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Abstract: Numerous techniques for rolling bearing 

monitoring have been presented recently but the 

challenge lies in finding a reliable and price efficient 

monitoring system capable of providing an early alarm of 

bearing defects, thus, the purpose of this paper is to 

develop a more advanced approach using vibration signal 

to bearings monitoring based on TESPAR (Time Encoded 

Signal Processing and Recognition), the results show that 

TESPAR analysis when applied on its own to raw data 

vibration signal from different bearing conditions does 

not produce significant results, however, when combined 

with envelope signal provides an enhanced and novel 

method for detection of incipient bearing faults 

Keywords: Rolling bearing, vibration monitoring, condition 

monitoring, early alarm, TESPAR analysis, epochs. 

I. INTRODUCTION 

The implementation of machine condition monitoring 

(CM) has been growing significantly to enhance 

system performance and avert ruinous breakdowns. 

Numerous new CM methods have been proposed 

recently in which the key issue has been the application 

of efficient data analysis methods for precise 

determination of the machines‟ condition. 

The paper reports a new technique to detect and 

identify bearing faults using TESPAR singly and in 

combination. TESPAR distinguishes the shapes of 

signal waveforms and differentiates between them. 

This paper reports an experimental investigation of 

bearing diagnosis using TESPAR with raw time-

domain data, envelope analysis of the data and then 

combining TESPAR with envelope signal. Envelop 

analysis is particularly useful in extracting fault 

frequencies from bearings and, while using digital 

filtering and Fast Fourier Transforms (FFT) which 

require a large memory to contain all the sampled data, 

has produced useful results. It was chosen to combine 

with TESPAR because both techniques identify 

patterns in the data sets and thus complement each 

other [1]. 

This paper assesses the performance of the three 

methods for a roller bearing with three incipient faults 

seeded into it. It is shown that, using bearing vibration 

signals the combination of TESPAR and envelope 

analysis attains classification results that cannot be 

reached by either method alone.  

II. TIME ENCODED SIGNAL 

PROCESSING AND RECOGNITION 

(TESPAR) 

TESPAR is a digital language that originated as a 

means of coding signals for speech recognition [4]. 

TESPAR depicts signal waveforms according to its real 

and complex zeros based on a mathematical waveforms 

representation which is different from conventional 

CM techniques. 

TESPAR quantisation procedure has been developed to 

code signals according to the period between two 

consecutive zero-crossings and the shape of the curve 

thus contained [6, 7]. This period is named an epoch. 

Every epoch can be illustrated by two parameters: D 

(duration - number of samples in the epoch) and S 

(shape – determined by the number of minima or 

maxima contained in the epoch). Fig. 1 shows an epoch 

encoded into its TESPAR parameters where D=17 and 

S=2.  

 

 

 

 

 

 

 

 

Figure 1. TESPAR single epoch with D=17, S=2 

Most signal waveforms can be coded into a limited 

sequence of numerical descriptors known as the 

TESPAR symbol stream [8, 9], normally from 1 to 28. 

In fact 28 symbols have been found to be sufficient to 

describe most signals adequately. The symbol sequence 

can be characterised in two ways: A one-dimensional 

“S-Matrix” vector or two-dimensional vector which is 

named the “A-Matrix”.  

The S-matrix can be defined as the TESPAR symbols 

that record the number of times each TESPAR alphabet 

symbol occurs in the TESPAR symbol stream, and the 

A-matrix can be defined as a two-dimensional 28x28 

vector matrix that records the number of times each 

pair of symbols in the alphabet appears n symbols apart 

in the symbol stream. The A-matrix expresses the 
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temporal relationship between pairs of symbols [7] and 

because parameter n represents the delay between 

symbols it provides frequency information. Slowly 

oscillating patterns have n > 10 while higher frequency 

patterns have n < 10 [10]. 

In practice for most signal waveforms the TESPAR 

symbol stream is a limited sequence of numerical 

descriptors significantly less than 28 [8, 9].  

