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ABSTRACT

This study presents a novel application of the Transmission Line Matrix Method (TLM) for
the modelling of the dynamic behaviour of non-linear hybrid systems; and the application of a
novel Wavelet algorithm for the determination of natural frequencies and damping
coefficients for the CNC machine tools feed drives. The considered feed drives are non-linear
hybrid systems where the controller commands the movement of a worktable linked to a
motor through a ball-screw.

The application of the TLM technique to the modelling of hybrid systems implies the
dividing of the screw shaft into a number of identical elements in order to achieve the
synchronisation of events in the simulation, and to produce acceptable resolution according to
the maximum frequency of interest. This entails considerable computing effort when small
time steps are used in the simulation.

This research presents the extension of that work to the development of a new TLM
modelling approach denominated The Modified Transmission Line Method, which inherits the
modelling advantages of the TLM technique without compromising the model response by
the sample time.

Generally, the analysis of torsional and axial dynamic effects on a shaft implies the
development of torsional and axial models simulated independently. This study presents a
new approach for the modelling of the screw shaft including the axial and torsional dynamics
in the same model. In this regard, a procedure for the synchronisation of both axial and
torsional effects is presented.

TLM models for single and two-axis models have been built. Simulation results show the

accuracy of the models when comparing with measurements from the real systems.
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Acceleration [m/s?)

Dilatation or scale parameter (chapter 8)
Acceleration of the screw shaft point g [m/s?]
Maximum possible acceleration [m/s?}

Maximum acceleration [m/s?

Damping (Friction coefficient)

Translation parameter (chapter 8)

Bearing coefficient of friction [N-m-s/rad
Guideway friction coefficient [N-s/m]

Cocfficient of friction (motor bearings) [N-m-s/rad)
Diameter [m] (chapter 3)

Displacement [m]

Position of point a on the shaft towards the nut [mm]
actual position value ( rotary or linear encoder) [mm)
Displacement of the end b of the bearing [m]
Displacement of the end bk (bearing housing) [m]
Displacement of the end d of the nut [m]

Position error [mm)

Denominator filter coefficients vector

Position of the nut on the propagation list [sections)
Position of the nut (axial propagation list) [sections]
Actual table position (from linear encoder) [mm]
Relative displacement between bearing ends [m]
Minimum travel distance m)]

Relative displacement between the nut ends [m]
Reference position signal (before position filter)
pitch circle diameter of the bearing [mm]
Axis-drive position profile

Reference position (position demand) [mm]

Screw shaft diameter [m])

Reference position x-axis (position demand) [mm]
Reference position y-axis (position demand) [mm}
Voltage [V]

Jfmotor voltage [V]

amotor voltage [V]

Reference voltage a~component [V]

Reference voltage f-component [V]

Vector of a-f voltages [V]

Motor line voltages [V]

Motor phase voltages [V]

Voltage non-linear capacitor [V]

Direct motor voltage [V)

Reference voltage d-component (V]

Voltage non-linear inductor [V]

Motor inertia effort

Quadrature motor voltage [V]

Reference voltage g-component [V]

Time domain signal

Bearing load coefficient

Bearing lubrication method

Feed rate [mm/min]

Frequency of the PWM signal [Hz]
Gravitational constant [m/s?]

Number of sections

Number of sections of the axial model
Number of sections torsional model

Electric current [A]

S motor current [A]

Motor current e-<component [A)

Motor phase currents [A]

Direct motor current [A]

Actual current d-component [A]

Current error d-component [A]

Derivative component of irr[A]

Reference current d-component [A]

Holding current [A]

Numer of sections on the left (second zone axial
model)

Numer of sections second zone (torsional model)
Numer of sections second zone (axial model)
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lastSec
lastSecA
I:m'al
la
len
len0
Iend
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listF
listFa
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listMa

L

XXVii

Integral component of in[A]

Encoder timer count or incremental count
Proportional component of i A]
Quadrature motor current [A]

Actual current g-component [A]

Current error g-component [A]

Reference current g-component [A]
Reference current (current demand) [A]
Stator current vector [A]

Jerk [m/s’]

Maximum jerk [m/s’]

Average slope of the hysteresis loop (chapter 1)
Mode number (chapter 8)

step number

Acceleration feed forward gain [A-s¥rad]
Ball screw force to torque constant

Integral gain current controller [V/A=s]
Proportional gain current controller [V/A]
Torsional stiffness of the coupling [N-m/rad]
Velocity controller derivative gain [A-s¥/rad]
Electric constant of the motor [V-s/rad]
Bearing mounting stiffness

Feed forward gain

Velocity controller integral gain [A/rad]

Nut rigidity [N/m]

Velocity controller proportional gain [A-s/rad]
Bearing stiffness

Bearing housing stiffness

Resulting rigidity of the preloaded nut with mounting
bracket [N/m]

Torque constant of the motor [N-m/A]

Gain of the position controller [m/min-mm]
Feed forward velocity gain [rad/mm]

Length [m]

Last nut position [sections)

Last nut position (axial model) [sections]
Length of each section in the axial model [m]
Lead (pitch) of the ballscrew [m]

Number of filter coefficients

Filter order

Length end porsion of the screw shaft [m]

Positions of the front bearing [m)]

Length front porsion of the screw shaft [m]

First zone propagation list (torsional model)

First zone propagation list (axial model)

Second zone propagation list (torsional model)
Second zone propagation list (axial model)
Positions of the nut [m]

Absolute reference point for the nut movement [m]
Positions of the rear bearing [m]

Ball screw stroke length [m]

Screw shaft length [m]

Length of each section in the torsional model [m]
FFT number ofsamples (chapter 8)

Mass [kg]

Mass end porsion of the screw shaft [ke]

Mass acting on the front bearing [kg]

Mass front porsion of the screw shaft [ke]

Mass of the linear encoder [kg]

Mass acting on the rear bearing [ke]

Section where the nut is on listM

Axial sample times per torsional sample time
Section where the nut is on listMaq

Numer of sections first zone (torsional model)
Numer of sections first zone (axial model)
Numer of sections on the left (second zone torsional
model)

Incident pulse (stub)

Incident pulse associated to Z,;

Incident pulse associated to Z.

Incident pulse associated to Z,,
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Vi
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Reduction ratio of the ballscrew

Position of pulse B',.; on listM

Position of pulse B'., on listMa

Number of axial sections per torsional section
Numerator fileter coefficients vector

Magnetic pole pairs

Sector array

Position of pulse 4'; on a list

Position of pulse 4’ on a list (axial model)
Position of pulse

Position of pulse B’ on a list (axial model)

Unit delay [s]

Circle radius [mm]

Laplace transform operator

Propagation time of axial waves [s]

Current control loop cycle time [s]

Time [s]

PWM slot duration [s]

Simulation time step

Propagation time for torsional waves [s]
Velocity control loop cycle time [s]

PWM possible duration times [s)

Propagation velocity [m/s]

Velocity of propagation of axial waves [m/s]
Velocity of propagation of torsional waves [mv/s]
Velocity [my/s]

Velocity of the screw shaft point a [m/s]

Actual velocity [rad/s]

Displacement of the end b of the bearing [m/s]
Displacement end bh of the bearing housing [m/s]
Relative velocity between bearing ends [mys]
Velocity of the end d of the nut [m/s]

Velocity error [rad/s)

Front bearing velocity [m/s]

Velocity feed forward [rad/s)

Rear bearing velocity [m/s)

Load velocity [m/s]

Maximum possible velocity [m/s]

Nut velocity (relative velocity between ends ) [m/s]
Velocity of the nut contact point [my/s]
Reference velocity value (velocity demand) [rad/s]
Distance [m]

x-coordinate [mm] (chapter 6)

Maximum displacement hysteresis loop (chapter 1)
y-coordinate [mm] (chapter 6)

Z- transform operator

Filter delay output

First significant amplitude (chapter 1)
Incident pulse (link)

Amplitude after r cycles (chapter 1)
Incident voltages associated to Z,
Incident voltages associated to Z,
Reflected pulse (link)

Screw shaft cross-sectional area [m?]
Amplitude (chapter 8)

Nut ball circle diameter [m)]
Capacitance [Farad)

Capacitance per unit length [Farad/m]
Guideway dynamic load rating [N]
Dynamic load rating of the nut [N]
Backlash [mm]

Velocity limit for the zero slip force [m/s)]
Momentum limit for the zero velocity interval [N-s]
X-axis position [mm]

y-axis position [mm]

z-axis position [mm]

Magnitude of FRF (chapter 1)
Resistance [ohm]

Resistance per unit length [ohms/m]
Shape factor (chapter 8)

PWM resolution

Torque [N-m]

Torque due to external load [N-m]
Bearing frictional torque [N-m]
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G
L
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Je
Jend
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Incident pulse associated to Z; (d-component)
Incident pulse associated to Z, (d-component)
Incident pulse for d;calculation

Incident pulse associated with Z,,,

Incident pulse associated with Zy,

Incident pulse associated to Z

Incident pulse associated to Z

Incident pulse associated to Z,

Incident pulse associated with Z,

Incident pulse associated to Z,,,,

Incident pulse associated to Z,,

Incident pulse associated to Z, (g-component)
Incident pulse associated to Z, (g-component)
Incident pulse associated to Z,,

Incident pulse associated to Z,

Incident pulse for 8, calculation

Incident pulse associated to Z,y

Reflected pulse (stub)

Screw shaft Young's modulus

Actual error movement of the x-axis [um]
Actual error movement of the y-axis [um]
Actual error movement of the z-axis [um]
Force [N]

Fourier transform of the signal fr)

Friction load-component [N]

Friction velocity-component [N]

Axial load {N]

Axial load [N]

Preloading force applied to the nut [N]
Cutting force [N}

Nut axial force [N]

Equivalent force acting [N]

Frictional force [N]

Guideway frictional force [N]

Guideway frictional force under no-load [N]
Magnitude of the static friction [N]

Force acting on the load [N]

Lateral load [N]

Required force to move the linear encoder [N]
Coulomb friction [N]

Nut pre-loading force [N]

Radial load [N]

Resulting bearing load [N}

Radial load [N]

Slip force [N]

Stick force [N]

Shear modulus

Screw shaft shear modulus

Mass polar moment of inertia per unit length
Polar moment of inertia [Kg-m?!

Mass moment of inertia of a rotor hub
Inertia acting on the rear bearing

Motor inertia [kg/m?)

Rotor inertia of the rotary encoder

Screw shaft polar moment of inertia
Inductance [Henry]

Inductance per unit length [Henry/m] (chapter 3)
Inductance phase d [Henry)

Inductance phase g [Henry]

abc to o+ matrix conversion

Guideway imposed load [kgf]

Peak value of response (chapter 1)

Matrix for the calculation of possible duration times
Encoder line count

Resolution parameter (chapter 8)
Momemtum [N-s}

Percentage overshoot (chapter 1)

Electric charge [Coulomb)]

z-axis rotation about y-axis {Mm/mm)

x-axis rotation about z-axis [um/mm]

y-axis rotation about z-axis [um/mm])

z-axis rotation about z-axis [Um/mm}
Propagation function

Phase [rad]

Constant

Induced flux {Webber]
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Input torque first section (torsional model) [N-m}
Counter balance torque [N-m]

Generated electromagnetic torque [N-m)
Ty velocity-dependent component [N-m]
T} load-dependent component {N-m]

Front bearing frictional torque [N-m]
Period [s]

Load torque [N-m]

Motor load torque [N-m]

Nut pre-loading torque [N-m]

Position control loop cycle time [s]

Period of the PWM signal [s]

Nut reference torque [N-m]

Rear bearing frictional torque {N-m)]

DC link voltage [V]

Wavelet coefficients

Radial load factor

Radial factor

Axial load factor

Conductance per unit length [1/ohms-m]
Lateral factor

Characteristic impedance axial model
Characteristic impedance associated to ko
Characteristic impedance associated to Je
Characteristic impedance associated to
Characteristic impedance associated to kes
Characteristic impedance associated to ky
Characteristic impedance associated with J,,4
Characteristic impedance associated with kon
Characteristic impedance associated to k;
Characteristic impedance associated to L
Characteristic impedance associated to m
Characteristic impedance associated to J,
Characteristic impedance associated with my,
Characteristic impedance associated to m,,
Characteristic impedance associated to £,
Characteristic impedance

Characteristic impedance associated to &,
Characteristic impedance associated to &,
Characteristic impedance torsional model
Characteristic impedance associated to k,y

ATT gain

Screw shaft lead angle [rad)

Distributed parameter element constants
Stick force factor

Ball screw efficiency

Incremental position for a rotary encoder
Encoder zero position

X-axis rotation about x-axis [m/mm]
y-axis rotation about x-axis [m/mm]
z-axis rotation about x-axis [m/mm]
x-axis rotation about y-axis [um/mm]
y-axis rotation about y-axis [um/mm)
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Induced flux [Webber]

Friction coefficient [N-s/m]

Coefficient of friction of the rotary encoder bearings
Angular displacement [rad]

Angle at the contact point with the nut [rad]
Relative displacement of coupling ends [rad]
Electrical position [rad]

Coupling displacement at the screw shaft side [rad]
Actual [rad]

Mechanical position (from rotary encoder) [rad]
Squareness in the XY plane [m/mm)])
Squareness in the XZ plane [um/mm)]
Squareness in the YZ plane [Mm/mm]

Density [kg/m’]

Screw shaft density [kg/m®

External torque acting on the shaft [N-m/m]
Propagation time [s]

operational viscosity of lubricant

Coupling velocity at the screw shaft side [rad/s]
Mechanical velocity (motor angular velocity) [rad/s]
Undamped natural frequency (chapter 8)
Central wavelet frequency (chapter 8)

Angular frequency (chapter 8)

Angular velocity [rad)

Angular velocity of the screw shaft point a [rad/s]
Coupling angular velocity [rad/s]

Damped natural frequency (chapter 8)
Electrical velocity [rad/s]

Front bearing angular velocity [rad/s]

Rear bearing angular velocity [rad/s]

Angular velocity of the nut contact point [rad/s]
Resonant frequency (chapter 1)

Characteristic impedance

Mother wavelet fucntion

Son wavelets

Fourier transformof the mother wavelet
Damping factor (chapter 1)

Impedance transfer function

Admittance transfer function

Transmission line propagation time [s]
Transmission line length [m]

Area of displacement-force hysteresis loop (chapter 1)
Distance the x-axis is going to move [mm)]
Distance the y-axis is going to move [mm)
Bandwidth (chapter 1)

Reflection coefficient

x-axis linear positioning error {um]

y-axis straightness in the x-axis direction [um]
z-axis straightness in the x-axis direction {um]
x-axis straightness in the y-axis direction [um]
y-axis linear positioning error [pum)]

z-axis straightness in the y-axis direction [um]
Xx-axis straightness in the z-axis direction [um)]
y-axis straightness in the z-axis direction [pm]
z-axis linear positioning error [um]

Flux linkage [Webber]



1. INTRODUCTION

Nowadays the necessity of developing innovative and cost effective methods has become an
imperative matter for many industries on the path to success in the global economy. This
trend is forcing manufacturers to focus on higher levels of productivity and greater accuracy
and reliability of products. Computer Numerical Controlled (CNC) machine tools are an
integral part of the manufacturing process and the major contributors to workpiece accuracy.
Consequently, an accuracy improvement of a machine is directly related to the quality of the
parts produced. For that reason it is not surprising the attention that previous and present
research efforts on various fields (system dynamics identification, control engineering,
advanced motion controls, etc.) have dedicated to the area of machines for precision
manufacturing.

A good understanding of the dynamic interaction of all machine components and their
respective geometric and non-linear distortions is needed to improve the machine tool
performance and motion control accuracy. This requires the development of detailed
mathematical models of feed drives which must be optimally tuned to the measured static and
dynamic behaviour of the machine tool. The information obtained from simulation results can
be used to achieve a variety of benefits: to increase high-speed performance and robustness,
reduce costs, improve design strategies, identify machine errors, carly detection of wear, etc.
Various types of models for feed drives (lumped parameter models, modular approach, hybrid
models) have been developed by industrial and academic researchers, but the simulated
responses did not reflect entirely the overall dynamic behaviour of the machine tools;
generally only analogue drives were modelled and the stiffness calculations were made for
only one position of the worktable. The model-system correspondence has to be improved in
order to reflect the pointwise and the distributed features of the CNC machine tool feed
drives.

Machine tools as non-linear hybrid systems can be characterised as time-dependent or
transient systems and numerical methods such as Finite Element (FEM), Finite Difference
(FDM), and Transmission Line Matrix (TLM) could be used to find a solution.

Generally, the dynamics involved in a CNC machine tool are governed by sets of partial
differential equations (PDEs) where the independent variables are time and space coordinates.
The problem is characterised in these circumstances as time-dependent and the transmission
line matrix method can be applied. This technique introduced by Johns and Beurle [1] offered

accurate and quick solutions for applications in various scientific fields: electromagnetics,
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wave propagation, hydraulics, acoustics, mechanics (not much emphasis on digital
controllers), etc. The analogy between electrical circuits and physical systems allows the
elements of physical systems to be represented by capacitors, inductors and resistances

considering the wave propagation through a variety of mediums. Other important advantages
of TLM method are:

¢ Discrete nature of the method is ideal for direct application via a digital computer
algorithm — the models and algorithms condense and compute together all the variables
without the need of mathematical operations like derivation and factorisation;

* Minimum requirement of data storage and the possibility of fast solutions by the reduction

of initial errors;

¢ Relatively simple procedures - enabling both continuous and discrete models to be

accommodated;

* High speed of processing — making this modelling technique very suitable for on-line

condition-monitoring methods.

* Time-domain transient analysis is performed when broad band frequency responses are

requested;

¢ Ability to handle complex structures with arbitrary geometries where no analytical

solutions have been found yet.

The TLM method is included in the category of unified methods [2], which are based on
dynamic analogies between equations of motion for systems of different disciplines:
mechanical, electrical, fluid and thermal. The system's dynamic behaviour is governed by the
energy exchange patterns between the system components. The series of system dynamic
elements can be treated as a series of separated parameter elements. This formalised technique
provides a basis for analysing the dynamic behaviour of each component and gives an
intuitive interpretation of energy flow and storage into the system.

The notions of system state, energy and power (in the form of effort and flow variables)
do not depend on the physical domain. They form the basis for defining a set of mathematical
equations that govern any physical system behaviour [3]. Dynamics involved in components
that are spatially distributed (shafts, beams, pipelines, etc.) are generally governed by sets of
partial differential equations. The components that are concentrated and relatively pointwise
(motors, couplings, valves, etc.) are appropriately modelled by algebraic or ordinary

differential equations. The models are classified in three categories depending on the nature of

components:



¢ Lumped parameter models — contain ordinary differential equations, where time is the
only independent variable;

* Distributed parameter models - consist of partial differential equations, where the
independent variables are time and the space co-ordinates;

* Hybrid models - include both types of differential equations.

A novel application of TLM method for modelling the dynamic behaviour of CNC machine
tool feed drives for various running conditions is presented in this report. The feed drives are
non-linear hybrid systems where a controller commands the movement of a worktable linked
to a motor through a ball-screw. The interaction between the position loop controller,
electrical drive and the worktable mechanism is described by differential equations and
corresponding TLM models are derived. All digital feed drives components (starting from the
set value generation in the motion controller to the positioning of the workpiece) are
considered in the modelling process.

The non-linearities present in machine tools produce distortion of the feed drives response
by introducing signal components at frequencies higher than the basic forcing frequency. A
comprehensive analysis of machine tool non-linearities is essential for the development of
effective TLM models. The dynamic TLM model of the ball-screw with moving nut also
includes the distributed inertia of the screw, the effect of moving mass, the axial and torsional
forces applied on the nut during its linear movement and the restraints applied by the
bearings.

The development for the first time of a TLM model for a digital controller represents an
important contribution to knowledge of modelled and simulated motion control systems for
CNC machine tools.

The single axis simulation results for various stimuli conditions (step, and jerk-limited
inputs) compare well against measurements for the same stimuli conditions on the machine.
In this way, the single-axis model for CNC machine tool feed drive is validated on the basis
of practical results.

Modern high-speed machining processes require higher machine accuracy at higher
operating speeds. The machine tool producers can select any balance between speed and
accuracy by taking into account that accuracy is an inverse factor of axes speed. This balance
is used by advanced CNC machine tools to optimise the cutting path because the workpiece
precision is mainly influenced by machine accuracy.

The machine tool accuracy is influenced by the errors due to geometric, load, thermal and

dynamic effects. The methods for error measurement and correction are studied and a two-
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axis TLM model of a CNC machine tool is built to include geometric (rigid body) error
components measured by laser interferometer. A circular interpolation algorithm is
implemented in MATLAB and the simulated circular position error traces compare well with
the machine error traces measured by a ball bar. The measurements are performed under the
conditions established by ISO standards [4-6].

The TLM models containing the geometric and load errors reflect more accurately the
dynamic behaviour of the real CNC machine tools. Therefore, a quick and easy
characterisation of machine tool elements for a wide range of machine tool feed drives is
enabled. However further research is considered necessary in order to reflect the complex
interactions within the versatile hybrid multi-body systems which are CNC machine tool drive
systems.

The two-axis model for CNC machine tool feed drives contributes to a full investigation
into the dynamic state where valid structural resonances other than geometric errors (such as
dynamic errors, load errors and thermally induced errors) should be introduced together with
measured data. The comprehensive analysis of including the two-axis model of feed drives
into the cutting process model ought to be performed if the structural dynamic effects are to
be more deeply understood.

The development of a complete parametric model that integrates all the components of
complex systems (like CNC machine tools) is a combination of theoretical analysis and
experimental testing. This requires the identification of parameters using a range of
techniques including experimental set-up to isolate individual parameters and the application
of numerical techniques to analyse measured behaviour.

Modem time-frequency methods are intended to deal with a variety of non-stationary
signals generated by diverse causes (vibration of rotating machines, transient behaviour,
discontinuities, etc.).

Wavelets offer efficient and robust representation of such signals based on time-frequency
localisation. At the basis of wavelet representation is the concept of approximating an
arbitrary non-linear function in terms of dilates and translates of a single function (usually
known as a mother wavelet function).

The wavelet basis functions have the special property of being localised both in space and
Jrequency. The crucial problem is to select among many possible wavelet representations

available, the most appropriate one to suit the identification of the studied non-linear systems,

which are CNC machine tool feed, drives.



An attempt of using the Continuous Wavelet Transform (CWT) for the identification of
resonant states and damping factors of machine elements is included. The technique showed
to be effective for the identification of some resonant states but it could not achieve accurate

results on the identification of damping factors.

The original contribution to knowledge consists of:

* The compilation of TLM modelling principles (derived in applications to the modelling of
systems of different disciplines) and their extension to the development of mathematical
models that can reflect the pointwise and the distributed features’of CNC machine tool
feed drives (including the moving nut effect). It represents the basis for the development
of a universal mathematical model for modern CNC machine tools with digital drives.

e The development of a new TLM model for lumped dynamic behaviour denominated the
modified TLM stub. This new model improves the convergence and computational

processing speed of the original stub algorithm.
1.1 Aim and Objectives

The aim of this investigation is to develop TLM models for machine tool feed drives

including for geometric, load and non-linear effects. The systems under investigation are:

* Bridgeport single-axis CNC machine tool;

¢ Cincinnati Arrow 500 CNC machine tool.

The following objectives were set in order to achieve this aim:

* To develop TLM models for Cartesian CNC machine tool feed drives including for

geometric, load and non-linear effects;
® To identify the control loop coefficients and non-linear parameters of the TLM models;

* To implement the TLM models in the MATLAB environment and simulate the feed drive

behaviour;

* To validate TLM models by comparing the simulated results with measured data when the

same stimuli are applied;
1.2 Thesis Outline
The work presented in this thesis is structured into nine chapters as follows:

* Chapter 2 presents a critical appraisal of literature regarding methods for the modelling
and simulation of CNC machine tool feed drives, transmission line modelling techniques,

and identification methods for modal parameters of CNC machine tools.
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® Chapter 3 depicts an overview of TLM techniques including the description of the various
specific elements. Also the modelling of non-linear elements using TLM method is
analysed. The chapter contains a comparison between TLM and the analogue transform
technique, the development of the modified TLM Stub and a project plan is derived from
the conclusions.

* Chapter 4 describes the development of TLM models for the elements of CNC machine
tool feed drives. A special emphasis is put on building an accurate TLM model for the
open architecture controller comprised into the di gitally controlled drive. Dynamic models
for mechanical transmission components (bearings, guide ways, slides, ball-screw with
moving nut and pre-load effects) are also created.

* Chapter 5 illustrates how single-axis and two-axis TLM models are constructed from the
models for various elements described in Chapter 4. The single-axis TLM model for the
Bridgeport machine tool is used as the basis for the modelling approach. Then single- axis
and two-axis TLM models (including the effect of geometric errors and moving mass) of
the Cincinnati Arrow 500 vertical machining centre are created. The algorithms for linear
and circular interpolation are included in the model for digital controller.

e Chapter 6 describes the measurement techniques used for determining the geometric and
load errors within CNC machine tool feed drives. In addition, the response of the closed-
loop position control system to step and jerk-limited stimuli is measured.

e Chapter 7 presents the TLM models implementation into MATLAB/SIMULINK.
Simulation results for step and jerk-limited inputs (single axis models) and sine/cosine
inputs (two-axis model) are compared with experimental ones.

o Chapter 8 contains a review of methods for determining resonant frequencies and
damping factors from data measured on machine tools. The emphasis is on wavelet
transform techniques.

* Chapter 9 summarises the results and conclusions, and recommends future work which
should be carried out in order to amplify the benefits offered by TLM models of digital

feed drives and wavelet techniques applied to modal parameter identification,

The next chapter contains a critical appraisal on scientific fields (TLM techniques, modelling,
simulation and modal parameter identification of feed drives) relevant to the subject of this
thesis, underlining strengths and weaknesses of previous work, the latest state-of-the-art and

suggesting possible ways to progress.



2. LITERATURE REVIEW

This chapter presents an informed evaluation of publications relevant to the studied topics.
The information is organised according to the research objectives presented in Chapter 1
underlining what is known, unbiased and valid and what remains to be explored in the future.
The main relevant topics are methods for modelling and simulation of CNC machl/ne tool
feed drives and transmission line modelling techniques. A summary of the t\essentlal

theoretical frameworks and practical perspectives makes the link between published papers

and this investigation.
2.1 Modelling and Simulation of Feed Drives from CNC Machine Tools

The lumped-parameter models with load inertia reflected to the motor [7-9] have been
generally used as traditional methods for modelling and simulation of CNC machine tool feed
drives. Ford [7] showed that a single-axis feed drive could be considered to be equivalent with
a second order element and the resulting Bode diagrams did not contain any resonant
frequencies that occurred in the machine response. The interaction and behaviour of
individual elements could not be examined and the models had to be altered when any system
component changed. Also the effect of load components on the system response was removed
because of the "lumping" technique.

Pislaru et al [10] applied a modular approach to the modelling of CNC machine tool feed
drives in order to overcome the above-mentioned shortcomings. The feed drive elements were
defined as modules by using the approach suggested by Fu et al [11] when building a
Newton-Euler model of a robot. The kinematic motion was transmitted forward through the
model and resistive force flew back through the model. Based on this principle, the single axis
feed drive model contained the reaction forces (due to friction and components inertia), which
were applied as inputs to precedent modules. The analogue feed drive had a DC motor whose
torque had to overcome the load element inertia, the friction forces within bearings, between
worktable / saddle and guide ways and between nut and screw.

Pislaru also developed two-axis models [12, 13] and three-axis models [14] using the
same modular approach. The machine geometric errors (measured by laser interferometer)
were integrated into the two-axis model and a mathematical procedure to calculate the ball bar
predicted values was established. The modular approach offered greater flexibility in model
construction (various components could be included /removed without altering the whole
system model) and the requirements for the control part (controller, pre-amplifier, power

amplifier and motor) could be evaluated due to reaction force computation. The single axis
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simulation results for trapezoidal rate demand [15] compared well with the measured data.
Simulated Bode diagrams were produced using Linear Time Invariant (LTI) viewer from
MATLAB and models for timing belt and ball-screw considering non-linear behaviour [16]
were built. The authors supposed that it was possible to simulate the effect of resonant states
of feed drive components without including the measured values of damping factors into the
models. The simulation results were similar to measured Bode diagrams and ball bar plots,
but the simulated dynamic performance had to be improved because the effect of system
resonant states was not present in the simulation results,

Holroyd et al [17] investigated the dynamic characteristics of a CNC machine tool feed
drive and modelled its elements as point inertias connected by springs and dampers. An
eigenvalue approach was used for determining undamped natural frequencies of the drive. It
was evident that more research should be performed regarding modelling non-linearities such
as belt tension, friction between belt and pulley, etc.

Pislaru [18] performed a comparison between lumped parameter models and modular
approach and developed a hybrid model of CNC machine tool feed drive with distributed
load, explicit damping coefficients, backlash and friction. The model was a combination of
distributed and lumped elements described by partial differential equations and ordinary
differential equations as suggested by Bartlett and Whalley [19]. The ball-screw was modelled
with distributed parameters (seven SIMULINK modules were produced), while other
components (bearings, belt and pulleys, motor, etc.) had lumped parameter models.

The non-linearities and modal parameters (resonant frequencies, damping factors) were
measured by specialised equipment (laser interferometer, accelerometers, signal analyser).
Novel measurement practices for decoding signals generated by encoders (rotary encoders
situated on DC motor, ball-screw end and linear encoders) were defined. The influence of
time constants and gains of closed loops for velocity and position control was considered.
Also a novel application of continuous wavelet transform for modal parameter identification
of machine tool feed drives was elaborated.

The non-linearities included into the hybrid model described in [20] were defined by
ordinary differential equation (friction) and partial differential equation (backlash). Although
the hybrid model had several disadvantages (worktable positioned at half of travel length and
swept sine / random white noise was applied to the pre-amplifier), the simulation results when
the nut oscillated at the middle of the screw shaft were similar to the machine responses. The
values of simulated resonant states however were still slightly different than the experimental

ones therefore more research had to be done in order to optimise the hybrid model.



Holroyd et al [21] developed a generalised eigenvalue method to estimate the undamped and
viscous damped natural frequencies, damping coefficients and mode shapes of an analogue
feed drive. A study of the influence of stiffness and damping coefficients within the hybrid
model on the resonant states was performed. The results could be useful in optimising the
hybrid model parameters so the simulation results are in accordance with the real data.

The dynamic behaviour of a ball-screw with moving nut was modelled by Holroyd et al
[22] in C language using a finite element approach. The ball-screw was divided into a large
number of elements and contact and boundary conditions for each element and adjacent ones
were studied. An important conclusion was that the natural frequencies of the ball-screw
system vary in time due to two causes: The lateral restraint produced by the nut when the
screw transversally vibrated and the relation between screw torsional and axial motion and
worktable/saddle tilting.

The models previously developed were implemented in SIMULINK (hybrid models) and
C language (dynamic model of a ball-screw). Simulation times were of the order of hours due
to the great number of model elements, therefore further research should be performed in

order to reduce the simulation times and to improve the accuracy of simulated results.
2.2 Transmission Line Modelling Techniques

Transmission line modelling techniques are based on the extension of the modelling theory of
two-wire transmission lines to the modelling of dynamic systems. Sadiku and Agba [23] used
the systems perspective (considered as series of components interconnected for energy
transfer) in modelling processes. Then the mathematical equivalence between component
equations and the equations containing voltages and currents for a transmission line was
made. Applications of this concept go back to Auslander [24] who presented the bilateral
delay principle for fluid systems modelling.

Two different techniques developed mathematical models describing the dynamics of
system components: Transmission Line Matrix Method and Analogue T ransform Technique.

Johns and Beurle [1] presented the transmission line matrix method as a numerical method
for solving efficiently lumped-parameter networks and field problems. The technique's
flexibility for modelling two and three-dimensional field problems was also addressed.
Numerous improvements and developments of this method have been reported for
applications to the modelling and simulation of electromagnetic propagation and
electromagnetic compatibility [25] and other subjects.

Boucher and Kitsios [26] applied TLM principles to fluid systems modelling



demonstrating the feasibility of representing all dynamic elements in a fluid circuit (excluding
resistance) as distributed pure time delay elements. Fluid transmission lines were divided into
a number of identical time delay lengths and equivalent open-end and closed-end TLM stubs
modelled inertance and capacitance. Resistance was lumped at the junctions where all wave
transformation by scattering or attenuation was concentrated. Computations on simple circuits
showed good agreement with lumped parameter modelling.

The same authors applied the TLM method to the modelling of a hydraulic position
- control system comprising a hydraulic motor driving a flywheel attached to the motor shaft
and coupled to a lead screw mechanism [27]. The motor shaft and screw shaft were treated as
distributed (transmission line) elements, conveying torsional stress waves. The hydraulic
motor, pump and flywheel were considered to be lumped elements so TLM stub could be
used to model them. Comparison between theoretical and experimental results showed good
agreement, although friction in the moving parts and inertia of the feedback component were
neglected. Comparisons between the TLM model and a traditional lumped one showed the
superiority of the distributed approach for the prediction of the transient oscillation
frequencies. ‘

Beck et al [28] employed the TLM method for drill strings modelling. The study targeted
an arbitrary fluid network including pipes with different lengths and acoustic delay times. The
events synchronisation was achieved by setting a common length (delay time) for pipe
segmentation. This common length was made small enough such that the shortest pipe could
be assumed to become an integer multiple of the segment length. The segment length was
chosen in order to produce acceptable resolution according to the maximum frequency of
simulation. Simulation analysis and test results validated the computational efficiency and the
TLM ability for modelling a wide range of topologies.

Partidge et al [29] treated the shaft torsion effect as a direct analogy to electrical networks.
A shaft and turntable with linear and non-linear friction was used as an example. TLM stubs
represented lumped elements (turntable inertia), and distributed elements (shaft) were
modelled by TLM links. In contrast with Boucher et al [26], the shaft was not divided into
equal lengths because of the example simplicity. The study proved the TLM flexibility or
usefulness for the modelling of mechanical problems with non-linear friction dynamics.

A series of articles by Hui and Christopoulos [30, 31, 35-36] present the TLM application
to the numerical simulation of electronic power circuits and linear and non-linear circuits.

Diverse characteristics and developments of TLM are included only for lumped parameter

elements.
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A new TLM method to model mutual inductance was developed in [30]. This is an important
added feature providing a more realistic approach to electrical element modelling. The TLM
method showed an efficient treatment of non-linearities (such as switching elements)
eliminating the need for time-consuming inversion of system matrices.

The use of a TLM-based discrete transform as a solution for electrical networks and
general systems of integral-differential equations was discussed in [31]. The implementation
procedures were described and a discrete conversion table was constructed. The proposed
method was used to simulate an electrical circuit and simulation results were compared using
Runge-Kutta fourth order and Gear third order numerical methods. The simulated results
generated by the TLM method were close to those using the Gear third-order method.
However the TLM method exhibited some advantages: minimum requirement of data storage,
the possibility of a fast solution by the reduction of initial errors, the interpretation of calculus
equations as an electrical circuit and the handling of both integration and differentiation in the
same equation. Further extensions of the discrete transform include the TLM model derived
by Stubbs et al [32] including voltage dependent sources and the TLM models built by
Murtonen and Lowery [33] for multi-port devices, such as transistors.

The TLM-based discrete transform was applied by Hui and Christopoulos [34] to the
modelling of an industrial inverter driving a 4 kW DC motor. Models for the DC motor and
the three-phase thyristor converter (inverter) were developed. The inductance of the motor
was modelled by a short-circuit transmission line (TLM stub), and each of the inverter’s
switching devices was represented by a small capacitive TLM stub with a switch at one end to
control the pulse direction. The simulated results accurately predicted the system behaviour
because they were validated by comparison with the measured data.

The same authors [35] used TLM-based discrete transform for systems with varying
coefficients. Each non-linear differential or integral component was represented by a
transmission line segment (unity value component). Non-linearities were treated as parts of a
forcing function affecting the unity value component, thus avoiding complications with
encrgy conservation following changes of component value. There was no restriction on the
nature of the non-linearities as long as the non-linear functions were known. Models of non-
linear inductance with and without hysteresis were presented. The proposed transform was
tested for numerical and practical problems including non-linearities of real systems.

Hui and Christopoulos [36] applied the discrete transform to develop a TLM model for a
high frequency switch mode power supply circuit. The circuit consisted of two stages with

widely separated frequencies (a SOHz rectifier and a 25kHz converter) 5o a constant time step
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of 0.01ps was used in order to include the dynamics of the high frequency stage.

Comparison between simulation results and experimental ones reported by Davis and Ray

[37] showed the TLM method reliability and potential for the simulation of various power

electronic circuits containing non-linearities. Hui & Zhu [38] applied the non-linear discrete

transform to model and simulate the hysteresis effects of ferro and ferrite magnetic materials.

The transmission line equations introduce physically motivated time delays between

components due to the wave propagation speed in a transmission line as shown by Krus [39].

The component models could be simulated independent of each other offering the following

advantages:

Implement the system model for simulation using parallel processors- Fung et al [40]

decoupled a multistage electronic power circuit into various sub circuits. Each sub circuit
was modelled by a small system matrix and simulated in one program module. The TLM
link algorithm connected all program modules together ensuring that the parallel
simulation was possible. The same authors [41] showed a 70 % reduction of computing
time in comparison with the conventional non-decoupled sequential approach. Issues
associated with parallel processing such as granularity, synchronisation and load balancing

were also discussed.

Modelling systems with widely spread time constants using a variable time step - Hui et al

[42] confirmed that transient effects could be modelled with small time steps and steady-
state effects with large time steps. The applicability of the method was verified by
comparing simulation results against data from known analytical solutions of coupled
electrical circuits. The overall simulation time was substantially reduced while the
transient and steady states could be simultaneously observed. Tenorio de Carvalho et al
[43] extended this method to perform bi-dimensional electromagnetic analysis of
microelectronic circuits. Advantages of this approach over conventional TLM models

were confirmed.

Modelling systems comprising components with different operational frequencies - The

traditional time domain simulation approach usually modelled an entire system as a single
network and sequentially executed the model algorithms. The smallest time constant
and/or the highest switching frequency component limited the time step used in
simulation. This restriction was relaxed by Fung and Hui [44] who developed a
conversion technique. The system was divided into subsystems that could use
simultaneously different time steps suitable for their operational frequencies. The

subsystems were linked at regular intervals for energy transfer by an improved TLM link
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algorithm [45] and a derived stub/link TLM conversion algorithm. The combination of the
two new techniques reduced two thirds of the computing time in a simulation of a three-

stage switched-mode power supply system.

Deml and Turkes [46] combined the improved TLM approach with the advantages of two
previous methods (the state space averaging method [47] and the envelope following method
[48]) obtaining a new link model for fast simulation of transients in power electronic circuits.
A circuit was partitioned in sub-circuits with typical periods. Then every sub-circuit was
simulated separately (like the improved TLM link algorithm). Finally, the processes were
connected by the new link model. Analysis of simulation results showed significant
simulation speed-up with simulation errors below 4%.

Johansson et al [49] proved the numeric robustness of TLM Iﬁethod by building a
distributed simulation environment in MODELICA (objected-oriented modelling language).
Large and complex multi-domain models could be developed in this way.

The TLM principles have been also extended to systems modelling in the frequency
domain. Jin and Vahldieck [50] combined the flexibility of the conventional TLM method
with the computational efficiency of frequency-domain methods. A succession of impulses
with sinusoidal envelope excited a TLM mesh so the magnitude of the output waveform
(envelope) contained the transfer characteristic of the simulated system at the excitation
frequency. A steady-state analysis in the time domain was performed in this way.

Johns and Christopoulos [51] formulated a set of complex frequency dependent
simultaneous equations involving the incident voltage at each node and the source of
excitation nodes. The set of equations were solved at each frequency for the incident voltages
using the Jacobi method or the conjugate gradient method.

The two approaches have different criteria to satisfy but both methods repeat the
simulation at every frequency point to compute the response over a frequency band of
interest. Salama and Riad [52] presented an approach that combined the features of TLM
methods in the time domain and the frequency domain. It was based on a steady-state analysis
in the frequency domain using transient analysis techniques and it was referred to as the
Transient Frequency Domain Transmission Line Matrix (TFDTLM). The method was able to

extract the frequency domain information from only one simulation. The main conclusions of
this study showed that:

* A first-order approximation filter can perfectly model lossless inhomogeneous media.

* A second-order approximation filter can provide acceptable order accuracy in the case of a
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lossy inhomogeneous medium.

* The TFDTLM can easily be interfaced with any time domain TLM method.

Whalley and Bartlett [53] derived the analogue transform technique which is an analytical
method based on a distributed-lumped (hybrid) representation of a system. The method was
centred on partial differential equation representations for spatially dispersed components
(e.g. pipelines, beams, shaft drives) and ordinary differential or algebraic equations for
concentrated and relatively point wise components. The Laplace transform converted the
differential equations from the time domain to the s-domain. These s-domain equations were
represented in state-space form and then converted into a discrete model via the z- and w-
transformation process.

Bartlett and Whalley [19] presented the method in 1988 as a “natural” procedure that
exposes the correspondence between theoretical assumptions used in the modelling exercise
and the physical composition of a system. The modelling of the gas flow through two long
pipelines connected by valves and reaction chambers was presented. Distributed parameter
elements were modelled using the solution of the equation for a segment of a lossless
transmission line and lumped parameter components were represented by their transfer
function. Distributed and lumped impedance matrices were parts of a distributed-lumped
system matrix in impedance form. However, the inversion of distributed-lumped matrix was
necessary to complete the process. |

Whalley et al [54] showed that the method generated expressions with multiple
combinations of irrational functions and matrix descriptions with an order greater than three.
The Smith normal form of the distributed-lumped system impedance matrix was employed in
order to speed up the generation of the matrix inverse. The resultant admittance matrix still
contained irrational functions for complex systems.

Bartlett and Whalley [55] improved the method by relaxing its restrictions and
representing each component by correspondent impedance/admittance modules that can be
simulated independently. The combinations of lumped and distributed components were
analysed and simulated for two examples: the ventilation of long tunnels and the torsional
oscillations of a rotor shell used in many industrial applications. Results demonstrated the
effect of distributed mass/inertia and stiffness of the system response that a totally lumped,
pointwise model representation could not reproduce.

The technique was also applied for modelling long drive shaft arrangements [56] and
marine propulsion systems [57]. The feasibility of the method for investigating distributed-

lumped configurations with varying geometry was also studied by Bartlett and Whalley [58]
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(modelling of long shaft rotors comprising three different cross-sectional areas), and
Farshidianfar [59] (modelling of shafts in automotive driveline systems).

Abdul-Ameer [60] extended the method to include additional terms enabling the analysis
of more complex hybrid systems such as vehicle dynamometer (comprising an armature
controlled DC motor, a roll/drive shaft/roll arrangement, bearings) and a hydraulic pipeline
arrangement under unsteady laminar flow conditions. Results obtained from simulations

illustrated the method capability and viability for dynamic behaviour analysis of real systems.

2.3 Summary

Although the development of models of feed drives have made an important contribution in
the area of machines for precision manufacturing, the majority of the literature refers to
lumped parameter models. This is because this type of model is simple to construct and
analyse. Lumped parameter models have a good performance in representing the dynamics of
interest for design purposes, and simulations do not require a great amount of computational
resources. A major draw back of this type of model comes from the fact that stiffness
calculations are made for only one position of the worktable, and the effect of load
components on the system response is removed during the lumping process. As a result, the
model cannot reflect some resonant frequencies contained in the machine response.

Pislaru [10] showed that feed drive components could be defined as modules where
kinematical motion is transmitted forward and resistive forces flow back through the model.
This modular approach offers flexibility in model construction (various components can be
included/removed without altering the whole system model) and gives the possibility to
evaluate the controller requirements due to reaction force computation. However, the modules
are still a lumped representation of the feed drive components and the effect of system
resonant states is not present in the simulation results,

Generally, the accuracy with which a model resembles a real system depends on the
complexity of the chosen mathematical model. As suggested by various authors ([19], [27]-
[29], [49]), a more detail model of the system can be obtained when lumped parameter
modules represent components with localised dynamic effects (e.g. bearings, couplings and
motors) and distributed parameter modules represent components distributed on space (screw
shafts). This principle was used by Pislaru [18] to develop a hybrid model of a CNC machine
tool feed drive reporting that the simulation results were similar to the machine responses. A
disadvantage of this model is that the dynamic effect of the moving nut is approximated by

consideration of the dynamic response only for the screw middle travel position.
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A recent study reported by Holroyd et al [22] presented a model of a ballscrew with moving
nut using a finite element approach. Results from this study showed an improvement of the
accuracy of simulated results; however simulation times were of the order of hours due to the
complexity of the model. The need for further research in order to reduce simulation times
and to improve the accuracy of simulation results is thus envisaged.

In electromagnetics, the transmission line matrix method is considered a general scheme
to solve transient problems. The advantage of the technique is not just because it allows time-
domain transient analysis (where broad band frequency responses can be obtained) but also
because it has the ability to handle complex structures with arbitrary geometries where no
analytical solutions have been found yet. Another advantage of TLM is that it provides a
conceptual model that can be simulated exa.ctly on a digital computer and that it can lead to
models and algorithms, which condense and compute together all the variables without the
need of mathematical operations like differencing and factorisation.

The application of TLM to the modelling of fluid and mechanical systems ([26]-[29], [49])
implies the same representation used by the hybrid approach: lumped parameter modules
represent components with localised dynamic effects and distributed parameter modules
represent components distributed on space. The difference resides on the fact that
transmission line equations introduce natural time delays between components due to the
wave propagation speed in a transmission line. Therefore, distributed components must be
divided into a number of identical elements in order to: achieve the synchronisation of events
in the simulation, and to produce acceptable resolution according to the maximum frequency
of the simulation. This characteristic gives the possibility to include the effect of the

movement nut like in Holroyd’s et al [22] approach.
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3. TRANSMISSION LINE MODELLING TECHNIQUES

In the use of transmission line modelling techniques, a series of elements are interconnected
to simulate energy transfer throughout a system. The system is represented as a mesh of
transmission lines providing a mathematical equivalence between the system equations and
the equations for voltages and currents in the ordered mesh.

The modelling principle describes the laws and relations of elements by mathematical
models in the form of sets of differential equations. The analytical or numeric solutions can be
obtained according to the selected approach. Two model approaches may be identified: the
Analogue Transform Technique (ATT) and the Transmission Line Matrix Method.

In the analogue transform technique - the Laplace transform is used to convert the
differential equations from the time domain to the s-domain. These s-domain equations are
then represented in a state-space form that is converted into a discrete model before

determining the solution.

In the transmission line matrix method - a discrete model is provided by a time stepping
technique in the discrete time domain. Consequently, the method is ideal for direct
implementation via a digital computer algorithm. The discrete model is derived directly,
without the intermediate step of the Laplace and Z-domain transformations, in contrast to the

state-space modelling approach.
3.1 The Analogue Transform Technique

The analogue transform technique is a modelling technique based on a general matrix
description for systems comprising a series of distributed-lumped elements. The realisation
arises from consecutively connected distributed parameter elements followed by lumped

parameter elements in series ending with a final lumped, termination, element as shown in

Figure 3.1.
ep €] € €n.1 €n
Distributed " anal' Distributed " anal_
termination termination
lumped b lumped
component lumped component lumped
—— P . component f¢=—— <+ P < component
ip i 1)) In1 €n
J=1 j=2 J=k-1 j=k

Figure 3.1 General series representation of a distributed-lumped parameter system [19]

For a given j* element: e;.; and i; represent the effort (voltage) and flux (current) inputs; and ¢;

and i;.; represent the effort and flux outputs of the element.
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Lumped parameter elements are represented by impedance/admittance representations of its
transfer function in the z-domain. The Laplace transform is used to convert the differential
equations that represent the element from the time domain to the s-domain in order to obtain
the transfer function. The transfer function is then converted to the z-domain via the z
transform. The resultant transfer function in the z-domain is regarded as the admittance
representation of the element. The impedance representation (X(z.1) is the inverse of the
admittance representation (X (zj.1)). For example, admittance and impedance modules for the

final termination element (the j element) described by equation (3.1) are shown in Figure 3.2.
ej(zj_,)=X(zj_1)ij(zj_1) ’ 3.1
Where, z,, =exp”"” (3.2)

7.1 in equation (3.2) represents the propagation time calculated for the J-1 element in the

system.

ef(zj'l) ‘ ', (zj- Y m—— TS

ij(21) <t | (21 <

a) Admittance module b) Impedance module
Figure 3.2 General modules for the termination element [55]

Distributed parameter elements are modelled by general impedance/admittance modules
derived from (the representation in the z-domain) of two particular cases of the analytical
solution of the Telegrapher’s Equation, as presented in Appendix A. Figure 3.3 and Figure
3.4 illustrate the corresponding impedance and admittance models.

