCE), Pittsburgh, PA, USA. pp. 189-201.

Aldawud, O., Elrad, T., And Bader, A. 2003. UML profile for aspect-oriented software

development.In Proceedings of the 3rd International Workshop on Aspect Oriented

Modelling.

AspectJ Team, 2012. The AspectJ Programming Guide, [online]. Available at:

<http://www.eclipse.org/aspectj/doc/released/devguide/ajbrowser-navigating.html>

[Accessed May 12, 2012].

Bálik, J., & Vranić, V. 2012. Symmetric aspect-orientation: some practical consequences.

In Proceedings of the 2012 workshop on Next Generation Modularity Approaches for

Requirements and Architecture. pp. 7-12. ACM.

Baniassad E. and Clarke, S., 2004a. Finding Aspects in Requirements with Theme/Doc.

presented at Workshop on Early Aspects (held with AOSD 2004), pp. 157-167. Lancaster,

UK.

Baniassad E. and Clarke, S., 2004b. Theme: An Approach for Aspect-Oriented Analysis and

Design, presented at International Conference on Software Engineering.

Baniassad, E., Clements, P., Araújo, J., Moreira, A., Rashid, A., Tekinerdogan, B., 2006.

Discovering Early Aspects.IEEE Software Special Issue on Aspect-Oriented Programming.

23(1): pp. 61-70.

Batory, D. S., Singhal, J. V., Thomas, S. D., Geraci, B., Sirkin M., 1994. The GenVoca

Model of Software-System Generators. IEEE Software. pp. 89-94.

Blair, G. S., Blair, L., Rashid, A., Moreira, A., Araujo ´ , J., And Chitchyan, R. 2005.

Engineering aspect-oriented systems. In Aspect-Oriented Software Development, R. Filman,

T. Elrad, S. Clarke, and M. Aks¸it, Eds. Addison-Wesley, pp. 379–406.

Boner, J., 2004.AspectWerkz - Dynamic AOP for Java. In Karl Lieberherr,editor, 3rd Int.

Conf. on Aspect-Oriented Software Development (AOSD‟04), Lancaster, UK. ACM.

pp. 51–62.

Bosch, J. and Aksit, M. 1992. Composition-Filters Based Real-Time Programming.

Vancouver: An Evaluation of Object-Oriented Technology in Real-Time Systems: Past,

Present & Future (ACM OOPSLA'92 Workshop).

Brito I., 2008. Aspect-oriented requirements analysis.Ph.D.thesis, Departamento de

Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa.

http://www.eclipse.org/aspectj/doc/released/devguide/ajbrowser-navigating.html

 199

Bustos, A. & Eterovic, Y., 2007.Modelling aspects with UML class, sequence and state

diagrams in an industrial setting.In Proceedings of the 11th IASTED International

Conference on Software Engineering and Applications (SEA 2007), 2007, pp. 403-410,

Anaheim, USA.

Chitchyan, R., Rashid, A., Sawer, P., Garcia, A., Alarcon, M., Bakker, J., Tekinerdogan, B.,

Clarke, S., Jackson, A. 2005.Survey of Analysis and Design Approaches. TR: AOSD-

Europe-ULANC-9.

Cibran, M., D'Hondt, M. and Jonckers, V., 2003.Aspect-Oriented Programming for

Connecting Business Rules.In Proceedings of the 6th International Conference on Business

Information Systems (BIS'03). Colorado Springs, USA. Vol. 6, No. 7, p. 24.

Clarke, S. 2001. Composition of object-oriented software design models.Ph.D.dissertation,

Dublin City University.

Clarke, S. 2002. Extending standard UML with model composition semantics. Sci. Comput.

Prog. 44, 1, pp. 71–100.

Clarke, S. And Baniassad, E., 2005. Aspect-Oriented Analysis and Design The Theme

Approach. AddisonWesley.

Clarke, S. and Walker, R. J., 2002.Towards a Standard Design Language for AOSD. ACM

Proceedings on Aspect Oriented Software Development, pp. 113- 119.

