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a  b  s  t  r  a  c  t

Machine  tools  are  susceptible  to exogenous  influences,  which  mainly  derive  from  varying  environmental
conditions  such  as  the  day  and  night  or seasonal  transitions  during  which  large  temperature  swings  can
occur.  Thermal  gradients  cause  heat  to  flow through  the  machine  structure  and  results  in  non-linear
structural  deformation  whether  the  machine  is  in  operation  or  in  a static  mode.  These environmen-
tally  stimulated  deformations  combine  with  the  effects  of  any  internally  generated  heat  and  can  result
in significant  error  increase  if a machine  tool  is  operated  for  long  term  regimes.  In  most  engineering
industries,  environmental  testing  is often  avoided  due  to  the  associated  extensive  machine  downtime
required  to map  empirically  the  thermal  relationship  and  the  associated  cost  to  production.  This  paper
presents  a novel  offline  thermal  error  modelling  methodology  using  finite  element  analysis  (FEA) which
significantly  reduces  the  machine  downtime  required  to  establish  the  thermal  response.  It also  describes
the strategies  required  to calibrate  the  model  using  efficient  on-machine  measurement  strategies.  The
technique  is  to  create  an  FEA  model  of the  machine  followed  by  the  application  of  the  proposed  method-
ology  in  which  initial  thermal  states  of  the  real  machine  and  the  simulated  machine  model  are  matched.
An  added  benefit  is  that  the  method  determines  the  minimum  experimental  testing  time  required  on  a
machine;  production  management  is then  fully  informed  of  the  cost-to-production  of  establishing  this

important  accuracy  parameter.  The  most  significant  contribution  of  this  work  is  presented  in a  typical
case  study;  thermal  model  calibration  is  reduced  from  a fortnight  to a few  hours.  The  validation  work  has
been  carried  out  over  a  period  of over  a year  to  establish  robustness  to overall  seasonal  changes  and  the
distinctly  different  daily  changes  at varying  times  of  year.  Samples  of  this  data  are  presented  that  show
that  the  FEA-based  method  correlated  well  with  the  experimental  results  resulting  in  the  residual  errors
of less  than  12  �m.
. Introduction

The shop floor environment where a CNC machine is located
an be of paramount importance for accuracy of manufacturing.
emperature controlled environments require high capital invest-
ents and running costs, which are undesirable and sometimes

mpractical. In environments where the temperature is not con-
rolled, the changing day and night cyclic transitions and myriad
ther sources [1,2] can cause ambient temperatures to vary sig-
ificantly both in magnitude and rate-of-change. These temporal
uctuations can cause spatial thermal gradients in a machine tool;
he heat flow through the structure over time causes non-linear

hermal deformations. Several research projects have been con-
ucted to identify, predict and compensate the overall effect of the
hermal distribution in a machine tool but with main emphasis on
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solving the effect of internally generated heat, particularly from the
main spindle and during the machining processes. For example,
Hao [3] used a genetic algorithm-based back propagation neural
network (GA-BPN) method using 16 thermistors placed at the spin-
dle, headstock, axis leadscrew and on the bed of a turning machine
to compensate dynamic and highly nonlinear thermal error. Only
one ambient temperature sensor was used which may  not be suf-
ficient to capture detailed environmental behaviour around the
machine vicinity. The author reported the thermal error compen-
sation improvement of 63%. Further reduction could be possible if
detailed external environmental temperature swings were consid-
ered. Similarly, research from Yang et al. [4] tested an INDEX-G200
turning centre and used MRA  technique to predict its thermal accu-
racy. The analysis result showed that the thermal error range for
radius direction on that machine was  approximately 18 �m,  higher

than expected. 14 thermal sensors were installed in groups and
only one ambient sensor was  used. While modelling, six temper-
ature groups with variables were constructed and the model was
assumed to be a linear function for the environmental temperature

