
University of Huddersfield Repository

Chrpa, Lukáš, Surynek, Pavel and Vyskočil, Jiří

Encoding of Planning Problems and Their Optimizations in Linear Logic

Original Citation

Chrpa, Lukáš, Surynek, Pavel and Vyskočil, Jiří (2009) Encoding of Planning Problems and Their
Optimizations in Linear Logic. In: Lecture Notes in Computer Science. Springer, London, pp. 54-
68. ISBN 978-3-642-00674-6

This version is available at http://eprints.hud.ac.uk/id/eprint/12168/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Encoding of Planning Problems and their
Optimizations in Linear Logic

Lukáš Chrpa, Pavel Surynek and Jǐŕı Vyskočil

Department of Theoretical Computer Science and Mathematical Logic
Faculty of Mathematics and Physics

Charles University in Prague
{chrpa,surynek,vyskocil}@kti.mff.cuni.cz

Abstract. Girard’s Linear Logic is a formalism which can be used to
manage a lot of problems with consumable resources. Its expressiveness
is quite good for an easily understandable encoding of many problems.
We concentrated on expressing planning problems by linear logic in this
paper. We observed a rich usage of a construct of consumable resources
in planning problem formulations. This fact motivates us to provide a
possible encoding of planning problems in linear logic. This paper shows
how planning problems can be encoded in Linear Logic and how some
optimizations of planning problems can be encoded. These optimizations
can help planners to improve the efficiency of finding solutions (plans).

1 Introduction

Linear Logic is a formalism which can be used to formalize many problems
with consumable resources [4]. There is a lot of such problems that handle with
consumable and renewable resources in practice. Linear Logic gives us a good
expressiveness that help us with formalization of these problems, because these
problems can be usually encoded in formulae with linear size with respect to the
length of the problems.

Previous research showed that planning problems can be encoded in many
different formalisms, usually related to logic. It was showed in [16] that plan-
ning problems can be solved by reduction to SAT. This approach brings very
good results (for example SATPLAN [17] won last two International Planning
Competitions (IPC)1 in optimal deterministic planning). However, there seems
to be a problem with extending the SAT based planners to be able to solve plan-
ning problems with time and resources. One of the influential works regarding
first order logic is a framework for programming reasoning agents called FLUX
[26] which is based on Fluent Calculus. Another logic formalism which can be
used in connection to planning problems is Temporal Logic (especially Simple
Temporal Logic). It has been showed in [1] that Temporal Logic can be used for
improvement of searching for plans. This approach is used in several planners
(for example TALplanner [8] which gathered very good results in IPC 2002).

1 http://ipc.icaps-conference.org

Temporal Logic is good for representing relationships between actions, but not
so good to represent whole planning problems.

Unlike other logics Linear Logic has a good expressiveness for formalization
of whole planning problems including planning problems with resources etc.
Linear Logic related research made during the last twenty years [12] brought
many interesting results, however mainly in a theoretical area. One of the most
important results was a connectivity of Linear Logic with Petri Nets [23] which
gave us more sence of the good expressiveness of Linear Logic.

Instead of the encoding of Petri nets in Linear Logic, there is a possibility
of encoding of planning problems in Linear Logic. Planning problems are an
important branch of AI and they are very useful in many practical applications.
Previous research showed that planning problems can be simply encoded in Lin-
ear Logic and a problem of plan generation can be reduced to a problem of
finding a proof in linear logic. First ideas of solving planning problems via theo-
rem proving in Linear Logic has been shown at [3, 15, 22]. These papers showed
that M?LL fragment of Linear Logic is strong enough to formalize planning prob-
lems. Another interesting work in this area is [7] and it describes a possibility of
a recursive application of partial plans. Analyzing planning problems encoded
in Linear Logic via partial deduction approach is described in [19].

In the area of implementations of Linear Logic we should mention Lin-
ear Logic programming. Linear Logic Programming is derived from ‘classical‘
logic programming (Prolog based) by including linear facts and linear operators.
There are several Linear Logic programming languages, for example Lolli [14] or
LLP [2]. However, all Linear Logic Programming languages are based on Horn’s
clauses which means that only one predicate can appear on the right side of im-
plication. In fact, this forbids the obtaining of resources (resources can be only
spent) which causes an inapplicability of Linear Logic programming languages
in solving planning problems. Instead of Linear Logic programming languages
there are several Linear Logic provers, for example llprover [24]. Linear Logic
provers seem to be strong enough to solve planning problems, but the existing
ones are very slow and practically almost unusable.

In the other hand, one of the most important practical results is an imple-
mentation of a planning solver called RAPS [20] which in comparison between
the most successful planners in IPC 2002 showed very interesting results (espe-
cially in Depots domain). RAPS showed that the research in this area can be
helpful and can provide an improvement for planners.

This paper extends the previous research in this area [5, 22] by providing
detailed description of encoding of planning problems into Linear Logic. In ad-
dition, we provide an encoding of many optimizations of planning problems,
which helps a planner to find a solution more quickly. Furthermore, we designed
two algorithms for actions assemblage that benefit from the Linear Logic encod-
ing. Finally, we show how planning problems with resources can be encoded to
Linear Logic and how Linear Logic can help in planning under uncertainty.

