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ABSTRACT 

Mechanical systems such as motors, pumps, engines and turbines are all operation based on different 

shafts. Due to the heavy use of shafts, various faults such as cross-sectional cracks, looseness and 

misalignment may occur during their service life. In this study a novel approach to monitoring the shaft 

problems is investigated. The advancement in low cost and low power Micro Electro Mechanical Systems 

(MEMS) make it possible to develop an integrated wireless sensor which can be mounted on the surface of 

rotating shafts to obtain vibration signals for condition monitoring. This measurement scheme can make 

the fault diagnosis of rotating shafts more effective because the signal to noise ratio is higher due to the 

direct sensor installation and combined response measurements. This paper focuses on using this sensing 

scheme to monitor shaft misalignment. Both theoretical analysis and experimental results show that the 

scheme outperforms the Instantaneous Angular Speed (IAS) measurement in detecting shaft 

misalignments.  

Keywords: Wireless Accelerometer, Shaft Misalignment, Encoder, Instantaneous Angular Speed 

1. INTRODUCTION 

Shaft misalignments cause not only machine vibration but also additional dynamic load, which accelerates 

(Hariharan et al., 2009). 

problems (Bognatz et al., 2009).  

Hence, an in-depth study and an accurate knowledge on the vibration characteristics is very helpful in 

understanding and diagnosing the rotor misalignment to avoid any failures or damages that may arise 

(Tejas H. et al., 2009). Despite the rapid increase in the understanding of rotor dynamics, no satisfactory 

analysis explains the range of observed phenomena (Hariharan et al., 2009). Vance (1988) and Goodman 

(1989) observed that misalignment is present due to improper machine assembly and sometimes the 

thermal distortion of the bearing housing supports, resulting in abnormal rotating preload. However, a 

perfect alignment between the driving and driven shafts cannot be attained. Gibbons (1976) first derived 

the misalignment reaction forces from those generated in different types of couplings.  

Xu and Marangoni (1994a) showed analytically that the vibration due to coupling misalignment mainly 

occurs at even multiples of the rotor speed. Sekhar and Prabhu (1995) numerically evaluated the effect of 

coupling misalignment on the vibration response of the rotor. They suggested 2X vibration response as a 

characteristic signature of misaligned shafts. Dewell and Mitchell (1984) showed experimentally that 2X 

and 4X vibration components are largely dependent upon coupling misalignment. 

Piotrowski (1995) concluded that vibration due to misalignment is usually characterized by a 2X running 

speed component and high axial vibration levels. When a misaligned shaft is supported by a rolling-

element bearing, these characteristic frequencies may also appear. Tejas and Ashish (2009) found from 

the measured forces that the presence and type of misalignment (parallel and angular misalignment) has 

significant influences on the harmonic content of the misalignment excitation forces. 

Stephen (1999) found that, in some cases, up to 50% of the expected bearing life can be lost with as small 

as a 0.127mm (5ml) offset misalignment. Moreover, Stephen  results show that angular misalignment has 

a much smaller impact on bearing life than parallel misalignment. 
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Recently, (Lees, 2007) studied the effect of parallel misalignment in rigidly coupled rotors. It shows that 

excitation develops at twice the rotor speed due to misalignment. 

From the literature, it is clearly proven that misalignment produces high vibration levels in bearings and 

couplings. It is influenced by the machine speed and the stiffness of the coupling. e.g., rubber couplings are 

more tolerant and tend to produce less amounts of vibration.  

In general, the majority of misalignment studies in the past are theoretical, whereas experimental 

investigations are relatively limited. The outcome of these studies may not be accurate, since in practice 

there are many more sources of observed vibration characteristics in an actual rotor system. Moreover, all 

of these studies used a wired accelerometer which is usually attached to the bearings housing which 

attenuate the shaft dynamics considerably. 

In this paper a wireless accelerometer is mounted directly on a shaft to measure the dynamics when 

shafts are misaligned. A theoretical analysis is conducted to understand dynamics and outputs of the 

accelerometer. Then a test evaluation is carried out to show the performance of the accelerometer in 

detecting the misalignments, which is benchmarked by the measurements of angular speed (IAS) (Li et al 

2004 and Gu et al 2006).  This has minimal influences from bearing house vibrations.  