The characteristic impedance & and the parameter B are defined according to the
equivalence between the equations of the element to be simulated ( j element) and the
differential equation that describes a segment of transmission line — with length I, resistance
per unit length Ry, inductance per unit length L, conductance per unit length Y, and

capacitance per unit length C,(for details see Appendix A). Then,

¢ =JL,/C, (3.3)

B, =exp™ (3.4)
Where, r,=2l,,/L,C, (3.5)
S=R,/L, (3.6)
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It must be noted that for a loss-less line R, = 0, therefore B=1

L5 O

mnOURREHS)

& (z;l)oﬁ O ei(zh)

&z )0

-1
Qe (Zj.)

WO *O b (531))

Figure 3.4 Admittance module for a distributed parameter element [60]
3.2 The Transmission Line Matrix Method

The transmission line matrix method belongs to the general class of differential time-domain
numerical modelling methods. It is used to solve time-dependent or transient problems, thus
involving ordinary and partial differential equations. The method approximates to continuous
space representing a system as a mesh of transmission lines. They represent the mathematical
equivalence between the system equations and the equations for voltages and currents on the
transmission line mesh. Depending on the process being modelled, this can be in one, two or
three dimensions.

Two equivalent circuits are used in the TLM technique: the stub and the link circuits.
Those circuits are called the basic TLM units as described by Johns & Beurle [1]. TLM links
are two-port one-dimensional building blocks that can be used for one-, two- or three-

dimensional modelling. On the other hand, TLM stubs are one-port units, which can be used
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for solving circuits and equations, and are used in multi-dimensional modelling to
complement TLM links. Generally, TLM links are used for modelling distributed parameter
elements and TLM stubs can be used to represent lumped parameter elements.

A transmission line segment representing a unity value element is used to model a non-
linear element when dealing with problems including non-linearities. Thus, a non-linear
variation in the element value is treated as part of the forcing function. This procedure makes

the TLM technique a very useful tool for the modelling and simulation of linear and non-

linear systems.

3.2.1 The TLM Stub

Christopoulus [25] stated that any electrical circuit could be represented as a network of
transmission line sections by simply replacing the reactive elements with corresponding stubs.
Variables such as voltage and current are regarded as discrete pulses bouncing at a velocity
‘u’ to and from the nodes of these stubs at each time step. The voltage and current in each

element is determined from the incident and reflected pulses in each stub (Figure 3.5).

i« E i e gl
- — O . )
+ ) + ' l
! 3 R
i open i I
e Z, ' or € | :
I
' shorted ! +
|
! QO 2E
! i - |
i o ! :
a) Transmission line b) Thevenin equivalent .

Figure 3.5 TLM stub [25]

The operation begins with an incident pulse (E) representing the initial conditions being
injected into a stub with characteristic impedance Z;. The incident pulse in the stub
(transmission line of length Ax) takes a time step (4¢) to travel a round-trip (24x) to the other
end and back. If the far end of the stub is short-circuited (i.e. inductive), the pulse will be
reflected and inverted. If it is open-circuited (i.e. capacitive), the pulse will be reflected
without inversion. The reflected pulse (E") thus becomes the incident pulse in the next time
step. The pulse will interact with other parts of the circuit on incidence to the node. The

pulses velocity of propagation (u) is calculated as:

_ A 37
YT A2 S

This discrete process is governed by the denominated scattering algorithm, which is

illustrated in Figure 3.6.
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Figure 3.6 The TLM scattering algorithm [30]

Initialise - Initialise the problem space and apply boundary conditions.
Calculate - Calculate the problem elements at every node, output if required: If E'(k) is known
at step k, the voltages and current in Figure 3.5 may be calculated. Taken e(k) as the discrete
stimulus applied to the transmission line, from the Thevenin equivalent branch (Figure 3.5.b)
formula gives:

i(k) = (e(k) - 2E' (1)1 Z, (3.8)
Scattering - Scatter each incident voltage pulse off each node to generate reflected pulses

according to the value of the reflection coefficient I*

E7(k) =T(e(k) - E'(k)) (3.9)

Connection - Connect each reflected voltage pulse from each arm of each TLM node to its
adjacent neighbour: The reflected pulse becomes the next incident pulse, hence

E'(k+1)=E" (k) (3.10)

N Iterations - repeat until problem has been simulated: With E'(k+1) obtained from equation

(3.9), i(k+1) may be obtained from equation (3.7). Then the process is repeated for as long as
desired.

+ itk
—>-O——> 1/20L>

]

e(k) + Ek+1) ¥, Ek) -
_'_(‘)_’ r E'(k? q +>| 2

a) Time domain

e(z) Z-I i(z)
—_— —| 1/Z, }p——>
Z+r
b) Z-domain

Figure 3.7 TLM Stub block diagram
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Assuming ¢’ the delay (4r) for a pulse, the equations stated in the TLM algorithm for the stub
can be represented as illustrated in Figure 3.7(a). Figure 3.7(b) shows the equivalent block
diagram in z-domain (z” = g™).

Hui & Christopoulos [30] underlined that the weighting of the characteristic elements in
the stub can be chosen accordingly to the nature of the represented element. Then, the
characteristic impedance of an inductive stub is Z,=L/(At/2) and the reflection coefficient is
I= -1, where L is the inductance. Similarly, the characteristic impedance of a capacitive stub
is Z,=(A41/2)/C and the reflection coefficient is /= 1, where C is the capacitance.

Hui & Christopoulos [31] used this property to extend the application of TLM stubs to the
solution of integral-differential equations. The coefficient of a differential term can be
represented by an inductance; it can then be modelled as a short-circuited transmission line.
Likewise, the voltage on a capacitor (which in turn can be modelled as an open circuited
transmission line) can represent an integral term. Thus, the propagation time A¢ is equivalent
to the time step used in numerical integration methods. Proportional terms are simply
modelled by a resistance. For comparison purposes, Table 3.1 describes the TLM and the
equivalent Z transform of the integral, differential and proportional terms. Note that the TLM

transform for an integral term is equivalent to the trapezoidal integration method when x=1.

E'(k+1) = E'(k) - (k)

Continuous TLM transform Equivalent Z-domain
model (Discrete model) transform
e(t) = xi(t) e(k) = xi(k) e(z) = xi(2)
Z, =k/(At]2)
4 e(k) = Z,i(k)+ 2E' (k) _ (Z-l -
e)=x ~ i(t) 0 e(z)=2, 771 i(2)

Z,=(At12)/ k
fiar e(k)=Z,i(k)+2E' (k)
E'(k+1)=e(k)-E'(k)

e(n) =% e(z)= Zo(%)i(z)

Table 3.1 TLM and Z transforms of integral, differential and proportional terms

It can be seen that the TLM transform can be used like the Z transform to find a solution. This
is implemented substituting a calculus model for a respective TLM model. Then, a discrete

model in the discrete time domain is obtained to achieve a solution in a stepping routine.

3.2.2 TLM Link
A TLM link is the discrete representation of a loss-less transmission line as shown in Figure

3.8. Pulses incident at each port are reflected and propagated to the other port where they

become the incident pulses in the next iteration.
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Figure 3.8 TLM link [25]
According to the Thevenin equivalent branch at each port in Figure 3.8, the scattering

algorithm is represented by the following equations:

Calculate - If E',(k) and E'y(k) are known at time step k, i,(k) and iy(k) can be calculated from
the boundary conditions, then:

i, (k)=(e,(k)-24"'(k))/ Z, 3.11)
iy(k) = (e,(k)~2B'(k))/ Z, : (3.12)

Scattering - Scatter each incident voltage pulse off each node to generate reflected pulses:
A"(k)y=e, (k)— A'(k) (3.13)
B"(k)=e,(k)-B'(k) (3.14)

Substituting equations (3.11) and (3.12) into equation (3.13) and (3.14) gives:
A" (k)= A'(k)+i,(k)Z, (3.15)
B (k)= B'(k)-i, (k)Z, (3.16)
Connection - The reflected pulse becomes the next incident pulse, hence

B'(k+1)= A" (k) 3.17)
A'(k+1)=B" (k) (3.18)

N Iterations - Now with A'(k+1) and B(k+1) obtained from equations (3.17) and (3.18), the
process can be repeated for as long as desired. Figure 3.9 shows the block diagram for the

TLM link. The equivalent block diagram in z-domain is illustrated in Figure 3.10.

i, (k) +  A'(k) B'(k)
| Z, |I— - q'l —>
+% B+l
o Aweny Xt
- - q” | +— Z, |&——
A(k) Bk ~ - in(k)

Figure 3.9 TLM link block diagram (time domain)
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Figure 3.10 TLM link block diagram (z-domain)
Mathematically, the dynamics involve in a loss-less transmission line are governed by
equation (3.19).
L;Tzzy(x,t)=%di;—y(x,t) (3.19)
Where, L and C are the respective inductance and capacitance of the line; x is the direction of
propagation of energy; and y(x,t) represents either the voltage (e) or the current (i) at a
distance x from the port 4 of the line. The parameters of a TLM link representing a

transmission line of length Ax are:

e Speed of propagation u=~LC
¢ Characteristic impedance Z, =+/L/C

e  Propagation time At = Ax/u

Capacitors and inductors are often used as coupling elements between electric circuits (Figure
3.11). In these cases, the TLM link can be used to represent inductive or capacitive properties
by choosing appropriate weighting of the elements. For an inductor L, the characteristic
impedance of the inductive link is Zy=L/Ar, where At is the time taken for a pulse to travel a

single-trip from one end to the other end. For a capacitor the characteristic impedance of the

TLM capacitive link is Zy=A4¢/C.

Capacitor couple circuit Inductor couple circuit

Figure 3.11 Capacitor and inductor coupled circuits

Fung and Hui [44] defined an improved TLM link model based on the fact that fluctuations in

the two-port voltages are induced when using TLM links to model capacitors and inductors as
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coupling elements. In this model the voltage across a capacitor is the average of the two port
voltages. The current flowing through the capacitor is the sum of the two port currents, then:

e, =(e, +e,)/2 (3.20)

i, =i, —i, (3.21)

Equations (3.13) and (3.14) are replaced by equations (3.22) and (3.23) for the improved

TLM link model of a capacitor.

B’ (k) =e (k)-B'(k) (3.22)

A (k)=e, (k)-A'(k) ' (3.23)

For an inductor model, the voltage across the inductor is the difference between the port-

voltages while the current flowing though the inductor is the average of the two port currents.

Equations (3.11) and (3.12) are changed by equation (3.26) and (3.27) for the improved TLM
link model of an inductor.

e, =e,—e, (3.24)

i, =i, +i,)/2 (3.25)
e,(k)=24"'(k)+i,(k)Z, (3.26)
e,(k)=2B'(k)-i, (k)Z, (3.27)

3.2.3 Modelling Non-Linear Elements

A non-linear resistor is simply represented by its own characteristic resistance as in the linear
case. The resulting equations with varying coefficients cannot be solved directly with the
linear transform in the case when L and C are not constant. This section presents the general
TLM formulation by Hui and Christopoulos [35, 36] to deal with such problems as follows:
consider the equation e;,= dA/dy = d(Li/d) for an inductor where A is the flux and I is the
inductance as a function of current, L(i). When the coefficient or inductance is non-linear, it

yields:

ﬂ=Lﬂ+id—L (3.28)
dt dt dt

The right-hand terms of the equation cannot be solved easily with the linear transforms. For
example, the function of L may be multi-valued and therefore not differentiable. Instead of

solving the differential term in that form, dA/dt may be expressed as:

% = L(i)% where L(i)= ‘2—/} (3.29)

If a non-linear inductance is considered, L(i) will be effectively the differential or incremental
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inductance. L(i) can be determined knowing the non-linear properties of such inductor.
Calculating di/dt as the voltage across an inductor of one Henry (e, =2di/dt and Z;=1/(4t/2))
the discrete transformation can be applied to determine e, in equation (3.30). Although L(i) is

considered to be current-dependent, it could be any non-linear function. The TLM model of a

non-linear inductor is illustrated in Figure 3.11.
e, = L(i) @ _ L).e = L(i)(—2 i+2¢€) (3.30)
b dt ot At L .

Similarly, a voltage-dependent capacitor can be described by a non-linear function Cfe). The

voltage of this non-linear capacitor can be represented as a non-linear voltage source (Figure

3.12). The capacitor voltage ecy is given by:

Q _Z*i+2
C(e) C(e)

e, (€)= (3.31)

where O represents the electric charge stored in the non-linear capacitor, Z, is the
characteristic impedance of an arbitrary capacitor of one Farad (Z.=4t/2), E'. is the incident

pulse in the arbitrary capacitor, and i. is the current of the equivalent branch.

+

Jgr L() 2e,

L 2,

Figure 3.12 TLM Model for a non-linear inductor [35]

+

i
2e,

A 7]
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Cie)

Figure 3.13 TLM Model for a non-linear capacitor [36]

3.3. Comparison Between TLM and ATT Modelling Techniques

The system used by Bartlett and Whalley [55, 58] to demonstrate the ATT method is
modelled in this section using both ATT and TLM techniques. The purpose of this exercise is
to provide a consistent grade of certainty when comparing results between the transmission

line matrix and the analogue transform technique.
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Figure 3.14 illustrates a rotor shell assembly commonly used in paper manufacturing units.
The rotor assembly refers to the motor drive, including the armature and bearing friction of
the motor, front bearing, first rotor shaft, rotor shell, the second rotor drive and the rear

bearing. Typically parameter values for the assembly are given in Table B.1

front d,

bearing d, - ?{?_
tot @: :_Q ((37%

rotar 4
rotor shelf rive rear

drive
é ,’ / !2 /S bearing

Figure 3.14 Rotor shell arrangement

The motor and supporting bearings are analysed as lumped parameter elements and the rotors
as distributed parameter elements. The set of angular velocities and torques shown in Figure

3.15 is specified to evaluate the interaction between elements.

.7‘;,&)0 T @

=B

b,

Figure 3.15 Set of variables considered for the rotor shell assembly

3.3.1 Model using the Analogue Transform Technique

Following the procedure summarised in section 3.1, the system can be represented as series of

distributed/lumped admittance and impedance modules as shown in Fi gure 3.16.

7, 7, 7 7,
7 1 2 3 ¢
LN Morig.;fand shatt 1 rotor shell shatt 2 be’;;;lg
bearing mpedh it moed
i impedance admittance impedance i
e— a;rggzalgco module T module - afn'g%g“
“ @4 @ @3 “

Figure 3.16 ATT Model for the rotor shell assembly

According with ATT theory, model parameters for the shafts (characteristic impedance, &,

and propagation time delay, 7) are respectively calculated using equations (3.3) and (3.5),
where [58]:

L=Jp, (3.32)
C,=1/GJ,) (3.33)

Calculated & and 7 values for the first shaft, the rotor shell and shaft 2 are contained in table
3.2.
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Element & 7 [ms)
Shaft 1 15328 | 0.6245
Rotor 2316.62 4.996
Shaft 2 15.328 0.6245

Table 3.2 Model parameters for the system shafts

The form of the lumped parameter elements is arranged in concordance with that proposed in

section 3.1. The final termination (rear bearing) is represented by a respective admittance
lumped parameter module. Thus,

T, = b, (3.34)
A lumped parameter module represents the motor and front bearing. Thus, its dynamic

behaviour is governed by

d

T, -T, - w,(f, +b,)=J,,,Ea)O (3.35)
The Laplace transform of equations (3.34) and (3.35) for initial conditions equal to zero gives
%((si))=%=612—5=4 (3.36)

D) 1 1 (3.37) -

T,(8)-T(s) J,s+(f,+b) 0495+l
The z-transform is applied to equations (3.36) and (3.37) for a sampling time equal to the

lowest propagation time of the system (7:=0.6245x10), hence in delay representation takes

the form

(04(2)

Lai2) 3.38

7.() ©.38)
@(z) 0001274 (3.39)

Ty(2)-T,(z) z-0.9987

Appendix B.2 contains the resultant ATT model for the system in MATLAB/SIMULINK.

Simulation results for the established angular velocities and torques are shown in Figures 3.17

and 3.18. The propagation time delay for the rotor shell, 7, was approximated from 4.9996
ms to 5 ms, as reported by Bartlett and Whalley [S5, 58].

As can be seen in Figure 3.17a, the oscillating behaviour of @y around @, illustrates the

effect of the distributed parameter characteristics of shaft 1 during the transient period. The

torque curves presented in Figure 3.18a also corroborate this similar effect. These results

match those presented in [55] and [58].
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a) @, (blue line) and @, (green line) b) @; (blue line) and @, (green line)

Figure 3.17 Results for the established angular velocities (ATT Model)

TR R vy e b PR Gl -
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a T, (blue line) and T, (green line) b) T; (blue line) and T, (green line)

Figure 3.18 Results for the established torques (ATT Model)
Figure 3.19 shows the simulation results when the calculated value for 7> 1s used. Notice the
effect of propagation time change from 0.005 to 0.004996 seconds on the results for torque
two, 7> (green line). This effect evidences the sensitivity that the ATT model shows to small

changes in the propagation time.

a) 7, =5x107s b) 7, =4.996x107 5

Figure 3.19 Simulation results for a slight change in the propagation time

29



This sensitivity is attributed to the algebraic loops established when the impedance/admittance
modules are connected. Including a unit delay on the feedback signals for each module could
eliminate this effect, but it entails an alteration of the ATT modelling equations and therefore

a change in the converging speed of the model.

3.3.2 Model using the transmission line matrix method

This section presents the TLM representation of the differential equations that characterise the
behaviour of each of the elements presented in section 3.1.

3.3.2.1 Distributed parameter elements |

As Partridge, et al demonstrated [29], the behaviour of a shaft subjected to torque about its
longitudinal axis can be represented by the following differential equations for angular

displacement (&) and torque (7):

9’0 1 9% -
Erairv (3.40)
T 1 9T '
W 4D

Equations (3.40) and (3.41) are wave equations and can be represented by a TLM link as

presented in section 3.2. Thus, the characteristic impedance is given by

Z,=J\pG (3.42)

The velocity of propagation of the torsional waves will be:

=/G/p (3.43)

And the time taken for a pulse to travel the length / of the shaft is given by
At=1lu=1[/G/p (3.44)

Where p, J, G are the density, polar second moment of area, and the shear modulus of the
shaft; d and / the diameter and length of the shaft.

Although each section of the rotor assembly could be represented by its equivalent TLM
link, the TLM method needs the same propagation time on each element of the system. A
solution is to divide the rotor shell into segments assuring the same propagation time.

Equations (3.42) and (3.43) show for a given material that: Zy depends on the geometry of
the segment while At is dependent on the length. As the three shafts are made from the same
material, the solution is to divide the shafts into segments of the same length. Accordingly,
the rotor shell is divided in eight segments as illustrated in Figure 3.20. Table 3.3 resumes the
TLM parameters for the two shafts and the rotor shell; see equations (B.9) to (B.12) in the
Appendix B.2 for more details. Figure 3.21 shows the resultant TLM model.
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Figure 3.20 Rotor arrangement divided into sections/ segments

Element Z, At [ms]
Shaft 1 15.3274 0.31225
Rotor Shell segments 1 2316.62 0.31225
Shaft 2 15.3274 0.31225

Table 3.3. TLM model parameters
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Figure 3.21 TLM model for the rotor arrangement
3.3.2.2 Lumped parameter elements

The dynamic behaviour of the rear bearing (equation (3.34)) has the form

f@)=ax(® (3.45)
According to Table 3.1, the TLM model of this type of equation gives:
T,(k) =b,w,(k) (3.46)
Using the same procedure, the TLM transform of equation (3.35) gives:
I, (k) = T,(k) — wy (k)(f, + b)) = a,(k)Z, +2E! (k) (3.47)
Where Z,=J, /(At]2) (3.48)
E,(k+1)=—(w,(k)Z,, + E! (k)) (3.49)

The TLM model for equations (3.46) and (3.47) is illustrated in Figure 3.22. Finally the TLM
model for the system is completed including the model of the rotor arrangement as illustrated

in Appendix B.3.
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Figure 3.22 TLM models for the lumped parameter elements

3.3.2.3 Simulation Results
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A program was built in SIMULINK in order to simulate the TLM model of the system. As
was done with the ATT model, slightly changes of the propagation time were performed to
see the effect on the response. Simulation results showed that the TLM model was not

affected, however the signal oscillations on the transient period seems to be less damped for
the TLM model (see Figure 3.23).
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Figure 3.23 Simulation results for the rotor shell assembly TLM model

response as shown in Figure 3.23.
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A detailed analysis of the model showed that this behaviour is caused by the modelling error
inherent to the TLM stub unit used to model the differential term in equation (3.35). The error
magnitude is dependent on the sample time as illustrated in F igure 3.24 (See Appendix B.4).
As observed in Figure 3.24, the TLM model response lags the response of the transfer
function of the system. This effect influences the response of the TLM rotor shell model

reducing the overall damping factor; and therefore, increasing the oscillation of the model
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Figure 3.24 Modelling error at various sample rates for the TLM model of equation (3.35)

Accordingly, the selection of the sample time becomes more crucial when the dynamic
behaviour of the system comprises various differential terms as could be the case for models
of complex systems like axis feed drives. An alternative model for the differential term had
to be devised in such way that all the modelling advantages of the TLM technique could be
used without compromising the model response by the sample time. That is the subject of the

next section.
3.4 The Modified TLM Stub

The first thought for the reduction of the error on a TLM stub unit response is to reduce the
sample time. This is feasible when modelling systems composed by lumped-parameter
elements, like electric circuits. In fact, the TLM theory was addressed in the first instance 0
the modelling of that type of systems. The magnitude of the sample time is dependent on a
desired computation speed or the available memory in this case.

Conditions change when modelling hybrid systems (a mix of lumped-parameter and
distributed-parameter elements). The sample time is driven by the physical properties of the
considered distributed-parameter elements. Taking the case of the shaft subject to torsion: the
velocity of propagation (u,) depends on the material and the characteristic impedance (Z))
depends on the geometry. Therefore, the sample time (propagation time) is dependent on the
length of the segment. The number of segments in which the shaft is divided has to be
increased to match a reasonable sample time. This action becomes complicated if the shaft is
built with various segments featuring different geometries, lengths and materials.

An ideal solution implies the specification of a TLM stub more robust to changes of the
sample time. The denominated “modified TLM stub” is derived taking into account this

precept. Consider the TLM transform for a differential term (Table 3.1):
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ey
e(t)=a o i(t) (3.50)

Zy=allAtl2) (3.51)
e(k) = Z,i(k)+ 2E' (k) (3.52)
E'(k+1) = E' (k) - e(k) = -Z,i(k) - E' (k) (3.53)

One way to reduce the oscillations on the response (equation 3.52) is to average the actual

output with the previous one:

k)—e(k-1
e(k)= % (3.54)
Rearranging and substituting equation (3.52) into (3.54) gives:
2e(k) = Z,i(k)+2E' (k) + Zyi(k=1)+2E'(k-1) (3.55)
Substituting equation (3.53) into (3.55)
Z
e(k) =7°(i(k)—i(k-l)) (3.56) .
And then, by substituting equation (3.51) into (3.56) gives
e(k) = Ait(i(k) —i(k ~1)) (3.57)
Or, by redefining Z, as
e(k)=Z,i(k)+ E' (k) (3.58)
Where, z =2
= a7 (3.59)
E'(k+1)=-Z,i(k) (3.60)

Equations (3.58 — 3.60) comprise the scattering algorithm that governs the discrete process of
the modified TLM stub for differential terms.

Assuming g the delay (4r) for a pulse, the modified TLM transform for the differential

term can be expressed in z-domain (z”/ = ¢7) by

e(z) = —Z;(z—z—l)i(z) (3.61)

The modified TLM transform for the integral term in z-domain is defined as the inverse of

equation (3.61), hence

e(z) = % (ZL_I)i(z) (3.62)

Note that the modified TLM transform for an integral term is equivalent to the backward
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Euler integration method when ¢ = 1.

The equations in time domain for the integral term are calculated applying the z-inverse

transform to equation (3.62), thus

e(k)=Z,i(k)+ E' (k) (3.63)

Where, L. 1= 2 (3.64)
a

E'(k+1) = e(k) (3.65)

Table 3.4 describes the modified TLM and the equivalent Z transform for integral, differential
and proportional terms. Figure 3.25 shows the modelling error at various sample rates when

the modified TLM transform is applied to equation {3.33).

Continuous TLM transform Equivalent Z-domain
model (Discrete model) transform
e(t) = ai(r) e(k) = ai(k) e(z) = ai(z)
Z,=alAt

e(t) = a%i(t) e(k)=Z,i(k)+E' (k) e(z) = zl,(’—‘l}(;)
E'(k+1)=-Z,i(k) &
Z,=At/a
e(t) =£ J'i(r)dt e(k)=Z,i(k)+E' (k) e(z) = ZU(L}'(:)
E'(k+1)=e(k) Bt

Table 3.4 The modified TLM transform

The modified TLM transform was applied to equation (3.35) as was performed with the TLM

model. Figure 3.25 shows the calculated percentage error for various time steps.
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Figure 3.25 Modelling error for the modified TLM model of equation (3.35)

A comparison between the results for the TLM stub and the modified TLM stub is illustrated
in Figure 3.26 (sample time = 6.245 e-3 s). The following features can be highlighted:
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Figure 3.26 TLM and modified TLM modelling error comparison

e The maximum percentage error for the modified TLM stub (0.006% on the red line) is
approximately 1.2% of the maximum percentage error for the TLM stub (0.5% on the
black line). As a result a reduction of 35% on the mean square error is achieved using the
modified TLM stub algorithm.

o The number of operations for the scattering algorithm has been reduced by to 40% using
the modified TLM stub.

The modified TLM transform was applied to the modelling of the rotor shaft arrangement as
presented in Appendix B.5. Results for the stated variables match those presented in [55] and
[58] as shown in Figure 3.27. Slight changes of the propagation time were performed to see
the effect on the response. Simulation results showed that the modified TLM model was not

affected.
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Figure 3.27 Simulation results for the rotor shell assembly (modified TLM stub model)

3.5 Conclusions

In the modelling of systems with transmission line techniques, a hybrid system is seen as a
series of distributed and lumped parameter elements. The modelling process begins by
defining the differential equations that govern the dynamics of each element. Then, analytical
or numerical transform techniques are applied to find a solution.

In the analogue transform technique distributed parameter elements are modelled by
general impedance/admittance discrete representations derived from the solution of two
particular cases of the equation for a transmission line. For the modelling of lumped
parameter elements, the Laplace transform is used to convert the differential equations that
represent the element from the time domain to the s-domain in order to obtain the transfer
function. The transfer function is then converted to the z-domain via the z transform.

The TLM transform can be utilised like the Laplace or Z transformation to Substifints
integral and differential equations with the appropriate transform used in each case. A discrete
model in time-domain is obtained directly to reach a solution in a stepping routine. Then, the
discrete transform described in Table 3.4 (The modified TLM stub) can be employed to model
lumped-parameter elements.

A TLM link is the discrete representation of a transmission line governed by a hyperbolic
differential equation (the wave equation). Thus, Table 3.4 can be extended including this
TLM unit to model distributed-parameter elements governed by PDEs of the same type (see
Table 3.5).
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Continuous mode] TLM transform Equivalent Z-domain

(Discrete model) transform
e(t) = ai(t) e(k) = ai(k) e(z) = ai(z)
Z,=alMt
e =aZ it (k) = Z,i(k) + E' (k) e(z)=Zo(z—_l)i(z)
E'(k+1)==Z,i(k) z
Z,=Atla
=1 fiou e(k) = Z,i(k) + E' (k) o(2) =ZO(LJ1'(2)
E'(k+1) = e(k) z-1

o’ _13 Link of length A/ VI N
a5 D=2z (x5 v JTh E,(2)=—(E)(2)- 2,i,(2))
f(x’t)=e(x’t) or Z = /b i =_1_ i Zi

Fat) =it 0o U E,(2) z(E"(z)+ ata(z))

At=Allu

Table 3.5 Extended TLM transform table

A TLM model is considered an equivalent electric representation of a system. In TLM models
of mechanical systems, for example, voltage sources represent forces/torques, and electric
currents represent velocities.

A transmission line segment representing a unity value element is used to model a non-
linear element. Thus, a non-linear variation in the element value is treated as part of the
forcing function. This procedure makes TLM technique a very useful tool for the modelling
and simulation of linear and non-linear systems. '

The possibility offered to decouple a system model using the improved link approach
makes TLM a suitable method for the implementation of models for simulation on parallel
processors. It also offers the possibility of implementations in real time by reducing the
complexity of simulation algorithms.

A rotor shell assembly commonly used in paper manufacturing was modelled using both
ATT and TLM techniques in order to compare results between the approaches. Data from
simulations show that the two techniques give the same results. However, ATT showed
sensitivity to small changes in the propagation times. It was also found that the selection of
the sample time for the TLM technique becomes crucial when looking for accurate results in

models of complex systems. For comparison purposes, it should be noted that for a system

model:

o The parameter £of the ATT model is equivalent to the Z, parameter in the TLM model.

» The propagation time to be used for the ATT model must be twice the value of At

calculated for the correspondent TLM model.
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As a result from this exercise, a new approach for the modelling of complex shafts was
derived using the TLM (Partridge et al [29]) representation for a simple shaft, and the
approximation of continuous space feature of TLM technique.

A new model for the TLM stub unit was derived in order to overcome the restrictions
highlighted by the results of the rotor shell modelling exercise. A model for the rotor shell
was built using the new model denominated the "modified TLM stub". Simulation results

verified the robustness and accuracy of the model. The main improvements over the original
TLM stub model are:

* A reduction of 40% on the number of mathematical operations, and

* A reduction of almost the 35 % on the mean square modelling error.
3.6 Project Plan

The modified TLM was selected as the modelling technique due to advantages of the method

over ATT. The following project plan was established to accomplish the objectives of this

research:

e To derive a CNC machine tool TLM model for a single-axis feed drive (including for
torsional and axial mechanical vibrations, and non-linearities such as backlash, dynamic
and static frictional forces). |

e To validate the model against experimental data collected from a real system considering
various displacements at different feed rates and positions of the feed drive.

* To build a two-axis model on the basis of the single-axis model (including linear and
circular interpolation).

e To include in the model the effect of geometric errors (measured with specialised
equipment such as laser, ball-bar and/or electronic precision level) and compare simulated

results with measured ones.

 To carry out measurement trials at the machine to identify modal parameters (damping

factors and resonant frequencies).

e To use Wavelet Transform techniques to detect resonant states and damping factors of

machine elements from measured data.

In the next chapter, the derivation of the adequate TLM models for the elements of a CNC

machine tool feed drive is presented.
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4. MODELLING THE ELEMENTS OF CNC MACHINE TOOL FEED DRIVE USING
THE MODIFIED TRANSMISSION LINE MATRIX METHOD

This chapter presents the development of transmission line models for the elements of a
typical arrangement of a CNC feed drive. The models are built by developing the equations
that characterise the behaviour of each element, and then by representing those equations with
corresponding TLM transformations. Descriptions of closed loop control principles, space

vector control, and selected models for backlash and friction are included.

4.1. Introduction to CNC Machine Tool Digital Drives

The basic function of CNC in a machine is the automatic, precise and consistent control of its
directions of motion, which are classified as linear (drive along a straight line) and rotary
(drive along a circular path). The set of elements performing a linear direction of motion is
named feed drive. It consists of mechanical, power electrohic, and CNC units. |

The mechanical elements of a feed drive usually converts angular motions of a motor to
linear transverse velocity of a table supported on guide ways. However, recent developments
in motor technology have resulted in the implementation of direct actuators that supply force
and velocity to the table directly without the need for a mechanical transmission. That is, ‘
typical transmissions such as gearboxes, belts and pulleys, ball screws, and rack and pinions
are replaced by linear motors. The power electronic units supply the voltage to the motor and
Signals from the limit switches of the system. A computer unit, and position and velocity
Sensors for the drive mechanism make up the CNC as defined by Lyang et al. [61].
Although machine tool designs vary immensely, the mechanical configuration of
A feed drive is largely standardised. According to Braasch [62], the most common
Configuration used is a ballscrew coupled to a servomotor. A ballscrew assembly consists of
a precision ground screw shaft, a nut (the outer race) with an internal groove, and a circuit of
Precision steel balls that recirculate in the grooves between the screw and nut as defined by
Degenova [63]. Figure 4.1 shows the scheme of a conventional CNC feed drive. The motion
Control of a feed drive can be summarised in the following actions:

¢ A motion command in a NC program executed within the Motion Control Unit (MCU)

signals the motor (through a drive) to rotate at a defined velocity.
¢ The rotation of the motor in turn rotates the screw shaft, which interacts with the nut
causing linear motion of the table.
¢ A feedback device attached to the rotor of the motor allows the control to confirm that

the commanded rate of rotations has taken place.
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Figure 4.1 Conventional CNC feed drive [63]

A motion control system of a feed drive can include an interpolator, a position loop, a velocity
loop, current loop, and the motor commutation and power stages (inverter). An electrical
drive performs several of these functions and a motion controller performs the remamder
Different modes of operation are provided according to the functions the electrical dnve
develops, the three more frequent configurations are: velocity, current, and power block
modes. In velocity drives, the motion controller provides the velocity command to the drive;
in current drives, the command is for current. In power blocks, the drive is just dedicated to
provide the power stage output to the motor and the feedback to the current controller [64]

Figure 4.2 shows the block diagram of a feed drive configured in current mode,

-
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Figure 4.2 Block diagram of a CNC feed drive [64]

Industrial drive technology has advanced considerably over the past several years. The largest
advances have been in the area of digital control algorithms. In the past, drives were
predominately analogue. Today, digital drives provide numerous opportunities to improve the
performance of a system without requiring expensive mechanical solutions, In an analogue
drive the velocity and current loops are closed using analogue components (such as
operational amplifiers). The gains are set using passive components (such as resistors,

potentiometers, and capacitors). Figure 4.3 shows the diagram of a classical analogue drive in

current mode.
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The motion controller generates the current command signal. The drive monitors the motor
winding current and the angular displacement of the motor shaft. A compensator takes the
difference between the commanded and monitored current signals and generates a voltage
command signal. Next, a Pulse Width Modulated (PWM) signal is applied to an inverter,
which switches the correct voltages to the motor. In contrast, in a digital drive, the functions
of most of the analogue circuitry (summing amplifier, compensator and PWM generator)‘ are

replaced by software running on a microprocessor or a Digital Signal Processor (DSP) as

Position and velocity feedback

Figure 4.3 Typical analogue drive [65]

illustrated in Figure 4.4; the power inverter remains the same [65].
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Figure 4.4 Typical digital drive

Digital drives provide several advantages over analogue drives [66]:

* Flexibility - Digital drives can be reconfigured digitally. In most cases, there is no need to
change a "personality card" or adjust a potentiometer with a digital drive. Many

parameters can be changed during operation, which simplifies configuration of the motion

system.

e Gains are set in the software then parameters can be transferred precisely from one drive
to another. Analogue drives require passive component changes or, more commonly, a

potentiometer adjustment. Unfortunately, it is not always practical to adjust

potentiometers with accuracy.

e Supports digital communications- eliminating most noise problems in servo systems. In

addition, digital communication greatly reduces the number of wiring interconnections of

servo systems.
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In contrast, the key advantages of analogue drives are simplicity to configure and less

expensive than digital drives, especially in low power (under 500 Watts) applications.

4.2 Permanent Magnet Synchronous Motor (PMSM)

In a synchronous motor, the wire is coiled into loops (stator windings) and placed into slots in
the motor housing. Each loop is identified as a phase stator, and the number of poles is
determined by how many times a phase winding appears. The mechanical angle between
phase stators is the resultant of dividing 360 degrees by the number of phases of the motor.

Figure 4.5 illustrates a stator with three-phase windings and two poles. Phases a, b and ¢ are

s
mjmém

Figure 4.5 Two-pole stator winding [67]

placed 120 degrees apart.

In a permanent magnet synchronoﬁs motor, permanent rare-earth magnets are glued onto the
rotor. This design leads to a low rotor inertia thus providing fast acceleration and high
overload torque ratings. The motor operation relies on the generation of a magnetic rotating
field by applying sinusoidal voltages to the stator phases of the motor. A resulting sinusoidal
current flows in the coils and generates the rotating stator flux. The rotation of the rotor shaft
is then created by attraction of the permanent rotor flux with the stator flux. The motor is
called “synchronous” because the rotor operates in synchronism with the rotating magnetic
field. To establish the correct polarity of the stator’s magnetic field, the position of the
permanent magnet rotor with respect to the rotating magnetic field of the stator must be
monitored. A feedback device known as rotary encoder provides this information. On
PMSM, the encoder gives the absolute position of the rotor within one revolution.

In electric motor theory, two measures of position and velocity are generally defined:
mechanical and electrical. The mechanical position, @, is related to the rotation of the rotor
shaft. When the rotor shaft has accomplished 360 mechanical degrees, the rotor is back in the
same position where it started. The electrical position, 6, of the rotor is related to the rotation
of the rotor magnetic field. In Figure 4.6, the rotor needs only to move 180 mechanical
degrees to obtain an identical magnetic configuration as when it started. The electrical

position of the rotor is then related to the number of magnetic pole pairs ‘p’ on it.
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Figure 4.6 Three-phase motor with four magnet poles (Two pole pair) [67]

Thus, the electrical position of the rotor is linked to the mechanical position of the rotor by the

expression

6, = pé, 4.1)
Then, a similar relationship also exists towards electrical velocity @, and mechanical velocity
D

o, =po, . (4.2)
4.2.1 Electrical Equations |

The voltage relations of a synchronous machine are given by the following general equation

presented by Moreton [68].

[e]=2 w1+ [RE] @3)

Where R is the winding resistance of the stator which is assumed to be equal for all Stator.
windings, ¥ the flux linkage, is given by [L1[i]. The matrix [L] contains the winding self-
inductances. The phase voltages and currents are contained in the column vectors [e] and [i].
Most of the coefficients of this set of differential equations are periodic functions of the rotor
angle @, and therefore complex functions of time. To avoid the time dependence of the
coefficients a coordinate system attached to the rotor is used (d-g). This coordinate system
rotates at the velocity of the electrical velocity of the rotor and the 4 axis is aligned with the
electrical position of the rotor flux. In this coordinate system, the electrical expression of the
torque becomes independent from 6, . An ¢+f coordinate system on the stator, is used to
illustrate the conversion between the a-b-c and the d-¢ coordinate systems, as presented by
Simon [69]: The three sinusoidal currents created by the 120 degrees phase shifted voltages
(ea, es ec) applied to the motor are also 120 degrees phase shifted one from another. The

stator current vector Js is represented in Figure 4.7 in the 3-phase static coordinate system (a,
b, ¢).

i =i, +i,exp*+i exp’/** (4.4)

I, +i,+i, =0 4.5)
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Figure 4.7 Stator current vector

The stator current vector i; can also be generated by a bi-phase system placed on a fixed o-f3

coordinate system as shown in Figure 4.8. This coordinate transformation is called Clarke

Transformation.

c¥
Figure 4.8 Clarke transformation (a, b, ¢ > ¢ Ji)
The projection of the stator current in the & frame gives

i

W] 1 o o7k \
] L0 1B 13" (46)

The conversion from ¢, Bto a, b, ¢ system is denominated the inverse Clark transformation.

This transformation is given by equation (4.7).

i 1 0 .
i, |=[-05 =372 {'_"} 4.7
i| [-05 32 L

In the @ S frame, the expression of the torque is still dependent on the position of the rotor
flux (6.). To remove this dependence, the ;8 vectors are projected to the d, ¢ system, which
rotates at the electrical velocity of the rotor (a). This transformation is known as inverse

Park Transformation (Figure 4.9). The equation corresponding to this transformation is:
i cosd, sind, |[i
.d - . e e .0' ( 4. 8)
i, —sinf, cosd, | i,

45



The Park transformation (d, g > ¢ D) is given by

Iy |_[cos@, -sind,Ti,
=] . 4.9)
is sinf, cosh, | i,

Figure 4.9 Inverse Park transformation (xB~>d q)

The equations of performance for a PMSM in the d-q coordinate system representation are:

d . . . P
L, Eld =¢;~Ri, +L w,, (4.10)

d . . . '
Lquq =e¢,~Ri, - Lw,i, - o, (4.11)
In which, 4 signifies the amplitude of the flux induced by the permanent magnets of the rotor

in the stator phases; L, and L, are the d and q axis inductances. Subscripts d and ¢ are used

to identify the direct and quadrature currents/voltages respectively.  The generated

electromagnetic torque T, is defined as
T, =1.5p(Ai, + (L, —L)ii) (4.12)
If the current i, -0, T, »1.5 pAi,; hence the generated electromagnetic torque can be
approximated using the torque constant of the motor,
T, = kyi, (4.13)
For a motor built with a uniform air gap (round rotor) L=Ly=L,, then
T, =15pk, (4.14)
The factor pA in equations (4.12) and (4.14) is known as the electric constant of the motor
(k). The model for the motor is presented in F igure 4.10.
Considering a motor with round rotor and a simulation time step #,, the TLM transform of
equations (4.10), (4.11) and (4.13) gives (see Table 3.2):

211, (k) +E (k) = e, (k) - Ri, (k) + Lo, (k)i (k) (4.15)
Where, Z, =L/t (4.16)
E;j(k+)=~i,(k)Z, 4.17)
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Figure 4.10 Block diagram of the electrical equations of the motor

Zi,(b+E,(k)=e,(k)- Ri, (k) - w,(k)(Li, (k) + A) (4.18)
E (k+1)= -i,(k)Z, (4.19)
T, (k) = kyi, (k) (4.20)
Rearranging equations (4.16) and (4.18) provides:
e,(k)=E (k)= (Z, + R)i, (k) =-a,(k)Li, (k) (4.21)
e, (k)~E,(k)-(Z, + R)i, (k) = w,(k)(Li, (k) + A) (4.22)

For simulation purposes, it can be assumed that the terms on the left side of equations (4.21)

and (4.22) are the resultant of the operations on the right side of the equations. Thus, these

equations are rewritten as:

i,(k)= M, (e,(k)-E}(k)+ o, (k- DLi (k-1)) (4.23)
i, (k)= M, (e, (k) - E; (k) -, (k- D(Li, (k-1)+ A)) (4.24)
Where, M, =1(Z,+R) (4.25)

4.2.2 Mechanical Equations

Given the mass moment of inertia of the rotor (Jm), the load torque (Tm), the frictional torque

at the bearings (b,,) and the mechanical velocity of the motor, the energy conversion process

in the motor is governed by the equation

d

I,-T,=b,m,+J, Ew'" (4.26)
The TLM transform of equation (4.26) for the considered propagation time ; gives:
I,(K)-T,(b)=b,0,k)+Z,0, (k)+E! (k) (4.27)
Where, Z,=J,lt, (4.28)
E, (k+])=-Z w,, (k) (4.29)
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The corresponding TLM model is presented in Fi gure 4.11.

Motor inertia

W, bm i Zm + E m 'E
+ +
T, T,

Figure 4.11 TLM model of the mechanical dynamics of a motor
4.3 Controller Model

The control for an axis feed drive is generally implemented with an algorithm following the
principle of cascade control in conjunction with feed forward control. Most applications
require position control in addition to velocity control [70] The most common way to provide
position control is to add a position loop "outside" the velocity loop (as shown in Figure
4.12), which is known as cascade control. Machine tools normally operate based on this
principle because it offers significant advantages. The subsequent controllers in cascade
control compensate directly for the disturbances allowing the primary control to function
without the effect of these disturbances. Then, the inner control loop is protected because the
outer control loop is limiting its input value. Feed Jorward control improves trajectory

tracking compensating for the effect of disturbances before they affect the response of the

controlled system as Seborg et al [71].

Velocity Acceleration
feedforward | feed forward

4

v

Reference Reference = Reference
position Position velocity Velocity + Current current
+ & - 7| controller + + controller + filter
Velocity { Velocity feedback
fiter |
Position feedback

Figure 4.12 Cascade control with velocity and acceleration feed forward [71]

The velocity feed forward path connects the reference position to the velocity loop through
the gain, kz When the position profile changes, the velocity feed forward transfers
immediately that change to the velocity command. This speeds up the system response
relative to relying solely on the position loop. The primary shortcoming of velocity feed

forward is that it induces overshoot when changes on the velocity direction occur.
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Acceleration feed forward eliminates the overshoot caused by velocity feed forward without
reducing loop gains. As illustrated in F igure 4.12, the basic idea of feed forward control is to
inject the position and velocity set points (reference) and their correspondent first derivatives
at appropriate points in the control loops. The following errors are minimised thus achieving

a significant increase in the dynamic response to position and velocity set point changes as

demonstrated by Heinemann & Papiernik [72].

4.3.1 Interpolator

The interpolator calculates a velocity profile w(r), according to defined motion commands:
feed rate (f;), maximum acceleration (@max), maximum jerk (jmay), and desired displacement
(d). This velocity profile is then used to generate the set of reference positions. To achieve a

smooth velocity transition, the velocity profile is divided into seven phases as shown in
Figure 4.13.

Figure 4.13 Jerk-limited velocity profile generation [73]

The calculation of jerk, velocity and acceleration for each phase was presented by Altintas
[73] as follows:

* To ensure proper operation of an axis, the following two conditions must be fulfilled:
- A minimum distance d,;» must be traversed in order to attain the programmed feed rate.

If d < dyin the feed rate must be reduced to jts maximum possible (v,,), thus the velocity

profile must include at least phases 1,3,5and 7:

05ty
> =05j(2) (4.30)

49



dui

n =f;t3

Substituting equation (4.35) into equation (4.36) gives:

Boin = 2f,\ S 1 o

and 6 exist).

* The values for jerk, acceleration and velocity profi

3 -]mBX

£

- The maximum velocity and maximum jerk result in an acceleration am

V. =

m

vajmax

‘. ={
Arax

* The duration time of each phase (Tifori=1,2...7) is given by:

T, =t -1,

d<d,_
d2d,,

Jor i=12.7

T,=T, =v, /am—am/jm

according to the following equations:

a(t) =

[ o
0
= Jmax

j(t) = J 0
= Jmax

0

( Jimax

0<t<y
L<t<t,
L, <t<t,
L<t<t,
ty<t<t
L <t<t,
te<t<t,

O<t<y
L <t<t,
L, <t
L, <t<i,
t, <t<t
I, <t<t,
t,<t<t,
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(4.32)

(4.33)

(see if phases 2

(4.34)

(4.35)
(4.36)
(4.37)

(4.38)

les for each phase are calculated

(4.39)

(4.40)



r 0.5 J gy 0<r<y,
v(t)+a,(t-1) 1, <t<t,
V) +a,(t-4)-05),, (-  n<ts<y,

v(?) =J v, L <t<t, (4.41)
Vi = 0.5 e (1 =1,) 1, <t<t,
v(ts)—a,(t-t5) ts<t<t,
(V(te) —a, (t~t)+0.5], . (t—t,)> to<t<t,

The interpolator generates a reference position (dre) value every t, seconds by the following

relation:

dyy () =d, (t=1,) +v(1), (4.42)

] d

) filter __’xrqf
motion .
commands —*1 Interpolation }— ’;fggﬁ?;?ne

t filter |—o

) Dyres
velocity profile
- ¢

Figure 4.14 Block diagram of the interpolator [74]

If the system has multiple axes, the motions of individual axes are co-ordinated. When the
individual axes are not co-ordinated, each of the axes will start moving at the same time, but
finish at separate times producing slew motion as defined by Hugh [74]. The interpolator
overcomes this effect using an interpolation technique. Position values from the interpolator
can be filtered in order to obtain a smoother motion profile. The filtered values constitute the
reference position signals for the position controllers. A block diagram of the interpolator is

illustrated in Figure 4.14.

