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Notes 
All specific terms that are mentioned in this thesis are generally explained the first time they 

appear in the text. However, all the specific terms are also listed and defined in the 

‘Glossary of Terms and Abbreviations’. Most of these definitions specialise on a specific 

subject and a certain degree of necessary tacit knowledge is assumed to read the thesis. 

While this is fine where the subject is very specific, this is rather less so when the thesis 

brings knowledge from different specialities. Because this study is cross-disciplinary – 

spanning a gap between transport operations and performance measurement mathematics 

methods – it was thought best to explain most notions discussed in this thesis to avoid any 

potential confusion.  
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Abstract 
In order to improve fuel efficiency, fleet managers need methods to accurately measure fuel 
performance. Miles per gallon – the industry fuel efficiency standard measure – has several 
limitations. These relate to some aspects of fuel efficiency not reflected in the measure but 
also to the fact the measure cannot be interpreted without knowing some external factors 
(such as vehicle weight). This research addresses some of these limitations through the 
application – within three companies – of a Data Envelopment Analysis (DEA) model to van 
fuel efficiency measurement. In order to use the fuel information obtained from the fuel 
cards statements, it was necessary to develop a cleansing and smoothing algorithm which 
ensured that the data could be safely used in the models. The model results indicate that 
DEA provided a better and more comparable fuel efficiency measure while effectively 
addressing some key limitations of the mpg measure. The originality of this research comes 
from the limited amount of published literature on fuel efficiency measurement in road 
transport operations. Effectively, only a limited number of papers can be found on the 
measurement of road operations efficiency using DEA and, with the exception of this study, 
none could be found on van operations or fuel efficiency measurement. Debriefing 
discussions confirmed that the fleet operators appreciated the measure and also suggested 
that more research on fuel theft could be useful. Finally, the recent success of driver 
competitions seems to indicate there is a latent need in the industry for accurate driver 
performance measurement, which suggests that methods such as the one developed in this 
study could be of greater use in the near future. 
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1. Introduction 

1.1.  Background 

The transport industry is a very competitive environment constrained by ever complex 

regulations (e.g. corporate manslaughter law (Health and Safety Executive, 2010)) and 

smaller profit margins. 

In such an environment, measuring performance is essential to fleet managers in order 

to ensure resources are best used so that the organisation can stay competitive. Due to 

fleets’ complex operations, performance can be improved in many different ways. 

Freight Best Practice (FBP, 2005) mentioned that fuel expenditure for commercial 

vehicles operators – intrinsic to any industry using vehicles – could be as high as 30 to 

40% of all their expenditures. Fuel has also been shown to be a highly variable budget on 

which improvements are generally possible (Wilson, 1987). In addition, McKinnon 

(1993) stated fuel consumption can be improved in several ways. Consequently, it seems 

potentially easier and more beneficial to concentrate first on improving companies’ fuel 

efficiency rather than other operational areas. 

Finally, because vans have a bigger market share than HGVs (DfT, 2009, p.130) and that 

van fuel efficiency measurement is rather different from HGV’s, this study will primarily 

focus on fuel efficiency improvement in the van sector. 

Improving the design of a supply chain can, for example, have huge repercussions on 

fuel consumption. However, potential fuel savings resulting from an optimised supply 

chain might be outweighed by other costs (e.g. warehousing), thus optimising a supply 
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chain for fuel saving is unlikely to be practical and ideal. Conversely, many different fuel 

saving interventions exist. Amongst these are diesel or oil additives, energy efficient 

tyres and aerodynamic kits. These interventions have a direct impact on fuel efficiency 

through improved fuel combustion, reduced friction or better aerodynamics. 

Technologies like CANbus (Controlled Area Network Bus, a bus on the vehicle – the 

electronic equivalent of a motorway – which allows different electronic units to share 

information such as rpm, distance travelled or fuel used) can also provide an accurate 

driver’s mpg along with detailed information on each driver’s behaviour. Although 

CANbus cannot alone lead to improvement in fuel efficiency, the accurate information 

and measurement it provides can help fleet managers make better informed decision 

which could ultimately lead to improvements in fuel efficiency. Although most of the 

interventions listed above can demonstrate a Return On Investment (ROI), they all 

represent an initial investment which some companies may not be able to afford. 

On the other hand, fuel cards – electronic cards which drivers can use to buy fuel – are 

omnipresent in the transport industry. Thus, in a similar manner to fuel efficiency 

measurement based on CANbus information, improving fuel efficiency measurement 

based on fuel card data could indirectly improve fuel efficiency without requiring any 

extra investment. Besides, mpg, the industry-standard fuel efficiency measure, has 

several limitations which potentially impede the measurement of fuel efficiency and 

improvements that could be realised. These limitations should thus be addressed and 

this study will consequently concentrate on improving fuel efficiency measurement 

based on fuel card data. 
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This thesis will first introduce the hypothesis followed by the aims and objectives. 

Chapter 2 will then review the different alternatives that can improve fuel efficiency and 

justify the particular focus on fuel efficiency measurement based on fuel card data. 

Chapter 3 reviews the background theory in regards to performance measurement. 

Most basic concepts in relation to performance measurement are described and 

explained in this chapter. Section 3.3 will review some relevant performance 

measurement methods or techniques available. The techniques considered range from 

the traditional benchmarking approach, to pair wise comparison techniques or Data 

Envelopment Analysis – another benchmarking technique with unique characteristics.  

This study’s methodology will be discussed in chapter 4. This chapter will justify why 

Data Envelopment Analysis is retained for this study. DEA key concepts will be 

introduced so that the remainder of the thesis is accessible even to individuals with no 

previous experience of DEA. Appendices 8.2 and 8.3 will provide more explanations on 

DEA and DEA models and should provide more detailed information on DEA. Because 

these appendices are technical sections which are not essential to understand the 

thesis, they were not included in the main body of the thesis. However, reading them 

could help understand some technical details of the ‘Case Study and Results’ and 

‘Summary of Results and Discussion’ chapters. Chapter 5 will finally detail the protocol 

followed in this research. 

‘Chapter 5, Case Study and Results’, will first briefly review case study background 

theory to then discuss the research in greater depth. The data cleansing and smoothing 

algorithms, which are essential to ensure the fuel card data is appropriate, will then be 
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introduced and their use explained and demonstrated. This will be directly followed by a 

detailed description of the fuel efficiency DEA model with all the variables to be tested. 

As with many modelling approaches, each variable (including fuel used, vehicle weight, 

vehicle age and mileage) will be added to the model one by one in order to measure the 

impact each one has on fuel efficiency. Because of this step by step approach, each 

step’s results will be discussed directly in this chapter as appropriate. 

Chapter 6 will summarise the results and discuss them appropriately. This includes 

examination of the results and their usefulness, limitations, contribution and 

applicability. Chapter 7 will then conclude this thesis and give potential for further 

research. Appendices can be found in Chapter 8, the ‘Glossary of Terms and 

Abbreviations’ in Chapter 9 and the list of references in Chapter 10. 

1.2. Hypothesis 

The research hypothesis is as follows: 

It is possible to develop a form of vehicle fuel efficiency 

measurement that gives a fleet manager more relevant information 

than currently available 

It is interesting to observe that the hypothesis uses two important notions which will 

require adequate defining. These are: 

 Efficiency, 

 Measurement. 
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Although a definition of the terms relevant to the study can be found in the Glossary of 

Terms and Abbreviations, these two terms as well as a few important others will be 

defined and further discussed in section 3.1.1 Key Concepts and Definitions. It is also 

interesting to observe that the hypothesis does not suggest which performance 

measurement approach or which type of fuel data should be used. 

1.3. Aims & Objectives 

1.3.1. Aims 

The research aims are as follows: 

1. To analyse the main fuel performance measurement methods used in the 

transport industry. 

2. To evaluate the limitations of these measures and discuss the consequent 

impact on fuel efficiency measurement in transport businesses. 

3. To develop an advanced performance measurement method in order to 

produce a more effective measure and to assess its usefulness as a better 

measure. 

4. To apply this advanced fuel efficiency performance measurement method to 

selected companies which operate vans. 

5. To evaluate the extent to which this methodology is of operational value to 

transport businesses. 
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1.3.2. Objectives 

The objectives of this research are as follows: 

 To demonstrate the relevance of fuel efficiency to transport operations 

 To critically review the factors and techniques which can have a positive 

impact on fuel efficiency 

 To demonstrate the relevance of improving the fuel efficiency 

performance measurement 

 To review the existing literature on performance measurement & 

performance measurement methods  

 To evaluate the applicability of some appropriate performance 

measurement methods 

 To demonstrate the relevance of DEA as a suitable performance 

measurement method 

 To identify the companies relevant to the study and collect the 

appropriate information 

 To develop a new fuel efficiency measure and appropriate (DEA) 

performance measurement models 

 To apply the developed model to this selection of companies 

 To evaluate the model results in collaboration with the participants 

 To iteratively improve these models with the participants feedback 

 To analyse the results  

 To critically analyse the results in comparison with traditional 

measurement methods 
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 To appraise the applicability, usefulness and limitations of the new fuel 

efficiency performance measure 

These objectives will be carried out in this research and the conclusion will review 

each objective and reference the section in which the objective was addressed. 
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2. Literature Review – Van Fuel Efficiency Measurement 

This chapter will describe fleets’ main operational costs and justify why fuel efficiency is 

an ideal area to seek performance improvements. The main potential methods that can 

be employed to improve fuel efficiency will be discussed elsewhere. The fuel efficiency 

improvement methods to be reviewed are: scheduling, driver behaviour management 

using CANbus information, fuel card mpg analysis, and some other traditional fuel saving 

interventions. The research interest in improving the mpg performance measurement 

using fuel cards will then be justified in the section 2.3 ‘Explaining the Focus on Fuel 

Efficiency Measurement Based on Fuel Card’. 

2.1. Explaining the Focus on Van’s Fuel Efficiency 

Regardless as to whether it is caused by harsh competition or scarce resources, one 

intrinsic aim behind performance measurement is the need to improve performance. 

Due to fleets’ complex operations, fleets’ performance can be improved in many 

different ways. Coopers (1987, p.26) studied the cost distribution for typical vehicle 

fleets (the study focused mainly on fleets running 7.5 tonnes vehicles) and observed 

that the biggest costs are generally associated with 3rd party contractors expenses, 

wages, maintenance and fuel. This is illustrated in the Figure 2.1 Costs Distribution 

for Typical Transport Operations (Anon, 1985). 
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Figure 2.1 Costs Distribution for Typical Transport Operations 

Wilson (1987, p.18) states that drivers’ wages, third party costs, and maintenance 

costs represents the biggest budgets which are all quite stable and predictable. He 

also states that fuel cost is the budget that demonstrates the most variability. Freight 

Best Practice – a Department for Transport project – observed (FBP, 2005, p. 1) that 

fuel expenditures for commercial vehicles operators could represent a huge 

proportion of the total expenditures. The difference between the two figures 

(between fuel cost as shown in Figure 2.1 and FBP’s fuel cost figure) can probably be 

explained by an increase in fuel costs since Wilson wrote his paper. Finally, the 

relationship in the road industry between profitability and fuel expenditures has 

quite logically been acknowledged by research (McKinnon, 1993). In his paper, 

McKinnon also recognises that there are a number of ways to improve fuel 

efficiency. 

Due to the limited resources a fleet operator can spare to improve their operations, 

it is essential to concentrate efforts on areas that would bring maximum savings. It 

would be logical then to concentrate on the budgets that could be reduced the most. 

As detailed above in ‘Figure 2.1 Costs Distribution for Typical Transport Operations’, 
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the biggest costs for fleets are drivers’ wages and maintenance. These costs can be 

reduced mainly by cutting driver wages or by an improved use of scheduling 

techniques.  

The use of fuel is also intrinsic to any industry using vehicles. Besides, as stated by 

McKinnon (1993), fuel consumption can be improved in many different ways which 

will be discussed in section 2.2 On the Ways to Improve Fuel Efficiency. Although fuel 

efficiency has been well studied, very little research has been conducted on the 

measurement of fuel efficiency itself and on addressing some of the key limitations 

traditional fuel efficiency measurement demonstrates (see section 2.2 On the Ways 

to Improve Fuel Efficiency). Because scheduling techniques have conversely been 

well researched (see following section 2.2.1 Improved Scheduling and Network 

Optimisation), concentrating on improving companies’ fuel efficiency would 

consequently bring more originality than researching other operational areas. 

Because unnecessary fuel costs occur when the vehicles are badly driven but also 

when fuel is stolen, this study should consider both fuel efficiency and fuel theft. 

However, the issue of fuel waste due to tank contamination (FBP, 2007b, p. 3) is not 

discussed in this study (as the study will focus on the measurement methods rather 

than operational aspects of fuel management). 

The DfT’s Transport Statistics Great Britain document (DfT, 2009, p. 155 onward) 

shows there are more vans than LGVs and that the former’s vehicle kilometres are 

also greater than the latter’s (68.1 billion vehicle kilometres for vans and 28.7 for 

LGVs in 2008 - DfT, 2009, p.130 – because a huge proportion of vehicles potentially 
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relevant to this study do not transport goods (e.g. engineering services vans) vehicle 

km is here more relevant to fuel efficiency than tonne km). Despite this lower vehicle 

kilometres figure, LGVs use in total more fuel than vans (DfT, 2009, p. 54). Therefore, 

it would seem more logical to tackle LGV fuel efficiency measurement first. However, 

the aim of this study is to demonstrate that it is possible to develop a form of fuel 

efficiency measurement that gives fleet managers more relevant information than 

currently available. Thus, it is more favourable to first tackle the simpler problem of 

van fuel efficiency measurement (in which issues such as vehicle load weight have a 

less significant impact) than the LGVs’ fuel efficiency measurement problem. 

Consequently, this study will primarily focus on the measurement of fuel efficiency in 

the van industry. The applicability of the study to other industry sectors and vehicle 

types will however be discussed in chapter 6 ‘Summary of Results and Discussion’. 

2.2. On the Ways to Improve Fuel Efficiency 

Many different alternatives exist to improve fuel efficiency. This section will review 

the main ones. 

2.2.1. Improved Scheduling and Network Optimisation 

Transport operations implies that consignments or jobs are assigned to different 

vehicles and that the vehicles route themselves to their different job destinations or 

delivery / pick-up points. Research distinguishes routing problems (RP) from 

scheduling problems (SP) and from the problems combining the two (RSP) (Bagchi 

and Nag, 1991, p. 11). Routing relates to finding the most (or a more) advantageous 

route between two points (this can be for example the shortest or quickest path); 
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Bagchi and Nag (Bagchi and Nag, 1991) describe RPs as assignment problems. On the 

other hand, scheduling problems deal with the ‘allocation of resources over time to 

perform a collection of tasks’ (Bagchi and Nag, 1991, p. 10). 

The complexity behind finding an optimal route for a list of deliveries or points was 

first observed by mathematicians (W. R. Hamilton and Thomas Kirkman) in the 

1800s. Hamilton created his Icosian game which consists of linking all dots in a 

dodecahedron by a path visiting each vertex (dot) exactly once. Such paths are called 

Hamilton cycle or Hamilton path. Hamilton and Kirkam’s work is discussed in Graph 

Theory (Biggs et al., 1976). This problem was later on considered further by 

mathematicians, notably Menger (1932, cited in Punnen, 2002, p. 1) who designate 

the ‘messenger problem’ as: 

‘The task of finding, for a finite number of points whose pairwise distances are 

known, the shortest path connecting the points. This problem is naturally always 

solvable by making a finite number of trials through the permutations of the 

given points. The rule, that one should first go from the starting point to the 

nearest point, then to the point nearest to this etc., does not in general result in 

the shortest path.’ 

Dantzig et al (1959) proposed a linear programming approach to tackle this problem 

(the problem in question was the Travelling Salesman Problem or TSP). Since then, 

academic interest in vehicle routing and scheduling problems has significantly 

increased. 
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In 1972, Richard Karp demonstrated that the TSP and many other RSPs were NP-hard 

(the hardest class of problems in complexity theory). Since the formulation of the 

TSP, RSP have grown in complexity. Tyagi (1983, cited in Slater, 2002) developed a 

method to minimise total fleet mileage. Other constraints were also studied to 

answer several problems observed in real life operations. Modern RSPs have several 

other constraints than the original TSP and VRP. These include: 

 Delivery time windows (Rochat and Semet, 1994). Considering the TSP, 

this constraint implies that each city has to be visited during a period of 

time. 

 ‘Capacitated’ Vehicle Routing Problem where vehicles are all located at a 

central depots and need to be routed to different customers with known 

demands and vehicle capacity constraints (and precedence constraints 

are possible (Malik et al., 2007)). 

 Asymmetric model, i.e. a model in which some segments (link between 

two vertices) can be travelled one way only. This characteristic is crucial 

when doing real life RSP. 

 Multi depots models. In this case, vehicles or engineers can belong to 

different depots. This is particularly useful when scheduling engineers as 

each engineer generally returns to his home. Vehicles can also leave a 

‘depot’ and potentially return to another. 

 Model in which capacity constraints are imposed. This can imply weight 

or volume constraints on different vehicles or depots. 

 Skills constraints (e.g. drivers skills and competences, Punnen, 2002).   
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Most current commercial solutions incorporate all these constraints in their model. 

This list is not meant to be exhaustive but should provide a good overview of modern 

problems’ complexity. 

Several possible objective functions are possible. Traditionally the VRPs aim at 

minimising mileage, but it is also possible, amongst others, to optimise by minimising 

the time spent driving (Maden et al., 2010), or CO2 emissions (Palmer, 2008). 

By reducing the number of miles travelled, the time spent driving (Taniguchi and 

Shimamoto, 2004), or the amount CO2 emissions, computerised scheduling can 

potentially reduce the amount of fuel to be used for a given list of deliveries. This can 

in turn have a beneficial impact on vehicles’ fuel consumption (Baumgartner et al., 

2008). In a similar manner, network optimisation at a supply chain level can – 

perhaps in an even greater manner – reduce the overall number of miles required 

for the whole supply chain operations and thus, the amount of fuel used. Supply 

chain optimisation can in a similar manner have a great impact on fuel consumption 

reduction. 

2.2.2. CANbus Technology & Driver Training 

In the last twenty years of the twentieth century, the automotive industry developed 

quickly and, following technological advances, more and more technology and 

electric and electronic devices were fitted and used on cars. The proliferation of 

wiring and wire looms all over the car was causing real problems throughout the 

manufacturing process, from car design to manufacturing and was also adding 

weight to the vehicle. Besides, excessive wiring was costly and did not provide good 
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control over the vehicle’s electronics. Acknowledging this problem, R. Bosch started 

working on an in-vehicle network project as early as 1983 (Anon, 2008c); this 

became the Controlled Area Network, generally simply referred to as CAN. 

This type of network allows different electronic devices such as brake or engine 

controllers to communicate through a common electronic network or central bus. 

The central bus reduces the need for wiring harness (Buchanan, 2000), thus reducing 

cost, vehicle weight – impacting positively on the fuel consumption – and improving 

the control over the vehicle’s electronic systems. This was, at the time, a 

revolutionary technology and it enabled an unhampered proliferation of electronic 

devices on the vehicles, which in turn has been associated with greater control and 

security (Anon, 2007b). 

The original CAN bus specification (Bosch, 1991) described both the physical and 

data layers. The physical layer of the CAN protocol describes all the mechanical 

(cable, connectors, resistances…) and electrical aspects (signal level, bits, timing…) of 

the CAN. In short, CAN networks are made of a pair of twisted wires terminated by a 

resistor on both ends. The data layer on the other hand, describes the low level 

communication aspects between the different nodes connected to the CAN network 

(the electronic components that are connected to the network). CAN networks, 

communications are encoded by a voltage difference between the two cables (Anon, 

2007b). Although other types of network are sometimes used instead of CANbus 

(e.g. FlexRay, LIN), CANbus is widely used for its robustness and low cost 

characteristics. 
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As explained previously, CAN networks transfer information broadcasted by the 

different Electronic Control Units (ECU) which equip the vehicle. Modern vehicles are 

equipped with ECUs that generally provide (at least) the following information: 

 Fuel used, 

 Distance travelled, 

 Speed, 

 Miscellaneous engine information such as rpm, throttle opening, speed 

pedal position, 

 Braking information 

This information is generally available on most vehicles manufactured after 2000 

although some vehicles will also have additional information available from the CAN 

(e.g. door opening, warning light). As the basic information listed above provides a 

key insight into accurate mpg analysis and driver behaviour, it is interesting for fleet 

managers to retrieve it so that they are in a better position to manage their 

operations. Many telematics tracking devices can now connect to vehicles’ CAN, 

retrieve its key information and make it available to the fleet operator. Besides, most 

telematics solutions provide driver identification so that the CANbus information can 

be driver specific as well as vehicle specific (e.g. mpg performance by driver). 

CANbus is one of the most accurate sources of information in term of vehicle 

information. The fuel consumption figure is obtained from the vehicle’s fuel 

injectors, the distance travelled is the same as the one displayed on the odometer 

and more generally any information obtained from the CAN has the same digital 
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accuracy. This makes CANbus one of the most accurate sources of information to 

obtain a vehicle or driver’s mpg figure or driver behaviour information. More 

accurate mpg and driver behaviour information can in turn enable fleet operators to 

make better informed decisions that can have a greater positive impact on fuel 

efficiency. It is important to observe that retrieving CANbus information does not in 

itself improve fuel efficiency. It is rather the informed decisions (such as driver 

warning or training) based on more accurate information obtained from the vehicle’s 

CAN that can in turn potentially lead to improvements in fuel efficiency (FBP, 2008a, 

p.27). 

Further information on CANbus can be found in 8.1  Appendix 1: The CANbus 

technology. 

2.2.3. Fuel Card Management 

As outlined by Baumgartner et al (2008) and FBP (FBP, 2008a), both improved 

scheduling and CANbus technology can have an indirect impact on fuel consumption. 

Scheduling can improve fuel consumption by reducing the number of miles required 

to complete a list of deliveries whilst CANbus can be useful in spotting drivers in 

need of driver training or for daily fuel performance monitoring and fuel theft 

detection. This section will show how fuel performance monitoring using fuel cards 

information can also indirectly improve fuel efficiency. 

Fuel cards are cards which drivers can use to only buy fuel or sometimes other 

vehicle related commodities such as engine oil. Fuel card companies send reports to 

their customers which hold detailed information about all the fuel cards transactions 
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that have occurred. These reports – combined with a distance figure – can then be 

used to measure the vehicles’ mpg performance. In a similar fashion as for CANbus, 

decisions based on this mpg measure can indirectly lead to improvement in vehicle 

fuel efficiency. The concepts discussed in this section are only briefly introduced 

although more details and justifications on these will be given in the section 5.3.3 

Smoothing Algorithm. 

Although fuel cards can be used to buy commodities such as engine oil or food items 

at petrol stations, they are mainly used to buy petrol and diesel (Anon, 2009c). Fuel 

cards can only be used at the petrol stations which are part of the fuel card 

provider’s network. The fuel card company then invoices the haulage company for 

the fuel bought (generally on a weekly or monthly basis). Fuel cards are obviously a 

necessity for most businesses as without them drivers would not have a convenient 

way to refuel their vehicles. 

Fuel cards generally offer lower prices for diesel and petrol although prices vary from 

a fuel card providers and card types. Some fuel card providers tend to offer pump 

prices on a wide number of petrol stations while others will propose weekly set 

prices (generally lower than the pump price) at a limited number of petrol stations. 

Some more complex pricing scheme which depends on the type of petrol station the 

refill occurs at also exist (e.g. a bunker site where fuel will be cheaper). 

Even though most fuel card offer discounted prices, de Kock (2009) warns that 

operators will have to balance out the extra cost of driving to compatible petrol 

stations as the extra miles driven might outweigh the savings at the pump. Cole 
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(2009) however mentions that fuel cards management is one way of reducing fuel, 

along with bunkering (having a fuel tank on site), bulk buying and careful fuel cost 

management. Similarly, Clarke (2008) mentions that although some fuel card 

companies still have a basic ‘one card suits all’ product, others fuel card companies 

propose a wide range of different cards for different types of operations, as well as 

24/7 online accounting service, reports or advanced security features, etc. 

Three main types of fuel cards, driver fuel cards exist – assigned to a unique driver, 

vehicle fuel cards – assigned to a unique vehicle, or vehicle-driver fuel cards – 

assigned to a unique vehicle and unique driver. This information (either driver name, 

vehicle registration, or both) is generally embossed on the card and will 

automatically be linked to each fuel transaction on the fuel card reports. However, 

the vehicle registration is generally spelt out to the attendant at the petrol station till 

(unless it is embossed on the card in the case of a vehicle or a driver-vehicle card). 

Similarly, the driver also needs to give the vehicle’s odometer reading to the person 

at the till. This information will be made available on the fuel card reports and will 

generally be used to calculate the mpg performance measure. 

As Paul Holland (cited in Cole, 2009) mentions, the ‘whole raison d’être of fuel cards 

is control’. Indeed, fuel card data files provide an accurate picture of fuel 

expenditures thus enabling appropriate fuel cost micro management and control. 

Unlike CANbus technology, fuel cards management can also reflect the cost of theft 

and potential leaks between the tank and the injectors. 
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Fuel cost management with fuel cards has a number of disadvantages as it relies on 

the mpg measure calculated from the fuel consumption shown on the fuel card 

reports. This mpg measure can show the vehicle’s fuel performance (both in terms of 

driver behaviour or potential leakages). The mpg measure can also indicate whether 

any fuel was misused or stolen (either via siphoning, by refuelling somebody else’s 

vehicle or filling a jerry can). To calculate the vehicle’s mpg, both the fuel 

consumption and the vehicle odometer information are used. However, and as 

described before, the odometer information and sometimes the registration are 

keyed in at the petrol station. This manually entered information is prone to errors 

and is consequently often incorrect or inaccurate.  

Inaccurate information can have a dramatic effect on the vehicle’s mpg measure. As 

an example, missing a single refill (e.g. because of a registration misspelling) in a 

month for a vehicle that does 500 miles a week at 35 mpg would give a 20% 

inaccuracy on the calculated mpg measure. Due to the dramatic impact potential 

misspellings can have on the final mpg measure, it is consequently crucial to cleanse 

the data before the mpg figure is calculated. Odometer readings can also be 

discarded where blatantly wrong although evaluating this can be complicated (as in 

some cases it might not easy to determine whether it was the refuel which was not 

made up to the top of the tank or whether an approximate odometer reading was 

given at the till). 

Alternatively operators using telematics system will be able to retrieve the vehicle 

mileage from these systems as they provide a more consistent distance figure. As 
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telematics devices also provide location information, a telematics system can also 

help confirm that a vehicle was really at a petrol station at the time of the 

transaction; information particularly useful to correct registration misspelling and 

also check on theft (i.e. vehicle not at the petrol station at the time of refill). Without 

telematics, cleansing registration will only be possible with educated guesses and 

with some knowledge of the operations. 

Operators frequently want to know the average mpg for each vehicle of their fleet 

across a period of time (often monthly). As fuel card information is generally the only 

fuel consumption information available to the operators, they tend to calculate the 

vehicle mpg by totalising the fuel bought during the measurement period and by 

taking the distance travelled during that same period. However, this method can be 

highly inaccurate and this research will appropriately address this limitation. This will 

be further detailed in section 5.3.3 Smoothing Algorithm. 

As already explained in this section, fuel cards are a necessity for most businesses to 

run their operations. They also bring several advantages such as the possibility to 

buy cheaper fuel and to better control cost in a way which CANbus alone cannot. 

However, fuel cards management relies on the mpg figure to be calculated and this 

requires data to be thoroughly cleansed before use. Despite these limitations, fuel 

cards analysis is still an essential tool that allows fleets to control their fuel 

performance and cost. 
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2.2.4. Traditional Fuel Saving Interventions 

CANbus and fuel card analysis can both provide the fuel consumption information 

which can be used to calculate the mpg performance of the vehicle or drivers (for 

CANbus). However, measuring mpg does not in itself improve the fuel consumption. 

The mpg measure is merely a descriptive performance measure which only shows 

the current performance level (see Type and Classification of Performance Measures 

for more information on this).  However, the mpg measure provides key information 

that enables informed decisions to be taken and it is the results of these decisions 

that can potentially improve fuel consumption performance. This concept is 

discussed in ‘Fuel Efficiency Trials Research’ (FBP, 2008a, p.27) and in ‘In fleets trials 

of fuel saving information’ (FBP, 2005, p.4). Several alternatives exist, called fuel 

saving interventions, which can have a more direct impact on fuel efficiency. The 

alternatives will be discussed in the following section. 

2.2.4.1. Fuel additives  

Fuel additives can potentially improve the vehicle’s fuel efficiency by cleaning 

the engine injection system, the engine cylinders and the filters. Three types of 

fuel additives exist, the deposit removal additives, the bacterial growth 

preventive additives (FBP, 2005, p.5) and diesel emulsifiers. 

1. The first cleans the deposits that form on the injectors, cylinders and 

valve as these deposits can potentially affect the combustion process. 

The benefits of this type of additives vary with the age of the vehicle and 

the state of the engine. 
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2. The second prevents the bacterial growth in diesel and water 

contaminated petrol (diesel additive cannot be used on petrol and vice 

versa). Bacteria, when present in fuel, can clog filters which can impact 

the combustion process. 

3. Diesel emulsifiers are also claimed to improve fuel combustion process 

although incorrect proportions will not produce any benefit and can 

potentially cause severe damage to the vehicle’s engine. 

Finally, some fuel brands claim that they produce better fuels which allow 

vehicles to achieve more miles for a given volume of fuel (Bearne, 2010). 

Although it is possible that enhanced fuels deliver a better combustion 

performance, operational complexities (see 2.2.5 A Word on the Ways to 

Improve Fuel Efficiency) makes it really difficult to quantify the proportion of the 

improvement caused by the deemed superior fuel. Furthermore, many 

companies use different fuel brands and there is no indication on the level of 

performance that would be delivered by a mixture of fuel brands in the tank. For 

these reasons, the study will not consider fuel brands. This decision has little or 

no impact on this study’s results as the three companies used in the case studies 

(see section 4.3 Case Study Protocol) use a wide range of fuel brands (which 

implies that the fuel in the tank is a mixture of different fuel brands). 

2.2.4.2. Lubricating Oils and Additives 

Lubricating oils and additives can also potentially improve fuel efficiency by 

limiting friction in the engine, gearbox and drive axle. FBP (2005, p.5) states that 
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because oil can be used in different parts of the vehicle but also because studies 

evaluating the efficiency of lubricating oils and additives do not generally 

mention which parts of the vehicle are concerned, it is hard to estimate whether 

the potential savings in terms of fuel outweigh the cost of oil. Labeckas and 

Slavinskas (2005) have however demonstrated theoretical fuel saving by using a 

combination of oil and additives (a reduction of 7.3% of brake specific fuel 

consumption which is the rate of fuel consumption divided by the power 

produced). 

2.2.4.3. Using Hydrogen in the Air / Fuel Mix 

Mixing hydrogen with the air before combustion can potentially improve the 

quality of the combustion process itself and thus reduce the amount of diesel 

used for similar output power. GSE Haulage and Dodd’s Transport which have 

tried Hydrogen Injectors devices from Oil Drum have claimed fuel savings as high 

as 11% (Milnes, 2009). In turn, Saravanan and Nagarajan (2008) have conducted 

laboratory experiments on mixing hydrogen with diesel and air prior to 

combustion. They concluded that best results were attained from a 30% 

hydrogen mix – a limit above which the use of hydrogen becomes detrimental. 

They also concluded that particulate matter was reduced and that energy 

consumption decreased with an increase in hydrogen percentage for the whole 

range of operations. 
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2.2.4.4. Energy Efficient Tyres 

Part of the energy that is transferred from the engine to the wheel is converted 

into heat because of the contact of the tyre with the road. Tyre heat increases 

friction thus has a negative impact on the vehicle’s mpg. Modern fuel efficient 

tyres have shallower treads which enable them to better dissipate heat thus 

reducing friction and improving the fuel consumption. Because of their lighter 

design, energy efficient tyres will also not be adequate for harsher conditions 

such as those experienced in the aggregates industry. 

Due to their shallower treads, fuel efficient tyres also wear down more quickly 

than traditional tyres thus it will be necessary to balance out fuel savings against 

added wear and tear cost. FBP  (2005, p.8) mentions typical 2% fuel savings and 

75% lifetime of the life of a standard tyre. The benefits from using energy 

efficient tyres will consequently depend on the business’ operations. Following 

some trials, Moy Park LTD reports fuel savings as high as 8% with Michelin 

energy efficient tyres (Michelin Energy), while on the other hand Turners Rolls 

declare that it found energy efficient tyres to be beneficial on international 

operations only and not in UK’s (FBP, 2005, p.9). 

Tyre manufacturers which propose energy efficient tyres are now battling for a 

fuel efficiency performance eco-rating (Anon, 2005b). Consequently, fuel 

efficiency indexes start to appear slowly as with the NHTSA’s proposition of a 

tyre label (Anon, 2009b). Quite surprisingly in regards to the operations interest 

in reducing cost and to the potential savings that well inflated (Anon, 2007c), 
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energy efficient tyres can bring, a recent study still found that 76% of transport 

operators did not consider fuel efficiency characteristics when buying tyres 

(Brown, 2008). 

2.2.4.5. Aerodynamic Kits 

A vehicle at rest contains inertia. For the vehicle to move, energy generated by 

the engine is transferred to the wheels. At a given speed, the vehicle then 

contains momentum (the product of the mass and velocity of an object) and the 

vehicle only needs to compensate for friction, potential incline and aerodynamic 

drag to maintain a constant speed. 

As a vehicle’s speed increases, so does its rolling resistance (friction) and 

aerodynamic drag. The former is proportional to the vehicle weight so the 

aerodynamic drag – which is not – will be proportionally more important on a 

partly laden or unladen vehicle. On the other hand aerodynamic drag increases 

exponentially as a vehicle speeds up resulting in being the major factor for fuel 

consumption (Weatherley, 2009).  

Vehicles need to limit the three following types of aerodynamic drag: 

 Form drag (relates to how well air flows around the object’s overall 

shape). This is the most influential form of drag 

 Surface friction (caused by air viscosity) 
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 Interference drag (caused by projections of an object’s angles creating 

vortices; e.g. the end tip of a standard shaped wing (i.e. without a 

winglet)). 

Aerodynamic kits are designed to reduce the aerodynamic drag of the vehicle. 

As the three main types of trucks (articulated, rigid and drawbar) react in 

different ways to wind, the aerodynamic kits will be different for each of these 

vehicle types (Daimler Chrysler reports fuel savings as high as 6% (on LGVs, 

Anon, 2007a)). Due to vehicles’ large frontal area and a poor aerodynamic 

design, the potential for savings is greater when the vehicles are travelling fast. 

Consequently, LGVs – due to their size and type of operations – generally have a 

greater scope for fuel saving from aerodynamic kits than vans (FBP, 2007a). 

2.2.4.6. A Word on Fuel Saving Interventions 

Although these interventions are claimed by manufacturers to improve fuel 

efficiency see (see FBP, 2005, p.5) and that experiments also demonstrate some 

potential fuel savings, FBP recommends having a performance management 

system in place to appraise – before the intervention is used throughout the 

whole fleet – the potential fuel saving benefits of any intervention. This is 

crucially important as the potential savings from fuel saving interventions 

generally vary depending on how well the fleet is already performing in regards 

to fuel efficiency. Carlsberg and Somerfield case studies illustrate the 

importance of measuring the potential benefits of an intervention, as these two 

companies have declared some impressive fuel savings by measuring the 
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performance (especially in relation to mpg) before the purchase of any 

equipment (Tonkin, 2009a). 

2.2.5. A Word on the Ways to Improve Fuel Efficiency 

This section has reviewed some interventions that have a direct impact on fuel 

consumption (e.g. fuel additives, hydrogen added to the air/diesel mix, aerodynamic 

kits...), and other which have a rather indirect impact such as scheduling or CANbus 

technology (with adequate following-on driver training). By providing key 

information such as distance, location or CANbus information, telematics technology 

enables transport companies to make better informed decisions in regards to their 

operations thus could potentially be also considered as a fuel saving intervention 

(FBP, 2009). Fuel savings from telematics solution can be achieved for example from 

reductions in private mileage or from a better understanding of driving practices. 

Anti-theft devices which can be placed on the tank’s aperture to hinder any fuel 

siphoning can also be considered as fuel saving interventions. Similarly, engine 

automatic cut off at traffic light could also be regarded as fuel saving interventions 

although these systems are generally found on top range luxury cars and are 

generally not retro-fitted. Finally, it is important to observe that regardless of which 

fuel interventions are used on a truck, several other variables can have an impact on 

fuel efficiency. These are mainly: 

 correctly inflated tyres (mentioned in section 2.2.4.4 Energy Efficient 

Tyres), 

 driver behaviour (mentioned in section 2.2.2 CANbus Technology & 

Driver Training), 
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 properly done maintenance, 

 topography, 

 weather, 

 traffic and infrastructure and 

 vehicle speed. 

2.3. Explaining the Focus on Fuel Efficiency Measurement Based on Fuel Cards 

There are many different methods that can be used to improve vehicle’s fuel 

efficiency. These sections will review the methods mentioned above and will justify 

why fuel efficiency performance measurement based on fuel card information was 

selected as the main focus for this study. 

2.3.1. Improved Scheduling and Network Optimisation 

Section 2.2.1 explained how improved scheduling could reduce the number of miles 

which would indirectly benefit fuel consumption. It was also stated that network or 

supply chain optimisation (e.g. depot location) could have an even greater impact on 

the number of miles required to conduct operations, thus on the overall fuel 

consumption. 

To ensure that fuel consumption is reduced via scheduling, the optimisation function 

needs to either reduce the CO2 emissions or the fuel consumption (there is direct 

linear relation between fuel used and CO2 emissions). However, some companies’ 

main concern might not be to optimise fuel efficiency but instead reaching their 

customer on time – the cost of customer dissatisfaction being possibly greater than 
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any fuel saving. Depending on the optimisation criteria, improving fuel efficiency 

through scheduling would not be appropriate in these cases.  

Similarly, network or supply chain optimisation needs to consider the total cost (e.g. 

cost of different depot locations, cost of average transport, number of drivers 

necessary, number of depots necessary, etc). In this case potential fuel savings might 

be outweighed by other savings (e.g. cheap depot location). Thus, optimising a whole 

network or supply chain just considering only fuel cost is likely to be a mistake. 

2.3.2. CANbus Technology & Driver Training 

CANbus is probably the most accurate source of information in regards to vehicle 

fuel consumption and driver behaviour information (providing accurate mpg, engine 

rpm, throttle position, etc). CANbus’ extreme accuracy – which can, depending on 

the telematics solution, sometimes be tied in to each individual driver – makes it an 

ideal solution to target inefficiencies and thus improve fuel consumption through 

driver management. However, CANbus technology still remains expensive (generally 

found from £5.00 to £15.00 per vehicle-month on top of most telematics offers 

(already between £5.00 and £15.00 depending on options) although some telematics 

providers’ offer this as part of the standard package). Furthermore, some telematics 

providers might not cover all vehicle makes and models, and some vehicles do not 

even have a CAN – i.e. it will not be possible to retrieve CAN information on these 

vehicles. In addition, some CAN installation can be problematic as fuel used needs to 

be calibrated against fuel card data in order to report accurate fuel consumption. 
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This means that despite the benefits of using CAN technology, this option is generally 

costly and occasionally on some vehicles, a difficult or inapplicable option. 

2.3.3. Traditional Fuel Saving Interventions 

The section Traditional Fuel Saving Interventions has reviewed the main fuel saving 

interventions ranging from fuel additive, hydrogen-diesel mix, to aerodynamic kits. 

All these techniques have a direct impact on fuel efficiency although each will 

generally have different fuel saving potentials. 

It is consequently possible to improve fuel efficiency by enhancing an existing 

traditional fuel saving intervention or creating a new one. This option would have 

the advantage of directly improving fuel consumption, making improvements more 

tangible and more easily measurable. Nevertheless, all the aforementioned fuel 

interventions listed above relate more to engineering, chemistry or physics rather 

than transport. These limitations make fuel efficiency improvement via traditional 

fuel saving intervention not an ideal subject for this transport research. 

2.3.4. Fuel Cards Management and the Limitations of CANbus 

The relation between fuel cards management and improvement in fuel efficiency is 

similar to the relation between CANbus and fuel efficiency improvement; these two 

methods do not have a direct impact on fuel efficiency and it is rather the informed 

actions based on the measurement information that will improve fuel efficiency. 

Both CANbus and fuel card management rely on measuring the fuel efficiency 

performance to uncover potential gaps in fuel performance. Because the information 
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recorded from the CANbus generally only measures the fuel that passes through the 

injectors and other driver’s behaviour related parameters, it is best at uncovering 

inefficiencies caused by poor driving behaviour. However, and unlike fuel cards, 

CANbus alone fails to show potential fuel thefts as having no knowledge of how 

much fuel was bought. In comparison, fuel cards truly reflect both the cost of fuel 

expenditures and of fuel theft. 

The mpg measure which is calculated with fuel cards data has several limitations 

however: 

1. The measure does not include factors which are important or essential to its 

interpretation. These are mainly: 

 Vehicle weight (heavier vehicles are likely to use more fuel), 

 Vehicle type (some vehicle types are less efficient than others in terms of 

fuel efficiency – e.g. drawbar vehicles have poorer aerodynamics qualities 

than articulated thus would be likely to show worse performance in terms 

of fuel efficiency), 

 Type of operations (urban driving uses – for the same distance – more fuel 

than motorway driving for example), 

 Vehicle age (older engines are likely to show lower performance in terms 

of fuel efficiency as being of an older generation but also because of wear 

and tear). 

Including these factors would enable the measure to reflect performance level 

by itself instead of relying on extra information to appraise the performance. 
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Furthermore, and when considering benchmarking approaches, this would 

enable vehicles of different sizes (and potentially: types, type of operations, and 

different ages) to be compared together in a fair and potentially unbiased 

manner. 

2. The mpg measure does not include cost which is another key aspect of fuel 

performance (i.e. pence per mile measure). It is however conceivable that a 

vehicle could be mpg efficient but not fuel-cost efficient (and vice versa). Because 

both aspects of performance are relevant to fuel efficiency, it is important to 

appraise a vehicle which is cost efficient yet mpg inefficient as a fuel efficient 

nonetheless (and vice versa). 