dx.doi.org/10.1016/j.precisioneng.2012.10.006
http://www.sciencedirect.com/science/journal/01416359
http://www.elsevier.com/locate/precision
mailto:nshaukat80@hotmail.com
dx.doi.org/10.1016/j.precisioneng.2012.10.006
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ise. The predicted thermal error between the spindle and the cutter
evealed a residual error of 5 �m from a maximum error of approx-
mately 18 �m for a test length of 4 h. Modelling time was  not

entioned. Tseng and Chen [5] proposed a thermal error prediction
odel derived from the neural-fuzzy theory. IC-type temperature

ensors and a Renishaw MP4  probe system were used to measure
he temperature changes and thermal deformations respectively.
ensors were attached to the spindle motor, spindle sleeve side
ith one sensor measuring environmental variations. The predic-

ion model improved the machining accuracy from 80 �m to 3 �m.
he prediction model was further compared with MRA  revealing
ccuracy improvements of ±10 �m to ±3 �m.  However, the model
raining times and machine downtime are accountable issues with
his research. One of the regression techniques known as ortho-
onal regression technique was employed by Du et al. [6].  This
echnique was applied to more than 100 turning centres of the same
ype and specifications. It was found that the technique was  able to
educe the cutting diameter thermal error from 35 �m to 12 �m.
he technique was stated as robust due to its year round repeat-
ble improvement in accuracy. The accuracy is expected to increase
f long term shop floor environmental temperatures fluctuations

ere considered.
Many researchers drew attention towards the environmen-

al thermal drifts in machine tools which arise from a variety of
ources while they emphasised the machine downtime required
or detailed environmental testing as well as analysing the mod-
lling methods and modelling time. Rakuff and Beaudet [7] drew
ttention to the importance and effect of the environmental tem-
erature variation error (ETVE) while conducting a cutting test of
4 h on a diamond turning machine. The research suggested the
rovision of temperature controlled enclosures for the machine to
void external thermal drifts to improve the accuracy of the process
ontrol. Fletcher et al. [8] provided useful information about cyclic
nvironmental fluctuations and drifts with 50% reduction in error
ver a 65 h test, but drew attention to the detrimental amount of
achine downtime for the thermal characterisation tests. Longstaff

t al. [2] showed several tests conducted for the thermal error mea-
urements produced by the environmental fluctuations combined
ith long term machining. The authors also highlighted some unex-
ected, rapid fluctuations of the environment with its effect on the
ccuracy of the machine. They also highlighted the machine down-
ime issues related with the measurements. Jedrzejewski et al. [9]
iscusses the complexities involved with improving the design of

 machine tool when considerations of reducing thermal error are
n focus. A highly accurate thermal model of the machine is pre-
ented and consideration of various parameters contributing to
he thermal behaviour. For example, the design criteria considered
he effects of environmental variations for 2.5 days, thermal effects
rose due to the presence of guarding and bearing sets of high speed
pindles. Quartz straight edges were modelled for environmental
ffect after mounting on the machine centre support beam. It was
ound that the straight edge fixed on the left side produced the
owest error of the other three locations tested. The information
elated to the FEA such as the modelling time was not clear and the
perating conditions were not clearly stated. A concern shown by
ringmann and Knapp [10] about the effect of thermal drift while
howing how increasing the number of measurement points (from

 to 60) can lead to reduced uncertainties and higher accuracy for
dentified location errors of the rotary C-axis. The author reported
hat the further increase in the measurement points only leads to
imited improvements as it can lead to extra time for measurement

hich increases the uncertainty of the thermal effect arising from

nvironmental or ambient temperature changes until the measure-
ent is complete.
It is apparent from the discussion that a great emphasis has been

iven to control the thermal effects mainly arising due to internal
eering 37 (2013) 372– 379 373

heating. As a result, most existing commercial error compensation
systems deal with axis growth and spindle heating while neglecting
ambient effects on the remainder of the structure. It is also appar-
ent that a significant amount of machine downtime is associated
with environmental testing particularly when the dominant cycles
are daily or even weekly; Longstaff et al. [2] reported a significant
issue for machines that experience a weekend shutdown. In most
cases environmental testing to establish a relationship between
temperature and response is avoided due to the cost to production
associated with machine downtime. However, this omission can be
critical when striving for the best possible accuracy of the machine
tool. The problem is exacerbated since the scope of conditions dur-
ing which test data can be acquired is very limited compared to
true variation over facility operations and natural seasons.