> X

Figure 4.15 Two-axis linear movement [75)
Linear interpolation is performed to keep the tool path velocity constant at the given feed rate
along a straight line in a plane of motion. For a Xy-plane movement (Figure 4.15), the

reference position values for x-axis (dy(1)) and y-axis (dy.At)) are derived using the

equations presented by Koren [75]:
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dxref (t) = dref (t)(AX/d) (443)
dyref (t) = dref (t)(AY/d) (444)

d =JAX? + AY? (4.45)

Where, AX is the distance the x-axis is going to move, and AY is the distance the y-axis is

going to move.

Figure 4.16 Two-axis circular movement [76]

In circular interpolation, the velocities of two axes on a plane of motion are varied to pérform

a semicircle movement at a specified feed rate. As presented by Bullock [76], two commands

are needed in a NC program to describe a semicircle: the radius r, and the end point Px(x;, y;)

— the starting point Pj(x,, y;) is defined by the coordinates of the actual position of the axes

(Figure 4.16). In this case, the velocity profile v is calculated for a displacement d of

magnitude: |
d=r0 (4.46)

Where, the angle of displacement @ is defined by

0 = tan™! (zz%) (4.47)
2= c

X,=x —r (4.48)

Y=y (4.49)

The interpolator generates the reference position (drep) according to equation (4.47). Then, the

reference position values for the x-axis and y-axis are:
d (1) = x, 1, sin(d, /(1) 7.) (4.50)
d, )=y +r, cos(d,, (t)/r,) (4.51)
4.3.2 Position Controller with Velocity Feed Forward
The position controller evaluates the difference between the reference and actual position

value d,.s (from the rotary or linear encoder) to calculate the position error d.. A reference

velocity value (vyy) is then generated every ¢, seconds according to the following relation:
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Vy =dk, +v, (4.52)

Where, d,=d, -d,, (4.53)
d
vy=k, Ed’ef (4.54)
— |k, 4 |
' dt
dref + de X + ¥yt Vg

Figure 4.17 Block diagram of the position controller with velocity feed forward [77]

k, is the gain of the position controller, &,y the feed forward velocity gain and vyis the velocity

feed forward signal. The TLM transform of equations (4.52) to (4.54) gives:

vy(ky=d, (k)Z,, +E. (k) - (4.55)
Ey(k+)=—d, (k)Z,, (4.56)

Vo (K) =k, d, (k) +v ; (k) 4.57)

d,(k)=d, (k)~d,, (k) - (4.58)

Where Zg=kylt, (4.59)

Z,5is the characteristic impedance of the stub and Evﬂ~(k) is the incident pulse. The signal d,,
is calculated by equation (4.60) if the linear encoder is used as a position feedback system.

Equation (4.61) gives the value for d,.; when the rotary encoder is used instead.
d,. (k) =d, (k) (4.60)
d,.(k)=k,6, (k) (4.61)

Where £, is the force to torque constant of the ball screw.

4.3.3 Velocity Controller with Acceleration Feed Forward

The velocity controller (Figure 4.18) evaluates the difference between the reference and actual
velocity value (vac;) measured with a rotary encoder attached to the motor. A reference current
value (iry) is generated every £ seconds by a Proportional-Integral-Differential (PID) strategy.
Acceleration feed-forward is used in parallel with the velocity controller in order to minimise
the spikes caused by changes in velocity direction. A signal i, (holding current) is added to

the acceleration feed forward to counterbalance the axis load when the axis in the vertical

position.
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Figure 4.18 Block diagram of the velocity controller with acceleration feed forward [77]

The following relation calculates the reference current signal:

by =0, i, +ide,+aﬁ+i,,,

Where, i, =k,
b =k, [v,dt
., dv,
lder —Ryg dt
a.=k dﬁ
Vi af
dt
ve = vref - vacl

(4.62)

- (4.63)

(4.64)

- (4.65)

| (4.66)

(4.67)

Here k,, k;, k4 are the proportional, integral, and derivative gains of the velocity error v,,

respectively. &,y is the acceleration feed forward gain. The TLM transform of equations (4.70

- 4.75) for the cycle time ¢, gives:
brog (K) =1, (k) + i (k) + i, (k) + @y (K)

1,(k)=k,v,(k)

I (k)= Z,v, (k) + E{ (k)
E[(k+1) =i, (k)

Laer () = Z,v, (k) + E} (k)
Ej(k+1)==Z,v, (k)

a5 (k)=Z v, (k)+EL (k)

Ey(k+)==Z_v (k)
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v.(k)=v,, (k)-v,, (k) (4.76)

Where, Z, =kt 4.77)
Z,=k,lt, (4.78)
Zy=kylt, (4.79)

A filter is generally used in the velocity feedback to damp the fundamental frequency of the
control system, when it is higher than 500 Hz. A 1¥-order low-pass filter is used when the
oscillation frequency is between 500 and 700 Hz. A 2™-order low-pass filter is used if the
oscillation frequency is higher than 700 Hz [77].

When the controlled system is insufficiently damped (e.g. direct motor coupling or roller
bearings), it will be impossible to attain a sufficiently short settling time without inducing
oscillations in the step response of the velocity controller. The step response will oscillate
even with a low proportional factor. A 2™-order lag element (PT;) is used to include a delay
in the reference current (i) to damp the frequency interference oscillations. _

A band-rejection filter is included in series with the PT; element to damp oscillations that
cannot be compensated by the differential factor of the velocity controller, the PT: element, or .
the low-pass filter.

These digital filters are modelled as implementations of the standard difference equation:

(D g (k) = b(Di s (k) + B(2)i o (k= 1) +...+ B(2N + Di;(k—=2N) (4.80)
—a(2)iq,ef(k—l)—...—a(2N+1)iq,ef(k—2N) '

Where, b and a represent the numerator and denominator coefficients of the filter. N is the
order of the filter [78].

4.3.4 Current Controller and PWM Generation

The control of an AC motor is performed by controlling independently the currents in the d
and g axes. The component of the current in the d direction generates a field component on
the d-axis, corresponding to the magnetising field in the stator of a DC motor. Similarly, the
component of the current on the ¢ direction generates a field component on the g-axis
inducing rotor current to produce the motor torque. In motors employing permanent magnet
rotors, the g-axis current determines the magnitude and direction of the torque. The control
strategy is achieved by regulating the g-axis current to follow the reference current command
from the velocity control. The d-axis current is controlled to be zero, Figure 4.19 illustrates

the Space Vector (SV) PWM approach for implementing this type of current control, as
presented by Prokop and Grasblum [79].
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lgrr =0 o | €dref Core signal
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to PWM Inverter
; e,
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]
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iq ia iy
a- ﬂ a-b-¢ ib
N to R to -
lq d- q llg o- ﬁ i,

Figure 4.19 Space vector current control structure [79]

The current controllers evaluate the difference between the reference Currents igye, igrer and the

actual currents ig, i, calculated from the lay s, I currents measured on the motor. A reference
voltage values ey, ey are generated every ¢ seconds by a Proportional-Integral (PI)
strategy. Figure 4.20 illustrates the iq current controller. '

lgref + Ige k + G
p

— kaJ.

Figure 4.20 i, current controller

The equations for both controllers are:

Corer = Kplye + ki i dt (4.81)

oy = ki, +k, L, dt (4.82)

Where lje =iy — 1, (4.83)
ge =y =i, (4.84)

Here k,, and k; are the proportional and integral gains of the current errors iy, and iy,

respectively. The TLM transform of equations (4.93) to (4.96) for a cycle time ¢ gives

Lie(K) =iy (k) =i, (k) (4.85)

Cures (K) = Koyl (k) +1, (K)Z,, + E!, (k) (4.86)
E,(k+1) =i, (K)Z, +E. (k) (4.87)

Lo (k) = i () =i () (4.88)

Curer (K) = ko b0, (k) +i, (K)Z,, + E! (k) (4.89)
E (k+1)=i,(k)Z, +E! (k) (4.90)
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Where Z,=k,t, (4.91)
In the SV-PWM approach, the sinusoidal 3-phase voltages e,, e, e, (equivalent to the desired

stator reference voltages eqr, egr) are approximated by the voltages (e,y, egn, ecn) resultant

from the switching of the power bridge illustrated in F igure 4.21.

LTI

y | ;
0O —e B ' \

ET/ 3% EJ;/ ““““““““

Figure 4.21 Power bridge (Inverter) [79]

Vpc/ 2 ——

-0

The six power transistors in Figure 4.21 are activated by a, b, c signals and their respective
complement PWM signals. The switching of the switches representing the power transxstors
leads to the eight possible combinations contained in Table 4. 1. The resultant voltages applied
to the motor are referenced to the virtual middle point of the link voltage in the inverter Vpe).

Equation (4.92) expresses the conversion of each motor phase to their neutral voltages.

€40 €s0 €co €uN €N €cN
Vocl2 | Vpcl2 | -Vpel2 0 0 0
Vocl2 | -Vpcl2 | Vpel2 “Voc/3 | Vpel3 | 2Vpe/3
Vocl2 | Vpc’2 | -Vpcl2 Vocl3 | 2Vpel3 | -Vpel3
Voc/2 | Vpel2 Vocl2 | -2Vpe/3 Vpc/3 Vpe/3
Voc/2 | -Vpcl2 | -Vpel2 2Vpe/3 | -Vpel/3 “Voe/3
Voc/2 | <Vpel2 Vpcl2 Voc/3 | 2Vpe/3 | Vpel3
Vpc/2 Voc/2 | -Vpcl2 Voc/3 Voc/3 | -2Vpel3
Vbel2 Voc/2 Vpel2 0 0 0

== =] =] O O Ol 8
—] =] Ol O ~| =] o] o] o
— O] =] O] —~=| O ~|ola

Table 4.1 Inverter output voltages

€N 2 -1 -1fe,,
e |= 3 -1 2 -1le, (4.92)
ey -1 -1 2 |e,

The projection of the eight possible e4w, egy, ecy voltages in the @, B coordinate (equation
(4.93) system gives the eight combinations that €a, eg Vvoltages can take according to the
status of the PWM signals (see Table 4.2). Figure 4.22 presents the representation of the

eight base vectors in the ¢, f coordinate system.
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e.| [1 o 0 6 103
es| 10 —1/43 1743 | (4.93)

€cv

a b c e, €s

0 0 0 0 0 é,
0 0 1 Ve /3 | - Ve /I3 é,
0 1 0 Vo /3 V.. /\3 é,
0 1 I -2V, /3 0 é,
1 0 0 2V, 13 0 é,
1 0 1 Ve 13 -V, /3 é,
1 1 0 Voel3 V.. /I3 é
1 1 1 0 0 é,

Table 4.2 Possible stator voltages

o |

B
62‘ €6
VA
5 3
€3« 7/ eg e

>e4-——>

a

4 2

€] ’ €s

Figure 4.22 Voltage base vectors

The method used to approximate the desired stator reference voltage with the eight possible
states of the switches is to combine the adjacent vectors of the reference voltage and to
modulate the time of application of each adjacent vector. Figure 4.23 shows an example of a

reference vector in the third sector.

Figure 4.23 Projection of the reference voltage vector
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The PWM signal is then conformed for each sector by the application of seven stator voltages
as presented in Table 4.3. The application of each stator voltage is denominated switching-

state. The corresponding PWM signal for sector three is illustrated in Figure 4.24.

Switching-state 1 2 3 4 6 7
sector
1 & | & | & e, e | g é,
2 -.0 ES -.4 é’7 é4 éS é.0
3 & | ¢ e é, e | e é,
4 é, é, é €, é e, é,
5 é, e, é | ¢ é | ¢ é,
6 -'0 -‘l -.5 -.7 -.5 *I -.0

Table 4.3 Switching-state stator voltages

\ ; ;- - -
I L€, & (& . € | ¢ |
| i i | i i
PAMy o :
t 1 | 1 ) B—
i 1 L ! | i
! 1 1 ' i 1 {
WMy, ) ! o
e —
'\“ t l i i i i
! t ! 1 1 t
! | t | 1 i |
PWMc ! ! I i I I
! "
e S S |
i 1 i [ ) ' | i i
! ! | ' | 1 t |
:.____I_ Jd J A
Ch o g g D

Towm
Figure 4.24 PWM signal for a reference vector in sector 3

The durations the switching-state vectors are specified by:

21,68, +1,8)=5,, (4.94)
t = % —t, -t (4.95)
ty =21, (4.96)
t=t, (4.97)
t=t, (4.98)
t,=t, (4.99)

Where, f; is the switching frequency. The application of equation (4.100) in each sector leads
to three possible values (#,,) for ¢, and ¢;;

tye =M €00, (4.100)

Where Ly =[t, t, 1] (4.101)

y
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0 3

M. =Tpm 1.5 3/
e = 5 3 (4.102)

P15 372

Tpwm represent the period of the PWM signal. The values ¢, and 13 for each sector are

presented in Table 4.4,

sector 1 2 3 4 5 6
5] t,, "x -1, t; tx 'tv
t; t t, | | - | -

Table 4.4 Duration times of the switching-states

The sector in which the reference vector is found is calculated by the following procedure:

* Translation of the eg.r, eg.r voltages to the abe coordinate system

Cure =M e, - (4.103)
e, . 0 1 _
Where e =|e, Coper = L‘”f ] M, =| J3/2 =05 (4.104)
e, | o -J3/2 -05

e Calculation of the sector
l'fea>0 pabc(l)= ];
else Pan(1)=0;
ifey>0 pup(2)=2;
else pabc(z) = O;
ife.:>0 pu(3)=4;
else Par(3) = 0;

The sector is the resultant of the sum of the components of the p,. array:

sector = pupc(1) + papc(2) + Pabc(3) (4.105)
The model of the PWM generator (Figure 4.25) can be summarised in the following actions:

* Project the reference voltages €dref » €grgr I the @, B coordinate system (eaer , €g.r are

calculated according to equation (4.9))
* Calculate the sector in which the reference vector is found (equation (4.1 05)
® Select the base vectors for the defined sector according to table 4.3,
¢ Calculate the times ¢, and ¢; (equation (4.102) and table 4.4)
o Calculate times t;, t, 5, 15 and t; (equations (4.95-4.99)

The period of the PWM signal (7, »wm) 18 divided into Rpum slots of duration tpwm Seconds in
order to implement this procedure on a microprocessor. In this regard, the times ¢, to ¢, are
specified in terms of equivalent number of slots. The factor Rpwm 1s known as the resolution of
the PWM signal.
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Figure 4.25 PWM generator model
The model for the inverter (Figure 4.26) is described by the following actions:
* Select the series of stator voltages (e,, ep) to be applied from Table 4.3.
e Apply the stator voltage i during the time #, (i=1,2,3...7)
* Calculate the ey, egn, ecy voltages equivalent to the stator voltage i using the inverse Park

transformation (equation (4.8)) and inverse Clark transformation (equation (4.7)) .

sector € en
— —

f Stator a-f ean
—| voltage o f——
1 selection eg |a -b-c ecn
—_—] — ——p
Figure 4.26 Inverter model

4.4 Dynamic Models for Mechanical Transmission Elements

The equations that govern the dynamic behaviour of the mechanical transmission elements are
introduced in this section. For modelling purposes, the coupling, bearings, bearing housings,
the nut and table-slide are considered lumped parameter elements. The screw shaft is treated

as a distributed parameter element.

4.4.1 Non-linearities (Backlash, Friction)
Friction and backlash play an important role for applications involving high precision
positioning and tracking applications. Understanding of these dynamics is crucial in the
modelling exercise because they can deteriorate the performance of positioning systems (like
CNC axis feed drives) when moving slowly or at velocity reversals as underlined by Park et
al. [80].

Friction modelling has been the object of an ongoing research process and a number of
publications can be found in the literature. In contrast, backlash has been mostly referred as a

hysteresis loop. This section presents the description of the friction and backlash approaches

selected for this study.

61



4.4.1.1 Friction Model
As stated by Armstrong-Helouvry et al [81], friction models are generally conformed by the

sum of Coulomb and viscous friction and four additional components that shape the
behaviour of stick-slip motion in machines: Stribeck friction, rising static friction, friction

memory and pre-sliding displacement (see Fi gure 4.27).
F}. zero it[eady-smrc F:f

velocity

N

FH-\—’ FH+
i
P I
s, 38, 5§
HE
{3/ 53: 33

’_\--FH +-FH

a) Stribeck curve b) Friction curve including static friction

Figure 4.27 Stick-slip friction laws [82]

According to Armstrong-Helouvry [82], four regimes will be observed in oil or grease

lubricated contacts as shown in F igure 4.27a:

Non-sliding: Motion exists as the interface bonding sites deform elastically.

Boundary lubrication: Sliding occurs with solid-to-solid contact because of not adequate

fluid lubrication into the junction.
* Partial fluid lubrication: There is some fluid into the junction but not enough to fully
separate the surfaces.

e Full fluid lubrication: The surfaces are fully separated by a fluid film.

The static friction is the break away force and the magnitude of the Stribeck friction evaluated
with zero velocity (Zero steady state velocity). In lubricated metal-to-metal contacts, the
static friction rises from a lower kinetic value to the higher during the time required to expel
the fluid lubricant film from the contact interface (Dupont & Dunlap [83]). Then, the Stribeck
curve takes the shape illustrated in Figure 4.27(b).

Friction Memory represents the state of adjusting the new sliding conditions in the
interface to new values of the frictional force. When velocity changes, the friction does not
change instantly, but adjusts to its new value only after some time. This effect is modelled by
a simple lag (time delay) model as stated by Dupont et al. [84].

Pre-sliding displacement is a consequence of elastic deformation of the surface asperities

where contact and sliding occur ( Haessing & Friedland [85]).
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Karnopp [86] presented a stick-slip friction law that simplifies the Stribeck curve (including
static friction and pre-sliding displacement), to stick-slip behaviour with constant causality as
shown in Figure 4.28. This model represents zero velocity sticking without equation
reformulation or the introduction of numerical stiffness problems; hence, it has been selected

to model friction on the different components of the studied systems.

5
pit
A |4 f————

=1 |[j*—2D¥

LUy

Figure 4.28 Karnopp model of stick—slip friction [86]

In this approach the frictional force, Fy, is always a function of velocity, v. A region of small
velocity is defined as -DV < v < DV, Inside this region, v is considered zero. This region is
necessary for digital computation time since an exact value of zero will not be computed. The
magnitude of the static friction is represented by FH , and F, is the Coulomb friction. Figure
4.30 shows the block diagram of the algorithm for the computation of the frictional force
action on the system illustrated in Figure 4.29. In Figure 4.29, a force F is applied on a body
with mass m inducing the momentum P, the velocity v, and the friction force Fgw on the

system. The coefficient of friction is represented by 4.

v, P
—
F —
/4 -—
F gw

Figure 4.29 Linear movement of a rigid body

The following steps can resume the al gorithm for the calculation of the frictional force:

Step 1: Calculation of the impulse

P=I(F—Fgw) dt (4.106)
Step 2: Calculation of the velocity
0 |P|< DP
={P/mf0r P[> DP (4.107)
Where DP = uDv (4.108)
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Figure 4.30 Block diagram for the calculation of the Stick-slip friction [86]
Step 3: Calculation of the Slip Force (Fuip ) and stick force factor ( )

F, +uv v>DV
F,, = 0 for <DV (4.109)
-F +uw v<-DV
f W< DV
S, = 4.110
d {ofor > DY (4.110)
Where F, =9.81um 4.111)
Step 4: Calculation of the Stick Force (Fstick)
0 0,=0
Fog = 4.112
stick {sat(F) fO" af = l ( )
FH F>FH
Where satl(F)={ F for |F| <FH 4.113)
-FH F<-FH
Step 5: Calculation of the new frictional force value
Fgw = F;Iip + F:'licll (41 14)

Fyip and Fyyie are mutually exclusive, then steps three to five can be combined in one to define

the friction force as follows:
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F ={ Fip o M2DV (4.115)
. .

sat(F) V<DV
A comparison between the equations of steps one and two and the equation of the TLM model
of the system (in Figure 4.29) can be used to specify which changes could be done to the

algorithm in order to use it with TLM models. According to Newton's second law of motion:

dv
F-F =m— 4116
o 7 ( )

Applying the discrete transform to equation (4.116) for a time step ¢, gives:
F(k)-F, (ky=wk)Z,+E'(k) (4.117)

Z,=mlt, (4.118)
Where Z, is the characteristic impedance and E'(k) the incident pulse in the simulation at the
simulation step k . Rearranging equation (4.117) gives:
F(k)-F,,(k)-E'(k)
VA

o

By comparing equation (4.119) with equation (4.107) when |P| > DP it can be deduced that

the impulse may be expressed in terms of TLM variables, thus:
P(k)=F(k)—~F,,(k)-E'(k) C (4.120)
v(k)=P(k)/ Z, (4.121)

As a TLM model is considered an equivalent electric representation of a system, forces are

(k) = (4.119)

represented by voltage sources and velocities by electric currents. Hence, the impulse is
characterised by the sum of voltage sources and the mass is represented by the impedance of

the electric circuit. Steps for the calculation of the friction force can be then adjusted and

expressed as:

Step 1: P(k) = Zvoltages (4.122)
. [ o |P(k)|< F,
Step 2: v(k)= {P(k)/Zo for |P(k)| >F (4.123)

F, + wv(k) v(k)> DV
Step 3: Fo,(k+1)=13 sa((F(k)) for |v(k)<DV (4.124)
- F, + uv(k) v(k)<-DV

FH F(k)> FH
Where sat(F(k)) =4 F(k) for |F (k)l <FH (4.125)
-FH F(k)<-FH
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Equation (4.124) implies a friction memory (equivalent to the simulation time step) in the
friction model. This feature can be exploited further to include adequate values of friction
memory. This TLM version of Karnopp's friction model (Figure 4.28) will be represented, for
the purposes of this study, by a dependant source of voltage as shown in Figure 4.31.
+ Fpy -
D2 N
> w

Figure 4.31 TLM representation of frictional force

4.4.1.2 Backlash Model

Backlash is a play between nut and screw shaft that has the effect of temporarily uncoupling
and re-coupling them when changing velocity and direction (Oakley [87]). It increases with
wear and affects the accuracy of the feed drive (bi-directional repeatability, positioning errors,
straightness and others).

Approaches for the modelling of backlash include the formulation of describing functions
and the specification of equations related to the series of events that conform this non-
linearity. Equation (4.126) represents the describing function for backlash in gearing derived

by Stockdale [88] and the meaning of the variables is depicted in Figure 4.32.

QUTPUT RADIA
) ('nom:nmgs n

Backlosh

macxLAM | - SACKLASH

(R

Ex@mm':em
back lash taken 1)*

(teeth re-engoge

Mn-houlozon

Sasinw)

Figure 4.32 Input signal, hysteric backlash and output waveform [89]

As stated by Robertson [89], the disadvantages of describing functions include:

¢ The prediction of a limit cycle even though it does not exist;

* The determination of values for amplitude and frequency that could be different from the

true values;

66



e A limit cycle may not be forecasted even though it actually exists.

N(jw)=%H%+‘P+[1—Z—bjcos‘l‘}+jg—”{3—”—2}jl (4.126)

Kao et al. [90] presented the mathematical model of the hysteric backlash representation
according to the possible four events presented in it (Figures 4.33 and 4.34).

Xd

~ D

ZZ,M

Figure 4.33 Input-output characteristic of backlash [90]

If d, is the position of the nut; d, the position of a point a on the shaft towards the nut; D the
backlash distance; Ad, the incremental position feedback at the i* time step; d,(i-1 ) the

relative distance at the (i-1)" time step. The possible situations can be expressed as:

e Figure 431(a): If0<d,(i) <D and 4d, > 0 then point d is stationary
 Figure 431 (b): 1fdu(i) > D then d(i) = di-1) +d,(i) - D and d,(i)=D
e Figure 4.31 (c): If0<d,(i) <D and 4d, <0 then point d is stationary
 Figure 4.31 (d): Ifd,(i) <D then d(i) = d(i-1) +d,(i) and di(i)=0

d=0
I
> a
a) = - ﬁ"IT - nut
| Ady = dl(')
(1) g, "
b) —— e
: _l_‘/ nut
|
I | dd, fs-
1
! d,(i-1) da () =dy(i)
(9] “<J1:
ﬁ_‘”;’[*‘“ I nut
‘ *1 ad, |-
dy(y |
PR
|
4 =—=——=13

-~ 44,

440 =dutd 4
a

Figure 4.34 Four possible situations for the backlash model [90]

As can be seen, this model of backlash does not include differential or integral terms,
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Fp - resulting bearing load [N]
Fy, F, - radial and axial loads acting on the bearing (Figure 4.38),
Xb, Y5 - load factors
by — bearing coefficient of friction
Equation (4.128) can be approximated to the expression in equation (4.131) when the

operational velocity range of the bearing is lower than 2000 RPM [93].
T;y=bw [N-m] (4.131)
The stiffness of the bearing mounting (fixed case) is represented by a spring contact

comprised of the bearing and the bearing housing subject to the axial force F, acting on the

bearing as illustrated in Figure 4.39. m,;, represents the sum of masses of the bearing inner

ring, the tightening nut and the shaft section not subject to axial tension.

ke Kepw — mb
b bh ‘
Fo———s b AN —5 T .
db dbh 7,"[,

Figure 4.39 Stiffness representation for a bearing mounting

The displacements of the points b, bh and mb are represented by the variables dp, dprand d

respectively. mb is the contact point of the bearing housing with the machine bed. The

dynamic equations for this arrangement are:

Fa = krb (db - dbh) (4.132)

d
Fo—ky(dy,—d,,)=m, Evbh (4.133)
Where ky, and k.4, represent the bearing and bearing housing rigidity. Assuming the rigidity of
the machine bed to be infinite (d,,=0) gives:

Fy~kpdy =m, Ly, (4.134)
dt
The velocities of the bearing mounting ends are:
Ve = idb
dt (4.135)
d

Ven = deh

t (4.136)

Substituting equations (4.135) and (4.136) in equation (4.134) gives:
Fy=ky [(v, = vy)dt =k, [v,,de (4.137)

Substituting equation (4.136) in equation (4.133) gives:
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Fo =k, |yt m, ditvbh (4.138)

Applying the discrete transform to equations (4.137) and (4.138) for a time step ¢, gives:

F,(k)=v,,(k)Z, +E', (k) (4.139)

Fo ) = v (6)Z,,, + Efyy (k) 4 v, ()2, + E. () (4.140)

Where, Z, =t /1/k,) (4.141)
E,(k+1)=E'\ (k) +v,, (k) (4.142)

Zy=t,MU/k,,) (4.143)

Ep(k+1) = Eyy (k) +v, (0)Z,,, (4.144)

Zpy=m, /1, (4.145)

Epy(k+1) =-v,,(0)Z, , L (4.146)

Figure 4.40 shows the TLM model for the bearing mounting stiffness,

177 Zarb Vyp +E gy -

Zrhh

E rbh

Figure 4.40 TLM model for the bearing mounting stiffness

4.4.4 Guideways and Slides

Linear motion guideways can be classified as: Sliding contact guideways (slides) and rolling
contact guideways. In the sliding contact guideways, the relative motion between the elements
is sliding, thus giving rise to sliding friction. Rolling guideways consist of a rail with ground
ball tracks as well as a block. Continuously rotating balls ensure low friction and connect the
block with the rail. The balls are kept in the slide way of the block by a cleat so that the
installation of the components is possible without additional auxiliaries. The block is
protected against the penetration of dust on every side by scrapers as shown in Figure 4.41
[94].

Advantages of using rolling contact guideways instead of sliding contact guideways
include [95]:

* The efficiency will be more than 95% due to the low coefficient of friction; hence, a much

more compact motor will be sufficient to run a roller guideways system.
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* Absence of ‘stick slip’ phenomena permits uniform motion at low speeds, which results in
very high positioning accuracy.

¢ Insliding guideways, the quantity of oil film between slides is subjected to variation with
speed of travel of slides and cutting forces. Rolling guideways have a preloaded metal to
metal contact with negligible oil film and are therefore subjected to negligible change in
the position of slides between static and dynamic conditions.

e Efficient lubrication, heat dissipation and other maintenance need not be given much

importance in rolling guideways. This will save a lot of maintenance cost and time.

LM block

Figure 4.41 Rolling contact guideway [95]

Frictional resistance in rolling guideways varies with the magnitude of the preload, the
viscosity resistance of the lubricant used, the load exerted on the system, and other factors,
An example of a graph of the friction coefficient as a function of the imposed load ratio is
shown in Figure 4.42 [96]. The load ratio (Mgw / Cgy ) in Figure 4.42 is defined as the ratio
between the imposed load (M,,) and the basic dynamic load rating of the guideway (Cp,),

where:
M, =mg (4.147)

Parameters m and g in equation (4.161) represent the mass of the load and the gravitational
acceleration respectively.

0.015

0.010

0.005 -\

Friction coefficient 1 gw

0 0.1 02
Imposed load ratio

Figure 4.42 Relationship between imposed load ratio and friction coefficient [96]

When radial (F,,) and lateral (Fj,,) loads are exerted on the block simultaneously (Figure

4.43), an equivalent load (F) is calculated using the following equation:

FE =)(radFrad + YlatFlal (4148)
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Where X,z and Y, represent the equivalent factors according to the configuration of the

guideway.

Figure 4.43 Forces acting on the carriage block of a guideway [97]

Accordingly, the force of friction acting on the guideway (Fg,) is defined as [97]
Foy = Fppo+ b, Fp + bV, (4.149)
Where by, is the friction coefficient, Fwo is the frictional force of the guideways under no-

load and v; is the velocity of the load. Doing:

Fy=F,,+b_F, (4.150)
Fi=b,y, @.151)

Equation (4.149) becomes
Foo=F, +F, (4.152)

4.4.5 Coupling
The coupling consists of two hubs and one flexible intermediate ring in the form of a star

(Figure 4.44a). The ring is pressed under a slight pretension into the claws to achieve
backlash-free torque transmission, as shown in Figure 4.44b [98]. The coupling is used to

accomplish the following functions:

* To transmit the torque induced in the motor to the screw shaft.

* To compensate radial, axial and angular shaft misalignments.

¢ To isolate the motor against axial vibrations experienced by the ball screw arrangement.

hubl hub2

Figure 4.44 Coupling [98]

Given the mass moment of inertia of a rotor hub (Jo), and the angular velocity of the hub (w),
the energy conversion process in the hub is governed by the equation

T =J (do/df) (4.153)

The coupling torsional stiffness is considered a linear spring subject to a torque T, as shown in
Figure 4.45.

73



ke T,
/O—J\N\/\r—o\

Figure 4.45 Representation of the coupling stiffness

T=k,(0,-6)=k.6 (4.154)

Where: k. - Torsional stiffness of the coupling [N-m/rad]
6. — Displacement of the end m of the coupling [rad] (in contact with the motor)
6, — Displacement of the end 7 of the coupling [rad] (in contact with the screw)
0. - Relative displacement of coupling ends [rad]

The velocities of the coupling ends will be:

w, =d6, /dt (4.155)
=d6, /dt - (4.156)

Rearranging equations (4.155) and (4. 156) and replacing them in equation (4. 154) gives:
=k, [(&, -oy)de =k, [w,ar (4.157)

Where @), represents the angular velocity of the end m, @, is the angular velocity of the end /

and @ the angular velocity of the coupling. TLM stubs model the hub 1nert1a and coupling
stiffness, as shown in Figure 4.46.

Inertia hubl Inertia hub2
————————— - -9 Pm e m e o S
@ : Z, +E'c]-: w : Z, +E’t?':
m i : .
‘ >
,,,,, K N _ . _
+ 1z +
] |
i i
Te : @ : Tc
b +
] i 1
. : Ec_‘.l
)
I i

Coup]ing étiffness
Figure 4.46 TLM model for coupling

The TLM transform of equation (4.1 53) for the considered propagation time ¢ is:

T(k)=Z,a(k)+ E! (k) (4.158)
El(k+1)= ~Z.w, (k) (4.159)
Z,=J, It (4.160)
Applying the discrete transform to equation (4.157) for the time step ¢, gives:
I(k)=w,(k)Z,, +E! (k) (4.161)
EL(k+1)=T(k) (4.162)

74



Z, =t 1/k,) (4.163)

The discrete transform for equation (4.155) gives:
0,(k)=tw,(k)+E, (k) (4.164)
E,(k+1)=6, (k) (4.165)
4.4.6 Worktable

The movement of the worktable on the guideways is represented by the system illustrated in
Figure 4.47

Figure 4.47 Linear movement of the worktable

In Figure 4.47, a force F; and the horizontal component of the cutting force F, are applied on
a rigid body with mass m inducing the velocity vy, the displacement d; and the frictional force

Fgv on the system. The dynamics of the worktable are given by:

F(O)-F.@)-F, (= m%v,(t) . (4.166)
4= [v(ds (4.167)
The discrete transform of equations (4.166) and (4.167) for a time step ¢, gives:‘
Fy (k)= F,(K)~ F,, (k) = Z,v,(k) + E! (k) (4.168)
E{(k+1)==Zv,(k) (4.169)
d,(k)=1t,v,(k)+ E. (k) (4.170)
Eyk+1)=d,(k) (4.171)
Z =mlt, (4.172)

________

Figure 4.48 TLM model of the worktable movement
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4.4.7 Nut

The nut is considered a linear spring subject to an axial force F,, as shown in Figure 4.49.

kyn
F, ———4 ) e F,
el
Figure 4.49 Representation of the nut rigidity
F,)=k,(d,)-d,))=k,d, () (4.173)
k., =0.8k,(F, /(0.1C,))" (4.174)

Where &, and k,, represent the nut rigidity and the resulting rigidity of the preloaded nut with
mounting bracket respectively. d; and d, are the displacement of points d and /. F, is the

preloading force applied to the nut and C, the dynamic load rating of the nut. The velocities of

the nut ends (v; and v;) will be:

d d .
va(t)=2d () w1 = 2d,0) (4.175)
Rearranging equations (4.175) and replacing into equation (4. 173) gives:
F, =k, [v, ~v)dt =k, [v,ar (4.176)
Va !
+ Zns
F, Vi
+
E,

Figure 4.50 TLM model for the nut stiffness

The nut is the coupling element between the ballscrew and the table, then a stub, as shown in

Figure 4.50, models its stiffness. Applying the discrete transform to equation (4.176) for a

time step #; gives:

Z,=(t)/(1/k,) 4.177)
F,(k)=v,(k)Z,, + E (k) (4.178)
EL(k+1)=F, (k) (4.179)

The nut is pre-loaded to make its axial clearance (backlash) zero and reduce the displacement

with respect to the axial load [99]. This pre-loading induces the resistance torque T, on the

screw shaft, which can be expressed by:
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T,=Tn (4.180)
T, =0.005(tan B,)*°F, I /(27) (4.181)
tan(B,) =1, ((nB,,) (4.182)

Where T, is the reference torque, n the reduction ratio of the ballscrew, S the screw shaft
lead angle, F,, the nut pre-loading load, /; the lead (pitch) of the ballscrew and Bcp the nut
ball circle diameter.

4.4.8 Interrelation Between Nut and Screw Shafit

The rotational torque (7;) required to counter balance the external load (7, and the pre-

loading of the nut is calculated in concordance with [99]:

Li=T,+7, (4.183)

The rotational torque required to counter balance the external load is given by:
T, =k,F, (4.184)
k, =1, (n21)) | (4.185)

Where 4, is the force to torque conversion and & represents the ballscrew efficiency. The

following equations are valid for the transformation of rotary movement to linear movement:

d,(t) =k,6,(t) ' ' (4.186)
v,(8) =k, () | (4.187)
a,(t)y=k, %wa ) (4.188)

Where 8,4, @, v, and a, are the angle, the angular velocity, the velocity and the acceleration

evaluated at the contact point between the screw shaft and the nut. Figure 4.51 illustrates the

TLM model for the interrelation between the nut and the screw shaft.

+7,-
+ +
+
T, kaa<> <>k,,wa F,

Figure 4.51 TLM model for the nut with pretension

The dynamic effect of the torque 7, acting on the screw shaft is similar to the effect produced

by the load component of a frictional force, thus
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®,=0 for  |P<F, (4.189)
Where P=T,-k,F, (4.190)

4.4.9 Screw Shaft with Moving Nut
The screw shaft is considered an elastic shaft of length I with diameter dss, mass polar
moment of inertia per unit length 7, and polar moment of inertia of the cross section Jis; made

of a material with Young's modulus E,;, shear modulus G , and mass density Pss. The shaft

is mounted on two bearings as shown in F igure (4.52).

l -
l,- s§ J
ln s
— b N
T e f | dy Q
I
I | 4
'QGE,}"“‘_TN ~~~~~ -] - o Ry —— y S
coupling Nut ‘
- I, .
V2 7
Front Rear
bearing bearing

Figure 4.52 Ball screw arrangement

The positions of the front bearing ({), rear bearing (/,) and nut (I») are defined taking as a
reference the screw end attached to the coupling. /, is the absolute pos'ition' of the reference
point for the movement of the nut. The ball screw stroke length is denoted /. It is also
considered that a counter clockwise rotation of the shaft (looking down on the axis) will cause
the nut to move towards the rear bearing (positive direction of motion),

As Rao [100] presented, the dynamic behaviour of a shaft subjected to torque about its
longitudinal axis is represented by:

G 7 Sy

2
w2 7 ()= 1, EXD

o’ (4.191)
Where () represents either the angle of twist 0 (x,t) of the cross section or the torque 7(x,?);

and 7; (x) is the external torque acting on the shaft per unit length. If 7, (x) = 0 (free vibration)

and /,=pssJ;s (uniform cross section), equation (4. 191) reduces to

Syt _ 1 8%(x,1)
& Th & (4.192)

Where the velocity of propagation of torsional waves on the material is

u=\G,/p, (4.193)

Equation (4.193) is modelled by a TLM link (See Table 3.5 pp. 42) with the following

78



characteristics:

Z,=1u, (4.194)

t,=1 /u, (4.195)
u, represents the speed of propagation of the torsional waves, Z, is the characteristic
impedance, and ¢ is the propagation time of torsional waves on the material. As can be seen,
for a given shaft the speed of propagation depends on the material characteristics, the
characteristic impedance is dependent on the geometry of the shaft (because the inertia is
defined by the geometry), and the propagation time depends on the length of the shaft.

To include the dynamic effect of the moving nut, the shaft is divided into h; equal sections
as shown in Figure 4.53. This approach assumes that the dynamic behaviour of the shaft i is
approximately the same between the limits of each section. This procedure will also help with
the synchronisation of the simulation when including other dlstnbuted components. A
negative effect of that discretisation of space is that the number of natural frequencies of the
system is limited by the number of sections. The limiting case will be an infinite number of
sections, each infinitesimally small, which is precisely the distributed-parameter model. As
more sections imply the necessity of more computational resources, a general solution is to
limit the number of sections according to the frequencies of interest. This is a normal practice

when using other numerical methods as FEM and FDM, as stated by Doebelin [101].

.T,,,J T, A T,

/A Y P B — S ) E— - ‘Lﬁ ______ — A— 1.
k J
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I
i
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3
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2

section section section section section

5 h-3 hi-2 k-l
A / / A /\' /\' ves M\ & / /’\' /\
Ty T, T; Ty Ty Ts Theay Ty Thrs Ty
w; () (2] ay o ak Dp.3 D2 Wpy. g Wy Dnrey

Figure 4.53 Screw shaft divided into h, sections

In Figure 4.53, the point where the dynamic effect of the nut (torque 7T,) affects the shaft
changes as the nut moves (like in the real system), but jumping from section to section. As a
result, a model that changes with time is obtained. Tiand ey, forj=123 ... hit1, represent
the torques and angular velocities at the boundaries of the sections,

The same approach is applied for the equation of motion for the longitudinal vibration —
equation (4.196). The function y(x,) represents either the force F acting on the shaft or the

axial displacement of the shaft d, and u, the velocity of propagation of axial waves,

u=\E,/p_ (4.196)
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azfg’t):i&gf’t) (4.197)

The model for the equation (4.196) is a TLM link with the following characteristics:
Z,=p,Au, (4.198)
t,=1l1u, (4.199)

Where, Z, is the characteristic impedance and ¢, is the propagation time of axial waves on the

material. The constant cross-sectional area of the shaft (Ass) is defined as

A, =n(d, /12y (4.200)
Each section in the torsional model is modelled by a TLM link with characteristic impedance
Z, and incident voltages 4" and B';. A TLM link with characteristic impedance Z, and incident
voltages A, and BY; model each section of the axial model. As a result, the model parameters

of each section in the torsional model are: the velocity of propagation u,, the impedance Z,,

and the propagation time ¢, were;

t, =1 /(hu,) | (4.201)
The velocity of propagation u,, the impedance Z,, and the propagation time f, are the
parameters of each section in the axial model:

t, =1, l(hu,) - (4.202)
As can be seen, the torsional and axial propagation velocities are different (equation (4.193)

and (4.197). This leads to different torsional and axial propagation times for the same section

length. A synchronisation method must be implemented to assure that torsional and axial

waves arrive to the same point at the same time.

A solution to this modelling restriction is achieved by setting up the equations for the

torsional and axial models according to the procedure presented in Appendix C thus:

o The screw shaft is divided into A, sections for the torsional model and the torsional model
is synchronised with the motor and coupling models by setting the length of each section

(Lior) such as the propagation time becomes a specified tpwm Sampling time, thus:

tt = tpwm (4203)

h, = ﬂoor( b ] (4.204)
’ LG P, '

Lo =1, 1, (4.205)

floor means to round the value between parentheses to the nearest integer towards

minus infinity.
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e Then, u, and Z, become: U=l Ity (4.206)

Z =Ly, (4.207)

¢ Asaresult, the material density of the shaft is estimated as:

P =G/ uf (4.208)
e Each torsional section is divided into », axial sections to assure that axial and torsional

pulses arrive to the same point at the same time. Subsequently the number of sections of

the axial model (4,) will be », times the number of sections in the torsional model, (n,=8
and n,=5)

h, =n,h, (4.209)
 The length of each section in the axial model (/) will be

Vi =1 1 R, (4.210)
o The propagation time and the velocity of propagation for the axial model are:

u, =un,/n, ' (4.211)

ty = lia 1 4, (4.212)

Z, is calculated using equation (4.198).

Appendix D presents the derivation of the TLM torsional and axial models for a ball screw.
Figure 4.54a shows the derived TLM torsional model of the screw shaft. The front bearing is
on the f, section, the nut is on the » section, and the rear bearing is on the 4, section. The
TLM axial model for the screw shaft on a fixed/fixed configuration is shown in Figure 4.54b.
Figure 4.54c shows the TLM axial model for a fixed/supported configuration.

4.5 Transducers

Two types of encoders are used in applications for digital feed drives: Rotary and linear

encoders. The rotary encoder is mounted on the motor and performs the following roles:

e Tachometer for speed actual value sensing,
¢ Rotor position encoder for inverter control.

e Indirect measuring system for the position control loop.

The linear encoder is used as a direct measuring system for the position control loop. These
encoders (sin/cos type) operate on the principle of photo-electrical scanning of a very fine

grating. Two scanning principles can be used depending on the fineness of the grating [102]:
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Figure 4.55 Sin/cos incremental encoders [102]

o The imaging principle for rotary encoders, angle encoders and linear encoders with grating

distances of 20 um to 100 um.

e The interferential principle for linear encoders with grating distances of 8 Mm and 4 um.

In the imaging principle, a scale with a line grating (glass graduation carrier) is moved
relative to another grating with the same structure (the scanning reticle) modulating a beam of
light whose intensity is sensed by photoelectrical cells. Figure 4.55 shows this principle for
rotary and linear encoders. The scanning reticle has four line gratings, which are offset to each
other by one-fourth of a grating. The photocells for the incremental track generate four
sinusoidal current signals as shown in Figure 4.55c. These current signals are added to
produce two 90° phase-shifted (electrical) sinusoidal signals (4 and B).

A second track carries a reference mark that modulates a reference mark signal R at a
maximum once per (mechanical) revolution. This signal often serves to locate a specific

position during the shaft rotation. Movement direction is determined by detecting which one
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of the two quadrature-encoded signals (A or B) is the leading sequence. The incremental
count and hence the incremental position is determined by a timer that counts up when A is
the leading sequence and counts down when B is the leading sequence.

When digitised, both edges of A and B are counted, thus one incremental step is
equivalent to a 90° phase shift of the signals, A and B. The incremental position for a rotary
encoder, ¢, is given by [103].

¢=(360/4N)incr + ¢, (4.213)
Where incr is the timer count or incremental count, N is the line count of the encoder and @ is
the zero position. The line count of a rotary encoder is the number of periods of signals A and
B over one mechanical revolution. The incremental position for a linear encoder (S) is given
by equation (4.214). S, represents the zero position and T is the output signal period.

S=(T,/4)incr+8S, (4214)
One of the major advantages of the sine encoder is the ability to "intérpolate" each complete
sine wave, which greatly increases the system's resolution. The phase ¢ of the sinusoidal
signals A and B can be used to interpolate the position between two consecutive line counts or
four incremental steps, which are equivalent to each other.

As an example, a sin/cos encoder with a resolution of 2048 line per revolution (line count)
used with an amplifier that has an interpolation factor of 256, prow)ides .an encoder output

resolution of 2048 * 256 * 4 =2097152.

90+arctan(B/4) A20
270+arctan(B/4) A4<0

(4.215)

sin/cos encoders with Z track include two auxiliary sinusoidal channels called C & D, whose

specifications are the same as for incremental signals A & B. Signals C & D are used to

provide absolute positioning within one revolution.

Rotary and linear encoders are regarded as lumped parameter elements. Therefore, the

following actions are considered for modelling purposes:

¢ Rotor inertia (J,.) of the rotary encoder will be added to the motor inertia.

¢ Coefficient of friction of the rotary encoder bearings (1) will be added to the motor

bearings coefficient of friction.
o Mass of the linear encoder (m.) will be added to the table mass.

¢ The required moving force (F}.) for the linear encoder will be added to the static force of

friction of the guideways.

o These are considered as feedback elements with transfer function equal to one.
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4.6 Summary

The development of a transmission line model for the elements of a typical arrangement of a
CNC feed drive has been presented in this chapter. TLM models for the torsional and axial
dynamics of the screw shaft were derived. In this regard a synchronisation approach between
the axial and torsional models was depicted.

A modelling example of a shaft divided into eight sections was undertaken in order to
derive the general equations for the TLM model. It was concluded from this exercise that
pulses are propagated throughout the shaft until a disturbance is present in the system (torque
or force). At those points incident pulses are reflected according to the boundary conditions.
Therefore the equations of the model are reduced to calculate the velocities and incident
pulses at the.sections affected by the perturbations; and the propagation of incident pulses on
the other sections.

These TLM models of the feed drive elements will be taken as the basis for the modelling

of a single-axis and a two-axis feed drive of a Cartesian CNC machine tool in the next

chapter.
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5. TLM MODELS FOR CNC MACHINE TOOL FEED DRIVES

This chapter presents the development of TLM models for single-axis and two-axis CNC feed
drives. The TLM model for a single-axis test rig is presented in the first section (the test rig is
representative of the y-axis of a Bridgeport Vertical Machining Centre). This model is taken
as the basis for the modelling of one-axis and two-axis feed drive of a Cartesian CNC
machine tool as described in the second and third sections (5.2 and 5.3) respectively. The
effects of geometric errors and the displacement of masses in a two-axis machine tool are also

considered.
5.1 TLM Model of the Single-Axis CNC Feed Drive

The test rig (Figure 5.1) is fitted with a TNC-426PB Heidenhain motion controller, a
SIMODRIVE-611 Siemens inverter, and a ball screw arrangement directly coupled to a

permanent magnet synchronous motor.