3. The measure is generally not used correctly in fuel trials (i.e. vehicle not always 

refilled at the beginning and the end of the measurement period – this is 

explained in greater details in the section 5.3.3 Smoothing Algorithm). 

These limitations potentially hinder an easy interpretation and use of the mpg 

measure. 

Fuel cards, as a whole, have several attributes that make them an ideal choice for 

research on fuel efficiency improvement. Not only their use is nearly universal for 

companies that run road operations, but they also are more suitable than CANbus in 

term of cost control and are definitely cheaper than this advanced technology. 

Finally fuel efficiency measurement using fuel cards also demonstrates several 

limitations which would be interesting to address (as explained in section 2.2.3). As 

mentioned earlier, improving the measurement can only have an indirect impact on 
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performance, i.e. any improvement on fuel efficiency measurement using fuel cards 

would only have an indirect impact on fuel efficiency and would be relying on 

adequate driver management. Despite this indirect relation to fuel efficiency, and in 

view of all the qualities fuel cards have, this study will focus on improving the fuel 

efficiency measurement based on fuel card data. The details of how this data is used 

can be found in chapter 5 Case Study and Results. 
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3. Literature Review – Performance Measurement 

The previous chapter has explained why this study will focus on improving the mpg 

measure calculated from fuel card data. This current chapter will define most of the key 

terms used throughout this study. It will also review the core theory around 

performance measurement, to finally discuss the main aspects related to measuring 

performance. The performance measurement methods relevant to this study will be 

described and discussed in the following chapter 3 Literature Review – Performance 

Measurement. 

3.1. Performance and Performance Measurement 

3.1.1. Key Concepts and Definitions 

This section will list the definitions of several notions which are intrinsic to this study. 

The terms are not listed in absolute alphabetical order as some notions need to be 

introduced to explain others. 

This list of definitions is not exhaustive and some might criticise the absence of some 

terms (e.g. there is no definition of effectiveness whilst efficiency is defined). These 

were not included in the list as they are not deemed essential to the purpose of this 

study. Most terms relevant to this study – including all those deemed non-essential 

to the understanding of the study – can be found in the ‘Glossary of Terms and 

Abbreviations’ section. 
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Performance 

The Oxford English Dictionary (1989) defines ‘performance’ as: 

Performance. The action of performing, or something performed… The carrying 

out of a command, duty, purpose, promise, etc.; execution, discharge, 

fulfilment. Often antithetical to promise… The accomplishment, execution, 

carrying out, working out of anything ordered or undertaken; the doing of any 

action or work; working, action (personal or mechanical); spec. the capabilities 

of a machine or device, now esp. those of a motor vehicle or aircraft measured 

under test and expressed in a specification… The observable or measurable 

behaviour of a person or animal in a particular, usu. experimental, situation… 

The action of performing a ceremony, play, part in a play, piece of music, etc… 

Measurement 

The Cambridge Dictionary (2008b) defines ‘measurement’ as both: 

(noun) 

1 [C or U] the act or process of measuring [or] 

2 [C] the size, shape, quality, etc. of something, which you discover by measuring 

it: 

Whilst ‘measuring’ (from the verb “to measure”) is define as: 

(verb) [L only + noun; T] 

To discover the exact size or amount of something, or to be of a particular size 

 



 

55/343 

 

Performance Measurement 

It is important to observe that the definition of performance can apply to any 

activity; i.e. there are as many types of performance as there are occasions to 

perform. On a discussion on performance, Bourne et al (2002) provide a different 

definition of performance in a business context. Performance is there defined as: 

“the efficiency and effectiveness of a purposeful action”. Bourne et al used the 

example of better effectiveness that could lead to a better product, thus better 

customer satisfaction whilst efficiency might lead to greater profits through cost 

reduction. ‘Performance measurement’ could consequently be defined as follow: 

‘The qualification and/or quantification of a purposefully executed action’ 

Similarly, Harbour (2009) defines ‘performance measurement’ as follows: 

The ‘process of measuring actual outcomes or the end goal of performance, as 

well as the means of achieving that outcome as represented by in-process 

measures’ 

The term ‘performance appraisal’ is often used in sociology instead of performance 

measurement. This is probably intended to better reflect most sociologist’s tendency 

to appraise (generally individuals’) performance with some qualitative element – i.e. 

not solely quantitative as per explained by Longenecker and Ludwig (1990). The two 

approaches are essentially similar yet they both intend to appraise or evaluate the 

performance of a purposely executed action or entity. As this study’s main focus is 

on measuring productive efficiency, this research will prefer the terminology 
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‘Performance Measurement’ (PM) (see both the definition of efficiency below, and 

the section ‘Type and Classification of Performance Measures’ for an explanation of 

the term ‘productive’). 

Efficiency 

Efficiency is defined by the Cambridge dictionary (2008b) as follows: 

‘when someone or something uses time and energy well, without wasting any’ 

Specialized: the difference between the amount of energy that is put into a 

machine in the form of fuel, effort, etc. and the amount that comes out of it in 

the form of movement. 

For the sake of this research, the specialised definition will be retained. I.e. efficiency 

is the differential between outputs and inputs of a purposely conducted action or 

process. 

Fuel Efficiency 

Fuel efficiency is consequently the relation between the inputs and outputs used on 

a vehicle in relation to fuel efficiency. The inputs need to be both related to the 

‘production’ of miles and relevant to businesses (e.g. fuel used, cost of fuel...). 

Conversely, the main relevant output is the number of miles travelled. This will be 

discussed in more detail in section 5.4 ‘The fuel efficiency model’. The ‘Traditional 

fuel efficiency’ measure aforementioned is here the ‘miles per gallons’ measure 

(mpg) used in UK. It is interesting to observe that this measure also links an input (i.e. 

gallons) to an output (i.e. miles). 
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Improvement 

The Cambridge dictionary (2008) defines improvement as follows: 

‘When something gets better or when you make it better’ 

Modern Performance Measurement Method 

The limitations of ‘traditional’ benchmarking – i.e. the comparison of one’s 

performance against others’ performance – have been well acknowledged by 

modern research. This research has developed new methods that have addressed 

some or all of the limitations of more traditional methods. These methods – mostly 

developed in the last 40 years – are referred to as ‘modern performance 

measurement methods’ in this research. An appropriate selection of these methods 

will be discussed in the section 3.3 ‘Performance Measurement Methods’. 

Van 

A van is an independent small vehicle on which the driver’s cab and the load carrying 

compartment are mounted on the same (rigid) chassis. The term van is used by 

official bodies such as DfT (Anon, 2005a) or in research such as in the paper from 

Brackstone et al (2009). The size of a van greatly varies, ranging from small vans with 

a gross weight slightly greater than 1000 kg to large vans weighting up to 3.5 tonnes. 

Vehicle weighting between 3.5 tonnes and 7.5 tonnes are sometimes called heavy 

vans in opposition to light vans (from 1 to 3.5. tonnes). This study will concentrate on 

vehicles up to 3.5 tonnes only. 
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Fuel cards 

Fuel cards are special cards given to drivers or employees which allow them to 

purchase fuel or goods at petrol stations or to access fuel at company or associate 

fuel tanks. 

3.1.2. Purpose of Measuring 

Performance measurement has been of interest from times as far back as Aristotle 

(Landy and Zedeck, 1983). This need for improving a given action or process can be 

explained, amongst others, by common constraints such as scarce resources, harsh 

environment, competition or ecological motives. Halachmi (2002a) and Harbour 

(2009) also state that it is not possible to know whether the performance has 

improved or worsened without appropriate and adequate measurement. This 

section will thus discuss in more detail the need to measure performance. 

Harbour  (2009, p.1) pinpoints, in a very clear manner, one of the main reasons to 

measure performance when stating: ‘You can’t understand, manage, or improve 

what you don’t measure’ and ‘a critical enabler in achieving desired performance 

goals is the ability to quantitatively measure performance’. This author sees 

performance measurement as not only the process of quantifying an actual outcome 

or an end goal, but also as the means of achieving that outcome. In this respect, 

performance measurement can help a business or structured organisation to 

(Harbour, 2009, pp.5-6): 

 Determine where they are (baseline) 
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 Establish goals on the basis of their current performance 

 Determine the gap or delta between a set of desired goals and current 

performance levels 

 Track progress in achieving desired performance goals and ensure that 

such goals are maintained 

 Compare and benchmark their competitors’ performance levels with their 

own 

 Assess variation within a system or process and help control such 

variation within predetermined boundaries 

 Identify problem areas and possible causes, 

 Make more informed performance, cost, and fact based decisions 

 Allow better forecasts to be made 

The key steps which are necessary to know (or prove) that performance has actually 

improved (or worsened) are to determine the actual performance (by measuring) 

before and after a modification to the method or to the process. Harbour includes 

acting on performance measurement results (i.e. ‘Make more informed 

performance, cost, and fact based decisions’ & ‘Better plan for the future’) as part of 

performance measurement. The relation between improvement and performance 

measurement will however be further discussed in the section ‘Performance 

Measurement Recommendations’. 
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Conversely, Halachmi (2002a) gives a comprehensive list of reasons supporting the 

need for performance measurement which are detailed below: 

 if you cannot measure it you do not understand it; 

 if you cannot understand it you cannot control it; 

 if you cannot control it you cannot improve it; 

 if they know you intend to measure it, they will get it done. This point is 

also mentioned in (Eccles, 1995); 

 if you do not measure results, you cannot tell success from failure; 

 if you cannot see success, you cannot reward it (this point is again 

mentioned in (Eccles, 1995)); 

 if you cannot reward success, you are probably rewarding failure((Eccles, 

1995) p. 95); 

 if you will not recognize success you may not be able to sustain it; 

 if you cannot see success/ [or] failure, you cannot learn from it; 

 if you cannot recognize failure, you will repeat old mistakes and keep 

wasting resources; 

 if you cannot relate results to consumed resources you do not know what 

is the real cost; 

 if you do not know the actual cost you cannot tell whether or not you 

should do it or outsource it; 

 if you cannot tell the full/ real cost you cannot get the best value for 

money when contracting out; 
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 if you cannot demonstrate results, you may undermine your ability to 

communicate with important stakeholders to mobilize necessary support 

because you provide value for money; 

 if you cannot document that the business process, material or people 

you use are the most suitable for achieving the sought after results your 

performance will be questioned; 

 if you cannot show that in comparison to the past or to another provider 

you are on a par or doing better there may be question about your 

accountability and; 

 if you do not have the data about who is happy/unhappy with your 

performance and why, you may change when you should not or, even 

worse, stay a course [which] on its face seems to be right but in fact is 

wrong. 

In this compelling list of reasons why performance measurement is often essential, 

Halachmi covers a wide range of topics from the need to understand the business’ 

operations to create an appropriate performance measurement system, accounting 

reasons (e.g. ‘if you cannot relate results to consumed resources you do not know 

what the real cost’ is), or sociological/organisational reasons (e.g. ‘they know you 

intend to measure it, they will get it done’ – a point well discussed by Hayes et al 

(1988)). The psychological aspects linked to performance measurement will be 

discussed with more details in the section ‘Possible Risks and Issues in Measuring 

Performance’. 
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It is important to observe that the purpose of measuring – whether it is to ensure 

improvements occur, to keep performance levels under control, or to better control 

costs or people – often differs depending on who is concerned by the performance 

measure. Brady ((Brady, 1985) cited in (Longenecker and Ludwig, 1995)) discusses 

this issue by proposing his ‘Janus-Headed’ model (a god from the Greek mythology 

who had a head with two faces). Longenecker and Ludwig (1990) illustrate this Janus-

Headed model concept by mentioning that the manager sees the (employees’) 

performance measurement as a means whilst the Human Resource department 

might see it as an end. 

Finally, performance measurement does not necessarily bring improvement to a 

business. It is rather the adequate and appropriate actions based on the 

performance measure results that can lead to improvement. Murphy and Cleveland 

(sociologists and researchers) see performance measurement as both the qualitative 

or quantitative measurement and the communication of these results. They state 

that considering performance appraisal strictly as a measurement instrument is 

unrealistic if the follow up communication is not taken into account (Murphy and 

Cleveland, 1995). 

3.1.3. Type and Classification of Performance Measures 

Research on performance has proposed many different classifications of 

performance measures and proposed an even larger number of characteristics or 

possible attributes to these measures (Christopher and Thor, 1993, Abbott, 1994, 

Harbour, 2009, Gass and Prince, 1993). This section will introduce one classification 
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proposed by Harbour (2009) on performance measures’ types and families. 

Numerous dichotomous measure’s characteristics which regularly appear in the 

literature (e.g. qualitative vs. quantitative) will also be introduced. The 

characteristics which families of measure should possess (e.g. cost, productivity, 

quality, timeliness...) relate more to performance management and will 

consequently be discussed in section Performance Measurement Recommendations 

below. 

The previous section highlighted the need to establish the baseline performance 

prior to an improvement exercise. This was necessary to evaluate whether an 

improvement actually occurred. In view of this, Harbour proposed the following 

three performance measurement categories: 

 Descriptive measures: measures which describe what has happened; 

 Diagnostic measures: helping to understand what caused a good or bad 

performance; 

 Predictive value: a value that helps forecasting what will happen based 

on what has been measured. 

Descriptive Measures 

Descriptive measures, also called lagging-indicators (Anon, 2009a) and (Erikson, 

2009), describe what is happening or has happened. These measures generally 

include baseline and trending performance measures. 
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Baseline measures show the current levels of performance. They are essential to any 

performance measurement system as without a baseline, it would be impossible to 

know whether improvement has occurred or not. A trending measure is essentially 

the same but considers performance over time so trends can be shown (and 

improvement demonstrated). An illustration of a descriptive measure could be the 

mpg (miles per gallons) of a vehicle. A baseline measure could be let’s say a mpg of 

7.5 for a HGV and its corresponding trending measure the plot of the HGV’s mpg 

performance over a year; the latter showing clearly whether performance is 

constant, worsening, or improving. 

Diagnostic Measures 

These measures do not describe what is happening but help identifying why 

something has happened. Taking the example of a manufacturing product cycle time, 

a descriptive measure might be the overall product cycle time, and the 

corresponding diagnostic measure the cycle time of the individual processes. In this 

case the predictive measure is made of the diagnostic measure but this is not always 

the case (e.g. diagnostic measures for mpg would be any variables impacting mpg for 

example driver behaviour, load weight or weather conditions). 

Predictive Measures 

Predictive measures, often called ‘leading indicator’ (Chatchai et al., 2007), are used 

to extrapolate what is likely to happen in terms of performance – based on past 

observed performance. Developing good predictive measures is often difficult and 

most predictive measures will also require some degree of interpretation. Harbour 
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(2009) exemplifies this with the example of an S curve illustrated in Figure 2.1 Costs 

Distribution for Typical Transport Operations. 

 
Figure 3.1: The S curve 

Here, the predictive measure was the volume of sales over a period of time (trending 

measure). As illustrated by the graph on the right hand side, forecasting the sales 

volume based on the start of the ‘S’ curve (left hand side graph) will require expert 

knowledge (this is illustrated by the many different potential curve endings on the 

right hand side figure). 

Aside from the framework introduced above, there are numerous dichotomous 

characteristics for performance measure which can be found in research papers. The 

most commonly used characteristic is probably quantitative versus qualitative. This 

attribute relates to the possibility to measure a variable using a numerical scale. For 

example, the distance an athlete can jump is a quantitative variable whilst how a 

person is appreciated by their colleagues (or not) is qualitative variable. Interestingly, 

qualitative variables are often ‘encoded’ using numerical scales (such as the Likert 

scale – the term ‘Likert’ being an eponym) in order to run statistics on the results 

(Harzing et al., 2009). 
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Another important distinction can be made on whether the performance measure is 

depicting efficiency or effectiveness, the former relating to the how much output is 

created in regards to the inputs, while the latter only considers how well the task or 

process has been completed (see the section Key Concepts and Definitions and the 

Glossary of Terms and Abbreviations for term definitions). 

Zairi (1996, p.393) also proposed a two-way classification of performance measure 

by suggesting a process versus results approach which he refers to as in-process 

measures and output measures. He describes the process based measures as relating 

to a process and providing a swift performance feedback whereas result based 

measures relate to ‘broader issues or targets’ and are used more as ‘management 

information’. Conversely, Lawson ((1995) in (Walters, 1995, p.11)) distinguishes 

internal versus external performance measure. He argues that the most important 

measures are the external ones as those are visible to the customer (e.g. quality or 

delivery times). 

This section has briefly introduced a 3 classes classification from Harbour (2009) to 

then describe several dichotomous classifications which are often used in the 

literature. The list presented above does not intend to be exhaustive in any way, but 

rather to give a quick outline on different performance measure classifications. The 

characteristics which performance measure families should have (e.g. cost, 

timeliness...) will be discussed in the ‘Performance Measurement Recommendations’ 

section as they relate more to performance management systems rather than mere 

taxonomic discussion. 
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3.2. Around the Performance Measure 

Now that the key definitions, purpose and main taxonomies of performance 

measurement have been discussed, this section will delve in to more details 

regarding performance measurement. The aspects related to data and data 

gathering will be introduced in the first section. The possible risks and drawbacks 

associated with measuring performance will then be discussed. This section will 

finally end with a series of recommendations regarding performance measurement. 

These were collected from selected research papers. The notion of performance 

management will also be introduced at the end of this section. 

3.2.1. Data Gathering 

Research projects always require data to conduct analysis. The data collected can be 

of various forms and can for example consist of research papers (i.e. reviewing peer 

reviewed papers and discussing them), statistical data collected by different bodies 

(McNally, 2008), or in-field data. Probably due to this invariable need for data, the 

data collection methods and associated issues have been well researched. However, 

some distinctive differences between quantitative and qualitative collection 

methods exist. In light of the quantitative nature of this study, this section will focus 

mainly on general issues and the quantitative aspects of data collection. 

Curwin and Slater (2002, p.31) stress the fact that the data collected need to be 

appropriate, adequate, and without bias. It is effectively not relevant to gather 

statistics about accident rates whilst the purpose of the research is fuel efficiency 

(unless there is reason to believe there is correlation and causation between 
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accident rate and fuel efficiency of course). To know whether the data are adequate 

requires being clear about the problem boundaries. This can generally be answered 

by considering what needs to be achieved or what the customer’s requirements are. 

Data collection can also be constrained by the time or resource limitations of the 

project. Another obvious property of collected data are that it needs to be 

representative (Curwin and Slater, 2002, p.14), e.g. no point in collecting LGV’s data 

when the study is only concerned with vans. 

Another concern when gathering data is their own accuracy, concern which is 

present in both qualitative (e.g. (Murphy and Cleveland, 1995, p.7)) and quantitative 

research (e.g. (Vincent, 1998, p.59 onwards)). The potential reasons for inaccuracies 

in the data are various. Murphy and Cleveland mention a potential leniency and 

other cognitive issues as potential causes behind data inaccuracy  (1995, p.96). For 

instance a certain leniency is for example generally found in the rating of employees 

for administrative purposes in comparison with when the rating is for research 

purpose. The reasons for such behaviour being well detailed in the paper ‘Ethical 

dilemmas in performance appraisal revisited’ (Longenecker and Ludwig, 1990). On a 

more general basis, Stephen Vincent (1998, p.60) mentions normal error rates and 

annoyances which can be, amongst others, rounding inaccuracies, or inaccuracies 

due to the fact the operator not being aware of the accuracy requirements. The 

author illustrates the sampling and data collection processes in Figure 3.2: Data 

Sampling. 
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Curwin and Slater (2002, p.32) also describe potential biases in the collected data as 

another potential risk when gathering data. Biases can occur when the sample data 

misrepresent the population, thus biasing any inference made to the population 

studied. This issue is particularly important when the research attempts to prove a 

whole population’s characteristic by studying a sample of this population. 

 
Figure 3.2: Data Sampling 

In order to reduce the risk regarding potential inaccuracies and bias, several methods 

can be used. Axinn and Pearce (2006) suggest mix-methods as a solution offering 

better control. This methodology suggests using different methods (e.g. surveys, 

interviews, Delphi method, etc) in order to provide different orientations of the 

same problem and thus, limit bias. This approach is also shared by Saunders et al 

(2009) where the authors define mix-method strategies as methods which combine 

quantitative and qualitative for the data collection phase as well as for other phases 

of the research. Axinn and Pearce (2006, p.1) further add that mix-methods offer 

opportunities to use multi-sources of information which in turn reduce the risk of 
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non-sampling error by ‘providing redundant information from different sources and 

ensure that a potential bias coming from one particular approach is not replicated in 

alternative approaches’. It is also possible to further reduce the risk of random errors 

by using significance testing or bigger samples. 

Finally, it is important, when using some methods (e.g. simulation, DEA), to assess 

the independence of the different variables and of any potential correlation. This can 

be done with both linear variables’ correlation and scatter diagram techniques, or 

with formal tests. However, Vincent (1998, p.61) recommends the first two 

approaches when the assumption regarding the populations’ distribution cannot be 

made. 

3.2.2. Possible Risks and Issues in Measuring Performance 

Section 3.1.2 ‘Purpose of Measuring’ explained that measuring performance does 

not guarantee that it will systematically improve. This is especially true in this 

context as the drivers do not need to be aware of the measurement, thus human 

behaviour effect such as the one observed in the Hawthorne experiment are not 

relevant to this study (Franke and Kaul, 1978). This lack of connection between 

measurement and performance improvement might be due to already existing good 

performance levels allowing little room for improvement, to the fact that the 

performance measures are irrelevant, or that there is no action taken on the 

performance measurement results. Measuring performance also involves a certain 

number of risks; this section will discuss the most common ones. 
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Measuring performance is often believed to systematically lead to improvements in 

performance. Yet, Halachmi (2002b) points out that potential dysfunctions of 

performance measurement should not be ignored. He particularly highlights the risk 

that the cost of measuring could potentially exceed the benefits of measuring 

performance thus nullifying the benefits of performance measurement. It is also 

quite hard to estimate potential improvement although monitoring a few key 

performance indicators (KPIs) over time can help appraising the room for 

improvement. This relates to the ‘S’ curve, i.e. performance improves slowly at first 

until reaching a constant tangent, to finally finish with a slow slope once again 

(Harbour, 2009, p.76). 

Section 3.1.2 ‘Purpose of Measuring’ also explained that the purpose for 

performance measurement generally differs from the people or the department 

involved. Longenecker and Ludwig  (1990) gave the example that performance 

measurement is generally seen as an end for the Human Resources department but 

as a means for the managers. This difference in purpose can lead to some deliberate 

performance measure manipulation as cited by Murphy and Cleveland (1995, p.103). 

Similarly, Eccles (1995) states that managers manipulating performance 

measurement figures and the consequent need to secure data relating to or used for 

measuring performance (e.g. employees manipulating sales data to collect greater 

bonuses). Although the reasons why performance measurement results are 

sometimes manipulated is beyond the interest of this research, it is important to cite 

Longenecker and Ludwig (1995) who have listed a compelling list of potential 

reasons for these manipulations to happen. Finally, Harbour (2009, p.31) mentions 
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the importance of ensuring the performance measure chosen and the corresponding 

data cannot ‘be easily manipulated to achieve desired results’. 

Fenner also states that there is a risk associated with measuring performance if the 

decisions made are based on insufficient or inappropriate performance measures 

(2002). Curtis (1985) (cited in Eccles, 1995, p.62) observed this phenomena in most 

companies of the 1980’s. At this time companies’ performance measures were 

mainly focusing on economical or accounting aspects missing an important aspect of 

performance relating to quality and customer service. Similarly, King et al (in (2002) 

(cited in Halachmi, 2005)) also suggest that there is (still) a growing concern among 

scholars who fear executives may base their decisions on “sometimes-arbitrary 

performance measures rather than [for] improving public management per se”. 

Eccles (1995) also stressed the risk that focusing excessively on short term 

performance measures could potentially impede potential but necessary long term 

investments from being made. 

Furthermore, there are also some important legal aspects to performance 

measurement when it is used to make decisions about people. Murphy and 

Cleveland  (1995, p.11) stress the importance of being able to explain the 

performance measurement mechanism. This is because any system used to make 

decisions about people is subject to court action on its accuracy and validity. 

Since this observation, Cullen (1999) (cited in Halachmi, 2005)) has pointed out that 

the number of evaluation systems has proliferated so much that the ‘selection of 

appropriate measures has become a difficult task’ and that ‘none of us can answer 
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the question ‘does performance measurement improve organizational 

effectiveness?’ positively and confidently…’. Even though there are strong and 

natural incentives to measuring performance (see aforementioned list), more 

performance experts seem to agree that simply measuring performance without 

including performance measurement in a wider picture can fail to bring the expected 

benefits of measuring. 

3.2.3. Performance Measurement Recommendations 

Whilst the previous sections have mainly looked at performance measurement 

classifications and the risks associated to performance measurement, there have 

been few recommendations on how performance measurement should be 

approached. This section will introduce the concept of families of measures as well 

as detailing which essential characteristics performance measurement should have. 

The notions of performance measurement framework and performance 

management will then be briefly introduced. 

The performance of most purposely executed actions has generally several facets. 

This might be best illustrated by a company that needs to be creative and innovative 

in design, while efficient in production and effective in selling the products it 

produces. This can also be illustrated with a vehicle that needs to be simultaneously 

mpg efficient and at the same time pence per mile efficient. Because in most 

situations a single performance measure is rarely enough to encompass all aspects of 

performance, families of measure are generally required instead (Harbour, 2009).  
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The concept of family is generally attributed to the work of Christopher and Thor 

(1993, p. 2–6.2). These authors define a family of measures as a group of 

performance measures that capture all important aspects of a given process or 

organisation performance. Harbour (2009, p.26) illustrates the concept of family of 

measures with an analogy to a vehicle dashboard. The vehicle dashboard has several 

measures (speedometer, fuel gauge, rpm...). All these measures capture the key 

attributes of the car and are all necessary. This is exactly the same principle with 

families of measures. Although families should encompass all aspects of 

performance, Harbour (2009) also recommends that only the vital few should be 

selected in order to avoid diluting what is really important. 

Carl Thor (1993) discussed the attributes which measures of a family should ideally 

have. Harbour (2009, p.26) and Gass & Prince (1993, p4-8.3) further discussed this 

topic. A summary of their work is described below: 

Productivity: this relates to the notion of efficiency or the relation between the 

outputs produced and the inputs used. An example of a productivity measure 

could be the number of deliveries per hour for a delivery van. 

Quality: the quality measures generally reflect quantity of undesirable outputs 

(scrap, waste, CO2 emissions...) or (customer) satisfaction levels and repeat 

frequencies. 

Timeliness: these measures are related to how well things are delivered when 

they should be. 
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Cycle Time: cycle time measure are generally used in manufacturing to 

represent the time it takes for goods to be processed through a machine or for 

raw products to be transformed in to a final product. 

Resource Utilisation: these measure how well capability is used. An example of 

this could be the vehicle fill (percentage of volume filled, percentage of weight 

loaded against total possible weight). 

Cost: these measures are especially useful when used with a comparator, e.g. 

cost per unit, cost per vehicle/mile... 

Safety: these measures show level of safety associated with particular activities 

(e.g. number of accidents, number of nearly misses). 

This list is obviously not exhaustive and it is not essential for all families to have 

measures in each of the categories listed above. Conversely, it is possible to have a 

family with categories other than those listed above. The key criteria in the 

performance measures selection is to always ensure that the measures selected help 

achieving the desired performance levels. Eccles (1995, p.3) crystallises this when 

writing: ‘businesses must ask themselves what measures truly predict their 

[company’s] long-term financial success’. 

Harbour (2009, p.30) gives further essential characteristics which performance 

measures should demonstrate: 

Have a comparative basis, i.e. information that offers the possibility to appraise 

whether the performance measure level is good or bad. For example, it is not 
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possible to know whether a vehicle’s mpg is good or bad without knowing which 

vehicle type the mpg is for (e.g. 25 mpg does not mean anything if one does not 

know whether the vehicle is a car, van, or rigid). 

Be timely. Information has an expiry date and late information is often useless. 

For instance, there would be no need for a driver to know the vehicle’s speed 

with a 5 minute delay. 

Conversely, Bititci and MacBryde (2002) state the need for performance 

measures to be dynamic and change with the natural changes of the 

organisation. This point is also supported by Maskell (1992) cited in (Folan and 

Browne, 2005). 

Most of the above recommendations for performance measures are applicable in 

most cases. Research has however developed many frameworks to help conducting 

performance measurement study. Folan and Browne (2005, p.665) define a 

framework as ‘the active employment of particular sets of recommendations’. They 

also distinguish two types of frameworks. The structural frameworks (e.g. the 

Balanced Scorecard model from Kaplan and Norton (1996)) help deciding which 

aspects of performance should be measured. On the other hand, the procedural 

frameworks for example Wisner and Fawcett’s framework, (1991) define the overall 

performance measurement and action procedure. 

The management of the performance measurement in relation with the organisation 

and its strategy has given birth to the new concept of performance management. 

Amaratunga and Baldry (2002) define performance management as the use of 
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‘performance measurement information to effect positive change in organisational 

culture’. They describe performance management as the transition from 

measurement, which simply states what has happened, to management and 

analysis, which explains why it has happened and potentially gives direction on what 

should be modified or corrected. Smith and Goddard (2002) capture the relation 

between performance management as illustrated below in Figure 3.3: Schematic 

representation of the performance management process. 

 
Figure 3.3: Schematic representation of the performance management process 

Band (1990) cited in (Folan and Browne, 2005, p.665) also recommends that the 

performance measures have ‘top management support’. This point is also 

emphasised in Harbour (2009). 

Research has suggested that it is necessary to consider the interactions between 

performance measurement and the organisation itself when implementing a 

performance management strategy (Halachmi, 2002a). This study will however focus 

chiefly on the technical aspects behind the actual measurement of performance 
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rather than the interactions between those results and the organisations in question. 

Thus the technicalities of performance management will not be discussed further. 

Section 3.1.1 Key Concepts and Definitions has introduced the key terms in relation to 

performance measurement. The purpose of measuring, performance measure 

taxonomy, and other issues related to performance measurement have also been 

described and discussed. All these aspects were briefly introduced and more could be 

said on all these subjects. The aim was solely however, to briefly introduce the key 

concepts related to performance measurement in regards to the study’s objectives of 

improving fuel efficiency measurement. The concepts discussed in this section will be 

used in Chapter 5 Case Study and Results. The following section, ‘Performance 

Measurement Methods’ will first introduce some performance measurement methods 

of potential interest to fuel efficiency. 

3.3. Performance Measurement Methods 

Chapter 2 highlighted the potential interest in measuring van fuel efficiency using 

fuel card data. This previous section also listed several limitations which the mpg 

measure demonstrated and – in light of the importance of fuel performance 

measurement – suggested that these limitations should be addressed by modern 

performance measurement methods. These limitations were as follows (key 

summary of Section 2.3 Explaining the Focus on Fuel Efficiency Measurement Based 

on Fuel Cards): 
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 The mpg measure does not include factors necessary to its interpretation 

(e.g. mainly vehicle weight and potentially, vehicle type, type of 

operations and vehicle age).  

 The mpg measure does not reflect fuel cost. It is conceivable that a 

vehicle can be mpg efficient but cost inefficient (e.g. by buying a more 

expensive fuel offering greater mpg performance). In industrial language, 

this means that mpg is not a Total Factor Productivity measure, i.e. a 

measure which accounts for all inputs and outputs. 

 The mpg measure is often misused in fuel trials. 

Similarly, Chapter 3 introduced the basic concepts of performance measurement 

theory. This chapter provided recommendations about which characteristics a good 

performance measure should demonstrate and additionally warned against potential 

issues such as those linked with data gathering. 

This section will first introduce several modern performance measurement methods 

that could be used to improve fuel efficiency measurement in the van industry. Their 

respective characteristics in terms of how well they address mpg’s limitations and 

how they fit with the theory will be discussed. The appropriateness of each of these 

performance measurement methods is summarised in a table which can be found in 

section 4.1 Reasons for this study to use Data Envelopment Analysis. 

The issue related to misuse of mpg measure in fleet fuel trials is not dependent upon 

the performance measurement method chosen. As a result, this issue will not be 
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discussed in this section but in sections 5.3.3 Smoothing Algorithm, 5.3 Data 

Cleansing and chapter 6 Summary of Results and Discussion. 

3.3.1. Traditional approaches 

The most basic performance measurement method consists of using appropriate 

scales in order to appraise the performance of a process or action. This 

measurement is often realised through Key Performance Indicators (KPI) which are 

generally used to measure specific aspects of performance (e.g. for vehicle load: 

vehicle fill in percentage, weight expressed as percentage of maximum permitted 

load, etc). The two main KPIs used to reflect fuel efficiency are miles per gallons 

(mpg) and pence per mile (ppm). 

KPIs are widely used throughout road operations and have been well documented in 

research (e.g. McClelland and McKinnon, 2004) and by the government (FBP, 2008b).  

KPI’s calculations are generally straight forward (e.g. mpg calculation requires 

dividing the number of miles travelled by a vehicle by the number of gallons used to 

cover these miles). However, the data gathering and cleansing can generally prove to 

be more difficult (Curwin and Slater, 2002). When developing a performance 

measurement system, it is also relatively easy to develop KPIs for each of the 

descriptive, diagnostic and predictive category  of measures (as recommended by 

Thor (1993)). Taking the example of fuel efficiency on vehicles equipped with 

CANbus (see section 2.2.2 for more information on CANbus technology) this could be 

exemplified as follows: 



 

81/343 

 

 Descriptive measure: could be the mpg measure calculated directly from 

the CANbus distance and fuel used information. The mpg measure 

‘shows’ the fuel efficiency performance. 

 Diagnostic measures: could be over-revving, over-acceleration, or idling. 

These different KPIs help explain the performance level shown by the 

descriptive measure. 

 Predictive measure: could be the mpg measure plotted on a daily or 

journey basis. This would show the fuel efficiency performance trend. 

As with any performance measure, it is essential that care is taken in the appropriate 

selection of the different KPIs in order to truly reflect all aspects of performance and 

avoid using misleading measures (for further information, see section 3.2.3 

Performance Measurement Recommendations). 

Although KPIs used independently are ideal at describing, diagnosing and predicting 

performance, they remain an internal oriented approach; thus they fail to indicate 

what level of improvement is possible. When operational tasks are carried out by 

several similar units, it is however possible to compare – without bias – their 

respective performance on each KPI. This externally oriented approach, called 

benchmarking, can indicate which improvements are possible. 

Benchmarking is a performance measurement and evaluation technique that 

compares an entity’s performance against other entities’ performance. One of the 

most quoted definition of benchmarking is ‘Benchmarking is the search for the best 

industry practices which will lead to exceptional performance through the 
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implementation of best practices’ ((Camp, 1989), cited in (Anand and Kodali, 2008)). 

Benchmarking studies can be used to evaluate the comparative performance of 

people, business units, or entire companies. The origins of the technique are 

credited to Xerox in the United States which was at the time - and along with other 

printer companies in the US – threatened by Japanese competition. The technique 

has since then quickly developed in Europe in to a widespread management 

technique and which was quickly adopted by the rest of the world. Although 

originally mainly driven by cost reduction objectives and Total Quality Management 

programs, benchmarking is now used in a wider business context to identify best 

practices. By comparing performance within the same industry but also with other 

industries that share the same business processes, benchmarking can not only 

identify and quantify performance gaps but also uncover the practices that leads to 

competitive advantages (Dence, 1995). 

Many benchmarking models have been developed (Anand and Kodali, 2008). The 

following categories are regularly quoted however (Dence, 1995), (Isoraite, 2005): 

 Internal benchmarking: is the type of benchmarking that is done 

internally, either between related divisions or departments, or between 

plants or equivalent business units. Because of the relative easy access to 

information and parties’ cooperation, this is generally appraised as a 

good start for benchmarking activities. 

 Functional benchmarking: this relates to the performance comparison of 

functionally similar operations but in different organisations or 
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companies. For example this could be the benchmarking of customer 

service calls in a call centre company, a telematics company, or a heavy 

industry company. This is similar to process benchmarking. 

 Competitive benchmarking: relates to the benchmarking of direct 

competitors within the same industry sector or indirect competitors in 

similar industries. This benchmarking is generally difficult to do directly 

as competitors might be diffident about providing their information. A 

third party is generally used to handle safely the confidential information. 

Solely limiting this benchmarking to general performance measures such 

as quality of service might identify best performers but not necessarily 

identify best practices. 

 Generic benchmarking: relates to the benchmarking done between 

companies from different industries but all best in class for some of their 

operations. 

 Strategic benchmarking: refers to the corporate benchmarking at a 

strategic level. 

The specific requirements of each benchmarking study have resulted in the 

development of many different methodologies and approaches to benchmarking. 

These generally include different steps, usually ranging from 6 to 20 steps. The 

following steps seem however to be frequently included in most approaches (Dence, 

1995): 

 determine the key (aspects of) performance to measure 
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 set the key standards and variables to measure 

 identify the most relevant competitors and best-in-class companies 

 measure regularly and objectively (quantitative) 

 analyse the best-in-class performance (qualitative) 

 specify programmes and actions to close the gap, and implement them 

 monitor on-going performance 

As by nature external or competitive benchmarking techniques use performance 

indicator information from different parties and do so in order to provide 

information to other parties, legal and ethical issues need to be seriously taken into 

account when undertaking a benchmarking study. A third party or a system can 

handle the information in order to limit the risks and enable the different parties to 

focus on the benefits of information sharing rather than the associated risks. 

Confidentiality agreements can also be written in order to ensure legal acceptance of 

the confidentiality of the information. Depending on how the analysis is conducted, 

benchmarking could also require a minimal number of participants or a minimum 

dataset in order to provide valid results. Despite the challenges specific to the 

method, benchmarking generally provides new insights on business performance 

measurement by measuring performance not against historical data or future pre-

defined levels but by comparing it against best performers. In light of this, it does not 

seem surprising that DfT’s programme Freight Best Practice has launched a road 

transport benchmarking programme online called On-Line Benchmarking or ‘OLB’ 

(Anon, 2008a). 
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3.3.2. Pair-wise and outranking methods 

Benchmarking using an external oriented approach can potentially make participants 

aware of possible changes that are of an order of magnitude beyond what they could 

have originally thought possible. When it comes to multi-criteria benchmarking, 

participants being best-in-class for all criteria are rarely observed however, thus a 

method is needed to address which are the best-in-class. Sharif (2002, p. 76) 

emphasises this issue by stating the following: 

“There is no performance management enterprise […] that will be best across all 

areas”. 

In the absence of a best-in-class performer, traditional benchmarking solves the 

multi-criteria problem with the creation of a synthetic indicator calculated by making 

a weighted average of each score (Laise, 2004). The performer with the best average 

score will be considered the best-in-class (e.g. as in Goh and Richards, 1997). This 

approach has several inherent problems however. Average is a measure of a central 

tendency that is a representative value when data have a low variability, which may 

not always be the case with benchmarking performance scores. This averaging issue 

has been addressed by several pair-wise and outranking comparison methods. The 

Analytic Hierarchy Process (AHP) is a powerful pair wise comparison tool which can 

help making decisions (by ranking different possibilities). AHP was first proposed by 

Thomas Saaty (1980) cited in (Sureshchandar and Leisten, 2006). Several outranking 

methods successively developed by Roy and Bouyssou and Pomerol and Barba 

Romero also offer an interesting alternative to AHP (Bouyssou and Roy, 1993), 
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(Barba-Romero and Pomerol, 2000) cited in (Laise, 2004). This section will review and 

discuss how these methods address the averaging issue associated with traditional 

benchmarking. 

3.3.2.1. Analytic Hierarchy Process 

As Sharif (2002) observed, best-performers in traditional multi-criteria 

benchmarking are rarely found; besides, using averages to find best performers 

has been shown not ideal (Laise, 2004). Pair-wise comparison such as the AHP 

method are particularly well suited to address complex decision making 

problems such as ranking performers based on their relative performance on 

several different characteristics. The decision problem is structured with the 

overall focus or objective at the top, the criteria at the middle and the decision 

variables at the bottom. 

Although the AHP allows for multi-level decisions (e.g. with sub-criterions), it is 

easier to explain the concept with the 3 level AHP model. This model can be 

represented as in Figure 3.4 (Sureshchandar and Leisten, 2006). 

To compare different options in regards to several objectives, AHP uses the 

following: 

 The scores obtained by each option for each objectives and 

 Some objective weights (illustrating the objectives’ importance). 
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Figure 3.4: The 3 levels AHP structure 

The scores are obtained via any kind of performance measurement system (e.g. 

KPI). The weights are however calculated by asking experts to evaluate how 

much more important a specific objectives is in comparison to another. Each 

option’s score is then calculated using the options’ scores on each objective and 

the corresponding calculated objective weights (Winston, 2004, p. 785). 

AHP requires every objective to be compared with the others in a pair wise 

manner using a 1-9 scale in order to evaluate the dominance of each objective 

on the others. The decisions are entered in a pair-wise comparison matrix ‘a’ 

(where entry aij represents how much objective i is preferred over objectives j). 

The objectives’ weights then correspond to the matrix’s Eigen vector 

(Sureshchandar and Leisten, 2006, p.24). A similar approach is taken to find how 

much each option scores for each objective (Peters and Zelewski, 2008). 
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This process can be illustrated while trying to evaluate different job 

opportunities. In this scenario, the choice of the job offer could be made based 

on the following objectives: 

 Rent cost (RC), 

 Infrastructure quality (IQ), 

 Proximity to suppliers (PS), 

 Road network quality (NQ), 

 Nearby garages quality (GQ)) 

The pair-wise comparison matrix to obtain the objective weight (with a specific 

AHP scale generally ranging from 1 to 9) for the given problem could then look 

as in illustrated in Figure 3.5: 

 

 

 

Figure 3.5: The pair-wise comparison matrix 

The pair-wise matrix above shows that the rent cost (RC) is judged two times 

more important than the proximity to suppliers (PS). Similarly, the proximity to 

suppliers (PS) is judged two times more important than infrastructure quality 

(IQ). This means that the rent cost (RC) should be logically 4 times more 

important than the infrastructure quality (IQ). However, the matrix shows that 

rent cost is perceived as 5 times more important than the infrastructure quality. 
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This is the type of inconsistency which is checked for in the weight calculations. 

Without detailing the inconsistency checks calculations, the matrix’s Eigen 

vector corresponds to the objectives weight. 

With these weights, it is now possible to use the options’ objective score (the 

score attributed to each option for each of the evaluating objectives) to 

discriminate against each option. The options’ scores are calculated using 

Formula 3.1. 

