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Abstract— This paper introduces a novel model-reference 

discrete-time control scheme applied to milling processes. The 

novelty of the scheme relies on the use of a fractional order 

hold (FROH) instead of a traditional ZOH used in the 

manufacturing literature to obtain a discrete-time model of 

the continuous system. The additional degree of freedom 

introduced by the FROH through its correcting gain allows 

the designer to improve the transient response of the closed-

loop system by an adequate choice of its value. Simulation 

examples showing the influence of the correcting gain in the 

closed-loop response are presented and compared. The control 

scheme is applied in this paper to known piecewise-constant 

plants being subsequently extended to unknown ones through 

adaptive control.  

I. INTRODUCTION 

Milling is a cutting process widely used in the 

manufacturing of mechanical components. It is carried out 

by feeding a work-piece clamped on a table against a 

rotating multi-tooth cutter. In order to avoid machine 

malfunctions such as tool wear or breakage and to achieve a 

certain degree of quality in the finishing of the working-

piece, the peak cutting force on the working piece has to be 

maintained below a prescribed safety upper-bound. This 

fact implies that a control strategy has to be implemented 

on the system in order to fulfill such safety and 

performance requirements. Moreover, cutting parameters 

may be unknown or time-varying as a consequence of a 

complex milling geometry. Thus, the control law should be 

able to attain the desired objectives even in the presence of 

uncertainties or variations in the system parameters. In this 

way, the nature of the system suggests to use an adaptive 

controller to address the milling force control problem.  

In this two-papers set work, we present the design of an 

adaptive control law for milling processes which improves 

the behavior, specially the quality of the finishing of the 

working piece through a more precise tool-work-piece 

interaction force control, in comparison with previous 

approaches. The work is organized as follows. In the first 

part, a novel discrete-time model-reference control strategy 

is proposed to design a force control law in the case when 

system parameters are known at all time. The proposed 

control law is then extended to the case of unknown 

parameters in the following paper (part II) by considering a 

parameter estimation algorithm running online 

simultaneously with the controller which leads to the 

design of a fully adaptive control law. Thus, in this paper, 

the continuous milling system described in [1] is treated as 

a perfectly known system but with time-varying 

parameters, which implies that the evolution of these 

parameters should be ‘a priori’ known by the designer.     

The key point to achieve such an improved behavior of 

the system is the use of fractional order holds (FROH) to 

obtain a discrete-time model of the system. The advantage 

of using a FROH instead of a traditional ZOH is that 

FROHs incorporate an additional degree of freedom, the 

gain of the FROH, which can be used to modify the overall 

closed-loop response of the system, improving, for 

instance, the stability of the discrete zeros or reducing the 

overshoot or bad transient responses which could lead, for 

example, to break the cutter shank, tool breakage or tool 

wear, [2, 3]. Hence, the model reference control is the 

designed from the so obtained FROH based discrete model.  

Thus, in this first paper the influence of the FROH gain 

in the system’s behavior is studied showing that an 

adequate tuning of it can lead to an improved closed-loop 

performance. The study is carried out by means of a cost 

function which compares the system transient responses 

when different gains of the FROH are used. These results 

are to be extended to the unknown parameters case in the 

second part of this paper.  

II. SYSTEM DESCRIPTION 

A. Continuous model 

The milling system can be modeled as the series 

decomposition of a Computerized Numerical Control 

(CNC), which includes all the circuitry involving in the 

table movement (amplifiers, motor drives), and the tool-

work-piece interaction model itself. A feed rate command 

cf  (which plays the role of the control signal) is sent to the 

CNC unit. This feed rate represents the desired velocity for 

the table movement. Then, the CNC unit manages to make 

the table move at an actual feed velocity of af  according 

to the CNC dynamics. Even though the machine tool drive 

servos are typically modeled as high order transfer 

functions, they can usually be approximated as a second 

order transfer function within the range of working 

frequencies [4]. Besides, they are tuned to be over-damped 

without overshoot, so that they can be modeled as the first 

order system [1]:  

   
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ssscf

safssG


  

(1) 

where af and cf  are the actual and command  velocity 

values of the table in  smm respectively and s  is an 

average time constant, which depends on the type of the 

machine tool. In this study, it is assumed to be 0.1 ms. 
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In addition, the chatter vibration and resonant free 

cutting process can be approximated as the first order 

system [1, 4]: 
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where cK  2mmN  is the cutting pressure constant, b  mm  

is the axial depth of cut,  Na exst ,, is the adimensional 

immersion function, ranging between 0 and N~  depending 

on the immersion angle and the number of teeth in cut, N is 

the number of teeth on the milling cutter and  srevn / is 

the spindle speed. The axial deep of cut function b in (2) 

may be time-varying leading to a potential time-varying 

system. In particular, the cutting process is assumed to be 

in this work piecewise constant, admitting sudden changes 

in the cutting parameters at certain time instants while 

remaining invariant between changes. This assumption 

allows us to consider the cutting process to be described by 

the transfer function (2) with the time interval between 

changes.  