Clarke, S., Harrison, W., Ossher, H., And TARR, P., 1999. Subject-oriented design:

Towards improved alignment of requirements, design and code. In Proceedings of the 14th

Conference on Object-Oriented Programming, Systems, Languages and Applications

(OOPSLA‟99). pp. 325–339.

Clarke, S., 2012. Theme/UML, [online] Available at:

<http://www.dsg.cs.tcd.ie/aspects/themeUML> [Accessed on May 7, 2012].

Coelho, W., & Murphy, G. C. 2006.Presenting crosscutting structure with active

models.In Proceedings of the 5th international conference on Aspect-oriented software

development. pp. 158-168. ACM.

Cottenier, T., Van Den Berg, A., & Elrad, T. 2007a.Joinpoint inference from behavioral

specification to implementation. ECOOP 2007–Object-Oriented Programming, pp. 476-500.

Cottenier, T., Van Den Berg, A., & Elrad, T. 2007b. The Motorola WEAVR: Model

weaving in a large industrial context. Aspect-Oriented Software Development (AOSD),

Vancouver, Canada, pp. 32`-44.

Cottenier, T., van den Berg, A., & Elrad, T. 2007c. Motorola WEAVR: Aspect orientation

and model-driven engineering. Journal of Object Technology, 6(7), pp. 51-88.

Cui, W. L. L. X. Z. and Xu, D., 2009. Modelling and integrating aspects with UML activity

diagrams. In Proceedings of the 2009 ACM Symposium on Applied Computing (SAC

2009), New York, USA, 2009, pp. 403–437.

Dahiya, D. and Dahiya, S., 2008. Software Reuse in Design and Development of

Aspects. Computer Software and Applications, 2008.COMPSAC '08. 32nd Annual IEEE

International, vol., no., pp.745-750.

http://www.dsg.cs.tcd.ie/aspects/themeUML

 200

Dasgupta, S. , 1989. The structure of design processes, in Advances in Computers, Yovits,

M. C., Ed., Academic Press, pp. 1–67.

Dijkstra, Edsger W., 1982. On the role of scientific thought. In Dijkstra, Edsger W.. Selected

writings on Computing: A Personal Perspective. New York, NY, USA: Springer-Verlag

New York, Inc.. pp. 60–66. ISBN 0-387-90652-5.

Durr, P., Staijen, T., Bergmans, L., and Mehmet A., 2005. Reasoning About Semantic

Conflicts Between Aspects. Presented in 2nd European Interactive Workshop on Aspects in

Software (EIWAS), Brussels, Belgiu.

Eclipse, 2011. AspectJ, [online] Available at <http://www.eclipse.org/aspectj/> [Accessed

20 December, 2011].

Eclipse, 2012. AspectJ Programming Guide, [online] Available at:

<http://aspectj.org/doc/dist/progguide/index.html> [Accessed on 5
th

 of June. 2012].

Eisenbarth T., Koschke R., and Simon D. 2003.Locating features in source code. IEEE

Transactions on Software Engineering, volume 29, pp. 210-224.

Elrad, T., Aksit, M., Kiczales, G., Lieberherr, K. and Ossher, H., 2001. Discussing Aspects

of AOP.Communication of the ACM. Vol. 44, No. 10, pp. 33-38.

Elrad, T., Aldawud, O., And Bader, A. 2005.Expressing aspects using UML behavioural and

structural diagrams. In Aspect-Oriented Software Development, R. Filman, T. Elrad, S.

Clarke, and M. Aks¸it, Eds. Addison-Wesley, pp. 459–478.

Evermann, J., Fiech, A., and Alam, F. E., 2011. A platform-independent UML profile for

aspect-oriented development, In Proceedings of the Fourth International C* Conference on

Computer Science and Software Engineering, pp. 25-34, May 16-18, 2011, Montreal,

Canada.

