
University of Huddersfield Repository

Naveed, Munir, Crampton, Andrew, Kitchin, Diane E. and McCluskey, T.L.

Real-Time Path Planning using a Simulation-Based Markov Decision Process

Original Citation

Naveed, Munir, Crampton, Andrew, Kitchin, Diane E. and McCluskey, T.L. (2011) Real-Time Path
Planning using a Simulation-Based Markov Decision Process. Research and Development in
Intelligent Systems XXVIII Research and Development in Intelligent Systems XXVIII . Springer,
London. ISBN 978-1-4471-2317-0

This version is available at http://eprints.hud.ac.uk/id/eprint/11200/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Real-Time Path Planning using a
Simulation-Based Markov Decision Process

M. Naveed, A. Crampton, D. Kitchin and T.L. McCluskey

Abstract This paper introduces a novel path planning technique called MCRT
which is aimed at non-deterministic, partially known, real-time domains populated
with dynamically moving obstacles, such as might be found in a real-time strat-
egy (RTS) game. The technique combines an efficient form of Monte-Carlo tree
search with the randomized exploration capabilities of rapidly exploring random
tree (RRT) planning. The main innovation of MCRT is in incrementally building
an RRT structure with a collision-sensitive reward function, and then re-using it to
efficiently solve multiple, sequential goals. We have implemented the technique in
MCRT-planner, a program which solves non-deterministic path planning problems
in imperfect information RTS games, and evaluated it in comparison to four other
state of the art techniques. Planners embedding each technique were applied to a
typical RTS game and evaluated using the game score and the planning cost. The
empirical evidence demonstrates the success of MCRT-planner.

1 Introduction

Real-Time Strategy (RTS) games are complex real-time concurrent systems where
players build societies and engage in simulated combat to capture territory and ex-
plore the game world to collect resources. Path planning is a challenging task that
is required frequently in RTS games by human or AI players. The key challeng-
ing aspects of path planning problems in RTS games are tight time constraints,
limited CPU and memory, partial visibility, and large and dynamic game worlds.
These domains require an automated planner to solve planning problems with non-

Munir Naveed, University of Huddersfield, e-mail: m.naveed@hud.ac.uk,
Andrew Crampton, University of Huddersfield, e-mail: a.crampton@hud.ac.uk,
Diane Kitchin, University of Huddersfield, e-mail: d.kitchin@hud.ac.uk,
Lee McCluskey, University of Huddersfield, e-mail: t.l.mccluskey@hud.ac.uk

Naveed et al.

deterministic effects. Markov Decision Process (MDP) is a common planning for-
malism used to represent planning problems in nondeterministic domains. MDPs
can be solved using either Dynamic Programming (DP) [3] or Monte-Carlo Sim-
ulations [20]. The current dynamic programming based planners such as mGPT
[6] are applicable in domains that are modeled in a specific planning language (e.g.
Probabilistic planning domain language) and all transition probabilities in the do-
main must be available before planning is started. The transition probabilities are
used in DP to calculate the state values. Monte-Carlo (MC) planning requires only a
simulation model that can generate a sequence of samples (of states or actions) ac-
cording to the desired sampling distribution and a reward function to evaluate them.
MC Planning uses the average rewards (of the samples) to estimate action (or state)
values rather than using the pre-computed transition probabilities in a stochastic
domain. Therefore, MC Planning does not need the availability of transition prob-
abilities before the start of planning. The modeling of a RTS game in a planning
language is a challenging task. MC planning is suitable for RTS games as it is easy
to build a simulator for the game.
The main challenging issue in MC planning is the adjustment of the balance be-
tween the exploration of new actions and exploitation of the previously discovered
promising actions. A recent MC planning approach called Upper Confidence bounds
applied to Trees (UCT) [14] uses the selective action sampling approach to control
the trade-off between exploration and exploitation. UCT exploits the best actions to
generate the look-ahead search tree in a Monte-Carlo simulation. An action is best
if its estimated value is higher than other applicable actions at a state. UCT main-
tains exploration by using a domain-dependent constant and the number of times
an action is sampled since the start of the simulations. UCT has been an effective
planning approach in domains where the reward of the state-action pairs is in the
range of [0,1] e.g. Go [10]. In RTS games, the action values can be greater than
this range [1]. UCT in its original form is not suitable for RTS games. The varia-
tions of UCT have been explored in RTS games for tactical assault planning [1]
and path planning [19]. In this paper, we extend the work of [19] with the following
contributions:

1. We introduce a new domain-independent way of controlling the trade-off be-
tween exploration and exploitation in the Monte-Carlo simulations. The new ap-
proach combines the exploration feature of rapidly-exploring random trees (RRT
[18]) with the exploitation scheme of UCT. The look-ahead tree in a simulation
is built by performing exploitation and exploration in a sequence. The new ap-
proach is called MCRT search.