The combined transfer function of the system, obtained 

from (1) and (2) is  
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(3) 

where the process gain is pK  mmsN  NnabKc .  

Figure 1 shows the sample work-piece depicting basic 

cutting geometry features with changes in the axial depth of 

cut used in the simulations. The spindle speed remains 

constant, rpm715 ; the work-piece is made of Aluminum 

6067 whose specific cutting pressure is assumed to be 

21200
mm

NKc  .  A 4-fluted carbide mill tool, full-

immersed and rouging milling operation will be taken into 

consideration in the present paper.  

Also, note that the desired final geometry of the piece to 

be milled involves changes in the axial deep of cut which 

implies suddenly changes in its value, according to the 

sudden changes assumption presented before. On the other 

hand, it has been taken into account that the control law, 

computes new feed-rate command value at each sampling 

interval. Furthermore, it is worth to be mentioned that the 

CNC unit has its own digital position law executed at small 

time intervals in comparison with the sampled time of the 

control law, even though if high speed milling tool drives 

are used [1]. 

B. Discrete model under FROH  

In this paper, the problem of controlling a continuous 

plant is addressed by using a discrete controller. The 

discrete controller is obtained applying a model-reference 

pole-placement based control design to a discrete model of 

the plant (3) obtained by means of a FROH with a certain 

correcting gain  . The additional “degree of freedom”   

provided by the FROH can  be used with a broad variety of 

objectives such as to improve the transient response 

behavior, to avoid the existence of oscillations in the 

continuous time output of the system or to improve the 

stability properties of the zeros of the discretized system [5, 

6]. In this way, this work is especially focused on the use of 

these devices to improve the transient response of the 

closed-loop system by selecting an adequate value of the 

fractional order hold. Thus, in the following sections a 

comparative study of the behavior of the closed-loop 

system under different values of the correcting gain is 

developed. The influence of the value of   will be 

extended to the adaptive case in the subsequent paper. 

Hence, the discretization of (3) under a FROH is calculated 

as [7]: 

      scGshZzH      (4) 
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function of a FROH , where z  is the argument of the 

transformZ  , being formally equivalent to the one step 

ahead operators, q , used in the time domain representation 

of difference equations. This allows us to keep a simple 

unambiguous notation for the whole paper content. The 

sampling time T has been chosen to be the spindle speed, 

n, as it is usual for this kind of systems [1,4, 8-10].  Note 

that when 1 , the FROH  hold becomes a first order hold 

 FOH  and when 0 , the zero order hold  ZOH  is 

obtained, being both particular cases of  1,1 . 

Furthermore,  zH   may be calculated using just ZOH  

devices in the following way: 
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 (5), where  
s

sTe
soh




1
is the 

transfer function of a ZOH  and 1 if 0 and 0 if 

0 , which means that a fractional order hold with 0  

adds a pole at the origin.  
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Figure 1: Work-piece profile to test control algorithms. 



 

 

 

C. Desired response:  reference model 

A second order system  
222

2

nsns

nsmG





 is selected 

to represent the system model reference. This system is 

characterized by a desired damping ratio,   and a natural 

frequency, n . It is known that small   leads to a large 

overshoot and a large setting time. A general accepted 

range value for   to attain satisfactory performance is 

between 5.0  and 1 , which corresponds to the so-called 

under-damped systems. In this way, a damping ratio of 

75.0 and a rise time, rT , equal to four spindle periods is 

usually selected for practical applications [1,4,11]. 

Furthermore, the natural frequency is then usually 

suggested to be srad
rTn

5.2 . This continuous-time 

reference model is then discretized with the same FROH as 

the real system was in order to obtain the corresponding 

discrete-time reference model for the controller. Thus, a 

number of different discrete models obtained from a unique 

continuous reference model are considered depending on 

the value of   used to obtain the discretization.  