Figueiredo, E., Garcia, A., Sant'Anna, C., Kulesza, U., and Lucena, C., 2005. Assessing

Aspect-Oriented Artifacts: Towards a Tool-Supported Quantitative Method. Workshop.on

Quantitative Approaches in OO Software Engineering.

Filman, R. E., & Friedman, D. P. 2000. Aspect-oriented programming is quantification and

obliviousness. In Workshop on Advanced separation of Concerns, OOPSLA (Vol. 2000).

Filman, R. E., 2005, Aspect Oriented Software Development. Addison Wesley

France, R., Fleurey, F., Reddy, R., Baudry, B., And Ghosh, S. 2007. Providing support for

model composition in metamodels.In Proceedings of the 11th International EDOC

Conference (EDOC‟07). pp. 253-253.

France, R., Ray, I., Georg, G., & Ghosh, S. 2004. Aspect-oriented approach to early design

modelling. In Software, IEE Proceedings- Vol. 151, No. 4, pp. 173-185.IET.

Freeman, P., 1980. The nature of design, in Tutorial on Software Design Techniques,

Freeman, P. and Wasserman, A. I. Eds, IEEE, 1980, pp. 46–53.

Fuentes, L., Pinto, M., and Troya, J. M. 2007.Supporting the development of CAM/DAOP

applications: An integrated development process.Software - Practi. Exp. 37, 1, pp. 21–64.

http://en.wikipedia.org/wiki/Edsger_W._Dijkstra
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-387-90652-5
http://www.eclipse.org/aspectj/

 201

Grundy, J.C. Aspect-oriented Requirements Engineering for Component-based Software

Systems, In Proceedings of the 1999 IEEE Symposium on Requirements Engineering,

Limmerick, Ireland, 7-11 June, 1999, IEEE CS Press, pp. 84-91.

Grundy, J. 2000. Multi-perspective specification, design and implementation of software

components using aspects. Int. J. Softw. Engi.Knowl.Eng. 20, 6. pp. 713-734.

Guessi, M., Oliveira, L. B. R., and Nakagawa, E. Y., 2011. Extensions of UML to Model

Aspect-oriented Software Systems. April 2011 Special issue of best papers presented at

CLEI 2010, Asunción, Paraguay. 3-3.

Gupta, P., Garg, S., and Khalon, K. S., 2011.Designing Aspects Using Various UML

Diagrams in Resource-Pool Management. International Journal of Advanced Engineering

Sciences and Technologies, Vol No. 7, Issue No. 2, pp. 228 – 233.

Hanenberg, S., Stein, D., and Unland, R., 2007. From Aspect-Oriented Design to Aspect-

Oriented Programs: Tool-Supported Translation of JPDDs into Code. In: de Moor, O.

(Hrsg.): Proc. of 6th International Conference on Aspect-Oriented Software Development

(AOSD 2007), ACM, Vancouver, BC, Canada. pp. 113-118.

Harrison, W. and Harold, O. 1993.Subject-Oriented Programming - A Critique of Pure

Objects. Proceedings of Conference on Object-Oriented Programming Systems, Languages,

and Applications. pp. 223-228.

Harrison, W., Ossher, H., & Tarr, P. 2002. Asymmetrically vs. symmetrically organized

paradigms for software composition. IBM Rsch. Rpt. RC22685 (W0212-147).

Harrison, W.H., Ossher, H.L. and Tarr, P.L., 2002. Asymmetrically vs. Symmetrically

Organized Paradigms for Software Composition.IBM Research Division, Thomas J. Watson

Research Center. RC22685.

Ho, W.-M., Jez´ Equel ´ , J.-M., Pennaneac‟h, F., And Plouzeau, N. 2002. A toolkit for

weaving aspect oriented UML designs. In Proceedings of the 1st Intermational Conference

on Aspect-Oriented Software Development (AOSD‟02). pp. 99-105.

Hölzl, M., Knapp, A., & Zhang, G. 2010.Modeling the car crash crisis management system

using HiLA. Transactions on aspect-oriented software development VII, pp. 234-271.