2. The paper presents a new path planner - called MCRT Planner - that uses MCRT
search. MCRT planner is a real-time path planner that interleaves planning and
plan execution. MCRT planner also incrementally builds a tree to reuse the
searching efforts.

3. We provide an empirical study of MCRT planner in a typical RTS game and
compare its performance with its close rivals: UCT, RRT, Real-time Dynamic
Programming (RTDP) [2] and LSS-LRTA* [15]. The performance is evaluated
using the game score and the number of states explored during the planning.

Real-Time Path Planning using a Simulation-Based Markov Decision Process

The experimental results demonstrate the success of MCRT planner over its rival
techniques.

2 Problem Formulation

The class of problems we consider are typical of autonomous agent path planning
in RTS games. It is assumed an agent knows the size of the world, its position and
velocity (collectively called its state), the position of its target goal states, and the set
of obstacles that are within the pre set limits of its sight (which takes into account
occlusion by obstacles blocking places it would normally see). The set of obstacles
include both static and dynamic obstacles. The dynamic obstacles make the agent’s
moves non-deterministic. We formulate the path planning problem as a simulation-
based Markov Decision Process (MDP) [20]. It is represented as (S,A,T,Q,so,G)
where S is a finite set of states, A is a finite set of actions, T is a stochastic state
transition function, Q(s,a,h) represents the estimated value of the action a ∈ A(s)
over a finite horizon h at state s, so is the initial state and G is the set of the goal
states. For any state s ∈ S, we define A(s) to be the set of applicable actions at s
where A(s) ⊂ A. The stochastic transition function T is a function of a state-action
pair that randomly selects a next state for the input state-action pair. For example,
for the current state s and action a, T selects a state snext randomly from all successor
states of s that are possible to reach with a.

snext = T (s,a) (1)

An action a is encoded as (dx,dy,u) where dx ∈ {−1,0,1},dy ∈ {−1,0,1} and u is
the speed of the movable agent. V (s) represents the value of the state s.The value of
a state s is measured using the estimated action values.

V (s) = maxaQ(s,a,h) (2)

The stochastic transition function T is built using a probability distribution P. P is
used to estimate the transition probabilities in the state space. A transition prob-
ability p(si,a,s j) ∈ P represents the probability of moving an agent to s j when
a ∈ A(si) is applied at si. P is updated during online planning using a frequency
based approach [2] and is given in (3).

p(si,a,s j) = N(si,a,s j)/N(si,a) (3)

where N(si,a,s j) is the total number of times action a is selected at si to move
to s j and N(si,a) is the total number of times a is selected at si since the start of
the planning task. The exception to this is that a move to an occupied state has
the probability 0. In stochastic transition function T , the states with high transition
probabilities have more chances of selection than the states with low probabilities.

Naveed et al.

3 The MCRT Search

MCRT search has been designed to find a new domain-independent way of handling
the exploration and exploitation trade-off in the Monte-Carlo simulations and to in-
troduce a multi-objective reward function. MCRT search evaluates an action with
respect to two objectives. The first objective is to reduce the distance to the goal
state and other is to avoid the collision with the static objects. Tuning the domain
specific parameters (e.g. UCT uses one parameter) to balance the exploration and
exploitation in a domain requires an offline empirical work. Such empirical work
is a cumbersome and time-consuming task in RTS games. An investigation to find
a domain independent way of managing the exploration and exploitation is crucial
for RTS-type domains. Path planning in RTS games is not only required to find the
shortest path but also to handle other issues e.g. to avoid areas occupied by static
objects or enemy units. Intuitively, a multi-objective reward function is suitable for
RTS games.
MCRT is a local search algorithm that is designed for planners that interleave plan-
ning and plan execution. MCRT search starts by finding the local search space for
the current state of the planning agent. The size of the local space for a state s
is |A(s)|. The value of each neighbouring state in the local space is measured at
least once using the Monte-Carlo simulations. The Monte-Carlo simulations are
performed for a fixed time duration. The simulation time is independent of the size
of the search space. In every simulation, the look-ahead depth is kept finite and fixed
to keep MCRT a real-time search method. In the simulations, the non-deterministic
transition function is used to estimate the value and effects of sampled action. The
value of each state is calculated using (2). At the end of the simulations, MCRT
selects the action to move the agent to the neighbouring state that gains the highest
value since the start of the simulations. Ties are broken by random selection.