Figure 5.1 Bridgeport test rig
The TNC-426PB motion controller offers digital control for up to five-axis machining centre.
Functions of interpolation, position control, speed control, current control and PWM
generation are combined into one unit; therefore, the motion controller manages each inverter
unit by means of PWM signals. The control of each axis is implemented with an algorithm
following the principle of cascade control in conjunction with velocity and acceleration feed-
forward (see Figure E.1 pp 216). Functions for compensation of errors resulting from
mechanical imperfections (backlash and position axis error) are also included. Backlash

errors are compensated by subtracting a predefined value from the position encoder signal
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after a reversal in direction. The position errors caused by errors in the machine geometry are
compensated by subtracting predetermined values from the position encoder signals according
to values held in a looking up table [70].

The SIMODRIVE-611 consists of a common feed module that provides the DC voltage
link from the power supply mains and a set of drive modules that activate each motor. In the
case of the test rig, the drive module consists of a power module (inverter) and an interface
card that communicates the TNC-426PB .motion controller with the power module.

The nut of the ball screw system is preloaded and the screw shaft is mounted on preloaded
bearings on a fixed-fixed configuration.

The model of the axis feed drive is built by interconnecting the TLM models of the g
elements according to the TLM models presented in Chapter 4. In this regard, the dynamics
acting on the axis feed drive are defined by the interrelation of three blocks: The motion
controller, the inverter & motor electrical equations, and motor mechanical equations &
mechanical transmission elements as illustrated in Figure 5.2. Appendix E contains the

technical data of the test rig.

M otion Motor
Inverter . .
cormmands Motion PWM & T, mechamc:;i equations
———— -
controller Motor Mechanical
electrical equations ¢ nanic
transmission elements
L I Y

@0,

Figure 5.2 Test rig block diagram |

5.1.1 Motion controller

The motion controller (Figure 5.3) is implemented in software featuring the algorithms for

position, velocity and current control at different sampling rates [70]. That is:

o The interpolator generates a reference position value d.every 3 ms.
e The position controller generates a reference velocity value v,.r every 3 ms.
¢ The velocity controller generates a reference current value igrerevery 0.6 ms.

* The current controller gives a reference voltage value €dgrer t0 the PWM generator at a rate
of 0.2 ms.

The dynamic response-matching filter (1* order delay filter) is used to delay the position
profile signal according to the transient response during acceleration and deceleration (the

equivalent position time constant of the closed position control loop. Delay values can be set

in the interval 1 to 255 ms.
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Vebocity \
Motion feedforward
commands | ]
’ Acceleration Friction.
Interpoktor Coet, l;}:;’a;ll; oom 1,,,,]12::0,, ref A% ! Position | + + | feedforward | | compensation
matching filter . controller g ‘
d ref ag l_ﬁ
act tv/' t, N 1, N
Low-pass . &
filter
Ve
v T Velocity
Igact ot controlker
. Towm .
4_PWM PWM | Current N Bandstop || PT;
generator ‘edq,,ej controller + igref filter element ines +

Figure 5.3 TNC426PB Block Diagram [77]

The jerk limitation filter is used to adapt the position profile to the machine dynamics in order
to attain high machining velocity. The coefficients of the filter are calculated according to the
minimum order of the filter and the tolerance for contour transitions defined by the user.

The low-pass filter is used to damp the fundamental frequency of the TNC when it is
higher than 600 Hz. A 1st-order low-pass filter is used when the oscillation frequency is
between 600 and 700 Hz. A 2™-order low-pass filter is used if the oscillation frequency is
higher than 700 Hz.

The PT), element is used to include a delay in the reference current (ire) to damp the
frequency interference oscillations. Normal values are in the interval: 0.3 to 2 ms.

The Band-rejection filter is used to damp oscillations that cannot be compensated with the
differential factor of the velocity controller, the PTelement, or the low-pass filter.

Sliding friction is compensated within the range of the velocity controller by
compensating the sliding friction at low velocity and at the rated velocity of the motor. The
compensation at low velocity is achieved by feeding forward the reference current value
(measured at approximately 10 rpm) at every change in direction. The compensation at the
rated velocity is done feeding forward the current iz . according to the value of the reference
velocity (equation (5.2). A delay filter is included to prevent overcompensation when the
traverse direction is reversed at high feed rates. In a circular interpolation test, such

overcompensation appears in the form of reversal spikes that jut inward.

iﬁ(k)=iﬁ_,+iﬁ‘,v(k) (5.1
1 Vo (k) 2i g,

iy n(k) =30 (RO for v (0] <iy, | (52)
~1 i Vv, (k) < ~i g3y
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Where iy, is the reference current measured at the rated velocity of the motor, iy is the
reference current at 10 rpm and kg is the scaling factor.

The jerk-limitation filter, the low-pass filter, the PT > element and the friction
compensation are not included in the motion controller model because these modules are not
active in the actual configuration of the controller. Therefore the motion controller model is

reduced to the block diagram shown in Figure 5.4.

The interpolator generates the position profile (dref) for the axis according to the procedure
presented in section 4.3.1.

The position controller with velocity feed forward has the structure presented in section
4.3.2. The TLM model for this module is represented by equations (4.60) to (4.63) for a
sample time #,=3 ms.

The velocity controller with acceleration feed forward has the structure presented in
section 4.3.3. Equations (4.55 — 4.61) represent the TLM model for this module (t= 0.6 ms)

The band-stop filter is implemented as the transposed direct-form II structure (Figure 5.5)
of equation (4.80), where -1 is the filter order. This is a canonical form that has the minimum

number of delay elements [104]. At sample £, the routine computes the difference equations:

b ey () = num(1)i, ., (k) + 2z, (k = 1) (5.3)
z2,(k) = num(2)i,,; (k) + zz, (k ~1) ~ den(2)i,, (k) (5.4)

22 3 (K) = rum(len = )i, (k) + 22,,,_, (k ~1) ~ den(len - )i, (k) (5.5)
22 33 (k) = num(1en0)i,op (k) + 22y (k = 1) = den(len0)i,,, (k) (5.6)
22,00 (k) = num(len)i, , (k) - den(len)i,, (k) (5.7)

len = len0+1 (5.8)

Where, len0 is the filter order, and num and den represent the numerator and denominator
filter coefficients. The delay outputs zzi(1), i =1, .., len0 are initialised to 0. This is

equivalent to assuming both past inputs and outputs are zero.

iref (k)

num(len) num(3) num(2)

C):: 2Z1gng (k) @ - {2: 22, (k) El :):

-den(len) -den(3)4 -den(2)

Figure 5.5 Transposed direct-form I structure [104]

The current controller is an implementation of the model presented in section 4.3.4 when

integral term k; is equal to zero. Equations (4.85 — 4.91) are then reduced to:
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ide (k) = idref (k) - idact (k) (5'9)

edref (k) = kcpide (k) (5°10)
iqe (k) = iqref(k) - iqact (k) (5' 1 1)
€ () = ki, () (5.12)

The PWM generator is modelled according to section 4.3 4.

5.1.2 Inverter and Motor (Electrical)

The TLM model for the motor has the structure presented in section 4.2.1. Equations (4.16,
4.17, 4.19, 4.20 and 4.23 - 4.25) conform the TLM motor model when ¢ = t,,,. The inverter
is modelled according to section 4.3.4. Figure 5.6 shows the block diagram for the
interconnection of the current controller, PWM generator, inverter and motor. Some blocks in

this figure can be removed to speed up the simulation of the model (The reduced block

diagram is illustrated in Figure 5.7):

* Block 1 is reading the signal e,, egand block 2 is giving the same signal back.
* Block 4 is reading the signal iy, i, and block 6 is giving it back.

5.1.3 Motor (Mechanical) and Mechanical Transmission Elements

As was established in section 4.4.8, the screw shaft is considered a distributed parameter
element, which is divided into various sections in order to include the dynamic effect of the
moving nut.

Two models were defined to analyse the dynamic behaviour of the ballscrew: a torsional
model and an axial model. The application of the TLM transform to both models lead to
different torsional and axial propagation velocities and therefore, to different torsional and
axial propagation times for the same section length.

The synchronisation of the axial and torsional models was achieved by setting up the
parameters of the torsional and axial models (Z, t, u, Z,, ¢, ug) according to the procedure

presented in Appendix C.

Under these circumstances, the motor and the mechanical transmission elements are

modelled for two sampling times as follows:

e The motor, the coupling and the torsional model of the screw shaft are modelled at the

torsional sampling time ¢,

e The nut, the table and the axial model of the screw shaft are modelled at the axial

propagation time ¢,.
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5.1.3.1 Motor Mechanical Equations and Coupling

Figure 5.8 shows the TLM model of the motor (mechanical equations) and the coupling
according to sections 4.2.2 and 4.4.5.

Motor inertia Hub 1 inertia Hub 2 inertia
3 R

coupling stiffness

Figure 5.8 TLM model for the motor (mechanical) and the coupling

The inertias of the rotary encoder and the hub 1 can be added to the inertia of the motor to

simplify the calculations. Hence,

e =Ip+J . +J,

(5.13)

This reduction of the model is possible because those inertias are modelled as lumped

parameter elements. The resultant TLM model is illustrated in Figure 5.9a. This electric

circuit is solved finding the Thevenin equivalent with respect to Tt (Figure 5.9b), thus:

Where,

Eeq(k) = ZEcsE:s (k) + ZEctEct (k)
_Z.Z

cs ¢t

v ch + th
Zo=Z,(Z,+2,)
Zsu =2, (Z,+2,)
Z,=27,+ VA
E, (k)= EX(K) + 24! (k)

0 (K) = M o, (T, (K) - EX, (k) ~ E,, (k)
T, (k)= @,(k)Z,, + E, (k)
@, (k) = M ,,(T,, (k) - E,, (k)

E.,(k +1)=T, (k)
El(k+1)=-Z o (k)
Ej, (k+1)=-Z, o, (k)

Bi(k +1)= o, (K)Z, + 4/ (k)
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(5.14)
(5.15)

(5.16)
(5.17)
(5.18)
(5.19)
(5.20)
(5.21)
(5.22)
(5.23)
(5.24)
(5.25)
(5.26)



Where, My =1/b, +2,,+2,) (5.27)

M, =1/Z, (5.28)
Z,.=J, It (5.29)
motor equivalent inertia_ Hub 2 inertia

coupling stiffness 1%

a) Reduced model

________________

section screw shaft (torsional)

b) Thevenin equivalent circuit

Figure 5.9 Reduced TLM model for the motor (Mechanical) and coupling

Equations (5.14 —5.28) represent the TLM model of the motor mechanical equations &
coupling.

5.1.3.2 Screw Shaft Torsional Model

The presence of the supporting bearings in the TLM model of the shaft generates the
reflection of pulses arriving to the sections where they are placed (see Appendix D Figure
D.3). In that case, the propagation of pulses in the TLM model takes place on two specific

zones (loops) as it is graphically represented in Figure 5.10a. The front bearing is placed on

section fj, the nut is on section », and the rear bearing is on section 4,, where:

h, =round(l,/1,) (5.30)
loa =1, =h], (5.31)
Jend = lnal, (5.32)

fo = round(l./1,) (5.33)
n,=ceil(l, /1) (5.34)
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The inclusion of the nut in the model will cause the reflection of pulses arriving to section n,,
and therefore splitting the zone 2 in two loops (case ¢ in Appendix D, Figures D.6 and D.7) as
shown in Figure 5.10b. The model is then reduced to the calculation of the angular velocity

on sections one, f;, 1, and 4;; and the propagation of pulses on the other sections.

b) Zone 2 including the nut

Figure 5.10 Pulses propagation model for the screw shaft torsional model with moving nut

The velocity of the front bearing (@) is calculated including the TLM model derived for
the bearing's friction in Section 4.4.3 (see Figure 5.11), thus

T = 2(Bl (k) - 4, (k) (5.35)
0 [T} <T,,
= 5.36
“pal®) {(T = sign(I)T ) Z Jor 7|27, (39
Where 2, =2Z,+b, (5.37)
Next pulses: Ap(k+1) = Bl (k) - w,,,(k)Z, (5.38)
B,k +1)= 4) (k) + @, (k)Z, (5.39)

The angular velocity @+ is calculated according to the procedure specified in section 5.1.3.4

The pulse propagation is defined by
By, (k+1)= 4., (k) +w,.,(k)Z, (5.40)

4, (k+1) =B, (k) - o, (k)Z, (5.41)
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! (1)
e Db+ 1
D N o
NV .
it front ! T
1| bearing| Z,: :
L = -~ 4 _ |
( 1
+ + Do+
i N i
ZBﬂ,: 2Afb+1 *\l,'ZBﬂ,H
]

section f},

Figure 5.11 Section f;, of the torsional model

The velocity of the rear bearing (a)+) is calculated using the procedure applied to the front

bearing (see Figure 5.12).

section h,

Figure 5.12 Section &, of the torsional model
T =2B;, (k) = E},,y (k)

0 IT|<T

rbl

(€)= {(T - sign(T)T,)1Z,, " 1|27,

Zy,=Z +b,+Z

Jend
Next pulses: Ay (k+1) = B, (k) - w,,,, (k) Z,

E.ilend (k + 1) = —whH-l(k)ZJ

end

The propagation of A" and B' pulses on the other sections is given by:

Bi(k+1)=Bj (k) for j=2,.,h  j#fitl, n+l

A(k+1)= A5, (k) for j=1,...,h-1 j#fy, n, h

5.1.3.3 Screw Shaft Axial Model

(5.42)

(5.43)

(5.44)
(5.45)
(5.46)

(5.47)

(5.48)

As was established in Appendix D.2, the presence of the supporting bearings and the nut

generates the reflection of pulses arriving to the sections where they are placed. This leads to

the propagation of pulses on one zone (loops) in the axial model as it is graphically

represented in Figure 5.13a.
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b) Including the nut

Figure 5.13 Pulses propagation model for the screw shaft axial model with moving nut

The inclusion of the nut in the model will cause the reflection of pulses arriving to section na,
and therefore splits the model in two loops as shown in Figure 5.13b. The front bearing is

placed on the first section, the nut is on section 7, and the rear bearing is on section 4,, where:

h=round(l, /1) (5.49)
Loy =1, —1_h (5.50)
foa =round(l, 11, (5.51)
Lpom = Soalwia (5.52)
hy=h=f,) (5.53)
n, = ceil((l, =1,0,)/1,,) (5.54)

The model is reduced to the calculation of the velocities Vias Vna+1 and vaeys; and the pulse

propagation on the other sections as defined by the procedure presented in Appendix D.2:
e Equations (D.33 — D.47) for the calculation of velocity vy,

e Equations (D.48 — D.62) for the calculation of velocity vig+;

 Equations (D.63 — D.64) for the pulse propagation.

5.1.3.4 Screw Shaft, Nut and Table

Figure 5.14 illustrates the connection of the axial and torsional TLM screw shaft models with

the nut and table models according to sections 4.4.6 to 4.4.9, thus

o, (k)= 0 Tl<T, 5.55

" Mo(T —sign(T)T,,)for Ir|>T, (-33)

Vo (k) = k0, (k) (5.56)

where T,(k)=k,F,(k-1) (5.57)
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T =2BA-T,(k) (5.58)

BA=B! (k)- 4" (k) (5.59)
M, (k)=1/2Z,) (5.60)
-28,+ Z O +Tp-
I
24+ Z,

a) Torsional model connection

i + F,- + E .
Dza ) 2Bc'm * Vna+1 Va=Vgq vy . 4 Ey
+ Va
Zns +
Va1 <l> F, N CDFQ,
E,

Z, o4+
y 2 g b) Axial model connection

Figure 5.14 TLM model of the connection between nut and screw shaft

The components of the frictional force Fg are calculated according to section 4.4.4, as

follows:
F, =m, +F, (5.61)
Fyy =|Fy (5.62)
Fp =X Fo +YF, (5.63)
Fy=F,,+b,F, (5.64)
F =b_y, (5.65)

The velocity of the table (v)) is calculated finding the Thevenin equivalent with respect to F,
(Figure 5.15).

- i
" +F, B z, +E-
Z +
) O
i
Ey

Figure 5.15 Equivalent model for the connection between nut and screw shaft
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E,=v,,(K)Z, +Z,CD+Z, E' (k) (5.66)

e
where, CD =B, (k)- A" (k) (5.67)
Z,=22,2,122,+7,) (5.68)

Zoy =27, (22, +2,) (5.69)

2y, =22,1022,+Z,) (5.70)

vi(k) = {MV, (F- s(:’gn(F)FO)f o {i! i Iii) -7

where F=E, -El(k)-F, (k) (5.72)

M, =1/Z,, +b, +2,) (5.73)

F,()=E,, -v,(})Z, (5.74)

El(k+1)=—v,(k)Z, (5.75)

E'(k+1) = F.(k) (5.76)

Vaan(®) = M,,,,(2CD ~ F, (k) (5.77)

M, =1/2Z,) (5.78)

d (k) =v,(k)t, + E' (k) (5.79)

El(k+1)=d, (k) (5.80)

It must be noted that a ballscrew with preload is assumed to have no or minimal backlash.

However, a model for the ball screw with backlash is included in order to make the model

applicable to both cases:

* Ballscrew with pretension in the nut (Figure 5.14) Backlash = 0,

* Ballscrew without pretension in the nut (Figure 5.16) T,= 0 and Backlash # 0.

The backlash model presented in section 4.4.1.2 has been reduced to the following two

possible states:

e When the screw shaft is not in contact with the nut (Figure 5.16a).

e When the screw shaft is in contact with the nut (Figure 5.16b).

The state in which the axis will start at the beginning of the simulation depends on the

following conditions:

e Non-contact if:

- di#d,
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- dy=d, and the direction of motion is negative (nut moving towards the motor).
- dy=d,+Backlash and the direction of motion is positive.

¢ Contact;

- dy=d, and the direction of motion is positive.

- dg=d,+Backlash and the direction of motion is negative.

p nut

a) Non-contact

" nut

. nut

—»|  Backash  le—
1 t
dy dy=d,+Backlash

b) In contact

Figure 5.16 Backlash model

Variables T, and F, are zero if the screw shaft is not in contact with the nut. Thus the model in

Figure 5.14 is reduced to the model illustrated in Figure 5.17.

=28, +
o Z’ [y

-2+ Z,

Z, -28,,+ +Fo- 7, +E,-

O+ - O-13-0O-
Vv
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Figure 5.17 TLM model when the screw shaft is not in contact with the nut

Values for the velocities are given by the following equations:
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,..(k)=BA/Z, (5.81)

Vun (k) = by, (k) (5.82)
Vur(K)=CD/Z, (5.83)

Va(k) =V, () +v,,,., (k) (5.84)
v,(k)=-El (k)/ Z,, (5.85)

v, (k)= {le F - S(:gn(F)m for :i’ f fj; (5.86)
v, (k) =v,(k)+ v, (k) (5.87)

where F =-E;(k)-F, (k) (5.88)
M, =1/b,, +Z,) (5.89)

E. (k+1)=0 (5.90)

F,(k)=0 (5.91)
Ej(k+1)=-v,(k)Z, (5.92)

The positions d,, d,are calculated integrating the velocities for the sampling time 7,(equations
(5.84) and (5.87). d, is calculated as in the case for preloaded nut. The model remains in this
state if 0 < dAk) - d.(k) < Backlash, otherwise the model changes to the contact state (Figure
5.14 with 7, = 0). The model will switch to the non-contact state when the sign of velocity

Vne+1 changes.
5.2 Single-Axis TLM Model for a CNC Machine Tool Feed Drive

This section describes the extension of the TLM model presented in section 5.1 to the
modelling of the x and y axes of a Cincinnati Machine Arrow Series 2 VMC-500 vertical
machining centre (Figure 5.18). This machining centre is representative of a three-axis
Cartesian CNC machine tool where the X-axis carries the table and the workpiece, the Y-axis
carries the X-axis, and the Z-axis is the vertical axis.

Figure 5.18 Cincinnati machine Arrow series 2 VMC-500

102



The VMC-500 is fitted with a SINUMERIK 840D SIEMENS motion controller, which
commands the CNC kernel functions for interpolation and position control. The motion
controller is connected to the drives and I/O units via a PROFIBUS-DP interface as shown in
Figure 5.19 [105]. Each axis integrates a SIMODRIVE-611 Siemens inverter and a ball screw
arrangement directly coupled to a permanent magnet synchronous motor. The ball screw

systems incorporate a preloaded nut and the screw shaft mounted on a fixed-supported

bearing configuration.

SINUMERIK 840D

PROFIBUS DP (12MBaud)

I/0 Modules X and Y Axis Z-Axis

________________________

Figure 5.19 SINUMERIK 840D configuration [105]
The SIMODRIVE-611 unit consists of a common feed module that provides the DC voltage

link from the power supply mains and a set of drive modules that activate each motor. Every
drive module consists of a power module (inverter) and a closed-loop plug-in unit. The
closed-loop plug-in unit is dedicated to velocity control, current control and PWM generation
functions. Appendix F contains the technical data for the VMC-500 Machine centre.

Figure 5.20 shows the block diagram for the control approach performed by the

SINUMERIK 840 D and the plug-in control units. The main differences between the TNC
426PB and the SINUMERIK 840 D are:

e The SINUMERIK 840D includes a velocity response matching filter (1%-order delay-

filter) used to delay the velocity feed forward signal according to the equivalent position

time constant of the closed velocity control loop.

e The SINUMERIK 840D configuration established for the Cincinnati machining centre

does not include acceleration (torque) feed forward.
* A velocity filter is included to damp the resonant frequencies in the closed position loop.
* A velocity limitation in the form of saturation is included in the position loop.
* Torque and current limitations in the form of saturation are included in the velocity loop.
 The velocity controller does not include differential term (PI control).
e Two additional filters are included in the velocity loop in order to get a filtering process

with better time/frequency response. For example, Filter 1 can be configured as the PT2
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filter in the TNC 426 PB and Filters 2 to 4 can be combined to get a band-rejection filter
with better damping and frequency properties than the band-rejection filter in the TNC
426 PB.

¢ The current controllers include integral term (see PI controller model in section 4.3.4).

¢ The sample time for the interpolator and position controller is 4 ms.

e The sample time for the velocity controller is 0.125 ms.

e The sample time for the current controller is 0.125 ms.

Motion
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; Velocity
Interpolator Velocity v
e feedforward [~ response
dpror
v
Dynamic Jerk + &
rasponse rom | simitation Position _to_i’ Velocity Velocity | A
matching filter controller filter limitation
SIMODRIVE 840D
Plug-in Controller Unit mn SIMODRIVE 611 +
PT1 :
filter i
1 Vg
v 1 Velocity
“ controller
Ty
tC
Fiter | fe——m\—{ Fiter2 [&—| Fiter3 o= Fiters fe—] Torae [ | porque
ig st irer | conversion itation
'
Current
limitation
idq
Igre
+
PT1 Current > PWM
filter controller | eg,r | generator PWM

Figure 5.20 Block diagram Siemens controller [106]
Although the control algorithm is distributed in two different units (SINUMERIK 480D and

the plug-in control units) the dynamics acting on the x and y axes are modelled as in the
single-axis test rig case (Figure 5.2).

The blocks for the inverter & motor electrical equations and motor mechanical equations
& mechanical transmission elements are modelled as presented in sections 5.1.2 and 5.1.3.

The model for the rear bearing mounting has been updated as presented in Appendix D.3 to

reproduce the fixed-supported bearing configuration.

5.3 Implementation of Two-Axis TLM Models

This section presents the TLM model for two-axis feed of a Cartesian CNC machine tool. The

two-axis system is configured with the y-axis carrying the x-axis, and the x-axis carrying the
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worktable as shown in Figure 5.21a. In this regard the TLM model described in section 5.2 is
used to model the Y-axis. Linear and circular interpolation methods described in section 4.3.1
are included in the interpolator to coordinate the movement of the axes.

Pre-calibrated geometric errors are included in the form of an error map that is used to

correct the control movements over the working zone. Figure 5.21b represents the block

diagram for the two- axis model.

X-axis
-

o,

g

a) x-y axis feed drive

Reference
position position
X-axis | X-axis X-axis
Motion "I modet v ‘ 1.
commands ] x-axis ervor é
_— Interpolator Geometric X-Y
error map |} y-axis error  + | movement
5| Y-axis 4 +
Reference | model position
position y-axis
y-axis

b) Block diagram

Figure 5.21 Two-axis feed drive

The equations for the calculation of the geometric errors are presented in Chapter 6.

5.4 Review

The TLM model for a Bridgeport test rig single-axis has been developed according to the
TLM models for various elements described in Chapter 4. This Single-axis TLM model will
be used to validate the modelling approach in the next Chapter. The single-axis TLM model
has been extended to the modelling of a single-axis and two-axis TLM models of a Cincinnati
Arrow 500 vertical machining centre (including the effect of geometric errors and moving
mass). The purpose of this modelling exercise is to validate the two-axis model against

measured data obtained from ball bar tests on the Arrow 500, once the single-axis had been
validated.
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6. MEASUREMENT TECHNIQUES APPLIED TO POSITION CONTROLLED
MECHANISMS WITHIN CNC MACHINE TOOLS

The accuracy of a machine tool is an assessment of the machine's ability to accurately
position each one of its axes according to the manufacturing specifications established for a
given work-piece. The main factors affecting this accuracy are geometric errors, non-rigid
errors, thermal errors and wear [107].

Geometric errors are caused by mechanical imperfections of the machine tool structure
and misalignments of the machine tool elements, which are inherent in the production and
build of a machine or wear during the lifetime of the machine. These geometrical
inaccuracies produce errors in the squareness and parallelism between the machine moving
elements. If the machine is a rigid body, the geometric errors can be measured at any point on
the machine and will give the same results. If the machine is non-rigid, the error will be
different depending upon axes position and load. These errors are often negligible but may
have an effect on some machines.

Non-rigid errors (load errors) occur due to loading of the machine structural elements.
This could be in the form of a new weight distribution on the machine structure due to the
movement of the machine axes, the movement of a heavy work-piece that could induce larger
deformations than the axes weight alone, and the forces induced during the cutting process.

Thermal errors are induced by the machine structural elements causing deformation due to
temperature changes. Friction in bearings, drive motors and transmission systems (gearbox,
ballscrew), draughts through doors and the cutting process are typical sources of temperature
gradients. These errors are characterised by a slow time response and have not been
considered part of this research.

Wear errors are caused by the contact between moving parts in the machine and increase
with time. Wear in the nut; ballscrew and guide-ways can reduce the repeatability of the
machine as well as affect the geometric errors. Wear in the cutting tool reduces the size of the
tool causing errors in the workpiece and surface finishing. This is a broad field of research,
which is outside the scope of this study.

The following sections recount the measurement techniques used for determining the
geometric and load errors for the two-axis feed drive system; and the step and jerk-limited

responses for the x and y-axis to be evaluated in the next Chapter.
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6.1 Geometric and Load Error Measurements

Geometric errors are referred as rigid body errors and therefore are measured without specific
consideration of load. Geometric errors can be classified into linear positioning errors,
straightness errors, rotational errors and squareness errors [108].

Linear positioning errors are mainly originated by the ball screw pitch error and backlash
between the mechanical components of the axis drive. Straightness errors are guide way
profile errors due to improper assembling of the guide-way rails or the support bearing
interfaces. Rotational errors are produced when a second axis moves. Errors of this type are
the roll error (about the axis of travel) and the pitch and yaw errors (about axes perpendicular
to the axis of travel). Squareness errors reflect the out-of-squareness of two nominally
orthogonal axes. Geometric errors produced for a machine tool slide are shown in Figure 6.1,

Vertical Straightness
Error

Horizontal Straightness
L 4
Yaw Error (—F‘ ) /¥ Error

‘ /C \v Pitch Error
e

\A\/\ .:\xxs position
~ error )
Roll T —a Axis
| Error direction

Figure 6.1 Geometric errors for a machine tool slide [108]

The geometric errors for a three-axis Cartesian machine where the X-axis travels on top of the

Y-axis saddle are defined by the following equations [109]:
E,=A;(0)+A (D) +A,(2)+9,(x)D, +¢,()D, +9, (D, +6,,(x,y)D, +8,,(x,2)D, (6.1)
E,=A,(0)+A,(0)+A,(2)+¢,(x)D, +9,(»)D, - ¢,(x)D, + 6,.(y,2)D, (6.2)
E,=A,0)+A,(»)+A,(2)-9,(x)D, - ¢,(x)D, -¢,(y)D, (6.3)
Where, E,, E,, E, : actual error movement of the X, y and z-axis [um]
Dy, Dy, D; : %,y and z-axis position [mm]
Ax(x), Ay»), A(2): X, y and z-axis linear positioning error [um]
Ax(») : y-axis straightness in the x-axis direction [um]
Ay(x) : x-axis straightness in the y-axis direction [um]

A(x) : x-axis straightness in the z-axis direction [um]
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Ay) : y-axis straightness in the z-axis direction [pm]

Ax(2) : z-axis straightness in the x-axis direction [um]

Ay(z) : z-axis straightness in the y-axis direction (tm]

6,(x, y) : Squareness in the XY plane [um/mm]

6(x, z) : Squareness in the XZ plane [um/mm)]

8y, z) : Squareness in the YZ plane [um/mm)]

¢ x(x) : x-axis rotation about x-axis [Lm/mm)]

#,(x) : x-axis rotation about y-axis [um/mm)]

¢ A(x) : x-axis rotation about z-axis [um/mm]

@ x(y) : y-axis rotation about x-axis [um/mm]

¢,(y) : y-axis rotation about y-axis [Um/mm)]

¢ :(y) : y-axis rotation about z-axis [Lm/mm)]

¢ «(2) : z-axis rotation about x-axis [um/mm]

@,(z) : z-axis rotation about y-axis [Um/mm]

¢ A(2) . z-axis rotation about z-axis [Mm/mm]
The geometric error components can be changed by the deformation of the machine structure
due to the movement of the machine axes and work-piece weight. A technique for identifying

the presence of load or non-rigid errors was presented by Ford et al. [110]. The study showed
that:

* The main geometric error components exhibiting a non-rigid effect were the angular error

components.
o There was a definite correlation between the change in the angular errors produced by the
non-rigid effects and the measured change in the axis linear positioning errors.

e In any compensation or correction strategy it may be adequate to concentrate on the

angular error components in order to eliminate non-rigid effects.

In this regard, the non-rigid error components can be inserted in the angular parameters ¢ ,(x),

¢,(x), ¢(x), 8:0), 8,0), $:0), 9:(2), ¢,(z) and ¢ (), by relating those error components as
a function of the x, y coordinates. Equations (6.1 - 6.3) become:

E =A (X)+A (I +A(2)+8,(x»)D, +8,(y,x)D, +9, (»,x)D,

6., (x,»)D, +6,(x,2)D, 64)
E,=A,(0)+A,(0)+A,(2)+9,(x,y)D, + ¢ (», X)D, - 4,(x,y)D, +6,.(y,2)D,  (6.5)
E.=A(x)+A,(0)+A,(2)-9¢,(x, »)D, -¢,(x,y)D, - ¢,(y,x)D, (6.6)
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The two-axis equations for the X-Y plane are derived considering only the geometric error

components associated with the x and y-axis, thus:
E, =AM+ A+ A,()+0,(x.2)D, +9,(3,3)D, +9.(v,)D, +6,(x,»)D, (6.7)
E,=A,x0)+A,()+A,(2)+4.(x,y)D, +¢,(y.X)D, - ¢,(x,)D, (6.8)

Table 6.1 shows the geometric error components associated with a two-axis machine centre.

Error type Number of error
Linear positioning errors 2
Straightness errors 4
Rotational errors 6
Orthogonality between axes 1
Total number of errors 13

Table 6.1 Geometric error components associated with two-axis CNC Machine

6.1.1 Equipment Used for the Measurement of the Geometric Errors
Four types of equipment are specified for the measurement of the geometric errors: laser
interferometer systems, artefacts (straight edge and precision squares), electronic precision
levels and ball-bar systems. Types of equipment specified for the measurement of the
geometric errors are as follows:

e Linear positioning: Laser interferometer.

o Straightness measurement: Laser and straight edge.

e Angular measurement: Laser, Talyvel electronic level and two dial gauges.

e Squareness: Granite square artefact and dial gauge, Ballbar and laser with optical

square.

The laser interferometer measures distance by analysing the wave interference of two beams:
one reflected at fixed distance and the other reflected from a changeable position as shown in
Figure 6.2. Linear, angular (pitch and yaw) or straightness measurements, between table and

spindle, can then each be made with the appropriate choice of interferometer optics [111].

(| Machine
| spindle

Remote > | or quill

tnbior interferometer

¥

Cables

Tripod

Figure 6.2 Laser interferometer measurement [111]
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The straight edge and square are precision artefacts constructed out of granite to provide a
great deal of rigidity, thermal stability and hard surface that is smooth and resists damage

(Figure 6.3).

Figure 6.3 Granite artefacts [107]

These artefacts are used in conjunction with a dial test indicator that is set-up to run along
particular edges of the square and straight edge enabling measurement of squareness between
two machine axes. One edge forms the reference and the other is used to measure the
perpendicularity.

A Precision Electronic Level (Figure 6.4) is a device used for measuring angular error. It
is conformed by a pendulum suspended in oil (for damping) that is affected by change in
inclination and an encoder, which measures that change. Two units are used to give a
differential reading with a resolution of 0.1 arc-seconds. This is required for measuring

machine tools to isolate the angular error of an axis from the movement of the entire machine.

Figure 6.4 Precision electronic level [107]

The Ballbar system provides a quick and effective test, recognised in international standards
(e.g. ISO 230.4) to verify machine performance. The Ballbar is mounted between two
repeatable magnetic joints (Figure 6.5) and the machine under test is programmed to perform
two consecutive circular arcs, one test in the clockwise direction, the other in the anti-
clockwise direction. First and last portions of the test are processed to remove acceleration

and deceleration effects [112].
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Figure 6.5 Ballbar system (Renishaw) [112]

The tests can be achieved in one of two ways, depending upon the constraints of the setup:

e Over a 360° circle either dynamically or statically.

e Over a 180° arc statically in 45° increments.

The differing tests apply because measurement of a full circle is not practical in the vertical
planes, but is easily achievable in the horizontal plane (See figure 6.6). Analysis software
extracts useful information from the circular data such as reversal, backlash, squareness, servo
mismatch and straightness. Ballbar tests are rapid to execute and can be performed in all three

Cartesian planes; however it only gives a snapshot of a region of the machine.

Figure 6.6 Ball-bar tests for 360 and 180 degrees [112]

6.1.2 X-axis Geometric Errors

The geometric error components presented in this section were measured over the full axis
travel (500mm) of the axes feed drive in the Arrow 500 Machine tool. The reference point for
all the measurements was the origin of the coordinate system specified in the controller (point
P in Figure 6.7). Each geometric error was measured bi-directionally, using a step size of

25mm. The process was repeated for a number of runs in accordance with the ISO standard
230-2 [113].
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«P(500,0,135)

Figure 6.7 Origin of the Cartesian coordinate system for the machine's workspace

A dual electronic Talyvel was used for the measurement of the rotation of the x-axis about the
x-axis and the rotation of the y-axis about the y-axis. Each squareness value was calculated
from a Ballbar test and a laser interferometer was used for the measurement of all the other

geometric errors. The coordinates for the centre of the Ballbar test were (250,250,135).

10

X-axis linear error [microns]

0 50 100 150 200 250 300 350 400 450 500
Target position [mm]

Figure 6.8 X-axis linear positioning error

Figure 6.8 shows the results of the measurement of x-axis linear positioning error (e,(x)). This
error has a total range between —0.05um and 9um. Although the error trend is irregular in the
interval [100, 425] mm, the slope of the error tends to be linear. The progressive error is at its
greatest when the x-axis is at the positive extreme of travel (9um at 500 mm). The axis

reversal is negligible. The unidirectional repeatability of the axis was measured as one micron

for both the forward and reverse directions.
Figure 6.9 shows the results of the measurement of the x-axis straightness error in the y-

axis direction (,(x)). The straightness error has a total range of 3.5um to —3.46um. The

reversal for this error component is one micron at most.
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Figure 6.9 X-axis straightness error in the y-axis direction
Figure 6.10 shows the results of the measurement of x-axis straightness error in the z-axis

direction (e:(x)). The straightness error has a total range of —0.64um to —8.84um. The

reversal for this error component was one micron at most.

Xin Z straightness error [microns]

50 100 150 200 250 300 350 400 450 500
Target position [mm]

Figure 6.10 X-axis straightness error in the z-axis direction

The x-axis rotation about the z-axis (¢ .(x)) is shown in Figure 6.11. This error has a total

range of —5pum/mm to 2.8um/mm. Appendix G.1 contains the set of geometric errors for the

y-axis of the Arrow 500 machine tool.

-3

10
3r - et
{ | =— Forward
2 - ~ , rol == Reverss |
£
=
8
y
5 !
=
2
@
o,
‘g 1
X
-5; I I ! (EEE ! 1 a2 ] ! I
0 50 100 150 200 250 300 350 400 450 500
Target position [mm]

Figure 6.11 X-axis rotation about the z-axis

113



The procedure presented by Ford et al. in [1 10] was used to isolate the load errors from the
effects of the rigid body geometric errors. Table 6.2 contains the summary of the maximum

values of the geometric and non-rigid errors measured from the actual machine.

Axis | Component Units | Geometric effect
Pitch: ¢ (x) pum/m 0.0484
Yaw: ¢.(x) pum/m (-5t02.8)*10°
Roll: ¢.(x) pm/m (-7t06)*10°

X | Linear positioning: A(x) pm -0.05t09.15
Horizontal straightness: A,(x) pm -3.46t0 3.5
Vertical straightness: A,(x) um -8.84 to -0.64
Pitch: ¢,0) um/m -0.018.5
Yaw: ¢.() um/m | (-5to2.8)*103
Roll: ¢,() pm/m 0to 0.028

Y | Linear positioning: A,() pMm <0.14 to -13.92
Horizontal straightness: A,(y) pm -0.1t0-6.53
Vertical straightness: A,(3) pm -0.05to ~3.5
XY squareness pm/m -26
YZ squareness pm/m 64
XZ squareness pwm/m -83

Table 6.2 Measurements of the geometric and non-rigid errors
The polyfit MATLAB function was used to find the coefficients of a polynomial P(X) of
degree N that fits each one the measured geometric and non-rigid error data. The polynomials
can be used to calculate theses errors on the whole axis stroke length. Calculated polynomial
coefficients and the MATLAB program employed to obtain the coefficients are included in
Appendix G.2. The polynomial has the form:
PX)=PMX" + PQ)X " +..+ P(N)X + P(N +1) (6.9)

Where X is the actual position of the axis feed drive.

6.2 Ballbar Measurements

The ball bar system is an instrument used to analyse and diagnose the performance of a
machine tool according to the ASME B5.54, ASME B5.57, JIS B6194 and I1SO 230-4
standards. The ball bar system comprises a telescoping bar with machined balls at either end,
the ballbar affixes magnetically to socket devices mounted to the machine's spindle and table,
As the machine runs the ballbar tracks a sequence of programmed routines, through a
precision transducer. Specialised software converts the data into a polar plot of the machine's

movement. The software tracks machine movement to +/-0.5pum, allowing precise assessment
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of machine geometry, circularity and stick/slip error, servo gain mismatch, backlash,
repeatability and scale mismatch [112].

The circularity error is the difference between the maximum outward deviation and
maximum inward deviation from the best circle through captured data, as defined by the ISO
230-1 standard.

Steady state following error mismatch occurs when the gains of the position and velocity
controllers are not properly set. Negative sign indicates that the x-axis leads the y-axis in the
XY plane and that the x-axis gain should be reduced. The resultant plot will have the shape of
two ellipses in different contouring direction. '

The backlash is mainly caused by the elastic deformation of the ball screw arrangement
and play between the nut and the screw shaft. This error is characterised by spikes occurring
at the zones where the velocity direction changes.

The repeatability is calculated according to the ISO 230-2 standard. The scale mismatch
indicates that one of the axes is over travelling or under travelling. The higher the feedrate,
the lower the mismatch error.

The ballbar measurements (Figure 6.12) were undertaken for the nominal length of 150
mm (circle of 300mm diameter) at a feedrate of 1000 mm/min. Angular overshoot of 180°
before and after data capture for a two cycle 360° data capture was utilised.

Review results v & @ 2
PRl 2reicentages | 3Table |
Ballbar diagnostics (um) RENISHAWE o

XY 360deg 150mm 20051207-15 1645
Operator: sengsf Machine: Quick check = |

Date: 2005-Dec-07 15:16:45 . Instrument: Dynamic ballbar ‘
Backlash (um) |
X 0.7 i |

¥ «-0.3
E Reversal spikes (um)
X 18
¥ ~0.9
Lateral play (um) i
X «14
Y v-1.1
E Cyelic error (um)
X 103
Y 10.7
Other features

Servo mismatch
Squareness
Straightness X
Straightness Y
Scaling mismatch

Circularity

Figure 6.12 Measured ball bar plot
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6.3 Step and Jerk Limited Response Measurements

This section contains the set of measurements undertaken on the single-axis test rig and on the
x and y-axis of the Arrow 500 CNC machine Tool.

6.3.1 Single- Axis Test Rig

The motion controller for the test rig (Heidenhain TNC 426PB) features an integrated

oscilloscope, which is used for monttoring and commissioning the control loops [114]. The

integrated oscilloscope can record the characteristics contained in Table 6.3 in up to four

channels. Three parameters are specified for a measurement:

Output - To select whether the nominal speed value is to be issued as a step or ramp. The
programmed feed rate, the position controller gain, and acceleration values specified with
the machine parameters go into effect when ramp output is selected. If step output is

selected, a step will be output as nominal velocity value when the axis direction buttons in

the manual-operating mode are pressured (the position control loop is opened during this

output).

Feedrate - to specify the height of the step for the nominal velocity value (in mm/min).
This parameter has no effect for ramp output.

Sample time -

To set the time interval for recording the signals: 0.6, 3 or 6 ms. 4096

samples are stored. The signals can therefore be recorded for a duration of 2.4576, 12.288
or 24.576 seconds.

Characteristic Description

Actl, speed Actual value of the axis feed rate (v)) [mm/min]. Calculated from the position
Feed rate Contouring feed rate (vp) [mm/min]

Actual pos Actual position (d)) [mm]

Noml. pos Nominal position (dref) [mm]

Lag Following error of the position controller (d,) [mm]

Acceleration Nominal value of the acceleration (ag) [m/s7]

Jerk Nominal value of the jerk () [m/s”)

Pos. Diff. Difference between linear and rotary encoder [mm|

Current Accel | Current acceleration value (a)[m/s]. Calculated from linear encoder

Current Jerk Current jerk value (7)) [m/s3]. Calculated from the linear encoder

V(ACT RPM) | Shaft velocity actual value (Vacr) [mm/min]. Calculated from the rotary encoder
V(NOM RPM) | Nominal velocity value (Vrer) [mm/min). Output quantity of the position
I(INT RPM) Integrz;l-action component of the nominal current value (im) [A]

I-nominal Nominal current value (74re) [A] that determines torque

Table 6.3 Signals that can be accessed by the oscilloscope in the TNC 426PB
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The following procedure was established for the measurement of the signals needed to

validate the model for this axis drive:

e A set of movements for various feed rates and displacements was defined as described in
Table 6.4. The magnitude of the displacements was chosen so as to describe a jerk-limited

movement within the recording duration for the highest sample rate (2.4576 s).

Displacement [mm|] 10 20 100 200 400 400
Feed rate [mm/min] | 500 | 1000 | 5000 | 10000 20000 | 40000

Table 6.4 Set of movements established for the validation of the test rig TLM model

e To record the signals needed for the validation of the step response of the velocity loop .
This action was carried out by recording the VINOM RPM), V(ACT RPM) and I-nominal
signals for each one of the feed rates specified in Table 6.4. An example of the
measurements is shown in Figure 6.13. Appendix G.4 (Figures G.10 — G.14) contains the
measurements for the other feed rates. The set of parameters selected in the oscilloscope
were:

- Output: step (step response and position control loop open).
- Feed rate: each one of the values in Table 6.4.

- Sample time: 0.6 ms (the velocity control loop cycle time).
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Figure 6.13 Test rig velocity step response measurements (500 mm/min)
o To record the signals needed for the validation of the Jerk-limited response (ramp output
in the oscilloscope) of the position and velocity loops. This action was undertaken by:

- Recording the Noml. pos, Feed rate and Acceleration signals for a sample time of 3ms
(position control loop cycle time). These signals are used, respectively, as the position
reference (dy) , velocity feed forward (v4) and acceleration feed forward (ag) input
signals for the axis model. Figure 6.14 shows the set of signals recorded for a
displacement of 10 mm at 500 mm/min. Appendix G.5 (Figures G.15 -G.19) contains

the measurements taken for the remaining feed rates.
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Figure 6.14 Jerk-limited profiles (displacement = 10mm, feedrate =500 mm/min)
- Recording the V(NOM RPM), V(ACT RPM) and I-nominal signals to validate the
velocity control loop model (Sample time = 0.6 ms). Figure 6.15 shows the set of

signals recorded for a feed rate of 500 mm/min. Appendix G.6 (Figures G.20 — G.24)

contains the measurements taken for the remaining feed rates.
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Figure 6.15 Jerk-limited axis response (displacement = 10mm, feed rate =500 mm/min)
- To record the Actual pos, Lag and Pos. Diff signals to validate the position control
loop model. (Sample time = 3ms). Figure 6.16 shows the set of signals recorded for a

displacement of 10 mm at 500 mm/min. Appendix G.7 (Figures G.25 — G.29) contains
the measurements taken for the remaining feed rates.
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Figure 6.16 Position control loop signals (displacement = 10mm, feed rate =500 mm/min)

6.3.2 Arrow 500 Cincinnati CNC Machine

The SINUMERIK 840D SIEMENS motion controller features a servo-trace interface, which
allows the time and/or frequency response of drives and closed-loop controls both to be
recorded in the hard drive or to be displayed in graphic form on the screen. This interface is
also used to set and activate the three digital analog converter (DAC) channels available on
the SINUMERIK 810D and at each 611D closed-loop control module [115]. Some of the

signals that can be monitored by the servo-trace are listed in tables 6.5 and 6.6.

Designation Unit
Velocity set-point (v,.) pm
Velocity actual value (motor) (V. pm
Absolute Velocity actual value (v) pm
Torque set-point (limited) 7, N-m
Torque set-point (Velocity controller output) 7., § N-m
Current set-point i, (limited after the filter) A
Current set-point 7, (before the filter) A
Absolute current actual value (i,) A

Table 6.5 Signals that can be switched to the DAC channels

Designation Unit
Velocitv feed forward set-point (va | rom
Set-point position (d,) mm
Actual position (d,;) mm
Following error (d,) mm

Table 6.6 Position loop signals

The servo-trace can record these signals in up to four channels and the sample time is

calculated automatically according to the length of the selected recording time, The procedure
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described in the preceding section was used as the basis for the measurement of the si gnals for
the x-axis and y-axis validation. Only data for the jerk-limited response was measured, as the

servo-trace can not force the drives to respond to a variable step demand in time domain. This

action was undertaken by:

e Recording the Actual position, Velocity set-point, Velocity actual value (motor), and
Torque set-point (limited after the filter) signals to validate the velocity control loop
model (Sample time = 125 ps). Figure 6.17 shows the set of signals recorded for an x-axis
displacement of 10 mm at 500 mm/min. Appendix G.8 (Figures G.30 — G.34) contains the
measurements taken for the remaining feed rates. Measurements for the y-axis are

presented in Appendix G.9 (Figures G.35 - G.40).
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Figure 6.17 Jerk-limited velocity response (x-axis Arrow 500)

e Recording the Set-point position, Actual position, Following error and Velocity feed

Jorward set-point signals to validate the position control loop model. (time-step = 4ms).
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Figure 6.18 Jerk-limited position response (y-axis Arrow 500)
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Figure 6.18 shows the set of signals recorded for a y-axis displacement of 10 mm at 500

mm/min. Appendix G.10 (Figures G.41 — G.46) contains the measurements taken for the

x-axis. Measurements for the y-axis are presented in Appendix G.11 (Figures G.46 —

G.51).