Iqbal, S. and Allen, G., 2009.On identifying and representing aspects. In: SERP'09 - The

2009 International Conference on Software Engineering Research and Practice, July 13-16,

Las Vegas, USA. pp. 113-117.

Iqbal, S. and Allen, G., 2012b. Application of AODL: A Case Study, Software: Practice and

Experience, (Submitted).

Iqbal, S. and Allen, G., 2010.Aspect-Oriented Modelling: Issues and Misconceptions. In:

Proceedings of Software Engineering Advances (ICSEA), 2010 Fifth International

Conference. IEEE at Nice, France. pp. 337-340. ISBN 978-1-4244-7788-3.

Iqbal, S. and Allen, G., 2011. Designing Aspects with AODL. International Journal of

Software Engineering. pp. 221-229. ISSN 1687-6954.

Iqbal, S. and Allen, G., 2012.Pointcut Design with AODL. In: The Twenty-Fourth

International Conference on Software Engineering and Knowledge Engineering (SEKE

2012), July 1-3, 2012. Redwood City, California, USA. pp. 418-421.

http://eprints.hud.ac.uk/5516
http://eprints.hud.ac.uk/9007/
http://eprints.hud.ac.uk/10198/
http://eprints.hud.ac.uk/13593/

 202

Ivers, J., Clements, P., Garlan, D., Nord, R., Schmerl, B. and Silva, J. R. O.,

2004.Documenting component and connector views with UML 2.0.Tech. Rep., 2004,

cMU/SEI-2004-TR-008.

Jacobson I., 2003. Use Cases and AspectsWorking Seamlessly Together. Journal of Object

Technology, vol. 2, pp. 7-28.

Jacobson, I. And NG, P.W., 2005. Aspect-Oriented Software Development with Use

Cases.Addison-Wesley.

JBoss. 2012. JBoss AOP homepage, [online] Available at:

<http://labs.jboss.com/portal/jbossaop/> [Accessed 10 February, 2012].

Jingyue, L., Houmb, S. H. and Kvale, A. A. 2004. A Process to Combine AOM and AOP: A

Proposal Based on a Case Study. Presented at Workshop on Aspect- Oriented Modelling

(held with UML 2004), Lisbon, Portugal.

Jones J.C. 1970. Design Methods: Seeds of Human Futures. (Revised edn 1981) Wiley-

Interscience.

Kande, M., Kienzle, J., Strohmeyer, A. 2003. From AOP to UML: Towards an aspect-

oriented architectural modelling approach Technical Report, Swiss Federal Institute of

Technololgy (Lausanne, 2003).

Katara, M. And Katz, S. 2007. A concern architecture view for aspect-oriented software

design.Softw. Syst. Model. 6, 3, pp. `247–265.

Katz, E. et al., 2008. Detecting Interference among Aspects.AOSD Europe Deliverable

D116.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, Ch., Lopes, Ch.V., Loingtier,J.-M., Irwin,

J., 1997. Aspect-Oriented Programming. In: Proceedings of ECOOP 1997, Jyväskylä,

Finland, June 9-13, 1997, pp. 220-242.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, Ch., Lopes, Ch.V., Loingtier,J.-M., Irwin,

J., 1997. Aspect-Oriented Programming,” In: Proceedings of ECOOP , Jyväskylä, Finland,

June 9-13, 1997, pp. 220-242

Kienzle, J., Guelfi, N., Mustafiz, S., 2010. Crisis Management Systems: A Case Study for

Aspect- Oriented Modelling. Transactions on Aspect-Oriented Software Development.

Kim, D.-K., France, R. B., And Ghosh, S. 2004. A UML-based language for specifying

domain-specific patterns. J. Visual Lang. Comput. 15, 3-4, 265–289.

Klein, J., Caillaud, B., & Hélouët, L. 2005. Merging scenarios. Electronic Notes in

Theoretical Computer Science, 133, pp. 193-215.

Klein, J., Fleurey, F., And Jez´ Equel ´ , J.-M. 2007. Weaving multiple aspects in sequence

diagrams. Transaction on Aspect-Oriented Software Development. pp. 167-199.

