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BACKLASH IN MACHINES
STABILIZED BY CONTROL FORCE

L. E. Kollar
Department of Applied Mechanics, Technical University of Budapest,
H-1111. Budapest, Miiegyetem rkp. 5. Tel: (1)463 1332, email: lakol@mm.bme.hu

Summary

There are a lot of problems when balancing an unstable equilibrium of mechanical
systems stabilized by control force. Time delay, driving through elastic belt, backlash at
the driving-wheel of the engine destabilize mechanical systems. Effects of these factors
will be examined in this paper.

1 INTRODUCTION

Unstable equilibria of mechanical systems often have to be stabilized by control force
in mechanical engineering. A typical example of this is the balancing of walking and
standing robots. The simplest model of balancing is the inverted pendulum. Stabilization
of the inverted pendulum is a challenging basic example, so a long series of publications
has appeared in specialized literature in the last forty year (see [1,2,3.4,5]) either about
its theorotical or experimental aspects.

The system which executes controlling is considered by a cart. The inverted pendulum
and the motor displaying the control force is placed on this cart and the motor drives one
of the wheels of the cart through a driving-belt. Controlling is executed by a computer
which is situated outside this cart. There are two general factors which influences the
stability conditions: sampling delay and stiffness of the driving-belt. Increasing time delay
and elasticity of the driving-belt tends to destabilize the examined system.

Considering the backlash at the driving-wheel of the motor, the correct way of balanc-
ing the upper position of the pendulum is impossible. The pendulum swings with little
amplitude around its equilibrium. The stability domain in the plane of the control param-
eters did not change, but an unstable zone had appeared in phase-diagram. The trivial
solution is an unstable equilibrium, but there is a stable closed orbit which determines
the movement of the pendulum around its equilibrium.

In the subsequent chapters the stability charts in the plane of the control parameters
are constructed in case of simple inverted pendulum first, then in case of driving system.
The influence of the elasticity of the driving-belt is considered and the stable closed orbit
in phase-diagram is investigated.

2 THE INVERTED PENDULUM

The simplest possible model of balancing is the inverted pendulum shown in Figure 1 [6,8].

The system has 2 degrees of freedom described by the general coordinates, z and ¢. The

angle ¢ and the angular velocity ¢ is detected and the control force () is determined by

them in a way that the upper position of the pendulum should be asymptotically stable.
The nonlinear equations of motion assume the form
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Figure 1: The simple inverted pendulum model and its stability map

After the algebraic elimination of Z, the linearized equation of motion assumes the
form:
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The control force () is determined as follows:
Qt)=Po(t;—7)+Do(t;—7), teljr(j+1)7), (3)

where 7 is the sampling delay.

The stability analysis can be carried out by the Routh-Hurwitz criterion. If 7 = 0,
then the trivial solution of (2) is asymptotically stable if and only if P > mg and D > 0.

If 7 > 0, then the trivial solution of (2) is asymptotically stable if and only if P > mg
and Hy > 0, where Hs is the maximum-sized Hurwitz-determinant, we obtain after the
so-called Moebius-transformation. These stability conditions are represented in Figure 1.

There always exists parameters P, D such as the trivial solution of (2) is asymptotically
stable if 7 < 7.,, and it is unstable for any P, D if 7 > 7... This value can be determined
from applying equations in the stability conditions:
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Two complex conjugate roots turn up in the right half of the complex plane, and this
refers to a Hopf bifurcation resulting periodic motion around the desired equilibrium. The
oscillation frequency is the imaginary part of the characteristic root at the loss of stability.

3 INVERTED PENDULUM ON A CART

In the purpose of describing a realistic balancing system, the inverted pendulum is placed
on a cart as it can be seen in Figure 2 [8]. The motor drives one of the wheels of this cart
through a driving-belt with stiffness s. The system has 3 degrees of freedom described by
the general coordinates, x, ¢ and 1. The angle ¢ of the pendulum and the displacement
x of the cart are detected together with its derivatives.

Backlash appears in the system as a nonlinear spring characteristic. Assume the
alongation of the spring is A. The force in spring is the function of A:

s(A+r1y) A< —rg
R, = 0 Al <o (5)
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Figure 2: The inverted pendulum on a cart and its stability map

where r( is the value of backlash.

The control force is determined by the motor characteristic. The driving-moment is
linearly proportional to the voltage of the motor and inversely proportional to the angular
velocity:

Mm:LUm_Kl/')a
Up = Pop+ Dy + Py + Dy

(6)

3.1 Driving through rigid belt

If the belt is ideally rigid, then z determines v evidently. The system is reduced to a
system with 2 degrees of freedom. The linearized equations of motion assume the form:
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where the control force has the form

i
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The system can be stabilized if the displacement of the cart is not detected and the
differential gain of the cart eliminates the damping of the motor. Then the control force
is simplified to:

Tk

Q=

L(P,p+ D,¢ + Pux + D7) — K
TmRk
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The trivial solution of (7) is asymptotically stable if and only if

Q=

L(P,p+ Dy¢) . (9)
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The stability domain is shown in Figure 2.
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Figure 3: Phase diagram on A — A plane

3.2 Driving through elastic belt

If the driving-belt is elastic, then the equations of motion of the system with 3 degrees of
freedom assume the form:
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The trivial solution of this system is asymptotically stable if and only if
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The stability domain constructed according to the former is shown in Figure 2.

3.3 Backlash in the elastic belt

Considering the backlash in the system the equations of motion will change according to
the nonlinear spring characteristic that is caused by 7y # 0. New constant expressions
appear that means shifting of the solutions. The stability domain does not change but
it is valid only if |A| > rg. Otherwise, the system is just in backlash, so it cannot be
stabilized, because control force is not displayed in this little domain. The system is
reduced to a system with 2 degrees of freedom, if a new general coordinate is introduced.
This is the alongation of the spring:

A=rp)— —ux. (11)

Applying this new general coordinate the linear equations of motion assume the form:
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Transform this system of equations to four first order differential equations. Roots of
the characteristic equation are eigenvalues of the coefficient matrix of this system. There
are two real and two complex conjugate roots. If P, and D,, are choosen from the stability
domain, then the real parts of all eigenvalues are negative. Trajectories form stable focus
around the (go, o, A, A) = (0,0, %7, 0) equilibria.

If the system is just in backlash, then control force is not displayed, the stiffness of
driving-belt is 0. Roots of the characteristic equation are positive and negative reals in
this case. Trajectories form saddle around the (0,0, 0,0) equilibrium.

Three closed orbits can be found after the examination of the phase plane [7]. There
are a stable and two unstable limit cycles. Figure 3 shows a trajectory on the A-A
plane. This trajectory spirals from outside to the stable limit cycle. The physical meaning
of this result is the oscillation of the stick around the (0, 0,0, 0) equilibrium.

There are unstable limit cycles around the (0, 0, £7g, 0) equilibria. The physical mean-
ing of this result is that the control force does not push the stick further than the vertical
line and the stick oscillates with less and less amplitude on one side of the vertical po-
sition, if the initial conditions are inside the unstable limit cycle. This is a very little
domain, it is difficult to detect it.

4 CONCLUSIONS

It is known that increasing time delay tends to destabilize dynamical systems. However,
this is not the only problem in balancing systems. Increasing elasticity of the driving-belt
causes instability, and backlash at the driving-wheel causes oscillation of the stick around
the equilibrium. Backlash behaves as a spatial delay.
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