Recording the Set-point position, Velocity feed forward and Actual position signals for a

ballbar test (radius: 150 mm, feed rate: 1000 mm/min). Figures 6.19 and 6.20 show the set

of signals recorded (runl: counter clockwise, run2: clockwise).

g
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Figure 6.19 Signals measured for the ball-bar test (run1)
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Figure 6.20 Signals measured for the ball-bar test (run2)

The next step is to validate the single and two-axis TLM models against the measurements

presented in this chapter. This is undertaken in chapter 7.
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7. SIMULATION OF PROPOSED ONE-AXIS AND TWOQ-AXIS TLM MODELS

One of the aspects that lead to the study of the TLM method for the modelling of feed drives
was the possibility of formulation of comprehensive models, which could be implemented in
real time. This chapter presents the implementation in MATLAB of the feed drive models
derived in chapter 5 and discusses the model parameters to be taken into account for a real
time version of the models. Specific attention has been devoted to the x-axis of the Arrow 500
CNC machine tool.

MATLAB is a computational environment where high-level programming and
visualisation functions are integrated for modelling, simulation and analysis of dynamic
systems. Models can be formulated in a program or as block diagrams using a Graphical User
Interface (GUI) called SIMULINK.

SIMULINK contains a large library of pre-defined blocks that supports the modelling of
linear and non-linear systems in continuous time, sampled time, or a hybrid of the two.
Systems can also be multi-rate, i.e., have different parts that are sampled or updated at
different rates. SIMULINK features a tool called Real Time Workshop (RTW), which
automatically generates C code from the SIMULINK models to produce platform-specific
code. |

The simulation and validation of the models were performed according to the following

methodology:

o The model for the single-axis test rig was built in SIMULINK in order to validate the
modelling approach. The validation of the model was achieved by comparing simulated
results with experimental data recorded from the controller.

e Following this step, the single and two-axis models for the Arrow 500 machine tool were
implemented in SIMULINK taking as a basis the TLM model for the test rig, The x and y-
axis models were validated against experimental data recorded from the controller and the
axis drives. The two-axis model was validated against experimental data recorded in real
time for a ball bar circular test.

e The x-axis of the Arrow 500 was modified in order to explore the possibility of a real time
implementation for the models. In this regard, the real time workshop capability of
MATLAB/ SIMULINK was used to generate a real time application targeting a RTI-1005
dSPACE environment. The RTI-1005 dSPACE platform was selected because it features

the possibility for data logging, control and monitoring of systems in real time,
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7.1 Implementation of the Single-Axis Model for the Test Rig in SIMULINK

The following considerations were taken into account for the implementation in SIMULINK

of the test rig model presented in section 5.1 (pp 90-106):

The position controller generates a reference velocity value v,sat a rate 7, =3 ms.

The velocity controller generates a reference current value ig.rat arate t, = 0.6 ms.

The current controller gives a reference voltage value eg.rto the PWM generator at a rate

t.=0.2 ms.

Each PWM signal 1s composed of seven ey, voltages (switching states) calculated

according to the expected currents to be induced in the motor. The duration (¢_dc) of each

eqq voltage is specified in multiples of the propagation time for the torsional model (#). To

accomplish this, £ 1s made equal to the sampling period on the PWM signal (#pum), then:
ty=t,m =1, /R, (7.1)

The propagation time on the axial model is a sub-multiple of the torsional propagation

time as defined by the method proposed in Appendix C (synchronisation of the torsional

and axial models).

These actions represent five multi-rate subsystems, which are implemented in software by the

block diagram illustrated in Figure 7.1.

aff d! wm idq Fa vn1
Acceleration Table Motor Motor Axial vn+1
fedforward position velocity current force
vref iqref edq vl
CO—{a —
aff Reference Reference Motor Table
velocity cument voltage velocity
vif — S—
Pasition Velocily Cument Torsional Axial
controiler controller controller loop loop

Figure 7.1 Block diagram for the test rig single axis model

Variables interfacing the multi-rate subsystems (aff, dI, vref, wm, iqref, idg, edq, Fa, vl, vn+1)
are implemented in Data Stored Memory blocks (DSM). A DSM defines a memory region for

use by the data store read and data store write blocks. This feature gives access of the

memory region to the different sub-systems in order to read from or write to a designed

variable at predetermined sample rates.
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As discussed in section 5.1.1, the interpolator generates the reference position (dref), the
velocity feed forward (vff) and the acceleration feed forward (aff) signals at the sample rate Ip.

These signals are applied to the model in the form of variables proceeding from the MATLAB

workspace as shown in Figure 7.2.

Fex Fey Fez

Cutting force  Cutting force  Cutting force
x-component y-component z-component

jdref

profile Vit

From
Workspace

y-axis

Figure 7.2 Implementation in SIMULINK of the test rig single axis model

The block profile defines the name and sample rate of the workspace variable containing the
dref, vff and aff variables. The variable profile is composed by the program testrig_profile.m
included in Appendix H.1. This program can either read a file containing the experimental
values measured from the test rig controller or call one of five different routines built to
generate the reference position signal. See Appendix H.2 for the jerk-limited profile, step
profile, sinusoidal profile, white noise profile and swept sine profile. Two-axis linear and
circular interpolations have been also included.

The three components of the cutting force (Fex, Fcy and Fez) have been included in the
model, although the analysis of cutting forces is out of the scope of this study.

The block y-axis contains the block diagram illustrated in figure 7.1. The block parameters

and initialisation code are included in Appendix H.3.

7.1.1 Digital Controller Model
The subsystem Position controller has been built on the basis of equations (4.57 - 4.59) and

its constituent elements are shown in Figure 7.3. See Appendix H.4 for the block parameters

and the initialisation code.

C o> de
dref
screw
al constant

Figure 7.3 Block diagram of the position controller model in SIMULINK
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The velocity controller model (equations 4.55 —4.61) has been implemented in the subsystem

Velocity controller. Figure 7.4 shows the block constituent elements,

?-

| - Bpt2(z) Bn(z) ——
P in out ¢ — -
= e Apt2(2) An@) iaref
PID controller PT2 fiter Bandstop fiter
BI(z) —
vact
Alf(2) | wm,

lowpass fiter

Figure 7.4 Block diagram of the velocity controller model in SIMULINK

The PID controller block implements the control strategy in terms of the TLM transform, as

illustrated in Figure 7.5.

COo—

in

out

m

g@

m

&

Figure 7.5 Block diagram of the PID controller model in SIMULINK

-

N -

The subsystem Current controller has been built on the basis of equations (5.9 — 5.12) and its

constituent elements are shown in Figure 7.6.

ace O >

Figure 7.6 Block diagram of the current controller model in SIMULINK

7.1.2 Dynamic Model of the Ball-Screw System
As presented in Appendix D, the torsional and axial models for the screw shaft are reduced to

the calculation of velocities and the incident pulses affected by the perturbations and the
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propagation of pulses on the other sections. Accordingly, the implementation of the model for

the ball screw system has been structured into two subsystems (see Figure 7. 1):

e Torsional loop.

e Axial loop.

These subsystems are the implementation of the TLM models described in section 5.1.3.
Special attention has been taken on the structure of data for the simulation of the pulse
propagation in the axial and torsional models. This topic is treated first, as it defines the
central data structure of the ball-screw system model.

7.1.2.1 Implementation of the Pulse Propagation

The pulse propagation for the torsional model is given by equations (D.8 — D.28) in Appendix
D. As presented in section 5.1.3.4, the propagation of pulses on each zone resembles a

circular linked list where the pulses magnitude is stored and modified at defined positions
(The first, £, and A, sections).

column 1 2 3 nf-2 nf-1 nf nft+l nf+2  nf+3 2*nf1 2%nf
pulse A A> A; A | Anas Ap, Ba | Ba B B, B
next 2 3 4 nf-1 nf nf+1 nf+2 nf+3 nf+4 2*nf 1
previous | 2*nf 1 2 nf-3 nf-2 nfl nf nf+l | nf+2 2*nf2 | 2*nfl
+ t
prA; PBp

Figure 7.7 Array used to simulate the first zone of the torsional model

The circular list for the first zone is implemented on a 3 x nymatrix (Figure 7.7) where:

The number of sections on the list (1)) is equal to
ng=f, (7.2)

o The first row holds the magnitude of the pulses.
e The second row holds the position (column number) of the next pulse on the array.

¢ The third row holds the position of the previous pulse on the array.

Two pointers are included to register the position of the pulses needed for the calculation of
the angular velocities of interest (@), @p+1): pA; registers the position of the pulse 4';, and
PBs registers the position of the pulse Bs. A particular element in the matrix is referenced by
specifying its row and column number using the syntax: listF'(row, column), where listF is
the matrix variable. The magnitude of the pulse 4', is held in the matrix element JistFi (1,1), the
matrix element /istF(2,1) holds the number of the column where the magnitude of the A"
pulse is held, and the matrix element /iszF(3,1) hold the number of the column where the
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magnitude of the B'; pulse is held. Then,

listF(1,1) = Al (7.3)

listF(2,]) =2 (7.4)

listF(3,1) = 2n, (7.5)

PA, =1 (7.6)

PBy=n, +1 (7.7)

Moving the pointers to the next position on the array simulates the pulses propagation. Then
pA; and pBp become:

pA, =listF(21)=2 (7.8)

PBy =listF(2,n; +1)=n, +2 (7.9)

The new arrangement of pulses is illustrated in Figure 7.8. Note that the execution of

equations (D.15) and (D.16) in Appendix D is replaced by using this approach. Thus, a

significant reduction of computing time is achieved.

column 1 2 3 nf2  nfl nf  nft  nft  nft 2nfl 2nf
A | A2 | As || Ap2 [ Apa1 | As | Bp | Bpa | Bpa | .| B B,
pulse B, | A | 4: Aps | Ap: | Apr | Ap | Bp | Bpa B; B;
2 3 4 nf-1 nf | aft | af+ | nf+ | nf+ 2nf 1
2nf 1 2 nf3 | nf2 | nfl nf | nf+ | nf+ 2nf2 | 281
1 1
rA; PBs

Figure 7.8 First zone array after a pulse propagation (torsional model)
If the angular velocities @; and @p+1 are known, the pulses propagation can be simulated by

the following procedure:

o Calculation of the value for the next B, pulse (B',(k+1)) according to equation (D.13) in
Appendix D: pA, is used as a reference to A'; and B';(k+1) on the list due to the fact that

B'; will take the position of A'; after the pointers are move.
listF (1, p4)) = 0,Z, + listF(1, pA)) (7.10)
e Calculation of the value for the next A’ pulse (4'5(k+1)) according to equation (d.14):
PBp is used as a reference to B’ and Az(k+1) on the list due to the fact that Aj will take
the position of By, after the pointers are move.
listF(1, pB,) = listF (1, pB ) - 0 ., Z, (7.11)

e Move the pointers to the next position.
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PA, =listF (2, pA)) (7.12)

pBy =listF(2,pB,) (7.13)
column 1 2 3 nm-2  nm-1 nm  nam+l am+2 am+3 2nm-1 2nm
pulse | Apss | Apsz | Apes | | Aoz | g | Ag B By | Buz | | Bpez | Bps
next 2 3 4 nm-1 nm | nm+1 | am+2 | nim+3 | nm+4 2nm 1
previous | 2nm 1 2 nm-3 | nm-2 | nm-1 nm § nm+1 | nm+2 2nm-2 | 2nm-1
1 )
A b1 PBn

Figure 7.9 Array used to simulate the second zone of the torsional model

The implementation of the circular list for zone two gives:

e The circular list is implemented on a 3x n,, matrix called /istM (Figure 7.9). The number

of sections on the list (n,,) is equal to

n,=h,~f, (7.14)
o pAp; and pB,; register the position of the pulses A’ and B',, respectively:

PAg =1 (7.15)

PB,=n, +1 (7.16)

If the angular velocities wp+1 and @;s+) are known, the pulses propagation is simulated by the

following equations (equations D.18 — D.21):

listM (1, pAp,)) = @ 4, Z, +listM (], PAg) (7.17)
lisM (1, pB,,) = lisM (1, pB,) - 0 ,., Z, (7.18)
pAy, =1listM (2, pA,,)) | (7.19)
pB, =listM(2,pB,) (7.20)

The inclusion of the nut in the model will cause the reflection of pulses arriving to section n,
and therefore splitting the /istM in two as shown in Figure 7.10a. The following variables are
added in order to complete the model for the moving nut:
¢ n;: The number of sections in the left loop on the Figure 7.10b

n=n-f, (7.21)
e n,: The position of the pulse B',+; on listM

n,=2h, -n (7.22)
e pAn and pB, register the position of pulses A',+; and B', respectively:

pA, =n +1 ' (7.23)
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pB, =n,+1 (7.24)

e Pulse A',is connected with pulse B';

PA, =n, (7.25)
listM (2, pA,) = pB, (7.26)
listM (3, pB,) = pA, (7.27)
e Pulse B’ is connected with pulse A',. :
PB,=n, (7.28)
listM (2, pB,)) = pA,, (7.29)
listM (3, pA,,) = pB,, (7.30)

If the angular velocity @+ is known, the pulse propagations on section n (equations D22 to

D.26 in Appendix D) is simulated by the following equations:

lisM (1, pA,)) = 0, Z, + listM(1, pA,,) (7.31)
listM (L, pB,) = listM (1, pB,) - 0,., Z, (7.32)
PA, =listM (2, pA,)) (7.33)
pB, =listM (2, pB,) (7.34)

Figure 7.11 shows the status of the matrix /istM after two pulse propagations. The number of
sections on the two loops in zone two changes when the nut moves to an adjacent section.
Figure 7.12 shows the changes on the two loops when the nut moves to the next section on the
right (from section n to section n+1). In this case, the connections of the pulses A',, A'ns),
A'i2, B'y, B'pes and B'ys; change. The mapping of those changes on the matrix JistM are
carried out by the following procedure:

o The position of the pulses A's, A'n+2, B're; and B'ys is held in the variables pd,, pdns, pB
and pB,; respectively:

PA, =listM (3, pB,) (7.35)
) PA,, =listM (2, pA ) (7.36)
PB,, =listM (3, pA,) (7.37)
PB,, =listM (3, pB,) (7.38)
e Pulse A', is connected with pulse A+ ;:
listM (2, pA,) = pA, (7.39)
listM (3, pA,)) = PA, (7.40)
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Pulse A',+, is connected with pulse B',+;:

listM (2, pA,,) = pB,, (7.41)
listM (3, pB,,) = pA,, (7.42)
e Pulse B',+; is connected with pulse B',;:
listM (2, pB,,) = pB, (7.43)
lissM (3, pB,) = pB,, ' (7.44)
e Pulse B',., is connected with pulse Ay
listM (2, pB,,) = pA,, (7.45)
listM (3, pA,,) = pB,, (7.46)
e Pointers pB, and pA,; are set to their new values:
pB, = pB, (7.47)
pA, =p4,, (7.48)

A similar procedure is applied when the nut moves to the next section on the left (from
section n to section n-I). Pulses affected by this movement are: A',.;, A',, A'nss, B'ns, B's and

B+ (Figure 7.13). The mapping of the changes on the matrix listM are carried out in this
case by the following procedure:

e The position of the pulses Ay, A’y 1, B'y+; and B’y is held in the variables pd,,, pAn, pBn;

and pB,, respectively: pA, =listM (3, pB,) (7.49)
pdy, = listM (3, pA,) (7.50)
pB,, =listM (3, pA,;) (7.51)
pB,, =listM (2, pB,) (7.52)

e Pulse A, is connected with pulse A+ ;:
listM (2, pA,) = pA,, (7.53)
listM (3, pA,,) = pA, (7.54)

e Pulse A',.; is connected with pulse B',.;:
listM (2, pA,,) = PB,, (7.55)
listM (3, pB,) = p,. (7.56)

e Pulse B',+; is connected with pulse B',;
listM (2, pB,,) = pB, (7.57)
listM (3, pB,) = pB,, (7.58)
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e Pulse B, is connected with pulse A’

listM (2, pB,) = pA, (7.59)
listM (3, pA,) = pB, (7.60)
e Pointers pB, and pA,, are set to their new values:
pB,=pB, (7.61)
PA, = pA, (7.62)

Variables difSec and lastSec are included to verify if the nut has moved to an adjacent section
and therefore decided which part of the code will be executed (nut is on the same section, nut

has moved to the left or nut has moved to the right). The choice is taken according to the

following procedure:

e Calculate the section where the nut is on

n= floor(l,/1,) (7.63)
¢ Calculate the difference between the new and the last section

difSec = n - lastSec (7.64)

o  Switch between the two cases based on the value for difSec
switch difSec

case 1

run code when the nut has moved to the right

case -1

run code when the nut has moved to the left
end

e Assign the value of n to lastSec:

lastSec = n (7.65)
This approach is used to implement the code for the axial model as presented in Appendix 1.
7.1.2.2 Torsional Loop Subsystem
This subsystem contains the models for the permanent magnet motor, the coupling and the
screw shaft torsional dynamics. It comprises three blocks: PSM motor, Torsional model and
the Nut position monitoring, as shown in Figure 7.14. The subsystem initialisation code is
included in Appendix J.1 '

It must be noted that the variables defined in the last section to simulate the pulse
propagation have been implemented in Data Stored Memory blocks (listF, pA, PBp, listM,
PAgp1, PBn, PAnit, PBu, lastSec, pBu.y, pBpit, pBria, pAp1,pAn and pA i)

The block PMS mwotor contains the model established for the inverter and the motor in

section 5.1.2.
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Figure 7.14 Block model for the subsystem Torsional loop
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Figure 7.15 Block model for the inverter and motor in SIMULINK

The block Switching vectors in Figure 7.15 features the generation of the ey, voltages to be
applied to the motor according to the PWM strategy described in section 4.3.4. Appendix J.2
contains the code for the MATLAB function called by this block.

The Torsional model block contains the calculation of velocities @m, @p+;, Wp+; and Gpss
and the pulse propagation of torsional waves as described in section 5.1.3.1 and 5.1.3.2. See
Figure 7.16.

The block wm calculation, comprises the motor mechanical model and the coupling -
equations (5.19 — 5.26). Its constituent elements are shown in Figure 7.17.

The model for the calculation of the front bearing angular velocity (@p+;) is implemented

in the block wfb+1 calculation. The conditions derived from the bearing friction model,

Equation (5.36), are modelled by if condition and if action blocks as shown in Figure 7.18.
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Figure 7.17 Coupling and motor mechanical model block diagram in SIMULINK
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Figure 7.18 wp+; calculation block in SIMULINK
The block wn+1 calculation, contains the torsional part of the model for the connection
between nut and screw shaft as defined in section 5.1.3.3. If condition and if action blocks are

used to model the effect of the nut pretension torque 7, as shown in Figure 7.19 (Equation
5.55).
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Figure 7.19 w,.; calculation block in SIMULINK

The block wy+; calculation, features the calculation of the rear bearing angular velocity. This
block has the same structure of that presented for the wp., calculation block. Figure J.1 in
Appendix J contains the constituent elements for this block.

The nut position monitoring block updates the pointers to the listF' and listM variables
according to the displacement of the nut. The model resembles the algorithm described in
section 7.1.2.1 for the pulse propagation on the screw shaft torsional model. A particular

sorted order has been set for the block execution as two different blocks access the variable
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lastSec at the same time (See the step numbers on each block in Figure 7.20). The constituent
elements of the case I and case -1 blocks are illustrated in Figures J.2 and J.3 respectively in

Appendix J.
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= |
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step 10

Figure 7.20 Nut position monitoring block in SIMULINK (torsional loop)

7.1.2.3 Axial Loop Subsystem
This subsystem contains the calculation of velocities Via, Vaass and vaae; and the pulse
propagation of axial waves as described in sections 5.1.3.3 and 5.1.3.4 (See Figure 7.21). This

subsystem initialisation code is included in Appendix K.
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Figure 7.21 The axial loop subsystem block model in SIMULINK

The variables defined in Appendix I to simulate the axial pulse propagation have been
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implemented in Data Stored Memory blocks (JistA, pAia, PBs, PAnar1, PBha, lastSecA, pBoa,
anaH, ana+2, pAna-l, pAna andpAmﬁz)
The block via calculation, comprises the front bearing mounting stiffness model -

equations (D33 —D.47) in Appendix D. Its constituent elements are shown in Figure 7.22.

Figure 7.22 v, calculation block in SIMULINK
The rear bearing mounting stiffness model (Appendix D equations (D48 - D.62)) is

implemented in the block vha+1 calculation. Its constituent elements are shown in Figure
7.23.

vha+1

Emrb

Figure 7.23 4,4, calculation block in SIMULINK

The block vna+1 calculation, comprises the nut and table models as presented in section
5.1.3.4 - equations (5.61 — 5.80). Its constituent elements are shown in Figure 7.24,

The nut position monitoring block updates the pointers to the /ist4 variables according to
the displacement of the nut. The model resembles the algorithm described in Appendix I for
the pulse propagation on the screw shaft axial model. A particular sorted order has been set
for the block execution as two different blocks access the variable lastSecA at the same time
(See the numbers on each block in Figure 7.25). The constituent elements of the case 1 and

case -1 blocks are illustrated in Figure 7.26 and Figure K.1 respectively.
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The block F0 calculation has been added to model the calculation of the Coulomb friction in
the guide-ways (Fy) according to the changes of load and cutting forces acting on the axis

drive — equations (5.62 ~ 5.65). Figure 7.27 illustrates the block constituent elements.

0.6'mi |
load weigth ’ radial factor=1
Fwo |
Foz t—¢ )
Cutiing force
z-component (D

fiicion
coefficiant

Fox

i

Cutiing force lateral
y-component factor

v

Figure 7.27 The FO calculation block in SIMULINK

A set of If/Else action blocks has been included to model the effect of the guide-ways friction -

on the table velocity — equation (5.71). The constituent elements of these bloks are shown in
Figure 7.28.

Action Port

Acton Port

| I @ CD_I—_’ Product
Constant

&) If action block b) Else action block

Figure 7.28 The If/Else action blocks in the v,,.+; calculation model

7.2 Validation of the Single-Axis Model for the Test rig

The validation of the single-axis model for the test rig was accomplished by comparing the
position and velocity model responses against measured data recorded in data files using the
oscilloscope feature of the controller. The process started by validating the velocity control
loop model for a step velocity response. The complete model for the axis drive (position

control loop) was then validated for a jerk-limited position response.

7.2.1 Step Velocity Response

The velocity demand (nominal velocity), the actual motor velocity and the nominal current
signals were measured for various feedrates as commented in section 6.3.1. The nominal
velocity signal was used as an input to the velocity control loop model to generate the
simulated actual velocity and nominal current as shown in Figure 7.29. These signals were
then compared with the measured ones. Figure 7.30 and 7.31 show the results for step

demands of 500 and 1000 mm/min respectively.
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Figure 7.29 Set up for the validation of the step velocity response

The maximum value of the i, reference current appears as the drive attempts to accelerate the
load in response to the nominal velocity step signal. The transient settles and the current
reduces in magnitude after the motor has reached the requested value. The motor is now at
constant velocity and is overcoming the effects of friction and pretension.

Simulated velocity and current responses (red line) match closely the measured values
(green line). A 3% error is visualised on the transient area (0 — 0.02 seconds). The percentage
error increases to about 5% when the motor reaches constant velocity. This error is mainly
caused by a frequency oscillation of about 150 Hz that the model is damping as illustrated in
Figure K.3 A deeper frequency analysis of the axis-drive is needed in order to improve the

accuracy of the model and therefore identify the model parameters subject to modification.
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Figure 7.30 Step velocity response validation for the TLM test rig model (500 mm/min)
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Figure 7.31 Step velocity response validation for the TLM test rig model (1000mm/min)
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Figure 7.32 Position control loop validation set-up for jerk limited response
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7.2.2 Jerk-Limited Response

The jerk-limited response is used to verify the performance of the axis-drive during
acceleration, deceleration and functioning at constant velocity. For this purpose, the position
and velocity control loop signals were measured for different displacements and feed rates as
described in section 6.3.1.

The nominal position and the velocity feed forward signals were used as inputs for the
position control loop model to generate the simulated nominal velocity and actual position
signals as shown in Figure 7.32.

Figure 7.33a shows the comparison between the measured and simulated actual position
signal for a displacement of 200 mm at a feed rate of 10000 mm/min. As seen in the figure,
the signals match very well, therefore a comparison between the measured and simulated
position error (position lag or following error) is included in Figure 7.33b. 4

A difference of 2um is envisaged on the first 0.1 seconds (acceleration zone) of the error
signal. The difference increases on the deceleration zone where the peak difference is almost
8um. The low-frequency oscillation discussed in the preceding section is present again on the
measured error and absent on the simulated error signal. Still the model response seems to be
damping that oscillation, which is significant at this level where the model response must be
very accurate. See appendix K for the model validation results at other federatés.

The results are encouraging because the model is responding closely to the real system;
however the data is showing a 20% error at maximum on the deceleration zone of the
following error signal (about 10um on a displacement of 400 mm at 10000 mm/min). A deep
study of the model behaviour is needed in order to improve the model to a higher accuracy.

The measured acceleration feed forward and the simulated nominal velocity signals were
then used as inputs for the velocity control loop model to generate the simulated actual

velocity signal as shown in Figure 7.34.

Nominal welocity :
(simulated) *| TLM Velocity
control loop p———>

Actual velocity
Acceleration feed forward (simulated)

(measured)

Figure 7.34 Velocity control loop validation set-up for jerk limited demand
Figure 7.35 shows the comparison between measured and simulated actual velocity signals.
As can be seen the simulated signal matches the measured one, which indicates that the
structure and magnitude of the model parameters are adequate. The difference between

measured and the simulated signal is the reflection of the differences in the position error
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signals amplified by the position controller gain plus the modelling error inherent in to the

application of the TLM transform.
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Figure 7.35 Comparison between measured and simulated actual velocity

Figure 7.36 shows the measured and simulated current demand signal (ig.;) for a feedrate of
5000 mm/min. As can be seen the simulated and measured signals match reasonably closely,
which indicates that the structure and magnitude of the gain parameters for the PID controller
and the notch filter are adequate. Figure 7.37a shows the difference between the measured and
simulated reference current signals for the established feed rate. Figure 7.37b illustrates the
model error for a feed rate of 40000 mm/min. Although the model response closely matches
the measured signal, it is evident that there is a difference between both signals, with a
maximum error of 0.15 A at the highest possible feed rate for the system (40000 mm/min).
This effect can be attributed to the difference between the velocity filter parameters and the
ones used in the model due to the fact that the type of filter, its order and coefficients are not

accessible to the public domain so are estimated.

i

________________________

Reference current iq [A]

s SRRy LR e

time [s]
Figure 7.36 Experimental and simulated reference current (5000 mm/min)
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a) Error at 5000 mm/min b) Error at 40000 mm/min
Figure 7.37 Model error for the velocity controller

7.3 Implementation of Single-Axis TLM Model for the Arrow 500 Machine in
SIMULINK

As discussed in chapter five, the main differences between the Arrow 500 axis drive and the
test rig single-axis drive are the control algorithm and the type of the rear bearing mounting
used. Some blocks of the test rig model (the velocity controller block, the current controller
block, W+ calculation block and the vy, calculation block) were modified consequently to
account for the configuration of the Arrow 500 feed drives. Appendix L contains the
implementation of these blocks in SIMULINK.

The updated model was then used to model the x and y-axis of the Arrow 500 CNC
machine tool. The approach used for the validation of the test rig TLM model was used for
the validation of the x and y-axis of the Arrow 500.
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n
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Figure 7.38 Validation position response - arrow (fr = 500 mm/min, d= 10 mm)
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The nominal position and the velocity feed forward signals measured from the controller were
used as inputs for the position control loop model to generate the simulated nominal velocity
and actual position signals as shown in Figure 7.38.

As seen in the figure, the actual position and error position signals match very well;
however there is a small difference between the position error signals in the acceleration and
deceleration picks (3% at maximum). See appendix L (L.6 — L.10) for the validation results
for other federates and displacements.

The reference position and velocity feed-forward signals, measured for a circular
movement on the x-y plane (radius 150mm and feedrate of 1000 mm/min) were used as
testing inputs for the validation of the x and y-axis TLM model response to a sinusoidal
position demand. The response for the x-axis model is shown in Figure 7.39. Figure 7.40

illustrates the y-axis model response.

position [mm]
ok
o o
o o
-

o 20 40 60 80 1C :
time [s] s e S

Figure 7.39 X-axis position model response to a sinusoidal demand
As observed, simulation results match those measured by the servotrace of the Arrow 500’s
controller. The difference between simulated and measured position response is about 0.1%
and is the result of various factors such as the modelling error inherent to the TLM algorithms

and quantisation noise in the data-logging system.
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Figure 7.40 Y-axis position model response to a sinusoidal demand
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7.4 Implementation and Validation of Two-Axis TLM Models

The two-axis model contains the separate models for the x-axis and y-axis discussed
previously (Figure 7.41). Sine and cosine position demand signals measured to prescribe a
circular movement are introduced from the MATLAB workspace to the x and y-axis models

as depicted in Figure 7.42.
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Cutting force  Cutting force Cutting force
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Figure 7.41 Arrow 500 two-axis TLM model
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From dref_y]
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Figure 7.42 The block input profiles (sample time: 4 ms)
The output signals from the x and y-axis models (axis position d} . and d,,) are introduced
into a XY block to produce the trace of x against y as shown in Figure 7.43.

The difference between the trace and the circle prescribed by the x and y position demand
is drawn in Figure 7.44 under the form of a ball-bar plot (Appendix G.12 contains the
MATLAB program used to plot the Actual position signals in a ball-bar format). Note the
difference between Figures 6.12 and 7.44. This is because the measurements from the linear

encoders (Figure 6.21) do not reflect the geometric and load errors of the two-axis system.
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Figure 7.43 Two-axis TLM model position response
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Figure 7.44 Two-axis simulated actual position in ball-bar format

To provide a model that conforms more closely to an actual machine, it is necessary to model
the geometric and load error components for each axis and incorporate them into the
simulation as described in section 5.3. Figure 7.45 illustrates the two-axis model including

the geometric and load error calculation.
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Figure 7.45 Two-axis model including the effect of geometric and load errors
The block XY Geometric error calculation features the two-axis equations for the calculation
of the geometric error (equations 6.7 and 6.8). This block contains the diagram illustrated in

Figure 7.46. The block parameters are included in Appendix M.1.

lo_x { VI_x t———pplvx

di_y | & Py
X_axis emor movement {’
oy, <[]

XY pos i
X
> XY pos & error
+
—Py Ey —bé
VI_Y i vy

y_axis error movement

Figure 7.46 SIMULINK implementation of the two-axis geometric error equations
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Figure 7.47 Block diagram for the x-axis geometric error calculation
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The DSM v/_x and v/_y blocks have been included to monitor the movement direction of each
axis and to select the appropriate set of geometric errors (forward or reverse). The block x-
axis error movement contains the block diagram for equation (6.7) as shown in Figure 7.47.

Two cases are considered: axis moving forward (moving away from origin of the
coordinate system) or axis moving in reverse (moving towards the origin of the coordinate
system).

Figure 7.48 illustrates the block structure for case I (moving forward). The polynomials
calculated from the geometric error components (see Appendix G.2) are implemented in
polynomial evaluation SIMULINK blocks. The scaling and centring of each polynomial is
executed by the scaling blocks, which have the structure presented in F igure 7.49. Figure M.1

contains the block diagram for case —1I (reverse).

case: {}

Action Port

scaling 4 O(:)(i)ﬂ 4 1e-6

X —
subsystem x-axis linear
positioning

—| scaling O(’;‘)“z .

y-axis straightness
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-3.34508351032434e-6 >

Ex
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Figure 7.48 X-axis geometric error calculation (case 1: forward)

sle X

in
Qut
mu1 § mu2

Figure 7.49 The scaling block
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Figures M.3 and M.4 contain the block diagrams for the subsystem y-axis error movement .
The two-axis model including the geometric error model was simulated and the model
position response (axis position dj) was introduced into a XY block to produce the trace of x
against y as shown in Figure 7.50. The difference between the trace and the circle conformed

by the x and y position demand is drawn in Figure 7.51 under the form of a ball-bar plot.
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Figure 7.50 Two-axis TLM model position response with geometric errors
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Figure 7.51 Simulated Ball-bar plot with polar coordinates
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A comparison of this plot (Figure 7.51) against the results from the ballbar test performed on

the machine (Figure 6.12) gives the following results:

The plot has an oval shape as a result of the squareness error (-26 pm/m) which is
consistent with the same feature illustrated in Figure 6.12.

The two axis model shows that the combination of the geometric errors generates a
progressive error deviation when the machine worktable prescribes a circle. However the
simulated results do not match the ballbar measurements on the arcs described in the
intervals [45" - 907] and [135” - 270°]. This difference may be attributed to divergences on
the straightness measurements for the x-axis.

The reversal spikes match closely on both x and y directions

Although the model including geometric errors gives an approximation of the real
movement of the table taking as a reference the cutting tool hub, more analysis is needed

in order to improve the model to high standard response.

The next chapter presents the techniques generally used for the identification of natural

frequencies and damping ratios from measured bode diagrams.
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8 IDENTIFICATION OF RESONANT FACTORS IN CNC MACHINE TOOLS

The application of the derived TLM models to real systems such as CNC machine
tools implies a combination of theoretical and experimental analysis. The dynamic
behaviour of the system under study is in general complex with various aspects
unknown or not studied. Non-linearities, noise and element tolerances produce
distortion on the system response that the model will struggle to replicate without
future work. The complete dynamic behaviour of the system could be derived from
identified modal parameters (natural frequencies of vibration, damping coefficients
and mode shapes) and adequate corrections can be undertaken on the model.

This Chapter deals with methods generally used for system identification and
some considerations about the use of the Continuous Wavelet Transform (CWT) for

the detection of resonant frequencies and damping factors in CNC machine tools.
8.1 Identification Methods for Modal Parameters of CNC Machine Tools

The modal parameters estimation of real systems is an essential step in the modelling
process because it provides important information on inherent dynamic properties of
the structure. Since dynamic properties are directly related to mass, stiffness, damping
and boundary conditions, modal parameters can be regarded as a fuﬁction of these
properties. Kullaa [116] showed thét modal parameters could be used to improve
analytical models, enhance system design or for condition monitorihg purposes.
Andersen [117] stated that modal parameters can be extracted via parametric and

non-parametric system identification methods through a process known as modal

analysis:

e The parametric methods consist of building a mathematical model from a set of
assumed parameters. These parameters are estimated from an iteration process
during the system identification, and modal parameters are then derived using

direct mathematical relationships with the estimated model parameters.

o The non-parametric methods apply different curve fitting procedures in order to

match defined curves, functional relationships or tables to measured system

response and /or excitation signals.

The fundamental modal parameters are natural frequencies (the resonant frequencies),
damping ratios (the degree to which the structure itself is able to damp out

vibrations), mode shapes (the way the structure moves at a certain resonant frequency)

154



and modal participation factors (masses and residues). Drexel & Ginsberg [118]
showed that mode shapes characterise the so-called modal vectors and modal
participation factors characterise modal scaling.

The modal analysis involves a quantifiable input that is applied to the system and
the output is measured. A modal model (set of modal parameters) is obtained from the
measurements via a non-parametric or parametric system identification method. In
some cases, this process is truncated by the difficulty to apply a measurable input or
the impossibility to measure an ambient excitation. Therefore, the outputs are the only
information available for the identification algorithm. The assumption in this case is
that the input is the realisation of a stochastic process (white stationary noise). Peeters
& De Roeck [119] demonstrated that the dominant frequencies could not be separated
from the eigenfrequencies of the system when the assumption was violated by the
presence of dominant frequency components. -

A detailed survey of classical methods for modal parameter identification has been
performed by De Silva [120]. As a result of this thorough overview, the author
presented five most used methods for modal parameter identification of single-degree-

of-freedom (SDOF) and multiple-degree-of-freedom (MDOF) systems (see Table
8.1). -

Method Measurements Formulas
Logarithmic A ;— first significant amplitude Logarithmic decrement
decrement method A s~ amplitude after r cycles 5e 1 4  2x¢
¢ - damping factor _71" A, 1-¢°
Step-response M , — peak value of response
method PO - percentage overshoot (over steady-state | A7 =1+ exp (19
value) d 1-¢2
PO =100 exp| —Z&
J1-¢2
Hysteresis loop | AU - area of displacement-force hysteresis | Hysterectic damping constant
method loop _AU
X 9— maximum displacement of the hysteresis h= Xl
loop Equivalent damping ratio
k — average slope of the hysteresis loop au h ent damping
Y
Magnification-factor | Q — magnitude of FRF (Frequency Response 1
method Function) at resonance frequency Q= 21l ‘/'1__;2‘
Bandwidth method | Aw- bandwidth at 0.707 of resonant peak _Aw
@, - resonant frequency ¢= ©,

Table 8.1 Classical damping measurement methods [120]
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The methods use measured Bode diagrams and determine the resonant frequencies
and damping factors from the magnitude of the gain plot when the modal frequencies
are not too closely spaced and the system is slightly damped. The damping coefficient
depends on the peak width and the resonant frequency is the central value for the
frequency interval where the peak occurs.

Zhang et al [121] underlined that these methods were not able to estimate the
modal parameters from signals containing non-linearities and variable frequencies
(non-stationary signals). Time-frequency analysis has become a solution to this
problem and various methods have been proposed in the last two decades. Examples
of time-frequency analysis are: Wavelet transform and applications of the short-time
Fourier Transform (Gabor transform and Wigner-Ville distribution).

Wavelet analysis employs adaptive windows in order to achieve the best time
resolution. Cohen [122] observed that the frequency resolution ié different between
the lower and the higher frequency band so signals with very high and very low
components can be studied giving the opportunity to track changes in oscillation
frequencies and amplitudes.

Robertson et al [123] applied the Discrete Wavelet Transform (DWT) for the
calculation of impulse response for a system with four degrees of freedom. The
forward DWT used the input signal and generated an input/output relation matrix. The
impulse response resulted from applying the inverse DWT to this matrix. This method
was similar to the Fast Fourier Transform (FFT) based extraction procedure, but the

data is handled only in the time-domain. The main conclusions of this study were:

o The wavelet's suitability for a system excited by harmonic oscillations (narrow-
frequency band) where FFT-based methods performed poorly, unless a sine sweep

technique was utilised,;

o The same difficulties were experienced by the wavelet method as for the FFT

methods using arbitrary random excitations;

o The wavelet method was as good as the correlated FFT method for detecting high-

frequency signals in the case of ideal excitations (laboratory-generated burst

random signals);

o The extracted impulse response functions could be used by system identification

algorithms to extract modal parameters [124].

Ruzzene et al. [125] estimated the natural frequencies and damping factors for a
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system free response by employing the wavelet analysis. The Hilbert Transform
Method was applied to MDOF systems assuming that the excitation signals had zero
mean (stationary random processes). The Random Decrement Technique converted
the system random responses to free decay responses. Then the Wavelet Transform
(WT) estimated the natural frequencies and the mean values of the instantaneous
frequency-time histories. Damping ratios were identified from the decay rate of the
linear interpolation performed on the WT modulus.

Kijewsky and Kareem [126] studied the application of multi-resolution Morlet

wavelet to non-linear systems. A complete modal separation and stability of damping
estimates required tripling the classical mean square bandwidth. Also the
instantaneous frequency (identified from the wavelet phase or the ridges of the
amplitude) was relatively insensitive to end-effects.
Staszewski [127] presented three methods for damping identiﬁcaﬁon based on time-
scale decomposition of the continuous wavelet transform: The wavelet transform
cross-section procedure, the impulse response recovery procedure based on wavelet
domain filtering, and the ridge detection procedure.

The methods did not depend on the choice of the analysing wavelet function, and
the wavelet ridge detection technique gave the best accuracy (espeéially for noisy
data). The studied numerical examples were systems with two DOF closed and well-
separated modes, respectively. '

Based on these results, Staszewski [128] presented a procedure for non-linear
system identification. The time-dependent amplitude and phase functions of the
system impulse response were obtained from the ridges and skeletons of the Morlet
wavelet transform. It was also highlighted that the usual method of local maxima of
the transform amplitude used for the ridge extraction was valid only for linear ridges
(linear systems). Identification methods based on the wavelet amplitude
(parameterised ridge and combinatorial optimisation procedure, Carmona et al [129))
and methods based on the phase function (Delprat et al. [130]) were used for non-
linear systems analysis. Applications of the proposed method to simulated SDOF and
MDOF systems gave satisfactory identification results including cases where the
noise in the data was up to a relatively high level (20%).

Pislaru et al [131] developed a novel application of CWT for modal parameter
identification to CNC machine tool feed drives. Random white noise was applied as

excitation signal to estimate the impulse response of the system. The CWT of the
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impulse response was calculated and the local maxima of the wavelet amplitude were
used to specify the resonant frequencies. The linear regression was applied to a
damped sine envelope therefore the damping factors were calculated from the
logarithmic decrement. The modal parameters identified by CWT of the impulse
response were compared with those estimated from measured Bode diagrams. CWT
enabled the accurate detection of amplitude variations for weak si gnals combined with
relatively high noise and non-stationary signals. The study demonstrated the
superiority of the CWT over classical methods for modal parameter identification
based on FFT. The first peak of wavelet amplitude was automatically detected, but the
positions of the next ones had to be estimated by human intervention.

The same authors [132] further investigated the construction of an algorithm for
the automatic detection of the peaks within the three-dimensional (3D) graph
generated by CWT. One modal response was removed at a time from the impulse
response of the simulated data containing modes close to each other in frequency or
with high damping ratios. The modal parameters could not be detected by the FFT
method, but CWT generated accurate results even in extreme cases. However, the

algorithm was applied only for simulated data.
8.2 Transfer Function Identification for Control System Loops (Arrow 500)

Built in functions on the motion controller for the Arrow 500 perform spectral
analysis for the optimisation of the position, velocity and current closed control loops
for each axis [133]. The control frequency characteristics are calculated by entering a

Pseudo-Random Binary Signal (PRBS) at the set point of each control loop. Four

frequency responses can be measured:

¢ Closed position controller 100p (dac:/ dyey).
* Closed velocity controller 100p (Vae/ Vo).

o Controlled system: (v, / igacy).

® Mechanical frequency response (v, rotary encoder/ v, linear encoder).

The closed position and velocity controller loop responses are used for the
optimisation of the position and velocity controller parameters. The control system
and mechanical frequency responses are used to set up the parameters for the filters
used to damp the system resonant frequencies. These two particular responses are of

interest for the identification of the modal parameters of the axis drive.
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Figure 8.1 X-axis controlled frequency response

The frequency response of the controlled system is used to provide better estimation

of the poles and zeros of the control system without any influence of the controller.

The transfer function is calculated as:

actual velocity motor _ @, (®)
actual current motor N (4)

8.1

A low gain k, and a high integrator time 7; (e.g. k,= 0.1, T;= 500 ms) are used at the
velocity controller to obtain an improved frequency response at low frequencies.
Figure 8.1 show a resonant frequency of 555 Hz with a damping ratio of 0.1.

The mechanical frequency response is used for a comprehensive analysis of the
performance of an axis. The first pole on this test represents the natural frequency of
the axis (table frequency or locked rotor frequency). The hi gher this pole is, the higher

is the performance of the axis.

Figure 8.2 illustrates the mechanical frequency response for the x-axis. The

transfer function is calculated as:

actual velocity linear encoder _ V(o)
actual velocity rotary encoder w, (W)

(8.2)

The first pole of the mechanical frequency response limits the dynamics of the axis,

normally the maximum reachable &, factor, the maximum acceleration (amax) and the

maximum acceptable jerk (jax).
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Figure 8.2 X-axis mechanical frequency response

Figure 8.2 shows a natural frequency of 42 Hz with a damping ratio of 0.25 on the x-
axis. The controlled and mechanical frequency response measured for the y-axis is

presented in Appendix N.
8.3 Modal Parameters Identification Using Wavelets

Wavelet theory has exhibited good results when dealing with problems that involve
representation of non-stationary signals generated by diverse causes (vibration of
rotating machines, transient behaviour, discontinuities, etc.) [134]. This theory has
been applied to a diverse set of general applications in systems theory, and has shown
important results in practical applications of systems identification as Pawlak/
Hasiewicz [135] and Liu et al. [136] demonstrated. Special attention has been

dedicated to the Morlet wavelet because of various advantages [137):

e Natural robustness against shifting a feature in time because little or no special
precautions are needed to ensure that the feature will make itself known in the

same way no matter when it occurs.

e The best filter at simultaneously locating a feature in terms of its period and when

it appears.

o Specially convenient for analysing signals with a wide range of dominant
frequencies which are localised in different time intervals or amplitude and

frequency modulated spectral components.
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Appendix O contains the application of a wavelet based algorithm for the
identification of modal parameters to simulated data and to bode diagrams measured
from the x-axis feed drive of the Arrow 500 CNC machine.

Results showed that the algorithm performed well for the identification of

simulated data, but it lacked of precision when it was applied to the data measured
from the Arrow 500 CNC machine.

8.4 Summary

Generally, certain types of signals are considered to identify the parameters reflecting
the effects of non-linearities and disturbances in machine tools (sece Table 8.2) [138].
These signals are chosen because they have been developed under certain design

criteria, and for reasons of analytical simplicity. They can include instantaneous

change, sinusoidal changes, or one change at a constant rate.

Parameter Stimuli
Velocity bandwidth Step
Overshooting check
Backlash Triangular
Dead Band
Position Gain Trapezoidal
Coulomb Friction
Resonance frequencies | Random white noise
Damping Coefficients Swept sine

Table 8.2 Parameters to be identified and stimuli used for this purpose

The transfer function of the control loops can be identified using frequency response
analysis. White noise or swept sine signals are used in this case to excite the system
over the bandwidth of interest. Spectral analysis of the bode diagrams is then used to
estimate the terms of the transfer function.

Applications of CWT for modal parameter identification have shown that an
accurate detection of amplitude variations for weak signals combined with high level
of noise and non-stationary signals can be achieved [132]. However, the detection
methods used perform well only for linear systems and the algorithms were applied
only to simulated data.

An algorithm for the identification of non-linear systems based on the wavelet
amplitude (Carmona et al [129]) and Delprat et al [130]) was considered. The
technique showed to be effective for the identification of some resonant states but it

could not achieve accurate results on the identification of damping factors.
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9 CONCLUSIONS AND FURTHER WORK

The aim of the investigation was to focus on the modelling of non-linear control systems

associated with the single-axis Bridgeport and the three-axis Arrow 500 CNC machine tools.

The aim and objectives outlined in section 1.1 have been completed and the following

conclusions reached:

a)

b)

c)

d)

The TLM modelling principles (derived in applications to the modelling of systems
of different disciplines) and their extension to the development of mathematical
models that can reflect the pointwise and the distributed features of non-linear
control systems has been compiled. It was shown that the TLM transform can be
used like the Laplace or Z transforms to solve differential equations. The method
substitutes a calculus model for a respective TLM model. Then, a discrete model in
the discrete time domain is obtained to achieve a solution'in a stepping routine.

A comparison between the TLM method and the ATT modelling method showed
that the two techniques give the same results. However,. ATT showed sensitivity to
small changes in the propagation times. It was also found that the selection of the
sample time for the TLM technique becomes crucial when looking for accurate
results in models of complex systems. For comparison purposes, it was also noted

that for a system model:

- The parameter £ of the ATT model is equivalent to the Z, parameter in the
TLM model.

- The propagation time to be used for the ATT model must be twice the value of
the one calculated for the correspondent TLM model.