2. MODEL OF MISALIGNED SHAFTS 

A rotor system is represented in general terms in FIGURE 1. It consists of a motor and a loader (DC 

generator with torque measurement device) which are connected for mechanical functionality by a 

flexible coupling. The coupling reduces extra forces on the system caused by any form of imperfection 

such as misalignment between the motor shaft and the loader shaft, which is magnified in the Figure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1 System schematic and simplified spider coupling construction for modelling 
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2.1 Model of rotor with misalignment 

The model considered is comprised of two shafts with mass m1 and m2 respectively. The shafts are 

connected by a flexible coupling composed of two three-jaw hubs and one six-legged intermediate 

elastomeric element. For ease of model, the coupling is treated as three pins on one flange and three rings 

on other flange and with a rubber sleeve between the ring and pin at some distance of radius r from motor 

shaft centre, as shown by the graph at the bottom right of FIGURE 2. This simplified construction retains 

the key features of the coupling i.e. the ring and pin can move relatively in radial and rotational direction 

due to an elastomeric rubber sleeve.  

The system shown in FIGURE 1 can be modelled as FIGURE 2. Two rigid shafts, mounted on ball-rolling 

bearings, are connected by the coupling with N pairs of pins/rings on each flange, each pair having a finite 

stiffness Kb. The system is assumed to be balanced dynamically and hence the exciting forces arise only 

from misalignment and bearings, more specifically, they arise from varying forces in the coupling and 

bearing. In addition, it is also assumed that the pins on the flange of the first shaft are arranged around a 

circle centred on the centre of the shaft cross section, whereas on the second rotor the pins are again 

positioned on a circle displaced by e from the centre of the rotor as illustrated in FIGURE 1 and 3. The 

wireless accelerometer is mounted tangentially on the second rotor as illustrated in FIGURE 1 and 3. 

The analysis of the motion commences with the first rotor by applying  second law. Recalling 

that the first rotor rotates at speed , whilst the second rotor at  this varies as shown in FIGURE 2(b). 

The variation in the angular speed anticipated to the acceleration acting on a wireless sensor. In addition, 

the transitional acceleration that each rotor generates due to supporting bearings is derived.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2. Schematic diagram of the vibrations (a) coupling (b) model acting forces  

Note that the locus of coupling pins: on rotor 1 basically follow a single circle, whereas those on rotor 2 

are following a circle of different diameter as shown in FIGURE 2. The first shaft is considered to be rigid 

and has very large tortional inertia Jm and lateral stiffness value K1 and has displacements x1, y1, 1. The 

second shaft has tortional inertia JL and stiffness value K2 and has displacements x2, y2, 2. This model 

retains the physics of the situation.  The model equations are derived and can be written as: 

e 
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Where the excitation forces and torques are: 

Oscillating torque generated by coupling due to misalignment:  

 

Oscillating torque generated by eccentric mass due to misalignment:  

 

Oscillating forces generated by eccentric mass due to misalignment:  

 

 

And 

,  are polar moments of inertia for motor rotor and loader rotor 

 are the mass of the rotor and loader 

e is the misalignment between shaft and eccentricity of the mass from geometric centre; 

r is radius of the centre of coupling pin position on reference shaft; 

r1, r2 are radius of shaft 1 and shaft 2 respectively; 

 is the driving torque; 

 is the tortional load; 

N is the number of equivalent pins/rings in each flange; 

 is the coupling stiffness  of each pair of pin/ring; 

C1, C2 are damping of rotor1 and 2 respectively; 

K1, K2 are stiffness of rotor1 and 2 respectively; 

Cr is coupling critical damping; 

When the wireless sensor rotates around a centre, its principal sensitivity axis also rotates and hence 

Sensor output due to the gravity acceleration is 

            (2) 
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Using ODE45 function available in MatLab, equation (1) can be solved to obtain displacements and 

velocity of both rotors in the directions of interest. Then accelerations: ax, ay, aw and at on rotor 2 can be 

calculated by differentiating the corresponding velocities.  

