H

University of
HUDDERSFIELD

University of Huddersfield Repository

Anyakwo, Arthur, Pislaru, Crinela, Ball, Andrew and Gu, Fengshou
Dynamic simulation of a roller rig

Original Citation

Anyakwo, Arthur, Pislaru, Crinela, Ball, Andrew and Gu, Fengshou (2012) Dynamic simulation of a
roller rig. In: Proceedings of The Queen’s Diamond Jubilee Computing and Engineering Annual
Researchers’ Conference 2012: CEARC’12. University of Huddersfield, Huddersfield, pp. 51-56.
ISBN 978-1-86218-106-9

This version is available at http://eprints.hud.ac.uk/id/eprint/13447/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

* The authors, title and full bibliographic details is credited in any copy;
* A hyperlink and/or URL is included for the original metadata page; and
* The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



Computing and Engineering Researchers' Conference, University of Huddersfield, Mar 2012

DYNAMIC SIMULATION OF A ROLLER RIG

A. Anyakwo1, C. Pislaru, A. Ball and F. Gu
! University of Huddersfield, Queensgate, HD1 3DH, UK

ABSTRACT

The dynamic behaviour of railway vehicles is greatly influenced by the interaction of the wheelsets on
the railway track. This behaviour can be replicated in laboratory conditions using a scaled roller rig.
This paper presents the results of the modeling and simulation of a one-fifth scale roller rig. The
simulation results obtained have been compared with a real railway vehicle (bogie) on the track. It has
been observed that the scale roller rig has a much lower critical velocity than real railway vehicle due
to the similarity and dimensional scaling laws that are taken into consideration in the roller rig design.
The scale roller rig critical speed was observed to be 10.2 m/s while the Full Scale railway vehicle
model was found to be 52 m/s. It can be concluded that the critical speed of the scaled roller rig model
is one-fifth of the full scale critical speed.

Keywords modelling simulation scale roller rig critical speed

1 INTRODUCTION

Railway vehicles have become one of the most important transportation systems in our society today.
For controlled testing of the dynamic stability of a railway vehicle in laboratory conditions, roller rigs
suffice for investigations of the dynamic behaviour of railway vehicles so as to improve the suspension
designs and stability. Several studies on the application of roller rigs can be found in a number of
literatures. (Hur et al. 2009) studied the influence of wheel profile wear on scale bogie stability using
critical speed tests. The numerical models for full scale roller rig and 1/5th scale rig contained the
wheel-rail contact models (including the wear parameters — flange thickness, flange height, wear
factor and flange contact angle) and were implemented in MATLAB. Four dynamic tests with various
critical speeds were performed and the wear parameters were determined from the wheel profiles
measured with mini-prof. The critical speeds for the full scale test rig were inversely proportional to
equivalent conicity of the wheel profile (which increased with the wheel flange wear).

(Jaschinski et al. 1999) discussed the application of roller rigs to railway vehicle dynamic applications.
Different roller rig designs were presented and discussed along with their advantages and
disadvantages. It was of the opinion that roller rigs are vital for testing and experimental purposes and
for validation real railway vehicle dynamic simulations. However the scaling problems of roller rigs
which occur as a result of dimensional and similarity laws are the major set-backs for the application of
roller rigs since these affect the dynamic response of the rig and results differ from that a railway
vehicle running on a track. (Allen and lwnicki 2001) used a roller rig to investigate the dynamic
behaviour of railway vehicles. He computed the critical velocity of the roller rig and compared the
same results with simulations of a full scale roller rig. Errors in simulation results where as a result of
scaling and correlation reduction between scale roller rigs and full-scale vehicles.

This paper presents the non-linear differential equations of motion for a full scale model and a 1/5
scale roller rig. These equations have been solved using ode23 solver from MATLAB software. Using
the Heuristic non-linear creep force model, the differential equations of the roller rig governing the
dynamic performance of the 4 DOF system are derived. The gyroscopic motion of the wheel sets on
the rollers have been neglected here since they do not have much effect on the dynamic response of
the bogie system

2 NON-LINEAR DIFFERENTIAL EQUATIONS OF MOTION

The differential equations of motion used to simulate the dynamic model of a typical bogie are
expressed in Equations (1 — 6). The bogie frame and the wheelset are allowed to move in the yaw and
lateral directions. The creep forces developed at the contact points were determined using Heuristic
non-linear creep force model (S. Iwnicki 2003).

d?y;
dt?