Klein, J., Hélouët, L., & Jézéquel, J. M. 2006.Semantic-based weaving of

scenarios.In Proceedings of the 5th International Conference on Aspect-oriented software

development. pp. 27-38. ACM.

 203

Koppen, C. and Stoerzer, M., 2004. Pcdi: Attacking the fragile pointcut problem. In First

European Interactive Workshop on Aspects in Software (EIWAS).

Krechetov, I., Tekinerdogan, B., Garcia, A., Chavez, C., Kulesza, U., 2006. Towards an

Integrated Aspect-Oriented Modelling Approach for Software Architecture Design.8th

Workshop on Aspect-Oriented Modelling (AOM‟06), AOSD‟06, March, Bonn, Germany.

Kulesza, U., Sant'Anna, C., Garcia, A., Coelho, R., Staa, A. V., and Lucena C., 2006.

Quantifying the Effects of Aspect Oriented Programming: A Maintenance Study,

In Proceedings of ICSM'06. 22nd IEEE International Conference on Software maintenance.

pp. 223-233. IEEE.

Lagaisse, B., Joosen, W., and Win, B. D., 2004. Managing Semantic Interference with

Aspect Integration Contracts.International Workshop on Software-Engineering Properties of

Languages for Aspect Technologies (SPLAT), Lancaster, UK.

Lau, Y., Zhao, W. Peng, X. Chen, Y. and Jiang, Z., 2007. A unified formal model for

supporting aspect-oriented dynamic software architecture.In Proceedings of the International

Conference on Convergence Information Technology (ICCIT 2007), Los Alamitos, USA.

pp. 450–455.

Lawson, B., 1980. How Designers Think, The Architectural Press Ltd., London.

Li, H., Zhang, J. and Chen, Y., 2010. Aspect-oriented modelling in software architecture

pattern based on UML. Computer and Automation Engineering (ICCAE), 2010 The 2nd

International Conference on , vol.3, no., pp.575-578, 26-28 Feb. 2010.

Lieberherr, K. 1996. Adaptive Object-Oriented Software: The Demeter Method with

Propagation Patterns. PWS Publishing Company.

Lippert, M. and Lopes, C. V., 2000. A study on exception detection and handling using

aspect-oriented programming, In Proceedings of the 2000 International Conference

on Software Engineering. pp. 418-427. IEEE.

Lopes, C. V., & Bajracharya, S. K. (2005, March). An analysis of modularity in aspect

oriented design. In Proceedings of the 4th international conference on Aspect-oriented

software development. pp. 15-26. ACM.

Lopes, C. V., 1997. D: A Language Framework for Distributed Programming. Ph.D. Thesis,

College of Computer Science, Northeastern University.

Mahoney, M., Bader, A., Aldawud, O., And Elrad, T., 2004. Using aspects to abstract and

modularize statecharts. In Proceedings of the 5th Aspect-Oriented Modelling Workshop

(UML‟04).

Meyer, B., 1988. Object-oriented Software Construction. Prentice Hall, 1988.

Moreira, A., Rashid, A., & Araujo, J. 2005. Multi-dimensional separation of concerns in

requirements engineering.In Proceedings.13th IEEE International Conference

on Requirements Engineering. pp. 285-296. IEEE.

Moreira, A., Araújo, J., & Rashid, A. (2005).A concern-oriented requirements engineering

model.In Advanced Information Systems Engineering. pp. 55-100. Springer

Berlin/Heidelberg.

http://www-users.cs.york.ac.uk/susan/bib/nf/m/meyer.htm#oosc

 204

Mosser, S., Blay-Fornarino, M., & France, R. 2010.Workflow design using fragment

composition. Transactions on aspect-oriented software development VII, pp. 200-233.

Muller, P.-A., Fleurey, F., And J´Ez´Equel, J.-M. 2005. Weaving executability into object-

oriented metalanguages. In Proceedings of the 8th International Conference on Model

Driven Engineering Languages and Systems (MoDELS‟05). pp. 264-278.