III. BEARING TEST FACILITIES 

To assess the use of TESPAR in bearing fault detection, 

bearing vibration data was acquired from the bearing 

test rig shown in Fig. 2. This consists of a 3-phase 

electrical induction motor combined with a dynamic 

brake; the stator is free to move so that torque 

measurements may be taken. The motor is connected to 

the brake through 3 shafts that are connected by two 

pairs of matched flexible couplings. These three shafts 

are held in two bearing housings, one has a cylindrical 

roller bearing type N406 and the other is a double row 

self-aligning type 22208 EK. It is the roller bearing that 

is tested with different faults. 

 

Figure 2. Bearing test rig 

Table I lists the specification of the roller bearing. It is 

a common bearing used for high radial loads. This kind 

of bearing is convenient for this type of research 

because different faults can be easily simulated, and 

each fault has its characteristic frequencies. 

Table I. Bearing N406 specification 

Elements Dimension Characteristic Frequency 

Roller diameter 14mm Outer race = 83.3Hz 

Rollers‟ number 9 Roller element = 48.3Hz 

Contact angle 0˚ Inner race = 134.4Hz 

Pitch diameter 59mm Cage frequency=9.5Hz 

In this paper, a healthy bearing was compared with 

three identical bearings, each with a fault introduced to 

outer race, inner race and roller element respectively. 

The four bearings were tested at shaft rotational speed 

of 1420 rpm (frequency 23.6Hz) under 50% of torsion 

load from a DC motor of a maximum 4.0 KW, and 5 

bar of radial load that is equivalent to 433 Nm load. 

The faults were small scratches of 30% of the bearing 

width and 0.1 mm in depth which was introduced to the 

outer race, inner race and the roller element of three 

tested bearings, each bearing is with one fault. These 

faults are considered as incipient faults because it 

causes no influence on the operating performance. 

IV. DATA SETS 

Four experiments were performed to acquire data for 

four bearing conditions: healthy, inner fault, outrace 

fault and roller fault. Each experiment acquired data at 

a sampling rate of 62.5 kHz. The data length for each 

test was 960,000 points. 

Figure 3. Raw data for a health and three small different faults 

To evaluate the quality of the data, commonly used 

spectrum analysis is performed on the datasets which 

exhibit little information of the bearing in the time 

domain because of high noise contamination. Fig. 3 

shows the data spectrum of raw data for the healthy 

and three small different bearings‟ faults. It shows that 

the signal is dominated by the shaft frequency at 24.3 

Hz and its high order harmonics and it is difficult to 

identify the bearing feature frequencies from the 

spectrum. This shows that the bearing signal is very 

weak components and need to be enhanced so that the 

performance of TESPAR can be evaluated with good 

confidence. 

It is well know that the most popular method for 

bearing monitoring is envelope analysis. Fig. 4 shows 

the envelope spectrum of the datasets in the frequency 

band from 8kHz to 15kHz. The spectra of the roller and 

the inner race faults are quite clear as shown in Fig. 4(c) 

and Fig. 4(d) respectively. The roller and the inner race 

characteristic faults‟ frequencies are identified at 48.3 

Hz and 134.4 Hz respectively. 
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Figure 4. Envelope spectrum for a health and three different faults 

When a bearing has no fault it usually has very small 

vibration amplitudes in the time domain. Moreover, the 

characteristic frequencies cannot be seen in envelope 

spectrum. This can be illustrated by the blue solid line in 

Fig. 4(a). Compared with faulty case in the same plots, 

the envelope spectrum from the healthy bearing is very 

flat, i.e. no clear spectral lines can be seen. In Fig. 4(b) 

the spectra, represents the tiny outer race fault, seems to 

be smooth and there is insignificant amplitude which 

cannot be seen easily from the figure.  

V. TESPAR ANALYSIS OF RAW DATA 

Having confirmed that the vibration data sets include 

bearing faults information, they were encoded into 

their TESPAR symbol streams and then their S and A-

Matrices were constructed by a programme written in 

the Matlab platform. To make comparison between 

different cases, the Matrices are normalised to the total 

number of symbols. In total, there are four sets of S-

Matrices and four A-Matrices corresponding to healthy, 

outer race fault, roller fault and inner race fault 

respectively. In addition, both the raw data and the 

envelope data are explored with TESPAR to evaluate 

its noise sensitivity.  