This paper presents a novel offline environmental thermal error
modelling method based on FEA that significantly reduces the
machine downtime required for effective thermal characterisation.
The proposed modelling method was  tested and successfully vali-
dated on a production machine tool over a year period and found
to be very robust (in this paper, samples of data measured during
two  seasons are presented). The validation confirmed the potential
of this method to reduce the machine downtime normally required
for the environmental testing from a fortnight to a few hours. The
paper also highlights the effects of seasonal environmental tem-
perature changes in a machine tool and the presence of vertical
temperature gradients within a shop floor environment. The paper
also describes on-machine measurement methods to acquire the
required data efficiently using strategically placed temperature
sensors during any convenient maintenance schedule period.

2. Proposed method

In general, environmental temperature changes are not as rapid
as those from internally generated sources such as spindles. Addi-
tionally, there can be several different structural responses which
require different metrology equipment to measure that cannot
be used concurrently. Therefore, environmental testing normally
takes from two  days to several weeks to acquire sufficient data
to establish the various relationships between varying tempera-
ture profiles and the response of the machine. To overcome the
machine downtime issue, a novel modelling methodology based
on a two-stage FEA is proposed in this paper where a Computer
Aided Drawing (CAD) model of the machine is created in the FEA
software (in this study Abaqus 6.7-1/Standard was  used) [11]. This
is followed by a determination of the initial thermal state for the
FEA model, a key method developed in this research, which will
establish a close match of the real initial thermal condition of the
machine before conducting environmental simulations.

2.1. FEA modelling

A machine tool is, in practice, rarely at thermal equilibrium.
Consequently, establishing the initial conditions for the FEA sim-
ulation of environmental change presents a significant problem
as it adversely affects the comparison of the FEA and experimen-
tal results. To represent the realistic initial thermal state of the
machine structure is a challenging task if the real temperature
gradients are to be measured and applied to the model. Experi-
mentally, the application of the individual temperature sensors at
locations within the machine structural loop is laborious and prone
to uncertainty in locating sensitive areas. In contrast to thermal

error from running the machine where the heat sources are easy
to identify for application of the sensors, environmental changes
affect the whole structure. However, even if this is achieved, mod-
elling the initial thermal state of the machine in the FEA software
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with 1 ◦C temperature change to estimate the temperature rise
time.
ig. 1. Generated CAD model of the machine assembly with Z axis head moved up co

emains challenging. Sectioning the modelled parts in the software
nd applying individual temperatures to them may  represent the
nitial thermal state but it is a strenuous task and may  cause incor-
ect temperature gradients due to section joints. This problem is
olved by the proposed novel method which determines the initial
hermal state for the machine model and also provides an esti-

ate of the minimum time required for an environmental test on
 machine (Section 2.3).

.1.1. Machine model
A model of the machine is required. For the case study machine,

 model described by the authors [1] with respect to internally
enerated heat was used to estimate the long-term environmental
esponse. The machine was a precision 3-axis Vertical Machining
entre (VMC) with accuracy up to 3 �m;  tested by manufactur-

ng a NAS-979 component [12]. Simplified models of the machine
ere used to carry out offline simulations of the environmental

ehaviour of the machine, details of which are shown in Fig. 1.
The model was meshed using tetrahedral, hexahedron and

exahedron dominated (hexahedron/wedge) elements where
pplicable using Abaqus default meshing technique which revealed
he total of 49,919 elements and 20,418 nodes. Fig. 2 shows the

eshed assembly of the machine. All simulations are performed
s transient thermal simulations where changing data from the
emperatures sensors is applied in the software using the tabular
mplitude technique.