Mussbacher, G., Amyot, D., Araújo, J., & Moreira, A. 2010. Requirements modeling with

the aspect-oriented user requirements notation (AoURN): a case study. Transactions on

aspect-oriented software development VII, pp. 23-68.

Nagy, I., Lodewijk, B., and Mehmet, A., 2005. Composing aspects at shared join points. In

Andreas Polze Robert Hirschfeld, Ryszard Kowalczyk and Mathias Weske, editors,

Proceedings of International Conference NetObjectDays (NODe), volume P-69 of Lecture

Notes in Informatics, Erfurt, Germany, Gesellschaft fur Informatik (GI).

OMF, OMG‟s Meta-Object Facility, [online] Available at: http://www.omg.org/mof/

[Accessed January 5, 2012].

OMG, 2012.UML 2.4.1. Specification, [online] Available at:

<http://www.omg.org/technology/documents/modelling_spec_catalog.htm#UML>

[Accessed on February 10, 2012].

Op De Beeck, S., Truyen, E., Boucke´, N., Sanen, F., Bynens, M., And Joosen, W. 2006. A

study of aspect-oriented design approaches. Tech. rep. CW435, Department of Computer

Science, Katholieke Universiteit Leuven.

Ossher, H., & Tarr, P. 2002. Multi-dimensional separation of concerns and the hyperspace

approach. Software Architectures and Component Technology, pp. 293-323.

Page, J. K. 1966.Conference Report, Ministry of Public Building and Works, London.

Parnas, D. L., 1972. On the criteria to be used in decomposing systems into modules. In

Communications of the ACM, Vol. 15(12): pp. 1053-1058.

Paula, V. and Batista, T., 2007.Revisiting a formal framework for modeling aspects in the

design phase.In Aspect-Oriented Requirements Engineering and Architecture Design, 2007.

Early Aspects at ICSE: Workshops in (pp. 6-6). IEEE.

Pawlak, R., Seinturier, L., Duchien, L., Martelli, L., Legond-Aubry, F., And Florin, G. 2005.

Aspectoriented software development with Java aspect components. In Aspect-Oriented

Software Development, R. Filman, T. Elrad, S. Clarke, and M. Aks¸it, Eds. Addison-Wesley,

pp. 343–369.

Pawlak, R.,Duchien, L., Florin, G., Legond-Aubry, F., Seinturier, L., And Martelli, L. 2002.

A UML Notation for Aspect-Oriented Software Design.In Proceedings of the 1st Workshop

on Aspect-Oriented Modelling with UML (AOSD‟02).

Pinto, M., Fuentes, L., and Fernandez, L. 2011.Deriving Detailed Design Models from an

Aspect-Oriented ADL using MDD. Journal of Systems and Software, 85(3), pp. 525-545.

Rashid, A., Sawyer, P., Moreira, A., and Araujo, J., 2002. Early aspects: A model for

Aspect-Oriented Requirements Engineering. Proc. IEEE Joint Int. Conf. on Requirements

Engineering, Essen, Germany, 9–13 September 2002, pp. 199–202.

http://www.omg.org/mof/
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#UML

 205

Rashid, A., Moreira, A., and Araujo, J., 2003. Modularisation and Composition of Aspectual

Requirements.In Proceedings of the 2nd International Conference on Aspect-oriented

Software Development (AOSD). pp. 11-20. ACM.

Rausch, A., Rumpe, B., Hoogendoorn, L., 2003. Aspect-Oriented Framework Modelling, 4th

AOM Workshop at UML‟03, (San Francisco, CA, Oct. 2003)

Reddy, R., Ghosh, S., France, R. B., Straw, G., Bieman, J. M., Song, E., and Georg, G.

2006a. Directives for composing aspect-oriented design class models. In Transactions on

Aspect-Oriented Software Development I, Lecture Notes in Computer Science, vol. 3880.

Springer-Verlag, pp. 75–105.