3.1 Algorithmic Details

The MCRT technique borrows the idea of the generic Monte Carlo algorithm given
in [14] and integrates it with the RRT sampling technique [18] for applications in
path planning. Based on the problem formulation, the current state (i.e. sc), and the
current target goal (g), the MCRT function (Figure 1) returns the action it evaluates
to be the most promising. It has access to system parameters that are calculated to
take into account the real-time characteristics of the application to which MCRT is
applied: the look-ahead depth, the time elapsed and its allowed cycle time. MCRT
starts (line 1, Figure 1) by initialising the set S of (state,reward) pairs, where state
is a neighbour of sc, the current state. The repeat loop iterates as long as the real-
time constraints allow. The ChooseNeighbour function (line 3) selects which sn will
be used for expansion: the choice is initially random from the set of unexpanded
neighbouring states of state sc, but once all neighbouring states have been seen it
selects the neighbouring state with the highest reward value currently recorded in

Real-Time Path Planning using a Simulation-Based Markov Decision Process

S. After each call to the RewardSim function is made (line 4), S is updated with a
new reward value for a particular neighbour sn. After the simulations have finished,
line 7 determines sbest , the neighbour with the maximum estimated reward. Line 8
returns the action a which is aimed in the direction of neighbour sbest . We assume
a is unique as the actions are directional (i.e. only one action at sc is for the motion
in the direction of sbest). Key to MCRT is the simulation procedure RewardSim

Function MCRT (sc,g)
Read access depth, timelimit;
1. S := {(s,0) : s is a neighbour of sc};
2. REPEAT
3. sn :=ChooseNeighbour(sc);
4. rn := RewardSim(sn,g,depth,1);
5. Update S with (sn,rn)
6. UNTIL (ElapsedTime()> timelimit);
7. find (sbest ,rmax) ∈ S : (s,r) ∈ S⇒ rmax ≥ r;
8. RETURN the action a that aims towards sbest
End MCRT

Fig. 1: High Level Design of MCRT

(Figure 2) which estimates the reward of moving to sn. This is adapted from the
generic Monte Carlo algorithm given in [14]. The latter work introduced a bandit
algorithm for this, whereas we adapt the technique to RTS games using a novel
reward estimator which takes into account potential collisions, and a static estimate
involving distance from the goal. RewardSim expands a look-ahead tree from the
neighbouring state sn of current state sc, by generating random samples of states,
and accumulating rewards as it searches, as explained below. The main recursive

Function RewardSim(sn,g,depth,d)
Read access MDP;
1. IF d 6= depth THEN
2. srand := RandomSample();
3. a := SelectAction(sn,srand);
4. [snext ,rw] := SimulateAction(sn,a,g);
5. RETURN rw+RewardSim(snext ,g,depth,d +1)
6. ELSE RETURN 1/dist(sn,g)
End RewardSim

Fig. 2: RewardSim: MCRT Look-ahead Search

loop of RewardSim starts in line 2 where a state position srand is chosen at random
from any position on the map excluding (i) the agent’s position (ii) the position
of any obstacle that the agent can see. An action is selected to progress towards
srand using a function called SelectAction. This finds the neighbour of sn which is

Naveed et al.

nearest to srand using the Euclidean metric, and selects an action which is aimed
towards the neighbour of sn. A state snext is generated that might be produced by the
execution of this action in the SimulateAction explained below, and the estimated
reward of that state is returned. The recursive call sums a series of rewards for each
of the advancing states, with a base case calculating the reward statically as the
inverse Euclidean distance from s to the target. The function SimulateAction returns

Function SimulateAction(sn,a,g)
Read access MDP,Wd ;
1. snext := Transition(sn,a);
2. rw := ‖{t : p(sn,a, t))> 0}‖/(Wd ∗dist(snext ,g));
3. return[snext ,rw]
End SimulateAction