2.2 Output of wireless sensor 

FIGURE 3 illustrates the relationship of different acceleration componenets at P where the wireless sensor 

is mounted. Decomposing these accelerations in the tangential direction, an electrical output waveform 

from the sensor can be obtained. This will be explained in the next section. ax and ay are the transitional 

accelerations in the x and y direction respectively, whereas at is the total tangential acceleration, and aw 

is the rotational or angular acceleration due to circular motion. 

The accelerations at the sensor position can be found by decomposing ax and ay into tangential direction 

by: 

        (3) 

 

and by calculating acceleration due to rotational angular acceleration by 

         (4) 

and then by adding them: 

         (5) 

Therefore, the total output  at P will be the sum of all accelerations at the tangential direction divded by 

the sensitivity of the sensor S. 

        (6) 

As shown in Equation (6), the output of 

the wireless sensor is a combination of 

different accelerations. These 

accelerations can be measured 

simultaneously by one sensor mounted 

on the surface of the shaft. It means that 

it is likely to detect all different rotor 

problems with a cost effective approach. 

Moreover, it has high sensitivity to 

incipient deviations and produces a 

comprehensive condition of the rotor 

system. 

3. SIMULATION STUDY 

To gain a full understanding of the 

dynamic behaviour of the rotor system, a 

simulation study is conducted based on a 

bearing test rig with a layout shown in 

FIGURE 1 and rotor parameters shown in 

TABLE 1. The parameter of damping coefficient is selected with a high value so that the transient effects 

are minimised and the effect of misalignments are highlighted.  

 

 

 

FIGURE 3 Schematic diagram of the wireless accelerometer 

mounted on rotor with different accelerations 
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TABLE 1 Parameters for simulation study 

 

 

 

 

 

 

 

 

 

 

3.1 Characteristics of vibrations due to misalignment 

FIGURE 4 shows a typical result from numerical simulation studies when the motor operates at a speed of 

750rpm. It can be seen from FIGURE 4(a) and (b) that waveforms of lateral accelerations: ax, and ay are 

close to sinusoidal waves whereas the waveform of rotational acceleration aw exhibits a faster rate of 

fluctuation. These show that shaft misalignment leads to shaft fluctuation in different directions, but with 

different frequency contents.  

Further examination of the results in the frequency domain has found that the fundamental rotational 

component 1X dominates the spectra, as shown FIGURE 4(c). Moreover, the spectra show distinctive 2X 

components, which is the main feature used commonly for diagnosing misalignments (Sekhar et al, 1995, 

and Dewell DL et al, 1984). Especially, the rotational acceleration shows more significant amplitudes at 2X 

and 4X whereas lateral vibrations exhibit distinctive components at 2X, 3X and 5X but not 4X. These 

indicate that both rotational and lateral acceleration is sensitive to the problem with misalignment, but at 

different frequency components. In general, these spectrum features show that the model is adequate for 

exploring the shaft misalignment and examining the output behaviours of the wireless accelerometer.  � � � � � � � � � � � � � � �� � � ��� � � � � � 	 
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FIGURE 4 Waveforms and spectra of lateral and rotational acceleration. 

Description Symbol Unit Value 

Shaft1 Diameter  D1 m 0.04  

Shaft1 Length L1 m 0.760  

Shaft1 Mass m1 Kg 10  

Shaft2 Diameter D2 m 0.035  

Shaft2 Length L2 m 0.360  

Shaft2 Mass  m2 Kg 20  

Bearing Stiffness  K1 K2 N/m 1x108  

Bearing Damping  C1 N/(m/s) 6.325x103  

Bearing Damping  C2 N/(m/s) 8.944 x103  

Radius of centre for the 

equivalent pin/ring  

r m 0.125 

Coupling  Damping  Cr N/(m/s) 30.984  

Coupling Stiffness  Kb N/m 107  

Moment of inertia  Jm Kg m2 0.08  

Moment of inertia  JL Kg m2 0.16  

Eccentricity  e m 5x 10-4  

Torsional load  TL Nm 10  

Driving torque  Tm Nm 10 
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FIGURE 5 Waveforms and spectra of lateral and rotational acceleration at the sensor position 

FIGURE 5(a) shows the tangential components: atx, aty and atw measureable at thesensor position due 

to accelerations: ax, ay and aw. It can be seen that atx and aty are fluctuating twice as fast as their 

original, but with the opposite phase. Combining these two components together produces a DC 

component. On the other hand, atw keeps the same phase but with a difference in magnitude due to the 

constant of the sensor position on the shaft surface. By combining the three components, the total 

accelration at at P exhibits mainly the feature of atw, but with a clear DC shift due to the combination of 

atx and aty.  