We provide a short introduction to Linear Logic and to planning problems
in Section 2. Description of the pure encoding of planning problems in Linear

Logic and an extension of this encoding which works with negative predicates
is provided in Section 3. Description of the encoding of optimizations such as
encoding of static predicates, blocking actions, enforcing actions and assembling
actions is provided in Section 4. Section 5 describes how planning with resources
can be encoded in Linear Logic. Section 6 describes how planning under un-
certainty can be encoded in Linear Logic. Section 7 concludes and presents a
possible future research in this area.

2 Preliminaries

This section presents some basic information about Linear Logic and planning
problems that helps the reader to get through this paper.

2.1 Linear Logic

Linear Logic was introduced by Girard in 1987 [10]. Linear Logic is often called
‘logic of resources‘, because unlike the ‘classical‘ logic, Linear Logic can handle
with expendable resources. The main difference between ‘classical‘ logic and
Linear Logic results from an expression saying: ”From A,A imply B we obtain
B”, in ‘classical‘ logic A is still available after B is derived, but in Linear Logic
A consumed after B is derived which means that A is no longer available (see
L(rule in table 2.1).

In addition to the implication ((), there are more operators in linear logic.
However we mention only those that are relevant for our encoding. One of the
operators is a multiplicative conjunction (⊗) whose meaning is consuming (on
the left side of the implication, see L⊗ rule in table 2.1) or obtaining (on the
right side of the implication, see R⊗ rule in table 2.1) resources together. An-
other operator is an exponential (!), which converts a linear fact (expendable
resource) to a ‘classical‘ fact (not expendable resource). At last, there are an ad-
ditive conjunction (&) and an additive disjunction (⊕) whose meaning is close
to modalities. Exactly when the additive conjunction is used on the right side
of the implication, then only one alternative must be proved (see R& rule in
table 2.1) , but when the additive disjunction is used on the right side of the
implication, then all the alternatives must be proved (see R⊕ rule in table 2.1).
If the additives are on the left side of the implication, proving is quite similar,
only the meaning of the additive conjunction and additive disjunction is swapped
(see L& and L⊗ rules in table 2.1).

Proving in Linear Logic is quite similar to proving in the ‘classical‘ logic,
which is based on Gentzen’s style. Part of Linear Logic calculus needed to follow
this paper is described in Table 2.1. The complete calculus of Linear Logic can
be found in [10, 11, 21].

2.2 Planning problems

This subsection brings us some basic introduction which is needed to understand
basic notions frequently used in a connection to planning problems.

Id A ` A Γ ` >, ∆ R>

L⊗ Γ,A,B`∆
Γ,(A⊗B)`∆

Γ1`A,∆1 Γ2`B,∆2
Γ1,Γ2`(A⊗B),∆1∆2

R⊗

L(Γ1`A,∆1 Γ2,B`∆2
Γ1,Γ2,(A(B)`∆1∆2

L& ∆,A`Γ
∆,(A&B)`Γ

∆,B`Γ
∆,(A&B)`Γ

∆,A`Γ ∆,B`Γ
∆,(A⊕B)`Γ

L⊕

R& ∆`A,Γ ∆`B,Γ
∆`(A&B),Γ

Γ`A,∆
Γ`(A⊕B),∆

Γ`B,∆
Γ`(A⊕B),∆

R⊕

W ! Γ`∆
Γ,!A`∆

Γ,!A,!A`∆
Γ,!A`∆

C !

D ! Γ,A`∆
Γ,!A`∆

Γ,A`∆
Γ,(∀x)A`∆

Forall

Table 1. Fragment of Linear Logic calculus.

In this paper we consider action-based planning problems like Block World,
Depots, Logistics etc. These planning problems are based on worlds containing
objects (boxes, robots, etc.), locations (depots, platforms, etc.) etc. Relationships
between objects and places (Box 1 is on Box2, Robot 1 is in Depot 2, etc.)
are described by predicates. The worlds can be changed only by performing of
actions. The next definitions define notions and notations well known in classical
action-based planning problems.

Definition 1. Assume that L = {p1, . . . , pn} is a finite set of predicates. Plan-
ning domain Σ over L is a 3-tuple (S, A, γ) where:

– S ⊆ 2L is a set of states. s ∈ S is a state. If p ∈ s then p is true in s and if
p 6∈ s then p is not true in s.

– A is a set of actions. Action a ∈ A is a 4-tuple (p+(a), p−(a), e−(a), e+(a))
where p+(a) ⊆ L is a positive precondition of action a, p−(a) ⊆ L is a
negative precondition of action a, e−(a) ⊆ L is a set of negative effects of
action a and e+(a) ⊆ L is a set of positive effects of action a and e−(a) ∩
e+(a) = ∅.

– γ : S × A → S is a transition function. γ(s, a) = (s − e−(a)) ∪ e+(a) if
p+(a) ⊆ s and p−(a) ∩ s = ∅.