Fig. 3: Simulate Action

a randomly selected state snext that the agent may occupy after execution of action a,
and the estimate of the reward in moving to the new state snext . The simulator uses
the probability distribution P to estimate the outcome of an action. A state snext is a
possible new state after the execution of action a at s if p(sn,a,snext)> 0. Transition
(line 1 in Figure 3) assembles a list of the possible new states, and selects the next
state snext randomly from the list, where the random choice takes into account the
probability that the state is reached by the execution of a. Thus the higher the chance
a state would be reached, the more likely it is to be chosen. In line 2 the reward for
that state is calculated; the idea is that the larger the list of possible new states is
for an action, then the higher the reward. This is based on the intuition that a larger
list indicates there are likely to be less obstacles present in that action’s direction
of travel (and thus less chance of future collisions). The size of the list is divided
by dist(snext ,g), the Euclidean distance to the goal g from the new state snext , as
the further away, the less the reward. Finally the reward is given a scaling factor
Wd which normalises the relationship between the collision-free path and distance
to goal: for a particular application of MCRT, this would be tuned to balance the
importance of directing towards collision free paths with minimising the Euclidean
distance to goal states.
Figure 4 shows a grid example of MCRT search with look-ahead of depth 5. The
search starts at S and determines the immediate neighbours of S (line 1, Figure 1).
These neighbours are labeled as 1.1 in Figure 4 (in Figure 4, label X.Y means that
the state is produced by Figure X in line Y). If S is seen for the first time, then a
neighbour is selected randomly (line 3, Figure 1). Suppose the randomly chosen
neighbour is E2. Then MCRT runs MC simulations (RewardSim) to estimate the
reward for the transition from S to E2. RewardSim expands the look-ahead search
using the RRT sampling approach. A state, say C9, is selected randomly at look-
ahead depth d = 1 from the state space (according to line 2 of Figure 2). An action a
is selected to expand E2 towards C9. The action a is simulated (line 4, Figure 2) and
an outcome of a is estimated using the probability distribution. In the example, D3 is

Real-Time Path Planning using a Simulation-Based Markov Decision Process

Fig. 4 An MCRT Example:
S is the current state, G is
the goal state and d is the
look-ahead depth. The cells in
Black are the static obstacle.

assumed as the estimated next state of E2 when action a is applied. The simulation
also estimates and stores a reward for the state-action pair i.e. (E2, a). The depth
of the look-ahead search is increased and RewardSim is run from the next state i.e.
D3. An action a at D3 is selected according to the second random sample, say L7,
and simulated to estimate the reward and the next state of D3 with action a, and this
reward is added to the previously stored reward. This process continues until look-
ahead search reaches a depth of five. The next state at depth five is a leaf node of the
look-ahead search. In Figure 4, G4 is the leaf node of the look-ahead search, and is
evaluated using line 6 of Figure 2. The evaluated value is added to the accumulated
reward and used as the final value of the reward for the transition from S to E2. The
simulations are continued for the maximum allowed time.

4 An MCRT-based Path Planner

In this section we describe how to embed the MCRT technique into a real-time path
planner with a list of goal states to visit. The planner is supplied with information
described in the “Problem Formulation” section above, and interleaves planning and
execution as follows. Lines 1 and 2 (Figure 5) initialise a RRT tree structure (T). At
the start of the planning loop in line 4, “pop g from G” has the effect of assigning
g to the head of list G, and reducing G. If G is found to be empty, then the “pop”
function will exit the loop and the program will end. The planner proceeds in two
stages: in the first stage (lines 5 - 10), the RRT tree structure is populated using the
MCRT technique, interleaved with action execution (line 9).
The RRT structure T builds up a tree of the collision free states of the search
space within S, as it is possible that s can be revisited if (a) states are retraced (b)
Execute(a,s) leaves s unchanged - where there is an obstacle. T is expanded with an
edge from s to snext if it passes the Valid test: this test returns true unless snext already
appears in T , or if s already has a child edge in T that has a greater estimated reward
than snext . In either case, the returned action is executed on s and the new state of
the agent recorded. After the first stage achieves the first goal, the planner enters

Naveed et al.