.2. Estimation of initial thermal state of the machine

Generally, prior to the start of any test, the machine elements
xhibit variations in temperature due to the existence of temporal
nd spatial thermal gradients. In particular, vertical temperature
radients have been found to be significant [2,13].  As a result, it
s unfeasible to accurately set initial temperatures of the compo-
ents in the FEA software to match reality. A new technique of a
wo-stage simulation in Abaqus has been devised and applied to
olve this problem. The first stage simulation in effect will esti-
ate the time span required by a machine FEA model to ‘absorb’

he globally applied temperature for a temperature change rep-
esenting the maximum variation likely to occur on the machine
tructure. This time span is termed as the ‘settling time’ and repre-
ents the temperature rise time for the steady state machine model
hen ‘absorbing’ the applied temperatures. The settling time is also
epresentative of the minimum time required for on-machine test-
ng which is explained in Section 2.3.  This is followed by the second
tage of normal environmental simulation that can be used for error
odelling and compared with experiment for validation.
ed to [1] in essence to present a newer model corresponding to new test conditions.

To set up the simulation, a standard shop floor temperature
of 20 ◦C was  applied as a uniform parameter to the full model
of the machine as a ‘Predefined Field’ in the Abaqus software.
Since this paper focuses on an attempt to prove the methodol-
ogy and maintain relative simplicity in the FEA process, the entire
model was  applied with the convective heat transfer coefficient of
6 W m−2 ◦C−1 [1] which is an averaged value of the various heat
transfer coefficients calculated experimentally [1].  It is acknowl-
edged that more detailed application of surface specific coefficients
could improve simulation accuracy (see Section 4.2). To estimate
the time, the model was  simulated until it achieved a tempera-
ture change indicative of the variation between the global assumed
20 ◦C and the applied temperature. A simulation was  carried out
Fig. 2. Meshed model of the machine.
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Fig. 3. Settling time of 12.5 h was revealed for this machine’s FEA model.

At the end of the simulation the temperature throughout the
achine model was uniform; this ensured the selection of a random

ode to plot the settling time. The simulated result revealed that
he machine model achieved 99.99% of the 1 ◦C temperature change
rom its initial temperature of 20 ◦C in 12.5 h as shown in Fig. 3.
his settling time suggests that because the machine initial ther-
al  state is unknown at the start of the simulation, this machine

EA model requires this settling time to absorb the applied recorded
nvironmental temperature data at the end of which the temper-
ture distribution should be synchronised with the real machine
hermal state.

.3. Model calibration

The model calibration sequences with the determination of the
ettling time at the first place. The settling time suggests the min-
mum environmental testing time required for this machine tool

hich is an important parameter for both; the production man-
gement to estimate the cost-to-production and for the accuracy
f FEA results especially when achieving the initial thermal state
f the machine FEA model before conducting environmental sim-
lations. Therefore the environmental test to be conducted on the
achine must ensure that the settling time is covered. The test then
ust be continued over a long period such as two or three days to

stablish the relationship between the machine thermal behaviour
nd environmental fluctuations occurring within the shop floor

uring the second stage simulation. The ambient sensors used to
ecord data must be left situated in order to record continuously
hile the machine is in or off production. Since the determination

f the settling time is an offline process therefore practically no

Fig. 4. Temperature and displacem
eering 37 (2013) 372– 379 375

machine downtime is required during the model calibration and
for the application of this modelling methodology. The tempera-
ture sensors can be situated on the machine during any convenient
maintenance schedule.