Remark. When a planning domain contains only actions without negative pre-
condition we denote such an action by 3-tuple (p(a), e−(a), e+(a)) where p(a) is
a positive precondition.

Definition 2. Planning problem P is a 3-tuple (Σ, s0, g) such that:

– Σ = (S, A, γ) is a planning domain over L.
– s0 ∈ S is an initial state.
– g ⊆ L is a set of goal predicates.

Definition 3. Plan π is an ordered sequence of actions < a1, . . . , ak > such
that, plan π solves planning problem P if and only if there exists an appropriate
sequence of states < s0, . . . , sk > such that si = γ(si−1, ai) and g ⊆ sk. Plan π
is optimal if and only if for each π′ | π |≤| π′ | is valid (an optimal plan is the
shortest plan solving a particular planning problem).

To get deeper insight about planning problems, see [9].

3 Planning in Linear Logic

In this section, we show that Linear Logic is a good formalism for encoding
planning problems. Main idea of the encoding is based on the fact that predicates
in planning problems can be represented as linear facts that can be consumed
or obtained depending on performed actions.

3.1 Basic encoding of planning problems

Idea of a reduction of the problem of plan generation to finding a proof in
Linear Logic was previously studied at [5, 15, 22]. At first we focus on such
planning problems whose actions do not contain negative preconditions. As it
was mentioned above, the predicates in planning problems can be encoded as
the linear facts. Let s = {p1, p2, . . . , pn} be a state, its encoding in Linear Logic
is following:

(p1 ⊗ p2 ⊗ . . .⊗ pn)

Let a = {p(a), e−(a), e+(a)} be an action, its encoding in Linear Logic is follow-
ing:

∀pi ∈ p(a) \ e−(a), 1 ≤ i ≤ l;∀rj ∈ e−(a), 1 ≤ j ≤ m; ∀sk ∈ e+(a), 1 ≤ k ≤ n
(p1⊗ p2⊗ . . .⊗ pl⊗ r1⊗ r2⊗ . . .⊗ rm) ((p1⊗ p2⊗ . . .⊗ pl⊗ s1⊗ s2⊗ . . .⊗ sn)

Performing of action a can be reduced to the proof in Linear Logic in following
way (Γ and ∆ represent multiplicative conjunctions of literals and the vertical
dots represent the previous part of the proof):

.

.

.
Γ, p1, . . . pl, s1, . . . , sn ` ∆ p1, . . . pl, r1, . . . , rm ` p1, . . . pn, r1, . . . , rm

(Id)

Γ, p1, . . . pl, r1, . . . , rm, ((p1 ⊗ . . .⊗ pl ⊗ r1 ⊗ . . .⊗ rm) ((p1 ⊗ . . .⊗ pl ⊗ s1 ⊗ . . .⊗ sn)) ` ∆
(L ()

In most of planning problems it is not known how many times the actions are
performed. This is the reason why the exponential ! is used for each rule rep-
resenting the action. The proof must be modified in dependance of how many
times the action is performed. There can be three cases:

– action a is not performed — then use W ! rule in a following way:

Γ ` ∆

Γ, !a ` ∆
(W !)

– action a is performed just once — then use D! rule in a following way:

Γ, a ` ∆

Γ, !a ` ∆
(D!)

– action a is performed more than once — then use D! and C! rule in a
following way:

Γ, !a, a ` ∆
Γ, !a, !a ` ∆

(D!)

Γ, !a ` ∆
(C!)

The last thing which has to be explained is why a constant > must be used.
The reason is that a goal state is reached when some state contains all the goal
predicates. The state can certainly contain more predicates. The importance of
the constant > can be seen in the following:

g1, . . . , gn ` g1 ⊗ . . .⊗ gn (Id) s1, . . . , sm ` > (R>)
g1, . . . , gn, s1, . . . , sm ` g1 ⊗ . . .⊗ gn ⊗> (R⊗)

Now it is clear that whole planning problem can be reduced to theorem proving in
Linear Logic. Let s0 = {p01 , p02 , . . . , p0m} be an initial state, g = {g1, g2, . . . , gq})
be a goal state and a1, a2, . . . , an be actions encoded as above. The whole plan-
ning problem can be encoded in a following way:

p01 , p02 , . . . , p0m ,
!(p1

1⊗p1
2⊗ . . .⊗p1

l1
⊗r1

1⊗r1
2⊗ . . .⊗r1

m1
) ((p1

1⊗p1
2⊗ . . .⊗p1

l1
⊗s1

1⊗s1
2⊗ . . .⊗s1

n1
),

!(p2
1⊗p2

2⊗ . . .⊗p2
l2
⊗r2

1⊗r2
2⊗ . . .⊗r2

m2
) ((p2

1⊗p2
2⊗ . . .⊗p2

l2
⊗s2

1⊗s2
2⊗ . . .⊗s2

n2
),

...
!(pn

1⊗pn
2⊗. . .⊗pn

ln
⊗rn

1⊗rn
2⊗. . .⊗rn

mn
) ((pn

1⊗pn
2⊗. . .⊗pn

ln
⊗sn

1⊗sn
2⊗. . .⊗sn

nn
)

` g1 ⊗ g2 ⊗ . . .⊗ gq ⊗>
The plan exists if and only if the above expression is provable in Linear Logic.
Obtaining of a plan from the proof can be done by checking of the (L () rules
from the bottom (the expression) to the top (axioms) of the proof.