A. TESPAR S-Matrices for raw data 

Comparison of the S-Matrices in Fig. 5 shows that 

there is a difference on TESPAR symbols 2 and 6 that 

is consistent with fault conditions. In particular, the 

occurrence rates of symbol 2, 3 and 6 are different 

between four bearing cases. Based on these differences, 

the faulty cases can be identified completely. This 

means that 3 feature parameters can be used directly to 

diagnose the faults. 

However, the occurrence rates of other symbols do not 

show a consistent change and not suitable for 

separating the fault cases. 

 

Figure 5. TESPAR S-Matrices for raw data of a healthy 

and three different faulty bearings  
 

B. TESPAR A-Matrices for raw data 

The A-Matrix represents the waveform in two-

dimensions, for the case n=2 the matrix shows the 

number of pairs two steps apart. The n attribute is 

known as the delay between symbols. Here n = 2, but 

many other A-Matrices can be formed from the same 

waveform by changing the value of n. 

Fig. 6 shows the A-Matrices of the same bearing 

conditions. The patterns for the outer race and the roller 

faulty bearings appear very similar, where the other 

patterns are markedly different. From this data set is 

would be difficult to detect incipient outer race and 

roller faults using the A-Matrix.  

It should be noted however, that the A-Matrix for the 

inner fault showed quite different pattern for the four 

bearings which suggests that use of the TESPAR A-

Matrices with raw data could be used to detect this 

particular faults.  
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Figure 6. TESPAR A-Matrices for raw data of a healthy and three 

different faulty bearings 

 

VI. TESPAR ANALYSIS WITH 

ENVELOPE SIGNAL 

Fig. 4 shows that envelope analysis alone did not show 

any significant difference between the healthy bearing 

and the incipient outer race faulty bearing. 

A. TESPAR S-Matrices for envelope signal 

Fig. 7 shows the S-Matrices patterns for the combined 

TESPAR-envelope analysis for the reference bearing 

and for three different initial fault locations. Both the 

differences between individual symbol values and 

between the overall trends for the healthy bearing and 

the bearing with different incipient faults‟ locations are 

highly significant.  

Fig. 7 shows unambiguously that the S-Matrix patterns 

allow clear differentiation of the healthy bearing from 

the incipient faulty bearings in particular the initial 

outer race fault which was not detected by envelope 

analysis independently. 

However, it is also possible, based on Fig. 7 to 

differentiate between the initial bearings fault by using 

the relative values at s = 2, 5, 6 and 8 which show the 

best features. 

 

 

Figure 7. TESPAR S-Matrices for envelope signal of a healthy 

and three different faulty bearings  

 

B. TESPAR A-Matrices for envelope signal 

The patterns are discernible in the A-Matrices shown in 

Fig. 8, they provide clear and obvious differences for 

the separation between the healthy bearing and the 

bearings with three different initial fault locations. 

 

Figure 8. TESPAR A-Matrices for envelope signal of a healthy 

and three different faulty bearings  

Trends in the patterns in A-Matrices shown in Fig. 8 

provide very good features to separate fault locations. 

The healthy pattern has the highest amplitude where 

the small faulty bearings have much lower amplitudes. 

The outer race faulty pattern acquired higher amplitude 

than the other faults; in particular the inner race faulty 

pattern gained the lowest amplitude. 

Therefore, with the introduction of faults the position 

of the peak changes between the different conditions as 

displayed in Fig 9. Since the fault causes the peak to 

change both in position and magnitude such changes 

will definitely detect incipient faults.  

 

Figure 9. TESPAR A-Matrices for envelope signal of a healthy 

and three different faulty bearings from different angle 
  

VII. CONCLUSION 

The TESPAR performance in monitoring bearing faults 

has been assessed with raw data and combined with 

envelope signals. The results attained from TESPAR 

and raw signals show that S-Matrices permit fault 

detection; however, the A-Matrices cannot produce a 

full diagnosis of the data for classifying fault types. By 

contrast, the use of TESPAR with envelope analysis 

both S and A-Matrices allow full defects separation. 