= Fyrl +Fyll +Nry1 _lel +Fsusp1 (D
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d2

m
dtz

= Fyrz + Fylz + Nryz lez + Fsuspz (2)

d’y.
Iz dt21 = _lo (Fxll - Fxrl) + (Rrxl + Rrrl) * (Fyrl + Nryl) (Rlxl + Rlll)( yl1 + lel) (3)

d?y.
IZTZZ = _lo(Fxlz - Fxrz) + (Rrxz + Rrrz) * (Fyrz + Nryz) - (Rlxz + Rllz)(Fylz + lez) (4)

d?
mp d;;g = Fsuspl + Fsuspz (5
2

Ib dt2 = b(Fsuspl + Fsuspz) (Msuspl + Msuspz) (6)
Where:
m = mass of the wheelset (kg) I, = Yaw moment inertia of the Bogie frame (kgm?)
my;, = mass of Bogie frame (kg) y; = Lateral displacement of wheelset 1 (m)
I, = Yaw moment of inertia of wheelset (kgm ) y; = Lateral displacement of wheelset 2 (m)
I, = Yaw moment of inertia of the Bogie frame (kgm ) w; = Yaw displacement of wheelset 1 (radians)
y; = Lateral displacement of wheelset 1 (m) w> = Yaw displacement of wheelset 2 (radians)
y¢ = Lateral displacement of wheelset 2 (m) F,+ = Longitudinal creep force of right wheel 1 (N)
w7 = Yaw displacement of wheelset 1 (radians) F.+ = Longitudinal creep force of left wheel 1 (N)
.= Yaw displacement of wheelset 2 (radians) F.» = Longitudinal creep force of right wheel 2 (N)
F,r+ = Longitudinal creep force of right wheel 1 (N) F.2 = Longitudinal creep force of left wheel 2 (N)
F,1 = Longitudinal creep force of left wheel 1 (N) F,- = Lateral contact force of right wheel 1 (N)
F,.» = Longitudinal creep force of right wheel 2 (N) F,i; = Lateral contact force of left wheel 1 (N)
F,> = Longitudinal creep force of left wheel 2 (N) F,r, = Lateral contact force of right wheel 2 (N)
F,r = Lateral contact force of right wheel 1 (N) F,, = Lateral contact force of left wheel 2 (N)
F,i; = Lateral contact force of left wheel 1 (N) M,,; = Spin creep moment of right wheel 1 (N)
I, = Yaw moment of inertia of the Bogie frame (kgm ) M,;; = Spin creep moment of left wheel 1 (N)
y+ = Lateral displacement of wheelset 1 (m) M, = Spin creep moment of left wheel 2 (N)
y¢ = Lateral displacement of wheelset 2 (m) Fsusp1 = Suspension force wheelset 1 (N)
v = Yaw displacement of wheelset 1 (radians) Fsusp2 = Suspension force wheelset 2 (N)
w, = Yaw displacement of wheelset 2 (radians) Msusp1 = Suspension moment wheelset 1 (N)

Msusp2 = Suspension moment wheelset 2 (N)

I, = Half wheelset gauge (mm) N,,; = Lateral normal contact force right wheel 1 (m)
R+ = Longitudinal contact position right wheel 1 (m) N,,» = Lateral normal contact force right wheel 2 (m)
R = Longitudinal contact position right wheel 2 (m) Ny = Lateral normal contact force left wheel 1 (m)
R+ = Longitudinal contact position left wheel 1 (m) NI, = Lateral normal contact force left wheel 2 (m)

RI,, = Longitudinal contact position left wheel 2 (m) b = wheelset base

3 WHEEL-RAIL GEOMETRY ANALYSIS

The wheel-rail geometry was realized assuming new P8 wheel and BS 110A rail profiles. The contact
point locations were determined using two dimensional wheel-rail geometry analyses where the lateral
displacement and the roll angle are used as inputs. The locations of the contact points on the wheel
and the rail where determined by solving the geometrical constraint equations arising from the profile
geometry.

The contact point positions on the left and right rail for a positive lateral displacement is shown in Fig.
3(c) and 3(d). The rolling radius difference function, the contact angle and the equivalent conicity
results are derived from the wheel-rail contact geometry.