 

 

 

 

Formula 3.1 The AHP option’s score formula 

In this example, this means a score would have been calculated for each depot 

and each of its parameters as per described above (RC, IQ, PS, NQ and GQ). The 

method used to calculate these scores is down to managerial decision. These 

scores will then be used, along with the weight calculated by the method 

described above, to calculate a unique score for each depot. 

Although this method still weights each criterion, these are not arbitrarily 

chosen as with traditional benchmarking, but generated through a more robust 

process. 
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3.3.2.2. ELECTRE methods 

Methods such as the AHP or the SMART method (Edwards, 1977) cited in 

(Buchanan and Vanderpooten, 2007) are well suited for problems with a ‘finite 

number of discrete alternatives’. ELECTRE methods – which are outranking 

techniques – differ from these traditional approaches by using a strict 

dominance approach (which can be relaxed), and by offering the possibility to 

add a fuzzy factor to the decision making process in order to illustrate the nature 

of decision making. For example, the ELECTRE III method considers whether the 

difference between two values is significant or not. ELECTRE techniques are also 

non-compensatory, i.e. a poor score in an area cannot be compensated by other 

scores in other areas. 

ELECTRE (I) works by creating a matrix of concordance subsystems from a 

calculated multi-criteria matrix (i.e. a matrix of scores, Laise, 2004). For a list of 4 

organisations which need to be evaluated on 5 different objectives, the matrix of 

organisations’ scores on each objective could look as demonstrated  in Table 3.1 

(Laise, 2004). 

. Objective 1 Objective 2 Objective 3 Objective 4 Objective 5 

Org. 1 3.50 3.40 3.53 3.32 3.80 

Org. 2 4.10 3.90 3.65 3.70 3.65 

Org. 3 4.00 3.60 4.20 3.60 4.70 

Org. 4 4.60 4.70 4.80 4.00 4.90 

Weight 1/5 1/5 1/5 1/5 1/5 

Table 3.1: Multi-criteria matrix 

A matrix of concordance subsystems Jc should then be computed from the multi-

criteria matrix (this is a square matrix which lists for each organisation x, the list 
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of objective numbers where organisation x scores better than organisation y). 

This is illustrated in Table 3.2. 

 Org. 1 Org. 2 Org. 3 Org. 4 

Org. 1  [5]   

Org. 2 [1,2,3,4]  [1,2,4]  

Org. 3 [1,2,3,4,5] [3,5]   

Org. 4 [1,2,3,4,5] [1,2,3,4,5] [1,2,3,4,5]  

Table 3.2: Matrix of concordance subsystems Jc 

Where the generic element Jc(Organisationi, Organisationj) of the matrix Jc is 

given by Formula 3.2. 

 

 

Formula 3.2 Generic element of the matrix  

ELECTRE II differs by differentiating low preferences from high preferences 

(Coello Coello et al., 2007). The ELECTRE III method further differs in that it adds 

a fuzzy component by specifying whether an objective a is strictly preferred to 

an objective b, weakly preferred, or is indifferent to the objective b. This is 

illustrated as in Figure 3.6 (Buchanan and Vanderpooten, 2007). 

 
Figure 3.6: ELECTRE dual thresholds model with indifference, weak and strict preference zones 
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A concordance index matrix C is then calculated with Formula 3.3. 

  

Formula 3.3 Concordance matrix formula 

Where Kj is the weight attributed to objective j. This is illustrated as follows (in 

this example, all objectives have a same weight of 0.20) in Table 3.3. 

An organisation is defined superior to another when its K value (the values in the 

matrix in Table 3.3) is greater than a concordance criteria C. C is generally 

chosen to be 0.50 although tighter concordance criteria (e.g. 0.75) will allow for 

a greater differentiation with traditional benchmarking (Laise, 2004). 

 Org. 1 Org. 2 Org. 3 Org. 4 

Org. 1  0.20   

Org. 2 0.80  0.60  

Org. 3 1 0.40   

Org. 4 1 1 1  

Table 3.3: ELECTRE concordance index matrix 

A concordance criterion of 0.50 would give the concordance matrix illustrated in 

Table 3.4. 

 Org. 1 Org. 2 Org. 3 Org. 4 Count Rank 

Org. 1     0 4 

Org. 2     2 2 

Org. 3     1 3 

Org. 4     3 1 

Table 3.4: ELECTRE concordance matrix 
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Which would consequently give the ranking Source illustrated in Figure 3.7 

(Laise, 2004): 

 
Figure 3.7: ELECTRE ranking with C = 0.50 

A tighter concordance criterion of 0.75 gives the ranking illustrated in Figure 3.8 

below (Laise, 2004). 

 
Figure 3.8: ELECTRE ranking with C = 0.75 

AHP and ELECTRE methods are powerful tools which address the averaging 

limitation of traditional benchmarking through the use of outranking and pair-

wise comparison techniques. Whilst AHP makes the most of matrix operations 

and provides a score, ELECTRE methods provide an interesting alternative with 

attributes such as moderation criteria for difference (fuzzy factor) and more 

subjective weights (Buchanan and Vanderpooten, 2007, see 5. Discussion). 

However, despite addressing some limitations of traditional benchmarking, 

these outranking methods do not address some aforementioned limitations of 

the mpg measure; notably the lack of method to satisfactorily include the 

criteria necessary to the interpretation of the mpg measure (or more generally 

of fuel efficiency). This problem is addressed by another class of performance 

measurement technique called frontier analysis. 
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3.3.3. Efficient Frontier Analysis 

As Eccles (1995) mentioned, early performance measurement is used to principally 

focus on financial output performance disregarding other areas (such as production 

or customer service) or ignoring the concept of efficiency. The consequences of this 

omission prompted econometricians to rethink how conventional econometric 

analysis looked at production functions and how it dealt with variations in efficiency 

(Kumbhakar and Knox Lovell, 2000, p. 1). 

Production functions, which model the structure of production, have been 

developed and refined over more than 80 years (e.g. by Cobb and Douglas (1928)). 

However, Kumbhakar and Knox Lovell (2000) point out that while conventional 

econometrics tends to use production, cost, and profit functions, they assume that 

producers allocate inputs and outputs efficiently and that producers operate on 

these functions apart from randomly distributed statistical noise. The authors state 

anecdotal evidence (p. 2) which suggests that producers are not always successful in 

solving their optimisation problems efficiently. This can be illustrated by inefficiently 

utilising the resources (inputs) in the production process (this is called technical 

inefficiency (Cooper et al., 2007)), or by poorly allocating resources and production 

targets (this is called mix inefficiency (Cooper et al., 2007)). Producers not solving 

their optimisation problem correctly were consequently not operating on the 

production functions used, up to then, to measure performance. 

In the light of the clear limitations of traditional production functions, productivity 

analysis’ focus moved towards production frontiers. The literature that directly 
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influenced the development of frontier analysis methods began in the 1950’s with 

the work of Koopmans (1951) who mentioned that a producer would be efficient 

‘if, and only if, it is impossible to produce more of any output without producing less 

of some other output or using more of some input’. Koopmans’ original work 

prompted Debreu (1951) and Shephard (1953) cited in (Kumbhakar and Knox Lovell, 

2000, p. 7) to develop models which associated the distance function with technical 

efficiency. This work was critical to the development of further literature on 

efficiency. Farrell (1957) applied for the first time these developments to measure 

technical efficiency in an agricultural context. This innovative work influenced the 

creation of two major frontier analysis techniques: Stochastic Frontier Analysis (SFA) 

and Data Envelopment Analysis (DEA). The concept of efficient frontier is illustrated 

Figure 3.9 below (Farrell, 1957, p. 258) for a one input, one output case. The best 

performers are on the frontier line [O, S] (the frontiers represented below are 

stochastic frontiers; DEA also identifies frontiers but assumes these are piecewise-

linear (i.e. frontiers made of segments instead of curved lines)). 

 
Figure 3.9: Efficient frontiers 
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Stochastic Frontier Analysis – a statistical approach to frontier analysis – was mainly 

introduced by a paper from Meeusen and van den Broeck (the 'MB' paper 1977) and 

another from Aigner Lovell and Schmidt  (1977) (the ‘ALS’ paper, cited in (Kumbhakar 

and Knox Lovell, 2000, p. 8) and in (Coelli et al., 2005, p. 242)). These two papers 

introduced a Stochastic Frontier Analysis model which can be expressed as in 

Formula 3.4 (Kumbhakar and Knox Lovell, 2000, p. 8). 

 

 

 

 

 

 

 

Formula 3.4 An expression of the ALS Stochastic Frontier model 

This model also implies that producers operate on (u = 0) or below (u > 0) the 

production frontier . Kumbhakar mentions that different papers 

assign different distributions (e.g. MB assigned an exponential distribution to u 

whilst ALS assigned both an exponential and half normal distribution). Parameters to 

be estimated are β, v, and u’s variance. Jondrow et al. (1982) described a method to 

estimate technical inefficiencies which ‘greatly enhanced the appeal of SFA’ 

(Kumbhakar and Knox Lovell, 2000, p. 9). Furthermore, the introduction of the v 

component allows SFA to account for statistical noise or measurement error which 

traditional production functions such as Cobb-Douglas do not (Coelli et al., 2005, p. 

242). 
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Farrell’s paper (1957) – which did not correctly address mix inefficiencies (Cooper et 

al., 2007, pp. 46-47) – prompted Charnes, Cooper and Rhode (CCR, 1978) to develop 

another frontier analysis method called Data Envelopment Analysis (DEA). DEA is a 

non-parametric benchmarking method (i.e. which does not use statistical 

distribution) which akin to SFA measures productivity by considering a system of 

inputs and outputs. The performance of entity is measured as shown in Formula 3.5 

(Cooper et al., 2007, p. 21). 

 

 

 

 

Formula 3.5: The DEA virtual performance ratio 

The fractional performance ratio above corresponds to the objective function of the 

model first introduced by CCR in 1978. Since then, many different DEA models have 

been introduced (e.g. BCC, SBM, ADD or FDH (Cooper et al., 2007)), some being 

drastically different from this original model. The ratio above accounts for all outputs 

and inputs. This type of measure is called Total Productivity Factor see (Cooper et al., 

2007, p. 1) and (Grosskopf, 1993, p. 162)). 

A linear mathematical optimisation process is then carried out for each entity 

participating in the benchmarking study. This process optimises the performance 

ratio illustrated above by finding an optimal set of weights whilst being constrained 

by all of the other entities’ input and output values. Following this linear 

optimisation process, DEA determines the following: 
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 Whether the unit is efficient, i.e. a best in class. The group of efficient 

units determining the efficient frontier (known as the production frontier 

in SFA). 

 If the unit is not efficient, how much input reduction (whilst keeping 

output levels constant) is necessary in order to reach efficiency (or vice 

versa. This is called the ‘technical or radial inefficiency’). 

 Whether the unit has any potential slack for all inputs or outputs and if 

so, it quantifies these (this is called the ‘mix inefficiency’). This is a major 

improvement since Farrell’s (1957) paper. 

 For inefficient units, the list of all the efficient units that represent the 

local best practices is provided (this is called the reference set). 

Although the optimisation process provides information on the inputs reduction (or 

outputs increase) that is required to reach efficiency, some models allow for 

exogenously fixed factors to be unaffected during the optimisation process. This 

ensures that the optimisation results will not advise an impossible change for these 

factors (e.g. the optimisation results will not advise an input reduction if it is not 

possible to reduce this particular input). These variables are called non-controllable 

or non-discretionary variables (the latter being a variant relaxing the equality 

constraint). 

DEA is also sensitive to the degree of freedom issues. Dyson (2001, p. 248) advises 

that the number of entities, called Decision Making Units (DMU), should be as shown 

in Formula 3.6 (Dyson et al., 2001). 
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Formula 3.6: Advised minimum number of DMUs in DEA (1) 

Cooper et al (2007, p. 284) suggest a different formula for the minimum number of 

entities. This is shown in Formula 3.7.  

 

Formula 3.7: Advised minimum number of DMUs in DEA (2) 

The advantage of this formulation is that for a small number of inputs and outputs, 

 better limits the risk of degree of freedom issues. 

As explained by Cullinane et al (2006, pp. 355-356), SFA accounts for both random 

shocks and measurement errors and this statistical approach has more solid ground 

in economic theory. However, it can be considered risky to make assumptions on the 

production technology by choosing a functional form (e.g. Cobb Douglas or more 

generally a translog - (Cullinane et al., 2006, p. 356)). The authors also warn against 

the difficulties in specifying the error structure ( ) and the potential error this 

specification might create. 

On the other hand, DEA does not make any assumption on the distribution of the 

error terms (Cullinane et al., 2006, p. 356) and its data oriented approach allows 

inferences to be drawn directly from the observed data’ (Cooper and Tone, 1997, p. 

72). In effect, DEA inferences are drawn from solutions optimal for each observation 

whilst inferences with SFA are drawn from optimisation over all observations 

(Cooper and Tone, 1997, p. 73). However, because DEA does not allow for 

measurement error, any potential existing error would inevitably be attributed to 
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efficiencies (or inefficiencies). Furthermore, the choice of inputs and outputs can 

drastically affect the results. Nonetheless, this non-parametric linear approach 

allows appropriately cleansed data to speak for itself without relying on assumptions 

on the specific structure of the error term or the production technology. 

Tingley et al (2005, p. 366) note that many papers have extensively discussed the 

differences in efficiency scores obtained with SFA and DEA methodologies. The 

authors mention that more recently interest has moved to the factors affecting 

efficiency rather than efficiency per se. Cooper and Tone (1997, p. 81) additionally 

state that the different specific attributes of SFA and DEA can lead to both 

techniques to be sometimes used in combination. 

3.3.3.1. DEA applied to transport operations 

DEA has been applied in many different industries and has been widely used in 

transport although mainly to measure big structures’ efficiency, mainly ports 

and airports. This section will discuss the application of DEA to transport 

operations. 

Cullinane et al (2006) applied DEA to the measurement of container port 

efficiency. Their studies compared DEA and SFA in the measurement of 

efficiency. The authors measured container efficiency by considering ‘Container 

Throughput’ as an output and ‘Terminal Length’, ‘Terminal Area’, ‘Quayside 

Gantry’, ‘Yard Gantry’ and ‘Straddle Carrier’ as inputs and using the CCR and BCC 

models. They concluded that such approaches ‘can be employed for the purpose 

of informing government ports policy [...] or management decision making’ 
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(Cullinane et al., 2006, p. 370). Furthermore, they observed that the Spearman’s 

rank order correlation coefficient of the technical efficiency measure by DEA and 

SFA indicates that these two approaches ‘yield similar efficiency rankings’. 

Koster (2009) also applied DEA to measure container port efficiency. The authors 

state that one major problem in measuring container port efficiency resides in 

the fact that some information is considered highly confidential by the different 

port operators and hence not disclosed to the public domain. They also 

acknowledge some striking differences between sources of data in the public 

domain (Koster et al., 2009, p. 1145). The authors state that most publications 

use both CRTS and VRTS (usually CCR and BCC) and that their study will follow a 

similar approach. The authors conclude that DEA is a powerful tool but that it is 

sensitive to data errors. The authors state that relying on public data (prone to 

error) can lead to major errors. Interestingly Koster et al acknowledged 

efficiency differences between small and big terminals and therefore decided to 

include only big terminals with an annual throughput greater than 500,000 TEU 

(twenty-foot equivalent unit – a 20 foot long container used to measure vessel 

capacity and terminal throughput). To address this issue, SangHyun (2009) 

applied a tiered DEA approach which considered different categories based on 

terminal operations. 

DEA studies of airports and container ports are generally quite similar as both 

ports and airports are large structures that move freight and in the case of 

airports, passengers. Yoshida and Fujimoto (2004) applied DEA to the 

measurement of airport efficiency. The authors used ‘Runway Length’, ‘Terminal 
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Size’, ‘Access Cost’ and ‘Labour’ as inputs and ‘Passenger Volume’, ‘Cargo 

Handling’ and ‘Aircraft Movements as outputs. Both CRTS and VRTS were used. 

The authors compared the results of DEA with another approach that of Total 

Factor Productivity. The authors state that the strong correlation observed 

between the results demonstrate the robustness of their conclusion. In a similar 

fashion, Jessop (2009) uses both CRTS and VRTS approaches to measure the 

efficiency of some Italian airports. The author concludes that the study 

successfully highlighted the few inefficient airports. 

DEA has also been applied to road transport.  Several studies in relation to the 

efficiency of road transport organisations have been published. For example, 

Husain et al (2000) applied DEA to multiple service units of the Malaysian Road 

Transport Department at Selangor using ‘Estimated Labour’ and ‘Labour Costs’ 

as inputs and ‘Revenue’ as output. DEA was also applied to measure the 

efficiency of companies running transport operations. For instance Kertens 

(1996) compared the efficiency of French urban transit companies using a Free 

Disposal Hull (a DEA model which does not make a piecewise-linear assumption 

and which requires a mix-integer algorithm to be solved). The author used 

‘Number of Vehicles’, ‘Number of Employees’ and ‘Fuel’ as inputs and ‘Vehicle 

Kms’ and ‘Seat Kms’ as outputs. Finally, DEA has also been applied to benchmark 

the energy efficiencies of different transport modes in India (Ramanathan, 

2000). The author uses ‘Energy Consumption’ as input and ‘Passengers Km’ and 

‘Tonnes Km’ as output to measure energy efficiency. The author runs the models 

for different period of time to measure efficiency changes. He concludes that 
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the efficiency of rail transport has increased over the measurement period and 

suggests that huge ‘savings in energy consumption’ could be made if rail 

transport is ‘made to capture future requirements’. 

The measurement of road transport operations’ efficiency seems to have 

received less attention from research. The few papers that can be found appear 

to focus solely on bus operations (Cowie and Asenova, 1999) and truck efficiency 

in the construction and maintenance business (Odeck and Hjalmarsson, 1996). 

The application of DEA to truck efficiency was apparently solely conducted by 

Odeck and Hjalmarsson. This research, undertaken in the mid nineties, led to the 

publication of two papers (Hjalmarsson and Odeck, 1996, Odeck and 

Hjalmarsson, 1996). The authors measured truck productivity in the Norwegian 

construction and maintenance operations by applying the CCR model. They used 

‘Wage’, ‘Fuel’, ‘Rubber’ and ‘Maintenance’ as inputs and ‘Annual Distance 

Travelled’ as output. The authors observed significant differences in efficiency 

levels amongst trucks. They were also able to correlate these scores with 

geographical characteristics. Odeck also applied his knowledge of DEA to the bus 

industry along with Alkadi (2001). Their study highlighted some significant 

differences between bus companies. 

Following an on-going review of the literature, it seems that DEA applications to 

transport have been concentrated on large structures such as ports or airports 

and that very little research could be found on day to day transport operations. 
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The applicability of these different performance measurement methods (traditional 

benchmarking, ranking approaches and efficiency frontier methods) to this research 

will be discussed in section 4.1.  
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4. Methodology 

The literature review showed this study’s potential based on creating an improved fuel 

efficiency measurement based on fuel card data for van operations (chapter 2). It also 

listed several candidate methods which could potentially improve fuel efficiency 

measurement in this industry (section 3.3). This chapter will explain which method is to 

be retained for this study and why it has been selected. The main characteristics of the 

chosen method will be subsequently discussed although the technical details will be 

confined to several appendices. Finally, this case study’s protocol will be introduced at 

the end of this methodology chapter. 

4.1. Reasons for this study to use Data Envelopment Analysis 

KPIs are essential to operators in day to day business operations as they can easily 

reflect the different aspects of performance and be used as descriptive, diagnostic 

and predictive measures. Whilst KPIs alone cannot indicate the possible magnitude 

of improvements, they can be used in benchmarking studies so as to seek this 

externally oriented information. However, the external information – necessary to 

the interpretation of the measure itself – cannot generally be easily included in the 

KPI measure itself. For example, vehicle weight cannot be easily incorporated in the 

mpg measure despite the fact that knowing the vehicle weight is essential to 

interpret mpg. Furthermore, both methods struggle to reflect all aspects of 

performance in a single measure. Instead several KPIs have to be used to reflect all 

aspects of performance. In this case, this means mile per gallon (mpg) and pence per 

mile (ppm) have to be both used to reflect these two aspects of fuel efficiency. 
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Although weighted averages are often used to address this issue, Laise (2004, p. 624) 

warns on the risk associated with using simple weighted averages to find best in class 

performers. Similarly, Cooper et al (2007) explain how problems can arise when 

arbitrarily choosing weights. This makes finding best in class performers using KPIs or 

traditional benchmarking hard and potentially impractical task. 

On the other hand, literature has shown that outranking methods are better suited 

to ranking different entities. AHP, a method first introduced by Saaty (1980), 

calculates each criterion’s weight through matrix calculations based on dominance 

values given by managers generally on a 1-9 scale although some are known to use 

different scales (Government of Canada, 2002). This process has the advantages of 

appraising each criterion’s weight by translating human opinions of dominance to 

actual weights (a more robust process than arbitrarily choosing the weights). The 

process also checks on the consistency of the manager’s perception of criteria 

dominance. Nevertheless, the ELECTRE methods do not only weight each criteria 

individually but works on a dominance basis instead (although weights can be used 

to relax the notion of strict dominance), see (Buchanan and Vanderpooten, 2007)). 

These two different methods address traditional benchmarking limitations in regards 

to finding best in class performers for multi-criteria situations. They could 

consequently both be used to find best performers in terms of fuel cost and fuel use 

(multi-criteria benchmarking). However, they do not offer a satisfactory method to 

include the factors that are necessary to the interpretation of the mpg measure (e.g. 

vehicle weight) and thus, do not answer all its limitations. Consequently, only 

vehicles with the same weight, type, age and operating in similar conditions could be 
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compared without bias using these outranking methods (which in turn limits the 

usefulness of these methods). 

In contrast, frontier methods – and as explained in the previous chapter – provide 

suitable mechanisms to measure performance against several different criteria (by 

considering them as either inputs or outputs – in our case, this is to simultaneously 

incorporate ‘fuel used’ and ‘fuel cost’ in a single measure). Moreover these methods 

offer mechanisms to incorporate the variables necessary to the interpretation of the 

mpg measure (e.g. weight, vehicle age...) which cannot be satisfactorily included 

within traditional or outranking approaches. SFA, the production frontier method 

which looks at efficiency from a statistical perspective, can incorporate these kind of 

variables as exogenous variables although the existing literature on the subject is 

rather slim (see Kumbhakar and Knox Lovell, 2000, p. 261). Similarly, DEA offers 

adequate mechanisms to take into account in the calculations exogenous or 

undesirable factors. The literature on the inclusion of exogenous and undesirable 

factors seems more extensive in DEA than in SFA. Additionally, because SFA relies on 

a statistical approach, the confidence in the inferences drawn from datasets in which 

producers are only observed once (these datasets are called single cross section) is 

severely limited (see Kumbhakar and Knox Lovell, 2000, p. 95 and p. 166). However, 

in normal operations, nothing guarantees that several observations will be available 

for each vehicle (in our case this mainly concerns fuel card transactions). This is 

especially true for fuel performance measurement as some managers are eager to 

see fuel efficiency figures on a weekly basis (and some vehicles might not refill many 

times within such a short operational period). Although DEA requires adequate and 
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intelligent data cleansing to ensure that no measurement error is assigned to a 

Decision Making Unit’s (DMU) efficiency or inefficiency, it performs well with single 

observation datasets. Additionally, DEA provides very efficient and relatively easy 

ways to analyse the factors affecting efficiency (Cooper et al., 2007, see meaning of 

optimal weights and slack analysis) – a feature which importance was highlighted by 

Tingley et al (2005). 

Due to its statistical approach, SFA is less robust than DEA at measuring performance 

when dealing with datasets having a limited number of observations. As some 

vehicles are expected to only have a small number of refills for short measurement 

periods, DEA seems to be a more robust choice in this respect. In light of the 

previous theory, DEA can also be used as descriptive, diagnostic, and predictive 

performance measures. Effectively, DEA scores can be used to quantify observed 

performance (descriptive), weights and slacks are a powerful tool to understand the 

reasons behind performance (Cooper et al., 2007, see meaning of optimal weights 

and slack analysis), and extensive research was also conducted on measuring 

performance over time using DEA (Cooper et al., 2007, see malmquist index, p. 328). 

Similarly, the fuel efficiency DEA model can encompass all the relevant families of 

measure (productivity/resource utilisation and cost) into a single model and thus, 

into a single measure. Issues related to data cleansing will be discussed in section 

‘5.3 Data Cleansing’. Using a benchmarking approach is also not an issue as advanced 

performance measurement methods are likely to only be of interest to fleet 

managers running fleets of more than 15 or 20 vehicles (this is the expected 

minimum number of vehicles required to avoid issues with degree of freedom). 
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Finally, as introduced earlier in section 3.3.3.1, DEA ‘has been widely applied in [...] 

the transport industry’ (Cullinane et al., 2006, p. 356) although the literature 

concentrates mainly on ports (Cullinane et al., 2006, SangHyun, 2009), airports 

(Yoshida and Fujimoto, 2004, Yu, 2004, Pestana Barros and Dieke, 2007), or other 

important structures rather than directly on road transport. 

Only a limited number of papers have been found dealing with the use of DEA to 

measure road operations (Hjalmarsson and Odeck, 1996, Odeck and Hjalmarsson, 

1996, Kerstens, 1996, Cowie and Asenova, 1999), and – despite the potential 

interest highlighted in the aforementioned literature – none could be found on van 

operations or fuel efficiency measurement. This lack of research brings originality 

to this study. 

For all the above reasons, this study will use Data Envelopment Analysis as a means 

of measuring van fuel efficiency. 

Table 4.1 lists the performance measures introduced so far and compares their 

different characteristics. 
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PM \ Characteristics 

Measure 

can be used 

as  a 
Descriptive 

measure 

Measure 

can be 

used as 
Diagnostic 

measure 

Measure 

can be 

used as 
Predictive 

measure 

Can 

appropriately 

include other 
factors in the 

measure 

Benchmarking 

Compare 

against best 
performance 

Can easily 

draw 

inferences 
from limited 

observations 

KPI        

Traditional 
benchmarking        

AHP        

ECOGRAI/ELECTRE        

Stochastic Frontier 
Analysis (SFA)        

Data Envelopment 

Analysis (DEA)        

Table 4.1: Performance Measures comparison table 

4.2. Introduction to DEA 

The previous section discussed different performance measurement methods and 

explained, between those identified, why DEA appears to best address the mpg 

measure’s limitations. This section will take a closer look at DEA and discuss most of 

its core concepts through a series of small examples. A summary of all DEA’s key 

characteristics will be made at the end of this section as these are essential to 

understand the ‘Case Study and Results’ and ‘Summary of Results and Discussion’ 

chapters. All the other technical aspects of DEA such as model types (CCR, BCC, SBM 

– these will be introduced in section 4.2.5), model orientation, returns to scale, 

non-discretionary, non-controllable and undesirable (anti-isotonic) variables are 

discussed in the appendices (sections 8.2 to 8.4). Although such information is 
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necessary to comprehend the remainder of the thesis, the current section is 

intended to provide enough information to understand the next sections. 

4.2.1. Performance Ratio 

As seen earlier in the section 3.3 ‘Performance Measurement Methods’, efficiency is 

commonly measured through the mean of a performance ratio which takes the form 

illustrated in Formula 4.1 (Cooper et al., 2007): 

 

Formula 4.1: Efficiency ratio 

For example, a common efficiency ratio in road transport operations is miles per 

gallon (the number of miles is the output while gallon the input). More generally, 

efficiency ratios can also be used to reflect productivity such as with the number of 

jobs per day/vehicle (where the number of jobs is the output and day/vehicle the 

input). These measures are called ‘partial productivity measures’ in an effort to 

differentiate them from ‘total productivity measures’ (Hayes et al., 1988); the latter 

attempting to take into account all outputs and all inputs under the same efficiency 

ratio (Cooper et al., 2007, p.1). A total productivity efficiency ratio can be illustrated 

as in Formula 4.2. 
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Formula 4.2: Total factor productivity ratio 

The choice of weights in DEA is not arbitrary but is rather the result of an 

optimisation process completed for each entity. One interesting feature of total 

productivity measures is that they reduce the risk the chances of attributing gains to 

one factor which are in fact caused by another factor (or other factors). For instance, 

if a supermarket’s sales increase following an advertising campaign, the ratio ‘sales / 

labour’ would also be likely to improve. However labour’s performance could have 

potentially decreased during that same period and this could go unnoticed (or worse, 

the sales increase could be attributed to labour). The total productivity approach 

used by DEA avoids this problem by directly including all parameters under the same 

ratio and simultaneously measure the impact of all factors. 

4.2.2. Single Input, Single Output 

The performance ratio concept can be easily illustrated with a single input / single 

output example. The exercise is to measure the efficiency of 8 depots based on their 

sales performance and their number of employees (supposing the sales unit is 

£100,000.00, and the employee unit 1,000 employees). The data are illustrated in 

Table 4.2 (Cooper et al., 2007, p. 3). 
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Depot A B C D E F G H 

Employee 2 3 3 4 5 5 6 8 

Sale 1 3 2 3 4 2 3 5 

Sale/Employee 0.5 1 0.667 0.75 0.8 0.4 0.5 0.625 

Table 4.2: Single Input, Single Output example data 

The last row is calculated using the efficiency ratio formula introduced in Formula 4.1 

above. This formula reflects the productivity of each depot but can also be used to 

treat more generic cases of efficiency. This ratio helps identifying store B (with an 

efficiency ratio of 1) as the best efficiency score, and F the worst depot (with an 

efficiency ratio of 0.4). 

The depots’ performance can be plotted on a graph with the number of employees 

on the ‘x’ axis and the sales on the ‘y’ axis (Cooper et al., 2007, p. 4). This is 

illustrated in Figure 4.1. 

 
Figure 4.1: Graph comparison of depot’s efficiency 

The slope of the line starting from the origin O and passing through B corresponds to 

B’s sales per employee ratio. As B is an efficient depot (demonstrating the best sales 

per employee ratio), this line is called the efficient frontier. This frontier touches at 

least one point (depot) and all the other depots will therefore be on (should their 
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sales/employee ratio also be equal – in this case – to 1) or under this frontier (should 

their sales/employee ratio be lower than 1). As mentioned earlier DEA compares 

against the efficient frontier and this frontier is said in mathematics to ‘envelop’ the 

data – hence DEA’s name. 

Statistical approaches such as regression analysis provide an estimate function which 

describes the relation between the different variables (if it exists – Curwin and Slater, 

2002, p. 390). DEA differs from these statistical approaches as it defines the efficient 

frontier from the observed data and compares all different entities against this 

efficient frontier. It is not however always realistic to believe this frontier stretches 

to infinity and this assumption will be relaxed later. For the moment however, the 

frontier is assumed to be constant for the range of operations; this is called constant 

returns to scale. 

As just mentioned, DEA evaluates entities’ performance against the best observed 

performance. In this particular example, it is possible to rewrite each depot’s 

performance in respect to B’s performance as in Formula 4.3 (Cooper et al., 2007, p. 

4). 

 

Formula 4.3: Relative efficiency ratio 

Following this formula, each depot’s efficiency would consequently be as in Table 

4.3: Relative efficiency (Cooper et al., 2007, p. 5). Because B’s ‘sales per employee’ 

ratio is equal to 1, the depots’ efficiency is equal to the row Sales / Employee in 
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‘Table 4.2: Single Input, Single Output example data’ although this is just a 

coincidence. 

Depot A B C D E F G H 

Efficiency 0.5 1 0.667 0.75 0.8 0.4 0.5 0.625 

Table 4.3: Relative efficiency 

Let’s suppose Depot B still be the unique efficient Depot with a ‘sales per employee’ 

ratio of 1.5, the efficiency results illustrated in Table 4.3 would have changed in 

comparison with Table 4.2: Single Input, Single Output example data (e.g. if its sales 

output was 9 instead of 6 in this previous table). The ratio of ratios illustrated in 

Formula 4.3 makes the new relative efficiency measure independent from the unit 

used. This property, called unit invariance, is an essential characteristic in 

performance measurement as it ensures the efficiency measured does not vary 

depending on the unit choice. 

The inefficient units, i.e. all the units strictly below the efficient frontier, would need 

to reach the efficient frontier in order to become efficient. This can be done in 

mainly two different ways: 

 Either through increasing the outputs whilst keeping the inputs constant, 

or 

 Through reducing the inputs whilst keeping the output levels constant, or 

 Simultaneously reducing inputs and increasing outputs (ADD and SBM 

models). 

The improvement process can be illustrated as in Figure 4.2 for Depot A (Cooper et 

al., 2007, p. 5). 



 

116/343 

 

 
Figure 4.2: Improvement of Depot A 

Depot A can become efficient by either reaching P (keeping input levels constant 

while increasing output levels), or by reaching Q (i.e. keeping output levels constant 

but reducing input levels). This two-way approach to improve efficiency is relaxed by 

the Slack Based Models the latter being described in the appendix 8.3.2 SBM Model. 

Interestingly, multiplying A’s employees input by its efficiency score matches Q’s X 

coordinates (2 * 0.5 = 1). Similarly, multiplying A’s sales output by the inverse of the 

efficiency score would in a similar fashion give P’s coordinates (1 * (1 / 0.5) = 1 * 2 = 

2). 

4.2.3. Single Input – Two Output Case 

A similar approach can be taken to measure a depot’s efficiency in a one input, two 

outputs scenario. Here, depot’s efficiency is measured by observing for each depot, 

the relation between the number of vehicles (input) and the volume of sales (in 

£10,000s) and utilisation (in units of 15% of total capacity) as outputs. In order to 

have a unitised frontier, all the variables are normalised by the number of vehicles 

(e.g. both inputs and outputs are divided by the number of vehicles). Data are as in 

Table 4.4. 
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Depot A B C D E F G 

Vehicles 1 1 1 1 1 1 1 

Sales / Vehicles 1 2 4 2.5 4 5 5.5 

Utilisation / Vehicles 4 5 1.5 3 4 3 1 

Table 4.4: One input – two outputs example 

These data can be illustrated graphically as in Figure 4.3. 

 
Figure 4.3: One input – two outputs example 

In this particular scenario, it is logical that the efficient frontier is defined by the 

performers demonstrating maximum output levels in terms of both utilisation and 

sales. Thus the frontier is defined by the depots B, E, F and G. Entities in DEA are 

generally called a Decision Making Unit (DMU) as each can make decisions which can 

affect its efficiency. The depots and other entities will from now be referred to as 

DMUs. 

The region bounded by the frontier is called the production possibility set; i.e. the 

region of possible production levels as defined by the best observed performance. 

The production possibility set should more accurately be called the piecewise ‘linear 

production possibility set assumption’ (Cooper et al., 2007, p. 7) as it is not sure 
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whether the actual production frontier behaves in a linear manner between the 

performance points observed (i.e. in this case between the points B, E, F, G). The 

frontier is projected vertically and horizontally on the border (at point G and B). Note 

that there is no discrimination on how a DMU can be efficient. This is easily 

demonstrated by considering DMU B’s operations (high utilisation but low sales) 

which are radically different from DMU G’s operations (very low utilisation rate but 

high volume of sales). In both cases, the DMUs are evaluated efficient. 

As explained earlier, inefficient DMUs (i.e. the depots not on the efficient frontier: A, 

D and C) can become efficient by reaching the efficient frontier. Thus DMU’s 

efficiency can be calculated by their relative ‘distance’ to the frontier. For instance, 

C’s efficiency can be calculated with the ‘radial measure’ as in Formula 4.4. 

 

 

Formula 4.4: Efficiency in a single input – two output case 

This is illustrated graphically in Figure 4.4. 

Because DMUs in this particular example aim at maximising their outputs, the 

precedent ratio could be rather re-written as in Formula 4.5. 

 

Formula 4.5: Output efficiency in a single input – two output case 

Formula 4.5 shows that DMU C would have to proportionally increase its sales and 

utilisation by 31% to reach the efficient frontier and become efficient. In this case 

DMU C would be at coordinates of Q. Note that because this measure of efficiency is 
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unit invariant, the results would be the same if the utilisation or sales units chosen 

were different. 

 
Figure 4.4: Graph of improvement in a single input – two output case 

Point Q – DMU C’s projection on the efficient frontier – is on the line connecting 

points F and G. The set made of DMU F and G is DMU C’s reference set. The 

reference set of an inefficient DMU consists of the efficient DMUs which were 

significant in the evaluation of the DMU’s efficiency. 

The radial inefficiencies that can be addressed by proportionally increasing all 

outputs (and decreasing all inputs) are called technical inefficiencies. Technical 

inefficiencies can consequently be removed without changing outputs (or inputs) 

proportions. Conversely, another type of inefficiency also exists where proportions in 

which inputs are used (or output produced) have to be changed in order to attain 

efficiency. These are called mix inefficiencies (Cooper et al., 2007) and can be 

illustrated by considering DMU A’s efficiency. 
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In order to eliminate its technical inefficiency, DMU A needs first to reach point R on 

the efficient frontier (see Figure 4.4: Graph of improvement in a single input – two 

output case). However, DMU B (2, 5) demonstrates a greater Sales output than point 

R (1.25, 5) (R’s coordinates are calculated by solving intersection of

). Even if A eliminates all its technical inefficiencies by reaching R, another DMU 

demonstrates a better output mix (DMU B). Thus in order for A to become fully 

efficient (and not just technically efficient), it needs to change its output mix and 

increase its Sales by 0.75 in order to move from R and reach B thus, becoming fully 

efficient. 

4.2.4. A brief introduction on DEA computational process 

Although DEA’s key concepts have been introduced in sections 4.2.1 to 4.2.3, little 

has been said about DEA’s process itself. DEA works by adapting the fractional ratio 

introduced earlier (the performance ratio outputs/inputs) and transforming it into a 

linear equivalent. This transformation is important as it enables the use of linear 

optimisation methods. 

An optimisation process is carried out for each DMU in order to calculate the DMU’s 

efficiency. This optimisation process aims at maximising the value of a performance 

ratio as introduced earlier:  by finding the optimal weights for the 

DMU. The weights are constrained by the existing data so that when used with other 

DMUs’ values, they do not provide results above the maximum performance levels 

observed (this is how the data are enveloped by the efficient frontier). 
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 The optimisation result provides amongst other things: the DMU’s score, and for 

inefficient DMUs quantification of the potential slacks and indications on how to 

improve performance with the weights and the reference set. 

4.2.5. A brief introduction to DEA’s main models 

Many different DEA models exist which all have their own specific characteristics. It 

is generally useful to use different models to better understand the nature of the 

data and of the frontier (i.e. whether variable or constant returns to scale apply). In 

effect, it is often crucial to test the performance against different models to 

understand the relation between the performance measured and the model choice. 

This study will use the three following models: 

 Charnes, Cooper & Rhode - Input oriented model (CCR-I) (Charnes et al., 

1978). This model assumes constant returns to scale (as in Figure 4.1: 

Graph comparison of depot’s efficiency). Constant returns to scale means 

that any DMU is supposed capable of reaching the best efficiency ratio 

measured in the data set, regardless of scale effect. 

 Banker, Charnes & Cooper – Input oriented model (BCC-I) (Banker et al., 

1984). This model assumes full returns to scale (i.e. the efficient frontier 

assumes a convex shape around the data as in Figure 4.5:  below). In 

opposition to the CCR model, scale effects are considered in this model. 

This model calculates a radial measure of efficiency. 

 Slack Based Model Constant RTS Input oriented model (SBM-CI) (Tone, 

2001). This model assumes constant returns to scales as with the CCR 
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model (a convexity constraint can be added as with the BCC model). 

However, instead of calculating efficiency through a radial measure as 

with the CCR or BCC model, the SBM model tries to maximise slacks for all 

concerned variables. This means that both technical and scale 

inefficiencies are directly and simultaneously taken into account in the 

objective function, thus giving new insights on the reasons behind 

performance. This is illustrated with DMU F in Figure 4.5. 

A comparison between the frontier under VRTS and CRTS can be found in Figure 4.5. 

 
Figure 4.5: Illustrating different DEA models 

These three models have been retained as they help in identifying the nature of the 

efficient frontier and - through some efficiency ratios – also help appraising whether 

inefficiencies are due to scale or to inefficient operations. In Figure 4.5 the frontier 

assuming Constant Return to Scale (CRTS) is the straight line passing through the 

graph origin and by B. Conversely, the frontier assuming Variable Return to Scale 

(VRTS) is illustrated by the piecewise linear frontier joining A, B, E and H. Both the 

CCR and BCC models project horizontally or vertically on the frontier while the SBM 
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model – minimising all slacks – allows projections in any direction. These concepts 

are further detailed in Appendix 3: Other DEA models. 

4.2.6. Summary of Introduction to DEA 

This brief section explained how DEA uses a total factor productivity approach to 

measure performance and illustrates this principle with a series of examples. Further 

non-ratio DEA models (known as models in their envelopment form) will be 

introduced in the next sections although their relation to this ratio form (known as 

multiplier models) will be explained (see section 8.2.1 ‘Transforming the Fractional 

Problem’). 

The notion of efficient frontier, which is determined by the observed best 

performance, was reviewed using a simple example. Differences between DEA and 

traditional statistical ‘trend’ approaches were discussed. The notion of production 

possibility set (the area bounded by the efficient frontier) was also mentioned along 

with the notion of reference set (the list of efficient DMUs against which an 

inefficient DMU is evaluated). Finally, DMU B with DMU G demonstrated in the single 

input two outputs (depot operation) example how some very different DMUs can be 

efficient nonetheless. 

The concept of relative efficiency, i.e. the new ratio constructed by dividing the 

performance of an entity by a best entity’s performance was studied. This brought to 

light the important notion of unit invariance which ensures results will not be 

dependent on the units chosen. 
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The DMU’s performance in the examples was measured under constant returns to 

scale, i.e. it was assumed that production levels would be constant regardless of the 

DMU size. This assumption, although possibly true on small scales, is however 

sometimes inadequate on larger scales. This will be relaxed later on with a discussion 

on variable returns to scale with the use of the BCC model to calculate fuel efficiency 

(see section 5.4.2.2 ‘Taking a closer look at Variable Returns To Scale’). 

Finally, the concepts of technical inefficiency (the inefficiency which can be 

eliminated by proportionally increasing all outputs – or decreasing all inputs) and of 

mix inefficiencies (inefficiency which can only be removed by changing the mix 

proportion of inputs or outputs) was introduced. It was then explained that a DMU 

can only be efficient if it has no technical and mix inefficiencies (some DEA models 

do not clearly distinguish these two types of inefficiencies but this will be discussed 

later; see 8.3.2 SBM Model). 