Reddy, R., Solberg, A., France, R., and Ghosh, S. 2006. Composing sequence models using

tags. In Proceedings of the 9th International Workshop on Aspect-Oriented Modelling at

MoDELS‟06.

Reina, A. M., Torres, J., And Toro, M. 2004. Separating Concerns by Means of UML-

profiles and Metamodels in PIMs. In Proceedings of the 5th Aspect-Oriented Modelling

Workshop (UML‟04).

Shmuel, K. and Mezini, M,, 2010. Transactions on Aspect-Oriented Software Development

VII. Lecture Notes in Computer Science (6210). Springer Verlag, Berlin, pp. 321-374. 1st

Edition, ISBN 9783642160851.

Shonle, M., Tewari, N. and Rajan, H., 2005.On the criteria to be used in decomposing

systems into aspects. In Proceedings of ACM SIGSOFT Symposium on the Foundations of

Software Engineering joint with the European Software Engineering Conference (ESEC/FSE

2005). pp. 1053-1058. ACM Press.

Simon, H. A. , 1973. The structure of ill-structured problems, Artificial Intelligence,Vol. 4,

pp. 181–200.

Solberg, A., Simmonds, D., Reddy, R., Ghosh, S., And France, R. B. 2005. Using aspect

oriented techniques to support separation of concerns in model driven development. In

Proceedings of the 29th Anual International Computer Software and Applications

Conference (COMPSAC‟05). Volume 1, pp. 121-126.

Spring, 2012.Aspect Oriented Programming with Spring: Spring Framework: [online]

Available at <http://static.springsource.org/spring/docs/2.5.x/reference/aop.html> [Accessed

January 10, 2011].

Steimann F. 2005. Domain Models are Aspect Free", Proc. MODELS 2005, Springer, 171-

185.

Stein, D., Hanenberg, S. and Unland, R., 2003. Aspect-Oriented Modelling: Issues on

Representing Crosscutting Features. Presented at Workshop on Aspect- Oriented Modelling

(held with AOSD 2003), Boston, Massachusetts, USA.

Stein, D., Hanenberg, S. and Unland, R., 2002c. On Representing Join Points in the

UML.Presented at Workshop on Aspect-Oriented Modelling with UML (held with UML

2002), Dresden, Germany.

 206

Stein, D., Hanenberg, S., & Unland, R. 2002a. A UML-based aspect-oriented design

notation for AspectJ.In Proceedings of the 1st international conference on Aspect-oriented

software development. pp. 106-112. ACM.

Stein, D., Hanenberg, S., 2008. M4JPDD - Tool-Support for Modelling Join Point

Designation Diagrams. In: Demo at AOSD 2008. Brussels, Belgium.

Stein, D., Hanenberg, S., And Unland, R. 2002b. Designing aspect-oriented crosscutting in

UML.In Proceedings of the 1st Workshop on Aspect-Oriented Modelling with UML

(AOSD‟02).

Stein, D., Hanenberg, S., And Unland, R. 2006. Expressing different conceptual models of

join point selections in aspect-oriented design.In Proceedings of the 5th International

Conference on Aspect-Oriented Software Development (AOSD‟06). pp. 15-26.

Stricker, V., Hanenberg, S., And Stein, D. 2009. Designing design constraints in the UML

using join point designation diagrams. In Proceedings of the 47th International Conference

on Objects, Components, Models and Patterns (TOOLS‟09). pp. 57-76.

Sutton, S. M., Jr. and Rouvellou, I., 2005. Concern Modelling for Aspect-Oriented Software

Development. in AspectOriented Software Development, R. E. Filman, T. Elrad, S. Clarke,

and M. Aksit, eds. Boston, MA: Addison-Wesley, pp. 479-505.

Suvee´ , D., Vanderperren, W., Wagelaar, D., and Jonckers, V. 2005. There are no aspects.

Electron.NotesTheoret.Comput.Sci. 114.