The rolling radius function is proportional to the rate of change of the lateral displacement. At 5.5mm,
the wheelset flange makes the first contact with the rail gauge. At 7 mm there is sharp contact jump
and the rolling radius difference increases sharply in this region. After 7 mm the increase in the rolling
radius difference increases as well and wheelset flange climb occurs. The contact angle function is
derived from the derivative of the rail lateral contact co-ordinate function with respect to the lateral
displacement. At 7 mm the contact angle is very large and it reaches about 2.3 radians (69 degrees).
It can also be observed that there is a large contact jump from 5.5 mm to 7 mm in the contact angle
function. The equivalent conicity function is an approximation that accounts for the average slope of
the rolling radius difference function over a finite range of the lateral displacement of the wheelset on
the rail. Given that the rolling radius difference function is expressed as follows:
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R(y) =21y (7)
Where R(y) is the rolling radius difference function, A is the effective conicity and y is the lateral
displacement, the equivalent conicity calculated via the trapezoidal rule can be expressed as follows:

1

A
Ao =7 [y ROy (8)

Where the lateral displacement range is from -Ay to + Ay (Thomsen & True 2010).
The contact angle function difference function and the rolling radius function is shown in Fig. 3(a) and
Fig. 3(b) respectively.

4 WHEEL-RAIL CONTACT FORCES

The wheel-rail contact forces are developed as a result of creepages emanating from the contact
patch. These creepages arise as a result of traction, braking, acceleration due to the relative motion of
the wheel on the rail. The creep forces developed as a result are the lateral, longitudinal and spin
moment creep forces. They can be defined as follows (S. lwnicki 2003):

Fyr,l = _Gar,;br,;czzvyr,l - Gar,lbr,l\/ ar,lbr,lCZ3vspinr,l (9)

Fxr,l = _Gar,;br,;cllvxr,l (10)
2

Mz‘r,l = Gar,;br,;\/ ar,lb‘r,lCZ3vyr,l - GabCSS(ar,lbr,l) vspinr,l (1 1)

Where F,, is the lateral creep force for the right and left wheel, F,;, is the longitudinal creep force for
the right and left wheel while M., is the spin creep moment of the right and left wheel. G is the rigid
modulus of rigidity, a,; and b, are the semi-axis of the elliptical wheel-rail contact patch. v, vy, and
Veoinrs a@re the lateral, longitudinal and spin creepages for the right and left wheel rail contact
respectively.

For typical wheel-roller contact geometry the creepages are calculated slightly differently due to the
de-crowing effect of the wheelset on the rollers. The de-crowning effect leads to a large yaw angle
developed at the by the wheelset on the roller. Hence the angular velocity of the rollers and the radius
of the rollers are taken into account when calculating the creepages. This adds extra value to the
longitudinal, lateral and spin creep moment creepages derived for a wheel-rail contact (Allen & S. D.
Iwnicki 2001). It is important to note that Equations (9 — 11) are the wheel-rail contact creep forces
developed by Kalker. These forces are linear in the wheel tread region as long as the creepages
developed in the contact patch is very small. For large creepages arising as a result of flange contact
with the results Kalker’s linear creep forces is no longer valid. Hence non-linear creep force models
are applied to limit the creep forces. In this paper the non-linear Heuristic model has been applied to
limit the creep forces.

5 SUSPENSIONS FORCES

The forces developed at the suspension are a function of the lateral displacement of the wheelsets,
lateral displacement of the bogie frame, yaw angle of the wheelsets, yaw angle of the bogie, lateral
velocity of the wheelsets and bogie and yaw velocity of the wheelsets and bogie. The suspension
force on wheelset 1 is:

Fsuspl = _Zpr(_yl + ¥y — bWb) - 2Cz'7y(_y1 +yb - b‘//b) (12)

Fsuspz = _Zpr(_yz +yp + b‘//b) - 2pr(_y2 + yb + b‘//b) (13)
where K,/C,, is the lateral stiffness/lateral damping of the spring. y, and y, are the lateral
displacement of the front and rear wheelsets respectively. y; is the lateral displacement of the bogie,
and yb and y,, are the yaw angle bogie and yaw velocity of the bogie respectively. y,, y, and y, are
the lateral velocity of the front, rear and bogie respectively.

The suspension moment forces can be expressed as:
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Msuspl = szpr(_ v, + l//b) + szcpx(_ i/ll + l//b) (14)
Msuspz = szpr(_ l//z + l//b) + szcﬁx(_ ‘7/2 + ‘//b) (15)
Where Kpx is the longitudinal spring stiffness and Cpx is the longitudinal damper coefficient.