Procedure MCRT Planner
Read access MDP formulation (S,A,P,R,so,G);
1. initialise tree T := null and state s := so;
2. T.AddRoot(s);
3. WHILE G is not Empty
4. pop g from G;
5. REPEAT
6. a := MCRT (s,g,d,n);
7. snext := Transition(s,a);
8. IF Valid(snext ,s,T) THEN T.addnode(s,snext);
9. s := Execute(a,s)
10. UNTIL s.pos = g;
11. pop g from G;
12. REPEAT
13. a := LocalPlanningMethod(s,g,T);
14. snext := Transition(s,a);
15. IF ObstacleFree(snext)
16. THEN s := Execute(a,s)
17. ELSE T.remove(snext);
18. IF s.pos = g THEN pop g from G
19. UNTIL ¬ObstacleFree(snext)
20. END WHILE
End MCRT Planner

Fig. 5: MCRT-Planner

the second stage. In the second stage (lines 12 - 19), the planner exploits the fact
that T has been built up in the first phase, searching T to find the path to the next
goal state from the current location. The local planning method (line 13, Figure 5)
is a breadth first search of fixed depth to find an action to the neighbouring state of
the current state which reduces the distance to the next goal state. If the simulation
of action a (utilizing the Transition described above) changes the agent’s state to a
state which is obstacle free, then that action is actually executed, otherwise the state
is removed from the tree. The planner leaves the second stage and starts running the
first stage again if s is occupied by an obstacle. This interchange between stage one
and two continues until the end of the game when all goal states have been reached,
or a fixed time bound is reached for the game.

5 An RTS game

As an application we use RC-RTS, a typical real-time strategy game that has been
developed using the Open Real-Time Strategy (ORTS) game engine [8]. ORTS pro-
vides an appropriate environment for studying real-time AI problems such as path
finding and imperfect information. RC-RTS is a resource (minerals) collection game
characterised by multiple goals, partial observation, and non-deterministic actions.

Real-Time Path Planning using a Simulation-Based Markov Decision Process

Fig. 6 RC-RTS with Map 2.

It incorporates dynamically changing objects (tanks and bugs, which move ran-
domly), and partially known static obstacles (ridges, water ponds, nurseries, gey-
sers, communication towers and military barracks). An AI client controls workers
who have to collect the minerals and return them to a control centre. With their vi-
sion restricted to only eleven tiles in any direction, they must find a path from their
start location to the mineral cluster, pick up ten pieces of the minerals – gaining ten
points for doing so – and then find a path from the mineral cluster back to the con-
trol centre. A worker who successfully returns minerals to the control centre gets a
further twenty points. A sample of the game map is shown in figure 6.

6 Related Work

The path planning problem has been extensively studied in the area of computer
games. Optimal path planning approaches like A* [11], way-points and naviga-
tional mesh are not applicable in the RTS games due to the time constraints and
incomplete information of the game world. Learning real-time A* (LRTA)[16] is a
real-time heuristic search planner that is designed for solving the planning problems
in real-time. LRTA searches for an action using a look-ahead of depth one. LRTA
also updates the heuristic value of the current state in a planning episode. The main
drawback of LRTA is its easily getting trap into heuristic depression (HD) [13, 12].
HD makes real-time heuristic search get stuck in a small region due to the inappro-
priate heuristic values of the states in that region. It takes several searching efforts of
the planner to escape a HD. The recent variation of LRTA e.g. LRTS [7], LSS-LRTA
[15] and aLSS-LRTA [12] have been designed to escape HD. However, these varia-
tions require a lot of searching efforts to escape HD or to avoid it. LRTS increases
the look-ahead depth to escape from HD. LSS-LRTA* [15] uses A* to identify the
look-ahead search space of fixed depth in the current vicinity of the planning agent
and then updates the heuristic values using Dijkstra’s approach [9]. LSS-LRTA is
faster than LRTS because it updates the heuristic values of all the edges seen during
the look-ahead search. Another notable characteristic of LSS-LRTA is its better per-

Naveed et al.

formance than D* Lite on static maps. aLSS-LRTA is a variation of LSS-LRTA that
avoids HD by appropriately selecting the best state (in a look-ahead search). How-
ever, LSS-LRTA and aLSS-LRTA do not decrease the action costs if required due to
a dynamic change in the game world. Due to these drawbacks, LSS-LRTA and its
variation can be expensive for path planning in dynamic worlds. MCRT search does
not get stuck in small regions due to its exploration capabilities. The action values
of a state are decreased or increased by MCRT search according to the current set-
tings of the environment. This makes MCRT search suitable for dynamic worlds. A
recent variation of LRTA called Real-Time D* (RTD*) [4] handles the problem of
the increase and decrease of an edge cost due to the dynamic change in the domain.
Real-Time D* uses bidirectional search, combining real-time and dynamic search,
which allows it to react to dynamic changes in the world and update the heuristic
values accordingly. It seems a promising approach but the main reason for not using
RTD* in our domain is its dependency on backward global search. MCRT is also
applicable in the high dimensional search spaces [18] due to its RRT based sampling
capabilities.