Tarr, P., Ossher, H., Harrison, H. and Sutton Jr, S., 1999. N Degrees of Separation: Multi-

Dimensional Separation of Concerns. In 21th International Conference on Software

Engineering (ICSE'99), Ontario, Canada, IEEE Computer Society. pp. 107-119.

Tsang, S. L., Clarke, S., and Baniassad, E., 2004. An Evaluation of Aspect-Oriented

Programming for Java-based Real-time Systems Development. Intl. Symp. On OO

RealTime Distributed Computing.

Van Landuyt, D., Truyen, E., & Joosen, W. 2010.Discovery of stable abstractions for aspect-

oriented composition in the car crash management domain. Transactions on aspect-oriented

software development VII, pp. 375-422.

Vanderperren, W., Suvee, D. and Jonckers, V., 2003.Combining AOSD and CBSD in

PacoSuite through Invasive Composition Adapters and JAsCo. In Proceedings of Node 2003

international conference, Erfurt, Germany, pp. 36-50, ISBN 3-9808628-2-8.

Von Flach Garcia Chavez, C. 2004. A model-driven approach for aspect-oriented design.

Ph.D. dissertation, Pontif´ıcia Universidade Catolica do Rio de Janeiro.

Whittle J., Araujo J., and Kim D.-K., 2003. "Modelling and Validating Interaction Aspects in

UML," presented at AOSD Modelling With UML Workshop (located with UML 2003), San

Francisco, USA.

Willem, R. A. , 1990. Design and science, Design Studies, Vol. 11, No. 1, pp. 43–47,1990.

Wimmer, M., Schauerhuber, A. and Kappel, G., 2011.A Survey on UML-Based Aspect-

Oriented Design Modelling, ACM Computing Surveys, vol. 43, no. 4, article 28, pp. 28:1–

28:33.

 207

Win De, B., Vanhaute, B. and De Decker, B., 2002. How aspect-oriented programming can

help to build secure software. Informatica Vol.26(2), pp. 141-149.

Yu Y., Leite J. C. S. d. P., and Mylopoulos J., 2004. From Goals to Aspects: Discovering

Aspects from Requirements Goal Models. Presented at International Conference on

Requirements Engineering, Kyoto, Japan. pp. 102-111.

Zakaria, A. A., Hosny H.and Zeid, A., 2002. An UML Extension for Modelling Aspect-

Oriented Systems, Second International workshop on Aspect-Oriented Modelling with

UML at UML 2002, September 30-October 4, 2002, Dresden, Germany.

Zhang, J., Cottenier T., Berg, A. V. D., and Gray, J. 2007d. Aspect Composition in the

Motorola Aspect-Oriented Modelling Weaver. In Journal of Object Technology, vol. 6, no.

7, Special Issue: Aspect-Oriented Modelling, pp. 89-108.

Zhu, H. 2005. Software Design Methodology: From Principles to Architectural Styles.

Elsevier.

 208

Appendix A: AODL Metamodels

*

OccurrenceType

1

Advice

type:
OccurenceType

<<enumeration>>
OccurenceType

before
around
after
after throwing
after returning

0..*

0..*

Concern

Crosscutting:
Boolean

Feature

Aspect

Attribute

<<Java>>
Feature

Operation

0..*

Pointcut

designator:

PrimitivePointcutDesign
ator

0..* *

Intertype
Declaration

0..*

Join Point

<<Java>>

Class

Figure A- 1: Aspect Design Metamodel

 209

1

*

1

Collaboration

Join Point

<<UML>>
Notation

<<enumeration>>
CompositionOperator

And
OR
Not

1

1..*

<<java>>
Class

1

0..* 1

<<Association>>
Implements

Generalization:
Boolean

Pointcut

designator:
PrimitivePointcutDes
ignator

1

*

OccurrenceType

<<Association>>
Precedence

SharedJoinPoints:
Boolean

Aspect

Advice

type:
OccurenceType

<<enumeration>>
OccurenceType

before
around
after
after throwing
after returning

Figure A- 2: Pointcut Composition Metamodel