3.2 Encoding of negative predicates

Previous subsection showed how planning problems can be encoded in Linear
Logic. However, this encoding works with the positive precondition only. In plan-
ning problems there are usually used negative preconditions which means that
an action can be performed if some predicate does not belong to the current
state. However in Linear Logic the negative preconditions cannot be encoded
directly. Fortunately, there are some possible approaches for bypassing of this
problem.

The first approach can be used in propositional Linear Logic. The basic en-
coding of planning problems must be extended with linear facts representing
negative predicates (each predicate p will obtain a twin p representing predi-
cate p 6∈ s). It is clear that either p or p is contained in the each part of the

proof. The encoding of state s, where predicates p1, . . . , pm ∈ s and predicates
pm+1, . . . , pn 6∈ s:

p1 ⊗ . . .⊗ pm ⊗ pm+1 ⊗ . . .⊗ pn

Each action a = {p+(a), p−(a), e−(a), e+(a)} from a given planning domain can
be transformed to action a′ = {p′(a′), e′−(a′), e′+(a′)}, where p′(a′) = p+(a) ∪
{p |p ∈ p−(a)}, e′−(a′) = e−(a) ∪ {p |p ∈ e+(a)} and e′+(a′) = e+(a) ∪ {p |p ∈
e−(a)}. The encoding of the action a′ is following:

∀pi ∈ p′(a′) \ e′−(a′), 1 ≤ i ≤ l; ∀pi′ ∈ p′(a′) \ e′−(a′), 1 ≤ i′ ≤ l′

∀rj ∈ e′−(a′), 1 ≤ j ≤ m; ∀sk ∈ e′+(a′), 1 ≤ k ≤ n
(p1⊗ p2⊗ . . .⊗ pl⊗ p1⊗ p2⊗ . . .⊗ pl′ ⊗ r1⊗ r2⊗ . . .⊗ rm⊗ s1⊗ s2⊗ . . .⊗ sn) (
(p1 ⊗ p2 ⊗ . . .⊗ pl ⊗ p1 ⊗ p2 ⊗ . . .⊗ pl′ ⊗ s1 ⊗ s2 ⊗ . . .⊗ sn ⊗ r1 ⊗ r2 ⊗ . . .⊗ rm)

Second approach can be used in predicate Linear Logic. Each linear fact repre-
senting predicate p(x1, . . . , xn) can be extended by one argument representing
if predicate p(x1, . . . , xn) belongs to the state s or not (p(x1, . . . , xn) ∈ s can
be represented as p(x1, . . . , xn, 1) and p(x1, . . . , xn) 6∈ s can be represented as
p(x1, . . . , xn, 0)). Encoding of actions can be done in a similar way like in the
first approach. The advantage of this approach is in the fact that the represen-
tation of predicates can be generalized to such a case that more than one (same)
predicate is available. It may be helpful in encoding of some other problems (for
example Petri Nets).

3.3 Example

In this example we will use a predicate extension of Linear Logic. Imagine a
version of ”Block World”, where we have slots and boxes, and every slot may
contain at most one box. We have also a crane, which may carry at most one
box.

Objects: 3 slots (1,2,3), 2 boxes (a, b), crane

Initial state: in(a, 1)⊗ in(b, 2)⊗ free(3)⊗ empty

Actions:

PICKUP (Box, Slot) = { p = {empty, in(Box, Slot)},
e− = {empty, in(Box, Slot)},
e+ = {holding(Box), free(Slot)}}

PUTDOWN(Box, Slot) = { p = {holding(Box), free(Slot)},
e− = {holding(Box), free(Slot)},
e+ = {empty, in(Box, Slot)}}

Goal: Box a in slot 2, Box b in slot 1.

The encoding of the action PICKUP (Box, Slot) and PUTDOWN(Box, Slot):

PICKUP (Box, Slot) : empty ⊗ in(Box, Slot) (holding(Box)⊗ free(Slot)

PUTDOWN(Box, Slot) : holding(Box)⊗ free(Slot) (empty ⊗ in(Box, Slot)

The whole problem can be encoded in Linear Logic in the following way:

in(a, 1), in(b, 2), free(3), empty, !(empty⊗in(Box, Slot) (holding(Box)⊗free(Slot)),
!(holding(Box)⊗ free(Slot) (empty⊗ in(Box, Slot)) ` in(b, 1)⊗ in(a, 2)⊗>

3.4 Additional remarks

The basic encoding is accurate if the following conditions are satisfied:

– e−(a) ⊆ p(a), ∀a ∈ A
– p(a) ⊆ s and s ∩ e+(a) = ∅, ∀a ∈ A and s is a state

Even though there are not many domains violating these conditions, the vio-
lation may cause that the basic encoding is inaccurate. If the first condition
is violated, it may happen that some actions normally performable will not be
performable via Linear Logic, because all predicates from negative effects are
placed on the left hand side of the implication which means that all predicates
must be presented before the performance of the action (regarding the definition
we can perform every action if all predicates from its precondition are presented
in a certain state). If the second condition is violated, it may happen that after
the performance of the action violating this condition some predicates will be
presented more times than once. To avoid these troubles we have to convert the
basic encoding into the encoding supporting negative predicates and we must
put (p ⊕ p) into left side of implications for every predicate p which may cause
the breaking of the conditions. It is clear that either p or p is presented in every
state. (p ⊕ p) on the left side of the implication ensures that either p or p is
removed from the particular state (depending on which one is available) and
then there is added p (if p is in positive effects) or p (if p is in negative effects).

4 Encoding optimizations of planning problems in Linear
Logic

In the previous section, we showed the pure encoding of planning problems in
Linear Logic. To improve efficiency of the searching for a plan, it is needed to
encode some optimizations described in the next subsections.

4.1 Handling with static predicates

Static predicates are often used in planning problems. Static predicates can
be easily detected, because each static predicate in a planning problem is such
predicate that belongs to an initial state and does not belong to any effect of any

action (static predicates appear only in preconditions). It is possible to encode
the static predicates like ‘classical‘ facts using the exponential !. Assume action
a = {p(a) = {p1, p2}, e−(a) = {p1}, e+(a) = {p3} where p2 is a static predicate.
Action a can be encoded in a following way:

(p1⊗!p2) (p3

The encoding of static predicates is described in propositional Linear Logic for
better understanding. This encoding has the purpose in predicate Linear Logic
(in propositional Linear Logic static predicates can be omitted).

4.2 Blocking of actions

To increase efficiency of solving planning problems it is quite necessary to use
some technique which helps a solver to avoid unnecessary backtracking. Typi-
cally, the way how a lot of unnecessary backtracking can be avoided is blocking
of actions that are not leading to a solution (for example inverse actions).

The idea how to encode the blocking of actions rests in an addition of new
predicate can(a, x), where a is an action and x ∈ {0, 1} is representing a status
of action a. If x = 0 then action a is blocked and if x = 1 then action a is
unblocked. Now it is clear that the encoding of action a can be done in the
following way: (Assume a = {p(a) = {p1}, e−(a) = {p1}, e+(a) = {p3})

(can(a, 1)⊗ p1) ((can(a, 1)⊗ p3), or
(can(a, 1)⊗ p1) ((can(a, 0)⊗ p3)

The first expression means that a does not block itself and the second expression
means that a blocks itself.

Assume that some action b = {p(b) = {q1}, e−(b) = {q1}, e+(b) = {q2} can
block action a. Encoding of action b is following (can(b, ?) means can(b, 1) or
can(b, 0) like in the previous encoding of action a):

∀X : (can(b, 1)⊗ can(a,X)⊗ q1) ((can(b, ?)⊗ can(a, 0)⊗ q2)

The predicate can(a,X) from the expression above represents the fact that we
do not known if a is blocked or not. If a is already blocked then X unifies with 0
and anything remains unchanged (can(a, 0) still holds). If a is not blocked then
X unifies with 1 which means that a become blocked, because can(a, 1) is no
longer true and can(a, 0) become true.

Now assume that action c = {p(c) = {r1}, e−(c) = {r1}, e+(c) = {r2} can
unblock action a. Encoding of action c can be done in a similar way like before.
The encoding of action c is following (can(c, ?) means can(c, 1) or can(c, 0) like
in the previous encoding of action a):

∀X : (can(c, 1)⊗ can(a,X)⊗ r1) ((can(c, ?)⊗ can(a, 1)⊗ r2)

The explanation how this encoding works is similar like the explanation in the
previous paragraph.

4.3 Enforcing of actions

Another optimization which can help a solver to find a solution faster is en-
forcing of actions. Typically, when some action is performed it is necessary to
perform some other action. It is possible to enforce some action by blocking of
other actions, but it may decrease the efficiency, because each single action must
be blocked in the way described in the previous subsection which means that
formulae rapidly increase their length.

The idea how enforcing of actions can be encoded rests also in an addition
of new predicate can(a), where a is an only action which can be performed. Let
can(1) represent the fact that all actions can be performed. The encoding of
action a = {p(a) = {p1}, e−(a) = {p1}, e+(a) = {p3} which does not enforce any
other action is following:

((can(a)⊕ can(1))⊗ p1) ((can(1)⊗ p3)

The expression can(a) ⊕ can(1) means that action a can be performed if and
only if a is enforced by other action (can(a) is true) or all actions are allowed
(can(1) is true).

Now assume that action b = {p(b) = {q1}, e−(b) = {q1}, e+(b) = {q2} en-
forces the action a. The encoding of action b is following:

((can(b)⊕ can(1))⊗ q1) ((can(a)⊗ q2)

It is clear that in this encoding there is one or all actions allowed in a certain
step. This idea can be easily extended by adding some new symbols representing
groups of allowed actions.