7 Experimental Setup

We have designed a set of experiments which test the MCRT technique against four
of its main rivals: RRT, UCT, LSS-LRTA* and RTDP. Ten tests have been per-
formed on three different game maps; each with a grid of size 60×60. The criteria
that we have used to evaluate the performance of each planning method, within
the RTS environment are: Score – which measures the total amount of mineral re-
covered by the workers and Planning Cost – which represents the total number of
states visited by the planner during the planning process for the whole game. As
success in many games is measured by who gets the highest score, we naturally
consider the first of these to be the most important performance indicator. The level
of difficulty is controlled by constructing maps with differing numbers of static and
dynamic obstacles and by introducing a successively increasing number of narrow
passages and ridges. The complexity of the environments created for each of the
three test maps used in our experiments are shown in table 1. Each of the plan-

Table 1: Environment variables set for each test map.

Map Static Dynamic Narrow Ridges Water
Obstacles Obstacles Passages Tiles

Map 1 12 9 4 5 3
Map 2 16 10 5 5 3
Map 3 17 16 7 6 3

ners (except RRT) require some parameters to be tuned off-line for an application

Real-Time Path Planning using a Simulation-Based Markov Decision Process

domain, and in particular we found that different planners perform better for differ-
ent look-ahead depths. We decided to make the comparisons between planners with
each one performing optimally. For UCT the trade-off parameter Cp was set to 0.1
(see [14]). A look-ahead depth of four was chosen for MCRT and UCT, a depth of
seven for RTDP and a depth of nine for LSS-LRTA*. In our experiments, RRT has
been implemented as detailed in [17]. The RRT structure is expanded heuristically,
using random samples, towards a nearest neighbour. We use Euclidean distance as
a heuristic to expand the tree. This means that given the current state, a neigbouring
state that is nearest to the random state is selected and added into the tree if it is
collision free (i.e., not occupied by a static obstacle). Once the first goal is achieved
then RRT re-uses the constructed tree to plan the path to subsequent goals (this is a
two stage planner similar to MCRT). The resulting tree can be thought of as having
a similar structure to that of traditional way-points. For UCT, we have implemented
the algorithm given in [14] but with some variations. These variations are made due
to the time-constraints and the presence of multiple goals in a planning problem.
UCT uses the same reward function as given in MCRT. To reuse the outcomes of
previous searches in UCT, the estimated action values for each goal are stored in a
separate vector for future use. RTDP is implemented using the details given in [2]
and [5]. RTDP formulates the path planning problem as a Markov Decision Process
and tunes the policy (a mapping from states to actions) during the online search;
we use hash tables to store the policy values. In our implementation, policy values
are updated using a fixed number of iterations. Furthermore, we use a frequency
based approach given in (3) to measure the probability distribution for RTDP, and
Euclidean distance as the initial heuristic in all RTDP simulations. We use two hash
tables to store the state values in RTDP - one for each goal in a planning problem
- to reuse the efforts done in the previous search. To implement LSS-LRTA* in
RC-RTS, we modify the A* implementation given with the ORTS download. The
priority queue is implemented as a heap. The goal assigning task is simple. Each
worker has its own goal. At the start of the game, all workers are assigned the same
goal i.e. the minerals. Once a worker reaches the mineral cluster (and picks them
up), the planner changes the goal of the worker to Control Centre and sets a boolean
variable as true. This boolean variable is used to decide which data structure (hash
tables or vectors) is to use for path planning in the case of UCT, LSS-LRTA and
RTDP. If a worker returns to the Control centre, the planner changes the goal of the
worker and sets the boolean variable as false.