6 SCALE ROLLER RIG MODEL

The 1/5 scaled bogie model is designed and implemented using the same equations defined in
Equations (1 -6) but with adjustments in the creepages developed at the contact patch due to the
variation of velocity on the roller head and a minute longitudinal velocity introduced roller head when it
is yawed. Also the roller circumferential velocity is considered as an additional term to the lateral and
spin creepages developed in a real railway wheel-rail contact patch during modelling. The scale roller
rig is shown in Fig.1 and Fig 2.

There are usually scaling imperfections especially in scaling the modulus of rigidity and gravitational
acceleration. Using MMU scale roller rig as a case study, the scaling factor for time is equal to one
while the rig dimensions are also scaled down to one-fifth of the full scale vehicle model.

The table showing the Full Scale model and the 1/5 scale roller rig model is shown below. Note that o
= 5 for the scaled roller rig model.

Table 1: Full Scale Model and 1/5 Scale roller rig model parameters

Parameters Full Scale Model | Scale 1/5 Scale roller rig
Wheelset mass m (kg) 1587.5 m/o’ 12.7
Bogie mass m;, (kg) 2612.5 my/o’ 20.9
Wheelset Yaw moment of inertia |, (kgm?) 1000 /o 0.32
Bogie Yaw moment of inertia I, (kgm?) 3937.5 ly/o 1.26
Lateral stiffness of primary suspension Ko, (N/m) 45x10° Ko /o 36 x 10°
Longitudinal primary suspension stiffness K, (N/m) 12.5x 10° Koulo® 100 x 10°
Lateral damping of primary suspension C,, (Ns/m) 3.33x 10° Cyyla’ 2.67 x 10°
Longitudinal damping of suspension C,, (Ns/m) 1.51 x 10° Cpo 12.05 x 10°
Wheelbase b (m) 1.25 b/ow 0.25
Wheel radius R, (m) 0.5 RJ/o 0.1
Roller radius R, (m) 0.5 R/o 0.18
Gauge I, (m) 1.435 lo/o 0.287

7  SIMULATION RESULTS FOR THE SCALE ROLLER RIG AND FULL SCALE
ROLLER RIG

Simulations where carried out by reducing Equations (1 — 6) to first order differential equations and
then solving the equations completely using Ode solvers in MATLAB precisely Ode23s solver. This
solver solves stiff non-linear differential equations using Rosenbrock’s method for solution of ordinary
differential equations. The twelve state variable used for simulation are the lateral displacement of
wheelset one and two, yaw angle of wheelset one and two, lateral velocity of wheelset one and two,
yaw velocity of wheelset one and two, lateral displacement of bogie, yaw displacement of bogie,
lateral velocity of bogie and yaw velocity of bogie. The differential equations of the full scale model and
the scale roller rig model were solved completely with initial conditions given to the state variables.

Given the initial values of the lateral displacements, at low forward speeds, the wheelsets return to a
central position hence the system is stable. As the forward speed increases, the wheelset lateral
behaviour on the track becomes unstable and hunting results. The forward speed at which hunting
occurs is referred to as the critical velocity of the vehicle. Using the primary suspension parameters of
the scaled roller rig and the full scale model, the forward speed was gradually increased until flange
contact with the rail gauge occurred. It is imperative to note that the flange clearance is given as 5.5
mm (0.0055m) as can be observed from the rolling radius difference function. The critical velocity at
which hunting occurs for the full scale model was determined as 52 m/s while the critical velocity for
the scale roller rig was found to be 10.2 m/s. The results of the simulation given an initial lateral
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displacement of 0.0055 m for the front wheelset and -0.0055 m for the rear wheelset are shown in Fig.
4 and Fig. 5.

It can be observed from the simulations that the critical velocity of the scale roller rig model and the full
scale model is related to the scale used. The critical velocity of the scale roller rig is approximately
one-fifth of the critical velocity of the full scale roller rig.

8 CONCLUSIONS

This paper presents the calculation of the critical speeds for a typical full scale railway vehicle model
and a 1/5 scale roller rig model. The non-linear mathematical equations for these models have been
solved using MATLAB ordinary differential equation solver ode23s. The creepages and the creep
forces developed at the wheel-rail contact have been determined. The critical speed for the full scale
model was 52 m/s while 1/5 scale roller rig model had the critical velocity (maximum value before
hunting occurs) of 10.2 m/s. The additional errors in the creepages as a result of the roller velocities
can be improved by controlling the movement of the rollers under the wheelset.
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Fig. 2 Plan view of the Scale Roller bogie model (Hur
et al. 2009)
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