As mentioned earlier, the concepts introduced in this section should be sufficient to 

understand most of the Case Study and Discussion chapters. However, some aspects 

of the case study and the discussion will go beyond the basic knowledge introduced 

here. Consequently, further information on some of DEA’s technical aspects will be 

found in the appendices (resp. ‘Appendix 2: From Econometrics to the Charnes 

Cooper and Rhodes model’ and ‘Appendix 3: Other DEA models’. These sections will 

discuss the different key aspects of the model). 
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4.3. Case Study Protocol 

In order to evaluate whether DEA can improve fuel efficiency measurement, a series 

of case studies will be conducted within different companies running van operations. 

It is advantageous to use a case study approach for this particular research, as a 

single successful case study would be enough to demonstrate DEA’s potential in 

measuring fuel efficiency. 

Population selection 

In order to conduct this case study, it is necessary to recruit some participants. 

Participants must have an interest in participating to the study as they will have to 

share data as well as comment on the model results. Obtaining this professional 

opinion on the models results is crucial in order to validate the study’s findings. 

Participants should all use vans as a necessary part of their daily business lives (they 

can also use other types of vehicles although these will not be included in the study). 

Potential suitable business operations could for example be: gas engineers, 

electricians, network or TV providers (e.g. SKY, BT...) or small building repair 

operations. It is important to observe that although each company use vans of 

potential different sizes, their operations are also likely to be different. 

Consequently, each of their operational environments will slightly differ from one 

another and the benchmarking exercises should only be conducted internally for 

each company (this will ensure the impact of environmental factors is kept to a 

minimum). A cross-company benchmarking should be conducted afterwards in order 
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to appraise the importance and sensitivity of the environmental factors. This will be 

discussed in section 5.5.2 Multi-companies benchmark. 

Model description 

This step involves analysing the different components which should be included in a 

more comprehensive fuel efficiency measure. This should include both factors which 

impede the reading of the measure (e.g. vehicle type or weight) and other factors 

which use resources and have a potential impact on the efficiency measure itself 

(servicing). Other factors which add another dimension to fuel efficiency such as fuel 

cost should also be used in the model. 

Both the resulting list and the feasibility of each variable will be assessed in section 

5.2.2. 

Model conception 

Once the list of parameters to be included in the model has been decided, it will be 

necessary to conceptualise the DEA model. All variables need first to be organised in 

a series of inputs and outputs. The variable type needs also to be specified so that it 

is understood whether a unit is treated normally or as a discretionary, non-

controllable, or anti-isotonic/undesirable variable. 

The previous step ‘Model description’ has listed all the variables which are relevant 

to fuel efficiency; i.e.: the factors which are necessary to the interpretation of the 

measure, other factors which have an impact on fuel efficiency or others which add 

an extra dimension to fuel efficiency. These variables were split into inputs and 
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outputs by considering how they are related to the production process. In this 

instance, both volume used and cost were obvious inputs of the production process 

while miles travelled related more to the outputs. Despite not being obvious inputs, 

vehicle weight and age nonetheless participate to the production process as anti-

isotonic inputs thus are to be incorporated to the model as such. 

One of DEA’s main criticisms is that similar models can provide very different results 

as soon as one variable is different; the literature shows that researchers tackled 

similar problems with models which had different inputs and outputs. There is no 

very clear rule that can address this problem except that all variables which have an 

impact on the production process should be included in the model and that the 

model should be built in a step by step approach to ensure the impact of each 

variable is clearly appraised and understood. This is the approach that this study 

takes. Section 5.2.2 Fuel Efficiency Model General Considerations will review in more 

details the potential variables to include in the model while Table 5.4: Factors to 

include in the fuel efficiency model will list all variables and summarise whether they 

are to be included in the model or not. 

Data collection 

 Adequate and appropriate data will have to be collected. This can ideally be done 

via Microsoft Excel spreadsheet as a support for data collection. As the vans 

correspond to the DMUs in this study, data will have to be collected for each van. 
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Data cleansing 

As highlighted earlier in the literature review, DEA is highly sensitive to measurement 

error and data noise. Because the study is based on fuel card data which has a 

relatively high rate of error (mainly because part of this data are generally keyed in 

manually at the petrol station), the data will have to be thoroughly cleansed prior to 

being used. 

Errors to be cleansed include: 

 Registration misspellings, 

 Missing / additional fuel transaction (from incorrectly cleansed 

registration misspelling), 

 Fuel jerry cans (to be used for plant engine for example) filled with the 

same transaction as a vehicle refill, 

 Fuel theft. 

The error type which will have the most impact on the model results is missed 

transactions (caused by misspelt registration which could not be allocated to any 

vehicle or was assigned to an incorrect vehicle). These could cause a vehicle’s fuel 

performance to be artificially inflated and, should that vehicle be evaluated efficient, 

artificially move the production frontier further away from the real production area. 

This could consequently potentially cause many DMUs’ performance to be under-

evaluated. 
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It is important to observe that cleansing data from companies which have a 

telematics solution is more effective as the telematics data help the cleansing 

process with cross-comparisons. 

Data smoothing 

The literature review chapters pointed out that fuel data were sometimes misused in 

fuel trials; some operators wrongly assumed that the fuel drawn at the pump during 

measurement period was the fuel used. Although this assumption is acceptable for 

long periods and high mileage, the accuracy of this assumption is often unacceptable 

for shorter periods. A possible alternative is to have all vehicles refuelling at the 

exact beginning and exact end of a fuel trial; which is often unrealistic or impossible 

and could not be easily done for this specific study. More practically, a small data 

smoothing algorithm will be designed so that the fuel used is estimated based on 

actual observed performance. This approach is deemed more consistent and reliable 

that relying on an inaccurate assumption. 

Model development process 

A step by step approach should be taken for developing the models. A very basic one 

input – one output model (fuel ⇒ miles) should be developed first. The fuel 

efficiency calculated with this DEA model should then be compared against the 

corresponding mpg measure. Different types of DEA models should also be tested 

(e.g. CCR, BCC and SBM) and the differences between the models appraised. This 

should help appraise whether the performance levels observed are due to the 
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variable (data) itself or rather to a specific model. Each variable should then be 

added to the model, one variable at a time. 

This step by step approach should allow for variables to be added safely to the fuel 

efficiency model. This method also allows a safe evaluation of the impact each 

variable has on the performance score. 

Analysis 

The model results should be verified against other available DEA solvers (when 

possible). The results should also be validated by the participants (van operation 

experts). Comparison against traditional methods should also be appropriately 

made. 

Analysis on some of DEA technical aspects should also be carried out. This could 

include aspects such as data sensitivity or returns to scale. This aspect of the analysis 

is essential as it will provide an indication on the strengths and weaknesses of DEA 

used in this specific context of van operation fuel efficiency measurement. 

Finally, the same models should also be run across all companies in order to assess 

whether environmental factors have a non-negligible impact on the measurement. If 

environmental factors are predominant on the measurement, each company’s 

frontier should envelop each other in a more or less neat fashion (this is similar to 

Russian dolls nested within each other; just extended to an n dimensions space 

concept). 
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5. Case Study and Results 

The Introduction chapter explained this study aimed at improving van fuel efficiency 

measurement through the use modern performance measurement methods. The 

Methodology chapter which followed justified – based on the information presented in 

the literature review – that the most appropriate method for such an investigation was 

DEA. It is important to observe that this case study will solely focus on the actual 

measurement of van fuel efficiency and not the actions taken based on this 

measurement. Thus, the study focuses on performance measurement and not on 

performance management.  

The Case Study Theoretical Background section will first consider the best way to 

approach the application of DEA to van fuel efficiency measurement and justify why the 

case study approach was retained. Some background case study theory will also be 

discussed. 

This will be followed by a detailed description of the research process in terms of 

population selection and model details. Once the case study details are explained, this 

Case Study and Results chapter will concentrate exclusively on more technical details 

such as data collection & cleansing to finish with the results themselves and their 

analysis. This follows the protocol described in the Methodology chapter. 

The entire case study – which is a technical chapter – will be briefly summarised in 

Chapter 6 ‘Summary of Results and Discussion’ before the results are discussed. 

Although reading the case study should give an in depth understanding of this study, 
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Chapter 6 should be understandable without reading this current chapter ‘Case Study 

and Results’. 

5.1. Case Study Theoretical Background 

Many different classifications of the different research types exist and the 

boundaries between each type can sometimes be a little fuzzy. Kontio (2005) 

distinguishes the following three however: 

 Exploratory research which structures and identifies new issues and 

problems. 

 Constructive research which identifies and develops methods to solve 

issues or problems. 

 Empirical research which tests a solution’s feasibility using empirical data. 

This particular research is exploratory due to the way in which the literature review 

investigated the current state of research and identified gaps within it. However, due 

to the experimental aspects this research demonstrates (i.e. to test the feasibility of 

measuring van fuel efficiency using DEA), the study can also be classified as a 

quantitative empirical research. This research is consequently both exploratory and 

empirical. 

In regards to applying DEA to van fuel efficiency measurement, the following 

research question has been formulated: 

 How can DEA be applied to van fuel efficiency measurement? 
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This prompts a series of other more specific research questions: 

 What are the factors affecting fuel efficiency? 

 What is each factor’s exact effect on fuel efficiency? 

 How easy is applying DEA to van fuel efficiency measurement? 

 How useful is applying DEA to van fuel efficiency? 

Yin (1994, p. 1) explains that case studies are only one of several ways to do 

research. Possible alternatives can be: experiments, surveys, the analysis of past 

research (history or archival analysis); each of these options having their own specific 

pros and cons. Yin explains that the decisions of which approach to retain depends 

on three conditions: ‘the type of research question, the control an investigator [or 

researcher] has over actual behavioural events, and the focus on contemporary as 

opposed to historical phenomena’. As Yin comes from a more theoretical and social 

sciences background, only the first criterion (the type of research question) is 

relevant to this discussion. 

The application of DEA to fuel efficiency measurement is believed to be entirely new, 

it is consequently not possible to look at past research (although there is extensive 

literature on DEA’s application to transport; see section 4.1). Furthermore, experts’ 

opinion gathered from methods such as the Delphi technique or conventional 

surveys can only probe people’s opinion on this specialist subject which would 

unfortunately not really answer the different research questions listed above (in this 

case experts would be the people using the measure (i.e. fleet managers) and 

academics specialised in the transport industry). In effect, the only way to answer 



 

134/343 

 

the research questions is through an experiment. Yin (1994, p. 15) describes case 

studies as ‘a way of investigating an empirical topic by following a set of pre-

specified procedures’. Although Yin (1994) explains that experimental case studies 

are generally better suited to answer the ‘what’ and ‘why’ research questions, it is 

clear that in order to conduct this quantitative empirical research, conducting 

experimental case studies is the most appropriate method. 

Yin mentions that most texts about case study methodology tend to focus chiefly on 

data collection. He argues that the design and analysis steps are as important as the 

data collection step despite being often neglected. This section will consequently 

briefly discuss all of these important steps. 

Yin lists five components of importance for case study research design. These are: 

The study’s questions. These are questions generally written in the form of 

‘who’, ‘what’, ‘where’, ‘how’ and ‘why’ questions. Writing these questions helps 

deciding which research method should be used. This study’s questions have 

already been listed above. 

The study’s proposition. This is essential as it helps the researcher 

understanding what needs to be researched and answered. The proposition 

helps the researcher to move in the right direction and to look at the right place 

to find evidences. Yin notes that some studies do not have a research 

proposition. This can be the case for some experiments or surveys. The study’s 

proposition corresponds to the hypothesis which was introduced at the very 

beginning of this thesis (see the Hypothesis section). 
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The unit of analysis. This relates to ‘what the case is’ (or cases are); in many 

social sciences studies the unit of analysis is an individual. In this particular study 

however, fuel efficiency performance is measured for each van. Yet, as DEA is an 

efficient frontier benchmarking technique, fuel efficiency can only be calculated 

for a group of vans or more precisely companies’ van fleets. Furthermore, and 

although analysis can be made individually for each van, fleet operators tend to 

consider fuel trials as a fleet wide exercise. Consequently, and although 

individual van performance analysis will be conducted for some vans, this 

study’s real units of analysis is a whole van fleet. 

Linking data to proposition. This step needs to be done in order to connect the 

data, or data results, to the hypothesis. There is no clearly defined method to 

link data to the research proposition although the thorough observation of the 

DEA results along with traditional mpg benchmarking analysis should provide a 

robust link to the proposition. 

Criterion for interpreting the study’s finding. These criterion are essential to 

test the results’ validity and analyse the results. This study will use fleet 

managers’ opinion on the DEA and traditional mpg benchmarking results to 

evaluate the validity and usefulness of this study’s approach against those of 

others. 

Criteria to interpret study’s findings include: 

 The measure is coherent with fuel efficiency operator’s understanding. 

 The measure can be easily understood. 
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 The measure includes factors impacting fuel efficiency other than miles 

travelled and fuel used which is all the information mpg captures – and is 

an essential point in justifying an improvement on the mpg measure. 

 The measure can help fleet operators to make better informed decisions, 

which could in turn lead to better fuel efficiency (this point is also 

essential in justifying an improvement on the mpg measure). 

 The measure’s calculations are reproducible (this refers to the method 

reliability). 

When it comes to testing the research design, four tests have been commonly used 

(Ellinger et al., 2005, p. 12). Yin  (1994, p. 32) summarises them as in Table 5.1 (Yin, 

1994, p. 33). 

The construct validity will be tested by gathering data from several different 

companies (this study will take a multi-case studies approach). Internal validity is 

only relevant to explanatory and causal studies so it does not apply to this study’s 

exploratory approach. External validity is obtained through the replication of the 

protocol in each different company. Finally, the study’s reliability can be tested 

through the evaluation of the protocol’s robustness and accuracy. This protocol will 

be further detailed in the following section ‘Research Process’. 
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Test Case Study Tactic 
Phase of research in 

which tactic occurs 

Construct 

Validity 

Use multiple sources of evidence 

Establish chain of evidence 

Have key information review draft case 

study report 

Data collection 

Data collection 

Composition 

Internal 

Validity 

Do pattern-matching 

Do explanation-building 

Do time series analysis 

Data analysis 

Data analysis 

Data analysis 

External 
Validity 

Use replication logic in multiple-case 

studies 
Research design 

Reliability 
Use case study protocol 

Develop case study data base 

Data collection 

Data collection 

Table 5.1: Case study design tests 

The data to be collected consist of fuel and vehicle information. The information is 

purely quantitative and will have to be provided by the participating companies. It is 

essential to conceptualise the DEA model first as this will tell what data need to be 

gathered. Because the data are of a quantitative nature, the data collection steps do 

not demonstrate the traditional caveats of qualitative data analysis in social sciences. 

This is further reinforced as all subjective data (e.g. data depending on driver’s 

memories such as tyre pressure checks) are discarded from this study. Nonetheless, 

data cleansing can prove quite challenging and will be extensively discussed in the 

following ‘Data Cleansing’ section. A data cleansing protocol will also be detailed in 

this next section. 

As introduced in the Case Study Protocol section, this study’s analysis should be done 

by comparing individual van’s DEA performance score with their corresponding mpg 

and against fleet managers’ perception of the measure. Similarly, the ranking 

provided by the DEA models should be compared with a corresponding mpg 

benchmarking analysis. This theoretical triangulation (Bryman, 2001) should 
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hopefully assist in appraising the differences between DEA and traditional mpg 

analysis results.  

5.2. Research Process 

This section will detail all the case study research process steps. This includes 

population selection, data collection, data cleansing, model development and the 

following analysis. 

5.2.1. Population Selection 

To ensure some of the case study theoretical limitations are correctly addressed, a 

multi-case study needs to be conducted (Yin, 1994, p. 33). As explained in the 

previous section, data from several companies is to be collected. This is necessary for 

the case study approach to be valid. This section will discuss the requirements in 

terms of participating companies. 

Three companies provided their data. They are: 

 FSH Maintenance specialised in building maintenance. 

 Carillion which is a corporate group working in many different sectors. 

This specific depot is specialised in the property maintenance operations.  

 Avonline, one of the leading resources and solutions providers to the UK 

telecoms, media and technology. 

Each of these companies runs vans to conduct their daily operations. Typical 

operations consist of one to several jobs to carry out during the day and generally at 
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different sites. Each company runs vans of different size. All vans weigh between 

1,500 kg and 3,500 kg gross vehicle weight. Each company generally operates at 

regional level and their operations always stay within UK borders. The scope 

limitation to operation within the UK should not impede one from drawing 

inferences on this study’s applicability to other countries. Table 5.2 summarises the 

fleet size and area of operations of each company. 

Company Name Fleet Size (only vans) Area of operation 

Avonline 287 Bristol 

Carillion 142 Manchester 

FSH Maintenance 69 West Yorkshire 

Table 5.2: Participating companies details table 

The consequent number of vehicles involved helps ensuring the study is externally 

valid (see (Yin, 1994) and Table 5.1: Case study design tests) but also reduces the risk 

of non-sampling error as mentioned earlier in the Data Gathering section. 

Although these companies’ operations are similar in terms of business model (all 

engineering services jobs), there are some non-negligible operational differences in 

terms of equipment weight and area of operations (hill, wind...). This is not of 

concern to this study as a separate case study will be conducted for each of these 

companies. A simultaneous measurement of all three companies vehicles’ 

performance will nonetheless be conducted in order to appraise whether these 

environmental factors are significant or not. 
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All vans are tracked by the same telematics company Masternaut Three X hardware. 

Telematics information can help cleansing the data and can provide consistent 

mileage information. Restricting the study to companies which are equipped with 

telematics devices can theoretically create a small bias although this will be 

considered appropriately in the Summary of Results and Discussion chapter. 

All the companies aforementioned do not retrieve CANbus information and use fuel 

card data to calculate their fuel efficiency. The selected companies use a variety of 

fuel card types (e.g. driver card or vehicle card; see section 2.2.3 Fuel Card 

Management above for more explanations on this). The limitations of mpg 

measurement based on fuel card data have been addressed in ‘Literature Review – 

Van Fuel Efficiency Measurement’. Furthermore, one of the three companies 

mentioned that fuel performance was measured fortnightly assuming the volume 

refilled was the volume used – and despite the known caveats of this approach (see 

Smoothing Algorithm below for more information on this issue). 

5.2.2. Fuel Efficiency Model General Considerations 

One of DEA’s major strength is that no assumption has to be made on the production 

technology and that any input or output of the production process can be included in 

the model (see (Cullinane et al., 2006) and section 3.3.3 about this). However, this 

characteristic introduces an element of appreciation on which variable should be 

actually included in a DEA model – which is a frequent criticism against DEA’s 

robustness. Cooper et al (2007) recommend a careful selection of the model 
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variables to ensure the model is robust and correctly reflects the performance 

process. 

The literature review chapters explained how external information – such as vehicle 

weight – needs to be known when interpreting mpg. In order to create a DEA model 

which would improve fuel efficiency measurement, it is important to include all the 

variables which can impede the interpretation of mpg. This section will list all the 

variables of interest and will justify why some should be included whilst others 

should not. 

The first variables to include are the ‘fuel used’ and the number ‘miles travelled’ 

(during the measurement period) so that the model could be illustrated as in Figure 

5.1. 

 
Figure 5.1: Fuel Efficiency model – fuel used  

This model uses ‘Fuel Used’ as an isotonic input and ‘Miles Travelled’ as an isotonic 

output. Isotonic inputs are inputs which have a beneficial impact on the outputs 

production; i.e. an increase in isotonic input levels should translate to greater output 

levels (e.g. a vehicle should do more miles with two tanks worth of fuel in 

comparison to a single one). 

The fuel information is to be collected from the fleets’ fuel card records (see the 

Data Cleansing section for more information). Mileage, on the other hand, is 
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obtained from the telematics unit. Although this can be slightly less accurate than 

the distance provided by the odometer, this data source is more consistent than 

drivers writing down the odometer readings (and rounding it up should they forget 

to write it down at the time of the refill). Furthermore using telematics information 

should avoid any misreading of poorly written odometer reading. 

Another aspect of fuel efficiency is fuel cost. Indeed, it is conceivable that a vehicle 

can be mpg efficient (i.e. in respects to the litres of fuel used to cover a distance), but 

pence per mile (ppm) inefficient (i.e. in this case the cost of fuel per mile). To reflect 

the possible fact that a vehicle might be mpg efficient but ppm inefficient the ‘Fuel 

cost’ is added to the previous model. This is illustrated as in Figure 5.2. 

 
Figure 5.2: Fuel Efficiency model – cost spent on fuel 

In addition, the fuel cost information is to be collected from the fleets’ fuel card 

records. The total cost spent on fuel is used instead of the average pence per litre 

(ppl) value. The main reason for avoiding the use of ppl is that averages could cause 

issues (for possible issues in regards to using averages, see section 3.3.2 ‘Pair-wise 

and outranking methods’ and (Laise, 2004)) but also because it is important to reflect 

the total contribution toward the mileage achieved. Furthermore, Cooper et al 

(2007, see 'Problem 1.4' p. 19) warn against using processed measures in DEA 

models as this could potentially put (undesired) emphasis on some variables (in this 

case the impact of ‘fuel used’ as an input could be reduced). 
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Vehicle weight is another factor which has a direct impact on fuel efficiency. In 

effect, heavier vans demonstrate worse mpg performance than lighter vans. This is 

illustrated in Table 5.3 which shows a list of vans sorted by weight (lightest on top, 

heaviest at the bottom). 

 
Table 5.3: Impact of weight on the traditional mpg measure 

Table 5.3 clearly shows that ‘vehicle weight’ needs to be taken into account to 

appraise fuel efficiency when looking at vans’ mpg (none of the heavier vans are 
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green). In a similar manner as with ‘fuel cost’, ‘vehicle weight’ can be added to the 

fuel efficiency model as illustrated by Figure 5.3. 

 
Figure 5.3: Fuel Efficiency model – vehicle weight 

Given that heavier vans burn up more fuel than lighter ones, vehicle weight is an 

anti-isotonic input; i.e. the heavier the vehicle is, the fewer miles it would travel for a 

given amount of fuel. Furthermore, whilst a vehicle’s weight can generally – to some 

extent – be reduced, this study will consider ‘vehicle weight’ fixed (this is because 

most fleet managers would not be able to reduce vehicle weight in order to improve 

fuel efficiency). As ‘fixed’ variables are not the standard behaviour DEA expects from 

inputs, appropriate calculations should be made to correctly include weight in the 

fuel efficiency model. The different possible methods to reflect this ‘fixed’ 

characteristic will be discussed appropriately in section 5.4.4 ‘Adding the Weight’. 

The vehicle weight information is obtained from the Vehicle Certification Agency 

(VCA) based on the vehicle make, model and description given by the fleet 

managers. This database only informs of the vehicle gross weight as the vehicle net 

weight generally depends on the type of equipment fitted inside the van. Because 

the exact vehicle net weight was not known exactly (no weight bridge like with bulk 

LGVs vehicles), using vehicle gross weight was considered a less biased option and 

was retained for this study. The limitations attached to using vehicle gross weight 

instead of net weight will be discussed in section 7.4 Potential for Further Research. 
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Finally, the vehicle age should also be included in the model to reflect the fact older 

vehicles are less efficient that new ones. This can be caused by engine ageing, but 

also because newer vehicles often offers better performance in terms of combustion 

power for fuel used. This can be illustrated as illustrated by Figure 5.4. 

 
Figure 5.4: Fuel Efficiency model – age 

This variable is also anti-isotonic and ‘fixed’ and this should equally be reflected in 

the calculations. Each vehicle age is obtained from the vehicle registrations (all 

registrations are standard registrations). There could be a slight rounding error in the 

vehicle age as a vehicle bought at the end of a registration year would have done less 

mileage than another bought at the beginning of the same year. This approach also 

ignores the cases where a vehicle was not registered within 6 months after being 

manufactured. 

Although servicing could have a potential impact on fuel efficiency it will not be 

included in the study. This is because many big fleets have short term lease contracts 

which include servicing (as this is also the case for these companies). This generally 

hides the real cost of servicing and is the main reason for not including servicing cost 

in the fuel efficiency model. 

Tyre pressure also impacts fuel efficiency (FBP, 2005) and should ideally be included 

in the study. However, this information can generally only be provided by drivers 
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who might not be able to remember it correctly or who could provide misleading 

information (e.g. from fearing the management’s reaction). Furthermore, it would be 

difficult to provide fleet managers results suggesting their drivers should check their 

vehicle’s tyre pressure less often. Moreover, there is a strong health and safety issue 

in doing so as small tyre punctures are still possible and checking tyre pressure 

regularly can potentially prevent this type of accident. Because of the risks 

associated with including the number of tyre pressure checks are too serious in light 

of the potential benefits gained from including this variable, tyre checks will not be 

included in the model. 

The types of operations also affect the fuel efficiency (FBP, 2005); a vehicle travelling 

a constant speed of 60 mph on the motorway will demonstrate a better mpg 

performance than the same vehicle driving in a busy town centre. However, no 

common agreement on vehicles operational environment metrics (e.g. such as a 

‘difficulty score’ linking type of operations to fuel efficiency) exist. Therefore, 

including these would make it hard to demonstrate that the efficiency levels 

measured are actually caused by the vehicles’ performance and not by the specific 

method used to measure the environmental factors. Furthermore, vehicles within a 

sample (in this case a company) are assumed to operate under similar conditions so 

it is acceptable to ignore environmental factors as long as the benchmarking studies 

are conducted within each company (although a test will be conducted with all the 

vehicles from all the companies in order to appraise whether there truly exist 

environmental factors). 
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 Engine size also has an impact on fuel efficiency and could potentially be included in 

the fuel efficiency model. However, discussions with fleet managers uncovered that 

the choice of engine size is generally decided based on the type of operations (e.g. 

carrying boilers or other heavy products) which required more or less powerful 

engines. Due to the relative small sample sizes it was estimated unwise to include 

engine size in the model (not enough vehicles in each sub-‘operation types’ for the 

model to provide meaningful answer). 

Finally, driver behaviour information should also not be included in the model for the 

reason that it is already reflected in the ‘fuel used’, ‘fuel cost’ and the ‘mileage’ 

variables. Furthermore, the study’s objective is not to find the regression parameters 

which should predict what fuel performances levels will be based on driver 

behaviour information, but instead to find the best possible way to measure fuel 

efficiency. 

Because of the many variables included in the fuel efficiency model, several different 

aspects of performance should be reflected in this measure. In light of the families of 

measure introduced earlier in section 3.2.3, the fuel efficiency model exhibits the 

following characteristics: 

 It is a productivity measure. 

 It should help appraising resources utilisation and allocation. 

 It should reflect the operational cost. 
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The fuel efficiency model does not cover the quality, timeliness, cycle-time and 

safety performance measurement families. These should probably not be included as 

not really related to the notion of fuel efficiency. 

Table 5.4 summarises the factors included or discarded from the model. 

 

Factor Included Explanation 

Fuel used YES Intrinsic to the notion of fuel efficiency. 

Fuel Cost YES 
Important aspect of fuel efficiency to 

include in the measure. 

Vehicle weight YES 
Important factor impacting fuel 

efficiency. 

Vehicle age YES 
Potential factor impacting fuel 

efficiency. 

Tyre pressure NO 
Information difficult to obtain, bias in 

drivers’ answer. 

Driver behaviour NO 

Measure should reflect driver 

behaviour, not include it as an input to 

‘predict’ fuel efficiency levels. 

Maintenance NO 

Potentially interesting although the 

company selected are under fix 

maintenance contract with their 

manufacturers; hence maintenance 

price difficult to obtain. 

Topography NO 

Potentially interesting but difficult to 

measure. Assumed similar for a long 

enough measurement period. 

Weather NO 
Assumed similar for all vehicles across 

the measurement period. 
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Traffic NO 

Difficult to measure. Assumed similar 

for a long enough period of 

measurement. 

Vehicle speed NO 

Hard to differentiate necessary speed 

from unnecessary speed. Similarly to 

driver behaviour, the measure should 

reflect driver behaviour, not include it 

as an input to ‘predict’ fuel efficiency 

levels. 

Table 5.4: Factors to include in the fuel efficiency model 

5.3. Data Cleansing 

As with any modelling, it is crucial to cleanse the collected data to ensure the 

inferences drawn from the results are correct. In this study, the fuel used and fuel 

cost information is obtained from fuel card records. However – and as previously 

introduced in the Case Study Theoretical Background section above – fuel card data 

tend to generally not be very accurate. This is mainly caused by the human process 

of drivers spelling their vehicle registration out to the person at the till, who then 

types it in (for driver fuel card, see section 2.2.3 Fuel Card Management). Because 

DEA is sensitive to measurement error, it is consequently crucial to adequately 

cleanse the fuel card data before using it in the model (Avkiran and Thoraneenitiyan, 

2009). This section will explain how the fuel card data are cleansed. 

Fuel card records generally give at least the following information (the exact list of 

information available depends on the fuel card provider): 

 Vehicle registration 
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 Transaction date (and sometimes time for some fuel card provider like 

ReD) 

 Card number 

 Volume of fuel drawn 

 Net cost 

 VAT 

Because the only common identifier between the fuel card dataset and other vehicle 

information (i.e. the vehicle weight and mileage) is the vehicle registration, it is 

necessary to ensure the registrations in the fuel card data are correct. In order to 

appropriately cleanse these data, a small cleansing algorithm was designed. Part of 

this algorithm has been coded using Visual Basic for Application (the programming 

language for the Microsoft Office suite; in this specific case used on Microsoft Excel); 

the remaining part of the algorithm was executed manually (this includes manually 

querying some of the telematics databases). This section will describe the different 

steps of this algorithm. 

5.3.1. Cleansing Algorithm 

The algorithm works in a series of steps described below. The algorithm starts at step 

one and automatically carries on to the next step unless a match is found. 

Step 1 

Registration spaces are taken out. This means that ‘W135 OFD’ becomes ‘W135OFD’ 

for any following comparison. The fuel cards files are cleansed so as to only keep 
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actual fuel transactions (oil and other products are discarded). Registrations from 

vehicle fuel cards should match with fleet details at that point (as the fuel card 

registration should be the registration embossed on the card). 

Step 2 

If an exact match exists on the left 7 digits, then the process stops and is started 

again for the next fuel card record (if any). 

This means that registrations like ‘W135 OFD’, ‘W135OFD’, ‘W135 OFD – SOME 

ADDED TEXT’ and ‘W135OFD – ADDED TEXT’ would all match with each other (this is 

important as some people add extra information after the registration both on the 

fuel card and sometimes on the telematics systems). In some rarer cases, 

information is added at the beginning of the registration. This will cause registration 

to mismatch but is corrected manually. 

Step 3 

A list of similar registrations is built based on phonetic mistakes. 

For example some zeros in the following registration ‘VO05 IFD’ can be sometimes 

pronounced as ‘o’ (the letter ‘o’). This causes many records to be typed as ‘VOO5 

IFD’ or ‘V005 IFD’. By default, if the algorithm finds a misspelt registration (as in 

‘VOO5 IFD’) it will try finding an exact match on the corrected registration ‘VO05 

IFD’. If the match is found, the process stops and is started again for the next fuel 

card record (if any). Variant of the ‘o’ ‘0’ error are also calculated (e.g. ‘W135 F0D’ 

(with a zero) is in fact ‘W135 FOD’). 



 

152/343 

 

For other phonetic errors, (e.g. ‘W135 OFD’ where the D is mistaken for an ‘E’ in the 

fuel card file (‘W135 OFE’)), potential phonetic matches are computed. Two 

registrations are matched only if there is no other similar registration which could 

match. For example, there is an unmatched registration ‘W135 OFD’ on the fuel card 

file which can only be matched phonetically with ‘W135 OFE’ (i.e. there does not 

exist any registration OFB, OFC, OFP or OFV). The registration ‘W135 OFD’ is then 

matched with the existing vehicle ‘W135 OFE’. Here again, if a match can be found, 

the process stops for this registration and starts again for the next fuel card record (if 

any). 

Step 4 

If the fuel card file has the date and time of transaction, the telematics records of the 

whole fleet are queried at the time of the fuel transaction in order to obtain the list 

of all the vehicles which stopped at the time of the fuel transaction. If a single vehicle 

stopped at that time (i.e. engine stopped within 10 minutes before of the fuel 

transaction and started again within 5 minutes following the time of the transaction), 

then the registration is matched with the registration of the unique vehicle which 

was stopped at the time of refill (and the process stops and starts again for the next 

fuel card record if any). 

Step 5 

If the cleansing process reaches step 5, then: 

 There is either no phonetic match or several possible matches. 
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 There are several vehicles that stopped at the time of the fuel transaction. 

The telematics records are consequently queried for the list of vehicles which 

stopped at the time of the fuel transaction and which are potential phonetic 

matches. If a unique vehicle matches these two criteria, the registration is matched 

against this vehicle. 

Step 6 

The mpg performance is calculated for all the vehicles around the fuel transaction (or 

all the vehicles which were stopped at the time of the transaction if telematics 

information is available). If a single vehicle has an unrealistically good mpg and if the 

registrations are relatively similar (human appreciation), the registration is matched 

against this vehicle. High transactional mpg are checked because any vehicle missing 

a fuel transaction would ‘look’ like it has travelled many miles without using a lot of 

fuel (because one refill was not accounted for). This concept is illustrated below in 

‘Notes on cleansing algorithm’. 

If step 6 fails to find a match, the vehicle is flashed as unmatched. 

Notes on cleansing algorithm 

A consequent number of registrations (as high as 30%) were matched in step 4 and 5 

which explicitly rely on telematics information to find potential registration matches. 

This illustrates the importance of telematics information when cleansing fuel card 

data. Step 4 and 5 also rely on the fuel card files to provide the time of refill. This 

suggests that telematics equipped vehicles and fuel card files showing the 
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transaction time would help improving the quality of the fuel cards data cleansing. 

Keyboard misspellings (i.e. mistaking a ‘q’ for a ‘w’ – the two keys being next to each 

other on a keyboard) were not taken into account in this algorithm as too many 

possible matches made the process ineffective. 

The mpg in step 6 can be either calculated using telematics mileage (and the time of 

the transaction) or using the odometer reading mentioned at the petrol station. 

However this last option relies on the driver and the person at the petrol station’s till 

to provide the correct information. 

Failing to correctly attribute a fuel transaction to a vehicle would artificially increase 

its fuel performance (the vehicle would seem to have travelled the same amount of 

miles using less fuel). This dramatically increases the risk of having a DMU artificially 

becoming efficient – which could affect many other inefficient DMU’s scores (i.e. all 

the DMUs which would have the artificially efficient DMU in their reference set). To 

limit this, the mpg figure can be calculated between each fuel transaction and any 

vehicle having a mpg greater than usual can be discarded from the study. This 

principle is illustrated in Figure 5.5. 

 
Figure 5.5: Spot missing transactions 
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In this example, the greyed transaction could not be matched so that the apparent 

vehicle’s mpg over the period is 55.92 (the real mpg which takes all transactions into 

account is 38.72). The mpg calculated for the third transaction is calculated using 900 

miles and only 9.4 gallons (missing the 13.5 gallons of the previous refill in grey), 

hence the mpg for the third transaction shows an unrealistic mpg performance of 

95.74. This extremely high mpg is significantly greater than the (apparent) average 

mpg of 55.92 (the exact threshold is up for debate but it is reasonable to consider 

suspect anything above a ratio of 1.3). This shows it is likely there is a missing fuel 

transaction and that the vehicle should consequently be discarded from the study. 

Not refilling up to the top of the tank can also have a similar affect although this can 

be spotted as the following transactions would compensate for this partial refill. 

Although a missing transaction can go unnoticed when considering average mpg 

over a period of time, considering the individual mpg between fuel refills can help 

spotting vehicles which have missing fuel transactions. It is important to note that 

not filling up to the top of the tank can also cause artificially higher mpg figures.  

Commercial Motor regularly publishes the results of its mpg marathons (Tonkin, 

2009b). This gives mpg figures as high as 55 for medium to ‘small heavy’ vans 

(Vauxhall Vivaro 2.0 CDTI) and a mpg figure of 40 for heavy vans (Vivaro 2700 SWB 

CTDI) (MPG marathon, 2009). Assuming the Commercial Motor mpg marathon is an 

industry standard, any medium (or small heavy) van with a mpg performance higher 

than 55 would be deemed suspect and could be discarded from the analysis. 

Similarly any heavy van demonstrating a performance greater than 40 could also be 

deemed suspect and could be discarded from the study. The exclusion process 
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considers different variables such as engine size or type of operations but also 

considers historical fuel information to appraise the reliability of the data. For 

example, having consistent transactional mpg figures (e.g. no theft, or missing 

transaction) would bring confidence in the data and, should the engine size be small 

for the vehicle category, a slightly higher mpg would not be deemed suspect thus, 

the vehicle would not be discarded. 

Several final points are also worth noting: 

 Any vehicles with inconsistent fuel card records (e.g. fuel card records for 

only half of the measurement period) were discarded from the study.  

 The mileage and vehicle weight were deemed accurate thus no data 

cleansing was conducted on these variables.  

 Finally, no telematics unit was reported faulty during the measurement 

period (as otherwise this would have had an impact on mileage). 

5.3.2. Theft detection 

Discussions with operating managers and telematics experts indicated that theft can 

be detected in three different ways: 

 The vehicle mpg between two refills is unrealistically low (and previous 

not unrealistically high). 

 A fuel transaction for a volume greater than the vehicle’s fuel tank 

occurred. 
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 The vehicle was not at the petrol station at the time of the transaction 

(requires telematics). 

There are several problems in trying to detect fuel theft. Defining ‘unrealistically low’ 

obviously depends on several factors such as vehicle model, variable load and type of 

operations. This can make individuals disagree on what mpg limits or what criteria to 

use. A potential leak of the fuel system is also still possible thus it would be hard to 

incriminate a driver based on this information alone. 

When refilling a vehicle, there is almost always some fuel left in the tank. Thus, the 

volume refilled should nearly always be lower than the fuel tank capacity. In some 

cases however, some drivers need to fill a jerry can for use on a plant or workshop 

(e.g. for a mini-digger in the case of Carillion). This is however bad practice and a 

specific fuel card/registration code should be used for jerry can refilling which would 

allow proper performance monitoring. In this case again, it is not possible to draw 

conclusions on this information alone. 

The last criterion can spot cases where a driver gives its fuel card to somebody to 

refill a vehicle which does not belong to the company. This method obviously relies 

on telematics and would not work if both the company’s vehicle and the fraudulent 

vehicles are at the same petrol station at the time of the transaction (as the 

company vehicle will be at the petrol station at the time of refill). 

Although theft detection is crucial for business operations, it is less so for this 

particular study as any vehicle from which fuel has been stolen (either via siphoning 

or via the fraudulent use of a fuel card) would demonstrate a poor fuel efficiency 



 

158/343 

 

performance. Poor performance should be an incentive for the management to 

closely monitor the drivers’ performance and challenge them to improve their 

performance. For this reason, theft detection was not used to discard any vehicle 

from this measurement study. 

5.3.3. Smoothing Algorithm 

As previously introduced at the end of section 2.2.3 Fuel Card Management, fleet 

managers often need to measure fuel efficiency across the whole fleet over a period 

of time (e.g. a month). This measurement period has also to be the same for all 

vehicles in order to avoid any bias. However, mpg can only be accurately calculated 

between refills – and only if the refills are always made up to the top of the tank. It is 

also generally not possible for fleet managers to have all their vehicles refilled at the 

exact beginning and end of fuel trials. This makes measuring fuel efficiency during 

fuel trials a tricky problem. Because the study will have to use the volume of fuel 

used between the start and end of the measurement period, this problem will have 

to be properly addressed. This section will explain in more details why refills always 

need to be made up to the top of the tank. A small algorithm which can address the 

inaccuracy caused by measuring mpg between two dates (on which refill did not 

occur) will also be introduced. 

5.3.3.1. On the Necessity to Refill Up To the Top of the Tank 

The tank level varies as the vehicle is being used. Typical tank level variations are 

illustrated in Figure 5.6. 
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This graph shows that each time the vehicle is being driven the tank fuel level 

goes down. Similarly, every time the vehicle is being refilled, the tank level goes 

up. Note that the third refill has not been made up to the top of the tank (which 

is 70 litres in this example). With proportional scales, each refill should be 

represented by a vertical line; however, there is a slight slope for the refills on 

the graph above due to the way the graphic generator handles the data 

(especially the third small refill); however, this should not prevent from 

explaining the concept. 

 
Figure 5.6: Tank level 

Figure 5.7 illustrates how mpg is calculated between transactions using fuel card 

information. 
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Figure 5.7: How not refilling to the top of tank affects measurement 

In Figure 5.7, the vehicle’s mpg between Refill 1 and Refill 2 is calculated by 

taking the distance travelled between the two refills and dividing it by the 

number of litres of Refill 2. 

On the other hand, Refill 3 was not made up to the top of the tank and the 

quantity of fuel used to cover the distance between the two refills, is not 44.2 

litres (Refill 3’s volume), but 54.2 litres. Because the Refill 3 was not made up to 

the top of the tank, the mpg calculated between Refill 2 and Refill 3 is incorrect. 

Although a fuel transaction’s mpg is always erroneous when the refill is not 

made up to the top of the tank, it is important to observe that the error will be 

smoothed out on longer periods providing the first and last refills are up to the 

top of the tank. Because partial refills would cause the mpg between two 

transactions to be artificially high, they could also cause false positive in Step 6 
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of the previous algorithm (which is meant to spot missing registration; see 

Cleansing Algorithm above). 

5.3.3.2. On the Issue of Measuring mpg Over a Period of Time 

As explained before, it is possible to make an accurate estimation of the quantity 

of fuel used in between two refills as long as both refills are made up to the top 

of the tank. When measuring fuel performance across a whole fleet, it is hard (or 

impossible) to have all the vehicles refill at the exact beginning and exact end of 

the period. Consequently, it is not possible to know the exact volume each 

vehicle used over the period. Thus, it is not possible to calculate fuel 

consumption or mpg accurately over such period (at least not with fuel cards; in 

opposition CANbus could provide this information). This concept is illustrated in 

Figure 5.8. 

The beginning and end of period are indicated with vertical dotted lines, the 

refills are indicated with small triangles on the timeline. 