Moreover, the root mean squared (RMS) value of at is 0.0864, much larger than either 0.0863 of the 

combination of atx and aty or 0.00398 of atw. This shows that the wireless sensor output will have a 

higher output and hence more sensitive to changes due to faults.  

In the frequency domain, the spectrum resulted from the combination of atx and aty is similar to that of 

atw but has lower amplitudes, shown in FIGURE 5(b). However, compared with the spectra of ax and ay, 

the 4X components show up in the spectrum of atxy. The spectrum from the full combination of atxy and 

atw exhibits noticeable differences at various shaft frequencies. In particular, the amplitude difference 

between atw and at is marginal at 1X and 2X, showing that these two components are mainly from the 

effects of rotational oscillation. However, amplitudes at 3X and 4X show a distinctive increase, which 

means that the contribution from lateral vibration is more significant at these two components and that 

the combined spectrum is more sensitive to changes due to misalignments.  
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FIGURE 6 Predicted waveforms and spectrum from a wireless accelerometer  
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As for the sensor output, the gravidity acceleration 9.81m/s^2 has to be superimposed to waveform at 

which results in a waveform shown in FIGURE 6(a). This superimposition alters the spectrum at only 1X, 

i.e. increases by a factor of 9.81. Other spectral features remain the same, as shown in FIGURE 6(b).  

3.2 Characteristics of spectral amplitude with misalignment and speed 

In order to examine further the changes of 

spectral amplitude for misalignment 

diagnosis, a simulation study is performed 

under different motor speeds and different 

degrees of misalignments. FIGURE 7 shows 

the amplitude changes for the first 4 

harmonics. By comparing amplitudes 

between the combination and the rotation, 

it can be observed that:  

The amplitude of 1X from combination 

remains unchanged with an increase in 

shaft speeds and with the degrees of 

misalignment. However, it is slightly lower 

compared with that of rotational motion. It 

means that amplitude at 1X is not suitable 

for misalignment detection. 

The amplitude of 2X from combination 

increases with both shaft speeds and the 

degrees of misalignment. In addition, it also 

has similar amplitudes with that of 

rotational motion. Thus it is a good 

indication of misalignment at higher speed. 

The amplitude of 3X from combined 

acceleration increases with both shaft 

speeds and the degrees of misalignment. 

Specifically, there is a significant 

increase regardless of speed changes. Comparatively, the amplitude of 3X from rotational oscillation is 

lower and remains the same over different speeds. These changes in 3X mean that it can be a better 

indicator for misalignment detection, compared with that of 2X. However, its amplitude values are 7 

orders lower, which may be influenced by measurement accuracy.  

Similarly with 4X, the amplitude of 4X from the combination increases with shaft speeds and the degrees 

of misalignment. In addition, it has higher amplitudes. It can be a secondary indicator for the misaligned 

shafts. However, the amplitude of 4X from rotational oscillation has no change with speed and 

misalignment and hence it is not an effective indicator. 

In general, the amplitude variation of combined acceleration at 2X, 3X and 4X can be good indicators of 

misalignment. However, 3X has very low amplitude and can be influenced by measurement noise. On the 

other hand, the amplitudes of rotational oscillation at only 2X and 3X can be based on misalignment 

detection.  

 

FIGURE 8. Waveforms and spectra for different degrees of misalignment 

FIGURE 7. Spectral amplitude versus speeds and misalignments 
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4. TEST EVALUATION  

To evaluate the predicted performance of wireless sensors in detecting misalignment a test study is 

conducted based on a bearing test which has a similar layout as shown in FIGURE 1 and can be induced 

conveniently with different degrees of misalignment.  