A new TLM model for lumped dynamic behaviour denominated zhe modified TLM
stub was developed. This new model improves the convergence and computational
processing speed of the original stub algorithm. In this regard, a table that describes
the modified TLM transform for integral, differential and partial differential
equations was elaborated. The main improvements over the original TLM stub
model include a reduction of 40% on the number of mathematical operations, and a
reduction of almost 35 % on the mean square modelling method error.
Comprehensive transmission line models for the elements of a typical arrangement
of a CNC feed drive have been described. All known non-linear functions including
geometric and load errors have been included as calculated and identified by the

measurements undertaken during the research. Specialised equipment such as laser
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g)

h)

i)

interferometer, ball bar, electronic levels, artefacts, signal acquisition systems and
others were used to obtain parameter data.

Generally torsional and axial dynamic behaviours of a shaft are modelled and
simulated separately. A model that simulates the torsional and axial dynamics of
the screw shaft including the moving nut was derived. In this regard a
synchronisation approach between the axial and torsional models was depicted.

A TLM model for a CNC single-axis feed drive including a digital controller has
been developed. The model was extended to the modelling of two-axis drive of a
machining centre including geometric and load errors. This model constitutes the
basis for a universal model for the modelling of CNC machine tools including
digital drives.

The simulation of the single-axis and two-axis models to various feed rates and
displacements, including linear and circular interpolation; match well in comparison
with the measured response at the machines under study. A maximum percentage
error of 2% was estimated for the velocity and current control loop responses.
Although simulated results for the position control loop showed a 20% error at
maximum on the following error signal (about 10um on a displacement of 400 mm
at 10000 mm/min), the models are considered to produce data useful for the
prediction of performance, accuracy and stability associated with the studied drive
systems. Nevertheless, a deeper study of the model behaviour is needed to be
undertaken in order to improve the model to a higher accuracy.

The application of the modified TLM transform and the torsional and axial model's
synchronisation approach to the modelling of the single and two-axis feed drives led
to a real time implementation of the feed drive models. Results from performance
analysis of single, and two-axis real time models was carried out at the end of the
project and the results are not included in this study, however initial results shown
the feasibility of the developed modelling technique for the implementation of two
and three-axis models running on real time.

An algorithm for the identification of non-linear systems based on the wavelet
amplitude was considered. The technique showed to be effective for the

identification of some resonant states but it could not achieve accurate results on the

identification of damping factors.
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9.1 Contribution to Knowledge

Several areas have been identified as giving a significant contribution to knowledge under the

scope of this study:

a) The shortcomings of TLM models for lumped parameter elements have been
identified. A new TLM model for lumped dynamic behaviour has been derived as a

result of this analysis (see section 3.4).

b) A novel method for the modelling of shafts including the torsional and axial dynamics
in the same model has been stated (see section 4.4.9).

c) Geometric errors measured by specialised metrology equipment were clearly
demonstrated to be essential for inclusion in two-axis models if realistic contouring

accuracy was to be achieved (see sections 5.3 and 7.4).

9.2 Suggestions for Further Work

a) To improve the realism of the TLM model for the single-axis feed drive by inserting

the spectral density of the noise measured from the machine.

b) To extend the single and two axis models to the development of multi-axis models

including geometric and load errors.

¢) To optimise the SIMULINK model of the single-axis drive as a first step towards the
development of real time models including parameter identification and auto tuning,.

d) To include the cutting forces on the single-axis model to analyse the dynamic
behaviour of the system under cutting conditions.

e) To run the optimised model in parallel with the real system in order to detect the

cutting force element.

f) A direction to the study of CWT to modal parameter identification of feed drives

should be performed in order to develop an algorithm to detect automatically the

damping parameters from experimental data.

The main goal of future work is the derivation of algorithms that track fast variations in the

optimal parameters despite noise and modelling uncertainties present in most real systems.
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APPENDIX A TRANSMISSION LINE MODEL

A.1 Differential Equation for a Transmission Line

A transmission line is an arrangement of a pair of parallel wires on which electric energy is
transmitted. This process is studied looking at the voltage difference between the wires,

e(x,t), and the current, i(x,f), of the transmission line at an arbitrary distance, x, from the

source terminal, e (f), at the time ¢ > 0, as shown in Figure A.1.

i(xt)
—9 o
%{U e(xt)
—p —

X

Figure A.1. A transmission line [139]

This transmission line is analysed by an element of transmission line of length Ax. Its

equivalent electrical circuit is presented in Figure A.2.

Lqax RqaX/2
ERYy AN
+ +
e i(D Cd“:L Yﬂx? i(MXD e{x+axt)
Rgyaxi2
AN

X X+AX

Figure A.2. Element of the transmission line of length Ax [140]
Here, Ry Las Y4, and C; are the characteristic resistance, inductance, conductance, and
capacitance per unit length of the line (These parameters are considered to be constant).
Applying Kirchhoff’s laws at a time t to the element of transmission line shown in Figure A.2

situated at a position x, followed by the cancellation of Ax, shows that in the limit as Ax — 0

% ‘,i(x,t)+Rdi(x,t)+§x-e(x,t) =0 (A1)
) d .
C,—e(x,)+Y, *e(x,t) + —i(x,t)=0 (A2)
ot ox
Eliminating either i or e, the following second-order constant coefficient PDE is obtained
0’ 9? 0
5;‘2‘.)’()‘, n=L,C, &7)’(% D+(R,C, + Yde)gy(x,t) +R,Y,y(x,1) (A.3)
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R
Setting ¥ = L1C , 0= L—d sand 7= C—d , and rearranging equation (A.3) gives
ata d d
, 0 0’ d
V4 5;7)/‘()(7,0 = 'a?'y(x,t) + (5+ ”)Ey(x’t) + (5’7)y(xat) (A4)

Where y(x,¢) is replaced by either e(x,t) or i(x,#). This PDE is known as the Telegrapher’s
equation, because it first arose when determining the current and voltage distribution along

telegraph landlines. Ignoring certain parameters in equation (A.3), leads to the following
special cases [23]:
Elliptic partial differential equation (Poisson’s equation)
L,=C,=0and k, =R,Y, yields
az
’é"{)’(x, 1) = K,y(x,1) (A.5)
x ' .
e Parabolic partial differential equation (the diffusion equation)
R,=C,RsjorY,=L,=0,and x, =Y,L, oerCd , then
0’ d |
—y(x,0) =k, — y(x,t A.6
| Gy =Ry (A6)
e Hyperbolic partial differential equation (Helmholtz equation, or simply the wave
equation) - R, =Y, =0 (Loss-less line) and x, = L,C, yields
82 aZ '
—¥(x,t) =K, — y(x,t A7
axz y( ) 3 atz y( ) ( )
Thus, the element of transmission line can be used, under certain conditions, to model

problems involving an elliptic, parabolic, or hyperbolic partial differential equation.

A.2 Analytical Solution of the Telegrapher’s Equation

Assuming that equation (A.4) possesses a Laplace transform with respect to time, and the

initial conditions are zero

aZ .
x FY) y(x,8) = s y(x,5) + (8 + M)y(x,5) +(6N) y(x,5) (A.8)
Rearranging equation (A.8) gives
0’ 1,
= (x,8) = — S ’ '
377 (59) pr (s* +s(8+m)+ny(x,s) (A9)
If ¥y =}!-2—(s2 +s(5+m+6n) or ¥ =%(S+5)(s+77) (A.10)
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2

d
Hence, 7 ¥(x,8) =¥ y(x,s) (A.11)

Applying the boundary conditions, the solutions of (A.11) can be expressed in matrix form as
[141]

[e(x,s)] cosh(yx) —Z,sinh(yx) |i

=| _sinh(yx) e(O,s)]
ZO

cosh(yx) i(0,s)
(A.12)
Where y and Z,are named, respectively, the propagation function and the characteristic

impedance of the transmission line

¥=VL,C,(s+38)s+17) (A.13)

L, [s+6
Z = /—d—
R C \s+n A | (A.19)

Two special cases, leading to a real value of Z,, can be directly analysed:

e Case l: R, =G, =0(Whalley et al approach [55]), thus

y=s.L,C, z,=\L,/C, (A15)

e Case 2: 0= 1 (Abdul-Ameer approach [60]), thus

y=6+bJLC, Z,=\L,/C, (A.16)

As it can be seen, case 1 is equivalent to case 2 when &= 1 = 0. For illustration purposes,

only case 2 is presented following Whalley approach (£ =Z,).

If the output of the j component is the input to the next component and considering x the

length of the j component (x =1/;), then
e(j9)=€u(0.9)=e.u(s)  §,(1;,5)=1,(0,5)=i,,(s)

[ej+l(s) _ =gietnh(y L) & esch(yl)|[i,(s)
e, (s) —g,esch(yl)  &enh(yl) i(s) (A.18)

The propagation frequency for each section of line is expressed in terms of the line with the

(A.17)

greatest propagation frequency in either the discrete time or fictitious frequency domain. So,

the round trip time for the waves on the transmission line segment j may be assumed to be

At =41, [ C,
TN (A.19)

Whalley [19] showed that the ‘basic’ line expm"'2 =z, generates frequencies high enough to

construct every other wave from integer multiples of it. Hence, for a delay representation the
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propagation time is expressed as
T, =At;/2
7 and hence z,~=exp’j's are independent variables, then
B, = exp™”’
cmh(yl))=w, =(Bz,+)/(B,z,~1)

csch(y,l)) = /(cnh* (y,1,) -1
esch(y;l;) =vw? -1

Equation (A.18) becomes

[e,(w,) ]z Wy =Gy wi-l [ i(w)]
ej+](wj+l) f, le_l _fjwj j+l( )

And in a transfer matrix or impedance form:

[ i(w, )] 7w, —5;'\/w§—1{e,(w,)]
(W) fj"wa-—l -&'w, (W)

The Equation (A.25) could be written in z domain:

Bz, jl/zz}/z .
e;(z;)= 5 (ﬂ, z,— ] (z,)- 25 (,B] z, lj Ln(Z0)

ﬂl/2 1/2 1
J+|(zl+l) 2fj[ﬁj j ] ]) 6 (ﬁz +1J j+1(zj+|)

J l
(1 1 -1\ —1/2 -172
In delay form ej(zj_l)=él +,§ I(Z—I) 25]( ﬂz J]ﬂ(zjﬂ)
j /
y (ﬁ;mz;“q . 1_'_/3_1 -1
€(23) =26, 1- ﬁ 1,(z] )"5/ ,3 J+l(zj+l

By applying the same treatment to the admittance from Equation (A.26), it yields:

1 1_-1 ~-1/2 —‘l/2
’( —l) f-l(l-'-g{.l . ]e (z—]) 25 (1 ﬂzlj _|] ,+1(z,+1)

ﬂ l/2 -1/2 y y 1
j+l(zj+1) 26} [ jﬂ )e( ) : (1+§;l -lJ -’+'(zj+|

It is to be noted that § =1 when =0 (case 1, loss-less line).
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APPENDIX B MODELLING EXAMPLE

B.1 Model Using the Analogue Transform Technique

Motor
I Inertia 0.49 kg m*
b, Motor damping (windage and bearing friction) 0.75 N m s/rad
T, Input torque 250N m
Front bearing
by [ Damping (bearing friction) | 025N m s/rad
Shaft 1 (1* rotor drive) and shaft 2 (2™ rotor drive)
I Length Im
d; Outside diameter 0.05m
J; Inertia 6.1359x107 Kg m?
Rotor Shell
l Length 8m
d, Outside diameter 02m
d; Inside diameter 0.16 m
J, Inertia 9.2739x10° Kg m?
Rear bearing (final termination)
b, | Damping (bearing friction) [ 025N ms/rad
General
p Density 7800 kg/m’
G Modulus of Rigidity 80x10° N/m’

Table B.1 Rotor shell parameters

wt w2 T17T2 w3 wd T3T4
| —To
1 I ej+1 lj+1 j
%0 " w j j T2 P 6] j+ w3 j ej+1 7 P T4 wd
1j+1 j j+1 ] i j
Motor & front bearing Sk ol ™ et i w2 P i1 o T3 Rear bearing
(Lumped admittance) shaft 1 rotor shell shaft 2 (Lumped admittance)
(Impedance) {Admittance) (Impedance)

Figure B.1 ATT rotor shell model in SIMULINK

Model parameters for the first and second shaft are:

L, =J,p=6.1359x107" * 7800 = 4.786x10~° (B.1)
1 1
C,=—-= =20.372x107° :
' GJ,  80x10° *6.1359x10" ¥ B.2)
& =\JL,/C, =4.786x107 /20.372x10°° =15.328 (B.3)
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7, =21, /[,C, =2*1*4.786x107 *20.372x10° = 0.6245x10" (B.4)

Model parameters for the rotor shell are:

L,=J,p=9.2739x10"° *7800 = 0.7233642

1 1
*7GJ, 80x10°*9.2739x107

=1.3478x107"

& =L, /C, =/0.7233642/1.3478x107 =2316.6194

7, = 2L,,\[L,C, =2*8%0.7233642*1.3478x10~ =4.996

0.001274

8 —» —»(7)
o + 2-0.9987

wi

Discrete
Transfer Fcn

Figure B.2 Motor & front bearing block (ATT Model)

(B.5)

(B.6)

(B.7)

(B.8)

D

»CD

ej+1

<

ej+1

D,

=

3\

ol
B S

Figure B.4 Rotor shell block (ATT Model)
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nw s
T4 wd

Figure B.5 Rear bearing block (ATT Model)
B.2 Model Using the Transmission Line Matrix Method

The TLM model for the rotor shell is presented in Figure B.6. Figure B.7 shows the
implementation of the TLM model in SIMULINK. The TLM parameters for each segment

will be:

Z,=J,\[pG =6.1359x10" */7800*80x10° =15.3274 (B.9)
Z, = J,[pG =9.2739x10"° */7800 *80x10° =2316.64 (B.10)
At=1,,JGTp =1*7800/80x10° = 0.31225x10°° [s] (B.11)
Z, =J,/(At/2)=0.49/(0.31225x10" /2) = 3138.51 (B.12)
The equations for the TLM model are:

@, (k) =M., (T,(k) - 2E,, (k) - 24/ (k)) (B.13)
where, M =37 1+ b +Z, 0.75+313851 l 025415377 160 (1)
e, (k) = w,(k)Z, +2E" (k) (B.15)
E! (k+1)= (e, (k) - EL(k)) = o,(k)Z,, - E" (k) (B.16)
Bi(k+1)= Al (k) + w,(k)Z, (B.17)
T,(k) = 24! (k) + o,(k)Z, (B.18)
@, (k) = M, (B (k) - 4., (k) (B.19)

2 2 “
where, w77 T o Biee - 60 (B.20)
Ak +1) = B (k) - o, (k)Z, (B.21)
Bl (k+1)= 4, (k) + 0, (K)Z, (B.22)
T, (k) = 24, (k) + @, (K)Z, B
Bi(k+1)=B' (k) for j=22,23,...,28 (B.24)
Alk+1)= 4, (k) for j=21,22,...,27 (B.25)
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@, (k) = M ,;(By (k) - 4, (k) (B.26)
2 2

Where, w7 +Z  Bleea+15a774 - SoT6527 107 (B.27)
Ay (k+1) = BYy (k) - 0,(k)Z, (B.28)
Bi(k+1) = A(k) + o, (k)Z, (B.29)
T,(k) = 24! (k) + @, (k)Z, (B.30)
,(k) = M _,B. (k) (B.31)
2 2
where, wa = Z +h, = 1532743025 =0.12839 (B.32)
A (k+1) = B (k) -, (k)Z, (B.33)
T,(k) = @, (k)b, (B.34)

Em(k)

Figure B.8 @y calculation block (TLM model)

O D
2>
@__@
O
AZ1 be 1z
H—r(D

Figure B.9 ay; calculation block (TLM model)
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1 1 1 1 1 1
2 [ 2 =" 7 = 3 [ 7 [e=” 7z [ 2
B21 B28
1 1 1 1 1 1 1
Z =] Z [ ? 3 2P 3 [ ; =P 7 =P z (2
A28 A21

—>C

A28

B4

Figure B.12 @ calculation block (TLM model)

B.3 Analysis of the TLM Model for the Differential Term

T, in Figure 3.22a is assumed zero for simplicity of the analysis. The equation for the

mechanical dynamics of the motor becomes:

T, (k) -, (kXb,, +b,) = e, (k) (B.35)
where, | e,(k)=wy(k)Z, +2E: (k) (B.36)
Z,=J, /(At]2) (B.37)

E,(k+1)=—(e, (k) - E},(k)) (B.38)
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The angular velocity a), is calculated from equations (B.35 and B.36) as
wy (k) = (T, (k)= 2E, (k) (Z,, +b,, +b,) (B.39)
Replacing parameters f, and b,, in equation (B.40) by the amounts specified in Appendix B.1
gives:
(k) = (Ty(k) - 2E., (K) (Z,, +1) (B.40)
The implementation of this TLM model (equations B.36 to 3.40) was done in MATLAB in
graphic mode using SIMULINK. See Figures B.37- B40

o wo }—p|1

Ste
P TLM model weo

Figure B.13 Motor block diagram model in SIMULINK

o€ . D

To wo
(D—<n |

N [=

Figure B.14 Subsystem TLM model

The transfer function of equation 3.35 (equation B.41) was used to calculate the step response
of the system and the TLM model error for three sample times: 6.245¢-3, 6.245¢-4 and
6.245e-5 seconds. The MATLAB code for the program used to calculate the error is included
in Appendix B.5

o6 _ 1
T,(s) J,s+(b,+b) 049s+1

(B.41)

B.4 Calculation of the TLM and MTLM Model Errors

% error_TLM.m

% This program simulates the step response of the circuit in Figure 3.22a. The error for the TLM and MTL
% models is calculated and plotted

cle, clear all

st=6.245¢-3; % sample time [s]

t=0:st:5; % Vector of time [s]

t=t';

len=length(t); % Number of samples to be simulated

% Declaration of the input torque To [N-m]

To=t; % ramp response

tmax=max(t)+st;

simin=[t To];

Jm=0.49; % Motor inertia form Appendix B.1 [kg-m"2]
fa=0.75;
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bm=0.25;

dd=fa+bm;

TI=0; .

% "Ideal response” from the transfer function in s-domain

% Pre-allocation of variables in memory

num=1;

den=[Jm dd];

% now run model error_cal.mdl to get the "ideal response” (from the transfer
% function)

% after that run the program error_tlm_resp.m to get the errors

simin » num(s) »D
den(s)

From Trander F wo id

Worispace ransfer Fen _

Figure B.15 error_cal.mdl SIMULINK model

% error_tlm_resp.m
% Model using the TLM stub
Zm=Jm/(st/2); % Characteristic impedance associated to Jm - equation (B.37)
% Pre-allocation of variables in memory
w_id=wo_id.signals.values; % response from the error_calc.mdl model
% Model using the TLM stub -
Zm=Jm/(st/2); % Characteristic impedance associated to Jm - equatlon (B.37)
wo=zeros(len,1); % motor angular velocity [rad/s]
em=zeros(len,1); % Torque almacenated by the inertia [N-m]
Em=zeros(lent+1,1); % Incident pulse associated to Jm [N-m]
for k=1:len : '
% Velocity calculation:
wo(k)=(To(k)-2*Em(k))/(Zm+dd);
em(k)=wo(k)*Zm+2*Em(k);
% Calculation next incident pulse:
Em(k+1)=Em(k)-em(k);
end
w_e=w_id-wo; % error TLM model
% Model using the modified TLM stub:
Zm=Jm/st; % Characteristic impedance associated to Jm - equation (B.37)
% Pre-allocation of variables in memory
wo_m=zeros(len,1); % motor angular velocity [rad/s]
em=zeros(len,1); % Torque almacenated by the inertia [N-m]
Em=zeros(lent+1,1); % Incident pulse associated to Jm [N-m]
for k=1:len
% Velocity calculation:
wo_m(k)=(To(k)-Em(k))/(Zm+dd);
em(k)=wo_m(k)*Zm+Em(k);
% Calculation next incident pulse:
Em(k+1)=-wo_m(k)*Zm;
end
w_em=w_id-wo_m; % error modified TLM model
plot(t,w_e),grid, xlabel('time [s]), ylabel('% Error TLM [rad/s]')
pause
plot(t,w_em),grid, xlabel('time [s]'), ylabel('% Error MTLM [rad/s])
pause
% TLM and MTLM error comparison
subplot(4,1,1)
plot(t,w_e,t,w_em),grid, xlabel('time [s]"), ylabel(Error [rad/s]")
legend('TLM','MTLM',0)
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subplot(4,1,2)

plot(t,w_e./w_id),grid, xlabel('time [s]), ylabel('% Error TLM [rad/s]")
%legend('TLM',MTLM',0)

subplot(4,1,3)

plot(t,w_em./w_id),grid, xlabel('time [s]'), ylabel('% Error MTLM [rad/s])
%legend('TLM','MTLM',0)

subplot(4,1,4)

plot(t,w_e./w_id,t,w_em./w_id),grid, xlabel('time [s]'), ylabel('% Error [rad/s]')
axis([0 5 0 8e-4]);

legend('TLM'MTLM")

subplot(111)

B.5 Modified TLM Transform for Equation (3.35)

Applying the modified TLM transform (See table 3.2) to the differential term in equation
(3.35) gives:

Ty (k) - T, (k) — @y (k)(b, +b) = w,(k)Z,, + E! (k) (B.42)
where Z,=J,/At=0.49/0.31225x10" =1569.255 (B.43)
Equation (B.13) becomes:
oy (k) = M, (T, (k) - E,, (k) - 24/ (k)) (B.44)
1 1

where, M

= - _ »
" by +Z,+b+2, 075+1569255+025+153274  O-oosdl0T (B.43)

EL(k+1)=-a,(k)Z, (B.46)

Figures B.41 and B.42 show the block diagram for the @ calculation subsystem and its

initialisation code.

A1

|

Figure B.16 @ calculation block (modified TLM model)

Em(k)
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APPENDIX C SYNCHRONISATION BETWEEN THE TLM AXIAL AND
TORSIONAL MODELS

The synchronisation between the TLM axial and torsional models for the screw shaft can be

achieved using the ratio between axial and torsional propagation speeds as follows:
n
4= |2 —Ta (C.1)
ut nl

This value means that the time spent by an axial wave travelling n, sections is the time spent
by a torsional wave travelling on », sections (where n, and n, are integers). To model this
effect, each torsional section is dived into n, axial sections to assure that axial and torsional
pulses are arriving to the same point at the same timC. Subsequently the number of sections

of the axial model (4,) will be n, times the number of sections in the torsional model (4) ,

hence

hy=nh (C2)

The application of this procedure using the values for G, and E, specified for steel gives a

ratio of
9
LA ’206x109 - 1027 ~1.6097 (C.3)
n, 79.6x10 638

This ratio implies to evaluate the axial model 1027 times per every simulation of the torsional

model, if each section of the torsional model contains 638 sections of the axial model. This

value can be reduced to speed up the simulation by analysing a variation of 1% in the values

of the parameters G, and E; as shown in Table C.1.

1.01 E;5 | 0.99 E,
1.01 G | 1.6087 | 1.5927
0.99 G5 | 1.6249 | 1.6087

Table C.1 nu/n, ratio for variations of 1% in the values of Gy and Eg
It can be assumed from Table C.1 that a ratio between 1.5929 and 1.6246 is valid taking into
account the variations the screw shaft material may have due to the fabrication process.
Therefore, the minimum rational number found into this interval (8/5) is selected for the

modelling process (n,= 8 and n, = 5). In these conditions, E is approximated to 204.8x10°
N/m? for a given value of G = 80x10° N/m’.

The events synchronisation between the torsional model of the screw shaft and the models

for the motor and coupling is achieved by setting the length of each section such as the
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propagation time becomes a desired ., sampling time, thus:
L=t (C.4)
The length of each section in the torsional model (/,,,) will be
Lor = Epumy (C.5)
The number of sections (%) in which the screw shaft is dived will be
h=1,/1, (C.6)
If m is not an integer number, it is rounded to the nearest integer. This implies to change the

length of the screw shaft by certain quantity. Applying this procedure to a screw shaft made of
steel (density = 7850 kg/m®) for a length of 1.346 metres gives:

u,= v/80x10° /7850 = 3192.3 [ms] (C.7)
Ly =1x107°%3192.3=3.1923x107 [m] (C.8)

h=1.346/3.1923x107 = 421.63 = 422 sections (C.9)

This means, an increase in the length of the screw shaft (/) of:
(422-421.03)*3.1923x107° =117.06 um (C.10)

This error model could be present in the real system due to the tolerances in the machining
process of the shaft and changes in the values of the physical properties of the material. For
example, if the density value is changed the 0.63% to 7800, the number of sections will be
420 and the length of the screw shaft will be reduced 92.35 wm.

An approach to cope with this limitation of the modelling technique is to assume that the
density of the material could vary 1% its nominal value. In consequence, a valid number of

sections can be defined as the round value of 4 (equation (C.6)) towards minus infinity. Then:

h=1346/3.1923 =421.63 = 421 sections (C1n
The number of sections of the axial model (equation (C.2) will be
h, =5%421=2105 sections (C.12)

Rearranging equation (C.6) gives:
L, =1,/h=1346/421=3.1971 [mm] (C.13)
u, can be calculated from equation (C.5) as:
U=l [, =3.1971x107 /1x10™° = 3197.15 [nvs] (C.149)
The density p; is estimated as:

G, 80x10°
ss 2

u?  (3197.15)?

= 7826.43 [kg/m’] (C.15)
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The torsional impedance is calculated using equation (4.191):
Z,=197x107*3197.15=6.29
The length of each axial section is given by
loir =1or /1, =3.1971/5=10.63942 [mm]
u, can be calculated from equation (C.1) as: .

u, =tey =-§-*3197.15= 5115.44 [ms]

nt
The propagation time for the axial model is
t, =11, =0.6392x107/5115.44 =125x107° [s]
The axial impedance is calculated using equation (4.194):

Z, = p, Au, =7826.43*9.13x107 *5115.44 = 36563.32
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APPENDIX D TORSIONAL AND AXIAL TLM MODELS

This Appendix presents the derivation of the TLM model for the torsional and axial dynamics
of a ball screw with moving nut. Two bearing configurations are considered: fixed/fixed and
fixed/supported. The torsional model remains the same for both bearing configurations due to
the fact that a fixed or supported rear bearing will induce a frictional torque T, on the section
where it is placed. In contrast, the axial model changes for the fixed/supported case because

the rear bearing mounting is not imposing the restriction that it does in the fixed/fixed case.

D.1 TLM Torsional Model

Three cases are considered for the modelling of the torsional dynamics:

a) Screw shaft subject to an input torque on one end and a load torque on the other end.

b) Screw shaft subject to an input torque including bearings.

¢) Case b including the nut.
Figure D.1 illustrates the TLM model for case a. Torques T, and T}, are applied to each end of
the screw shaft respectively. The shaft is divided into 4 sections. Table D.1 contains the
equation for each section of the shaft. It can be seen that pulses are propagated through out the
shaft until a disturbance is present in the system - torque T, in the first section and torque T},
in section A. Incident pulses are reflected at those points according to the boundary conditions.

Thus, the model is reduced to:

The calculation of the velocities @y, @+

o, (k) = (T, (k) - 24,(k))/ Z, (D.1)
w,, =B, -T,)!Z, (D.2)
o The calculation of the incident pulses affected by the perturbations at the first and last
sections:
Bl(k+))=A4/(k)+®,Z, (D.3)
4,(k+1) = B,(k)~ ®,.,Z, (D.4)
e The propagation of the other 4’ and B pulses:
Bi(k+1)=B (k) for j=23,...,h (D.5)
Aj.(k+l)=A;+,(k) for j=1,2,..., h-1 (D.6)
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This dynamic behaviour resembles a circular (linked) list where information is stored to be

analysed and modified at designated positions as shown in Figure D.2

Figure D.2 Graphic representation of the pulses propagation for the case a

Figure D.3 illustrates the TLM model for case b. The presence of the bearings will generate
the perturbations Ty and T, on the shaft, as shown in Figure D.3a. The perturbations T., Ty,
and T, split the shaft into two propagation zones: the first one between perturbations T, and
Tjp, and the second one between perturbations Ty and T,,. The remaining segment of the shaft

will not transmit any torque; therefore it can be modelled as a lumped inertia J,,s. Where,

| Z g = o0a 1(1,12) (D.7)
Each one of the propagation zones can be seen as a shaft subject to an input torque on one end
and a load torque on the other end, as analysed for the case a. The portion of shaft between
the front end (to be connected to the coupling) and the rear bearing is divided into 4, sections,

the front bearing is placed on the f, section and the rear bearing is on the 4, section. Figure

D.3b shows the resultant TLM model for the system when 4, = 6 and f, = 2. As observed in
Table D.2 pulses 4'; and B's are reflected due to the perturbation T on section 2. The same

effect is observed for the pulse A's due to the perturbation T, on section 6. Applying

equations (D.1 — D.6) to each zone gives:

Calculation of velocities @y, @; and @, (@, @p+; and @)

@, (k) = (T, (k) - 24, (k))/ , (D)
2Bl - ) =T,
g, (k) =— ' - .
o (K) 2Z, (D.9)
2(B,,-E! )-T,)
) k - ht end rh .
st (K) Z+7. (D.10)
E:nd (k + 1) = —wht+l(k)Zend - E:nd (k) (D'l 1)
Calculation of the incident pulses affected on zone one (sections one and two)
h=f, (D.12)
B{(k+1)= 4] (k) + w,(k)Z, (D.13)
Ay (k+1)= BY(K) - @, (K)Z, (D.14)
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e Propagation of the other 4’ and B’ pulses on zone one:

B;(k+l)=Bj._1(k) for j=2,....,/ (D.15)
A;.(k+1)=A;+,(k) for j=1,...,f, -1 , (D.16)
e Calculation of the incident pulses affected on zone two (sections three to six)
h=h-f, (D.17)
B;b+l (k + 1) = A;b+1 (k) + w]b+l(k)zr ' (D18)
4, (k+1) =B, (k) -w,,,(k)Z, (D.19)
e Propagation of the other 4’ and B’ pulses on zone two:
Bi(k+1)=B (k) for j=f+2,....h (D.20)
A;(k+1)=A;+l(k) for j=f,+1,..., h -1 (D.21)

Figure D.4 shows the graphical representation of the pulses propagation.

Figure D.4 Graphic repfesentation of the pulses propagation for case b

Figure D.5 shows the TLM model for the ball screw with the moving nut (case c¢). Table D.3
contains the equations for the model. ’
The inclusion of the perturbations T, on section four of the shaft generates the reflection of

the pulses arriving to sections four and five. Assuming n the section where the nut is on (n = 4

for this case) gives:

2B, -4,,)-T,

D) = = (D.22)
B, (k+)=4,,(k)+0,.,(k)Z, (D.23)
4,(k+1) =B, (k)-0,,(k)Z, (D.24)
Equations (D.20) and (D.21) become
Bi(k+1)=B (k) for j=f, +2,..., h, Jj#En+l (D.25)
A(k+D)= A (k) for j=fi+l,....h-1 j#n (D.26)

Consequently, the zone two of the shaft is divided into two loops (Figure D.6) that change
with time as the nut moves along the screw shaft. For example, the TLM model presented in
Figure D.5 changes to the one in Figure D.7 when the nut moves to section five.

197



861

¢ 2m31] Jo [apowt 'T.L 2y Joj sas[nd JuspIdul pue SaM100[A Je[n3ue Jo uone[nde) ¢ d dqeL

'7tm - g 2 VACER | 17 Z'w-lg Yy a+9'y
i A 4 W +'z'o 4 v+'zo | G+1ig
$0AI3 ‘¥ 10§ uonenbo oy oyul ‘@ Junmpsqns usym udy) “fg = +1)y pue [y =(1+1)g
z'o-g VAR AR AR 'Z'o-1g VAT ‘g
A A W +'z'0 ¥ +'z'o ¥+'z0 W +'z'o ¥
"z+'Z 'z 'zt 'z 'zt 'zt 'z
- ("2 -34)T | 1-CGy-lax W YI-(r-tax | (v-lax wT-L ‘o
L 9 S 14 € z I !

(2 aseo) Jnu Suraow pue uonoLy suLeaq sy SuIpn[dUI SUONIS JYSIS OJUT PAPIAIP YEYS B JO [9powt WL §'( 231y

lepow W11 (4

Pege 1 e far S¥e ree 7484
+ + + o+ + o+ + o+ + -
2
"
4 'z 'z 'z 'z +
|f.N + ‘L@ 1701 ls.h + o L] Im
jnu pue sSuLreaq Yum Yeys ma10g (e
s 2rA o
'y \:u\. A //\\ f/\
‘m [Y) [} ‘o [ Y7 Ag, A7, [Y/
//\ \ J v/\ //aw\ /3\ /{aw //aw_
[0 O] | NNNNNN | [col
| 9 UOI3S | ¢ UOI109S |t uotoes | € Uo1129s | 7 Uol0s | [ uo1os _ Ay
ool —_ | toTe]) T
Fuueaq Jeay - "N Suueaq o1y



661

(A1 uoNO3s UO Jnu) 2 3sed 10§ [spowr WL L'd a3y

uoneSedoid sasind oy jo uoyrjuasaidal aydern (o

lepows WIL (9

mAe 04 W tac 44
+ + + o+ + -
L
4 'z +
I3 ) 1/
- f.N + 4 ‘o (]
nu pue sSuLreaq Yum yeys maads (e
“s} s g
pud ,(\ \ »f/\\b A [}
AT [ Y7)) LYy L X7/} . LY 7] \Zep Im
U N \ \ o/ A\ L L
cal | NN\ | [cot
| 9 uo1120s ] § uol100s N $ UoIIS | £ uonsss i 7 uonxds | ] uonads _ A2y
ol | NNNNWN | ol I ~
Suueaq se)y i N Suneaq yuolg

(1noJ uonsas uo jnu) 2 ased 10§ uonededoid ssind oy Jo uonejussaidar orydern 9'(g 21n31]




00¢

(uonemSyuos SuLreaq paxy/paxXy) SAIWEUAP [BIXE YBYS MIIOS 3} 10f [Spow WIL 8°d am31g

uonjededoad saspnd sy Jo uoneuasaidar aydern (9

+ +
J

vz I+Diy | e, A PN
+

+ +

fopow WTIN (9

Oy 1404y

Myr o g ye "8c W4 4
+ + + + +
Ydip LAY 7y . (4140 1+0Ug P Pa
- fﬁ. T+ iEN . "+
jnu pue mMEu&OQ yum &.«&ﬁ—w MG AN
I+oyy DYy Jvou, DU, vZp Dig
- - LX) - - cee - -
pua gy wo
| (oXe) | NNNNNMN | | oY)
— l } 1 1 | 3 1 1 cn& —— I i t ' ) i | t 1 | \ | —
T ——v O — 1o _
Sunieaq %Yy uoydas [+Pu uoyoss ¢ [ wonoas Suiresq
mN juolj

BLEN



D.2 TLM Axial Model (Fixed/fixed Bearing Configuration Case)

The TLM model for the axial dynamics is derived applying the procedure used for the case ¢
of the torsional model. The portion of shaft between bearings is divided into h, sections, the
front bearing is placed at the beginning of the first section, the nut is on the n, section, and the
rear bearing is on the 4, section as shown in Figure D.8a. The shaft portions at the front and at
the end do not affect the axial rigidity as explained in section 4.4.2. These portions are then

modelled as lumped masses ny, and m,,.

Masses my and m,y, are calculated given the density (p;,) and the cross sectional area of the
shaft (A;;):

mfb = lﬁ'ontAsspss (D'27)

m, = IendAsspss (D'28)
Where /son and lenq represent the length of the front and the end portions of the shaft. These
lengths are calculated for a screw shaft of length I as:

Liow = Folior (D.29)
la =1 = h1,, (D.30)
The corresponding TLM impedances are
 Zyy=my i, (D31)
Zy=m,lt, (D.32)

The restrictions imposed by the bearing mountings on the first and 4, sections generate the
reflection of pulses arriving to those sections. The procedure derived in Appendix D.1 can be
applied taking into account the appropriated signals representation (linear velocity instead of
angular velocity and force instead of torque). The graphical representation of the
corresponding pulse propagation is illustrated in Figure D.8c.

The velocities for the front bearing mounting are calculated including the TLM model

derived for the bearings stiffness in Section 4.4.3 as shown in Figure D.9.

Znp  +Epp-

\4 'foh

Figure D.9 TLM model for the front bearing mounting (Fixed case)

This electric circuit is solved finding the Thevenin equivalent with respect to Fp, (Figure
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D.10), thus: E (k) =Z g By (k) + Z g ES, (K) (D.33)

Zy=Z,mZp(Zym+Zp) (D.34)

Where, Ziin =L N Z oy + Z ) (D.3%5)
Zip =Zpps (Z o + Z ) (D.36)

Zow=ZytZ,, (D.37)

E, (k)= E%, (k) — E, (k) (D.38)

Figure D.10 TLM reduce model for the front bearing mounting (Fixed case)

vig (k) = M, (E, (k) =24, (k)) (D.39)

Fo(k)=E, (k)-v,(k)Z, (D.40)

Y s (B) = M (E s (B) = F (K)) (D.41)

E\(k+1)= F, (k) (D.42)

Ely(k+1)=E', (k)= Z v s (k) (D.43)

E\(k+1)==Z, v, (k) (D.44)

Bl (k+1)= 4 (k) +v,(K)Z, (D.45)

Where, M,,=1/Z, +Z,) | (D.46)
M, =1/Z,, (D.47)

Applying the same procedure to the rear bearing mounting (Figure D.11) gives:

Z, +E -
Viat! Vobh mrh mrb

Vha+l

a) MTLM model b) Thevenin equivalent

Figure D.11 TLM model for the rear bearing mounting (Fixed case)
E,(k)= Z g E (k) + Z g E s (K) (D.48)

Zeq = Zmrhh Zrb /(Zmrbh + Zrb) (D49)
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Where’ ZEmrbh = Zrb /(Zmrbh + Zrb) (D'SO)

Zey =Zpn (Z s +Z,,) (D.51)
Zon=Z,,+Z,, (D.52)
Ep (k) = E,, (k) + E,, (k) (D.53)
Viar (k) = M., (2B, (k) - E,, (k)) (D.54)
Fy(k)=E, (k) +v,,(k)Z,, (D.55)
Vn () = My (Fy (k) = E, . (k) (D.56)
Bl (k+1) = 4{,(k) +v,,(k)Z, (D.57)
El(k+1)=F, (k) | (D.58)
Ely(k+1)=2Z,,v,,(k)+E' (k) (D.59)
| E L (k+D)==Z v (k) (D.60)
Where, M, =1/Z,+2,) - (D61)
M,,=12Z,, (D.62)
The propagation of A4; and B’ pulses on the other sections is given by:
Bl (k+1)=B! (k) for j=2,.. hy j#n+1 (D.63)
A, (k+1)=4, (k) for j=1,..., hy-1 J#n, (D.64)

D.3 TLM Axial Model (Fixed/supported Bearing Configuration Case)

In the fixed/supported-bearing configuration only the front bearing (fixed side) imposes
restrictions to the axial displacement of the shaft, as described in section 4.4.3. The model for

the rear bearing mounting is reduced to the one presented in Figure D.12. B'j,(k+1) is

calculated using equation (D.57)
Vias (k) = M (ZB;m (k) - Erinrb(k)) (D.65)
Where Mvhal = l/(Za + Zmrb) (D‘66)

Vhati Znro  +Eprp -

Z,

+
2B},

Figure D.12 TLM model for the rear bearing mounting (Supported case)

203



APPENDIX E TEST RIG SPECIFICATIONS

This appendix contains the specifications of the constitutive elements of the test rig. This rig is

a CNC single axis drive representative of the y-axis of a Bridgeport Vertical Machining Centre.

Motion Controller | HEIDENHAIN TNC 426PB (280 476-24)
Electrical Drive SIEMENS Simodrive 611 (6SN1123-1AA00-0CA1)

Motor SIEMENS 1FT6082-1AF7-1AG1

Guideways THK SNS45-LC

Front bearing Double Row Angular Contact Ball Bearing ZKLF 3080.2RS PE
Rear bearing Double Row Angular Contact Ball Bearing ZKLF 3080.2RS PE
Ballscrew THK BIF (BNFN) 4016-5 RRG0S-1346(1065)L-C3-E
Coupling ROBA - ES 28 940.000

Rotary encoder HEIDENHAIN ERN 1387
Linear encoder HEIDENHAIN AE LS486C ML620

Transverse 500 mm

Rapid Traverses | 30000 mm/min

Feed Rates 100 - 12000 mm/min
Table Size 115mm x 58 mm
Table mass 312Kg

Saddle mass 524 Kg

Load mass 853.6 Kg

Table E.1 Test rig specifications
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Parameter Controller | Symbol | Value Units
code
Maximum feed rate (According to rig specifications) MP 1010 Vinary 32000 mm/min
Maximum acceleration MP 1060 Amax 6 m/s*
Maximum jerk MP 1090 Jmax 75 m/s®
Position controller cycle time MP 7600 t 3 ms
Transient response during acceleration and deceleration | MP 1521 L 0 ms
Position filter: Tolerance for contour transitions MP 1096 d 0 mm
Minimum position filter order MP 1099 Mo 5
Proportional factor position controller MP 1510 k, 4 (m/min)/mm
Velocity controller cycle time t, 0.6 ms
Velocity feed forward factor MP 1396 kyy 1
Transverse per motor revolution (screw shaft lead ) MP 2020 ky, 16 mm
Proportional factor — velocity controller MP 2500 k, 18 A-s/rev
Integral factor- velocity controller MP 2510 k; 2500 Alrev
Differential factor-velocity controller - MP 2520 ky 0 A-s’/rev
Low-pass filter - actual velocity MP2560 PT, 0
Holding torque factor (vertical axis) MP 2630 in 0 A
Acceleration feed forward factor MP 2600 ko 0.039 A-s’/rev
Friction compensation at low motor speed (10 rpm) MP 2610 iy 0 A
Delay of the friction compensation MP 2612 I 0 ms
Friction compensation at motor rated speed MP 2620 ipm 0 A
Second order delay , » MP PT, 0 ms
Band-stop filter damping MP dB, 9 dB
Band-stop filter center frequency MP N 338 Hz
Current controller cycle time t 0.2 ms
Proportional factor at standstill — current controller MP 2400 kep 50 VIA
Proportional factor — current controller MP 2402 ke 50 VIA
Input voltage (DC link voltage) MP Voc 600 Vv
Switching frequency MP 2180 Sowm 5 KHz

Table E.2 Y-axis motion controller parameters [106]

MP 2421 and MP 2431 in Figure E.1 are the current controller parameters when the system is

controlling induction motors.