 
Figure 5.8: Measuring fuel efficiency over a period of time 
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Considering the beginning of the measurement period, the fuel put in the tank 

at the first refill before the start of the period was used to cover both 

distance  and distance  (Distance Before). This is illustrated in Figure 5.9. 

 
Figure 5.9: Inaccuracy at the period start 

Similarly, the fuel put in the tank during the last refill ‘n’ was used to cover both 

distance  and distance  (Distance After). This is illustrated in Figure 5.10. 

 

 
Figure 5.10: Inaccuracy at the period end 



 

163/343 

 

Because of this, calculating the mpg using the total volume of fuel drawn during 

the period is inaccurate. Formula 5.1 shows the calculations necessary to 

calculate this (incorrect) mpg. 

 

Formula 5.1: Incorrect mpg formula 

5.3.3.3. Explaining the algorithm 

The smoothing algorithm works by evaluating the amount of fuel used at the 

beginning and end of the period instead of relying on any assumption that these 

volumes would even out (it is also incorrect to think mpg over a period would 

compensate the mpg of the next period as mpg is not a linear measure). This 

section will explain the smoothing algorithm principles. 

Supposing that the measurement period is long enough and that the vans 

operations are intense enough, most vans would then refill several times during 

the measurement period. Following, section 5.3.3.1, the exact mpg between two 

refills can be calculated as long as the vehicle was refilled up to the top of the 

tank. Thus, in most cases, an accurate mpg can be calculated between the first 

and the last refills of the measurement period (there would be a small error if 

the first and last refills are not made up to the top of the tank). This concept is 

illustrated in Figure 5.11. 
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Figure 5.11: An accurate mpg between first and last refills 

The mpg calculations for the known mpg are illustrated in Formula 5.2. 

 

Formula 5.2: Accurate mpg formula 

It is then possible to estimate the volume used to cover known distance  and 

distance  using the previously calculated mpg (the distances can be 

gathered either using telematics devices or odometer readings). These 

calculations are illustrated in Formula 5.3. 

 

 

 

Formula 5.3: Smoothed volume formula 

Formula 5.4 illustrates the full factorised calculations. 

 

Formula 5.4: Factorised smoothed volume formula 
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The Smoothed mpg can then be calculated using this Smoothed Volume and the 

total mileage travelled during the measurement period. This is illustrated in 

Formula 5.5. 

 

Formula 5.5: Smoothed mpg formula 

A detailed example of the calculations can be found in section 8.5 Appendix 5: 

Smoothing Algorithm Calculations Example. 

This formula smoothes the mpg and is particularly effective when a refill has 

occurred soon before the start of the measurement period, or straight after the 

end. The Smoothing Algorithm results are illustrated in Table 5.5. 

 
Table 5.5: Smoothed mpg results 

It should be noted that the smoothing process can either reduce or increase the 

‘bad’ mpg (i.e. the mpg calculated with the incorrect formula as introduced 

earlier). Reduction would generally occur when the mpg has been artificially 

increased by a refill soon before the start of the period or soon after the end of 

the period (or both). An increase on the other hand is likely to happen when the 
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vehicle has refilled straight after the beginning of the period or just before the 

end (or both). 

Although mpg performance calculated from fuel card data is generally consistent 

as long as the fuel cards are correctly used, there is no guarantee that the 

difference between the smoothed mpg and the ‘bad’ mpg is greater than the 

variability of the actual transactional mpg around the smoothed mpg (and this 

could have an impact on the Smoothed mpg should there be only a few refills). It 

would be interesting to compare this smoothing approach with CANbus fuel 

consumption and appraise whether the benefits truly are significant. This cannot 

be done in this study however as none of the companies has CANbus enabled 

vehicles. Nonetheless, by discarding the randomness around the refills, the 

smoothing algorithm offers a logical and robust approach to measure fuel 

efficiency based on observed mpg performance. 

An alternative could also appraise fuel used in the first segment by considering 

the mpg between the first refill before the start of the period and the first refill 

after the start of the period (and vice versa for the end of the period). However, 

because this approach uses only two refills inaccuracies caused by not refilling to 

the top of the tank could not be compensated. Similarly, there is no guarantee 

the first transaction after the end of the period will be available. Consequently, 

this approach should be avoided. 

Because the smoothing algorithm has been proven robust, the DEA models 

developed in this study will use the smoothed volume calculated for the 
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measurement period. The smoothed cost was also calculated based on the same 

principles. It is important to observe that without telematics distance 

information, this algorithm also requires the odometer reading to be taken at 

the beginning and end of the period (not just at the refills). 

5.4. The fuel efficiency model 

This section will detail how the fuel efficiency model was built, both in regards to the 

computational aspects and to the modelling approach. As previously mentioned, a 

step by step approach will be used, starting from a basic model which should 

demonstrate a high correlation with the traditional mpg measure. All the variables 

discussed in the previous sections (e.g. vehicle gross weight, vehicle age) should then 

be progressively added to this original model. This approach is essential to ensure 

each variable added to the model truly impacts performance. Each of these steps will 

be detailed in the following sections. Analysis of the model results will be conducted 

at each step of the model building process. This approach is specific to this study as 

each step is a logical continuation depending on the results of the previous one. The 

models’ results will be summarised the section ‘Summary of Results’. 

5.4.1. Computational aspects and research process 

In order to test the fuel efficiency model, it is necessary to run some DEA models 

with the collected data. There are two possible alternatives here: either use some 

already available DEA software or write the code to solve these DEA problems. 
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Most existing DEA software available at the moment are either restricted in their 

options, or do not describe accurately which DEA models were used to generate the 

results (e.g. Banxia’s software, see (Virtos, 2010)). Two excellent Excel based DEA 

programs; one developed by Zhu (2010) and another by Cooper et al (2007) are 

available but limited in the number of DMUs they can handle (at least in their 

student version) and for the software written by Zhu, with limited result information 

(e.g. missing weights). Professor Emmanual Thannassoulis and Dr Ali Emrouznejad 

have also recently developed a DEA program called Performance Improvement 

Management (PIM) which is probably one of the most advanced DEA software 

available at the moment. However, at the time this study was conducted, PIM was 

not yet available. 

Because none of the options available at the time this study was conducted was 

satisfactory, some specific code was developed to solve the appropriate DEA 

problems. The code was developed in C#, a programming language created by 

Microsoft™. The reason for using C# and not a more open language such as C++ is 

that C# runs in a managed environment which makes the process or writing and 

debugging code a lot easier and can eventually result in a greater productivity as long 

as portability to a non-Windows platform is not an issue. The JAVA language has also 

a managed environment and could have been equally used. 

The optimisation process used the LINDO library (LINDO, 2010) which can solve 

linear problems on a large scale. The code developed reads data from MySQL server 

databases using different queries and the optimisation results are stored both into a 
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comma separated file and written back into a database table. Code was developed 

for the (input oriented) CCR, BCC, SBM, NCN, SBM, SBM-NC (non-controllable) and 

SBM-ND (non-discretionary) models. The data manipulation is mainly made through 

arrays as these are faster and can closely relate to matrix calculations (used in the 

DEA algorithms). The code was tested against manual calculations and, for the 

existing DEA models, against the Cooper et al free DEA solver. 

The CCR, BCC, and SBM models will be first used to measure the fuel efficiency of the 

basic fuel and miles model. This should allow a better understanding of how 

performance is measured by the different models as well as providing scale and mix 

efficiency ratios for each DMU (see Cooper et al., 2007, p. 153). This information 

should help deciding which model should be used to measure van fuel efficiency. 

Although the CCR, BCC and SBM models could suit the basic fuel efficiency model 

requirements, they do not offer the mechanism to appropriately incorporate 

variables such as vehicle weight (which is mainly due to the fact the vehicle weight is 

an anti-isotonic variable). Consequently, several other models were written which 

ultimately led to the writing of an extension to the SBM model. 

5.4.2. Model with Fuel & Miles Alone 

The first DEA model to be tested only included ‘fuel used’ as input and ‘miles’ as 

output. The fuel used is evaluated using the Smoothing Algorithm. Because this input 

is isotonic, it does not require any special calculation. Miles travelled are gathered 

from the telematics system for the relevant measurement period (from 01/04/2009 

to 30/06/2009). 
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This first model is fundamental as it enables the evaluation of DEA as an appropriate 

alternative to the traditional mpg measure. Because this first DEA model only uses 

‘fuel used’ and ‘miles’, DEA scores should be perfectly correlated to the mpg 

measure. The scores might not however be exactly proportional as the computer 

calculations use decimals and not exact values which can generally create some 

small rounding errors. 

As discussed earlier, this model results are calculated using the CCR, BCC and SBM 

models as these models should give sufficient information to understand efficiency 

and to calculate mix and scale efficiency ratios. 

5.4.2.1. Overall results 

Results for FSH Maintenance are illustrated in Table 5.6. Results obtained with 

the other companies’ datasets were similar to those obtained with FSH 

maintenance data, thus only FSH maintenance results will be illustrated in this 

section. Because the results obtained are substantial, only a relevant selection of 

the results will be shown. For instance, most tables will show part of FSH 

maintenance’s vehicles in order to demonstrate the concepts discussed. 

In the table below, the SBM, CCR, BBC scores and the Smoothed MPG columns 

have been highlighted with a gradient of Red Amber Green (RAG) colouring. The 

table was also sorted descending on the Smoothed MPG column so that the 

vehicles demonstrating the best mpg performance are on top and the vehicles 

demonstrating a worse performance are at the bottom of the list. The list shows 

the results for both medium and heavy vans. Vehicles 1 to 21 are ‘medium’ vans 
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(all weighing 2185 kg) while vehicles 22 to 69 are ‘heavy’ vans (with their vehicle 

weight varying from 2861 kg to 3500 kg).  

It can be observed in Table 5.6 that DMU 28, 31 and 33 – which all belong to the 

‘heavy’ van category (and weighing 2861 kg) – demonstrated a mpg 

performance as high as 51.72. Although this is higher than the set 44 mpg limit 

for heavy vans, these vans are relatively small (engine size 1560cc which is the 

same as some ‘medium’ vans) which could explain their higher performance. 

These three vans are consequently not discarded as previously explained in the 

section 5.3.1 Cleansing Algorithm. Similarly, DMU 8 demonstrates a very high 

mpg of 58. However, fleet managers confirmed the driver driving the vehicle 

corresponding to DMU 8 was one of their best, thus this DMU was also not 

discarded. 

Only DMU 8 was evaluated efficient by the CCR and SBM models. This was to be 

expected as DMU 8 is the vehicle which demonstrates the best mpg 

performance. It is interesting to observe that the SBM and the CCR model 

provide absolutely identical performance scores. This is due to the fact the CCR 

model only accounts for technical inefficiencies while SBM accounts for all 

inefficiencies (both technical and mix inefficiencies). However, because there is 

only one input and one output there cannot be any mix inefficiencies thus the 

SBM scores can only reflect technical inefficiencies and – in this one input one 

output example – are consequently equivalent to the CCR scores. 
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Table 5.6: Fuel and Miles model results 

It is also interesting to observe that the SBM and CCR scores are highly 

correlated to the mpg performance (if the optimisation results were not 

rounded up they should in fact theoretically be perfectly correlated). This is 

illustrated in the Figure 5.12. 
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Figure 5.12: Regression between the SBM scores and mpg 

Regression analysis gives an R square of 0.999995 (extremely close to 1) and a 

Pearson coefficient equal to 0.9999979. As mentioned at the end of section 

5.4.2 Model with Fuel & Miles Alone, the DEA scores are highly correlated to the 

mpg figures which can be explained as the DEA model uses the same variables as 

the mpg measure (i.e. fuel used and distance travelled). 

The model results can be illustrated graphically as in Figure 5.13. Because there 

are only one input and one output, the graph displays the fuel used (input) on 

the x axis and the miles travelled (output) on the y axis. As explained in section 

4.2.2 ‘Single Input, Single Output’, efficient DMUs under constant Return To 

Scale will display the best output on input ratios. The frontier line passing 

through the origin and the efficient DMUs will consequently exhibit the highest 
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slope. This is illustrated in the same figure in which the frontier is represented 

with a blue line. 

 
Figure 5.13: Graphical illustration of fuel -> miles data 

It is interesting to observe that the ‘heavy’ vans (displayed in green above) are 

all inefficient and demonstrate a generally worse performance than ‘medium’ 

vans (in blue above). Effectively ‘heavy’ vans are generally further away from the 

efficient frontier, resp. On average 217 litres of potential improvements for 

heavy vans versus 56 litres for medium vans (improvements in fuel used 

represent the horizontal distance to the frontier). This is illustrated in Table 5.7. 

 
Table 5.7: Comparison of average distance to frontier based on vehicle type 
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This figure shows the absolute ‘distance’ to the efficiency frontier for medium 

and large vans, but also the distance percentage in regards to the volume of fuel 

used. 

5.4.2.2. Taking a closer look at Variable Returns To Scale 

In order to appraise whether fuel efficiency should be measured under a 

variable RTS assumption, the data was run against the BCC model. This revealed 

that efficiency scores calculated by the BCC model differed rather significantly 

from the CCR and SBM models. In effect, the BCC model identifies several other 

DMUs as efficient (DMUs 3, 4, 8 and 25). The BCC scores were not proportional 

to the mpg measure and several DMUs evaluated as efficient illustrated a rather 

poor or average mpg performance. This is illustrated by DMU 25 for example 

which the BCC model evaluates as efficient (i.e. with a score of 1 and no slack) 

while demonstrating a mpg of 35.8. However, this DMU is only evaluated 

efficient because it is the DMU which travelled the most miles which – under the 

VRTS assumption – makes this DMU efficient. This is illustrated in Figure 5.14. 
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Figure 5.14: Graphical illustration of BCC scores 

Evaluating a vehicle as fuel efficient on the sole reason it has travelled more 

miles than any other vehicle is not appropriate to the notion of fuel efficiency. 

This was also further confirmed by discussions with the different fleet managers. 

This consequently implies the Variable RTS assumption is not appropriate to 

measure vehicle fuel efficiency (or at least not in the range of operations 

observed above, it might be possible that VRTS could be appropriate for very 

small operations below as a few tens of miles but the interest in using DEA for 

such small operations might then be questionable). In plain terms this means 

that no vehicle should demonstrate a greater or lower fuel efficiency 

performance in regards to the volume of fuel they have used (or miles they 

travelled). This suggests that scale efficiency analysis is likely to be inappropriate 

to fuel efficiency measurement. Consequently, only Constant Returns To Scale 

approaches will be used to measure van fuel efficiency. 
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5.4.2.3. Conclusion on the ‘Fuel Used / Miles’ model 

The strong correlation between the SBM (or CCR) score with the mpg measure 

demonstrates it is possible to use DEA to measure fuel efficiency (at least using 

fuel and distance alone). The results obtained from the BCC model show that the 

Variable Returns To Scale assumption is not appropriate to the measurement of 

fuel efficiency. These results were also observed with the other companies’ 

datasets which confirms the inadequacy of VRTS for fuel efficiency 

measurement. Consequently only models under a CRTS assumption will be used 

to measure fuel efficiency. 

The next section (5.4.3 Adding the Cost) will evaluate whether the cost has a 

significant impact on fuel efficiency. In effect, it is important to see first whether 

cost adds a new dimension to fuel efficiency before adding the weight to the 

model (as both the ‘fuel used’ and ‘fuel cost’ are radial measures, thus requiring 

a similar treatment, while weight will be more a categorical variable). 

5.4.3. Adding the Cost 

Fuel costs vary depending on the petrol station brand, the location and also over 

time. This suggests vehicles could be mpg efficient but pence per mile inefficient 

(and vice versa). This section will consequently test the impact cost has on fuel 

efficiency. 

As Cooper et al (2007, see 'Problem 1.4' p. 19) pointed out, using processed measure 

such as pence per mile is dangerous as some variables can be over or under 
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evaluated as a result. Using this knowledge, the total amount paid for the fuel used 

over the period will be used instead of the average ppm over the same period. 

A strong correlation was observed between the ‘amount paid’ at petrol stations and 

the corresponding ‘volume drawn’. A strong correlation was also observed between 

the smoothed ‘volume used’ and smoothed ‘amount paid’ (i.e. the amount of money 

paid for the ‘fuel used’). Both these correlations demonstrated an R2 of 0.9999 and a 

Pearson coefficient of 0.999 (across all vehicle types). This would suggest the fuel 

cost variability between vehicles is compensated over a period of time (i.e. a vehicle 

might buy cheaper fuel at some point, but it will buy more expensive fuel later on 

and the overall average cost will eventually even out amongst the vehicles). 

However, Dyson et al (2001, see Pitfall 4.2 (Correlated factors) p. 249) advise testing 

the effect of a correlated variable on the DEA model results before discarding it; 

indeed, in some cases discarding a strongly correlated variable can lead to significant 

changes in efficiency (this is also true for perfectly correlated variables with an R2 

equal to 1). Because it is not advised to discard a strongly correlated variable on the 

sole ground of correlation, the impact which cost has on fuel efficiency will be tested 

in this section. 

For clarity purposes the previous model (i.e. ‘Fuel used’ -> ‘Miles’) will be referred to 

as Scenario 1. Conversely, the model studied in this section (i.e. ‘Fuel used’, ‘Fuel 

cost’ -> ‘Miles’) will be referred to as Scenario 2. 

In order to test for the impact of fuel cost, the smoothed cost will be added to the 

model discussed in the previous section (Scenario 1). ‘Fuel cost’ is an isotonic 
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variable thus it will not require any special treatment (the more money spent on 

fuel, the more miles the vehicle should travel). The resulting model is illustrated in 

Figure 5.15. 

 
Figure 5.15: Fuel Efficiency model – cost spent on fuel 

This model will be tested with CCR and SBM models under the CRTS assumption. 

First step is to compare the results obtained with the CCR model for Scenario 1 and 

2. Then the results obtained with the SBM-C model for Scenario 1 and 2 should in a 

similar manner be compared against each other. A last section will discuss the 

differences between CCR and SBM-C results for Scenario 2. This last section will also 

look at how the ‘fuel cost’ could potentially be used instead of volume of ‘fuel used’.  

5.4.3.1. CCR model results comparison between Scenario 1 and 2 

The results from the CCR model are illustrated in Table 5.8. 

DMU 8 remains the only efficient DMU in this Scenario 2. The score difference is 

rather small with an average of 0.01013 and a standard deviation equal to 

0.0099147. The maximum score difference is observed for DMU 29 with a 5.27% 

score increase from Scenario 1. 
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Table 5.8: CCR results for the Fuel, Cost -> Miles model 

Taking a closer look at the DMUs showing the greatest score difference (DMU 10 

and DMU 29) indicated that these two DMUs have the greatest ‘Slack Fuel used’ 

on ‘fuel used’ ratio (resp. 0.0506227 and 0.052759). Interestingly, these values 

are also equal to the two DMUs’ score difference listed in Table 5.8: CCR results 

for the Fuel, Cost -> Miles model. This can be explained by the fact these two 
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DMUs have no ‘fuel cost’ slack so that the only difference between the CCR 

score in Scenario 1 and 2 is the ‘fuel used’ slack. Graphically, these two DMUs 

also are the furthest away from the regression line than any other DMU. These 

two DMUs are outlined and circled in red in Figure 5.16. 

 
Figure 5.16: Graphical illustration of DMU 10 and 29 

The score difference spread is illustrated in Figure 5.17. 

 
Figure 5.17: Score difference spread when adding cost – CCR 

This highlights the generally low impact the cost has on the CCR efficiency scores 

obtained in Scenario 1. It can be easily observed that – except for some noise 
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around 0.0250 and 0.0500 – the score differences tends to be relatively low 

which gives a half Poisson shape to this distribution. This is mainly caused by the 

strong correlation observed earlier (especially the very high Pearson coefficient 

value). This is illustrated in Figure 5.18. 

 
Figure 5.18: Explaining why score difference is low 

The graph above is a magnified area of Figure 5.17 to which the regression line 

has been added (the line in black). The strong correlation, and especially the 

high Pearson coefficient value (0.999), implies that all points will tend to be 

relatively close to the black regression line. Due to its specific input and output 

values, DMU 8 is also very close to the regression line. As a consequence the line 

starting from the origin and passing through DMU 8 is very close to this 

regression line. This blue line is not the efficient frontier but a line on which 

DMUs can only demonstrate technical efficiency and no mix inefficiencies. Thus 

any DMU on this blue line would demonstrate identical scores between Scenario 

1 and 2 (both for the CCR and the SBM models). Subsequently, the greatest 

score difference would be observed for the DMU the farthest away below this 
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blue line (in this case DMU 29 – and only for fuel used slacks). However, because 

of this strong Pearson coefficient and of the closeness of the blue line to the 

regression line, nearly all the DMUs are really close to this blue line. Therefore, 

the score differences between Scenario 1 and 2 tend to be rather small. 

Considering DMU ranking, the maximum difference is observed for DMU 10 with 

a change in rank of 9 positions. As discussed above, this DMU is demonstrating 

the greatest score difference as well. DMU 10’s rank difference can be explained 

by the combination of a high score difference in a score range regrouping a 

consequent number of DMUs. This is however not a serious issue as the rank 

difference tends to be relatively low (92.75% of DMUs will have experienced a 

rank change lower or equal to 3) as illustrated in Figure 5.19. 

 
Figure 5.19: Rank difference spread when adding cost – CCR 

Furthermore the rank difference generally consists of position swaps between 

two or three DMUs and there is no DMU that ‘jumps’ position in a drastic 
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manner. The low rank difference observed in the figure above is a logical 

consequence of the low score difference observed earlier. 

The relatively low score difference associated with a relative slight impact on the 

DMU rank suggest adding the cost to the ‘Fuel used’ -> ‘Miles’ model does not 

significantly affect the CCR model results. 

5.4.3.2. SBM model results comparison between Scenario 1 and 2 

Results from the SBM model are illustrated in Table 5.9. 

As with the CCR model, DMU 8 remains the only efficient DMU while DMUs 10 

and 29 show the greatest score difference between Scenario 1 and 2 with 

respectively 0.0253114 for DMU10 and 0.0263799 for DMU29. This coincides 

with the previous results obtained from the CCR model. Average score 

difference is 0.0052882 with a standard deviation of 0.0048382. 
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Table 5.9: SBM results for the Fuel, Cost -> Miles model 

The score difference obtained with SBM is half that of the CCR model (for the 

DMUs having some non-zero slacks on ‘fuel used’). In this case it is because the 

SBM – I objective function divides the input slacks by the number of inputs (in 

this case 2, see Formula 5.6). 

 

Formula 5.6: The SBM – I objective function 
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Because of this model behaviour, the score difference spread is much lower than 

with the CCR model (the reason for this low score difference is similar to the 

explanation given for the CCR model). This is illustrated in Figure 5.20: Score 

difference spread when adding cost – SBM. 

 
Figure 5.20: Score difference spread when adding cost – SBM 

Conversely, rank differences are relatively low with a maximum of 5 while 

98.55% of the DMUs have a rank difference lower or equal to 3. This is 

illustrated in Figure 5.21. 
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Figure 5.21: Rank difference spread when adding cost – SBM 

As with the CCR model, adding the cost to the Scenario 1 model does not 

significantly affect the results of the Slack Based Model. This is again likely 

caused by the high correlation between fuel cost and fuel volume as explained 

earlier. These preliminary results suggest it is not relevant to simultaneously use 

the ‘volume of fuel used’ and the ‘fuel cost’ as inputs and that instead ‘volume 

fuel used’ could be used as the sole input.  

5.4.3.3. Further analysis 

Although the previous section suggested that adding the ‘fuel cost’ variable to 

the ‘Fuel used’ -> ‘Miles’ model did not have any significant impact on the 

results obtained from either the CCR or the SBM model, further analysis should 

be conducted to better understand the relation between cost and fuel 

efficiency. 
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This analysis should evaluate the differences between the CCR and the SBM 

results in Scenario 2 and explore the relation between mpg and the ‘Fuel cost’ -> 

‘Miles’ model. For convenience, this last model will be referred to as Scenario 3. 

Comparison between the CCR and SBM model results for Scenario 2 

Comparison of results obtained from the CCR and SBM models in Scenario 2 are 

summarised in Table 5.10. As demonstrated by Tone (2001, p. 502 Theorem 2.), 

the CCR scores are all greater or equal to the SBM scores. This is because the 

SBM model accounts for all inefficiencies whereas the CCR model only accounts 

for purely technical inefficiencies (This obviously has had an impact on the slacks 

found by each model) (Cooper et al., 2007, p. 103 Theorem 4.8). The score 

differences between CCR and SBM in Scenario 2 are logically equal to the score 

differences between SBM Scenario 1 and SBM Scenario 2. This is because the 

score differences between the CCR and SBM models in Scenario 2 and between 

SBM Scenario 1 and SBM Scenario 2 are the mix inefficiencies created when 

adding the cost to the fuel efficiency model.  

Conversely the rank difference between CCR and SBM in Scenario 2 is rather 

small which is mainly due to the low score difference observed earlier. There is 

consequently no significant difference between CCR and SBM in Scenario 3 

except the CCR model provides higher scores than SBM. 
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Table 5.10: SBM – CCR model results comparison for the Fuel, Cost -> Miles model 

Using fuel cost as sole input 

As explained earlier, the model ‘fuel cost’ -> ‘Miles’ will be referred to as 

Scenario 3. 

As expected, the CCR and SBM models provided identical scores when ‘fuel cost’ 

was used as sole input (this is because there cannot be any slack so that all 

inefficiencies are thus purely technical). The score differences between Scenario 

1 and Scenario 3 were comparable to those observed between Scenario 1 and 2 

for the CCR model. This suggests ‘fuel cost’ can be used instead of ‘fuel used’ 
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and that the results produced should be similar. Table 5.11 illustrates the 

differences between the CCR score for Scenario 1 and 3. 

 
Table 5.11: CCR model results comparison for Scenario 1 and 3 

The scores were again strongly correlated to mpg (R2 = 0.9949, Pearson = 0.997). 

However, there were a few occasions where the score rank shows discrepancies 

with the mpg rank. This is illustrated in Table 5.12 where the data is sorted by 

mpg descending and inhomogeneous scores are displayed in red. 
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Table 5.12 Ranking discrepancies between score and mpg in Scenario 3 

Such discrepancies were however logically not observed with ‘fuel used’. 

5.4.3.4. Conclusion on fuel cost 

This section demonstrated adding the ‘fuel cost’ to the ‘fuel used’ -> ‘miles’ 

model did not have any significant impact so it was not relevant to 

simultaneously use ‘fuel cost’ and ‘fuel used’ in the same model. It was also 

demonstrated that although scores are relatively similar regardless of whether 

‘fuel used’ or ‘fuel cost’ were used as input, of whether ‘fuel used’ tended to 

provide more consistent results in regards to mpg. Consequently, only ‘fuel 

used’ will be retained in further models. 

Because the volume of ‘fuel used’ and the corresponding ‘fuel cost’ are radial 

measures, using the CCR model results in this specific instance would seem more 

appropriate than non radial models such as the Slack Based Model (although the 

SBM model would shows greater discrimination amongst DMUs as incorporating 

mix inefficiencies in the measurement of efficiency). However, the SBM might be 

more appropriate when incorporating variables such as vehicle weight or age as 
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these variables are unlikely to behave in a radial manner. The incorporation of 

vehicle weight to the fuel efficiency model will be discussed in the following 

section. 

5.4.4. Adding the Weight 

This section will investigate how the vehicle gross weight can be incorporated into 

the fuel efficiency model. This new fuel efficiency model is illustrated in Figure 5.22. 

 
Figure 5.22: Fuel Efficiency model – vehicle weight 

Vehicle weight is well known for having a strong impact on fuel efficiency. It is 

possible to illustrate the impact of weight is to plot the different frontiers per van 

category. The figure below illustrates the different frontiers for each van weight 

category starting with green (medium van 2185kg) and finishing with burgundy 

(heavy van 3,500kg). The colour code is illustrated in Table 5.13. 

Weight 

Category 
Colour Name 

Associated 

colour 

2185 kg Green 
 

2861 kg Light Green 
 

2900 kg Yellow 
 

3000 kg Orange 
 

3300 kg Red 
 

3500 kg Burgundy 
 

Table 5.13: Van gross weight category colouring 

And the different frontiers for each van weight category are illustrated in Figure 5.23. 
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Figure 5.23: Frontier for each weight category 

It is interesting to observe that the yellow (2,900 kg) and orange (3,000 kg) frontiers 

are nearly superimposed (they are on the figure above although their equations 

differ slightly) and very close to the red (3,300 kg) frontier. In effect, the maximum 

mpg difference between the best DMUs in the yellow category and the best DMU in 

the red category is 1.207 which explains why the three frontiers look really close to 

each other. Not surprisingly, the frontiers for the medium vans show the best mpg 

(green lines) while the heaviest van frontier shows a worse mpg performance 

(burgundy frontier). This further illustrates that it is rather unfair to compare van 

mpg across different weight categories (unless the weight difference is really small) 

and prompts the need to incorporate vehicle weight in the model especially for 

fleets having vehicles in several weight categories. 

This effect of weight was also blatant when ordering a list of vehicles by their 

respective weight and mpg earlier. This is illustrated again in Table 5.14. 
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Table 5.14: Impact of weight on the traditional mpg measure 

Although the impact of ‘vehicle weight’ is blatant, it is unclear however, whether the 

relation between ‘vehicle weight’ and mpg is linear (which is different from piece-

wise linear). Indeed, external factors such as driver behaviour, vehicle aerodynamics 

or other factors impacting on fuel efficiency might impact on this relation. 

Regression analysis gives a R2 of 0.6283 and a Pearson coefficient of -0.7926 which 
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suggests the relation is not really (or perfectly) linear. This is illustrated in Figure 

5.24. 

 
Figure 5.24: Relation between Smoothed mpg and vehicle weight 

The linear regression analysis based on averages for each vehicle weight category 

gives better results with a R2 of 0.9089 and a Pearson coefficient value of -0.9533. 

However, averages hide the variability highlighted in the graph above which is not a 

desired characteristic in DEA studies. Consequently, it cannot be concluded the 

‘vehicle weight’ behaves in a radial manner in regards to ‘fuel used’. This implies that 

slack based approaches (e.g. the SBM model) are likely to be better suited than 

radial ones (CCR model) when incorporating the ‘vehicle weight’ variable. 

In many situations, a vehicle’s weight is fixed and cannot or should not be changed 

(at least to some extent). It is consequently important to incorporate the ‘vehicle 

weight’ as a ‘categorisation’ variable essential to produce a fair fuel efficiency 
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measure (the categorical model is not used here; this will be explained in the 

Conclusion). However, because the vehicle weight cannot be changed (or at least this 

assumption is made), it is crucial the fuel efficiency model does not allow for 

improvements on ‘vehicle weight’. 

Because ‘vehicle weight’ is both anti-isotonic and ‘non-improvable’ specific 

processing will be required. This will be discussed in the following two sections. 

5.4.4.1. Anti-isotonic variable treatment 

DEA models work on the assumption that more input should generate more 

output, thus efficiency could be gained by either: 

 Reducing the inputs while keeping the outputs constant or 

 Increasing the outputs while keeping the inputs constant or 

 Reducing the inputs while increasing the outputs. 

An anti-isotonic variable works in an opposite manner; i.e. more of an anti-

isotonic input would worsen the output and vice versa. Thus, anti-isotonic 

variables – such as ‘vehicle weight’ for the fuel efficiency model – need to be 

processed specifically in DEA. 

Koopmans (1951) highlighted in his conference work that the production 

process might generate undesirable variables. Literature has subsequently 

shown an interest in incorporating undesirable variables in DEA models. Many 

different models were subsequently developed (Seiford and Zhu, 2002, Färe and 

Grosskopf, 2004, Seiford and Zhu, 2005, Jahanshahloo et al., 2005, Hadi Vencheh 



 

197/343 

 

et al., 2005) with interest for both undesirable inputs and outputs. Most of the 

models developed allow for the undesirable variables to be treated accordingly; 

i.e. increase an undesirable input (input oriented model) or decrease an 

undesirable output (output oriented model) which is the same behaviour an 

anti-isotonic variable should illustrate. However, in this particular instance 

‘vehicle weight’ is ‘non-improvable’ (i.e. ‘non-changeable’). Specific models 

allowing for appropriate undesirable variables processing are consequently not 

necessary as ‘vehicle weight’ should not be reduced. It is consequently not 

necessary to use a model which allows for the ‘vehicle weight’ input to reduce 

but simply to transform ‘vehicle weight’ into an isotonic variable. 

Dyson (2001, Pitfalls 5.3 p.251) listed three different approaches to turn an anti-

isotonic variable isotonic. These are listed below: 

 Invert the variable, 

 Move the variable from the input to the output side (and vice versa), 

 Subtract the value from a large number. 

Inverting the variable breaks the ratio or interval scale (presumed to exist, Dyson 

et al., 2001) and the data would require further treatment. Similarly, although 

moving the variable to its opposite side is logical from a mathematical or 

theoretical point of view, the resulting model loses contact with the reality and 

might become difficult to explain to fleet managers. Finally the results obtained 

by subtracting the value from a large number (K) are generally sensitive to the 

value of K and should K be too large, it could dominate the data. This last 
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approach is nonetheless retained as there is no need for further data processing 

and this also seems the easiest approach to communicate. Appropriate testing 

for different values of K should ensure K does not dominate the data. 

This section will only test the following fuel efficiency model: ‘Fuel used’, ‘Fuel 

cost’ -> ‘Miles’ against several different DEA models (these will be detailed later 

on). Because this section only discusses the same fuel efficiency model (i.e. same 

inputs and outputs), each section will not be referred to as Scenario x as before 

but by the DEA model name (e.g. SBM-ND-I for Slack Based Model – Non-

Discretionary – Input Oriented). 

5.4.4.2. Modelling non-controllable and non-discretionary variables 

The literature distinguishes two main different approaches to incorporate 

exogenously fixed variables (or at least variables which cannot or should not be 

changed): 

 Non-controllable variables which simply do not allow any non-zero slack 

on the non-controllable variables. 

 The non-discretionary approach which allows non-zero slacks to appear 

on the non-discretionary constraints but prevent these slacks to impact 

the scores. 

The non-controllable approach can be modelled as in Figure 5.25. 
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Figure 5.25: The NCN (non-controllable) model 

As with standard DEA terminology, x refers to the input vector while y refers to 

the output vector. λ are the variables of the linear optimisation problem and e 

the unity vector. 

The model calculates efficiency through a radial measure θ. In the figure above, 

the letter ‘C’ refers to the controllable variables while ‘N’ refers to the non-

controllable variables. The equality constraint on the non-controllable variables 

prevents any slack from being assigned to these variables. The last constraint 

details the upper and lower bound condition for eλ (this enables accurate 

control of the model’s scale assumption but is not relevant to this discussion). 

The non-discretionary approach can be modelled as in Figure 5.26. 
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Figure 5.26: The NDSC (non-discretionary) model 

This ND model’s formulation is similar to the NCN model introduced above 

except that slacks are allowed even for non-discretionary variables. However, 

the slacks assigned to non-discretionary variables do not enter in the evaluation 

of the score (this is illustrated by the second constraint where  is not 

multiplied by θ (unlike for discretionary constraints) so cannot impact on the 

score. This model also calculates efficiency through a radial measure θ. 

The formulation and terminology of these two approaches are related (Cooper 

et al., 2007, p. 219) and the choice between them relies mainly on management 

understanding and model behaviour testing. This implies both models will have 

to be tested to determine which one is best suited for fuel efficiency analysis. 

Because previous analysis showed radial measures were probably not 

appropriate when incorporating vehicle weight into the fuel efficiency model, 
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the non-controllable and non-discretionary approaches will be implemented into 

the SBM model. The resulting SBM models will assume variables cannot be 

improved in a radial manner, and ensure specific variables are treated as non-

controllable (SBM-NC) or non-discretionary (SBM-ND). 

The formulation of the SBM-NC model is illustrated in Figure 5.27. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.27: The SBM-NC model in its linear form 

This formulation is similar to the Slack Based Model except that non-

controllable variables were discarded from the objective and that the constraint 

matrix was partitioned to prevent any slacks on non-controllable variables. 

The first constraint is a consequence of the transformation of the SBM-NC model 

from its fractional to its linear form, process described in 8.4 Appendix 4: The 

Charnes Cooper transformation. This model fractional form can be found in 8.6 
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Appendix 6: Details on non-controllable and non-discretionary models. This 

model can be transformed in its input oriented form by ignoring the output 

denominator of the fractional form (see appendix 8.6). This is illustrated in 

Figure 5.28. 

 

 

 

 

 

 

 

 

Figure 5.28: The SBM-NC-I model 

Similarly, the formulation of the SBM-ND is illustrated in Figure 5.29. 

 

 

 

 

 

 

 

Figure 5.29: The SBM-ND model in its linear form 

This formulation is very close to the SBM-NC-except that non-zero slacks are 

allowed for the non-discretionary variables but they do not enter into the 
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objective function. Here again, the first constraint is a result of the fractional to 

linear transformation. Because the fuel efficiency model is input oriented it is 

important to formulate the model in its input oriented form. This can be done by 

ignoring the output denominator and is illustrated in Figure 5.30. 

 

 

 

 

 

 

Figure 5.30: The SBM-ND-I model 

These two models are logical non-controllable and non-discretionary extensions 

of the SBM model. No records of such models could be found in the literature at 

the time this thesis was written. However, Saen (2005) who has developed a 

SBM model addressing non-discretionary variable using extra parameters on 

slacks which allowed defining the extent to which some specific inputs can be 

nondiscretionary. Similarly (Hahn, 2007) considered non-discretionary variables 

along with SBM  but used a Tobit regression to reflect the impact of these 

external non-discretionary factors on the efficiency measurement. None of 

these approaches treated non-discretionary factors in an appropriate manner 

for this study which prompted the development of the two models introduced 

above. 
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5.4.4.3. Results of the SBM-NC-I model 

The previous two sections explained how ‘vehicle weight’ should be made 

isotonic and which methods were appropriate to ensure ‘vehicle weight’ was not 

considered as a standard input by the fuel efficiency model. The next two 

sections will introduce the results for the SBM-NC-I and the SBM-ND-I models. In 

all the subsequent models, vehicle weights are made isotonic by subtracting the 

vehicle gross weight from 3501 (all vehicles are lighter than 3501 kg so all 

isotonic weights are positive). 

The results for SBM-NC-I model are illustrated in the table further down. The 

results are relatively consistent in regards to mpg as shown by the RAG 

colouring. The best in class vehicle for each weight category shows a better 

efficiency than the other vehicle in the class and is also generally displayed in 

‘green’ even for heavy vehicles. However, some DMUs’ scores are not consistent 

with their mpg value and this would require further investigation. This is the 

case for DMU 4 which is evaluated efficient while demonstrating a mpg 

performance of 42.99. This is inconsistent with other DMU’s performance such 

as DMU 8 which is also efficient but demonstrates a mpg performance of 58.9. 

Similarly the efficient DMU 23 demonstrates a mpg performance of 44.8 while 

another efficient vehicle in the same weight category (DMU 33) demonstrates a 

mpg performance of 51.58. These inconsistencies are illustrated in the Table 

5.15 (the list is ordered by weight and SBM-NC-I Score). 
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Table 5.15: SBM-NC-I model results 

In order to explain this inconsistent behaviour, it is best to plot the data as in 

Figure 5.31. 
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Figure 5.31: Graphical results of the SBM-NC-I model 

In order to display data with 2 inputs and 1 output, both inputs are normalised 

against the output. This means that both inputs are divided by the output value. 

This result can then be multiplied by the same coefficient for all DMUs (in this 

case 1000). This allows both the fuel used and the isotonic weight to be 

proportional to the number of miles travelled and thus makes the resulting data 

comparable and displayable on a graph. All the subsequent diagrams will use a 

similar approach to display the data. 

Figure 5.31 shows normalised ‘fuel used’ on the x axis and normalised ‘vehicle 

weight’ on the y axis. Because the weight has been made isotonic, light vehicles 

are at the top and heavy vehicles at the bottom. Conversely, an efficient vehicle 
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will tend to be on the left hand side of the graph while inefficient vehicles will 

tend to be on the right hand side. Looking at the SBM-NC-I results it is possible 

to draw the efficient frontier. This frontier connects DMU 4, 8, 33, 23 and 67. 

Two obvious problems stand out from looking at this graph. 

The first problem is caused by the model preventing any slacks on non-

controllable variables (in this case weight) which precludes any ‘vertical 

projection’ of the frontier in the graph above. DMUs such as DMU 4 cannot then 

project on this non-existent vertical frontier and there consequently is a risk that 

they will be deemed efficient (which is not a desired characteristic in view of 

their poor mpg performance). This limitation impacts on any DMU above DMU 

8. All these DMUs would thus have an artificially increased fuel performance as a 

consequence of this (e.g. DMU 15, DMU 6, etc). This concept is illustrated in 

Figure 5.32 below. This figure shows the frontier which would exist should slack 

be allowed on vehicle weight (which is similar to the previous frontier except for 

the line linking DMU 8 to DMU 4 which is replaced by a vertical plain line). With 

such a frontier, DMU 4 could then be projected and would consequently be 

deemed inefficient (which would be logical in view of its mpg performance). 
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Figure 5.32: SBM-NC and the need to allow for slacks 

The second problem is caused by the inconsistent impact weight has on 

efficiency measurement in relation to the number of miles the vehicle has made. 

For example DMU 4 and 15 (visible on the top of the figure above next to the 

efficient frontier) have the same weight (2185 kg) but because the vehicle 

weights are normalised based on the number of miles travelled, DMU 4 appears 

to ‘use’ more of the input ‘vehicle weight’. This is also the reason for DMU 23 to 

be evaluated as efficient within its weight category while its mpg performance is 

worse than efficient DMU 33 by 6 mpg (the latter demonstrating a mpg 

performance of 51.58). Conversely, DMU 28, the most mpg efficient vehicle in 

this weight category (mpg of 51.7) is nonetheless deemed inefficient due to a 

disadvantageous weight to miles ratio. 
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Because slacks are allowed in the SBM-ND model (and its variants) and because 

they do not enter into the efficiency calculations, the SBM-ND model could 

potentially address the first problem (non-vertical frontier projection). The 

second problem relating to the weight to miles ratio could be addressed by 

further data processing prior to the DEA calculations. To ensure the effects of 

each solution are independently measurable, it is necessary to first test how the 

SBM-ND-I model addresses the first issue, to then evaluate how the second issue 

can be addressed by further data processing. 