3. Validation of the method

The case study machine, described in 2.1.1, was modelled and
calibrated as described. Standard environmental temperature vari-
ation error (ETVE) [14] tests were conducted on the 3-axis VMC  over
a period of a full year not only to validate but to confirm the robust-
ness of the proposed methodology; however samples of data from
two  seasons (summer and winter) are presented. Three-day (con-
secutive) testing period was  selected to ensure the setting time
(12.5 h) data recording as well as to highlight thermal behaviour
during normal 24 h periods on a nominally static machine tool. This
means that the machine drives were inactive to avoid feedback cor-
rection from the position encoders; in essence to obtain the true
deformation of machine structure. The model of the machine was
not modified in any way during this validation phase.

3.1. Temperature and displacement sensor locations

The machine was  already equipped with 65 temperature sur-
face sensors in unique strips [15] for measuring detailed thermal
gradients caused by the internal heat sources. Additionally seven
surface sensors were placed on the column to track the environ-
mental temperature gradients distribution in this tall structure and
one surface sensor on the base. Three ambient sensors were placed
inside the machine, at the machine column and adjacent to the
base to measure environmental temperature variations. Five non-
contact displacement transducers (NCDTs) were placed around a
test mandrel to monitor the displacements and tilt of the test man-
drel in the X, Y and Z axis directions. A 400 mm post made of
invar was  used to support the NCDTs. Invar is a steel alloy with a
very low coefficient of thermal expansion (1.2 �m m−1 K−1) which
reduces the effects of changing environmental temperature. Sen-

sor placements are shown in Fig. 4. With reference to the Base
sensor, the inside ambient sensor was  displaced by approximately
1 m vertically and 0.5 m horizontally while the column sensor was
approximately 1.2 m vertically and 2 m horizontally apart.

ent measurement locations.
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Fig. 5. Temperature profiles obtained over 3 days period (summer test).

.2. Summer test

The temperature information obtained from the surface sensor
n the Spindle Boss and the ambient sensors for a 3 day period
re shown in the Fig. 5. At the start of the test, the existence of

 vertical temperature gradient around the machine of 1 ◦C was
easured between the base ambient sensor and the column ambi-

nt sensor which creates the aforementioned complex initial state.
t may  also be of interest that the vertical temperature difference
etween the column ambient sensor and the base ambient sensor
uctuated to approximately 2.5 ◦C range over the test span which

s further evidence of temperature instability within the shop floor
nvironmental temperature arising from various sources such as
he day and night transitions. Temperature fluctuations also occur
hen opening and closing workshop doors.

Fig. 6 shows the measured inside air temperature and the dis-
lacement of the mandrel in the Y-axis and Z-axis. The Y-axis
isplacement followed the temperature variation quite closely
hereas the Z-axis displacement lagged the temperature by up to

.6 h at some places. The analysis on the Y axis results (using the
op and bottom NCDTs) revealed a 30 �m/m  tilt present which is
ikely to have been caused by non-uniform distortions in the com-
lex geometry of the structure resulting in the rapid response to
he temperature variation; compared with the slow response of
he Z-axis which is possibly contributed from pure expansion. The
verall displacement range was approximately 12 �m for the Y-
xis and approx. 28 �m for the Z-axis with the overall temperature
wing of approximately 4 ◦C over 3 days. The X-axis results were
egligible, due to the symmetry of the machine in this direction,
nd therefore not presented.

This test validates the hypothesis that environmental fluctua-
ion causes thermal distortions in machine structure and proves

he deterioration in the accuracy of a machine tool. It was  also iden-
ified that vertical temperature gradients in a shop floor vary with
eight which can be critical to large and/or tall machines.

ig. 6. Y and Z axes displacements and the environmental temperature measured
nside the machine (summer test).
Fig. 7. Temperature gradients across the structure after the first stage (12.5 h) that
represent the actual initial thermal state (summer test) – (NT11 – nodal tempera-
tures – ◦C).