4.4 Assembling of actions into a single action

Another kind of optimization in planning problems is assembling of actions into
a single action, usually called macro-action (for deeper insight see [18]). This
approach is based on a fact that some sequences of actions are used several
times. Let a1, . . . , an be a sequence of actions encoded in Linear Logic in the way
described before. For further usage we use shortened notation of the encoding:

⊗

∀l∈Γi

l (
⊗

∀r∈∆i

r ∀i ∈ {1, . . . , n}

Assume that action a is created by an assembling of a sequence of actions
a1, . . . , an. Because a is also an action, the encoding is following:

⊗

∀l∈Γ

l (
⊗

∀r∈∆

r

The following algorithm shows how action a can be obtained from the sequence
of actions a1, . . . , an.

Algorithm 1:
INPUT: Γ1, . . . , Γn,∆1, . . . , ∆n (see the previous encoding of actions a1, . . . , an)
OUTPUT: Γ, ∆ (see the previous encoding of action a)

Γ := ∆ := ∅
for i = 1 to n do

Λ:=∆ ∩ Γi

∆:=(∆ \ Λ) ∪∆i

Γ := Γ ∪ (Γi \ Λ)
endfor

Proposition 4. Algorithm 1 is correct.

Proof. The correctness of algorithm 1 can be proved inductively in a following
way:

For n = 1, it is easy to see that algorithm 1 works correctly when only action
a1 is in the input. The for cycle on lines 2-6 runs just once. On line 3 it is easy
to see that Λ = ∅, because ∆ = ∅. Now it can be seen that ∆ = ∆1 (line 4) and
Γ = Γ1 (line 5), because Λ = ∅ and Γ and ∆ before line 4 (or 5) are also empty.

Assume that algorithm 1 works correctly for k actions. From this assumption
imply existence of an action a that is created by algorithm 1 from some sequence
of actions a1, . . . , ak after k steps of the for cycle in lines 2-6. Let s be a state
and s′ be a state which is obtained from s by applying action a (without loss of
generality assume that a can be applied on s). It is true that s′ = (s \ Γ) ∪∆).
Let ak+1 be an action which is applied on state s′ (without loss of generality
assume that ak+1 can be applied on s′). It is true that s′′ = (s′ \Γk+1)∪∆k+1 =
((s\Γ)∪∆)\Γk+1)∪∆k+1. After k+1-th step of the for cycle (lines 2-6) action
a′ is created (from sequence a1, . . . , ak, ak + 1). When a′ is applied on state s,
s′′′ = (s\Γ ′)∪∆′). From lines 3-5 it can be seen that Γ ′ = Γ ∪(Γk+1\(∆∩Γk+1))
and ∆′ = (∆\(∆∩Γk+1))∪∆k+1. Now s′′′ = (s\(Γ ∪(Γk+1\(∆∩Γk+1))))∪((∆\
(∆∩Γk+1))∪∆k+1). To finish the proof we neede to prove that s′′ = s′′′. p ∈ s′′

iff p ∈ ∆k+1 or p ∈ ∆∧p 6∈ Γk+1 or p ∈ s∧p 6∈ Γ ∧ (p 6∈ Γk+1∨p ∈ ∆). p ∈ s′′′ iff
p ∈ ∆k+1 or p ∈ ∆ ∧ p 6∈ (∆ ∩ Γk+1) or p ∈ s ∧ p 6∈ Γ ∧ p 6∈ (Γk+1 \ (∆ ∩ Γk+1)).
It is easy to see that p ∈ ∆ ∧ p 6∈ (∆ ∩ Γk+1) is satisfied iff p ∈ ∆ ∧ p 6∈ Γk+1 is
satisfied. p 6∈ (Γk+1 \ (∆ ∩ Γk+1)) is satisfied iff p 6∈ Γk+1 or p ∈ ∆ is satisfied.
Now is clear that s′′ = s′′′.

2

Algorithm 1 works with planning problems encoded in propositional Linear
Logic. The extension of the algorithm to predicate Linear Logic can be sim-
ply done by adding of constraints symbolizing which actions’ arguments must
be equal. This extension affect only a computation of intersection (∆i ∩ Γj).

The following algorithm for assembling of actions into a single action is based
on a paradigm divide and conquer which can support a parallel implementation.

Algorithm 2:
INPUT: Γ1, . . . , Γn,∆1, . . . , ∆n (see the previous encoding of actions a1, . . . , an)
OUTPUT: Γ,∆ (see the previous encoding of action a)

Function Assemble(Γ1, . . . , Γn, ∆1, . . . ∆n):Γ, ∆
if n = 1 then return(Γ1,∆1) endif
Γ ′,∆′:=Assemble(Γ1, . . . , Γdn

2 e,∆1, . . . , ∆dn
2 e)

Γ ′′, ∆′′:=Assemble(Γdn
2 e+1, . . . , Γn,∆dn

2 e+1, . . . , ∆n)
Λ := ∆′ ∩ Γ ′′

Γ := Γ ′ ∪ (Γ ′′ \ Λ)
∆ := ∆′′ ∪ (∆′ \ Λ)
return(Γ, ∆)

endFunction

Proposition 5. Algorithm 2 is correct.