Hence, this method is most promising and results were 

obtained show that the combined TESPAR with 

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
S-Matrices from Envelope Signal

TesPar Symbol

N
o
rm

a
lis

e
d
 O

c
c
u
re

n
c
e

 

 

Healthy

Outrace Fault

Roller Fault

Innerrace Fault

0
5

10

0
5

10

0

0.2

0.4

0.6

Symbol

(a) A-Matrix for Healthy

Symbol

N
o
rm

a
lis

e
d
 O

c
c
u
re

n
c
e

0
5

10

0
5

10

0

0.2

0.4

0.6

Symbol

(b) A-Matrix for Outrace Fault

Symbol

N
o
rm

a
lis

e
d
 O

c
c
u
re

n
c
e

0
5

10

0
5

10

0

0.2

0.4

0.6

Symbol

(c) A-Matrix for Roller Fault

Symbol

N
o
rm

a
lis

e
d
 O

c
c
u
re

n
c
e

0
5

10

0
5

10

0

0.2

0.4

0.6

Symbol

(d) A-Matrix for Innerrace Fault

Symbol

N
o
rm

a
lis

e
d
 O

c
c
u
re

n
c
e

0

5

10 0

5

10

0

0.2

0.4

0.6

0.8

Symbol

(a) A-Matrix for Healthy

Symbol

N
o
rm

a
lis

e
d
 O

c
c
u
re

n
c
e

0

5

10 0

5

10

0

0.2

0.4

0.6

0.8

Symbol

(b) A-Matrix for Outrace Fault

Symbol

N
o
rm

a
lis

e
d
 O

c
c
u
re

n
c
e

0

5

10 0

5

10

0

0.2

0.4

0.6

0.8

Symbol

(c) A-Matrix for Roller Fault

Symbol

N
o
rm

a
lis

e
d
 O

c
c
u
re

n
c
e

0

5

10 0

5

10

0

0.2

0.4

0.6

0.8

Symbol

(d) A-Matrix for Innerrace Fault

Symbol

N
o
rm

a
lis

e
d
 O

c
c
u
re

n
c
e

306



envelope approach is more sensitive than either used 

separately. 

VIII. REFERENCE 

[1] M.H. Geoge, “TESPAR Paves the Way to              

Smart Sensor”, Sensor Review, MCB University Press., 

Vol.17, No. 2, 2007. 

[2] V.V. Vu, P.J. Moss, A.N. Edmonds, and R.A.  King, 

“Time Encoded Matrices as Input Data to Artificial 

Neural Networks for Condition Monitoring 

Applications”. Proceedings of COMADEM ‟91, 

Southampton, July 1991. 

[3] G.M. Rodwell and R.A. King, TESPAR/FANN 

Architectures for low-power, low cost Condition 

Monitoring Applications. Proceedings of COMADEM 

„96, Sheffield, July, 1996. 

[4] R.A. King and W. Gosling, Electronic Letters, Vol. 

14, pp.456-457, 1978  

[5] R.A. King and T.C Phipps, Shannon, TESPAR and 

Approximation Strategies, ICSPAT 98, Vol. 18, pp 

445-453, Great Britain 1999. 

[6] J.C.R. Licklidder, I. Pollack, Effects of 

Differentiation, Integration and Infinite Peak Clipping 

upon the Intelligibility of Speech, Journal of the 

Acoustical Society of America, Vol. 20, no. 1, pp42-51, 

Jan 1948. 

[7] E.C. Titchmarsh, The Zeros of Certain Integral 

Functions, Proc. Progress. Math.Soc., Vol. 25, pp. 283-

302. 

[8] M.T. Hagan, H.B. Demuth and M. Beale, Neural 

Network Design, International Thomson Publishing, 

1995. 

[9] S. Yang, M.J. Er, and Y. Gao, A High Performance 

Neural-Network-Based Speech Recognition System, 

Proceeding of International Joint Conference on Neural 

Networks, Vol 2, 2001, pp1527.  

[10] L.R. Rabiner and B-H. Juang, Fundamentals of 

speech recognition. Englewood Cliffs, N.J.: PTR 

Prentice Hall, 1993. 

307