SIEMENS Simodrive 611 6SN1123-1AA00-0CA1 (one axis)

Parameter Symbol | Value Units
Input voltage (DC link voltage) Ve 600 \Y%
Output voltage (3-pase AC) €ahe 0-430 A"
Maximum current Lax 50 A

Table E.3 Inverter technical data [105]
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SIEMENS 1FT6082-1AF7-1AG1 (Permanent magnet synchronous motor)
Parameter Symbol Value | Units
Number of pair poles p 4

Rated speed Ryated 3000 RPM
Rated torque Trated 100k 10.3 N-m
Rated current Drated ook 8.7 A
Stall torque To ook 13.0 N-m
Stall current at M, o ook 10.2 A
Moment of inertia Im 30.0 10 Kg-m®
Maximum velocity Rar 5250 RPM
Maximum. torque Tnax 420 N-m
Peak current Lo 41.0 A
Limiting torque (600V) Tiimir 29.0 N-m
Limiting current (600V) Liimit 29.9 A
Physical constants

Torgue constant kr 1.28 N-m/A
Voltage constant (phase to phase) k. 80.0 V/1000 RPM
Winding resistance _ R 0.68 Ohm
Three-phase inductance L 6.2 mH
Electric time constant t 9.3 ms
Mechanical time constant Lech 37 ms
Thermal time constant ta 35 min
Thermal resistance Ry 0.15 W/K
Mass My, 15.0 Kg

Table E.4 Motor technical data [106]

THK linear guideway SNS45-LC
Parameter Symbol | Value Units
Basic static load rating C. 222 KN
Basic dynamic load rating Cow 123 KN
Radial rigidity (downward/upward) kn 1.56/1.15 | N/um
Resistance under no load Feuo 15 N
Imposed load My, 853.6 Kg
Friction coefficient Hew 0.003
Radial load Frae ]8373.816] N
Lateral load Fi 0 N
Radial factor Xrad 1
Lateral factor Yiu 0.935
LM block mass my 34 Kg
LM rail mass per unit length my 9.8 Kg/m
LM rail length 1y 1.3 m

Table E.5 Guideways technical data [97]

The friction coefficient of the guideway is calculated from the graph in Figure 4.42. In this

case the imposed load (Mg, ) is the weight of load (the table, saddle, nut and the four LM
blocks)
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M, =mg. +m . +m,, +4%m,, =312+524+4+4%3.4=853.6 kel (E.1)

The radial force of friction is

F,,=981*M =9.81*853.6 =8373.816 [N] (E.2)
According to equation (4.102), the equivalent load is
F;, =1*8373.816+0.935*0 =8373.816 [N] (E.3)
For a load ratio of 0.068 the friction coefficient is # = 0.003.
Mgw /ng =853.6*9.8/123000 = 0.068 (E.4)
Thus, the frictional force due to the load (equation (4.104)) is
F,=15+0.003*8373.816 = 40.121 [N] (E.S)
Double Row Angular Contact Ball Bearing ZKLF 3080.2RS PE
Parameter Code | Value | Units
Contact angle - o 60 Degrees
Bore diameter dy 40 mm
Pitch circle diameter dy; 455 mm
Outer diameter D, 80 mm
Basic static load rating C, 64 KN
Axial rigidity ky 850 N/pm
Moment of inertia (rotating inner ring) Jp 0.73 Kg-cm*
Mass m, 0.7 Kg
Radial load F, 165727 N
Preloading load F, 2180 N
Limiting speed Vimax | 2200 | RPM
Bearing housing ridity front/rear kow | 1.9/1.2 | KN-um
Grease lubricated DIN: K3K-30 v=100 mm?s at 40°C

Table E.6 Bearings technical data (Front and rear) [92]

From reference [93]: ' fo=4 (E.6)
f1=0.001*(p/C)" (E.7)
Where R=14*F,-0.1*F, (E.8)

Load factors are chosen from table E.1

a=600 xb Yb
F,/F,<217]|19 [os5
F,/F,>217|092]1

Table E.7 Bearings load factors [93]
The radial load of the bearing is the force due to the screw shaft weight, thus
F,=mg/2=134%*9.81/2=65.727 [N] (E.9)

The axial load is the resultant from the sum of the preloading load and the axial force induce on
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the ballscrew arrangement, thus
F,=F,+|F,|=2180+|F,| [N] (E.10)
The minimum F, / F,, ratio is

F,/F,=2180/65.727=162.68 (E.11)

Thus from table E.7: X;=0.92 and Y,=1. From equation (4.90), the Resultant bearing load will
be:

Fp=0.92%65.727+1* (2180 +|F,|) = 2240.47 +|F,| [N] (E.12)
The load-dependent component (equation (4.89)):

1.4*(2180+|F,[)-0.1*65.727
64000

1/3
T, =o.001*( J (2180 +|F,|)*45.5/1000 (E.13)

T, =(0.0992 +4.55x107° *|F,[)*(0.3627+ 7.8217* 107 *

Fa

) (E.14)

Given a maximum axial load of 8kN, values of T, will vary from 0.0363 to 0.2038 N-m.
The velocity-dependent component (equation (4.88)):

2/3 :
T, =4%107'0* (100 *p* 26:),,) *45.5° =0.0037 * »*'* [N-m] (E.15)
Parameter ' Symbol Value Units
Nominal torque of coupling Tewn 160 Nm
Maximum torque of coupling Tk max 320 Nm
Static torsional stiffness C rotar 4200 Nm/ rad
Dynamic torsional stiffness Cram 10100 Nnv rad
Static radial stiffness C, 3500 N/mm
Maximum speed N max 8500 pm
Mass moment of inertia per hub Je 200.3x10° kg-m*
Mass per hub m, 0.253 kg
Hub material aluminium
Elastomeric element colour red, Shore 98 Sh A
Table E.8 Coupling technical data [111]

HEIDENHAIN ERN 1387

Parameter Symbol | Value Units

Incremental signal: sinusoidal 1 Von

Resolution 2048 | pulse/revolution

Limiting velocity Vimar | 15000 RPM

Mass Mye 0.25 Kg

Moment of inertia Je J2.6x10° Kg-m’

Table E.9 Rotary encoder technical data [112]
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HEIDENHAIN AE LS486C ML620

Technical data Symbol Value | Units
Absolute signal: sinusoidal 1 Von
Grating period 20 um
Measuring length 620 mm
Maximum transverse velocity Viemax 120 | m/min
Mass my, 04 Kg
Required moving force F, 5 N

Table E.10 Linear encoder technical data [112]

Parameter | Symbol | Value [ Units

Screw shaft

Lead 1 16 mm/rev
QOuter diameter d, 40 mm
Thread minor diameter d. 34.1 mm
Length I 1346 mm
Moment of Inertia per unit mass I, 197 | 107 Kg-cm*/mm
Reduction ratio n 1

Efficiency ef 0.9 %
Young’s modulus E, 206 KN/mm*
Shear modulus Gy 79.6 GN/m’
Density Dss 7850 Kg/m’
Mass m 13.3 Kg
Material AISI 4150 H Steel (Standard low alloy)
Nut

Pre-loading force Fa, 2750 N
Ball circle diameter BCD 42 mm
Dynamic load rating C, 61.4 KN
Static load rating Coa 158.8 KN
Axial rigidity k, 1500 N-pm
Mass m, 4 Kg
Material

SAE 8620 (common carburising steel)

Maoimting dimengiong

Front bearing position I 120 mm
Rear bearing position I 1276 mm
Absolute position reference point (with linear encoder) 1, 660 mm
Stroke length (with linear encoder) I 415 mm
Absolute position reference point (with rotary encoder) I 610 mm
Stroke length (with rotary encoder) I, 462 mm

Table E.11 Ball screw technical data [109]
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APPENDIX F THE VMC -500 MACHINE SPECIFICATIONS

Motion Controller

SIEMENS SINUMERIK 840D (S7-315-2DP)

Electrical Drive

SIEMENS SIMODRIVE 611D (6SN1123-1AA00-0CA1)

Motor

SIEMENS 1FK6063-6AF71-1AG2

Guideways

THK HSR35 A2 SSCO QZ + 1090L H I

Front bearing

Double Row Angular Contact Ball Bearing NSK BSB 025062

Rear bearing

Single-row deep groove ball bearing NSK 6305 TB

Ballscrew

THK

Coupling

ROTEX 24 GS spider 98 Shore A

Rotary encoder

HEIDENHAIN ERN 1387

Linear encoder HEIDENHAIN AE LS186C ML620
Transverse 510 mm

Rapid Traverses 30000 mm/min

Feed Rates 300 - 12000 mm/min

Table Size 700 mm x 520 mm

Table mass 327Kg

Load mass Kg

Total mass Kg

Table F.1 X-axis specifications

Motion Controller

SIEMENS SINUMERIK 840D (S87-315-2DP)

Electrical Drive

SIEMENS SIMODRIVE 611 (6SN1123-1AA00-0CA1)

Motor

SIEMENS 1FK6063-6AF71-1AG2

Guideways THK HSR35 A2 SS CO QZ + 1090L H I

Front bearing Double Row Angular Contact Ball Bearing NSK BSB 025062
Rear bearing Single-row radial ball bearing NSK 6005 — 2RS

Ballscrew THK

Coupling ROTEX 24 GS spider 98 Shore A

Rotary encoder

HEIDENHAIN ERN 1387

Linear encoder HEIDENHAIN AE LS186C ML620
Transverse 510 mm

Rapid Traverses 30000 mm/min

Feed Rates 300 - 12000 mm/min

Saddle mass 160Kg

Load mass Kg

Total mass

Table F.2 Y-axis specifications
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Motion Controller | SIEMENS SINUMERIK 840D (S7-315-2DP)
Electrical Drive | SIEMENS SIMODRIVE 611 (6SN1123-1AA00-0CA1)
Motor SIEMENS 1FT6064-6AH71-4AB1

Guideways THK HSR35 A2 SS CO QZ + 1090L H II

Front bearing Double Row Angular Contact Ball Bearing NSK BSB 025062
Rear bearing Single-row deep groove ball bearing NSK 6305 — 2 RS
Ballscrew THK

Coupling ROTEX 24 GS spider 98 Shore A

Rotary encoder HEIDENHAIN ERN 1387

Linear encoder HEIDENHAIN AE LS186C ML620
Transverse 510 mm

Rapid Traverses 30000 mm/min

Feed Rates 300 — 12000 mm/min

Carrier mass 212Kg

Motor mass 152Kg

Load mass 364 Kg

Table F.3 Z-axis specifications

Code Parameter Value Units
10061 Position control cycle time 4 ms
32200 Position control gain 3 (m/min)/mm
32300 Maximum acceleration 6 m/s’
32430 Maximum jerk 100 m/s’
32620 Feed-forward mode* 3 Velocity
32630 Feed forward activation mode** 0 Off
36200 Maximum feed rate 34500 mm/min

Table F.4 Motion controller parameters (SINUMERIK 850D)

* 3 velocity feed-forward
4: velocity and torque (current) feed-forward
** (): disabled

1: to switch on/off in the part-program use FFWON or FFWOF (by default)

Parameter Code | Value | Units
Input voltage (DC link voltage) | Vnr 600 \%
Output voltage (3-pase AC) emne | 0-430 \"
Maximum current Lax 50 A
Motor Rated current
IFT5 Erorod 25 A
1FT6 Irated 18 A
1PH brated 24 A
Induction motors brared 24 A

Table F.5 Technical data SIMODRIVE 611D 6SN1123-1AA00-0CA1 (two axis)
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Machine | Parameter X-axis y-axis Z-axis Units
code
1000 Current controller cycle time 0.125 0.125 0.125 ms
1001 Velocity control cycle time 0.125 0.125 0.125 ms
1100 PWM frequency 4000 4000 4000 Hz
1103 Motor nominal current 4.7 47 4.9 A
1104 Motor maximum current 28 28 33 A
1112 Number of pole pairs 3 3 3
1113 Torque current ratio 1.39 1.39 1.56 Nm/A
1114 EMF Voltage 92 92 V/1000 RPM
1115 Armature resistance 0.83 0.83 1.42 Ohms
1116 Armature induction 6.5 6.5 13.5 mH
1117 Motor inertia 0.00161 0.00161 0.0013 Kg/m*
1118 Motor stand still current 7.9 7.9 6.1 A
1120 Current control gain 15.73109055 | 18.90908813 | 32.67226410 V/A
1121 Current control integrator time 2000 2000 2000 s
1122 Motor limit current 22 22 10.6 A
1200 Number of current filters* 1 1 1 Filter 1
1201 Current filter configuration ** ‘FH’ ‘FH’ ‘FH’ Band-stop
1210 Current filter 1 suppression frequency 554 700 510 Hz
1211 Current filter 1 bandwidth 277 400 255 Hz
1212 Current filter 1 numerator bandwidth 200 20 80 Hz
1250 Actual current filter frequency*** 100 100 100 Hz
1407 Velocity control gain 1.8 2 1.8 Nm-s/rad
1409 Velocity control integrator time 7.5 5 6 ms
1421 Velocity control integrator feedback 0 0 0 Disabled
1500 Number of velocity filters**** 0 0 0 No filters
Table F.6 Axis parameters (SIMODRIVE 611)
* 0: no current filters

1: Filter 1 active

2: Filter 1 and 2 active

3: Filter 1, 2 and 3 active

4: Filter 1, 2, 3 and 4 active
*x 0: Low-pass (PT2)

ok e 3k

1: Band-stop

**%% () no velocity filters

1: Filter 1 active

2: Filter 1 and 2 active
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SIEMENS 1FK6063-6AF71-1AG2

Parameter Code Value | Units
Number of pair poles D 6
Rated velocity Prated 3000 RPM
Rated torque Trated (1008 6 N-m
Rated current Lateaqroony | 4.7 A
Stall torque Ty 605 9.1 N-m
To ook 11 N-m
Stall current at M, 1o 60Ky 6.3 A
Lo 00k 79 A
Moment of inertia I 16.7 10" Kg-m’
Max. velocity Nmax 5300 RPM
Max. torque Toax 36 N-m
Peak current Loy 28 A
Limiting torque (600V) Thimis 35 N-m
Limiting current (600V) Limit 28 A
Physical constants
Torque constant kr 1.39 N-m/A
Voltage constant (phase to phase) ke 92 | V/1000 RPM
Winding resistance R 0.83 Ohm
Three-phase inductance L 6.5 mH
Electric time constant ty 7.8 ms
Mechanical time constant Lech 2.1 ms
Thermal time constant Ly a5 min
Thermal resistance Ry 0.15 W/K
Mass mpy 13.8 Kg
Table F.7 Technical data x and y-axis motor
THK HSR35 A2 SSCO OZ + 1090L H 11
Parameter Code | Value Units
Basic static load rating C, 222 KN
Basic dynamic load rating C 123 KN
Radial rigidity (dlownward/upward) | &, | 1.56/1.15 | N/um
Resistance under no load Fauo 15 N
Imposed load M Kg
Friction coefficient y 0.003
Radial load Fr ] 8373.816 N
Lateral load F 0 N
Radial factor X 1
Lateral factor Y 0.935
LM block mass mpy 34 Kg
LM rail mass per unit length my 9.8 Kg/m
LM rail length Iy 1.09 m

Table F.8 Guideways technical data

2
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Double Row Angular Contact Ball Bearing: RHP BSB025062DBHP3

Parameter Code | Value Units
Contact angle o 60 Degrees
Bore diameter dp 25 mm
Pitch circle diameter dy; mm
Outer diameter Dy 62 mm
Width By 30 mm
Basic static load rating C, 40.5 KN
Axial rigidity ky 1000 N/um
Moment of inertia (rotating inner ring) Jp Kg-cm®
Mass my 0.18 Kg
Preloading load Fa 4500 N
Limiting velocity Vimax | 6000 RPM
Bearing housing ridity front/rear kew ] 1.9/1.2 | KN-um
Grease lubricated DIN: K3K-30 v =100 mm?/s at 40°C

Table F.9 Technical data front bearings

RHP 6305-2RSJ RE AV2S5

Parameter Code | Value | Units
Contact angle o 0 Degrees
Bore diameter d, 25 mm
Outer diameter D, 62 mm
Width B, 17 mm
Basic static load rating C, 20.6 KN
Moment of inertia (rotating innerring) | J, Kg-cm*
Mass my | 0.235 Kg
Limiting velocity Vimax | 8000 | RPM
Grease lubricated DIN: K3K-30 v=100 mm®/s at 40°C

Table F.10 Technical data rear bearings x and z-axis

RHP 6005-2RSJ RE AV2SS

Parameter Code | Value | Units
Contact angle o 0 Degrees
Bore diameter dy 25 mm
Quter diameter D, 47 mm
Width B, 12 mm
Basic static load rating C, 10.1 KN
Moment of inertia (rotating inner ring) | J, Kg-cm®
Mass my | 0.079 Kg
Limiting velocity Vimax | 9500 | RPM
Grease lubricated DIN: K3K-30 v=100 mm’/s at 40°C

Table F.11 Technical data rear bearings y-axis
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Parameter Code Value Units
Nominal torgue of coupling Ten 60 Nm
Maximum torque of coupling Tk max 120 Nm
Static torsional stiffness C roa 2063 N/ rad
Dynamic torsional stiffness C ram 6189 Nnv/ rad
Static radial stiffness C, 2560 N/mm
Maximum velocity N mas 6950 pm
Mass moment of inertia per hub J 200.3x10° | kg-m
Mass per hub m, 0.253 kg
Hub material: aluminium. Elastomeric element colour red, Shore 98 Sh A

Table F.12 Coupling technical data

Parameter Code | X-axis { Y-axis Units
Lead 1 12 12 mm/rev
Outer diameter d, 32 32 mm
Thread minor diameter d, 25 25 mm
Length b 813.5 996 mm
Moment of Inertia per unit mass | 1, 1.57 1.57 107 Kg-cm’/mm
Reduction ratio n 1 1
Efficiency - ef 0.9 0.9 %
Young’s modulus E, 206 206 KN/mm*
Shear modulus Gy 79.6 79.6 GN/m’
Density Pus 7850 7850 Kg/m’
Mass m 10.66 10.66 Kg
Material AISI 4150 H Steel (Standard low alloy)
Nut
Pre-loading force Fan 1560 1560 N
Ball circle diameter BCD 42 42 mm
Dynamic load rating G 25.95 25.95 KN
Static load rating Coa 56.49 56.49 KN
Axial rigidity k, 677 677 N-pm
Mass my 1.34 1.34 Kg
Material SAE 8620 (common carburising steel)

Mounting dimensions

Front bearing position I 73.5 73.5 mm
Rear bearing position I 792 979 mm
Absolute position reference A 184 357 mm
Stroke length I 510 510 mm

Table F.13 Ball screw technical data

HEIDENHAIN ERN 1387

Parameter Code | Value Units
Incremental signal: sinusoidal ] Ve
Resolution 2048 ] pulse/revolution
Limiting velocity Vemax § 15000 RPM
Mass my, 0.25 Kg
Moment of inertia Je |2.6x10° Kg-m”

Table F.14 Technical data rotary encoders
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HEIDENHAIN AE LS486C ML620

Parameter Code | Value Units
Absolute signal: sinusoidal 1 Vin
Grating period 20 um
Measuring length 620 mm
Maximum transversing velocity Viemax 120 m/min
Mass my, 04 Kg
Required moving force F. 5 N

Table F.15 Technical data linear encoders
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APPENDIX G MEASUREMENTS

G.1 Y-Axis Geometric Errors (Arrow 500)
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G.2 Polynomial Coefficients Calculated from the Geometric Error Measurements

(Arrow 500)

Parameter Value

Mean (Mul) 250

Standard 148.660687473185
deviation (Mu2)

Coefficients [0.00179732510250 -0.00142748300352 -0.02758470890611 0.02119522726521
0.18329579772915 -0.13495725559125 -0.69044433698191 0.48151465521848
1.61990069354882 -1.05558200087885 -2.44510125444629 1.46623137237084
2.36136476053379 -1.28239441518949 -1.39656548318502 0.67618230713412
0.45549967295162 -0.19418906530361 -0.06297691669556 0.02543826072979
0.00288196289205 0.00213422850003]*1.0e+003

Table G.1 X-axis linear positioning (Forward)

Parameter Value

Mean (Mul) 250

Standard 148.660687473185

deviation (Mu2)

Coefficients [0.00134575433833 -0.00158660702811 -0.02078998497203 0.02352618548467

0.13940283502421 -0.14952920928440 -0.53147490131220 0.53214470619456
1.26625527602768 -1.16207801284227 -1.94731516274546 1.60415167414940
1.92119751496976 -1.38832238756029 -1.16236452665438 0.71866124294236
0.38760086917838 -0.19966068652157 -0.05442475979112 0.02451906783458
0.00262146516057 0.00242346505934] *1.0e+003

Table G.2 X-axis linear positioning (Reverse)
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Parameter Value

Mean (Mul) 250

Standard 155.120920574886

deviation (Mu2)

Coefficients [0.03974186087169 0.08059910944983 -0.1171516678458% -0.94229616554107

0.52328935255338 3.44322694204112 -3.43371614233664 -3.26497247200367
5.21635501182507 -2.69843044422061]

Table G.3 Y-axis straightness in x direction polynomial (Forward)

Parameter Value

Mean (Mul) 250

Standard 155.120920574886

deviation (Mu2)

Coefficients [0.17854334961051 0.20359509493929 -1.02889000132959 -1.58242506505894
2.72495368420529 4.45231569842000 -5.74888277080710 -3.66662807702597
5.95470894283670 -2.95183462964080]

Table G.4 Y-axis straightness in x direction polynomial (Reverse)

Parameter Value

Mean (Mul) 250

Standard 155.120920574886

deviation (Mu2)

CoefTicients [-0.00005811978949 0.00063322587214 0.00110640947717 -0.00472170699316
-0.00518753147447 0.01137940204076 0.00765812889905 -0.00789240049935
-0.00107236124039 -0.00141516022175)

Table G.5 Y-axis rotation about z-axis (Forward)

Parameter Value

| Mean (Mul) 250

Standard 155.120920574886

deviation (Mu2)

CoefTicients [0.00006802545427 0.00055192788308 0.00051999904004 <0.00446329512048
-0.00430539513897 0.01127494228493 0.00718200162211 -0.00800216323090
-0.00103354790038 -0.00151698961665]

Table G.6 Y-axis rotation about z-axis (Reverse)

Parameter Value

Mean (Mul) 250

Standard 155.120920574886

deviation Mu2)

Coefficients [0.59682881931994 -0.73981047189995 -3.33809706675324 4. 14459990655644
6.39894895305915 -7.17517388110818 -6.31768217820217 5.53714427861941
0.40000017068817 -1 1.81409209327226]

Table G.7 Y-axis linear positioning (Forward)

Parameter Value

Mean (Mul) 250

Standard 155.120920574886

deviation (Mu2)

Coefficients [0.68943248082590 -0.82435006112284 -3.98348234506237 4.59161305985440

7.97008783102876 -8.03331035389856 -7.96188888747018 6.19288498536962
1.25882090827488 -11.81449599039490]

Table G.8 Y-axis linear positioning (Reverse)
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Parameter Value

Mean (Mul) 250

Standard 155.120920574886

deviation (Mu2)

Coefficients [-0.09299345120317 -0.31499377398290 -0.17793547816669 2.09929244367061

2.37955078989997 -5.16258537089714 -2.66413689167969 4.58659654079912
-2.78687237713905 -1.10895075063088]
Table G.9 X-axis straightness in y direction (Forward)

Parameter Value

Mean (Mul) 250

Standard 155.120920574886

_deviation (Mu2)
Coefficients [-0.05357641507915 -0.51224653650652 -0.29835351655399 3.03845440163535
2.37291530376561 -6.43132234604616 -2.50196285985755 5.00057134312902
-2.88022484951574 -1.07239114807921]
Table G.10 X-axis straightness in y direction (Reverse)

Parameter Value

Mean (Mul) 250

Standard 155.120920574886

deviation (Mu2)

Coefficients [-0.00005811978949 0.00063322587214 0.00110640947717 -0.00472170699316
-0.00518753147447 0.01137940204076 0.00765812889905 -0.00789240049935
-0.00107236124039 -0.00141516022175]

Table G.11 X-axis rotation about z-axis (Forward)

Parameter Value

Mean (Mul) 250

Standard 155.120920574886

deviation (Mu2)

Coefficients [0.00006802545427 0.00055192788308 0.00051999904004 -0.00446329512048

-0.00430539513897 0.01127494228493 0.00718200162211 -0.00800216323090
-0.00103354790038 -0.00151698961665]

Table G.12 X-axis rotation about z-axis (Reverse)

G.3 MATLAB Program for the Calculation of the Polynomial Coefficients

% get_poly uses the MATLAB fuqction polyfit to define a polynom that fits the measured error data. The
% polynom will be used to determine the errors on the whole axis stroke

% The program assumes the measured errors are recorded in 13 files, which are loaded one by one

cle

clear all
forn=1:13
switch n

case 1

load x_linear_error; y_lab=strcat(name(1),strrep(name(5),'scale:',"));

case 2

load x_y_strightness_error; y_lab=strcat(name(1),strrep(name(5),'scale:',"));

case 3

load x_z_strightness_error; y_lab=strcat(name(1),strrep(name(5),'scale:',"));

case 4

load x_x_angular_error; y_lab=strcat(name(1),strrep(name(5),'scale:',"));

case 5

load x_y_angular_error; y_lab=strcat(name(1),strrep(name(5),'scale:',"));
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case 6
load x_z_angular_error, y_lab=st ' o
o _angular_ y_lab=strcat(name(1),strrep(name(5), scale:", ),
loady_linear error;y lab= ' e
e y_ _error; y_lab=strcat(name(1),strrep(name(5),'scale:, )N
loady_x_strightn ; = J
case 9 y_X_strightness_error, y_lab=streat(name(1),strrep(name(5),'scale:","));
loady z stright . =
I 10y_ _strightness_error; y_lab strcat(name(1),strrep(name(5),'scale:',"));
load y_x_angular_error; y_lab= ' "
I 11y _angular_ y_la strcat(name(l),strrep(name(S), scale:',\");
load z_linear_error; y_lab=strcat(name(1),strrep(name(5),'scale:' ");
case 12 ’ o
load z_x_stright ; = !
cobadzx ghtness_error; y_lab strcat(name(1),strrep(name(5),'scale:',"));
load z_y_stright : =
2 _y_strightness_error; y_lab strcat(name(1),strrep(name(S),'scale:',"));
len=length(pos);
for i=1:len
tp(,1)=pos(D);
fwd_mean(i, 1)=mean(fwd(i,:));
rev_mean(i,1)=mean(rev(i,’));
end
_plot(tp,fwd_mean,b',tp,rev_mean,'r")
grid
xlabel('Target position [mm]"
ylabel(y_lab)
[max(fwd_mean) max(rev_mean);min(fwd_mean) min(rev mean))]
pause - -
deg=ceil(length_(pos)".4); % polynom degree
[poly_fwd, s,rplu_f]=polyﬁt(tp,fwd_mean,deg);
[poly_rev,s,miu_r]=polyfit(tp,rev_mean,deg),
switch n
case 1
save x_line t . .
o _linear name tp fwd_mean rev_mean poly_fwd poly_rev miu_f miu_r
save X_y_strightness .
I _y_strig name tp fwd_mean rev_mean poly_fwd poly_rev miu_f miu_r
save X_z_strightness name tp f i i
o g ame tp fwd_mean rev_mean poly fwd poly_rev miu_fmiu_r
save Xx_x_angular name tp fwd i i
Lo g e ‘p wd_mean rev_mean poly_fwd poly_rev miu_f miu_r
save X_y_angular name tp fwd i i
o _y_ang p fwd_mean rev_mean poly_fwd poly rev miu_f miu_r
save X_z_angula t ;
e gular name tp fwd_mean rev_mean poly_fwd poly_rev miu_f miu_r
save y_linear name tp fwd_mean rev_mean poly f i i
! . poly_fwd poly_rev miu_f miu_r
save y_X_strightness name t i :
S y_x_strigh e tp fwd_mean rev_mean poly_fwd poly_rev miu_f miu_r
savey_z_strightness name tp f :

L 10y_ _strig me tp fwd_mean rev_mean poly_fwd poly_rev miu_fmiu r
save y_X_angular tp . .
L 11y__ _angular name tp fwd_mean rev_mean poly_fwd poly_rev miu_f miu_r

save z_linear name tp fwd i i
e | e tp fwd_mean rev_mean poly_fwd poly_rev miu_f miu_r
save z_X_strightness tp f :
e _x_strigh name tp fwd_mean rev_mean poly_fwd poly_rev miu_f miu_r
save Z_y_strightn t .
e _y_strightness name tp fwd_mean rev_mean poly_fwd poly_rev miu_f miu_r
hold on
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plot(tp.polyval(poly_fwd.tp,[],miu_f),'c",tp,polyval(poly_rev.tp,[],miu_r),'m")
legend('Forward', Reverse', Forward (pol)', 'Reverse(pol)',0)
hold off
pause
end
%POLYVAL Evaluate polynomial.
% Y =POLYVAL(P.X), when P is a vector of length N+1 whose elements are the coefficients of a polynomial
% is the value of the polynomial evaluated at X.
% Y =P(1)*X"N + P(2)*X"(N-1) + ... + PON)*X + P(N+1)
9% If X is a matrix or vector, the polynomial is evaluated at all points in X. See also POLYVALM for
% evaluation in a matrix sense.
% Y =POLYVAL(PX,[].MU) uses XHAT = (X-MU(1))/MU(2) in place of X.
9% The centering and scaling parameters MU are optional output computed by POLYFIT.
% [Y,DELTA]=POLYVAL(P.X.S) or [Y.DELTA] = POLYVAL(P,X,S,MU) uses the optional output
o structure S provided by POLYFIT to generate error estimates, Y +/- delta. If the errors in the data input to
9% POLYFIT are independent normal with constant variance, Y +/- DELTA contains at least 50% of the

% predictions.

]

G.4 Step Velocity Response Measurements for the Test Rig
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G.6 Jerk-limited Velocity Response Measurements for the Test Rig
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Figure G.51 Displacement = 400 mm, feedrate = 30000 mm/min (y-axis)

" G.12 MATLAB Program Used to Plot Position Measurements in Ball-Bar Format

% This program plots the ballbar graph from the x and v-axis i i i
% It uses the MA];‘LAB functions cart2pol and po]20arty data in Cartesian coordinates
% Data measured from the linear encoders via dSPAC ime =

% load runl and run2 data: £, sample time =0.625 ms
load meas_bb

% Move the origin to the point (0,0)

x1=x1+150;

x2=x2+150;

% convert from cartesian to polar coordinates

[thetal,rhol] = cart2pol(x1.,y1); % for runl

[theta2,rho2] = cart2pol(x2.y2); % for run2

% substract the radius and add the 20 microns radius to fit the ballbar graph
bb1=rho1-150+20e-3; % [microns] for run]

bb2=rh02-150+20e-3; % [microns] for run2

% convert from polar to catesian coordinates

[x1,y1]=pol2cart(thetal,bb1);

[x2,y2]=pol2cart(theta2,bb2),

plot(-x1,-y1,-x2,-y2)

. i . . '

;; S:;tg;nol?stﬁz glglll\;ged to get the axis configuration on the machine the axes have to be reversed in the property
grid, legend('runl’,'run2"), axis equal
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APPENDIX H TEST RIG TLM MODEL IN MATLAB/ SIMULINK

H.1 Testrig_profile.m Program

% this program creates the variable profile as an input for the SIMULINK model of the test rig
st=3e-3; % sample time [s]

load f002 % 1000 mm/min

len=length(data);

t=0:st:st*(len-1),

dref=data(:,1); % Reference position [mm]

vff=data(:;,2)/60000,% velocity feed forward [m/s]

aff=data(:,3); % acceleration feed forward [m/s"2]

profile=[t' dref vif aft];

tsim=max(t); % simulation time for the SIMULINK model

H.2 Reference Signal Profiles

The jerk-limited profile is generated by the interpolator to address the positioning movements
commanded by an instruction of a NC program. It is generated according to the procedure
presented in section 4.3.1. This profile is also used to represent the movement of the table on
single-axis linear path and two-axis linear or circular path. The generation of this profile is
implemented in the MATLAB function jiProfile. An example of the velocity and position
profiles generated for a movement of 10 mm at 4000 mm/min is presented in Figure H.1
(maximum_acceleration = 6 m/s, maximum _jerk =75 m/s®, and sampling time =3 ms).

[position_profile,velocity_profile,acceleration _profile jerk _profile]=jIProfile(4000, 10, 6, 73, 3e-3);
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Figure H.1 Jerk-limited position and velocity profiles
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The step profile is used to simulate the step response of the model. It is conformed by the

acceleration and maximum speed zones of the velocity profile generated for a one-axis

movement of 10mm at 100 mm/min, as described in the TNC 426PB controller manual.

This profile is implemented in the MATLAB function step_prof. Figure H.2 shows the profile

calculated for a sampling time of 3ms (profile =step_profile(6,75,3e-3)).
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Figure H.2 Step Profile

The sinusoidal profile is used to simulate the model response to a sinusoidal signal. It is
implemented in the MATLAB function sin_profile. The maximum frequency to be used will
be the equivalent to Y the sampling time of the system to analyse. Figure H.3 shows the

profile calculated for a sampling time of 3ms and a frequency of 10Hz (profile=sin _profile(3e-
3,10)).

Sampiings

Figure H.3 Sinusoidal profile

The white noise profile will be used to analyse the frequency response of the model. It is
implemented in the MATLAB function white_noise profile. This function calls the

MATLAB function rand to generate a sequence of pseudo-random numbers with duration of

one second. Figure H4 shows the profile calculated for a sampling time of 3ms
(profile=white_noise_profile(3e-3)).
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The swept sine profile will be used to analyse the frequency response of the model. It is
implemented in the MATLAB function chirp_profile. This function calls the MATLAB
function chirp to generate samples of a linear swept-frequency cosine signal between dc at
time zero and 4 the sampling rate at one second. Figure H.5 shows the profile calculated for a

sampling time of 3ms (profile=chirp_profile(3e-3)).

H.2.1 Jerk Limited Profile Generation

function [position_profile,velocity_profile,acceleration _profilejerk _proﬁle]=jlProfile(feedrate,displacement,...
maximum_acceleration,maximum _jerk,sampling_time)

% Generation of the position and velocity profiles according to the jerk-limited approach

%

‘%(: Author: Veimar Yobany Moreno Castafieda

% Date: 20 October 2004

% University of Huddersfield (U.11.)

% School of Computing and Engineering

%

'%(: This is a Copyrighted material, for copying permissions send email to m_veimar@hotmail.com

% [position_profile,velocity _profile,acceleration_profile jerk _profile]=jlProfile(feedrate,displacement
% maximum_acceleration,maximum _jerk,sampling_time)

gres

%

% INPUTS

% feedrate [m/s]
% displacement [m]

% maximum_acceleration [m/s"2]
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% maximum_jerk [m/s"3]
% sampling_time [s]

%

% OUTPUTS

% position_profile [m]

% velocity_profile [m/s]

% acceleration_profile [m/s"2]
% jerk_profile [m/s"3]

% Pre-allocation of variables in memory

position_profile=zeros(4096,1); % Maximum number of samples 4096

velocity_profile=zeros(4096,1),

acceleration_profile=zeros(4096,1),

jetk_profile=zeros(4096,1);

minimum_distance=0; % [m] minimum distance that must be transversed in order to attain the pro d
feedrate programme
maximum_velocity=0; % [m/s] Maximum possible value for the velocity profile

acceleration=0; % [m/s"2] Maximum posible acceleration

T=zeros(7,1), % [s] Array of duration times: T(i) is the duration time of the phasei (i=1,2,...,7)

time_end phase=T; % [s] Array of total times: time_end_phase(i) is the time at the end of ;’>h’a.s.;=:i
velocity_end_phase=T; % [m/s] Array of velocities: velocity_end_phase(i) is the value of the velocity profile at

% the end of phase i
phased_exists=true, % flag
k=1, % number of the sampling instant

% Verify the minimum distance dmin
minimum_distance=2*feedrate*sqrt(feedrate/maximum_jerk);
if displacement < minimum_distance
% Reduce feed rate to ist maximum possible
maximum_velocity=(maximum_jerk*displacement”2/4)(1/3);
% Phase 4 does not exist
phase4_exists=false;
else
maximum_velocity=feedrate;
end
% maximum_velocity and maximum_jerk results in an acceleration (See if phases 2 and 6 exist)
acceleration=sqrt(maximum_velocity*maximum_jerk); ‘
if acceleration > maximum_acceleration
acceleration=maximum_acceleration;
T(2)=maximum_velocity/acceleration-acceleration/maximum _jerk;
else
T(2)=0; % duration phase 2
end
T(6)=T(2); % duration phase 6
T(1)=acceleration/maximum_jerk; % duration phase 1
T(3)=T(1); % duration phase 3
T(5)=T(1); % duration phase 5
T(M=T(1); % duration phase 7
if phase4_exists == false
T(4)=0; % duration phase 4
else
T(4)=(displacement/maximum_velocity)-sum(T(1:3));
end
% Calculate the time at the end of each phase
time_end_phase(1)=T(1);
fori=2:7
time_end_phase(i)=sum(T(1:1));
end
% Velocity at the end of each phase
velocity_end_phase(1)=0.5*maximum_jerk*T(1)"2;
velocity_end_phase(2)=velocity_end _phase(1)+accelcration*T(2);
velocity_end_phase(3)=maximum_velocity;
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velocity_end_phase(4)=maximum_velocity;
velocity_end_phase(S)=velocity_end_phase(4)-0.5*maximum _jerk*T(5)"2;
velocity_end_phase(6)=velocity_end _phase(5)-acceleration*T(6);
% time_end_phase(7) is the total simulation time
% calculate the jerk, acceleration and velocity profiles at the given sampling_time
for ts=0:sampling_time:time_end_phase(7) B
if ts <time_end_phase(1)
jerk_profile(k)=maximum_jerk;
acceleration_profile(k)=maximum_jerk*ts;
velocity_profile(k)=0.5* maximum_jerk*ts*2;
k=k+1,
elseif ts <time_end_phase(2)
temp=(ts-time_end_phase(1));
jerk_profile(k)=0;
acceleration_profile(k)=acceleration,
]\(rell:cilty _profile(k)=velocity_end _phase(1)+acceleration*(ts-time end _phase(1));
=k+ ; el L
elseif ts < ime_end_phase(3)
temp=(ts-time_end_phase(2));
jerk_profile(k)=-maximum_jerk;
acclzeleration _fp]ro(kﬁle(k)=acce]eration-maximum _jerk*(ts-time end |_phase(2));
velocity_profile(k)=velocity_end_phase(2)+acceleration* (ts-t, (2)-0.5* i i
(ts-ttiy £~endjhase(2)) g:_ _phase(2) ton*(ts-time_end_phase(2))-0.5*maximum _jerk*..,
k=k+1;
elseif ts < time_end_phase(4)
jerk_profile(k)=0;
acceleration_profile(k)=0;,
velocity_profile(k)=maximum_velocity;
k=k+1;
elseif ts < time_end_phase(5)
temp=ts-time_end_phase(4);
jerk_profile(k)=-maximum_jerk;
acceleration_profile(k)=-maximum _jerk*(ts-time_end _phase(4));
velocity_profile(k)=maximum_velocity-0.5*maximum _jerk*(ts-time_end _phase(4))*2;
k=k+1; - ’
elseif ts < time_end_phase(6)
temp=ts-time_end_phase(5);
jerk_profile(k)=0;
acceleration_profile(k)=-acceleration;
velocity_profile(k)=velocity_end _phase(5)-acceleration*(ts-time end _phase(5));
k=k+1; - |
elseif ts < time_end_phase(7)
temp=ts-time_end_phase(6);
jerk_profile(k)=maximum_jerk;
acceleration_profile(k)=-acceleration+maximum_jerk*(ts-time end _phase(6));
velocity_profile(k)=velocity_end_phase(6)-acceleration*(ts-timc se(6 *maxi ierk
(tstirme. end. phase(6yys; _phase(6) (ts-time_end_phase(6))+H).5* maximum jerk®...
k=k+1,
else
jerk_profile(k)=0;
acceleration_profile(k)=0;
velocity_profile(k)=0,
k=k+1;
end
end
% Calculation of the position profile. k is the number of elements calculated for the profiles
fori=2k
position_profile(i)=position _profile(i-1)+velocity _proﬁle(i-l)*sampling time;
if position_profile(i) > displacement -
position_profile(i) = displacement;
end
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end

% Limit the length of the vetor to the number of calculated values
position_profile=position_profile(1:k),
velocity_profile=velocity_profile(1:k,1);
acceleration_profile=acceleration_profile(1:k,1);
jerk_profile=jerk_profile(1:k,1);

H.2.2 Sinusoidal Profile Generation

function profile=sin_profile(sampling_time,frequency)

% Generation of a sinusoidal signal
%
% Author: Veimar Yobany Moreno Castafieda
% Date: 20 October 2004
% University of Huddersfield (U.H.)
% School of Computing and Engineering
%
% This is a Copyrighted material, for copying permissions send email to m veimar(@hotmail.com
% profile=sin_profile(sampling_time) -
%
% INPUTS
% sampling_time [s] sampling time of the system to analyse
% frequency [Hz] frequency of the signal
%
% OUTPUTS
% profile signal with amplitud one
%
% The maximum frequency is 1/4 the sampling rate
max_f=(1/sampling_time)/4;
if frequency <= max_f
t=0:sampling_time:1/frequency;
profile=sin(2*pi*frequency*t);
else
maximum_possible_frequency=max_f
end

H.2.3 White Noise Profile Generation

function profile=white_noise_profile(sampling_time)

% Generation of a white noise signal

%

% This is a Copyrighted material, for copying permissions send email to m veimar@hotmail.com
% profile=white_noise_profile(sampling_time) - '

%

% INPUTS

% sampling_time [s] sampling time of the system to analyse

%

% OUTPUTS

% profile signal with amplitud one

¢4 This function uses the MATLAB signal randn.

% y=randn([M,N])

% produces M-by-N matrices with pseudo-random numbers. X .

% gy the state of);he generator. F The sequence of numbers generated is determined
% Since MATLAB resets the state at start-up, the sequence of numbers generated will be the same unless the

9% state is changed.

profile=randn(1 ,200); %ceil(1/sampling_time));

% This profile has a duration time of one second. The number of random numbers is ceil(1/sampling_time)
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H.2.4 Swept Sine Profile

function profile=chirp_profile(sampling_time)

% Generation of a linear swept-frequency cosine signal

%

% This is a Copyrighted material, for copying permissions send email to m_veimar@hotmail.com

% profile=chirp_profile(sampling_time)

%

% INPUTS

% sampling_time [s] sampling time of the system to analyse

% OUTPUTS

% profile signal with amplitud one

% This function uses the MATLAB signal chirp.

% y = chirp(T,F0,T1,F1)

% generates samples of a linear swept-frequency cosine signal at the time instances defined in array T.
% The instantaneous frequency at time 0 is FO Hertz. The instantaneous frequency F1 is achieved at time T1
proﬁ]e=chirp((0:sampling_time:2),0,3e-3/sampling_time,(l/sampling__tirne)/4);

% This profile starts at DC and cross f/4 Hz at t=3e-3/sampling_time sec (f=1/sampling_time)

H.2.5 Linear and Circular Interpolation
The linear and circular interpolation routines presented in section 4.3.1 are implemented in the
MATLAB functions linear_interpolation.m and circular_interpolation.m respectively.

The profiles obtained for a linear movement from the coordinates (0,0) to the point with
coordinates (15,22) are illustrated in Figure H.6
[xy_reference_position,xy_velocity_profile,xy_acceleration _profile]=linear_interp([0,0],[15,22],4000,6,75,3e-3)
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Figure H.6 Linear interpolation profiles
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The profiles obtained for a movement from the start point (0,0) with an arc of 2r radians and
a radius of 100 mm are illustrated in Figure H.7 (‘a counter clockwise rotation towards the left

side of the starting point is assumed)

[xy_reference_position,xy_velocity_profile,xy_acceleration _proﬁle]=circular_interp([0,0],100,2‘pi,1,1,...
4000,6,75,3e-3);

IIZERN =5 _

- “ \\ \ //// ________

o N / -
N N

seoee x-axI$ |- L
— yeaxis 1

/" -3000
) N

_______ dmecop.
500 1000 1500 2000 2500 3000 3200 L] 500 1000 1500 2000 2500 30003200
Sempings. Samphngs
a) Xy_rcference_position b) xy_velocity_profile
l | | i 1 eessss X-BXIS
el el Ll i = yaxis
| | | | |
e I A RO
] i ] i 1 1
1 t | f !
| S Bl B il e
1 ! | ! I
L e e Rt PR SR
1 ! 1 ] 1
ke PSSR So T — —
1 | | ! !
(N R PR U N
1 b 1 ] I
i L1 ' I
[ R A Rl RS
| | 1 1 t I
'S'I_"“l’—_‘r“"T—'-ﬂ_‘_‘l_‘_—l‘ -
1 I 1 | 1 )
-2-—I-——-'——--{————*—-—-4——-—!———-—!— -
I | I I i !
asbd 1 1 i 1 ! 1
Q 500 1000 1500 2000 2500 3000 3500
Sampings

¢) Xy_accelcration_profile

Figure H.7 Circular interpolation profiles

H.2.5.1 Linear Interpolation Routine

function [xy_reference_position,xy_velocity _profile}=linear_interpolation(start _point.end_point,feedrate
maximum_acceleration,maximum_jerk,sampling_time)

9% Performs linear interpolation up to two axis

%

‘%‘: Author: Veimar Yobany Moreno Castafieda

% Date: 20 October 2004

% University of Huddersfield (U..II.) _

% School of Computing and Engineering

%

% This is a Copyrighted material, for copying permissions send email to m_veimar@hotmail.com
% [xy_reference_position,Xy_velocity_profile]=interpolator(start _point,end_point,fecdrate,...

% maximum_acceleration,maximum _jerk,sampling_time)

%

% INPUTS : "

% start_point [m)] absolute coordinates of the actual position of the axes as an array [x_start;y_start]
% end_point [m] absolute coordinates of the end point as an array [x_end;y_end]

% feedrate [m/s]
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% maximum_acceleration [m/s"2]

% maximum_jerk [m/s”3]

% sampling_time {s]

%

% OUTPUTS

% xy_reference_position [m] matrix of the reference positions:

% xy_reference_position(:,1) holds the x_axis reference position
% xy_reference_position(:,2) holds the y_axis reference position
% xy_velocity_profile [m/s] matrix of the velocity profiles:

% xy_velocity_position(;,1) holds the x_axis velocity profile
% xy_velocity_position(;,2) holds the y_axis velocity profile

% Pre-allocation of variables in memory
xy_displacement=[0;0]; % Displacement of each axis

% xy_displacement(1) for x-axis

% xy_displacement(2) for y-axis
displacement=0; % [m] total displacement
xy_displacement=end_point-start_point; % displacement of each axis:
displacement=sqrt(xy_displacement(1)*2+xy_displacement(2)"2); % [m)] total displacemnt
% Calculate the path profiles:
[position_profile,velocity_profile,acceleration_profile,jerk_profile]=jIProfile(feedrate displacement,...

maximum_acceleration,maximum_jerk,sampling_time);

% Pre-allocate the refrence_position and velocity_profile arrays in memory
xy_reference_position=zeros(length(position_profile),2);
xy_velocity_profile=zeros(length(position_profile),2);
% Calculate the reference position for each axis
xy_reference_position(;,1)=(xy_displacement(1)/displacement)*position_profile; % [m] x-axis
xy_reference_position(:,2)=(xy_displacement(2)/displacement)*position _profile; % [m] y-axis
% convert xy_reference_position to absolute coordinates:
xy_reference_position(;,1)=xy_reference_position(:,1)+start_point(1), % x-axis
xy_reference_position(:,2)=xy_reference_position(:,2)+start_point(2); % y-axis
4 Calculate the velocity profile for each axis
xy_velocity_profile(:,1)=(xy_displacement(1)/displacement)*velocity_profile; % [m/s] x-axis
xy_velocity_profile(:,2)=(xy_displacement(2)/displacement)*velocity_profile; % [m/s] y-axis

H.2.5.2 Circular Interpolation Routine

function [xy_reference_position,xy_velocity _profile]=circular_interpolation(start _point,radius,angle
dir_rotation,dir_movement,feedrate,maximum_acceleration,maximum _jerk,sampling_time)

yeen

9/, Performs circular interpolation for two axis

%

9, Author: Veimar Yobany Moreno Castafieda

9% Date: 20 October 2004

9 University of Huddersfield (U.11.)

94 School of Computing and Engineering

%

94 This is a Copyrighted material, for copying permissions send email to m_veimar@hotmail.com
%

% [xy_reference_position,xy_velocity_profile]=circular_interpolation(start _point,radius,angledir_rotation,...
% dir_movement,feedrate,maximum_acceleration,maximum_jerk,sampling_time) .
%

% INPUTS

% start_point [m] absolute coordinates of the actual position of the axes as an array [X_start;y_start]
% radius [m] radius of the arc -~ -

% angle [rad] angle of the arc

% dir_rotation clockwise=-1; counterclockwise =1

% dir_movement to the left of the start_point =1; to the rigth of the start _point= -1
% feedrate [m/s]

9, maximum_acceleration [m/s"2]

% maximum_jerk [m/s"3]
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% sampling_time [s]

%

% OUTPUTS

% xy_reference_position [m] matrix of the reference positions:
% xy_reference_position(:,1) holds the x_axis reference position
% xy_reference_position(:,2) holds the y_axis reference position
% xy_velocity_profile [m/s] matrix of the velocity profiles:

% xy_velocity_position(:,1) holds the x_axis velocity profile

% xy_velocity_position(:,2) holds the y_axis velocity profile

% Pre-allocation of variables in memory

displacement=0; % [m] total displacement

%angle_profile [rad] position profile in radians

displacement=radius*angle;

% Calculate the path profiles:

[position_profile,velocity_profile,acceleration_profile,jerk_profile]=jIProfile(feedrate,displacement,...
maximum_acceleration,maximum_jerk,sampling_time);

% Pre-allocate the reference_position and velocity _profile arrays in memory

xy_reference_position=zeros(length(position_profile),2);

xy_velocity _profile=zeros(length(position_profile),2);

% Convert the position_profile to an array of angles

angle_profile=position_profile/radius;

% Calculate the reference position for each axis

xy_reference_position(:,1)=dir_movement*radius*(cos(angle_profile)-1); % [m] x-axis

xy_reference_position(:,2)=dir_rotation*radius*sin(angle_profile); % [m] y-axis

% convert Xy _reference_position to absolute coordinates:

xy_reference_position(:,1)=xy_reference_position(:,1)+start_point(1); % x-axis

xy_reference_position(:,2)=xy_reference_position(:,2)+start_point(2); % y-axis

% Calculate the velocity profile for each axis

xy_velocity_profile(:,1)=dir_movement*velocity_profile.*-sin(angle_profile); % [m/s] x-axis

xy_velocity_profile(:,2)=dir_rotation*velocity_profile.*cos(angle_profile); % [m/s] y-axis

H.3 Y-Axis Block Parameters and Initialisation Code

Block Parameters; y-axis

i i
~ Parameters - -
Position control cycls time: tp [s] - Shatt density: ro_ss [kg/m*3]
f3e-3 |7800
Velocity control cycle time: tv [s] mmwmm:hpqm‘wml
[Be-d 197e3
Current control cycle time: tc [s] Shatt thread minor diameter. dc [mm]
j2e4 {325
Ball screw lead: Id [mm) Shatft length: Iss [m)
[15 [1:346
PWM resolution: Rpwm Front bearing position: f [m]
f20 012
Shaft Shear modulus: Gss [N/m"3]  Rear bearing position: Ir [m]
{B0e9 {1276
Shatt Young's modulud: Ess [N/m*2]  Table absolute reference position: lo [m)
j208e9 086
Table initial position (from lo). lin [m]
o

Ok | cacel | Hep | appy |

Figure H.8 Y-axis block parameters
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The following code was included in the initialisation feature of the block's mask:

% Parameters for the synchronisation of torsional and axial models
ct=5; % number of axial sections per torsional section

ca=g,

% Torsional propagation parameters:

tt=tc/Rpwm, % torsional propagation time [s]
ut=sqrt(Gss/ro_ss); % torsional propagation velocity [m/s]
Zt=lo*ut; % Equivalent impedance torsional model
ltor=ut*tt; % section length torsional model [m)]

h=round(Ir/ltor); % Number of sections for the torsional model
lend=lIss-h*ltor; % Shaft length after rear bearing [m]

Jend=lend*Io; % Inertia associated to lend [kg-m”2]
fb=round(If/ltor); % Number of sections in zone]
switch fb
case 0
fb=1; % zonel must have at least one section
end
ht=h-fb; % Number of sections in zone2

Iref=lo+lin-ltor*fb; % Reference for the nut position montoring [m]

% Axial propagation parameters:

ta=tt/ca; % Axial propagation time [s]
ua=sqrt(Ess/ro_ss), % axial propagation velocity [m/s]
Ass=pi*((de/1000)/2)"2; % Screw shaft cross sectional area [m”2]

Za=ro_ss*Ass*ua, % Equivalent impedance axial model
laxial=ltor/ct; % Section length (axial model) [m]
ha=ht*ct; % number of sections axial model

H.4 Velocity Controller Block Initialisation Code

The following code was included in the initialisation feature of the block's mask:

kp=kp/(2*pi); % [A-s/rad]
ki=ki/(2*p1), % [A/rad]
kd=kd/(2*pi); % [A-s"2/rad]
kaff=kaff/Q*pi); % [A-s"2/rad]
% lowpass filter ‘
switch Ipf _flag
case 1 % Disabled
BIf=1; Alf=1,
case 2 % Between 600 and 700 Hz
% [BLf,Alf]=butter(1,600*2*tv);
case 3 % > 700Hz
% [BIf,Alf]=butter(2,700*2*tv),

end
% PT?2 filter
if pt2_delay ==
Bpt2=1; Apt2=1,
else
Bpt2=1;,  Apt2=1,
end
% Bandstop filter
if bsf_freq==0
Bn=1; An=l;
else

%[Bn,An]= ellip(2,0.25,bsf_dam,bsf_freq*2*tv), ‘
Bn=[0.89302559243828 -1.76897528904828 2.66063770787048 -1.76897528904828 0.89302559243828];
An=[1.00000000000000 -1.89654351266864 2.72974439415250 -1.74471708749617 0.84679015853235];
end
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Block Parameters: Velociy controller S x|
~ PID velocity control with acceleration feed forward (mask) ———— R T

P
=

Proportional gain: kp [A-sfrev] or [A-s] }
e |

Integration gain: ki [A/rev] or [A]
fes00

Differentiation gain: kd [A-s*2/rev] or [A-s"2]
f0.0008

Acceleralion feed forward gain: kaff [A-s"2/rev] or [A-s"2]
f0.033

Holding current: iht [A] 1
jo

Lowpass fitter | Disabled ~l
PT2 delay [ms] (0 for disabled)

jo
Bendstop fitter frequency [Hz] (0 for disabled)
|426

Bandstop filter damping [dB]
3
Sample time: st[s]

v

oK Cncel | Hep | appy |

Figure H.9 Velocity controller block parameters
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APPENDIXT STRUCTURE OF DATA FOR THE PULSE PROPAGATION ON THE
AXIAL MODEL

Section 5.1.3.3 established that the axial model is reduced to the calculation of the
longitudinal velocities vy4, Vao+1 and vi,+;; and the propagation of pulses on the other sections.
The propagation of pulses on the axial model is modelled by a circular linked list as in the
zone 2 for the torsional model. Thus the circular list is implemented on a 3xn,,, matrix called

list4 (Figure 1.1) where:

¢ The number of sections on the list is A,.

e pA,, and pBy, register the position of pulses A'1,and B, respectively:

p Ala = 1 (I 1 )
pB,=h, +1 (1.2)
column 1 2 3 ha-2 ha-1 ha ha+l ha+2 ha+3 2ha-1 2ha
pulse Ala AZa A3a Aha-) Aha-l Aha Bha Bha-l Bha-Z BZa Bla
next 2 3 4 ha-1 ha ha+1 ha+2 ha+3 ha+4 2ha 1
previou 2ha 1 2 ha-3 ha-2 ha-1 ha ha+1 ha+2 2ha-2 2ha-1
+ +
PAia PBh

Figure I.1 Array used to simulate the second zone of the axial model

If the velocities v;, and vj,+; are known, the pulses propagation is simulated by the following

equations:
listA(1, pA,,)) = v, (K)Z,, +listA(1, pA,,) (1.3)
listA(l, pB,,) = listA(l, pB,,) = v,, . (k)Z, (14)
pA,, =listMa(2, pA,,) (L5)
pB,, =listMa(2, pB,,) Le)

The inclusion of the nut in the model will cause the reflection of pulses arriving to section #,,
and therefore splitting the list4 in two as shown in Figure 1.2a. The following variables are

added in order to complete the model for the moving nut:

e ny,: The number of sections in the left loop on the Figure 1.2a. pB,, . pAna and pB,,

register the position of pulses B'g+ A'nqs;and By, respectively:

pB,., =2h, —n, +1 L7
pA,,=n, +1 (1.8)
pB, =pB,. +1 (19)
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e Pulse 4, is connected with pulse B,

4, =n,
listA(2, pA,,) = pB,,
listA(3, pB,,) = pA,,

e Pulse B4+, is connected with pulse A'pae st
listA(2, pB,,) = pA,,

llStA(3a pAnal) = pB

nal

(1.10)
(L11)
(1.12)

(113)
(L14)

If the angular velocity v,,+;is known, the pulse propagations on section n, is simulated by the

following equations:

listA(l, pA,,,) = v, (K)Z, + listA(1, pA, ;)

listA(l, pB,,) = listA(l, pB,,) = v,,.,. (k)Z,

PA,, =listA(2, pA, )
pB,, =listA(2, pB,,)

(1.15)
(L16)
(1.17)
(1.18)

Figure 1.3 shows the status of the matrix list4 after two pulse propagations. The number of

sections on the two loops in zone two changes when the nut moves to an adjacent section. As

for the torsional model, the connections of the pulses A'yg, A'as1, A'nas2, B'na, Brnass and B'uas

change when the nut moves to the next section on the right (from section n, to section n,+1).