Proof. The correctness of algorithm 2 can be proved in a following way:

n = 1 — It is clear that the assemblage of one-element sequence of actions (a1)
is equal to action a1 itself.

n > 1 — Let a1, . . . an be a sequence of actions. In lines 2 and 3 the sequence
splits into two sub-sequences (a1, . . . , adn

2 e and adn
2 e+1, . . . , an) and algo-

rithm 2 is applied recursively on them. Because dn
2 e < n when n > 1, it is

easy to see that the recursion will finitely terminate (it happens when n = 1).
Now it is clear that a′ and a′′ are actions obtained by the assembling of se-
quences a1, . . . , adn

2 e and adn
2 e+1, . . . , an. These actions are assembled into a

single action a at lines 4-6. The proof of the correctness of this assemblage
is done in the proof of proposition 1.

2

Algorithm 2 can be extended to predicate Linear Logic in a similar way like
algorithm 1.

5 Linear Logic in planning with resources

Planning problems with resources becomes commoner, because it has more
practical applicability than classical planning. Linear Logic itself as mentioned
before is often called ‘logic of resources‘. Even though propositional Linear
Logic does not seem to be good for representing planning problems with re-
sources. We are able to represent the number of units of resources by linear
facts, but handling with them is difficult, making the encoding much more com-
plex. The biggest problem is refilling of the resources to some predefined level,
because in Linear Logic we usually cannot find out how many units of the re-
sources are remaining. Instead of propositional Linear Logic we can use pred-
icate Linear Logic where we are able to use function symbols like + or −. In
addition, we can use comparative operators that can be represented in Linear

Logic notation as binary predicates with exponential !. Here, all classical func-
tion symbols and comparative operators are written in classical infix form. Let
a = {p(a) = {p1}, e−(a) = {p1}, e+(a) = {p3} be an action which in addition
requires at least 3 units of resource r and after performance of a 3 units of r will
be consumed. The encoding of a is following:

∀X : (p1 ⊗ r(X)⊗X ≥ 3) ((p3 ⊗ r(X − 3))

Let b = {p(b) = {q1}, e−(b) = {q1}, e+(b) = {q2} be an action which in addition
refills resource r to 10 units. The encoding of b is following:

∀X : (q1 ⊗ r(X)) ((q2 ⊗ r(10))

Predicate r representing some resource must appear on the both sides of the
implication, because in every state predicate r must be listed just once. The
first rule can be applied if and only if p1 is true and r contains at least 3 units. It
is done in the left side of the implication where predicates p1 and r are removed.
In the right side of the implication we add predicates p3 and r, where r is
decreased by 3 units. The second rule can be applied if and only if q1 is true (do
not depend on r). It is done in the left side of the implication where predicates
q1 and r are removed. In the right side of the implication we add predicates q2

and r, where r is set to 10 units.

6 Linear Logic in planning under uncertainty

The main difference between deterministic planning and planning under uncer-
tainty is such that actions in planning under uncertainty can reach more states
(usually we do not know which one). The main advantage of Linear Logic, which
can be used in planning under uncertainty, are additive operators (&) and (⊕).
We have two options how to encode uncertain actions. In the following expres-
sions we assume that after the performance of action a on state s we obtain one
of s1, s2, . . . , sn states in the certain steps (remember the encodings of states):

s ((s1&s2& . . . &sn)

s ((s1 ⊕ s2 ⊕ . . .⊕ sn)

If we use additive conjunction (&) we want to find a plan which may succeed
(with nonzero probability). Recall the rule L& which gives the choice which state
will be set as following. If we use additive disjunction (⊕) we want to find a plan
which certainly succeeds. Recall the rule L⊕ which tells that we have to proof
that from all of the following states we can certainly reach the goal. Even though
Linear Logic cannot handle probabilities well, we can use it for decision if there
exists some plan which certainly succeed or if there is no chance to find some
plan which may succeed.

7 Conclusions and future research

The previous research showed that Linear Logic is a good formalism for encod-
ing many problems with expendable resources like planning problems, because
in comparison to the other logics, Linear Logic seems to be strong enough to
represent also planning problems with time and resources. This paper extends
the previous research in this area by providing detailed description of encoding
of planning problems into Linear Logic and by showing that many optimizations
of planning problems, which helps a planner to find a solution more quickly,
can be also easily encoded in Linear Logic. Main advantage of this approach
also rests in the fact that an improvement of the Linear Logic solver leads to
improved efficiency of the planner based on Linear Logic.