3.3. Validating settling time methodology

The settling time for this machine model was  determined to be
12.5 h therefore data covering this time span was selected from the
measured ambient data and used in the first stage simulation. As
mentioned previously, the temperature data was applied as a tran-
sient function in the software using tabular amplitude technique
for both simulation stages. Temperature data from the base sensor
was  applied to the base, information from the inside environmen-
tal sensor was applied to the carrier/spindle/tool and the table
and temperature information obtained from the column ambient
sensor was applied to the column. The result from the first stage
simulation must provide not only the correct temperature profile
but also the correct thermal memory to match the starting con-
dition of the real machine. It must be noted that the simulations
were carried out using only the ambient data which can be captured
without machine downtime, the surface sensors are only used to
compare and correlate the simulated results. Fig. 7 shows the sim-
ulated temperature gradients across the structure after the settling
time which should represent the real surface temperature gradi-
ents after the 12.5 h span was  lapsed. The predicted initial thermal
state was revealed to be within ±0.2 ◦C range measured at points
where surface sensors were placed and shown in Table 1

After the settling time simulation, a normal environmental sim-
ulation is then run in the second stage using the remainder of
the recorded environmental temperature data. The measured and

simulated profile results were plotted for the main second stage
simulation. The simulated error is obtained as the difference in dis-
placement between the table and the tool (test mandrel). Compared

Table 1
Comparison of measured and simulated surface temperatures after 12.5 h (summer
test).

Structure Measured
temperature
(◦C)

Simulated
temperature
(◦C)

Spindle boss surface 24.1 24
Column surface 24 23.9
Carrier head surface 24.2 24.0
Base  surface 23.9 24
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Fig. 8. Correlation between the measured and simulated Y axis displacement with
settling time removed.
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5 ◦C over the 3 days. This increase was  expected because of the
exaggerated day and nights heating transitions.
ig. 9. Correlation between the measured and simulated Z axis displacement with
ettling time removed.

o the measured results, the correlations were 60% for the Y dis-
lacement profiles (Fig. 8) and 63% for the Z displacement profiles
Fig. 9). The residual errors were less than 5 �m for the Y axis and
ess than 11 �m for the Z axis. Including the settling time, separate
imulations for temperature and displacement took approximately
0 and 40 min  respectively (70 min  in total). The computer used had
ypical PC specifications: AMD  Phenom 9950 Quadcore 2.60 GHz
rocessor, 4 GB RAM, NVIDIA GeForce 9400 GT graphics card and
indows XP 32bit operating system

. Winter test

To further validate the robustness of this modelling methodol-
gy, another three-day test was carried out to observe the machine
ehaviour in the winter season. The workshop experienced typ-

cal single shift workshop heating patterns often encountered to
aintain comfortable environmental temperature for the machine

perators. The machine and measurement test conditions were the
ame as for the summer environment test.
The temperature information obtained from the ambient sen-
ors and the spindle boss surface sensor are shown in Fig. 10.
his time the vertical temperature difference between the col-
mn  ambient sensor and the base ambient sensor fluctuated to

Fig. 10. Temperature data obtained over 3 days period (winter test).
Fig. 11. Y and Z axes displacements and the environmental temperature measured
inside the machine.

approximately 3 ◦C range over the test span which elaborates that
even vertical temperature difference changes within similar verti-
cal distances in different seasons. The spikes are suspected to be
from the short periods for opening of workshop doors for deliv-
eries which caused the shop floor environmental temperature to
decrease.

Fig. 11 shows the measured inside air temperature and defor-
mation of the machine in the Y axis and Z axis directions. The
movement of both axes followed the temperature variation while
the Z axis displacement followed but with approximately 5 h lag
this time. The overall movement is 18 �m in the Y axis and 35 �m
in the Z axis for an overall temperature swing of approximately
Fig. 12. Temperature gradients across the structure after the first stage (12.5 h) that
represent the actual initial thermal state (winter test).

Table 2
Comparison of measured and simulated surface temperatures after 12.5 h (winter
test).