8 Results

A summary of the scores for each planner in the test games is given in table 2. We
can see that in all of the test games, the MCRT technique, with the two-stage planner,
achieves better observed scores than the other planners. The use of an incrementally
built MCRT tree structure speeds up both the path planning and the motion of the
workers. Although the RRT planner also incrementally builds up a similar tree dur-

Naveed et al.

ing planning in the first stage, it does not perform the same as MCRT. This is due to
the huge size of the tree built by the RRT planner. The MCRT planner adds only the
collision-free nodes into the incremental tree if they are found to be promising by
the policy roll-out. This reduces the size of the tree structure by keeping the useful
nodes only. The small size of the MCRT tree also minimises the time required to
update it if the game world is changed during the game play. It is notable that the

Table 2: Scores for each planner on Maps 1-3.

Planner Map Minimum Maximum Mean Planner Map Minimum Maximum Mean

MCRT 1 540 1130 752 RRT 1 30 210 117
2 170 830 507 2 30 360 179
3 280 850 486 3 10 130 72

UCT 1 30 150 80 LSS-LRTA* 1 190 290 230
2 0 150 50 2 50 160 87
3 0 160 52 3 20 80 57

RTDP 1 20 110 50
2 0 70 28
3 0 70 18

minimum scores of the MCRT planner are higher than the maximum scores of its
rivals; the closest rival is LSS-LRTA*. Furthermore, the deterministic planner LSS-
LRTA* performs better than RRT, UCT and RTDP. This is due to the way in which
A* is used to expand the look-ahead search. Though LSS-LRTA* has a determin-
istic approach to path planning, its behaviour looks non-deterministic in our game
because of the interleaving of planning and execution and because of its ability to
tune the heuristic function through learning. A worker’s path that is controlled by the
LSS-LRTA* planner changes its direction of movement when it collides with a tank
or other dynamic obstacle. In general, it is observed that the scoring performance of
the planners reduces as the difficulty level of the maps increase. The planning cost
of the planners for all test games are shown in table 3. We note that MCRT’s mini-
mum planning costs are significantly smaller than those of its rivals. This is a result
of needing a small amount of search effort for the planner to determine a path plan.
The MCRT planner is able to score higher than its rivals, whilst keeping the plan-
ning cost low, because of the way in which it uniquely re-uses the outcomes of the
previous searching effort. This is achieved through the use of the incrementally built
tree (of collision free nodes) which is later re-used by the MCRT planner to achieve
subsequent goals. RTDP is also shown to have a reduced planning cost when com-
pared to its rivals. However, we do not see a correspondingly high score as we do
with MCRT. The minimum searching efforts by RTDP can be explained by the fact
that the RTDP planner explores only a limited part of the state space during the sim-
ulations. The reasons for the minimum exploration in this case are i) a greedy action
selection approach (i.e., best action) and ii) slow convergence (of the policy values).
The average planning cost of MCRT is lower than both RRT and LSS-LRTA*. The

Real-Time Path Planning using a Simulation-Based Markov Decision Process

Table 3: Planning Cost for each planner on Maps 1-3.

Planner Map Minimum Maximum Mean Planner Map Minimum Maximum Mean

MCRT 1 320 1701 994 RRT 1 1257 2014 1885
2 225 1766 1251 2 1390 2005 1812
3 288 1789 1271 3 1261 2020 1884

UCT 1 1064 2017 1655 LSS-LRTA* 1 966 1893 1402
2 490 1765 1287 2 1512 2191 1798
3 496 1801 1348 3 1403 2208 1637

RTDP 1 485 629 542
2 439 619 520
3 505 656 568

RRT planner produces the highest planning cost due to its sampling approach, i.e.,
exploring the state space based on the random samples. The results also show that
the planning cost of MCRT is related to the difficulty level of the map; the higher the
difficulty levels the more planning cost it consumes. UCT keeps a balance between
the exploration and the exploitation of the actions during the simulations, therefore,
its planning cost is smaller than RRT and LSS-LRTA*. However, we observe from
table 3 that the minimum planning cost of UCT has dropped for maps 2 and 3. This
is due to the fact that when the complexity of the maps increase (i.e., an increase
in static and dynamic obstacles) the planner is more likely to become stuck in local
minima. This is further evidenced by the scores shown in table 2, where the zero
scores indicate no goals achieved.