One of possible directions how to implement an efficient algorithm for solving
planning problems encoded in Linear Logic is using the connection between
Linear Logic and Petri Nets. It is not difficult to see that the encoding of the
planning problems is similar to an encoding of Petri Nets. The implementation of
an unfolding algorithm for reachability problem in Petri Nets for solving planning
problems has been done by [13] and showed very good results. We will study the
possibility of extending this algorithm in the way that the extended algorithm
will support the encoding of planning problems in predicate Linear Logic. There
is a possibility of extension of the presented encodings of planning problems in
Linear Logic into Temporal Linear Logic (to learn more about Temporal Linear
Logic, see [25]). It seems to be a very useful combination, because Temporal
Logic can give us more possibilities for encoding of relationships between actions.
Another possible way of our future research is using of the encodings of the
optimizations for transformation of planning domains. Transformed planning
domains can be used with existing planners and can reach better results, because
the presented optimizations of planning problems can help the planners to prune
the search space. We focused on getting knowledge from plan analysis which
helps us to find out the optimizations. We studied it in [6] and results that were
provided there are very interesting. At last, Linear Logic seems to be strong
enough to encode planning problems with time. Basic idea of this extension
comes from the fact that time can be also encoded into linear facts. The usage
of predicate Linear Logic seems to be necessary in this case as it as in planning
with resources.

8 Acknowledgements

We thank the reviewers for the comments. The research is supported by the
Czech Science Foundation under the contracts no. 201/08/0509 and 201/05/H014
and by the Grant Agency of Charles University (GAUK) under the contract no.
326/2006/A-INF/MFF.

References

1. Bacchus F., Kabanza F.: Using temporal logics to express search control knowledge
for planning. Artificial Intelligence 22:5-27. 1998.

2. Banbara M. Design and Implementation of Linear Logic Programming Languages.
Ph.D. Dissertation, The Graduate School of Science and Technology, Kobe Uni-
versity. 2002.

3. Bibel W., Cerro L. F., Fronhofer B., Herzig A. Plan Generation by Linear Proofs:
On Semantics. In proceedings of GWAI. 49–62. 1989.

4. Chrpa L. Linear Logic: Foundations, Applications and Implementations. In pro-
ceedings of workshop CICLOPS. 110-124. 2006.

5. Chrpa L. Linear logic in planning. In proceedings of Doctoral Consorcium ICAPS.
26-29. 2006.

6. Chrpa L., Bartak R. Towards getting domain knowledge: Plans analysis through
investigation of actions dependencies In proceedings of FLAIRS. 531–536.

7. Cresswell S., Smaill A., Richardson J. Deductive Synthesis of Recursive Plans in
Linear Logic. In proceedings of ECP. 252–264. 1999.

8. Doherty P., Kvanstrom J.: TALplanner: A temporal logic based planner. AI
Magazine 22(3):95-102. 2001.

9. Ghallab M, Nau D., Traverso P. Automated planning, theory and practice. Morgan
Kaufmann Publishers 2004. 2004.

10. Girard J.-Y. Linear logic. Theoretical computer science 50:1–102. 1987.

11. Girard J.-Y. Linear Logic: Its Syntax and Semantics. Technical report, Cambridge
University Press. 1995.

12. Hodas J. Linear Logic in Computer Science. Cambridge University Press. 2004.

13. Hickmott S., Rintanen J., Thiebaux S., White L. Planning via Petri Net Unfolding
In proceedings of IJCAI. 1904-1911. 2007

14. Hodas J. Logic Programming in Intuitionistic Linear Logic: Theory, Design, and
Implementation. Ph.D. Dissertation, University of Pennsylvania, Department of
Computer and Information Science. 1994.

15. Jacopin E. Classical AI Planning as Theorem Proving: The Case of a Fragment of
Linear Logic In proccedings of AAAI. 62–66. 1993.

16. Kautz H. A., Selman B.: Planning as Satisfiability. In proccedings of ECAI. 359-
363. 1992.

17. Kautz H. A., Selman B., Hoffmann J.: SatPlan: Planning as Satisfiability. In
proccedings of 5th IPC. 2006.

18. Korf, R. Macro-operators: A weak method for learning. Artificial Intelligence
26(1):35–77. 1985.

19. Küngas P. Analysing AI Planning Problems in Linear Logic - A Partial Deduction
Approach. IN proceedings of SBIA. 52–61. 2004.

20. Küngas P. Linear logic for domain-independent ai planning. Proceedings of Doc-
toral Consorcium ICAPS. 2003.

21. Lincoln P. Linear logic. Proceedings of SIGACT. 1992.

22. Masseron M. Tollu C., Vauzeilles J. Generating plans in linear logic i-ii. Theoretical
Computer Science. vol. 113, 349-375. 1993.

23. Oliet N. M., Meseguer, J. From petri nets to linear logic. Springer LNCS 389.
1989.

24. Tamura N. User’s guide of a linear logic theorem prover (llprover) Technical
report, Kobe University, Japan. 1998.

25. Tanabe M. Timed petri nets and temporal linear logic. In proceedings of Applica-
tion and Theory of Petri Nets. 156-174. 1997

26. Thielsher M.: FLUX: A logic programming method for reasoning agents. Theory
and Practice of Logic Programming 5(4-5):533–565. 2005.

This article was processed using the LATEX macro package with LLNCS style