Structure Measured
temperature (◦C)

Simulated
temperature (◦C)

Spindle boss surface 21.7 21.7
Column surface 21 20.9
Carrier head surface 21.6 21.6
Base  surface 21.9 21.9
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Table 3
Summary of the results.

Y drift (�m)  Y model error (�m) Y improvement (%) Z drift (�m) Z model error (�m) Z improvement (%)

Summer 12 4.6 60 

Winter 18 6.3 63 
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ig. 13. Correlation between the measured and simulated Y axis displacement with
ettling time removed.

.1. FEA simulations (offline assessments – winter test)

A similar procedure was followed for simulating the model. For
he first stage, 12.5 h of the recorded data was used for the settling
ime as before, followed by the environmental simulation in the
econd stage. Fig. 12 shows the simulated temperature gradients
cross the structure after the settling time which represents the
eal surface temperature gradients after the 12.5 h span was  lapsed.
he predicted initial thermal state was revealed to be within ±0.2 ◦C
ange measured at points where surface sensors were placed and
hown in Table 2.

.1.1. Winter test correlations
The simulated results correlate well with the measured profile

eing 63% for the Y movement profiles (Fig. 13)  and 67% for the
 movement profiles (Fig. 14). The residual errors were less than

 �m in Y and less than 12 �m in Z.
The winter test not only validated the capability of the modelling

ethodology but also confirmed its robustness. Development of
he CAD model, obtaining the settling time and FEA environmen-
al simulations are conducted offline. The temperature sensors can
e installed in any convenient maintenance schedule and envi-
onmental temperature data can be recorded while the machine
n production therefore is non-invasive to production and cost
ffective as generally no machine downtime is involved. It is also

ighlighted that 12.5 h of settling time can be representative of a
inimum time required for temperature data acquisition which

an be recorded while the machine is in production.

ig. 14. Correlation between the measured and simulated Z axis displacement with
ettling time removed.
28 10 63
35 11.7 67

4.2. Summary of results

An FEA-derived thermal model of the machine was  created in
the summer using a 12.5 h settling time methodology. This method-
ology has been validated over a year period, with results from two
Three-day tests (summer and winter) presented here. Table 3 sum-
marises the results.

It can be observed that compared to good temperature corre-
lations (>90%), the predicted positioning of the machine matched
within 60–67% range with the measured movement. This is sus-
pected to be due to the averaged heat transfer coefficient values
used in this case study for the FEA model. It is anticipated that
the positioning results can correlate better when the FEA model
is applied with surface specific heat transfer coefficients that vary
around enclosed voids creating air pockets that will vary in tem-
perature independent to the bulk ambient temperature [1].

5. Conclusions

Environmental thermal testing is often avoided in industries due
to the costs and inconvenience associated with machine downtime.
This paper presented a novel offline environmental thermal error
modelling method based on FEA that successfully deals with the
machine downtime issue using a two-stage simulation method,
short on-line testing period and non-disruptive offline tempera-
ture monitoring. The sequence of the method is to create a CAD
model of the machine, determine the settling time of that machine
model and create initial conditions in the first stage followed by
the environmental simulation in the second stage. The settling time
ensures the minimum time is spent on data acquisition. Tempera-
ture sensors can be installed on the machine during any convenient
scheduled machine maintenance and the simulations can be done
within an hour or two, so it is highly efficient. The methodology
was  successfully validated on a 3 axis vertical milling machine tool
over a year period; samples of data from two ETVE tests during
two  seasons (summer and winter) are presented where the critical
nature of the fluctuating shop floor environment and its effect on
machine tool precision were also highlighted. The results revealed
good correlations between the experimental and FEA simulated
results typically between 60% and 70%. The modelling methodology
has significantly reduced the machine downtime required for a typ-
ical environmental testing from a fortnight to only hours. Practically
no machine downtime is associated with the application of this
modelling methodology except for short validations (if required).
Additional useful information can be obtained for predicting the
effects of speculative conditions.
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