III. MODEL-FOLLOWING CONTROL SCHEME. 

The aim of the model-following control strategy is to 

force the closed-loop system to behave as a prescribed 

reference model. Thus, the following control scheme is 

applied: 

where    
 zR

zT
zffH  is the feed-forward compensator, 

   
 zR

zS
zfcH   is the feedback compensator,  H z is the 

discrete plant,  ,mH z is the discrete-time reference 

model and rkF  is the reference force. A complete 

description of the design procedure for the model-following 

pole-placement based control scheme showed in Figure 2 

can be found, for instance, in [12] being omitted here for 

space reasons.  

In this section, the above introduced control scheme is 

applied to different choices of the FROH . Despite 

exhaustive simulations have been performed for a wide 

range of values of  , only some selected cases are 

presented in this section in figures 3 and 4. For each value 

of  , four figures are plotted. The first one depicts the 

model reference and the plant output signals versus sample 

time; the second one shows the evolution of the tracking 

error signal,  pmp FFe  ; the third figure represents the 

controller response and, finally, the four graphic shows the 

continuous-time domain system response obtained using 

the corresponding FROH. For all the considered cases, the 

figures show that the steady-state force tracks the reference 

force which is set to 1.2 KN , except for the peaks 

appreciated when the axial depth of cut, and then the 

transfer function, is suddenly altered. It is also appreciated 

that the discrete-time transient response follows exactly the 

discrete model reference at each sampling time as a 

consequence of the perfect knowledge of the plant 

parameters.  

The programmed feed rate is feasible and smooth, even 

though the axial depth of cut varies. Also, note that the 

finally applied control law is FROH sensitive leading to a 

different control signals for different discrete models of the 

plant. In the present case, the average value of the feed 

velocity along the tool path is less if the fractional order 

hold rather a ZOH is used. This fact is considered an 

advantage from the point of view of feed motor 

maintenance and energy consumption.  
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Fig.2: Model following control scheme. 

 
Fig.3: Responses corresponding to

3
1 . 



 

 

 

Also, when a parameter of the system changes abruptly 

(in this case the axial depth of cut) the model-reference 

control leads to large output overshoots, due to the intrinsic 

structure of the output. Thus, if the reference force is 

selected near the tool breakage limit, the large overshoot 

would lead to tool breakage [2, 3]. In that case, some ‘a 

priori’ information about the work-piece geometry is 

required to design a successful control, as in [9], where a 

CAD model of the work-piece is used to modify the control 

command when the axial depth of cut changes in order to 

minimize the overshoots due to abrupt changes in the 

transfer function 

IV. TRANSIENT RESPONSES CHARACTERIZATION 

The use of FROH devices allows the designer to use 

the   value in order to achieve an improved closed-loop 

transient response. In order to compare time domain 

transient behaviors when different  -values are used to 

design the control, the following cost functional is defined: 
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where 
,p

F is the continuous time domain response, y is 

the continuous model reference response, T is the sampling 

time, oT is the time of the computer, pT  is the tested time 

and pN  is the number of samples of the oT  period over pT .  

Thus, the cost function calculates an approximation of 

the area between time domain response and continuous 

model reference system response. The smaller this area is, 

the smaller cost function is and the corresponding control 

associate to the corresponding FROH will give an 

improved output response.  

Figure 5 shows the cost functional (6) value as   is 

varied. It can be appreciated the great influence the value 

of   possesses in the closed-loop transient response. In 

this particular case, exhaustive simulation results point out 

that the FOH is the best hold. However, in the case of 

unknown plants, which is considered in the next paper, it 

will be shown that the most appropriate value corresponds 

to negative values of   which highlights the usefulness of 

the proposed approach in a more general a  setting-up. 

The cases when 6.0  have not been taken into 

consideration since they lead to non-minimum phase 

discrete models of the plant. 

V. CONCLUSION 

In this paper, a discrete-time model following control 

strategy for a known continuous-time milling systems has 

been developed. The novelty of the control schemes relies 

on the use of a FROH in the discretization process instead 

of the usual ZOH appearing in the manufacturing literature. 

The introduction of an additional “degree of freedom” 

provided by the FROH correcting gain allows the designer 

to improve the transient behavior of the continuous-time 

closed-loop system by an adequate selection of its value as 

simulation results have pointed out.  
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