5.4.4.4. Results of the SBM-ND-I model 

Results of the SBM-ND-I model, which can be found in Table 5.16, demonstrated 

less inconsistency with the mpg measure than the SBM-NC-I model. DMU 4 was 

also no longer evaluated as efficient which suggests it can now project on the 

efficient frontier (a vertical projection) while the resulting non-zero slacks on 

weight will not enter into the measurement of the efficiency itself. 
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Table 5.16: SBM-ND-I model results 

This can be readily verified by looking at DMU 4 which has some non-zero slack 

allocated to its ‘Isotonic Vehicle Weight’ as slacks are now allowed on the 

‘vehicle weight’ variable. As specified earlier, ‘vehicle weight’ slacks do not 

however enter into the measurement of efficiency. This is illustrated in the 

following calculations in which the score calculations details are shown. It is 

apparent that the ‘vehicle weight’ slack does not enter into the measurement of 

efficiency by considering Formula 5.7. 
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Formula 5.7: Manual SBM-ND score calculations 

This value can be further verified by considering Table 5.17 and column ‘Manual 

Check of Score Calculation’. This column shows that only the ‘fuel used’ variables 

enters into the evaluation of efficiency. 

 
Table 5.17: Manual verification of SBM-ND-I score calculation  

Figure 5.33 illustrates the frontier change. 

 
Figure 5.33: The SBM-ND-I model 

Because the SBM-ND-I model allows for slacks on the non-discretionary 

variables DMUs can be projected on this vertical extension of the efficient 

frontier. Although this addresses the first issue, vehicles’ efficiency 

measurement is still inconsistent in relation to the ‘vehicle weight’ to ‘miles 
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travelled’ ratio. This is illustrated by DMU 23 which is still evaluated as efficient 

by the SBM-ND-I model. This issue should be addressed and will consequently be 

discussed in the next section. 

5.4.4.5. Addressing the ‘vehicle weight’ on ‘miles’ issue 

The weight problem of the previous model was caused by the fact the impact of 

each DMU’s gross weight depends on the mileage travelled. This is obviously 

unfair and such models would provide inconsistent results. In effect, the vehicle 

weight should be used as a constant which indicates the DMU’s weight category 

to the model. Practically, this means the relation between vehicle gross weight 

and miles should be constant for a given vehicle weight category while ‘fuel 

used’ should be kept proportional to the distance travelled (so that the vehicle 

mpg performance is not destroyed by the data transformation). This can be 

done by normalising miles to 1,000 for all the vehicles whilst regressing ‘fuel 

used’ proportionally and leaving vehicle gross weight untouched (the value of 

1,000 is arbitrary and has no effect on the end results). The result is a preserved 

ratio between ‘fuel used’ and ‘distance travelled’ and a constant ‘vehicle gross 

weight’ to ‘distance travelled’ ratio within each weight category. This is 

illustrated in Table 5.18. 

 
Table 5.18: Processed data for weight treatment 
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In the figure above, ‘Normalised fuel used’ and Distance travelled has been 

calculated using Formula 5.8. 

 

Formula 5.8: Normalised variable formula 

The ratio between ‘Fuel used’ and ‘Distance’ is preserved as the two variables 

are divided by the same coefficient. This ratio also normalises ‘Distance 

Travelled’ to 1,000 which gives a unique ‘weight to distance’ ratio for each 

vehicle weight category. This unique weight can be observed in the column 

named ‘Isotonic Weight (3501)’ (in this column, 1316 corresponds to a van gross 

weight of 2185kg. The difference is explained by the isotonic treatment ‘vehicle 

weight’ received). 

The SBM-ND-I model results with this data are illustrated in Table 5.19. 
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Table 5.19: SBM-ND-I results with treated weight 

The SBM-ND-I model with treated weight data provides consistent scores in 

regards to vehicle mpg and weight category; i.e. there is no DMU within a weight 

category which has a worse mpg but a higher score than another. Only DMU 8, 

DMU 28, DMU 57 and DMU 67 are now efficient. DMU 23 and 33 are no longer 
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efficient although DMU 33 demonstrates a score of 0.99 (it has 0.13 mpg 

difference with efficient DMU 28). 

The results are plotted in Figure 5.34. 

 
Figure 5.34: Plot of SBM-ND-I results with treated weight 

Figure 5.34 above clearly illustrates the unique ‘vehicle gross weight’ ‘distance’ 

ratio per weight category (each weight category is on the same horizontal 

weight ‘line’). The efficient frontier links the efficient DMUs and infinitely 

spreads vertically from DMU 8 as the model assumes constant RTS and allows 

for slacks on ‘vehicle gross weight’ (non-discretionary model). It is important to 

observe the model does not always assume the best DMU in its weight category 

is efficient. This is because the model assumes a piecewise linear frontier in 

between each efficient DMUs (this piecewise linear is a fundamental assumption 
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of Data Envelopment Analysis). This implies that between each weight category 

the fuel efficiency performance is supposed to be linear.  This is exemplified by 

DMU 66 and DMU 68 which demonstrate the best performance for their 

respective weight category (resp. 3000 and 2900 kg) but are not efficient 

(respective scores of 0.74 and 0.67). This is because the efficient DMUs of the 

weight categories under and above DMU 66 and DMU 68 demonstrate a 

proportionally better performance than DMU 66 and DMU 68 (these two 

efficient DMUs are DMU 28 and DMU 57). This behaviour is an essential 

characteristic of the SBM-ND-I model as it means the performance of vehicles in 

different weight categories can impact a van’s fuel efficiency measurement. 

Interestingly, with processed ‘vehicle weight’ data, the SBM-NC-I model gave 

identical results to the SBM-ND-I model. This is a consequence of both the 

treatment made on the vehicle gross weight which forces DMUs of the same 

weight to be aligned and also the fact the best DMU of any weight category does 

not demonstrate a worse fuel efficiency performance than the best DMU of a 

heavier category. This concept is illustrated in Figure 5.35. 
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Figure 5.35: Explaining the disparities between SBM-ND and SBM-NC 

The figure above is a selection of the previous graph to which was added a 

dummy DMU indicated in fluorescent green. This DMU has the particularity of 

being lighter than the DMUs in plain green (DMU 8’s category) while surprisingly 

demonstrating a mpg performance worse than the best DMU of a heavier 

category (DMU 8). In this scenario, the SBM-ND model frontier would evaluate 

the dummy DMU as inefficient and the frontier would span from DMU 8 and 

would vertically stretch to infinity (the dotted line – in practice the production 

possibility set will stop at the minimum possible vehicle weight so this frontier is 

not actually infinite). However, the SBM-NC model would not allow any slack on 

vehicle weight. Consequently the dummy DMU would be evaluated as efficient 

by the non-discretionary model (in this case the efficient frontier stretches 

horizontally from the dummy DMU). It is obviously not fair to evaluate a lighter 

van demonstrating a worse mpg performance than heavier vans as efficient 

thus, and although this situation should rarely be observed, the SBM-NC model 

should not be used for fuel efficiency measurement. 
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In order to ensure the fuel efficiency model developed above is robust, it is 

necessary to test the results sensitivity to the choice of K. This will be studied in 

the following section 5.4.4.6. 

5.4.4.6. Results sensitivity to changes of K 

As Dyson et al (2001) warned that DEA results could be sensitive to the choice of 

K and that the data could be dominated should K be too big. It is consequently 

essential to ensure that the value used for K is appropriate. This can be done by 

comparing the results of the SBM-ND-I model with different values of K. Model 

results will be calculated with the following values of K: 4,000; 6,000; 10,000 and 

30,000. Model results with a K equal to 4,000 should be hopefully identical or 

very similar to those obtained with 3,501. This would indicate the model results 

are not extremely sensitive to the choice of K. The other values of K will help 

appraising how quickly K can dominate the data. 

The SBM-ND-I results with K equal to 4,000 were identical to those obtained 

with K equal to 3,501. The resulting data were just translated as illustrated in 

Figure 5.36. 
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Figure 5.36: SBM-ND-I results with K = 4,000 

Further observations logically revealed the SBM-ND-I model provided identical 

results for all the values of K listed above. It appeared the data was just 

translated vertically as illustrated in Figure 5.37 with K equal to 30,000. 
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Figure 5.37: SBM-ND-I results with K = 30,000 

The figure above shows that the vehicle weight to miles ratios now range from 

26 to 28 which is more than 20 times greater than with the first model. 

Nonetheless, the different DMUs keep their relative position and their efficiency 

is not altered. 

Because the SBM-ND-I model prevents any non-discretionary variable from 

affecting the score, ‘vehicle weight’ does not impact the score evaluation in any 

way and only ‘fuel used’ enters into the efficiency evaluation. However, because 

both the ‘fuel used’ to ‘miles’ ratio and the ‘distance proportions’ between the 

different weight categories are not affected by K, the fuel slacks are identical 

regardless of the value of K used in the calculations. This is not in contradiction 

with Dyson et al (2001) stating an excessive K could dominate the data and is in 

fact a consequence of the data processing undertaken on vehicle weight. 
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The vehicle weight slacks are also identical because they are all equal to zero. 

This is a consequence of both the data processing performed on vehicle weight 

which forces all vehicles to be aligned in their respective weight category and 

also of the fact there is no DMU best in class of a lighter category which 

demonstrates a mpg performance worse than the best in class of a van in a 

heavier category (see Figure 5.35: Explaining the disparities between SBM-ND 

and SBM-NC). 

This implies that any K greater than the maximum vehicle weight can be used 

with the SBM-ND-I fuel efficiency model. For the remainder of this study, 3,501 

would be used. 

The ‘Adding the Weight’ section has demonstrated it is possible to incorporate 

‘vehicle weight’ in the fuel efficiency model. The results obtained were 

effectively taking weight into account (as a categorisation variable) and were 

consistent with mpg. As a result, heavy vehicles can be evaluated as efficient 

(unlike with mpg) and most importantly, vehicle’s efficiency is compared to the 

performance of other vehicles in different weight categories (this is for example 

the case for DMU 66 and DMU 68). 

5.4.4.7. Conclusion on vehicle weight 

This section demonstrated that ‘vehicle gross weight’ can be effectively included 

in the fuel efficiency model provided this anti-isotonic variable is processed 

appropriately. It was also demonstrated that the characteristics of the SBM-NC-I 

model made it unsuitable for the measurement of fuel efficiency and that 
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vehicle weight slacks should be allowed even though not accounted for in the 

calculation of efficiency (in the SBM-ND-I model). The SBM-NI-I model results 

provided a clearer and fairer measurement of efficiency. 

5.4.5. Adding the Age 

The previous section demonstrated the importance of including ‘vehicle weight’ in 

the fuel efficiency model. This current section will test the impact of ‘vehicle age’ on 

fuel efficiency. 

Akin to ‘vehicle weight’, ‘vehicle age’ is an anti-isotonic variable – as older vehicles 

should demonstrate worse fuel efficiency performance than younger ones (because 

of both newer engine design and of engine wear & tear). ‘Vehicle age’ should 

consequently be transformed into an isotonic variable to ensure the model allows 

inefficient vehicles to ‘age’ (and not to ‘rejuvenate’ instead) which would reduce any 

potential slack found on this variable. However, it is yet unsure whether this would 

be a desired characteristic for the model. Therefore, age will be tested under two 

scenarios: the first considering ‘vehicle age’ as an ‘improvable’ variable while the 

second considering ‘vehicle age’ as ‘non-improvable’. This approach allows re-using 

the same models developed earlier. 

In order to make vehicle age isotonic, ‘vehicle age’ will be subtracted from a bigger 

number L in a similar manner as with ‘vehicle weight’. Because ‘vehicle age’ is given 

as a year value and that some vehicles were manufactured in 2006 (i.e. the oldest 

vehicle will be 3 years old), L is equal to 4 as this will provide a small positive number 

in each case (although the SBM-ND model allows for semi-positive data). 
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Because the impact ‘vehicle age’ has on fuel efficiency should not depend on the 

number of miles travelled over the period, the isotonic ‘vehicle age’ will be simply 

added to the previous dataset. The ratio ‘Miles Travelled’ to ‘Vehicle age’ will 

consequently be unique per age category (as the ‘miles’ variable is always equal to a 

1,000). 

The model should look as in Figure 5.38. 

 
Figure 5.38: Fuel Efficiency model – vehicle weight 

5.4.5.1. Results with ‘Vehicle Age’ as an ‘improvable’ variable 

Adding the ‘vehicle age’ variable to the previous model resulted in an average 

score difference of 12.31% in comparison with the previous results. Standard 

deviation was equal to 0.0698 while the maximum score difference was equal to 

33.76% and observed for DMU 58. The score difference had a strong impact on 

the ranking with a maximum difference of 38 ranks (which account for 55.07% of 

the total number of vehicles) and an average of 10.8. One more DMU was found 

efficient by this model as well. This is understandable as the model can find 

efficient DMUs both in relation to the weight (like in the previous scenario) but 

also in relation to the vehicle age. This is illustrated in Table 5.20. 
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Table 5.20: The impact of ‘Vehicle Age’ on the results 

In this figure DMU 57 is efficient because it demonstrates the best mpg (fuel to 

miles ratio) of its weight category. On the other hand, DMU 47 which belongs to 

the same weight category demonstrates a mpg performance of 33.52 which is 1 

mpg lower than DMU 57. However, because it is two years older (Vehicle age 

has been made isotonic in the figure above), it demonstrates the best ‘vehicle 

age’ to ‘miles’ ratio and is therefore evaluated efficient by the model. 

The envelopment map (a 2 dimensions matrix which shows which DMUs are 

used in the reference set of other DMUs) shows that 95% of the DMUs are 

compared to DMU 28 or DMU 47 which are both 3 years old. Consequently, the 

average age target is 3 years old in 95% of the cases and across the whole fleet. 

In fact, this figure does not mean vehicles become fuel efficient when they reach 

3 years old but rather that the two efficient vehicles were 3 years old and that 

most of the fleet’s performance is similar to DMU 28 and 47 so were therefore 
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compared to these two vehicles. In fact, older vehicles could perfectly be fuel 

efficient. 

Although this behaviour was to be expected from this model and correctly 

reflects potential efficiencies (or inefficiencies) in relation to age, it suffers from 

one drawback. In some cases a DMU can be evaluated efficient just from being 

in an advantageous age category. This is illustrated in Table 5.21. 

 
Table 5.21: One drawback of incorporating ‘Vehicle Age’ 

In the figure above, DMU 8 is efficient because it demonstrates the best mpg for 

its weight category. DMU 14 which belongs to the same weight category 

demonstrates a fuel performance 7 mpg lower than DMU 8 but is nonetheless 

evaluated nearly efficient (0.04% close from being efficient) simply because it is 

a year older (and thus demonstrates an excellent ‘vehicle Age’ on ‘Miles’ ratio). 

Furthermore, DMU 3, only a year older than DMU 14, is evaluated more than 

25% less efficient than this DMU while demonstrating a similar mpg 

performance. Although this was to be expected from the model, fleet managers 

mistrusted the model because of the impact such small age differences had on 

the score. This prompted testing the model in which ‘Vehicle Age’ is ‘non-

improvable’. 
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5.4.5.2. Results with ‘Vehicle Age’ as an ‘non-improvable’ variable 

This model is similar to the previous one in all aspects except that ‘Vehicle Age’ 

is now considered a non-discretionary variable. Interestingly, the differences 

with the model from section ‘Adding the Weight’ appeared only where the 

envelopment map was changed. Changes in the envelopment map could be 

caused by either a vehicle becoming more like another after ‘Vehicle age’ was 

injected in the model or alternatively by a vehicle previously inefficient but 

becoming efficient after age was incorporated in the model. In both cases, 

DMUs compared to these new efficient vehicles would see their respective 

projections, slacks and ultimately scores change. 

This is illustrated in Table 5.22. 

In Table 5.22, the score differences between the model from the section ‘Adding 

the Weight’ and the model with ‘Vehicle age’ as a non-discretionary variable 

appear only for some specific DMUs. Taking a close look reveals that these 

DMUs previously only had DMU 57 in their reference set but were all compared 

to efficient DMU 47 after the age was incorporated in the fuel efficiency model 

(some DMUs were compared both to DMU 47 and 57). This explains the score 

difference between this model results and the results obtained from the SBM-

ND-I model with ‘fuel used’, ‘vehicle weight’ and ‘miles’. 
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Table 5.22: Score differences when adding ‘Vehicle age’ as a non-discretionary variable 

Note: Scenario 18_0 refers to the model with Weight alone, Scenario 20_1 to 

the model with ‘Vehicle age’ as a non-discretionary variable. 

Although the model behaviour illustrated in Table 5.22 is perfectly logical from a 

DEA point of view, the fleet managers to whom the results were presented were 

rather confused by the results and showed mistrust towards the model 

incorporating ‘Vehicle Age’. This is mainly because some DMUs show a better 

fuel efficiency performance than others while demonstrating a worse mpg 

performance. 

5.4.5.3. Conclusion on vehicle age 

Despite showing a unique ‘age’ to ‘miles travelled’ ratio and being tested 

through two different approaches (as an ‘improvable’ variable and as a 
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‘non-improvable’ variable), the impact of ‘vehicle age’ further segmented the 

efficiency results of the model with ‘fuel used’ and ‘vehicle weight’ in a way fleet 

managers evaluated incorrect. This behaviour might be caused by the fact there 

is no difference in fuel efficiency ‘potential’ between a brand new vehicle and a 

vehicle less than – say – 3 or 4 years old and that the step changes impact 

between engine generations was not clearly observable. Thus, for similar 

operations, a brand new vehicle and a 3 years old vehicle would demonstrate a 

similar mpg performance. However, because the older vehicles would have used 

less input (isotonic age), it would be evaluated as efficient while the brand new 

vehicle would be evaluated as inefficient. Because of this behaviour, ‘vehicle 

age’ should not be incorporated in the fuel efficiency model. 

5.4.6. Sensitivity Analysis 

Sensitivity analysis is the topic which relates to the robustness and stability of the 

results to changes in the data or model (Cooper et al., 2007, p. 283). Part of this 

study’s sensitivity analysis was already conducted when – each time a variable was 

added to the model – its impact on fuel efficiency was evaluated. However, in order 

to ensure the results are robust and stable, it is necessary to conduct further 

sensitivity analysis in relation to changes in the data. This sensitivity analysis will be 

conducted on the results of the SBM-ND-I model with ‘vehicle weight’. ‘Vehicle age’ 

is not included in the model as explained in the previous section. 

Several different methods to measure DEA results’ sensitivity to variations in the 

data exist. Attention to this topic of sensitivity was originally brought by the work of 
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Charnes and Cooper (Charnes and Cooper, 1968, cited in, Cooper et al., 2007, p. 284) 

who developed algorithms evaluating data variation sensitivity based on the inverse 

of the simplex matrix (without having to recalculate the inverse each time). This 

approach seems to have however received less attention from research than other 

methods. 

Another alternative is based on the concept of ‘distance’ (or vector norm) to 

determine a DMU’s radii of stability. One of the models based on this concept is the 

Chebychev norm illustrated in Figure 5.39. 

 

 

 

 

 

Figure 5.39: The Chebychev norm model 

In the figure above, all variables are constrained to be non-negative while 

the  constant serve as weights which are generally set to unity. Charnes et 

al (Charnes et al., 1996 cited in, Cooper et al., 2007, p. 287) recommended not solely 

using these approaches as they do not reflect non-zero slacks. 

The two previous approaches only treat one DMU at a time which poses a problem 

when it is not sure which DMU should receive attention. Thompson et al (1994) have 

initiated a third approach which considers simultaneous changes in all the data. Their 
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analysis is carried out via the multiplier model (the model form with allocates a 

weight to each input and output) as a pair of optimal vectors u* and v* will generally 

remain valid over some variations in the data. This approach was further developed 

by Cooper et al (Cooper et al., 2007, pp. 287-291) by developing the function for a 

vector w = (u, v) illustrated in Formula 5.9. 

 

 

 

 

 

Formula 5.9: Introducing relation around vector w 

Because the model returns to the ratio form of the CCR model, there is no need for 

concern in regards to the condition  (Cooper et al., 2007, p. 288). For any 

efficient point O the relation illustrated in Formula 5.10 holds. 

 

Formula 5.10: Relation between efficient and inefficient DMU with w 

In this relation,  is said to be top ranked. It is then possible to create variations 

in the data until this relation does not hold any more and another inefficient DMU 

outranks . The sensitivity to data variation can therefore be appraised by the 

amount of variation necessary to outrank the efficient DMU. 

Because this method enables the simultaneous testing of results sensitivity to data 

variation it will be retained for this study. However, in order to use this method, it 

would be necessary to adapt it to the SBM-ND-I model previously illustrated in Figure 
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5.30. This is possible by using the dual form of the SBM-ND-I model as illustrated in 

Figure 5.40. 

 

 

 

 

 

Figure 5.40: The SBM-ND-I model in its dual form 

Which in a similar fashion gives the  of Formula 5.11. 

 

Formula 5.11: Introducing relation around vector w for SBM-ND-I 

For which Formula 5.12 holds over small variation of the data. 

 

 

Formula 5.12: Relation between efficient and inefficient DMU with w for SBM-ND-I 

It is consequently possible to measure results sensitivity using Formula 5.12. This can 

be done as follows: 

 The relation  is true when data is not changed. 

 The data is modified, 

 Vector  is applied on the modified data, 

 The process is iterated until a  outranks . 

Thompson et al (1994) allow the data to be varied in many different ways (Cooper et 

al., 2007, p. 289). In this particular instance, ‘vehicle weight’ will not be modified as 
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this variable is ‘fixed’ and the data is deemed accurate (manufacturing information). 

Furthermore, there is no assumption made on the equipment or driver own body 

weight hence no data variation would be made on ‘vehicle weight’. Similarly, ‘Miles 

Travelled’ will not be altered as this would break the unique ratios ‘Fuel Used’ to 

‘Miles’ and ‘Vehicle weight’ to ‘Miles’ which would then distort the weight 

categorisation carefully designed in the previous section (see section ‘Adding the 

Weight’). Conversely, ‘Fuel Used’ will be varied proportionally as follows: 

 The ‘Fuel Used’ value will be increased by a percentage x for all efficient 

DMU, 

 The ‘Fuel Used’ value will be decreased by the same percentage x for all 

inefficient DMU. 

The percentage value starts at 1% and will be increased gradually by 1% steps until 

the efficient DMUs are outranked. This means a 1% difference will be applied on the 

data as described above and the vector  applied to the DMUs. 

Using respectively  and  (  and 

 were both deemed efficient in the model ‘fuel used’, ‘vehicle weight’ → 

‘miles travelled’), sensitivity analysis revealed that just a 1% variation in the data was 

necessary for DMU 33 (inefficient DMU) to outrank DMU 8 and DMU 28 (efficient 

DMUs). This is illustrated with  in Table 5.23 where the fourth column corresponds 

to the vector ‘hj(w)’ calculated for each DMU. 
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Table 5.23: Hj(w) at 1% 

In the figure above, data was modified as per explained above and  applied to 

all DMUs until one outranks . As illustrated in the figure above, a 1% 

modification in the data was enough for DMU 33 to outrank both DMU 8 and DMU 

28. 

This is further illustrated in Figure 5.41 by the SBM-ND-I model results with the data 

modified at 1% where DMU 33 has become efficient. 

 
Figure 5.41: SBM-ND-I results with data modified at 1% 

Similarly, a 3% change in the data was necessary for DMU 47 to outrank DMU 57 and 

DMU 67 (with ). 
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This sensitivity analysis demonstrates the fuel efficiency model results are rather 

sensitive to small modifications in the data. Logically, DMU 33 and DMU 47 – which 

outranked other efficient DMU with a data variation of respectively 1% and 3% – are 

both extremely close to the frontier. This is consistent with their mpg difference: 

0.12 mpg difference between DMU 28 (inefficient) and DMU 33 (efficient), and 0.83 

mpg difference between DMU 57 (inefficient) and DMU 47 (efficient). 

The sensitivity results indicate the fuel efficiency SBM-ND-I model results are 

sensitive to data variations. This is a consequence of the model design and the fuel 

card data; mpg variations between best in class are generally small and the 

categorisation designed in the previous section implies that small changes in fuel 

consumption could logically have a significant impact on the DMU ranking. Due to 

this high sensitivity, and although the results should reflect a picture close to the 

actual performance, it would be sensible to avoid challenging drivers on small 

efficiency differences. This is especially true as error (or discrepancy) created by the 

‘consistent mpg’ assumption of the smoothing algorithm might be greater than the 

actual mpg differences observed between the different DMUs. The results of the 

sensitivity analysis further reinforce the importance of the data cleansing and 

smoothing algorithm. 

This section cited different approaches to evaluate these results sensitivity to 

variation in the data. This study used the original method first initiated by Thompson 

et al (1994) to measure results’ sensitivity. It could also have been possible to use 

statistical approaches such as the ‘composed error’ approach originally developed by 



 

235/343 

 

ALS (Aigner et al., 1977) – which was not used for reason similar to those explained 

in section ‘Reasons for this study to use Data Envelopment Analysis’. Bootstrapping, 

a method which draws statistical inferences from the data to measure properties 

when sampling from an approximated distribution, could also have been used. This 

method originally received quite extensive criticism (Simar and Wilson, 1999a, Simar 

and Wilson, 1999b, on the work of, Ferrier and Hirschberg, 1999), but it is now a 

widely used and recommended technique (Hahn, 2007). 

5.5. Summary of Results 

The Summary of Results section will discuss verification, validation and testing, as 

well as the multi-companies benchmark (where the data from all companies were 

used altogether) and results communication. 

5.5.1. Verification, validation and testing 

Balci (1998, p. 336) explains why model verification, validation and testing are 

fundamental in modelling. He defines these terms as follows: 

Model verification ensures that the model has been built correctly. The author 

explains this as follows: ‘Model verification deals with building the model right’. 

Model validation on the other hand aims at testing whether the model behaves as it 

should in regards to the study’s objectives and the desired level of accuracy. Balci 

(1998) describes model validation as follows: ‘Model validation deals with building 

the right model’. 
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Finally, model testing is asserting whether there is any discrepancy or inaccuracies 

within the model. This can be done through tests such as sending some test data and 

checking the results. If the results are different from what was to be expected the 

test has failed and the model needs to be tuned or revised.  

The verification, validation and testing stages were all conducted in this study as 

detailed below. 

The fuel efficiency model was designed through the careful observation of mpg’s 

limitations. The results of this observation were discussed with fleet managers in 

order to understand which elements of the model were crucial and how each should 

be implemented. Although it was not certain how some of these parameters should 

be exactly modelled (e.g. which model to use, should variables be non-discretionary 

or non-controllable, etc), each option was carefully investigated and the results 

discussed with the fleet managers so that the resulting model corresponded to 

reality. Furthermore, the mathematics behind the model were discussed with 

academics to ensure the model was designed and built correctly. These steps 

ensured the model was appropriately verified. 

During its design and development, the fuel efficiency model results were constantly 

checked versus the mpg measure. This was important as although the fuel efficiency 

model was meant to be a new fuel efficiency measure, mpg captures the core 

principle of fuel efficiency (i.e. the ratio between the fuel used and the mileage 

covered). Any fuel efficiency measure should consequently, to some extent, also 

relate to this ‘fuel used’ to ‘miles’ ratio. This was further demonstrated when the 
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fleet managers mistrusted the model which included ‘vehicle age’ as they felt this 

was somehow incoherent with their perception of the notion of fuel efficiency. 

Furthermore, the model results were regularly discussed with the fleet managers 

throughout the model development in order to ensure they were consistent with 

what was perceived as ‘fuel efficiency’ (although this very notion of fuel efficiency 

was also debated). Checking the model results against mpg and fleet managers’ 

perception of the results provided a triangulation necessary to provide some 

confidence in the results. Finally, external validity (see the Case Study Theoretical 

Background section) was verified by comparing the results from the different 

companies’ vehicles. Each company’s results were similar to others which imply the 

procedure could be reproduced in difference environments.  This demonstrated the 

models outputs were the result of the data processed through the model and not of 

the process alone thus validating the model. 

Original basic models were all tested against some available code and free DEA 

software. It was not however possible to check more advanced models such as SBM-

ND-I as no other software or code offered this model. Testing for the SBM-ND-I 

model was thus conducted against some data samples and calculation made 

manually on Microsoft Excel. Besides, rare remaining errors or anomalies were 

uncovered during the analysis of the results and corrected afterwards. The results 

analysis as well as the manual testing ensured the model produced correct results. 
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5.5.2. Multi-companies benchmark 

As discussed earlier, external environmental factors were not considered in this 

study as each case study was conducted internally within each company and 

environmental factors within each company were deemed homogeneous (perhaps 

not over a day but over the 3 month measurement period). 

In order to appraise whether environmental factors have a significant impact on the 

results, data from all companies were run through the fuel efficiency model. Some 

data was discarded as discussed in the Cleansing Algorithm section but also because 

the student version of the LINDO imposes a limit on the number of variables / 

constraints which can be processed (the discarded DMUs demonstrated very poor 

mpg performance so these would have not affected the frontier). 

The results were quite interesting as each company’s individual frontier did not cross 

any other company’s frontier. This is illustrated in Figure 5.42. 
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Figure 5.42: Multi-companies benchmark graph 

This suggests environmental factors have a great effect on the data as each 

company’s efficient DMUs demonstrate different level of efficiency. This indicates 

factors such as type of operations, vehicle load weight, or landscape seem to have 

such an impact on the fuel efficiency model that multi-companies benchmark should 

not be attempted unless the model accounts for these factors in an appropriate 

manner. 

5.5.3. Communicating the results 

Communicating the model results to the fleet managers was important in many 

different respects. As seen above, this was first essential to verify the fuel efficiency 

model and appraise its validity. Communicating the results was also necessary to 

evaluate how the results were perceived by the fleet managers. This information was 

critical to answer some of the research questions on results applicability and 
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usefulness as well as to discuss some criteria necessary to interpret the study’s 

findings. 

The Case Study Theoretical Background section listed key criteria to interpret the 

study’s findings. The points relevant to communicating the results are listed and 

discussed below: 

The measure is coherent with fuel efficiency operator’s understanding. This was 

confirmed by the fleet managers appreciations of the SBM-ND-I fuel efficiency model 

with ‘fuel used’, ‘vehicle weight’ and ‘miles’ while the model with ‘vehicle age’ was 

mistrusted. 

The measure can be easily understood. This was directly discussed with the fleet 

managers. Although the intricacies of the model could be confusing, the 

benchmarking approach as well as the fact that weight was directly incorporated to 

the measure were generally easily understood. The RAG table with the score and the 

improvements (projections) was the most appreciated way of communicating the 

results. Besides, a target mpg could be provided by using the target litres (fuel used) 

and the mileage (1,000 miles). This helps fleet managers appraising the performance 

gap to reach efficiency. In order for fleet managers to read the results more easily, it 

is possible to transform the previous DEA results graph to a graph where units used 

are mpg and gross vehicle weight and where all units are made isotonic. This is 

illustrated in Figure 5.43. 
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Figure 5.43: Reverted results graph 

The measure can help fleet operators to make better informed decisions, which could 

in turn lead to better fuel efficiency (this point is also essential in justifying of an 

improvement on the mpg measure). Fleet managers were particularly keen on the 

data cleansing function as they recognised fuel card data cleansing was a major 

limitation to conducting appropriate and accurate fuel management within their 

company. Although their experience gave them a pretty good acumen in estimating 

what a vehicle’s mpg should be in respect of their weight and load, they mentioned 

they could struggle when there were only a few vehicles in a weight category or 

when the vehicle was loaded with heavy extra equipment. They found the model 

particularly useful in this respect as it allowed for extra weight to be incorporated in 

the measure (although this was not done in this study, this would just consist of 

adding the equipment weight to the vehicle’s gross weight – generally not varying 

for vans). Another appreciated characteristic was that a van’s efficiency could be 

evaluated by comparing it to vans in different weight categories. This last point was 
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on one occasion more difficult to communicate as the fleet manager struggled to 

comprehend how a van’s mpg (or more generally fuel efficiency) in one weight 

category could be comparable to the performance of vans in other weight 

categories. 

The feedback from the fleet managers were overall positive as they generally 

understood the model results relatively easily and found the results useful. The 

overall study will be discussed in the following Summary of Results and Discussion 

chapter. 
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6. Summary of Results and Discussion 

This chapter will succinctly recapitulate the results as most of the results were already 

discussed in the previous chapter. The entire research will then be discussed. 

6.1. On the results and their usefulness 

6.1.1. Brief summary of the case study chapter 

The previous chapter explained the type of research which this study belonged to 

and justified why the multi-case study approach was best suited for this research. 

The variables that should potentially be included in the fuel efficiency model were 

then discussed with the fleet managers and other industry experts. It was 

demonstrated that the fuel efficiency model should include the following variables: 

 Fuel Used (input calculated using the smoothing algorithm) 

 Fuel cost (input calculated using the smoothing algorithm) 

 Vehicle weight (anti-isotonic, non-improvable input) 

 Vehicle age (anti-isotonic and potentially a non-improvable input) 

 Miles travelled (output) 

Other interesting variables such as driver behaviour, type of operations, tyre 

pressure checks, engine size or servicing were not included in the fuel efficiency 

model for diverse reasons (see end of section 5.2.2 for more information on this). 

The data cleansing algorithm was effective at cleansing fuel card data and allowed up 

to 95% of registrations to be matched with fleet details. All remaining problematic 

data was discarded from the study as explained earlier. This ensured the data used in 
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the models was correct (although this meant some vehicles could not be included in 

the study). As stated earlier in section 5.3.1 Cleansing Algorithm, many matches 

between fuel card records and vehicle registrations were made in steps 4 and 5 

which suggest telematics information significantly improve fuel card data cleansing. 

Theft detection, which is an essential part of fuel performance monitoring, was not 

used to discard any vehicle from the study as the poor performance these vehicles 

demonstrated was reflected in the fuel efficiency models. 

The Smoothing Algorithm section explained how to use fuel card data to calculate 

the volume used in between two dates. This section demonstrated it is essential 

vehicles are refilled up to the top of the tank to allow effective fuel performance 

measurement. Assuming a driver’s mpg performance constant (in these cases drivers 

tend to drive the same vehicle), the smoothing algorithm appraises the average mpg 

performance between the first and last refill within the measurement period and 

used this information along with the distance travelled to calculate an average ‘fuel 

used’ (and cost) over this period. The Smoothed mpg accuracy would suffer should 

the first or last fuel transaction not be made up to the top of the tank (e.g. if the first 

transaction is not up to the top of the tank, the fuel refilled at Refill 2 will cover some 

of the mileage before the first refill; conversely, if the last transaction is not up to the 

top of the tank, some fuel used over the period will not be measured). Similarly it is 

only sensible to use the smoothing algorithm when vehicles are driven by a single 

driver (as otherwise the assumption that the ‘average mpg’ should be consistent 

over time is erroneous). However, even in situations where vehicles are being driven 

by several different drivers, the smoothed mpg still tends to discard blatantly 
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incorrect mpg figures. This implies that even though it would not be logical to use 

the smoothing algorithm when drivers drive different vehicles, the algorithm would 

still successfully discard blatantly wrong mpg figures. 

The SBM and CCR DEA models scores obtained for the ‘fuel used’ and ‘miles’ model 

demonstrated a strong correlation with mpg. This indicated it is possible to use DEA 

to measure fuel efficiency under CRTS. On the other hand, the BCC DEA model, 

working under VRTS, evaluated some DMUs as efficient while these were actually 

demonstrating an average mpg performance. This is inconsistent with the common 

understanding of fuel efficiency and implies that VRTS models should not be used for 

fuel efficiency measurement. It was then demonstrated that adding the ‘fuel cost’ to 

the previous model had a limited impact on the efficiency scores. Finally, the high 

Pearson coefficient between the fuel cost and the fuel used (volume) justifies the 

low impact adding the ‘fuel cost’ had on fuel efficiency measurement. 

Successfully incorporating ‘vehicle weight’ in the fuel efficiency model proved more 

complicated than merely adding the variable to the model. Analysis revealed that the 

SBM-ND-I model was suitable to measure fuel efficiency with ‘vehicle weight’ 

although further data processing was required to incorporate ‘vehicle weight’ in the 

model (in order for the ‘vehicle weight’ to ‘miles’ ratio to be unique for each weight 

category). The results demonstrated the significant impact of ‘vehicle weight’ on fuel 

performance and were also importantly were trusted by the fleet managers. 

However, adding ‘vehicle age’ to the model’ increased the ‘segmentation’ within 

each weight category. This impacted the scores in a way which fleet managers 
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mistrusted which consequently makes the age segmentation at least impractical in 

this instance if not irrelevant. 

The objective of this research is to create an improved fuel efficiency measure which 

would reflect driver behaviour performance and potentially fuel theft or leaks. It is 

consequently not relevant to incorporate these driver behaviour parameters in the 

fuel efficiency model but instead find the other relevant parameters which would 

accurately reflect driver behaviour performance (as well as potential fuel leaks and 

theft). The results obtained when incorporating ‘vehicle age’ in the model suggest 

that adding any variable having an impact on fuel efficiency lower than driver 

behaviour would create further results segmentation which could ultimately lead to 

fleet manager mistrusting the model. 

The models were tested in 3 different companies and the results obtained for each 

company showed similar effectiveness. This was critical in verifying the external 

validity of the study. Besides, the data for FSH Maintenance were entirely re-

processed to ensure the results were reproducible. Except for some minor 

differences (e.g. different lambdas), efficiency status were identical between the two 

processes. Finally, the model results were regularly compared against the mpg 

measure but also reviewed by fleet managers. This triangulation ensured the results 

obtained by the fuel efficiency model were robust. 
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6.1.2. Usefulness of the Results 

The section ‘Fuel Cards Management and the Limitations of CANbus’ listed the 

limitations of the mpg measure. These were mainly divided in three distinct 

categories: 

 Factors which are necessary for the interpretation of the measure but yet 

not included in the measure itself (e.g. vehicle weight), 

 Cost, which is another dimension of fuel efficiency (a vehicle might be 

mpg efficient but ppm inefficient – even though this assumption was 

demonstrated incorrect), 

 The inappropriate way the measure is often used (in regards to the 

measurement period and time of refills). 

As discussed earlier, the type of operations was not included in the fuel efficiency 

model as no measure could satisfactorily capture the environmental factors in a 

numerical form. However this was not an issue as each company was supposed to 

have relatively homogeneous operations (this was confirmed during discussions with 

the companies). All the other limitations – except ‘fuel cost’ and ‘vehicle age’ which 

were evaluated inappropriate for measuring fuel efficiency – were addressed by the 

Smoothing Algorithm and the fuel efficiency model. This is a clear improvement in 

comparison with the mpg measure. 

DEA’s characteristics also helped providing a detailed feedback on the reasons 

behind performance. Each unit is assigned an efficiency score which can be 

compared across the whole fleet without the need to use the vehicle weight to 
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interpret the result. This is particularly useful for fleets that have vans of many 

different weights or when extra equipment is towed or fitted on the van (e.g. when 

towing a small trailer or mini-digger or when some vans are equipped with extra 

racking). Another key attribute of DEA is that it lists – for each inefficient unit – the 

similar efficient units against which the inefficient unit’s performance was measured 

(the reference set). This can help fleet managers in finding champions for each 

weight category if any (some categories will not have any champion but will have 

champions in different weight categories; see Figure 5.34: Plot of SBM-ND-I results 

with treated weight and explanatory paragraph for further information). Finally, the 

results are easy to communicate in a table with RAG colouring which simply 

highlights good and bad performers. It is also possible to communicate the results 

visually with the graph introduced in the section ‘Communicating the results’. 

The data processing undertaken on ‘fuel used’ and on mileage made the resulting 

model look as if it was merely a traditional benchmarking analysis conducted within 

each weight category. Although this is partially true in most cases, it fails to take into 

account cases where the efficiency of vehicles is measured by comparing their 

performance to the performance of vans in different weight categories. This was 

exemplified by the vehicles 66 and 68 in Figure 5.34: Plot of SBM-ND-I results with 

treated weight. This model characteristic highlights its usefulness for fleets running 

vans of many different weight categories. Although it is possible to reproduce the 

calculations using some linear algebra, DEA offers a more robust approach to 

measure efficiency. 
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As seen above, results from the DEA model are easy to communicate, universal (for 

van fleet), fair in measuring performance and useful. The Smoothing algorithm and 

the fuel efficiency model require similar information to that which a standard mpg 

analysis requires (with the addition of the vehicle, and eventual racking or other 

accessories’ weight). Yet, they can address most of traditional mpg analysis 

limitations which demonstrates the improvements made on the mpg measure. There 

are however several limitations to this new measure which will be discussed in the 

following section. 

6.2. Limitations of the Results 

This section will discuss the limitations for the cleansing algorithm, the Smoothing 

algorithm and of the fuel efficiency model itself. Limitations in relation to DEA will be 

discussed first, followed by a more general section on limitation of the study itself. 

6.2.1. Limitations in relation to data cleansing and fuel cards 

One of DEA’s major issues is that it is sensitive to measurement error (i.e. small 

changes in the data can significantly affect the output). Data sensitivity analysis 

highlighted that small changes in the data (below 5% when changes are non 

compensatory) could affect DMU’s efficiency status. This was mainly caused by the 

fact some inefficient DMUs were really close to the efficient frontier (hence a small 

change in their data could easily turn them efficient). 

Moreover, in this study the ‘fuel used’ variable is not exactly the fuel which a driver 

has been using but rather an approximation based on the average mpg the vehicle 
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demonstrated during the measurement period. Although the model results should 

reflect a picture relatively close to reality, this limitation implies it is impossible to 

know whether small performance gaps are due to driver’s performance or 

measurement error. It is consequently not advisable to challenge drivers over small 

performance gaps. Finally, it is important to note that this measurement accuracy 

issue is not caused by DEA but rather by the approximation that has to be done 

when using fuel card data. In fact, when using fuel card data, both traditional mpg 

analysis and DEA would suffer from inaccuracies in evaluating the fuel used in 

between two non-refill dates. That is, DEA is not a disadvantage in comparison with 

traditional mpg analysis. 