9 Conclusions

In this paper we have introduced a new real-time path planning algorithm which
is aimed at finding paths for agents in applications as typified by real-time strategy
games. Here the agents inhabit a world containing obstacles some of which continu-
ously change positions; they have multiple sequential goal states to find, limited time
to plan their next move, imperfect information about the effect of their move actions
and partial information about the positions of obstacles. Our planner is founded on
two key innovations:
- the MCRT search for finding the next action to execute. This technique is based
on a fusion of two existing techniques (UCT and rapidly expanding random trees)
together with a novel reward function which takes into account the likelihood of
collisions along a path
- a two stage structure. During one stage, path finding to solve one goal using the
MCRT planner builds up a RRT structure. This is then exploited in a second stage
which uses a standard search technique until conditions change to invalidate the
RRT, in which case the first stage is re-engaged and the tree restored.

Naveed et al.

These features of MCRT leverage the domain characteristics that multiple sequen-
tial goals have to be solved, and that reward estimates should be collision-sensitive,
to make it superior to its rivals. In future work, we aim to explore the performance of
MCRT planner on the pathfinding benchmark problems. MCRT is also extendable
for path planning in the environments modeled as a Digital Elevation Model [21] by
introducing a height parameter in the reward function.

References

[1] Balla R, Fern A (2009) UCT for Tactical Assault Planning in Real-Time Strategy Games. In:
Proceedings of the 21st International Joint Conference on Artificial Intelligence, pp 40–45

[2] Barto A, Bradtke S, Singh S (1995) Learning to act using Real-time Dynamic Programming.
Artificial Intelligence 72:81–138

[3] Bellman R (1954) The theory of dynamic programming. Bulletin of The American Mathe-
matical Society-BULL AMER MATH SOC 60(6):503 – 516

[4] Bond D, Widger N, Ruml W, Sun X (2010) Real-Time Search in Dynamic Worlds. In: Pro-
ceedings of the Third Annual Symposium on Combinatorial Search

[5] Bonet B, Geffner H (2003) Labelled RTDP: Improving the Convergence of Real-Time Dy-
namic Programming. In: Proceedings of ICAPS, pp 12–21

[6] Bonet B, Geffner H (2005) mGPT: A Probabilistic Planner Based on Heuristic Search. Jour-
nal of Artificial Intelligence Research 24:933–944

[7] Bulitko V, Lee G (2006) Learning in Real-Time Search: A unifying framework. Journal of
Aritificial Intelligence Research (JAIR) 25(1):119–157

[8] Buro M (2002) ORTS: A Hack-free RTS Game Environment. In: Proceedings of the Interna-
tional Computers and Games Conference, pp 280–291

[9] Dijkstra E (1959) A note on two problems in connexion with graphs. Numerische Mathe-
matik 1:269–271

[10] Gelly S, DSilver (2007) Combining Online and Offline Knowledge in UCT. In: ICML 2007,
pp 273–280

[11] Hart P, Nilsson N, Raphael B (1968) A Formal Basis for the Heuristic Determination of
Minimum Cost Paths. IEEE Transactions of Systems Science and Cybernetics 4(2):100–107

[12] Hernández C, Baier J (2011) Real-Time Heuristic Search with Depression Avoidance. In:
Proceedings of the twenty-second international joint conference on Artificial Intelligence

[13] Ishida T (1992) Moving target search with intelligence. In: Proceedings of the tenth national
conference on Artificial intelligence (AAAI92)

[14] Kocsis L, Szepesvári C (2006) Bandit Based Monte-Carlo Planning. In: Proceedings of the
17th European Conference on Machine Learning, pp 282–293

[15] Koenig S, Sun X (2009) Comparing Real-Time and Incremental Heuristic Search for Real-
Time Situated Agents. Journal of Autonomous Agents and Multi-Agent Systems 18(3):313–
341

[16] Korf RE (1990) Real-Time Heuristic Search. Artificial Intelligence 42:189–211
[17] Kuffner J, LaValle S (2000) RRT-Connect: An Efficient Approach to Single-Query Path Plan-

ning. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp
995–1001

[18] LaValle S (2006) Planning Algorithms. Cambridge University Press
[19] Naveed M, Kitchin D, Crampton A (2010) Monte-Carlo Planning for Pathfinding in Real-

Time Strategy Games. In: Proceedings of PlanSIG 2010., pp 125–132
[20] Sutton R, Barto A (1998) Reinforcement Learning: An Introduction. MIT Press
[21] Wood J (1996) The Geomorphological Characterisation of Digital Elevation Models. PhD

thesis, University of Leicester, UK