The mapping of those changes on the matrix list4 are carried out by the following procedure:

e The position of the pulses Ay A'aiz, Bugsy and B'ra+2 is held in the variables PAnas PAnaz,

PBrar and pB,; respectively:
r4,, =listA(3, pB,,)
PA,, =listA(2, pA,,)
pB,,, =1listA(3, pA,,,)
pB.., =listA(3, pB, )
e Pulse A',, is connected with pulse A',q4;:
listA(2, pA,,) = pA,,
listA(3, pA,,)) = pA,,
o Pulse 4,4+ is connected with pulse Bair:
listA(2, pA,,) = pB,,

listA(3, pB, ) = pA

nal
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e Pulse B+ is connected with pulse B',.:

listAQ2, pB,,) = pB,,

listA(3, pB,,) = pB

nal

e DPulse B+, is connected with pulse 4’442

listA(2, pB,,,) = pA
listA(3, pA,,,) = pB

Pointers pB,, and pA4,,; are set to their new values:
pB,, =pB,,

pAnal = pAnaZ

na2

na2

(1.27)
(1.28)

(1.29)
(130)

131
(1.32)

A similar procedure is applied when the nut moves to the next section on the left (from

section n, to section n,-1). Pulses affected by this movement are: A',,.;, A’y A'nas 1s Bat, Ba

and B'y;+;. The mapping of the changes on the matrix Jist4 is carried out in this case by the

following procedure:

e The position of the pulses Aoy At B'uass and B'ra. is held in the variables PAnas PAina,

PBuar and pBiy, respectively:
pA,, =listA3, pB,,)
pA,,, =listA(3,pA4,,)
pB,,, =listA(3, pA,,,)
DPB,,, =listA(2, pB,,)
Pulse 4',, is connected with pulse 4’41t
listA(2, pA,,) = pA,,
listA(3, pA,,)) = pA,,
Pulse A',,.; is connected with pulse B,
listd(2, pA,,,) = pB,,,

listA(3, pB,,,) = pA

lna
Pulse B'q+; is connected with pulse B’
listA(2, pB,,,) = pB,,
listA(3, pB,,) = pB,,

Pulse B',, is connected with pulse 4',,:

listA(2, pB,,) = pA,,

255

(1.33)
(1.34)
(1.35)
(1.36)

(137)
(1.38)

(1.39)
(1.40)

(L41)
(L42)

(143)



listA(3, pA,,) = pB,, (1.44)

e DPointers pB,, and pA,,; are set to their new values:
ana = pBlna (145)
pAnal = pAna (146)

Variables difSecA and lastSecA are included to verify if the nut has moved to an adjacent
section and therefore decide which part of the code will be executed (the nut is on the same

section, the nut has moved to the left or the nut has moved to the right). The choice is taken

according to the following procedure:

e Calculate the section where the nut is on
n, =ceil(l, /1) (L47)
e Calculate the difference between the new and the last section
difSecA = n, — lastSecA (1.48)

e Switch between the two cases based on the value for difSecA

switch difSecA
case |

run code when the nut has moved to the right
case -1

run code when the nut has moved to the left
end

e Assign the value of n, to lastSecA

lastSecA=n, | (1.49)
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APPENDIXJ PARAMETERS AND INITIALISATION CODE FOR THE
TORSIONAL LOOP SUBSYSTEM

J.1 Initialisation Code for the Torsional Loop Block

% Zonel parameters:

lenF=2*{b;

Al=l, % position of Al on the list
Bfb=fb+1; % position of Bfb on the list
Bl=lenF, % postion of B1 on the list
listF=zeros(2,lenF);

for i=1:lenF-1

listF(2,1)=1+1;
end
listF(2,B1)=Al; % nextto Bl

% Zone2 parameters
nt=ceil(lref/ltor); % Nut position [sections]

lenM=2*ht, % number of elements on the list
Afbl=l, % position of Afb+1 on the list
An=nt, % position of An on the list
Anl=nt+l, % position of An+1 on the list
Bht=ht+1, % position of Bht on the list
Bnl=lenM-nt; % position of Bn+1 on the list
Bn=Bnl+1; % position of Bn on the list
Bfbl=lenM, % position of Bfb+1 on the list
listM=zeros(3,lenM);

% Row 2 assignment:

for i=1:lenM-1

listM(2,1)=1+1;
end

listM(2,Bfb1)=Afb1; % Next to Bfb+1

listM(2,An)=Bn; % Next to An
listM(2,Bn1)=Anl, % Next to Bn+1
% Row 3 assignment

for i=2:lenM

listM(3,1)=1-1,
end

1listM(3.Afb1)=Bfb1; % Before Afb+1

listM(3,Bn)=An; % Before Bn

listM(3,An1)=Bnl; % Before An+1
Mitor=1/(ltor*1000),% [1/mm] for the nut movement monitoring

J.2 The PWM Generating Function
function [e_abc,vec,t_dc]=pwm_inverter(th_e.e_dqr)

% Generation of the switching vectors and their duration time
%

% Author: Veimar Yobany Moreno Castafieda

% Date: 20 October 2004

% University of Huddersfield (UK.)

% School of Computing and Engineering

%
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:f» This is a Copyrighted material, for copying permissions send email to m_veimar@hotmail.com

. _ .

% [e_abce,vec,t_dc]=pwm_inverter(th_e,e_dqr)

%

% INPUTS

% th_e [rad] Electrical position of the motor

% e_dqr [V] d,qreference voltages

%

% OUTPUTS

% e_abc [V] Equivalent @e§ phase voltages to be applied to the motor

:/o vec [V] Vector of sthchmg_ voltages. vec(:,i) represents the switching voltages for the switching i
% t_dc [samples] Vector of switching voltages duration. t_dc(i) represents the duration of the switching state i

global h % structure that contains the variables of interest

% h.pwm.Mxyz % Matrix used for the calculation of the t_xyz times

% h.pwm.Tpwm2 % Tpwm/2 -

% h.pwmRpwm % PWM resolution

% h.pwm.tpwm % sampling time for the Motor model

% h.pwm.stator_volt % Array used for the calculation of the switching voltages

% Pre-allocation of variables in memory
% e_alpha_beta=[0,0];
e_abce=[0;0,0];

% t_xyz=[0 00]; % xyz times
p_abc=[000];, % Used to define the sector

% sector=0; % sector in which the refernce stator voltage is om
%t 23={00]; % duration of switching states 2 and 3
vec=zeros(2,7),

t_dc=zeros(1,7);

% Translate to alpha beta frame system:
e_alpha_beta=[sin(th_e) cos(th_e);
-cos(th_e) sin(th_e)]*e_dqr;

% Translate to abe frame system:
e_abc=[ 0 1.0000;

0.8660 -0.5000;

-0.8660 -0.5000}*e_alpha_beta,

% Fin dout the xyz times
t_xyz=h.pwm.Mxyz*e_alpha_beta,

9% determine in which sector the e_alpha_beta is found
if e_abe(1)>0
p_abc(1)=1;
else
p_abe(1)=0;
end
if e_abc(2)>0
p_abc(2)=2;
else
p_abc(2)=0;
end
if e_abc(3)>0
p_abc(3)=4,
else
p_abe(3)=0,
end
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sector=sum(p_abc),

% Choose the two sector boundary vectors and calcualte the duration of application fo
’ : r each one
S/:v X:}llu::cfg: the possible stator voltages are calculated assuming a DC link voltage of 600 V
case |
t 23=[t_xyz(2) t_xyz(3)],
vee(:,2:3)=[h.pwm.stator_volt(:,6) h.pwm.stator_volt(:,2)];
vee(:,5:6)=[h.pwm.stator_volt(:,2) h.pwm.stator_volt(:,G)];
case 2 -
t_23=] -t_xyz(1) t_xyz(2)];
vec(:,2:3)=[h.pwm.stator_volt(:,5) h.pwm.stator_volt(:,4)];
vee(:,5:6)=[h.pwm.stator_volt(:,4) h.pwm. stator_volt(:,S)];
case 3 -
t_23=[-t_xyz(3) t_xyz(1)]; :
vec(:,2:3)=[h.pwm.stator_volt(:,4) h.pwm.stator_volt(:,6)};
vec(:,5:6)=[h.pwm.stator_volt(:,6) h.pwm.stator_volt(;,4)];
case 4 -
t_23=[t_xyz(3) -t_xyz()];
vec(:,2:3)=[h pwm.stator_volt(:,3) h.pwm.stator_volt(;,1)];
vec(:,5:6)=[h.pwm.stator_volt(:,1) hipwm.stator:volt(:})];
case 5
t 23=[ t_xyz(l) -t_xyz(2)];
vec(:,2:3)=[h.pwm.stator_volt(:,2) h.pwm.stator_volt(:,3)];
vec(:,5:6)=[h.pwm.stator_volt(:,3) h.pwm.stator_volt(:,2)];
case 6
t_23=[-t_xyz(2) -t_xyz(3)];
vec(:,2:3)=[h.pwm.stator_volt(:,1) h.pwm.stator_volt(:,5)];
; vee(:,5:6)=[h.pwm.stator_volt(:,5) h.pwm.stator_volt(:,1)];
en

% saturate the duration of the two sector boundary vectors
tem=sum(t_23);
if tem > h.pwm.Tpwm?2
t 23=t_23*h.pwm.Tpwm2/tem,
end

% normalize t_23 to samples
t_23=round(t_23/h.pwm.tpwm),

% Compose the vector of samples (times) for the application =
t_dc(I)=r0und((h,pwm.Rpwmr-)2*sl(1 m(t_;3))/4); PP of each element of vec -> sum(vec)=h.pwm Rpwm
t_de(2)=t_de(1)+_23(1);

t_de(3)=t_dc(2)H_23(2);

t_dc(4)=h.pwm.Rpwm-t_dc(3);

t_de(5)=t_de(4)+_23(2);

t_de(6)=t_dc(5)1t_23(1);

t_dc(7)=h.pwm.Rpwm,

J.3 Initialisation Code for the wm Calculation Block

Zme=(Jm+Jc)/st;
Zc=Jc/st,

Zes=kes*st;

Zct=Zc+Zt,

Zeq=Zes* Zet/(ZestLet),
ZEcs=Zct/(ZestZet),
ZEct=Zcs/(ZcstZct),
Mwm=1/(bm+Zmc+Zeq);
Mwl=1/Zct;
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J.4 wht+1 Calculation and Nut Monitoring Blocks
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Figure J.1 wy,.; Calculation block
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Figure J.2 Case 1 block (nut position monitoring)
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APPENDIX K TEST RIG VALIDATION RESULTS
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APPENDIX L ARROW 500 TLM MODEL IN SIMULINK AND VALIDATION

N @ i Bn(z) —
vref in Out pmeePp|  — P iqref
An(z) —_—

Pl controller Bandstop filter

wm

Figure L.1 Velocity controller block (Arrow 500)

Figure L.2 PI controller block (Arrow 500)

— P Blp2) P in out
idq Blp(z) Alp(z)
—— Alp(z) PT1 lowpass

filter P1 controller —edq

PT1 lowpass
filter

in out

Pi controller

Figure L.3 Current controller block (Arrow 500)

Emmb

Figure L.5 Rear bearing mounting stiffness block (Arrow 500)
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APPENDIXM XY GEOMETRIC ERROR CALCULATION SIMULINK BLOCK

case: {}

Action Port

. P
@—V scaling 1 O(P)(i)21 1

X

x-axis linear
positioning

. ] P(u)
| scaling P> oF)= 9 —-b'}

y-axis straightness
in x direction

-3.13835032924936e-6 > @
Ex

z-axis straightness
in x direction

—P»| scaling +—P» o(l’:()u=)9
y-axis rotation
about z-axis

Y

-260-6

XY squareness

Figure M.1 X-Axis geometric error calculation (Case —1 Reverse)

case[1}
(3) —— ul
case[-1]):
vy -
Sign Switch Case
case: { }
(1) x
X Ey
G- g
y
: Case 1
Ly =7 ware 5T

forward =
& —__I_’ y

Merge

Figure M.2 Y-Axis geometric error calculation
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case: {}

Action Port

scaling

P{u)
> OP)=9

y-axis linear
positioning

—| scaling

P(u)
i o) =9

x-axis straightness
in y direction

-1.266187581979400-6

in

z-axis straightness

y direction

—P> scaling

x-axis rotation
about z-axis

| P(u)
> op)=9 '> <

Figure M.3 Y-Axis geometric error calculation (Case 1: Forward)

case: {}

Action Port

y

. P{u)
@————> scaling +—P] oF)=9

y-axis linear
positioning -

—P> scaling

Lyl Pw

O(P)=9

x-axis straightness
in y direction

-1.32624694173986e-6

1e-6

B

Ey

Z-ax|

is straightness

in y direction

p— scaling

x-axis rotation
about z-axis

P(u)
| op)=9 '> <

Figure M.4 Y-Axis geometric error calculation (Case -1: Reverse)
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APPENDIX N MEASURED FREQUENCY RESPONSE Y-AXIS ARROW 500

Figure N.1 shows the controlled system frequency response measured on the y-axis. Poles at
about 57, 75 and 555 Hz, with their corresponding zeros at 48, 61 and 450 Hz are identified.

A natural frequency of 45 Hz on the y-axis is depicted in Figure N.2
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APPENDIX O IDENTIFICATION OF MODAL PARAMETERS USING THE
MODIFIED MORLET WAVELET

The idea of the continuous wavelet transform is to decompose a signal f{7) into

wavelet coefficients W (a, b) using the basis of son wavelets y,x(r) [142]. If f7)
satisfies the condition, then:

Tl £ (@) de <0 (0.1)

The wavelet transform of £r) is expressed by the following product:
W, (a,b) = [ f()W, (0)dt (02)
Where the asterisk denotes complex conjugation. This equation shows how a function

A1) is discomposed into a set of basis functions y;(f), which are generated by

dilatation and translation from the mother wavelet y(f) as follows:

y/a,b(t)=%u/(£i—ll) a>0, beR (03)

Where a is the dilatation or scale parameter defining the support width of the son

wavelet and b the translation parameter localising the son wavelet function in the time

-172

domain. The factor a”“ is used to ensure energy preservation in the wavelet

transform. The function y(r) must satisfy the admissibility condition:

<0 2
O0<e, = I‘/’I(al’)| do < (0.4)
®

-0

Where ) is the Fourier transform of y(f). Then the wavelet transform can be

inverted and the signal f{r) recovered:

£6y=— [ [W, @by, )L at ©05)
c a

Y —w—c0
The wavelet transform is expressed in terms of the Fourier transform to explain the
frequency localisation. Then, using Parseval’s theorem for F(w) the Fourier transform

of the signal f{r) and at//'(aa))e’”’b the Fourier transform of the son wavelet t//'(t-b)/a
gives

w,(a,b)= 5@ [oF (w)w'(aw)emdw (0.6)
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The parameters a and b are discretised for computer calculation of W/ab). In this

case, the wavelet is dilated and translated discretely by selecting
a=a; (0.7)
b=nbsay (0.8)
Where a, and by are fixed values with ap> 1, by> 0, m, n € Z. As a result, a
discretised son wavelet and a corresponding discrete wavelet transform are obtained.
The signal f{7) is thus discomposed into sub-bands with a bandwidth that increases
linearly with frequency. Octave-wide bands are achieved by doing a=2 and b,=1
(dyadic discretisation). Thus, a =2" and b = n2".
0.1 The Morlet Wavelet
The Morlet wavelet is defined by

w(t) = e’*'e "2 (0.9)
Where o, is the central wavelet frequency. This value is generally chosen superior to
five in order to verify the admissibility condition (equation O.1) as stated by Fasana et

al [143]. The dilated version of the Fourier transform of y(r) is real and is given by

w(aw) = \2mwe @@’ (0.10)
Waw) reaches its maximum value when @ = w,/a, thus the value of a at which the

wavelet filter is focused on the frequency o is determined from
a=o0,lo (0.11)
If the analysed frequency is important, the dilatation parameter becomes small and the

spectrum of the Morlet wavelet function is wide. This effect produces a bad spectral

resolution that makes it difficult to differentiate closed modes.

Lardies and Gouttebroze [144] proposed a modified Morlet wavelet function that
offers a better compromise in terms of localisation, in both time and frequency for a
signal, than the traditional Morlet wavelet function. They introduced a parameter N in

equation (0.9) in order to get a narrower spectrum allowing a better resolution of

closely spaced modes.

w(t) = e/™e ™V (0.12)
With N > 0, equation (O.10) becomes

w(ao) = Nre @ a)N/4 (0.13)
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0.2 Implementation of the Wavelet Transform

A MATLAB program for the calculation of the CWT using the modified Morlet

mother wavelet was written on the basis of equations presented in the preceding

section. The program is included in Appendix 0.4. The CWT of a signal is calculated

considering the following steps:

Compute the FFT of the signal.

For a given scale a, sample the wavelet with m data points within the range of the

Arg function ([-7 7]). Where m is the number of samples of the FFT of the signal.

The samples are represented in counter clockwise direction from the positive x-

axis ([0, 27/m, 4zlm ... m-4xlm, m-27lm, -7m -(7-27lm), (7-47/m) ... -4nim, -
27m)).

Compute the FFT of the wavelet at the scale a for a given wavelet shape factor Ry

calculates as

R, =VN/2 (0.14)
Equation (O.13) becomes:
waw)=R,\2x ¢ Heo o' (0.15)

Where Rrap > 5 and N > 2. Note that N = 2 for the Morlet mother wavelet.
Multiply the FFT of the signal by the complex conjugated of the FFT of the

wavelet.

Compute the IFFT to obtain the wavelet coefficients for the scale a.

Amplitude
Amplitude

Scale

200 400 600 800 1000 200 400 600 800 1000

Tranclatinn Tranclatinn

Figure O.1 f)(f) and f(r) CWT (Morlet: N = 2)
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The CWT of a signal f{r) composed by the sum of two sinusoids, f;(¢) and f3(#), with
closed frequencies was calculated to show the effect of the shape factor R on the

modified Wavelet results.

Si(t) = sin(27t / 20) (0.16)
S5 (¢) =sin(1.1* 27/ 20) (0.17)
JO = £+ £,@0) (0.18)

Figure O.1 shows the calculated CWT for each signal (f;(7) and fx(7)). The CWT of the
signal f{7) is illustrated in Figure O.2. Appendix 0.5 contains the MATLAB program
used to calculate the CWT for this experiment.

Note how the CWT represents the signals f;(r) and fx(7) in the time/frequency
domain (Figure O.1). A horizontal dark brown line centred at the scale a = 20
represents the signal f(r); meaning an oscillation at a constant frequency of 5.5 Hz
during the duration of the signal. The horizontal line level is moved to about 18

reflecting the oscillation frequency of fx(7) (5 Hz).

[

fit)= f1(t) + ()

10
@
© ; . i
Gl 3 L 3 €D 0 L3 L
30
200 400 600 800 1000
Translation

Figure 0.2 fr) CWT (Morlet: N=2)

The CWT of the signal A7) in Figure 0.2 shows the time at which the oscillations of
the signal take its maximum amplitude (maximum concentration of energy). In
contrast, the figure shows a bad spectral resolution and the two frequencies cannot be
distinguished.

Increasing N to a hundred improves the frequency resolution of the closed spaced
modes (a;=20 and a, = 18), but at the expense of time resolution, as Figure O.3

illustrates.
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Figure 0.3 CWT of f{7) for N=128 (Modified Morlet wavelet)
0.3 Modal Parameters Identification Using Wavelets

As presented by Staszewski [127], the wavelet transform of a damped sinusoid x(7)
with @, the undamped natural frequency, @, the damped natural frequency and ¢ the

damping ratio is given by

i

W, (a,b)= —2a- Be "y (aw )’ " (0.19)

Where, x(f) = Be * cos(@w t +y,) (0.20)

0, =0,1-¢° (0.21)

The wavelet modulus is localised at a constant value of the dilatation parameter noted
ao:
a=a,=0,lo, (0.22)

The wavelet transform modulus is

W, (a,.b) = @-Be“:"’"b

v (a,0,) (0.23)

The damping ratio of the system can be estimated from the slope of the straight line of

the logarithm of the wavelet transform modulus in equation (0.24)

InW, (a,,b)| = ~¢w,b + 1;{@ By’ (aowd)\} (0.24)

And the wavelet transform phase is given by

ArgW,(a,,b))= b +y, (0.25)
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Where, %Arg(Ww (a,,b)=0, (0.26)

Arg (the argument of a complex number) is the four-quadrant are fan function, which
represents the counter clockwise angle, in radians, from the positive x-axis. Values

vary from -7 to 7. Arg(x, y) is defined as;

arctan(y/ x) x>0
z/2 x=0 y>0
Arg(x,y) =1 -r/2 x=0 y<0 (0.27)
7 +arctan(y/ x) x<0 y=20
|~ 7 +arctan(y/ x) x<0 y<0

This procedure is extended to multi-degrees of freedom systems, where w, is the

undamped natural frequency, @y the damped natural frequency and ¢ the damping

ratio associated to the &* mode, thus
W,y (a,b)= %iBke"*”’"*”w'(a%)e"“"“”*“’ | (0.28)
k=\

For a fixed value of the dilatation parameter (a = a,), which maximises y'(aw,), only
the mode associated with a; gives a relevant contribution to the wavelet transform,

while the other terms are negligible. The wavelet transform of each separated mode i=

1,2,..., pbecomes

In|i7, (a,,b)| = ~¢,0,,b + 1n[—‘/zi—" By (a,.a)di)l} (0.29)
Arg(WW (a,, b)) = 4zb+y, (0.30)
Thus, :;%Arg(Ww (@,b))=o, (0.31)

The damped frequency and the damping ratio for each eigen-mode is estimated from

the wavelet transform according to the following procedure:

o Calculate the dilatation parameters a, by plotting the variations of the scale factor

in time. The factor N is increased until good resolution is reached.

o The damped eigen-frequency in Hz (f;= w4/27) is obtained from the slope of the
phase of the wavelet transform - equation (0.32).

o Plot for each a; the logarithm of the wavelet modulus as a function of time.

e The damping factors are estimated from the slope of the straight line of the
wavelet modulus logarithm.
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amplitude

R | | : | ! i i
0 005 0 0450 02028 03 038, 04
time [s]

Figure O.4 Impulse response second-order system (equation (0.34))
This procedure was applied to calculate the damping factor and the damped natural
frequency from the impulse response (Figure O.4) of a second order system
represented for the following transfer function (see Appendix 0.6):

1

G(s) = — : (032)
5 +44.065 +1.3218x10
Where, o, =1149.7 (033)
¢ =0.019165 (034)
Ei 2
£, =2 15 04m (035)

2

scale

500 1000 1500 2000
translation

Figure O.5 CWT transform of the impulse response (equation (0.32))
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The dilatation parameter a, = 28 was calculated by plotting the variations of the scale
factor in time (Figure Q.5)

The slope of the phase of the CWT transform for the scale 28 (Figure 0.6) is

calculated to obtain the damped eigen-frequency £, according to equation (0.3).

fs =1149.5/(27) =182.9477 (0.36)
149.4941 E E E
149.4941 f---vvevnaama- ------------- -------------- ............ 4
143.4941 f--emnvveeannn ------------- -------------- ........... 4
149.4941 -------------- ........... a
149494 5 500 10§00 15§00 2000

translation
Figure 0.6 Slope of the phase of the CWT transform (scale=28)

The damping factor is estimated, from the slope of the algorithm of the CWT
transform for the scale 28 (Figure 0.7), as

220303 0191653 (037)
1149.5
-22.0304 : : :
-22.0304 f--cerennnenns R L T R . -
E70017] CORR SO 1 —
7] 1'c 1] | S L 08 .
-22.0304 -------------- beefeeeennnes -
-22.0304 }--esennenenes doeeeoieenes - S P I -
-22.0304 I : I
0 500 1000 1500 2000
translation

Figure 0.7 Slope of the magnitude of the CWT transform (scale=28)
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As seen, the method has identified the damped eigen-frequency and the damping
factor accurately.

0.3.1 Implementation of the Identification Algorithm
A MATLAB program for the automatic calculation of the damping factor and damped
natural frequencies using the modified Morlet mother wavelet was written on the
basis of equations presented in the preceding section. The program is included in
Appendix 0.7. The modal parameters are calculated considering the following steps:
a) Specify a set of scale factors to be addressed, for example [128 64 32 16 8 2]
b) Calculate the CWT of the signal for the first scale factor (N = 256). Starting
with a large scale-factor assures enough frequency resolution to identify all the

modes

¢) Calculate the dilatation parameters a; according to the following procedure

(See Appendix 0.8 for more details):

aI— **************** =

Scale

|
|
|
|
|
!
|
|
1
|
|
|
1
I
|
¥
|
|
|
|

Iy 5] 5

Translation
Figure 0.8 Maximum CWT magnitude for each a row

1. For each row of the CWT map find the maximum value of the CWT
magnitude and its position on the translation vector. (Figure O.8).

il. Magnitudes lower than 10% of the maximum one are not considered.

iti. Verify which of the magnitudes are peak, by inspecting the preceding
and following magnitudes on the corresponding translation (Figure

0.9).

iv. Eliminate the scale with lower magnitude when contiguous scales are
found.
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Scale

a;

'

1

Translation
Figure 0.9 CWT map fields to analyse for peak verification at the scale a,

d) Repeat steps b) and c) for the next scale factor on the list (N = 128) and
compare the calculated dilatation parameters with the ones obtained for the
preceding scale factor.

e) Repeat step d) until the new calculated number of resonant frequencies differs
to the previous one.

f) Calculate the damping factor and natural frequency for each dilatation
parameter:

1. The damping factor is estimated from the slope of the straight line of
the wavelet modulus: The damping factor is set as the mean value of
the first differential (slope) of the wavelet modulus. This differential 1S
calculated using the modified TLM transform.

1. The damped natural frequency is estimated as the mean value of the
first differential of the phase (equation (0.31)). The modified TLM
transform is used to calculate the differential of the phase vector.

The algorithm was applied to the signal f{r) described in section O.2 giving the results
contained in Table O.1 (see Appendix 0.6).

G @q
di 1 Specified By the CWT | Specified By the CWT
First mode 18 0 2.1493¢-12 - s 3.5
Second mode | 20 0 5.7388e-11 9 5

Table O.1 f{r) Modal parameters identified by the CWT algorithm (N = 128)
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These results show the effectiveness of the derived CWT algorithm for the

identification of simulated modal parameters.

50
100
K ——
= '
o
(73]
150
200
250 : " - 1 1 L
200 400 600 800 1000
Translation

Figure O.10 CWT of the x-axis controlled frequency response (N=128)

The derived CWT algorithm for the identification of modal parameters was applied to
the Bode diagrams measured for the x-axis controlled frequency response (Figure 8.1)
and mechanical frequency response (Figure 8.2). Table 0.2 contains the values
identified from the CWT of the controlled frequency, as shown in Figure 0.10 (see
Appendix 0.9). The damping factor and natural frequency identified for the x-axis are
resumed in Table O.3 (see Appendix 0.10).

& Ja
Scale (a)) Bode Identified by Bode | Identified by
Diasram the CWT ])Lagam the CWT
8 0.1 0.036445 555 550.58

Table O.2 Identified values for resonant frequencies and damping factors using

Bode diagrams and wavelet analysis (x-axis controlled frequency response)

4 Ja
Scale (a;) Bode Identified by Bode | Identified by
Diagram the CWT Diagram | the CWT
4 0.25 0.033572 42.57 42.8478

Table O.3 Identified values for resonant frequencies and damping factors using

Bode diagrams and wavelet analysis (x-axis mechanical frequency response)
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Figure O.11 CWT of the x-axis mechanical frequency response (N = 8)

800 1000 1200

As can be seen, there is a difference between the values for resonant frequencies

identified by the wavelet algorithm and the bode diagrams. This could be explained

by the fact that the CWT of the impulse response depends on the value of the
resolution (N) selected for the analyses. A direction of study will be the derivation of

a method for the specification of a resolution value that could lead to accurate

identification results.

0.4 MATLAB Program for the Calculation of the CWT (Morlet Wavelet)

function W_phi=morlet_mod(f,N,a,w0)

% morlet_mod calculates the modified Morlet wavelet (W_phi) of the signal f{(t)

% in frequency domain

% Author: Veimar Yobany Moreno Castafieda
% Date: December 2005

% University of Huddersfield (U.K.)

% School of Computing and Engineering

% This is a Copyrighted material, for copying permissions send email to m_veimar@hotmail.com

% INPUTS

% f - Signal

%N - Shape parameter N >= 2

% a - Scales array

% w0 - Central wavelet frequency [rad/s]

% OUTPUT

% W_phi - the CWT of the signal f

len= length(f); % Number of samples for the FFT

if mod(len,2) ~=0
len=len-1; % Number of samples must be even
f=f(1:len);

end

F f=fft(f); % Fourier transform of f(t)

num_samples=length(F_f);

% Verify N factor:

if N <2 % N must be >=2
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N=2;
display('N must be >=2")
end
Rf=sqrt(N/2); % Wavelet shape factor
% Verify Rf*w0 > 5 (Admissibility condition for the modified Morlet wavelet)
if RP*w0 <5
w0=51/Rf;
display (Rf*w0 > 5"
end
% Creation of the frequency array w:
d_w=2*pi/num_samples; % frequency sample step
w=[0:d_w:pi-d_w -pi:d_w:-d_w];
aw=a(:)*w;
% Fourier transform of the set of son wavelets
F_phi=sqrt(2*pi)*Rf*exp(-Rf*2* (aw-w0).A2/2);
% Multiply the FFT of the signal and the modulus of the FFT of the wavelet and compute the
% IFFT to obtain the wavelet coefficients for the scale a
w __phi=diag(sqrt(a))*ifft(meshgrid(F_f,a)."‘conj(F _phi).[],2),

0.5 MATLAB Program Used for the Example of CWT Calculation

% cwt_example_0.m

% Program used to illustrate the effect of the parameter Rf on the CWT
% calculated for the Morlet wavelet '
% Author: Veimar Yobany Moreno Castafieda

% Date: December 2005

% University of Huddersfield UK)

% School of Computing and Engineering

% This is a Copyrighted material, for copying permissions send email to m_veimar@hotmail.com
t=0:0.01:10; % Time array [s]

% Decaration of two closed sinusoids:

f1=sin(2*pi*t*5); % f1(t)

f2=sin(1.1*2*pi*t*5); % 20t

f=f1+£2; % f(t)

% Calculation of the CWT

N=2, % Scale factor

a=0:30; % Scales array

w0=6; % Morlet wavelet centre frequency
wfl=morlet_mod(f1,N,a,w0); % CWT of ] ®
wf‘2=morlet_mod(f2,N,a,wO); % CWT of £2(t)
wi=morlet_mod(f,N,a,w0); % CWT of f(©

% plot signal f1 and its CTW

subplot(2,2,1)

plot(t,f1,’%") % plot f1(t)

ylabel(' Amplitude’), xlabel('Time"), title('f1(t)"), axis tight
subplot(2,2,3)

imagesc(abs(wf1)) % plot CWT of f1
xlabel('Translation"), ylabel('Scale")

% plot signal {2 and its CTW

subplot(2,2,2)

plot(t,2,%") % plot £2(t)

ylabel(Amplitude’), xlabel('Time"), title('f2(t)"), axis tight
subplot(2,2,4)

imagesc(abs(wf2)) % plot CWT of £2
xlabel('Translation’), ylabel('Scale")

pause

% plot signal f and its CTW

subplot(2,1,1)

plot(t.£,'k"), xlabel('t), ylabel(f(t)= f1(t) + £2(t))
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subplot(2,1,2)
%mesh(abs(wsig))
imagesc(abs(wf)), xlabel('Translation"), ylabel('Scale")

0.6 MATLAB Programs Used for the Example of Modal Parameters (& @4)
Identification Using the CWT

% cwt_ident_2ord_system.m
% Calculation of resonance frequency and damping factor for a second-order system
% Author: Veimar Yobany Moreno Castafieda
% Date: December 2005
% University of Huddersfield (U.K.)
% School of Computing and Engineering
% This is a Copyrighted material, for copying permissions send email to m_veimar@hotmail.com
clear al}
cle
%odefine the transfer function
1d=16/1000; %screw lead [m]
M=350*(1d/(2*p1))"2; % mass referred to the motor shaft
C=0.1; % Bearings damping
K=3000,
wn=sqrt(K/M); % Underdamped natural frequency [rad/s]
cc=2*M*wn; % critical damping
zita=C/cc; % Damping ratio
wr=wn*sqrt(1-zita2); % Damped natural frequency [rad/s]
fr=wr/2/pi; % resonance frequency [Hz]
num = |;
den =1 2*zita*wn wn"2],
st=2e-4; % sample time
t=0:st:0.4;
y=impulse(num,den,t);
plot(t,y),grid xlabel('time [s]), ylabel('amplitude’)
pause
scale=1:40;
scale_length=length(scale); % Length of scale
w0=2*pi; % Morlet wavelet centre frequency
N=2;
wi=morlet_mod(y,N,scale,w0); % CWT of f(t)
scale_position=find_scale(abs(wf)); % Position of the scales defining natural frequencies
disp(['Scales = ' num2str(scale _position)])
imagesc(abs(wf)),xlabel(’translation'),ylabel(‘scale')
pause
%mesh(abs(out.wf)),xlabel('translation’),ylabel('scale')
cwt=wf(scale_position,:); % CWT for the given scale
ph=phase(cwt); % calculation of the phase of the cwt
slope=get_slope(ph,st);
plot(slope),grid,xlabel('translation'),ylabel(’scale')
wd=mean(slope); % Damped natural frequency [rad/s]
fd=wd/(2*pi),
pause
%% Calculation of the damping factor
In_cwi=log(abs(cwt)); % the natural logarithm of the magnitude of cwt
if cov(In_cwt) < le-3

df_mean(i)=0,
else

fun=get_slope(In_cwt,st);

slope=abs(mean(fun)/wd);
end

288



plot(fun),grid,xlabel(‘translation’),ylabel(‘slope')
disp(['ref damping factor ="' num2str(zita)])
disp(['ref Damped natural frequency [Hz]=" num2str(fr)])

% cwt_example_00.m

% Program used to illustrate the calculation of modal parameters (dampling factor and damped

% natural frequency using the continuous wavelet transform for the modified Morlet wavelet
% Author: Veimar Yobany Moreno Castafieda

% Date: December 2005
% University of Huddersfield (U.K.)
% School of Computing and Engineering

% This is a Copyrighted material, for copying permissions send email to m_veimar@hotmail.com
cle, clear all
st=0.01; % sample time [s]
t=0:5t:10; % Time array [s]
t_len=length(t);
% Decaration of two closed sinusoids:
f1=sin(2*pi*t*5), % f1(t)
f2=sin(1.1*2*pi*(*5); % f2(1)
f=f1+£2; % (1)
N=128,
scale=0:30;
w0=6; % Morlet wavelet centre frequency
wi=morlet_mod(f,N,scale,w0); % CWT of f(t) ,
scale_position=find_scale(abs(wf)); % Position of the scales defining natural frequencies
disp(['Scales = ' num2str(scale _position)])
scale_length=length(scale_position);
f_d=[];%zeros(scale_length,t__len-l);
d_f=[];%zeros(scale_length,t_len-1);
for i=1:scale_length
if scale_position(i) ~= 0
cwt=wf(scale_position(i),’);
%% Calculation of the damped natural frequency (eigen frequency)
ph=phase(cwt); % calculation of the phase of the cwt
fd=get_slope(ph,st); % Damped natural frequency [rad/s]
for ii=1:length(fd)
£ d(,i)=fdGi);
end
fd__mean(i)=mean(f_d(i,:));
%% Calculation of the damping factor
In_cwi=log(abs(cwt)); % the natural logarithm of the magnitude of cwt
df_mean(i)=abs(mean(get_slope(ln_cm,st))/fd_mean(i));
for ii=1:length(In_cwt)
d_f(1,ii)=In_cwt(ii);
end
end
end
subplot(2,1,1)
plot(d_f), grid, xlabel('sample"), ylabel('In(W(a,b)"
subplot(2,1,2)
plot(f_d'/(2*pi)), grid, xlabel('sample’), ylabel('fd [Hz]), legend('fd1',fd2")
disp(['Damping factor ="' num2str(df_mean)])
disp(['Damped natural frequency [Hz]=" num2str(fd_mean/(2*pi))])

0.7 MATLAB Program Used for the Automatic Modal Parameters (¢
Identification Using the CWT

a)d)

function out=id_modal_parameters(f,st,N);
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% id_modal_parameters calculates the modal parameters (damping factor and damped natural
frequency)

% for the function f(t)

% Author: Veimar Yobany Moreno Castafieda
% Date: December 2005

% University of Huddersfield (U.K.)

% School of Computing and Engineering

% This is a Copyrighted material, for copying permissions send email to m_veimar@hotmail.com
% INPUT

% f - Signal on time domain

% st - Signal sample time [s]

%N - Scale factorModified (Morlet Wavelet)

% OUTPUT

% out - Structure that containing the calculated modal parameters

% out.damping - vector of damping factors

Y outfreq - vector of damped natural frequencies

Y out.scale - vector of scales associated to the natural frequencies
% out.wf - CWT of the signal

Y%outph - CWT phase

% out.N - scale factor
sf=1/st; % sample frequency [Hz]
scale=0:40;

scale_length=length(scale); % Length of scale

w0=6; % Morlet wavelet centre frequency

wf=mor1et_mod(f,N,scale,wO); % CWT of f(t)

scale _position=ﬁnd_scale(abs(wt)); % Position of the scales defining natural frequencies
disp(['Scales =" num2str(scale_position)])

d_f=[];
for i=1:length(scale_position)
if scale_position(i) ~= 0
cwt=wf(scale _position(i),:);
%% Calculation of the damped natural frequency (eigen frequency)
ph=phase(cwt); % calculation of the phase of the cwt
fd_mean(i)‘—‘mean(get_slope(ph,st))', % Damped natural frequency [rad/s]
%% Calculation of the damping factor
In_cwt=log(abs(cwt)); % the natural logarithm of the magnitude of cwt
d_f(i)=abs(mean(get_slope(ln_cm,st))/fd__mean(i));
if d_f(i) < le-6
d_{(1)=0,
end
end
end
out.freq=fd_mean; % Damping factor vector
out.damping=d_f, % Natural F requency vector
out.scale=scale_position; % Scale vector
out.wf=wf, % CWT
out.ph=ph; % CWT phase
out N=N; % scale factor
disp(['Damping factor =' num2str(d_f)]),
disp(['Damped natural frequency [Hz]=" num2str(fd_mean/(2*pi))})

0.8 MATLAB Program Used for the Calculation of the Dilatation Parameters

function scale=find_scale(WTf);

% find_scale calculates the scales defining natural frequencies on a frequency/time plot
% Author: Veimar Yobany Moreno Castaiieda

% Date: December 2005

% University of Huddersfield (U.K.)
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% School of Computing and Engineering
% This is a Copyrighted material, for copying permissions send email to m_veimar@hotmail.com
% INPUT
% Wt - The magnitude of the calculated wavelet transform
% OUTPUT
% scale - Scales defining natural frequencies on Wf
% Variables declaration:
scale=[]; % Scales defining natural frequencies on Wt
[scale_length, translation_length]=size(W¥), .
scale_position=zeros(1,scale_length); % position b of the maximum value of W for each scale
WI_maximums=scale_position; % to hold the maximum value of W for each scale
% Find the maximum values of the CWT magnitude and their position on the translation vector
for 1i=2:scale_length
[Wf_maximum(ii),scale _position(ii) [=max(Wf(ii,"));
end
% Magnitudes lower than 10% of the maximum one are not considered
Wf_maximum_factor=0.1 *max(Wf_maximum);
for ii=2:scale_length
if Wf_maximum(ii) < WE_maximum_factor
Wf_maximum(ii)=0;
end
end

% Verify which of the Wf maximum values are picks
k=0; % to control the number of elements of the vector scale
for iii=2:scale_length-1 % first and last scales are not analysed
if Wf_maximum(iii)>0 && W{_maximum(iii) == max(Wf(iii-1 :1iit+],scale_position(iii)))
k=k+1; .
scale(k)=iii; % Wf_maximum(iii) is a pick
end '
end
% Eliminate the scale with lower magnitude when contiguous scales are found
ifk>1
for i=1:k-1
if scale(i) == scale(i+1)-1
if WI_maximum(scale(i)) > WI_maximum(scale(i+1))
scale(i+1)=0;
else
scale(i1)=0;
end
end
end
end

function slope=get_slope(f,st)

% get_slope calculates the first differential of the function f(t)
% Author: Veimar Yobany Moreno Castafieda

% Date: December 2005

% University of Huddersfield (UK.)

% School of Computing and Engineering

% This is a Copyrighted material, for copying permissions send email to m_veimar(@hotmail.com
% INPUT

% f - Signal on time domain

% st - Signal sample time [s]

% OUTPUT

% slope - vector containing the first derivative

len=length(f);

[mp,pos]=max(f);

ff=f(pos:len-pos*2);

f_dif=mtlm_dif(f,st); % Find first differential
s___dif=mtlm_dif(f_dif,st); % Find second differential
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lim=5%st,
% The interval to take into account is the one for which the second derivative is approx cero
klow=2,
while abs(s_dif(klow)) > lim,
klow=klow+1;
end
kup=klow;
while abs(s_dif(kup)) < lim,
kup=kup+1;
if kup ==len
break;
end
end
slope=f_dif(klow:kup);

0.9 MATLAB Program Used for the identification of damping factors and

resonant frequencies, x-axis mechanical frequency response

% ident_x_mech_freq resp.m

% mechanical frequency response

% identification of damping factors and resonant frequencies
% Author: Veimar Yobany Moreno Castafieda

% Date: December 2005

% University of Huddersfield (UK)

% School of Computing and Engineering

% This is a Copyrighted material, for copying permissions send email to m_veimar@hotmail.com
clear all, clc

load x_mech_freq resp

Fsig=bode2fft(ph,amp);

[phl,amp1]=fft2bode(Fsig);

y=id_modal _parameters_f(Fsig,1/125 8);

subplot(2,1,1)

imagesc(abs(y.wf)), ylabel('Scale")

subplot(2,1,2)

plot(abs(y.wf(y.scale,))), grid, xlabel('Translation"), ylabel('Scale"), subplot(111)

0.10 MATLAB Program Used for the identification of damping factors and

resonant frequencies, x-axis control system frequency response

% ident_x_cont_syst_freq resp.m

% control system frequency response (velocity)

% identification of damping factors and resonant frequencies
% Author: Veimar Yobany Moreno Castafieda

% Date: December 2005

% University of Huddersfield (UK)

% School of Computing and Engineering :
% This is a Copyrighted material, for copying permissions send email to m_veimar@hotmail.com
clear all, clc

load x_cont_syst_freq_resp_nfilt

Fsig=bode2fft(ph,amp);

[ph1,amp1]=fft2bode(Fsig),
y=id_modal_parameters_f(Fsig,1/4000,8);
imagesc(abs(y.wf))

xlabel('Translation'), ylabel('Scale)
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