Similar to the issue above, the cleansing algorithm cannot always cleanse data to 

obtain 100% match between the fuel card file and the fleet details. Vehicles with 

missing transactions would consequently show a better fuel consumption and thus 

demonstrate higher level of efficiency. This becomes problematic when a vehicle 

which misses one of its fuel transactions is evaluated efficient as this will affect the 

performance of all the inefficient DMU having this efficient DMU in their reference 

set. Although this problem is again caused by fuel card data, its importance is 

exacerbated by DEA’s characteristics. The results of the cleansing algorithm also 

highlighted the importance of telematics in cleansing the fuel card data. Due to 

DEA’s high sensitivity to data measurement error, it seems essential to use 

telematics in order to measure fuel effectively using fuel card data. Finally, cleansing 

fuel card data can sometimes be a tedious and resource intensive task which can be 

a serious limitation in busy operational environments. 
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6.2.2. Limitations in relation to DEA 

One key limitation of DEA is that it can only measure performance in comparison to 

the best observed performance. While this is an excellent way to uncover 

inefficiencies against observed best performance, it does not provide efficient DMUs 

any indication on how to improve their performance and will consequently not give 

specific ideas for innovation although it should stimulate management to look for 

possible ways to improve performance. Although this study does not address this 

issue, it should be possible – for fleets of a consequent size – to record each vehicle’s 

characteristics (in relation to fuel use, e.g. vehicle weight, engine size and model or 

any fuel intervention). It could then be potentially possible to correlate fuel 

efficiency with some of these vehicle interventions and, if deemed appropriate, use 

some on the efficient trucks. This of course would only work if the efficient vehicles 

do not all use the same interventions. Finally, it could also be possible to train the 

efficient driver further although this would probably not be the best allocation of 

potentially limited training resources (as training bad drivers would result in greater 

return on investment). Furthermore, there is no guarantee the efficient driver has 

not reached a peak of efficiency (this could potentially be confirmed by mpg 

averages of the industry sector). In this case, instead of wasting resources trying to 

further improve the driver’s fuel efficiency, it would be more interesting to control 

fuel efficiency by regular measurement. 

Another issue in relation to the model is caused by the need for a unique ratio 

‘vehicle weight’ to ‘outputs’. This study addressed this need by normalising ‘fuel 

used’ by the mileage while leaving ‘vehicle weight’ untouched. However, this 
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approach only worked because there was only a single output. In effect, with the 

exception of some very specific cases, it might be impossible to normalise the inputs 

should the model have several outputs (unless the outputs are multiples of one 

another but in this case they should be discarded from the DEA model). While this is 

not an issue for this specific study, it might be more problematic should this 

approach be employed in a situation where several outputs need to be taken into 

account. 

Finally, in the ‘Efficient Frontier Analysis’ section, this benchmarking approach would 

require a minimum of 9 vehicles in order to avoid degree of freedom 

issues. It would consequently not be advisable to use the fuel efficiency model for 

fleets of fewer than 9 vehicles. 

6.2.3. Limitation of the study itself 

This section will discuss a list of limitations in relation to the overall approach taken 

by this study. 

This research preferred using fuel cards over CANbus to obtain the necessary fuel 

information despite CANbus capability to provide accurate per driver information. 

This decision was made based on the fact CANbus still remains an expensive elite 

technology while fuel cards are omnipresent in the industry. As a consequence, and 

because it is generally infeasible to have all vehicles refilling at the exact beginning 

and end of a measurement period, some inaccuracies are created when appraising 

the volume used over the measurement period. This problem can be totally 

discarded if accurate CANbus data is available. 
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The model was also only tested with vans (with weights ranging from about 2000 kg 

to 3500 kg) and there is no guarantee it would work for rigid, HGVs or a mix of these. 

In effect, although it is reasonable to expect differences in the fuel efficiency of vans 

with different weights, their operations tend to remain relatively similar within a 

company (at least this was the case for the three companies involved in this study). 

These operational similarities are essential for the model to work and without 

incorporating the environmental factors (or type of operations) it might be 

impractical to simultaneously evaluate the efficiency for vans and HGV in the same 

fuel efficiency model. However, it might still be possible to use the fuel efficiency 

model to measure the performance of HGV and rigids. This will be discussed in the 

Conclusion chapter. 

There are a number of limitations related to the fact the ’fuel used’ information is 

derived from fuel card data. The main constraints relate to the correct use of fuel 

cards (e.g. fill up to the top of the tank). Another important constraint is that the fuel 

efficiency measure relates to the vehicle and not a driver. This makes this approach 

inappropriate if several different drivers drive the same vehicle over the 

measurement period. However, CANbus – technology which associated to telematics 

can provide driver fuel consumption regardless whether the driver drives different 

vehicles or not – can potentially be used to solve this problem. The situation is 

summarised in Table 6.1. 
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Situation 
Vehicles are equipped with 

CANbus 

Only fuel card data is 

available 

Drivers only drive their own 

respective vehicle 
  

Drivers drive different 

vehicles 

Possible but might involve 

further data processing  

Table 6.1: Table summarising model applicability in regards to fuel information 

As illustrated in the table above, when drivers drive their own vehicle, it is possible 

to use either CANbus or fuel cards to obtain the fuel used information (top row 

cases). A notable difference between the two is that fuel cards reflect cost while 

CANbus can only show driver driving behaviour performance. This implies that using 

fuel cards would highlight both drivers with a poor driving behaviour and potential 

fuel thieves (whilst CANbus would miss the last aspect). 

If the drivers drive several different vehicles and the company only uses fuel card 

(bottom right case), it is impossible to know which amount of fuel each driver has 

used; thus the approach taken in this study is not recommended (as the assumption 

of constant mpg is likely to be incorrect). In order to use the model one of the 

following would have to be done: 

 The drivers only drive a single vehicle during some time (in between two 

fuel transactions, or an arbitrary period of time). The only potential issue 

with this is that the measurement periods might not coincide between 

drivers which could create a small bias. 

 The vehicles are equipped with CANbus telematics technology. 
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Finally, if the drivers drive different vehicles equipped with CANbus telematics 

technology (bottom left case), it is again possible to know the amount of fuel each 

driver has used on each vehicle. In this case, there are two possible scenarios: 

 The driver only drives vehicles with the same gross weight, the total 

distance and total ‘fuel used’ can be used in the model or, 

 The driver drives vehicles of different weights. 

In the second case, the ‘fuel used’ information is available for each vehicle thus a fuel 

efficiency score can be calculated for each driver / vehicle weight. The fuel efficiency 

model can thus be used to calculate a score for each driver / vehicle weight. This will 

give each driver an idea on how well they are performing within each weight 

category. This could be really useful to help them understanding where they should 

concentrate on improving their driving behaviour. If the management requires a 

unique score per driver, it is also possible to aggregate the score using a weighted 

average based on the fuel used (the scores could also be aggregated using the 

mileage as a weight although because the model is input oriented it seems more 

logical to use ‘fuel used’ as the weight in the weighted average). 

When the fuel efficiency model was originally designed, many different variables 

were considered. After testing, some variables were discarded and only ‘fuel used’, 

‘vehicle weight’ and ‘miles travelled’ were retained. However, because weight is 

merely used as a categorical variable, it can be argued that the fuel efficiency results 

could potentially be calculated without having to resort to DEA. While it is potentially 

possible to calculate the DEA scores for each vehicle without using DEA, DEA remains 
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useful as it provides a robust method to accurately map the frontier and spot cases 

where DMU’s efficiency is calculated from using the performance of vans in different 

weight categories. 

Another small limitation concerns the fact all the data used in this study is obtained 

from companies using telematics. This creates a small bias as telematics information 

was used to cleanse the fuel card data whilst its importance was highlighted in the 

Data Cleansing section. However it is possible that cleansing fuel card information 

without telematics data to support the process would not be effective enough. This 

could have a dramatic impact on the model results (as the fuel efficiency model is 

very sensitive to data measurement). 

Finally, the study made the assumption that operations were similar within a 

company. Although this was the case for the three companies there is no guarantee 

this should always be the case for companies running van operations. It is possible 

that during the whole measurement period and within one company some vans do a 

single job a day a hundred miles from the depot and others do several jobs a day 

locally. These two populations should not be compared together and the model 

could be used independently within each population. 

6.2.4. Aspects not studied 

Some aspects of DEA were not used in this study. This section briefly lists most of 

these aspects and discuss the reason why there were not included in this study. 
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In the models discussed in this study, the production possibility sets emerged from 

technical aspects of the companies’ operations. These operations set the constraints 

defining the production possibility set (along with the data collected) and there was 

no need for further constraint on the data. In some situations however, it is possible 

to make assumptions outside the data (which are thus decided by the management). 

These further constraints are imposed on the multiplier vectors v and u and by two 

different approaches: the ‘assurance region’ approach and the ‘cone-ratio’ approach. 

The assurance region approach formulates constraints on the weights in Formula 6.1. 

 

 

 

Formula 6.1: Assurance region weights constraints 

This formulation offers greater control over the values weights can take and limits 

extreme weighting divergence (e.g. zero weights). 

A similar method to weight restriction is the cone ratio approach. This method 

defines a polyhedral convex cone in the space defined by v (for the input constraints 

and u for the output constraints). The input vectors (or output) are then constrained 

to be within this cone. 

These two approaches are not relevant to this study as there was no need for 

external constraints on the data. This can be further corroborated by the fact there 

was no zero weight in the resulting data. 
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Similarly, allocation models, which deal with situations where DEA can be used to 

identify inefficiencies in relation to information on price and cost, are not of interest 

since fuel cost has been discarded from the fuel efficiency model. Likewise, scale 

elasticity and congestion are not relevant to this study since return to scale 

discussions were deemed inappropriate in regards to fuel efficiency. 

Super efficiency corresponds to the efficiency results obtained when data from 

 is removed from the dataset during ’s efficiency evaluation. Super-

efficiency is useful for ranking efficient DMUs or comparing performance of two 

groups. The aim of the fuel efficiency model consists more of measuring vehicles’ 

fuel efficiency rather than to obtain a detailed ranking of efficient drivers or vehicles. 

Nonetheless, this could potentially be applied should the management decide to 

reward a best driver. 

Finally, the dynamic nature of companies operations can lead to efficiency changes 

over time.  Efficiency changes can be measured using two different techniques: the 

window analysis and the Malmquist index. Window analysis can be done by dividing 

the measurement period in small segments (e.g. quarters) and measuring 

progressively the efficiency of segments Q1 to Q4, then of segment Q2 to Q5, etc 

and observing changes in efficiency. The Malmquist index is based on ratio variations 

in relation the efficient frontier changes over time. Because the fuel efficiency is 

likely to change over time, studying the changes in efficiency might have been 

appropriate for this study. No such study was undertaken as no particular emphasis 

was put by the management on fuel efficiency during the measurement period 
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(which could have led to better fuel efficiency levels and a change in the efficient 

frontier). Furthermore, the short period hindered an adequate measurement of 

efficiency change overtime. 

6.3. Contribution and Applicability 

The previous section focused entirely on summarising the results and discussing their 

usefulness and related limitations. This section will discuss the contribution of this 

study to the body of research as well as the applicability of the findings. 

6.3.1. Contributions 

This study provides theoretical contributions to the research but also a practical 

contribution in terms of improved companies’ operations measurement. This section 

will detail these contributions. 

The first contribution relates to the application of DEA, a well utilised and researched 

method, to a field where it has never been applied before. Effectively, the section 

‘Reasons for this study to use Data Envelopment Analysis’ explained that although 

DEA was extensively applied to the transport industry, it was - as far as this research 

could tell – never applied to the measurement of fuel efficiency. Testing the 

applicability of DEA to a field where it was never applied before is an original 

contribution to the body of research. 

The second theoretical contribution relates to the SBM-ND and SBM-NC model. 

Although the two DEA models are logical extensions of the SBM model, no paper 
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could be found discussing these model developments. This is again, a theoretical 

contribution to the body of research. 

The third and last theoretical contribution to research concerns the development of 

the algorithms to cleanse and smooth fuel card data. Here again, no paper or 

research could be found relating to the cleansing or the smoothing of fuel card data 

using a rigorous, algorithmic approach. 

These theoretical contributions both led to the publication of two research 

conference papers (VIRTOS et al., 2009, VIRTOS et al., 2010). The research outcomes 

were also presented at the Operational Research 51 conference and at an 

international European Logistics Association conference in 2009 for which a grant 

was awarded. 

This research’s practical contribution relates to the ability to provide an improved 

fuel efficiency measurement with fuel card data to companies. In effect, the 

contribution is threefold. Firstly, fuel card data cleansing has been improved which 

enables fleet managers to better measure drivers’ fuel efficiency, but also allow 

them to better control fuel costs and potentially spot theft via poor mpg 

performance. Secondly, the smoothing algorithm enables the legitimate use of fuel 

cards to measure fuel efficiency across a whole fleet of vehicles and between two 

arbitrary dates (when not all vehicles can refill at the exact beginning and end of the 

measurement period). Finally, the use of DEA to incorporate ‘vehicle weight’ directly 

in the fuel efficiency measure improved the readability of the fuel efficiency 
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measure, but also enabled effective comparison between vans of different gross 

weights. 

6.3.2. Applicability 

While the previous section discussed this study’s contributions both theoretically but 

also in terms or practical contribution to companies’ operations, this section will 

discuss the applicability of this study’s findings. 

The data cleansing and smoothing algorithms are applicable to any company using 

fuel card data (i.e. a majority). As introduced earlier, these two algorithms can 

benefit from telematics data but could also be used without. These algorithms 

provide companies with robust methods to measure fuel efficiency based on fuel 

card data, but also to control fuel cost and conduct fuel theft analysis. The 

Smoothing algorithm can also be practically applied in the industry which was 

demonstrated by the company Masternaut Three X applying the algorithm to its mpg 

calculations. 

The fuel efficiency model developed is only applicable to companies using fuel cards, 

running vans and in which drivers do not share their vehicle. Although these 

conditions significantly reduce the applicability scope, section ‘Limitation of the 

study itself’ explained how this could be extended to different scenarios if CANbus 

information is available. With this technology, the fuel efficiency model can then be 

potentially applied to any company running vans. 
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Although the fuel efficiency model is only applicable to van fuel efficiency 

measurement, the same approach could potentially be used to measure HGV and 

rigids’ fuel efficiency. This would however require further research as the load 

weight – which could safely be ignored with vans (unless the internal racking / 

equipment weight is taken into account) – will need to be addressed appropriately 

with HGV. 

The data cleansing is very specific to the road industry and fuel card data thus it is 

unlikely this could be re-used in any other area of research but transport. However, 

the concept of smoothing volume can be potentially re-used in other industry where 

measuring a production unit consumption is important (and where the consumption 

can be assumed constant).  

Finally, the SBM-NC and SBM-ND algorithms can potentially be re-used in many 

different situations where some of the inputs or outputs are non-controllable or 

non-discretionary and the radial assumption irrelevant.  
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7. Conclusion 

7.1. Research Summary 

This research has been undertaken using a structured approach to improve fuel 

efficiency measurement in the van operations sector. This work has led to the 

development of two new DEA models and of the fuel efficiency DEA model – the 

latter addressing the limitations of traditional mpg analysis.  

The work undertaken stems out from the hypothesis introduced in section 1.2. This 

hypothesis is follows: 

It is possible to develop a form of vehicle fuel efficiency 

measurement that gives a fleet manager more relevant information 

than currently available 

The subsequent aims and objectives have provided more detail on how this study 

aimed to test this hypothesis but also helped in defining the study’s scope and 

provided indications on how practical solutions could be found. The research aims 

were as follows: 

1. To analyse the main fuel performance measurement methods used in the 

transport industry. 

2. To evaluate the limitations of these measures and discuss the consequent 

impact on fuel efficiency measurement in transport businesses. 
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3. To develop an advanced performance measurement method in order to 

produce a more constructive measure and assess the extent to which it is 

a better measure. 

4. To apply this advanced fuel efficiency performance measurement method 

to selected companies which operate vans. 

5. To evaluate the extent to which this methodology is of operational value 

to transport businesses. 

Aim 1 was addressed in chapter 2 which listed most of the factors impacting fuel 

efficiency but also most of the interventions which can positively impact fuel 

efficiency. Section 2.3 evaluated the different fuel savings interventions as specified 

in Aim 2. Aims 3 and 4 were addressed in chapter 5 where the DEA models were 

both designed and applied to real operational data. Finally, chapter 6 discussed and 

evaluated the research applicability to businesses running road transport operations, 

hence addressing Aim 5. 

The study’s objectives were as follows: 

1. To demonstrate the relevance of fuel efficiency to transport operations 

2. To critically review the factors and techniques which can have a positive 

impact on fuel efficiency 

3. To develop an advanced performance measurement method in order to 

produce a more effective measure and to assess its usefulness as a better 

measure. 
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4. To review the existing literature on performance measurement & 

performance measurement methods  

5. To evaluate the applicability of some appropriate performance 

measurement methods 

6. To demonstrate the relevance of DEA as a suitable performance 

measurement method 

7. To identify the companies relevant to the study and collect the 

appropriate information 

8. To develop a new fuel efficiency measure and appropriate (DEA) 

performance measurement models 

9. To apply the developed model to this selection of companies 

10. To evaluate the model results in collaboration with the participants 

11. To iteratively improve these models with the participants feedback 

12. To analyse the results  

13. To critically analyse the results in comparison with traditional 

measurement methods 

14. To appraise the applicability, usefulness and limitations of the new fuel 

efficiency performance measure 

It is believed all these different objectives were achieved throughout the study’s 

different chapters. 

Objective 1 was addressed in section 2.1 where this study’s interest in fuel efficiency 

was explained partially because previous research demonstrated it is generally the 
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budget showing the most variability but also because fuel spending is where most 

savings can generally be made (Wilson, 1987). Section 2.2 reviewed the key fuel 

saving interventions available to fleet managers as specified in Objective 2. The pros 

and cons of each were summarised in section 2.3 while section 2.3.4 more 

specifically demonstrated the relevance of improving fuel efficiency measurement 

based on fuel card information as specified in Objective 3.  

Objective 4 was addressed in both chapter 3 – which briefly reviewed the 

fundamentals of performance measurement theory – and in section 3.3 – which 

reviewed some relevant performance measurement methods. These two sections, 

together with as chapter 2 constitute a comprehensive review of the existing 

literature on transport operations in relation to fuel efficiency, on performance 

measurement and Data Envelopment Analysis. The evaluation of the applicability of 

the relevant performance measurement methods (which corresponds to Objective 

5), as well as selection of DEA as the most suitable performance measure (which 

corresponds to Objective 6) were discussed in section 4.1. The end of this section 

highlighted the gap in DEA research on micro level transport operations and fuel 

efficiency measurement. 

The selection of relevant companies operating vans was undertaken and the details 

of the three companies selected are laid out in section 5.2.1 as specified by 

Objective 7. Objectives 8 to 12 – which encompass developing the DEA models, 

applying these models to the selected companies, iteratively review and analyse the 
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model results with the companies and improve the models where necessary – were 

all addressed throughout the remaining parts of chapter 5. 

The critical analysis of the fuel efficiency DEA model results in comparison with more 

traditional approaches such as mpg analysis was undertaken in chapter 6 and 

particularly in section 6.1 (this corresponds to Objective 13). This section explained 

that although the fuel efficiency DEA model suffers from data measurement error 

(e.g. missing fuel transactions) in a similar manner to traditional mpg analysis, it 

nonetheless addressed several limitations of this traditional method – thus, 

representing an improvement in comparison with such fuel measurement methods. 

Finally, the applicability, usefulness and limitations of this research was discussed 

both in the remaining of chapter 6 and in the conclusion (section 7.2 and following) 

as specified by Objective 14. 

By carrying out the research aims and objectives and by answering each research 

questions listed in section 5.1 ‘Case Study Theoretical Background’, this study fully 

tested the hypothesis and demonstrated that it was possible to improve fuel 

efficiency measurement based on fuel card information using Data Envelopment 

Analysis. 

The research findings from this project repeatedly have been promulgated via 

several research papers and were also presented at several research conferences 

(see section 6.3.1 Contributions). 
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The following sections discuss the study’s findings, limitations and potential for 

further research. 

7.2. Findings 

The research has led to a number of key findings including: 

 Not all performance measurement methods are likely to suit fuel 

efficiency measurement. 

o The traditional mpg measure has several limitations in terms of 

parameters necessary to the interpretation of the measure which 

are not directly incorporated in the measure itself. Furthermore, 

some other aspects of fuel efficiency are not reflected in the mpg 

measure (e.g. ppm).  

o Methods such as ELECTRE or AHP – although addressing some 

limitations of traditional mpg analysis / pence per mile analysis, 

mainly in relation to averages – relate more to ranking methods 

and do not provide a performance score. Further they do not 

provide a satisfactory method to include the factors necessary to 

the interpretations of the measure. 

o Finally, efficient frontier analysis approaches, which are advanced 

benchmarking methods based on the concept of efficient frontier, 

were evaluated as the ideal approaches for this research. Due to 

some technicalities (single cross section dataset and the weak 

inferences that could be drawn from such datasets – see ‘Reasons 
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for this study to use Data Envelopment Analysis’ for more 

information on this), Data Envelopment Analysis (DEA) was finally 

applied as the chosen tool for this research. 

 Fuel card data can be appropriately cleansed in order to measure fuel 

efficiency. 

o Algorithms can help cleansing fuel card data. 

o Telematics information can help improving the data cleansing 

quality. 

o Several utilisation rules should be observed in order to effectively 

measure fuel efficiency using fuel card data. This includes amongst 

others refilling to the top of the tank or not refilling both a vehicle 

and jerry can in the same transaction. 

 It is possible to appropriately measure fuel efficiency during an arbitrary 

period using fuel card data only. This requires using the smoothing 

algorithm to smooth the volume used at the ‘edges’ of the period. 

 It is possible to use DEA to improve fuel efficiency measurement. This was 

demonstrated by both appropriate comparisons between the fuel 

efficiency DEA model and traditional mpg analysis but also by the fleet 

managers trusting the newly created measure. 

o Under the test conditions there is no significant difference 

between fuel cost efficiency and fuel used efficiency (this was 

demonstrated in section 5.4.3 Adding the Cost). 
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o The vehicle weight (in this study vehicle gross weight) has a 

significant impact on the fuel efficiency DEA measure. 

o Age – although a logical input variable of the model – adds 

complexity to the fuel efficiency model. More importantly, 

vehicles demonstrating a roughly similar mpg performance could 

sometimes have drastically different fuel efficiency scores 

explained only by minimal age difference (e.g. one year). This 

behaviour is not coherent with the notion of fuel efficiency shared 

between industry experts and fleet managers thus ‘vehicle age’ 

was not included in the final fuel efficiency DEA model. 

7.3. Limitations of the Research 

Although the research demonstrated that it is feasible to measure vehicles’ fuel 

efficiency with the SBM-ND-I model, a series of related limitations have recognised. 

The first limitation was in relation to the fuel data obtained and the inaccuracy in 

appraising the volume used in between two non-refill dates. This can potentially 

cause issues to businesses as fleet managers often want to see an average fuel 

efficiency score (traditionally mpg) over a period of time and for all their vehicles. 

This is understandable as it allows relatively unbiased comparison between all 

vehicles. Besides, simply relying on fuel efficiency measurement between refills is 

risky as there is no guarantee the refills are made in each case up to the top of the 

tank. Furthermore, refills are generally not made to the exact same level which adds 
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further inaccuracy when only measuring fuel efficiency between refills. The 

Smoothing algorithm addressed, to some extent, this first limitation. 

There were also a few limitations in relation to the use of DEA. These were threefold. 

The first limitation was linked to the fact DEA does not have any mechanism that can 

suggest what could be done in order to improve efficient DMUs’ performance. This 

limitation is shared amongst all frontier analysis performance measurement 

methods. Nonetheless, appropriate performance measurement methods such as the 

one developed in this study can support innovation in providing accurate feedback 

on the performance levels achieved. Another limitation related to the data 

processing applied to vehicle weight. In effect, this data processing technique would 

not be possible if there were several different outputs. Finally, due to the degree of 

freedom issue, this benchmarking technique can only safely be applied to fleets of 

more than 9 vehicles. 

Similarly, there were also some limitations in relation to the study itself. The first is 

that the model was only used to measure van fuel efficiency and applying this 

approach to artics or rigids would require further research. There is also a small bias 

in the study as all the companies were using telematics – this was shown to help the 

fuel card data cleansing. Conversely, an assumption of homogeneous operations – 

essential for the model to be valid – was made for the three companies. Although 

each company was relatively homogeneous, this might not always be the case for 

other companies. Finally, another major limitation occurs when drivers use different 

vehicles during the measurement period which, as seen before, prohibits the use of 
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the fuel efficiency model. This last limitation can however be addressed if the fuel 

information is obtained from CANbus instead of fuel cards (as long as CANbus gives 

fuel information by driver). 

7.4. Potential for Further Research 

This research has already suggested some areas of potential further research which 

could potentially address limitations of this particular study. This section will 

summarise some key further research opportunities. 

Biases were listed in this study; further research could evaluate their respective 

impact to uncover whether these are significant or not. Conducting the same study 

with a few companies not using telematics would potentially help quantifying the 

importance of telematics data in fuel card data cleansing. This is especially important 

as the odometer reading on fuel card data files can be inaccurate thus the cleansing 

algorithm would have to be further developed to allow for this potential inaccuracy.  

Similarly, further research could look at capturing and quantifying the environmental 

factors associated with transport operations which could in turn allow the use of the 

fuel efficiency model across several companies and would provide valuable external 

information to these companies. This could potentially be done by looking at the 

number of miles travelled on urban roads, rural roads or motorways. These values 

could then be used as output variables in the model. Alternatively, they could be 

used to evaluate the operations category the vehicle belongs to (e.g. determine 

whether the vehicle should be categorised as operating within the building 

operations or engineer servicing operations) where each category could be ranked 
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using ranking techniques mentioned in section 3.3 so as to be used in a categorical 

model. Equally, these values could also be used to calculate a difficulty score which 

could be used as an input in the fuel efficiency DEA model. In a similar manner, the 

same model could be run again with vehicle net weight instead of vehicle gross 

weight (which was the only weight available at the time). Although no significant 

difference is expected, vehicle net weight might provide a finer discrimination 

between vehicles as accurately reflecting the actual weight impacting fuel efficiency. 

Finally, more research could go into making this model compatible for any vehicle 

type as this could greatly benefit mixed fleet operations with rigid and HGV vehicles. 

From a technical perspective, there is room for improvement with the smoothing 

algorithm, as one of its key weaknesses is the assumption that all refills are made up 

to the top of the tank. If the last refill is not made up to the top of the tank, the 

overall mpg would be incorrect which would also cause the volumes for the two 

segments (beginning and end of the period) to be inaccurate. This could however be 

addressed by assessing how likely it is that the first and last refill were not made up 

to the top of the tank although developing these rules would require further 

research. 

More work could be undertaken to evaluate how the smoothing algorithm would 

behave under the categorical model (where the vehicle weight is used to categorise 

the different DMUs). This model looks at categorised DMUs based on their operation 

difficulties. A DMU can only be compared to DMUs within their own category or to 

DMUs from categories which operate under more difficult conditions. 
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More extensive research could also be carried out in applying similar DEA models to 

different areas of efficiency in relation to transport operations as this could 

potentially improve overall companies’ efficiency. DEA could for example be applied 

to measure depot efficiency (by considering the ‘number of vehicles’ and ‘number of 

drivers’ as model inputs and ‘income’ and ‘number of jobs’ as model outputs) but 

also to the measurement of vehicle utilisation (‘number of vehicles’ and ‘number of 

drivers’ as model inputs and ‘vehicle utilisation’ as output). 

The human behaviour in relation to fuel efficiency measurement was not included in 

this study. Human behaviour can nonetheless impact this study on two main levels. 

These are described below: 

 The study concentrates on performance measurement. It has been 

explained in section 2.3.4 that improving performance measurement 

might not always lead to performance improvements. In effect it is the 

informed decision based on the measurement results which can lead to 

improvement. This implies that it is generally crucial for managers to act 

on the measure in order to see improvements in performance levels. 

Further research could go into appraising how fuel performance 

management in van operations and more generally transport is 

conducted. This could potentially lead to the creation of a performance 

management framework specific to transport operations and fuel 

efficiency. The performance management framework have been well 

researched (Smith and Goddard, 2002) and Freight Best Practice (FBP, 
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2009) has also listed recommendations which could make a good basis to 

create such a framework. 

 Similarly, drivers’ reaction to performance measurement was not 

discussed in this study and could receive attention from further research. 

Drivers can effectively feel potentially threatened from managers starting 

to actively manage their driver behaviour and fuel efficiency performance. 

In effect, this might lead drivers to misuse fuel cards on purpose so that 

management would not be in a position to use fuel card data to conduct 

measurement. In effect, the industry is advising fleet managers to 

positively challenge their drivers through incentive schemes such as Drive 

for Life (Masternaut Three X, 2010a). Greenroad Inc. also highlights the 

importance of feedback to the driver with its Greenroad Live solution 

which give drivers real time feedback on their driving behaviour 

(Greenroad, 2010). Several different telematics companies provide similar 

products to answer this need (Masternaut Three X, 2010b, MiX 

Telematics, 2010, Journey Dynamics, 2010). Further research could go 

into understanding the variables at play when it comes to driver 

acceptance of monitoring technology and performance measurement. 

This could help in ensuring that performance measurement is accepted by 

everybody as a necessary tool for the whole company to improve its 

performance and thus ensure that performance measurement can 

actually lead to performance improvements.  
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7.5. Contribution to Knowledge and Concluding Remarks 

As explained in section 4.1, DEA research in transport is extensive although – as far 

as this research could tell – the application of DEA to fuel efficiency has never been 

documented. This research contributes to theoretical research as it extends the 

application of a well known method to an area where it is has apparently never been 

applied before. 

This research also contributes to knowledge through the development of two new 

Data Envelopment Analysis models (SBM-ND and SBM-NC) which were produced to 

allow vehicle weight to be correctly incorporated into the fuel efficiency model. This 

last theoretical contribution relates to the development of both the smoothing and 

cleansing algorithms which allow for fuel card data to be appropriately cleansed and 

used to measure fuel efficiency. The SBM-ND and SBM-NC models seem logical 

extensions of the SBM model and were consequently probably used already 

although no publication could be found introducing these two models. Similarly, 

aspects of the cleansing algorithm are likely to have been already carried out in 

transport operations as such cleansing work is essential to measure fuel efficiency 

performance using fuel card records. Here again, no publication was found detailing 

this work, hence the cleansing algorithm can again be considered a theoretical 

contribution. 

This study’s practical contributions are twofold. The first main practical contribution 

relates to the data cleansing and smoothing algorithms. These two algorithms 

provide fleet managers with the possibility to use fuel cards – virtually omnipresent 
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in van and more generally transport operations – to accurately measure fuel 

efficiency over a period of time (instead of just between refills). Besides, the 

underlying concept of the smoothing algorithm implies that it can be used to 

measure fuel efficiency with any type of card or fuel card records. This means that 

data from an on-site fuel bunker can also benefit from the smoothing algorithm. As 

stated in section 6.3.1, these theoretical contributions have led to the publication of 

two research papers which were introduced in section 6.3.1 Contributions. The work 

was presented at two international conferences. 

The last practical contribution relates to the enhanced fuel efficiency measure 

provided by the DEA model. This measure enables the comparison of all vehicles 

against a single common measure (the DEA score). Furthermore, because all vehicles 

are compared against each other regardless of their weight (although the weight 

enters the evaluation of efficiency), this performance measurement method is 

particularly useful to benchmark vehicles when the fleet has a limited number of 

vehicles in each weight category. Conversely, traditional benchmarking analysis 

would only compare vehicles within the same weight category – which is of limited 

use when there are only a few vehicles in each weight category. 

This study demonstrated that it is possible to improve van fuel efficiency 

measurement based on fuel card information through the use a modern 

performance measurement method, in this case the benchmarking method called 

DEA, and by directly incorporating ‘vehicle weight’ in the measure itself. The fuel 

efficiency model can only be applied within the same company to measure van 
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performance unless environmental parameters are taken into account (see section 

5.5.2 Multi-companies benchmark). When only fuel card information is available, 

drivers need to drive the same vehicle during the measurement period to satisfy the 

study’s assumptions. However, when CANbus information is available, the drivers are 

free to drive any vehicle during the measurement period. In this case, the fuel 

efficiency score would be given for each driver-vehicle or each driver-‘vehicle 

weight’. This research also highlighted key limitations of this study. Most of these 

were addressed and some potential further research was suggested to deal with the 

others. This research finally suggested that the model was sensitive to data 

measurement so that accurate data was needed for the model results to be valid.  

Fleet managers appreciated the proposed measure and the incorporation of the 

vehicle weight in the fuel efficiency scores. However, it seems their first interest did 

not reside in an accurate measurement of fuel efficiency per se, but instead in the 

data cleansing, the smoothing and the model capability to fairly uncover badly 

inefficient drivers. This indicates the industry puts an emphasis on uncovering bad 

drivers and potential fuel theft as addressing these bad practices can quickly lead to 

improvement and savings. However, many companies are interested in challenging 

their driver to improve their fuel consumption as many recent competitions 

demonstrate (Masternaut Three X, 2010a, Low Carbon Vehicle Partnership, 2009). 

This indicates fleets’ latent need to fairly and accurately measure fuel efficiency and 

suggests that methods such as the one developed in this study could be used more 

often in a near future.  
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8. Appendices 

8.1.  Appendix 1: The CANbus technology 

8.1.1. A bit of history 

In the early 1980’s, the proliferation of electronic devices and wiring looms in cars 

was causing serious problems all over manufacturing processes as well as adding 

weight to the vehicle. Besides, excessive wiring was costly and did not provide good 

control over the vehicle’s electronic systems. Acknowledging this problem, R. Bosch 

started working on an in-vehicle network project as early as 1983. This project led to 

the development of Controlled Area Network (CAN) technology. 

Controlled Area Networks enable different Electronic Control Units (ECU) to 

exchange information over the same network. Using a centralised network 

dramatically reduced the need for excessive wiring loom and offered a better control 

over the vehicle’s electronic architecture. 

Bosch introduced the CAN protocol to the Society of Automotive Engineers (SAE) in 

1986 and licensed the protocol to different electronic manufacturers soon after this. 

The first licence was given to Intel in 1987 which developed the first CAN controller 

called the 82526. This controller was released the same year. 

The use of the CAN technology is now widespread and CAN controllers can be found 

amid most industries as well as within home electronic equipments (kitchen...). 

Although most vehicles manufactured in Europe use the CAN technology (probably 

more than 95%), some vehicles use other technologies (such as LIN or Flexray) or a 
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mix of several different technologies. This brief text will however only discuss the 

CAN technology.  

CAN is sometimes referred to as CANbus (or CAN bus). This terminology refers to the 

fact CAN shares information via a centralised digital bus. Both terms can be used to 

designate the same CAN technology. 

8.1.2. Available information on vehicles 

Due to the increased use of electronics devices and components on modern vehicles, 

most cars, vans and HGV (i.e. a good proportion of vehicles manufactured after 1996 

and most vehicles manufactured after 2000) are equipped with CAN (or similar) 

networks. There exists however no standard relating to what information should be 

made available on vehicles and in what format this information should be made 

available. Nonetheless, the following information is generally available from most 

vehicles’ CAN: 

 Fuel used 

 Distance 

 Engine information (throttle opening, engine rpm, gear, clutch...) 

 Speed 

 Braking information 

Depending on the vehicle’s electronic configuration further information such as the 

following might be available: 

 Airbags 
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 Indicators 

 Warning lights 

 Hazard lights 

 Ceiling light 

 Door opening 

 Seat belt (not fasten) 

This list is not of course exhaustive but should hopefully give a lay person a good 

overview of the type of information available from CAN networks on vehicles. This 

wealth of accurate vehicle information available on Controlled Area Networks is a 

strong incentive for telematics companies to connect to the vehicles’ CAN and 

provide this information to transport companies. 

As some messages sent over the CAN are more critical than others (e.g. brake (for 

ABS) or engine information (for EPS)), critical CAN networks such as powertrain 

(chassis) are separated from body or convenience (radio) networks. Powertrain 

networks are also generally faster (>= 1 Mbps) than body or convenient networks. 

Although most of the CAN data tend to be accurate, there are some instances where 

these data were reported inaccurate. It is known for example that the fuel used 

value, which comes from the Engine Management Electronic Control Unit (ECU), can 

sometimes be wrong if the injector sensor is badly configured. In this case the fuel 

used measured by the CAN is consistently different from the actual fuel used by a 

coefficient. It is also known that the fuel injector accuracy tends to worsen with 



 

282/343 

 

vehicle ageing. Finally, the accuracy of fuel used also varies depending on the RPM (it 

is more accurate in normal operating range than at low RPM). 

 In some cases, the fuel used information measured from the CANbus is inaccurate. 

In those cases, it is necessary to compare CANbus information with fuel card 

information as this enables the calculation of the ‘CANbus to reality’ ratio necessary 

to calibrate the telematics unit. While this process can be time consuming, there is 

unfortunately no method to know in advance whether the information reported by 

the vehicle’s CAN is accurate.  

 CANbus tank level accuracy is again not 100% accurate. This is caused by several 

reasons: 

 one cm difference in a HGV tank can represent a volume difference of 

about 5 litres, 

 diesel density changes in function of temperature, 

 10 degrees increase in temperature will result in a 1% volume increase. 

The information described above is conveyed by the CAN network but is defined 

within Higher Level Protocols which use the CAN as physical and data support layers. 

The next section (Technical description) will introduce technical details about CAN 

(the physical and data layers). Details on Higher Level Protocol will be introduced in a 

section 8.1.4.1 Higher Level Protocols. 
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8.1.3. Technical description 

Controlled Area Networks (CAN) consist of a single pair of twisted wires to which 

Electronic Control Units (ECUs) are connected. The wires are twisted with each other 

in order to both keep them together but also because external perturbations caught 

by the wires would more likely cancel each other out if the wires are twisted (this is 

due to the voltage difference between the two wires). The pair of wires is terminated 

on both ends with a 120 Ohms resistor. 

CAN networks can be of variable speeds and length with respect to the 

characteristics illustrated in Table 8.1 (Voss, 2005, p. 76): 

Speed Max permitted length 

1 Mpbs 40 m 

500 Kbps 110 m 

250 Kps 280 m 

125 Kps 620 m 

Table 8.1: Maximum CAN length at different speeds 

The reason for shorter maximal permitted network lengths at higher speeds is due 

the time it will take two ECUs at both extremities of the network to communicate 

with each other (speed in this sense does not relate to velocity of information on the 

network but ‘reply’ speed between ECUs). 

The information on a CAN network is encoded with a voltage difference between the 

two wires called respectively CAN high and CAN low. When CAN is idle, both CAN 

wires are at 2.5 Volts; however, when information is transmitted, the voltage of CAN 
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high wire jumps up to 3.5 Volts while the voltage of the CAN low wire drops down to 

1.5 Volt. Each ECU connected to the CAN network is logically connected to both CAN 

high and CAN low. 

This is illustrated in Figure 8.1 (Voss, 2005). 

 
Figure 8.1: Diagram of a CAN network 

CAN data is sent thought series of data frames. Bosch’s CAN specification 

distinguishes the following different messages (Bosch, 1991): 

 A DATA FRAME which carries data from a transmitter to the receivers.  

 A REMOTE FRAME which is transmitted by a bus unit to request the 

transmission of the DATA FRAME with the same IDENTIFIER. 

 An ERROR FRAME which is transmitted by any unit on detecting a bus 

error.  

 An OVERLOAD FRAME which is used to provide for an extra delay 

between the preceding and the succeeding DATA or REMOTE FRAMEs. 

This section will only briefly describe the Data frame which is probably best for 

introducing the basic concepts around CAN.  
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A data frame is composed of 7 different bit fields: the start of frame, the arbitration 

field, the control field, the data field, the CRC field, the ACK field and the end of 

frame field. This can be illustrated by Figure 8.2 (Bosch, 1991). 

 
Figure 8.2: Diagram of a CAN data frame 

 The Start Of Frame (SOF) marks the beginning of Data Frames and 

Remote Frames. It consists of a single dominant bit. ECUs are only 

allowed to start transmission when the bus is idle.  

 The Arbitration Field consists of the identifier and the RTR bit. The 

identifier field is used by different protocol to identify the type of 

message encapsulated in the Data Frame. A revision of the CAN provides 

an extended Identifier field of 29 bits (this is referred to as the ‘Extended 

CAN’ and this is the CAN version the J1939 protocol uses). The RTR bit is 

used to indicate the frame is a remote frame (RTR bit dominant). 
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 The Control Field consists of 6 bits which include the data length code 

and two other bits reserved for future expansion (used in Higher Level 

Protocols, see further down). 

 The Data Length code specifies the number of bytes in the Data Field. 

 The Data Field consists of the data to be transferred within the Data 

Frame. It can contain from 0 to 8 bytes (64 bits). 

 The CRC fields which is a check sum and a recessive bit (the delimiter 

DEL). 

 The ACK field which is two bits long and contains both the ACK slot and a 

(ACK) delimiter bit. These are used to control the quality of the data 

frame. 

 Each data frame is finished by 7 recessive bits which form the End Of 

Frame field. 

Controlled Area Networks are also extremely robust. The robustness of CAN has 

been measured using the Residual Error Probability method. With parameters as 

follow (1 bit error every 0.7 second, Baud rate of 500 kBits per second, and CAN 

operating 8 hours a day, 365 days a year), the probability of undetected error was of 

one every 1,000 years (Voss, 2005). 

All CAN networks conform to the physical and data technical characteristics detailed 

above. However due to the limited functionality the CAN alone provides Higher Level 

Protocols have been developed. These protocols encapsulate specific data in the 

different fields described above in order to provide added functionality (relevant 
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data is generally stored in the data field). The J1939 protocol is an example of a 

higher level protocol based on the Controlled Area Network technology. 

8.1.4. CAN-bus on vehicles 

This section will discuss the information that is generally transferred across CAN 

networks, to then briefly discuss the notion of Higher Level Protocol into which this 

information is encapsulated. Further discussion on Higher Level Protocols will show 

that the automotive industry is not well standardised in this respect. This means 

each vehicle make or model tends to have a specific CAN protocol (although there 

tend to be commonalities amongst vehicles of the same make) and this causes quite 

a challenge for third party to connect to CAN networks and retrieve the relevant 

information. 

8.1.4.1. Higher Level Protocols 

CAN has been described in the previous section as a very powerful and versatile 

type of network offering all the reliability, speed and robustness necessary in 

harsh environments such as the automotive one. Despite being one of the best 

choices for small applications, CAN is however not sufficient on its own for more 

complex operations and applications. This is mainly due to the limited data field 

size of 8 Bytes but also because some specific networks need a master-slave 

configuration or enhanced network management (network start-up, node 

monitoring…) which CAN itself does not provide (Voss, 2005). Higher level 

protocols (HLP), embedded in CAN, help delivering more functionalities from 

Controlled Area Networks. 
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The differences between the CAN technology and HLPs are best explained with 

the 7 layers reference model from the OSI (Open System Interconnection) 

illustrated in Figure 8.3 (Voss, 2005). 