4.1 Experiment setup  

The test rig consists of a 3-phase electrical induction motor to provide a prime power source and a DC 

generator to apply load to the motor. The motor is connected to the generator through two pieces of 

shafts, which are connected by three pairs of flexible couplings and supported by bearings in two bearing 

housings. The construction allows the study of different types of misalignments such as angular and 

parallel misalignments in different parts of the shaft system. In addition, the test rig has a variable speed 

controller and can run in a speed range from 60rpm to 1450rpm. 

A MEMS accelerometer wireless sensor, developed by Arebi et al. 2010, is mounted directly on the second 

shaft connecting to the shaft of the motor. The principal sensitivity axis of the sensor is along the 

tangential direction of shaft rotation. To benchmark the results from the wireless sensor, a shaft encoder 

is mounted at the end of the induction motor. Both the wireless channel and encoder channel are 

measured simultaneously at a sampling rate of 96kHz. At such a high rate, the pulse-width modulation 

(PWM) signal from the wireless sensor and the frequency modulated (FM) signal from the encoder can be 

recorded accurately.  

During post-processing, the DCM signal is low pass filtered to obtain the acceleration signal at tangential 

direction. The pulse train signal is applied by a FFT based demodulation algorithm (Gu, et al 2006) to 

obtain an IAS signal. As only a relative comparison of detection performance is made between the 

wireless sensor and the shaft encoder, the unit of angular speed is used directly, rather than converting it 

into angular acceleration by multiplying IAS by a constant of angular frequency.  

 

Two tests were conducted for detection performance evaluation. The first test was the baseline 

measurement under which the system was adjusted with minimal difference between the two flanges of 

the coupling by a dial indicator. The other takes the measurements when the two flanges were set to a 

0.64mm offset between the two flanges. In each test measurements were taken at shaft running speeds: 

307.4, 455.8, 605.4, 755.8, 1057 and 1204 rpm. 

4.2 Results and discussion 

FIGURE 8 shows a typical result of wireless measurement under different misalignment at a shaft speed of 

754.8 rpm. Although a careful adjustment has been made to minimise the misalignment between shafts, 

the baseline measurement still shows distinctive oscillations at the rate of shaft speed. Its spectrum in 

FIGURE 8(a2) shows that 1X and 2X are distinctive, but 3X and 4X are difficult to identify from background 

noise. This indicates that this baseline oscillation may be caused mainly by problems of eccentricity and 

torque fluctuation due to the driving motor. Nevertheless, there are clear increases at 2X, 3X and 4X with 

the induced misalignment, which is consistent with that of model prediction. Therefore, the spectral 

amplitude increases at 2X, 3X and 4X can be an effective and reliable indicator for shaft misalignment.  
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FIGURE 9 Measured spectral amplitudes versus speed and misalignments 

However, the IAS signals of FIGURE 8(b1) and (b2) from the encoder show hardly any changes at 1X and 

2X due to the misalignment. Surprisingly, the spectrum shows an amplitude decrease at 3X and increase 

at 4X, which is inconsistent with model prediction. This may be due to additional noise influences when 

the encoder is mounted on the motor shaft and problems with the motor rotor causes further influence 

on the output of the encoder. 

FIGURE 9 shows the variation trend of spectral amplitudes with speeds. The spectral amplitudes of 

wireless accelerometer at 2X, 3X and 4X show an increasing trend with speed, which is consistent with 

model prediction. Especially, these amplitudes show good performance in separating the misalignment 

from the baseline when speed is higher than 600rpm. 

On the other hand, at only 2X spectral amplitudes of IAS show an expected speed trend. Nevertheless, it 

allows the misalignment to be separated from the baseline at a speed higher than 1000rpm, which is 

much lower in detection performance compared with that of a wireless sensor. 

5. CONCLUSION 

A wireless measurement scheme is investigated in order to monitor shaft problems. A model of the pin 

type coupling-roller-ball bearing system with misalignment has been derived to simulate the dynamics of 

a misaligned shaft system at different speeds. Through the experiment and simulation work, the validity of 

the model and measurement scheme has been successfully verified in a wide range of operating speeds. 

Both the measured and numerical results spectra show that misalignment can be characterized primarily 

by spectral amplitudes at 2X, 3X and 4X of shaft running speed, on which misalignment detection can be 

extracted. Because these components consist of both rotational and lateral vibrations, the detection 

performance of the wireless measurement scheme is much better compared with IAS measurements.  
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