 
Figure 8.3: ISO/OSI 7 Layer Reference Model 

The CAN specification from Bosch only specifies the first two layers, i.e. the 

Physical layers and the Data Link layer. These two layers respectively describe 

the physical characteristics of CAN networks (network length, structure, 

impedance...) and its communication principles (i.e. the data frame, the remote 

frame...). Higher Level Protocols – which sit at the application level –specify 

which information is to be held within all the different fields, which enables 

them to provide added functionalities. 

As an example, the J1939 protocol specifies the engine speed as in Figure 8.4 

(FMS-Standard, 2002). 
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Figure 8.4: J1939 FMS definition of engine speed 

J1939 FMS specifies that engine speed is encoded by the 4th and 5th bytes in 

the data frames with a PGN value of 00F004 (in this protocol, the PGN 

(Parameter Group Number) is the data frame id). Furthermore, it specifies that 

the engine speed is to be encoded in a 0.125 rpm unit. 

Higher Level Protocols encodes data in a similar logic. Finally, they will thereafter 

simply be referred to as protocols. 

8.1.4.2. Higher Level Protocols in the automotive industry 

The automotive industry offers a very inhomogeneous picture in term of 

protocols as there is no compulsory norm specifying which protocol should be 

used. As a result most manufacturers use their own protocol on their vehicles 

which is generally proprietary. Protocols are generally ‘make’ dependent and 

also often ‘model’ dependent. As the development of a new vehicle model often 

results in a modification of its electronic structure, protocols used on a new 

model (or year of manufacture) can also vary from previous ones. 

Most HGV manufacturers have however agreed to provide critical vehicle’s 

information in a standard CAN format – the J1939 FMS. This protocol, adopted 

by most of the major manufacturers, specifies the format of the information to 
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be made available from a J1939 FMS compliant gateway (generally just a simple 

plug with CAN high and CAN low) as well as the frequency at which each 

parameter is broadcasted through this gateway. The J1939 is a protocol 

designed for Heavy Duty Vehicles and is recommended by the Society of 

Automotive Engineers. It is important to note that a truck could provide a J1939 

FMS output through a gateway but use a different (generally proprietary) 

protocol on the truck itself. This is for example the case of Mercedes trucks. 

Rigid vehicles are also generally equipped with a J1939 FMS gateway. The 

manufacturers that have agreed to provide a J1939 FMS outputs are: Daimler, 

MAN, Scania, DAF Trucks, IVECO, Volvo, Renault, and Mercedes. Note that 

Mercedes did not officially join the fms-standard group although they provide 

J1939 FMS compliant gateways on their vehicles. Further information on the 

Fleet Management Standard can be found on their web site (http://www.fms-

standard.com) (FMS-Standard, 2002). 

There is, on the other hand, no common open protocol on cars and vans (most if 

not all of them are proprietary), nor is there generally any gateway that 

broadcasts crucial vehicle information for third parties to collect. This implies 

that in order to retrieve the information on a car or a van, it is – in most cases – 

necessary to reverse engineer the vehicle’s protocol first. 

The European Union has however made the EOBD plug (European On-Board 

Diagnostic) mandatory for all petrol vehicles starting MY2001 and all diesel 

vehicles starting MY2003. This connector is a standardised plug giving access to 

http://www.fms-standard.com/�
http://www.fms-standard.com/�
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technicians to a wealth of information on the vehicle sub-systems. The EOBD 

standard – which was originally designed to facilitate car’s diagnostic and repair 

– specifies the format of the EOBD plug. EOBD also specifies the pin out of the 

connector which lists 5 potential signalling protocols. Some pins can be used 

with two different protocols. A given vehicle is however likely to only implement 

one of the protocols. The possible protocols are: J1850 PWM (Pulse-Width 

Modulation), J1850 VPW (Variable Pulse Width), ISO 9141-2, ISO 14230 KWP 

(KeyWord Protocol), and ISO 15765 CAN. Diagnostic information is made 

available from the EOBD connector in order to help quick identification of 

possible issues on the car. The various parameters available are addressed (as in 

location) as Parameter Identification Number (PID) and are defined in the J1979 

protocol. However, manufacturers are not required to implement all the PID 

listed in the J1979 and can also implement their own proprietary PID. It is 

important to note that unlike the J1939 FMS protocol, EOBD is not meant to 

serve as an information gateway to which telematics units could connect, but 

merely is a diagnostic plug with listed compatible protocols. Some telematics 

companies however connect to or behind this plug in order to retrieve some of 

the key information. 

8.1.4.3. From a telematics unit point of view 

There are several options for a telematics company to retrieve CANbus 

information: 
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If the telematics unit can connect to CAN (although this might expose the 

company’s liability), the unit can be directly connected to the vehicle’s CAN and 

retrieve the relevant information. This implies the vehicle’s protocol is already 

known or has been reverse engineered previously. Most companies solder the 

unit directly to the CAN (which exposes the company’s liability) although 

Masternaut has developed Electro Magnetic clamps that can retrieve CAN 

information without direct soldering. Squarell has also recently developed a 

similar contactless product. 

If the telematics unit cannot directly understand CAN signals, the unit will have 

to rely on a third party interface to interpret the CAN information.  The major 

CAN interface provider in this respect is Squarell (Holland). This company 

provides a series of products which can connect to the vehicle CANbus (with or 

without contact depending on which option is chosen). The Squarell interface 

can then translate this information to either J1939 FMS (in this case the Squarell 

interface serves as a third party J1939 FMS gateway which can virtually be 

installed on any Squarell compatible vehicle including cars and vans) or RS232 

with a protocol defined by Squarell. Accutest is another company that provides 

such interfaces. Accutest products connect to the EOBD connector and provide 

an output in the Accutest RS232 protocol. 

Alternatively, some companies (e.g. SPAL, bridge-water electronics) provide 

small interfaces that read the CAN signals and provide voltage based outputs for 

each parameter. These interfaces are however more dedicated to taxi 
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companies (that would need speed or distance feed for their meters for 

example) rather than telematics companies which need more complex and 

detailed information. 

It is important to observe that whilst the J1939 FMS compliant gateways on 

trucks provide third party with a safe way to connect to the vehicle’s electronics 

in order to retrieve some of the available vehicle’s information, connecting 

directly to the vehicle’s CANbus is likely to void the vehicle warranty. 

Manufacturers are quite blurring on the subject and it is very difficult to get an 

official and clear answer from them. Legal departments will generally claim that 

this is a technical question, and technical departments that this is a legal 

question. Masternaut and Squarell contactless products are, in this respect, 

critical CANbus telematics developments. 

8.1.4.4. Final word on CANbus 

The market as evolved quite rapidly in regards to CANbus and whilst most small 

companies (i.e. lower than 20 vehicles) would not generally spend vast amount 

of money on CANbus technology, most big companies require this as a minimal 

requirement in their bids to telematics companies. These companies not only 

require the basic set of information such as the one found in the J1939 FMS 

protocol (i.e. fuel, distance, engine and brake information) but also more 

advanced information such as warning lights (to warn of potential failure or 

breakdown), airbags, door opening, or indicators. Successful telematics 

companies that would want to tackle the big fleet market will have to provide 



 

294/343 

 

this information and be versatile enough to add new information should this be 

required by customers. 

Although using a third party interface to retrieve CAN information tends to be 

more expensive than connecting directly to the vehicle’s CAN (more costly 

hardware), it gives telematics companies without CAN capabilities the possibility 

to nonetheless provide CAN information to their customers (and thus focus on 

other part of their business). Finally, while there exist little evidence which 

would suggest how liability would be appraised in case laws of accidents where 

telematics units would be directly connected to the vehicle’s CAN, the telematics 

users’ concerns over liability suggest Masternaut and Squarell contactless 

developments should find their market. 

8.2. Appendix 2: From Econometrics to the Charnes Cooper and Rhodes model 

This appendix introduces the Charnes Cooper and Rhodes (CCR) model and its main 

characteristics. Although the CCR model was used in this study, not all concepts 

mentioned in this appendix were specifically used. These were nonetheless 

discussed as they should provide answers to most of the questions which might arise 

from this research. 

Koopmans (1951) defined efficiency as the point where ‘it is impossible to produce 

more of any output without producing less of some other output or using more of 

some input’. This definition is often referred to as the Pareto Koopmans definition of 

efficiency (Cooper et al., 2007, p. 46) as Koopmans work is closely related to the 

Pareto’s definition of efficiency in economics. Although Farrell applied these 
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efficiency concepts to observed data, his application was only able to measure 

technical efficiency (i.e. it could not correctly estimate slacks). Although Farrell was 

aware of this shortcoming, he was unable to address it with a mathematical 

formulation. 

Charnes and Cooper were also aware of this limitation and were working on 

implementing this mathematical programming theory through the introduction of 

goal programming (Charnes and Cooper, 1961, cited in , Doumpos and Zopounidis, 

2002, p. 40). Charnes and Copper worked further on this with Rhodes which 

ultimately led to the development of the first Data Envelopment model called the 

Charnes Cooper and Rhodes (CCR) model which will be introduced in this section. 

8.2.1. Transforming the Fractional Problem 

As seen earlier, a DMU’s efficiency is determined by the relation between its inputs 

and outputs. When considering a series of n DMUs with m inputs and s outputs, their 

input and output data can be placed in two matrices, one matrix X for the inputs and 

a matrix Y for the outputs. This is illustrated in Figure 8.5. 
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Figure 8.5: Inputs and outputs data matrices 

Following the total factor productivity ratio introduced in 4.2.1 Performance Ratio 

and the above notation, it is possible to formulate a virtual performance ratio as in 

Figure 8.6. 

 

 

 

 

Figure 8.6: The virtual ratio 

Further expanding this approach, Charnes Cooper and Rhodes (1978, p. 430) defined 

the CCR fractional problem (FP) as in Figure 8.7. 
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Figure 8.7: The CCR model in its fractional form 

The variables of this fractional problem are ‘u’ and ‘v’ which are respectively the 

output and input weight vectors . 

The model was expressed in a sum (Σ) notation in the CCR paper although for clarity 

purposes the formulation has here been expanded. The notation in the CCR paper 

(‘s’ as number of outputs, ‘m’ as number of inputs, ‘n’ DMUs and DMUO as the DMU 

under examination) is generally accepted and used in DEA’s literature. Because the 

above model formulation only measures DMUO’s efficiency, the problem will have to 

be solved n times to measure all the DMUs’ efficiency. Linear programming 

optimisation techniques are used to find the optimal solutions (e.g. the simplex 

algorithm). 

The first constraint ensures that the maximum possible value for the ratio is 1. The 

last two constraints restrict all the inputs and outputs to be non-negative. Some 

inputs are allowed to be equal to 0 although at least one input (or output) will need 

to have a positive value per input vector (or output vector). The input and output 

vectors are said to be semi-positive. 
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The formulation above measures the efficiency of DMUO. As illustrated by the first 

constraint, the set of weights used in the objective function (the ‘max’ line) will be 

used with each of the other DMU’s values as per illustrated by the first constraint. 

This constraint specifies that the set of weights assigned to DMUO and used with any 

other DMU’s values, must be lower or equal to 1. This particular constraint is 

responsible for enveloping the data and identifying the efficient frontier. 

Because the above formulation is a fractional problem, solving it can be quite 

difficult. In order to resolve this issue and make the most of the advances in linear 

computations, the model can be transformed to its linear problem form (LP) as in 

Figure 8.8. 

 

 

 

 

 

 

Figure 8.8: The CCR model in its linear form 

Note that the ‘weight’ variables are now ν (nu), μ (mu) instead of v and u as with the 

fractional problem . The two 

models (CCRFP and CCRLP) are equivalent (i.e. they will have the same optimal 

solution). The transformation from fractional to linear problem was first introduced 

by Charnes and Cooper (1962) and is called the Charnes Cooper transformation (see 

Appendix 4: The Charnes Cooper transformation). Most fractional models are 

transformed with similar technique in order to express them in their linear form. 
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Because the linear form is easier to solve, most DEA problems are generally 

expressed in their linear form. 

Definition of CCR efficiency: A DMU will be efficient if and only if its optimal value θ 

is 1 and there exist at least one optimal (v*, u*) with v* > 0 and u* > 0 (Cooper et al., 

2007, p. 24). 

8.2.2. Optimal Weights 

The optimisation calculates the best possible set of weights for DMUO‘s performance 

ratio. The v* and u* obtained for the LPO are a set of optimal weight found for this 

DMUO. vi* is the optimal weight for input xi . This vector illustrates how important 

the input xi is relatively to other inputs. Similarly ur* is the optimal weight for output 

yr and reflects how important output yr was evaluated by the optimisation process. 

By examining each input and output optimal weight, it is possible to know which 

input or output contributed to the performance level, but also to see the extent to 

which they contributed. It is however important to keep in mind that optimal 

weights are not always unique. 

The meaning of weight can be easily illustrated with a small 2 inputs, 1 output 

example. Data is as in Table 8.2. 

 
Table 8.2: Two inputs – one output weight example 

Which can be plotted as illustrated in Figure 8.9. 
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Figure 8.9: Two inputs – one output weight example graph 

Because there are two inputs and one output, the data has been normalised by the 

output values and the efficient DMUs will be those which use the less input. 

Appraising the DMUs’ performance with a CCR model (input oriented, i.e. the 

optimisation process will try reducing inputs while keeping output level constant) 

gives the performance levels illustrated in Table 8.3. 

 
Table 8.3: Two inputs – one output optimisation results 

DMUC has two different weights . The ratio  seems 

to indicate that it is more advantageous for DMUC to weight Input1 twice as much as 

Input2 when maximising the virtual performance ratio. These values are important to 

measure the sensitivity of efficiency scores as for example with the Thompson 

approach (see section 5.4.6 Sensitivity Analysis for more details on this). 
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DMUB has an efficiency value of 1. However, one of its weights is equal to 0 (( ).) 

which in respect to the CCR definition above (see Definition of CCR efficiency above) 

indicates that  unless there is another set of non-zero weights, this DMU is not 

efficient. In fact, DMUB’s inefficiency can be easily spotted by considering its relative 

performance to DMUD which produces the same level of output with half of DMUB’s 

Input1. 

DMUG on the other hand has also an efficiency score of 1 and a weight equals to zero 

( ). However, this DMU is efficient as there is another set of optimal non-zero 

weights. This is exemplified by the set of optimal non-zero weights: 

. 

These specificities are not always easy to identify although the dual of the CCR model 

helps recognising them (during the second computational phase which optimises the 

slacks). This will be discussed further down (see section 8.2.4 Dual Problem and 

computational aspects). 

8.2.3. Production Possibility Set 

As explained earlier, the CCR model makes a semi-positive condition on the data. 

That is the input and output vector values are greater or equal to zero as long as 

there is at least one positive value in each vector. This can be written as follows for 

the input vector . A pair of input and output vectors 

is called an activity and can be written as follows:  
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Given this notation, the production possibility set is defined by Formula 8.1 (Yun et 

al., 2004, p. 90). 

 

 

Formula 8.1: Production possibility set 

Cooper et al (2007, p. 42) also list the following properties of the reference set P: 

‘The observed activities  belong to P.’ 

‘If an activity (x, y) belongs to P, any semi-positive activity then the activity (tx, ty) 

belongs to P.’ This property is called constant return to scale assumption and will 

consequently only be true for models assuming constant returns to scale. 

‘For an activity (x, y) in P, any semi-positive activity  with  is 

included in P.’ This means that any activity that uses the same of input or more while 

producing the same of less output than any other activity, will be included in the 

production possibility set and is thus considered feasible. 

‘Any semi-positive linear combination of activities in P belongs to P’ (this is the 

generalisation of the second property). 

This definition of the production possibility set is only applicable to the CCR model 

described in this section. Other DEA models will have different definition from their 

respective production possibility set. The BCC model for example – which works 

under variable returns to scale – has a specific convexity constraint added to the 

definition of its production possibility set. 
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8.2.4. Dual Problem and computational aspects 

The models illustrated in this section are taken from the Cooper, Seiford and Tone 

book (Cooper et al., 2007). 

The CCRLP model introduced in ’Figure 8.8: The CCR model in its linear form’ can be 

expressed in a more concise vector (envelopment) form. This is illustrated by Figure 

8.10 

 

 

 

 

 

Figure 8.10: CCR model in the multiplier vector form 

A linear problem has an associated problem with it called the dual problem. The dual 

problem is really useful for knowing advanced characteristics of the problem. The 

original linear problem (from which the dual is worked out) is referred to as the 

primal. The primal and the dual problems have also the same optimal objective 

function values. Because the number of constraint and the number of variables are 

swapped between the primal and the dual problems, it is sometimes interesting to 

solve the dual problem to obtain a solution to a primal. More information on the 

relation between the primal and the dual problems can be found in ‘Operations 

Research – Application and Algorithms’ from Winston (2004, p. 295 onwards) or in 

other linear algebra books. 
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For computational reasons (these will be detailed further down below), it is best to 

solve the CCRDLP than the primal CCRLP problem. The CCRDLP, also called the model in 

its envelopment form, can be written as in Figure 8.11. 

 

 

 

 

 

Figure 8.11: CCR model in dual form 

DLPO has a feasible solution . This implies that  is 

lower or equal to 1. Similarly, because , the second constraint implies 

that λ is positive. Because X is also positive, the first constraint forces θ to be strictly 

positive. This consequently implies . The optimisation process tries to 

reduce the inputs in a radial manner while staying in the production possibility set. 

Thus, it is possible to say that some activities in (Xλ, Yλ) outperform  

when  (Cooper et al., 2007, p. 44). In light of this property, it is possible to 

define the input excesses ( ) and output shortfalls ( ) – or slacks – as in Figure 

8.12. 

 

 

 

Figure 8.12: CCR model and slacks 

It is consequently possible to solve the LP problem in two phases, the first phase 

aiming at minimising  by maximising θ, and a second phase trying to maximise  

and . 
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Figure 8.13 illustrates the LP to obtain . 

 

 

 

 

 

 

 

Figure 8.13: Computation phases of CCRDLPO 

An optimal solution  obtained after solving Phase II is called the max slack 

solution. The solution obtained is not systematically unique (the score obtained is an 

optimum so is unique; however, the lambdas and weights might not be unique). 

The weights variables (v, u) from the LPO problem in its multiplier form can be 

derived from the columns corresponding to the inputs and outputs slacks in the 

identity matrix computed while solving the DLPO’s. If applying the simplex criteria to 

these two columns gives vectors , the u and v weight vectors are then 

given by the relation expressed in Formula 8.2. 

 

Formula 8.2: Relation between v, u and the DLPO 

There are several reasons to solve the DLPO instead of the LPO. In a DEA problem, the 

number of DMUs is generally greater than the number of constraints. Because the 

computational effort to solve a LP is likely to increase with the number of 

constraints, it will require less computer effort to solve the DLP (which number of 

variables is equal to the number of DMUs) rather than the LP (which number of 

constraint is equal to the number of DMUs). Cooper et al (2007, p. 52) also point out 
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that the memory used to store the basis or its inverse is the square of the number of 

constraints (the basis is a specific matrix in the simplex linear solving algorithm). The 

DLPO will consequently use less memory to solve than the LP. The LP problem does 

not also allow finding the max slack solution. Finally, the relation between the DLP 

and the original data is more straightforward than with LP where the solution is a 

(multiplied) evaluation of the data. 

The reference set EO of DMUO is defined as by Formula 8.3 (based on the max slack 

solution described above). 

 

Formula 8.3: Reference set 

DMUO’s potential improvement (indicated with the symbol ∆) can be calculated with 

Formula 8.4. 

 

 

Formula 8.4: Possible improvement formulae 

This means that potential improvements in input ( ) can be made by reducing the 

technical inefficiency quantified by  and by reducing any input slack . 

Improvement in output can be made by reducing the output slack . 

The projections on the efficient frontier (i.e. the point on the frontier which an 

inefficient DMU needs to reach in order to become efficient – indicated by the 

symbol ) are calculated as in Formula 8.5. 
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Formula 8.5: Projection formulae 

8.2.5. Model Orientation 

The CCR models introduced earlier (both multiplier and envelopment forms) were all 

optimising by reducing the inputs while keeping the outputs constant; this is called 

input orientation. There is also the possibility however, to try maximising the outputs 

while keeping the inputs constant; this is called output orientation. The CCR model in 

its output orientation form (CCR-O instead of CCR-I) is formulated as in Figure 8.14: 

CCR output oriented model (Cooper et al., 2007). 

 

 

 

 

 

Figure 8.14: CCR output oriented model 

An optimal solution to the DLPOO can be calculated from an optimal solution of the 

DLPO (the CCR input oriented model) as in Formula 8.6. 

 

 

Formula 8.6: Relation between DLPOO and DLPO 

Replacing η and μ in the DLPOO model transforms it into the DLPO model, thus it is 

possible to write relation in Formula 8.7. 

 

 

Formula 8.7: Relation between DLPOO’s optimal solution and DLPO’s 



 

308/343 

 

The optimal slacks of the output oriented model  are defined as per in the 

relation expressed in Formula 8.8. 

 

 

Formula 8.8: Relation between DLPOO’s slacks and DLPO’s 

Finally, the weights can be obtained by the relation expressed in Formula 8.9 (where 

q and p are resp. the input and output vectors of the DLPOO dual problem). 

 

 

Formula 8.9: Relation between DLPOO’s weights and DLPO’s 

The very close and simple relation between the CCR-I and the CCR-O are specific to 

the CCR model and other DEA models will not demonstrate such characteristics. 

Model orientation can have impacts on the results and the decision of which 

orientation to retain should always deserve consideration. Although the CCR model 

only gives two possibilities for model orientation (input or output oriented), section 

8.3 Appendix 3: Other DEA models will introduce other DEA models which will offer 

more choices regarding the model orientation. 
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8.3. Appendix 3: Other DEA models 

This section will introduce the BCC and SBM model which were used in this study. 

The CCR model introduced in section 8.2 was built under the assumption of Constant 

Returns To Scale. This meant that for any observed activity (x, y), it was possible to 

take a scalar t (where t is a positive scalar) and assume that production (tx, ty) was 

also possible (i.e. within the production possibility set). Many extensions of the CCR 

model have since be proposed (Cooper et al., 2007, p. 87) the representative being 

the model introduced by Banker, Charnes and Cooper (the BCC model). This model is 

built under a Variable Returns To Scale assumption which allows the production 

possibility set to span a convex hull around the data as illustrated in Figure 8.15. 

 
Figure 8.15: Illustration of the CCR and BCC frontiers 

This section will introduce two models, the BCC and another called the Slack Based 

Model (SBM). The SBM model can have the same production possibility set as the 

CCR or the BCC model (depending whether it has a ‘convexity’ constraint) but treats 
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slacks in a different manner. There are many more DEA models than the three CCR, 

BCC and SBM models although these were not used in this study so will not be 

introduced here. 

8.3.1. BCC Model 

The difference between the CCR and the BCC model can be illustrated by the 

following small example. 

 
Figure 8.16: CCR and BCC efficiencies 

In Figure 8.16, the BCC’s efficiency for DMU C is given by the Formula 8.10 (the 

model is input oriented): 

 

Formula 8.10: BCC efficiency 

While the CCR efficiency is given by Formula 8.11. 
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Formula 8.11: CCR efficiency 

Similarly, the output oriented efficiency of DMUc is given by the following ratio BS / 

CS as illustrated in Figure 8.17. 

 
Figure 8.17: BCC output efficiency 

Banker Cooper and Charnes define the BCC’s production possibility set as in Figure 

8.18. 

 

 

 

 

Figure 8.18: The BCC production possibility set 

The main difference between the BCC and the CCR model resides in the convexity 

constraint given by eλ = 1. 

The input oriented BCC model is defined as in Figure 8.19. 
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Figure 8.19: The BCC model 

Its dual is expressed in Figure 8.20. 

 

 

 

 

 

Figure 8.20: The dual of the BCC model 

The reference set EO is given from an optimal solution λ* as in Formula 8.12. 

 

Formula 8.12: The BCC reference set 

Formula 8.13 gives the following projections. 

 

 

Formula 8.13: The BCC projection formula 

The BCC model is solved in two phases: the first phase attempts to maximise θ while 

the second aims at maximising slacks (while keeping θ* constant). A DMU is said 

efficient when θ = 1 and there is no non-zero slack. 

The BCC model can also be re-written in its output oriented form as in Figure 8.21 

(this form is not used in the study): 
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Figure 8.21: The BCC model in its output oriented form 

8.3.2. SBM Model 

Both the CCR and the BCC model separate the technical inefficiencies (measured by 1 

– θ for input oriented models and θ – 1 for output oriented models) from the mix 

inefficiencies which can only be reduced by changing the respective proportions of 

inputs and outputs. This approach suits well models which inputs (or outputs) are 

expected to behave in a radial manner (i.e. where it is possible to reduce (or 

increase) all inputs (or outputs) simultaneously). However it is less appropriate for 

models where such an assumption cannot be made. The SBM model, first introduced 

by Tone (2001) solves this issue by simultaneously considering input reduction and 

output increase whilst being unit invariant. 

The SBM is formulated as in Figure 8.22. 

 

 

 

 

 

Figure 8.22: The SBM model 
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It is assumed that X ≥ 0, that if  the term is deleted and that if  

 is replaced by a very small number so that it plays the role of penalty. 

The Fractional SBM is transformed into a linear problem by the introduction of a 

small positive scalar t as in Figure 8.23. 

 

 

 

 

 

 

Figure 8.23: The SBM model with scalar t 

The previous model can be transformed to the linear model as in Figure 8.24. 

 

 

 

 

 

 

Figure 8.24: The SBM model in its linear form 

Where  = t ,  = t  and Λ = tλ. 
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Equivalence between the two models can be found in Cooper et al (2007, p. 102). 

The SBM model is solved in one phase only as technical and mix inefficiency are not 

separated in this model. 

A DMU is SBM efficient if and only if ρ = 1. This only happens when there is no input 

and output slack. 

The projections are given by Formula 8.14. 

 

 

Formula 8.14: SBM projections 

The reference set can be expressed as in Formula 8.15. 

 

Formula 8.15: SBM Reference set 

The SBM model can be transformed to its input (or output) oriented form by ignoring 

the nominator (or numerator). The input oriented form is illustrated as in Figure 

8.25. 

 

 

 

 

 

Figure 8.25: The SBM model in its input oriented form 

And the output oriented form is illustrated as in Figure 8.26. 



 

316/343 

 

 

 

 

 

 

Figure 8.26: The SBM model in its output oriented form 

Comparing the SBM score to the CCR and BCC score give indications on each DMU’s 

scale and mix efficiencies. These ratios are important determining whether a unit’s 

efficiency levels are due to its position in the production possibility set (under 

increasing, constant or decreasing RTS), or to poor performance only. 

8.3.3. Summary 

Several important model characteristics were discussed while introducing the CCR, 

BCC and SBM models. It was for example explained that the CCR model was 

developed under a semi-positive assumption which assumes that there is at least 

one element of the dataset which is (strictly) positive. This section will briefly 

summarise each model’s characteristics. 

Translation invariance is another fundamental property of (some) DEA models. It 

allows an axis to be shifted which is particularly useful some variables in a dataset 

are negative (a scalar is then added to all the variables; thus making the negative 

variable positive). As illustrated below, not all DEA models are translation invariant. 

Unit invariance is another essential property of DEA models. A unit invariant model 

will provide the same results regardless of which unit is used. In this particular 
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example this means that the same fuel efficiency level will be measured should 

kilometres be used instead of miles or should litres per hundred kilometres be used 

instead of mpg. 

Finally, the CCR and BCC model principally measure technical efficiency (although the 

slacks can be calculated in the second phase) while the SBM model considers mix 

efficiency. 

Although these characteristics will not be often used in this study, it was essential to 

mention them. Table 8.4 (Cooper et al., 2007, p. 115) summarises each model’s 

characteristics in regards to these properties. 

Model CCR-I CCR-O BCC-I BCC-O SBM 

Data 
X Semi-p Semi-p Semi-p Free Semi-p 

Y Free Free Free Semi-p Free 

Trans. 

Invariance 

X No No No Yes No 

Y No No Yes No No 

Units invariance Yes Yes Yes Yes Yes 

Tech. Or mix Tech. Tech. Tech. Tech. Mix 

RTS CRS CRS VRS VRS CRS/VRS 

Table 8.4: Summary table of models’ properties 
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8.4. Appendix 4: The Charnes Cooper transformation 

The Charnes Cooper transformation (Charnes and Cooper, 1962) enables to transform a 

fractional problem to a linear problem. 

Starting with the fractional problem illustrated in Figure 8.27. 

 

 

 

 

Figure 8.27: The CCR fractional problem 

It is possible to take a variable t as illustrated in Figure 8.28. 

 

Figure 8.28: Defining the variable t 

Because  (semi-positive assumption) t has to be positive so that it 

is possible to multiply both numerator and denominator of a ratio without changing its 

value. This is illustrated in Figure 8.29. 

 

 

 

 

Figure 8.29: Multiplying the ratio by t 

The original problem as consequently been replaced by the equivalent problem in Figure 

8.30. 
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Figure 8.30: Transforming the CCR problem 

Which is the CCRLP model introduced in section 8.2 and illustrated in Figure 8.31. 

 

 

 

 

 

 

Figure 8.31: The CCR problem in its linear form 
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8.5. Appendix 5: Smoothing Algorithm Calculations Example 

This appendix illustrates the behaviour of the smoothing algorithm with real data. 

The Smoothing Algorithm behaviour can be illustrated by reproducing each step of 

the algorithm calculations with real vehicle’s data. The measurement period starts 

on the 2009-04-01 00:00 and stops on the 2009-06-30 23:59:59. During this period, 

the test vehicle (a Citroen Berlingo of 1650kg) refills as illustrated in Table 8.5 

(transactions are in litres): 

 
Table 8.5: Fuel Transactions 

Calculating the ‘Bad MPG’ 

The refill quantity sums up to 285.26 litres for a distance travelled of 3367.75 miles. 

Formula 8.16 gives the calculations for the ‘Bad MPG’. 

 

Formula 8.16: Bad mpg calculation 

Calculating the accurate mpg 

The amount of fuel used between the first and the last transaction is 250.69 (285.26 

– 34.57) which is equal to 54.14 gallons. 
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The distance travelled between the first and last transaction is 2823.22 miles. 

The ‘actual mpg’ is consequently 52.14. 

Calculating the smoothed volume 

The vehicle has travelled 602.56 miles between the start of the period and the first 

refill. Similarly, the vehicle has travelled 123.57 miles between the last refill and the 

end of the period. 

The smoothed volume calculations are as in Formula 8.17. 

 

 

 

 

Formula 8.17: Smoothed Volume formula 

The smoothed distance can finally be calculated as in Formula 8.18. 

 

 

Formula 8.18: Smoothed mpg formula 

The C# algorithm found a similar result as illustrated in Table 8.6. 
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Table 8.6: Smoothed mpg results 

This vehicle probably did refill just before the start of the period (this information 

was unfortunately not recorded). It was thus able to travel many miles (600) before 

needing refilling which artificially increased its (incorrect) mpg value. 
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8.6. Appendix 6: Details on non-controllable and non-discretionary models 

This section lists a few non-controllable and non discretionary models in various 

forms. Transformations from fractional to linear forms use a similar approach as the 

Charnes Cooper transformation of fractional programming (see 8.4 Appendix 4: The 

Charnes Cooper transformation and (Charnes and Cooper, 1962)). 

The Fractional SBM-NC model can be illustrated as in Figure 8.32. 

 

 

 

 

 

 

 

 

Figure 8.32: The SBM-NC model in its fractional form 

This formulation is similar to the Slack Based Model except that non-controllable 

variables were discarded from the objective and that the constraint matrix was 

partitioned to prevent any slacks for non-controllable variables.  

The SBM-ND model can be found in Figure 8.33. 
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Figure 8.33: The SBM-ND model in its fractional form 
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8.7. Appendix 7: Subsidiary information about the companies 

The following table summarises the different contacts at the different companies. 

Company Name Contact Name Position 

Avonline Alan Thatcher Fleet manager 

Avonline Gary Woodhouse Fleet support 

Carillion Patrick Nolan Fleet manager 

FSH Maintenance Martin Smith Stores 

FSH Maintenance 
Stuart Welburn 

Senior finance 

manager 

All companies were first emailed on the 17th of June 2009. The companies which 

replied positively were all further contacted in regards to the data collection. The 

results were communicated on the 31st of August 2009 and were discussed during 

September 2009 with the different companies. Discussions were made over the 

phone as this was the most convenient alternative for the different fleet managers. 
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9. Glossary of Terms and Abbreviations 

 

Term or notion Definition or explanation 

Aerodynamic drag The total resistance to an object through air (Slater, 2010). 

Algorithm Formula for problem solving (Slater, 2010). 

Anti-Isotonic factor 
Undesirable output or inhibiting input (Dyson et al., 2001). 

See isotonic factor q.v. 

BCC 
Banker Charnes Cooper model. See (Banker et al., 1984) and section 

8.3.1 BCC Model. 

BTAC Abbreviation. British Transport Advisory Consortium 

CAN 

Abbreviation. Controlled Area Network. An electronic network as 

per defined by Bosch’s specification (Bosch, 1991). CAN is made of 

a pair of twisted wire to which compliant Electronic Control Units 

(ECU, see ECU below q.v.) can connect to in order to send 

information across the same shared network. 

CANbus 

Controlled Area Network Bus. A CAN electronic bus or network. 

CANbus technology is now extensively used on vehicles as it 

enables different vehicle’s electronic units to share data across a 

single or a limited number of networks 

Car 
Powered road vehicle designed to carry a driver and a small 

number of passengers (7 or under) (Slater, 2010). 

CCR 
Charnes Cooper and Rhode model. See (Charnes et al., 1978) and 

section 8.2. 

Cobb Douglas functional form 

The Cobb–Douglas functional form of production functions 

represents the relationship between some inputs and an output. It 

was proposed by Knut Wicksell (1851–1926), and tested against 

statistical evidence by Charles Cobb and Paul Douglas in 1900–1928 

(Cobb and Douglas, 1928). 

Data Envelopment Analysis 

A non-parametric method for the estimation of the efficient 

production frontiers and measurement of efficiency by the mean of 

ratio and comparison to this efficient frontier. 
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DEA Abbreviation. See Data Envelopment Analysis q.v. 

Deterministic To cause to occur in a particular manner (Slater, 2010). 

DfT 
Abbreviation. Department for Transport. The United Kingdom 

government department for transport. 

ECU Abbreviation. Electronic Control Unit 

Effectiveness The production of a required result (Slater, 2010). 

Efficiency 

The differential between outputs and inputs of a purposely 

conducted action or process. 

See the Key Concepts and Definitions section for further 

information q.v. 

Efficient Frontier 
The piecewise linear set spanned by the collection of efficient 

DMUs. 

Electronic Control Unit (ECU) 

A CAN compliant device which can be connected to a Controlled 

Area Network. On modern vehicles, ECU are generally connected to 

electronic sensors and can retrieve, process and share key vehicle 

information such as rpm, fuel used or vehicle distance. 

Fuel Card 
A special credit card given to drivers or employees which allows 

them to buy fuel or goods at petrol stations. 

Fuel efficiency 

The differential between the vehicle’s outputs and inputs in 

relation to fuel performance. 

See also Traditional fuel Efficiency and efficiency q.v. 

A new fuel efficiency measure is defined in the section The fuel 

efficiency model. 

Heavy Goods Vehicle (HGV) 

The old legal term for goods vehicles exceeding 7.5 tonnes 

permissible maximum weight and used in driver licensing and 

operator licensing rules.  The term was replaced under the EU 

unified driver licensing scheme by “Large Goods Vehicle” (LGV) 

(Slater, 2010). 

Heuristics 
Proceeding to a solution by means of trial and error of alternative 

scenarios (Slater, 2010). 

HGV Abbreviation. Heavy Goods Vehicle 

Improvement When something gets better or when you make it better (2008). 

Interval scale A scale divided in intervals. 
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Isotonic factor 
Desirable output or input 

See anti-isotonic factor q.v. 

Key Performance Indicator 
A Key Performance Indicator is a measure of performance defined 

by an organisation to evaluate how successful it is. 

KPI Abbreviation. See Key performance indicator q.v. 

LGV 

Abbreviation. Large Goods Vehicle (over 3,500 kilograms). The term 

replaced HGV (see HGV above q.v.) under the EU unified driver 

licensing scheme (Slater, 2010). 

Litres per 100 km (lp100k) 

A measure of a vehicle’s fuel efficiency in regards to the litres used 

to cover a 100 kilometres. This measure has the advantage to be 

consistent in regards to the amount of fuel used; i.e. improving fuel 

efficiency from 13 l/100km to 15 l/100km saves as much fuel as 

improving fuel efficiency from 34 to 36 l/100km. mpg does not have 

this characteristic. 

Measurement [C or U] the act or process of measuring (2008). 

Miles per gallon (mpg) 
A measure of a vehicle’s fuel efficiency in regards to the distance 

travelled (measured in miles) with a single gallon of fuel. 

Mix efficiency 
Efficient allocation of inputs and outputs. 

See mix inefficiencies q.v. 

Mix inefficiency 

Mix inefficiencies are caused by sub-optimal allocation of inputs or 

outputs in production. This term is used in Frontier Analysis 

methods (e.g. DEA or SFA). 

See mix efficiency q.v. 

Modern vehicle 
Vehicles manufactured after 2000. Most of these will have CAN 

technology. 

mpg 

Abbreviation. Miles per gallons. The number of miles that can be 

done with a single gallon. This fuel efficiency measure is used in the 

UK and other countries such as the US (although the US gallon 

differs from the UK gallon). This measure is sometimes used along 

with the pence per mile measure (ppm). 

See ppm q.v. 

Non-parametric 
This antonym of parametric. 

See parametric q.v. 
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Non-sampling error Is a generic term to refer to deviations around a true value. 

Objective function 

In a linear optimisation problem, this is the function to optimise. 

Optimisation can be done in two direction, maximisation or 

minimisation. 

Over-acceleration 

Over-acceleration relates to excessive acceleration. These are 

generally defined by an excessive pressure on the speed pedal and 

an rpm higher than a pre-defined value. 

Over-revving 

Over-revving relates to reaching unnecessarily high rpm while 

pressing the speed pedal and with a low torque (i.e. not going 

uphill). 

Parametric 

Which assumes the data come from a type of probability 

distribution and (which potentially) makes inferences about the 

parameters of this distribution. 

Performance Measurement 

The qualification and/or quantification of a purposefully executed 

action. 

See the Key Concepts and Definitions section for further 

information q.v. 

Piecewise linear 
Define in linear pieces (corresponding to segments in two 

dimensional spaces). 

PM Abbreviation. Performance Measurement 

ppl Abbreviation. Pence per litre. The amount in pence of a litre of fuel. 

ppm 

Abbreviation. Pence per mile. The cost of fuel per mile, expressed in 

pence. This performance measure is often used along with mpg. 

See mpg q.v. 

Producer 

The term producer refers to the entity in Stochastic Frontier 

Analysis. Producers are called Decision Making Unit (DMU) in DEA, 

another Frontier Analysis method. 

See SFA, DEA, DMU q.v. 
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Rigid 

An independent vehicle on which the driver's cab and the load 

carrying compartment are mounted on the same rigid chassis - 

defined under the Construction and Use Regulations as a vehicle 

not constructed or adapted to form part of an articulated vehicle.  

Distinguished from a van by means of carrying capacity and weight 

and that an HGV licence is the requirement to drive the vehicle 

(Slater, 2010). 

Routing The practice of planning routes for vehicles. (Slater, 2010). 

SBM Slack Based Model. See (Tone, 2001) and section 8.3.2 SBM Model. 

Scheduling 

The planning of vehicles and drivers to match cargo delivery or 

collection requirements or the passenger transport timetables 

(Slater, 2010). 

SFA Abbreviation. See Stochastic Frontier Analysis q.v. 

Stochastic 
Which behaviour is non-deterministic (i.e. random). 

See deterministic q.v. 

Stochastic Frontier Analysis 
The estimation of productive efficiency through the use of 

stochastic methods. 

Technical efficiency 
Efficient production in regards to the production methods. 

See Technical inefficiency q.v. 

Technical inefficiency 
Inefficient production in regards to the production methods. 

See Technical efficiency q.v. 

Tobit model 

The Tobit Model is a model originally developed by James Tobin 

(1958) which describes the relationship between a non-negative 

dependent variable yi and an independent variable (or vector) xi. 

Total factor productivity 

‘Total productivity includes intermediate goods in the measure of 

output as well as their inclusion in adding up inputs. Intermediate 

goods include purchased material and energy’ (Christopher and 

Thor, 1993, p. 6–1.5). 

Total productivity 
‘This measure looks at the ratio of outputs to labor and capital 

inputs’ (Christopher and Thor, 1993, p. 6–1.5). 

Traditional fuel efficiency 

Traditional fuel efficiency here refers to the miles per gallon (mpg) 

measure. 

See also efficiency q.v. 
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Translog 

Abbreviation. Transcendental logarithmic function. A generalised 

adaptation of the Cobb Douglas production function. 

See Coob Douglas Transform q.v. 

Van 

An independent small vehicle on which the driver’s cab and the 

load carrying compartment are mounted on the same (rigid) chassis 

– defined under the Construction and Use Regulations as a vehicle 

not constructed or adapted to form part of an articulated vehicle.  

Distinguished from a rigid vehicle by means of carrying capacity and 

weight (and that a car licence is the requirement to drive the 

vehicle)   There are a number of other descriptions, including:  (a) 

Car Derived Van: based upon a car chassis up to 1.5 tonne GVW. (b) 

Small Van: rigid box bodied vehicle up to 3.5 tonne GVW.  (c) 

Medium Van: rigid box bodied vehicle up to 7.5 tonne GVW.  (d) 

Large Van: rigid box bodied vehicle up to 18 tonne GVW.  (e) 

Articulated Van: box bodied trailer up to a maximum length.  (f)  Car 

Derived Van: based upon a car chassis up to 1.5 tonne GVW.  (g) 

Drawbar Van: rigid box bodied vehicle towing a rigid box bodied 

trailer (Slater, 2010). 
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