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Abstract 

 
Multiphase flows, where two or even three fluids flow simultaneously in a pipe are 
becoming increasingly important in industry. Although much research has been done 
to measure the phase flow rates of two-phase flows using a Venturi meter, accurate 
flow rate measurements of two phase flows in vertical and horizontal pipes at 
different flow regimes using a Venturi meter remain elusive. 
 
In water continuous multiphase flow, the electrical conductance technique has proven 
attractive for many industrial applications. In gas-water two phase flows, the 
electrical conductance technique can be used to measure the gas volume fraction. The 
electrical conductance is typically measured by passing a known electrical current 
through the flow and then measure the voltage drop between two electrodes in the 
pipe. Once the current and the voltage drop are obtained, the conductance (or 
resistance) of the mixture, which depends on the gas volume fraction in the water, can 
then be calculated.  
 
The principal aim of the research described in this thesis was to develop a novel 
conductance multiphase flow meter which is capable of measuring the gas and the 
water flow rates in vertical annular flows and horizontal stratified gas water two 
phase flows. 
 
 
This thesis investigates the homogenous and separated (vertical annular and 
horizontal stratified) gas-water two phase flows through Venturi meters. In bubbly 
(approximately homogenous) two phase flow, the universal Venturi meter (non-
conductance Venturi) was used in conjunction with the Flow Density Meter, FDM 
(which is capable of measuring the gas volume fraction at the inlet of the Venturi) to 
measure the mixture flow rate using the homogenous flow model. Since the separated 
flow in a Venturi meter is highly complex and the application of the homogenous 
flow model could not be expected to lead to highly accurate results, a novel 
conductance multiphase flow meter, which consists of the Conductance Inlet Void 
Fraction Meter, CIVFM (that is capable of measuring the gas volume fraction at the 
inlet of the Venturi) and the Conductance Multiphase Venturi Meter, CMVM (that is 
capable of measuring the gas volume fraction at the throat of the Venturi) was 
designed and manufactured allowing the new separated flow model to be used to 
determine the gas and the water flow rates.  
 
A new model for separated flows has been investigated. This model was used to 
calculate the phase flow rates of water and gas flows in a horizontal stratified flow. 
This model was also modified to be used in a vertical annular flow. The new 
separated flow model is based on the measurement of the gas volume fraction at the 
inlet and the throat of the Venturi meter rather than relying on prior knowledge of the 
mass flow quality x. Online measurement of x is difficult and not practical in nearly 
all multiphase flow applications. The advantage of the new model described in this 
thesis over the previous models available in the literature is that the new model does 
not require prior knowledge of the mass flow quality which makes the measurement 
technique described in this thesis more practical. 
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Nomenclature 

Acronyms 

 

CCCM  Conductance Cross Correlation Meter 

CIVFM Conductance Inlet Void Fraction Meter 

CMVM Conductance Multiphase Venturi Meter 

cos   Cosine 

DLFLS Digital Liquid Film Level Sensor 

dp  Differential Pressure 

GVF  Gas Volume Fraction 

I/V   Current-to-Voltage 

SCRE  Segmental Conductive Ring Electrode 

 

Symbols 

 

A  Cross sectional area 

steA  Steven constant; equation (2.60) 

tA  Area at the contraction 

)(BF  Blockage factor 

steB  Steven constant; equation (2.61) 

C  Chisholm constant (Equation (2.40))  

LeeuwC  Modified Chisholm parameter defined by de Leeuw (Equation (2.55)) 

steC  Steven constant; equation (2.62) 

hom,dC  Homogenous mixture discharge coefficient 

stdgC ,  Gas discharge coefficient in a stratified gas-water two phase flow 

wgdgC ,  Gas discharge coefficient in annular (wet gas) flow 

stdwC ,  Water discharge coefficient in a stratified gas-water two phase flow 

wgdwC ,  Water discharge coefficient in annular (wet gas) flow 

D  Diameter 
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steD  Steven constant; equation (2.63) 

*D  Average diameter between the inlet (vertical pipe) and the throat of the 

Venturi 

f  A single phase friction factor 

Fr  Froude number 

fq Rotation frequency in a turbine flow meter 

pipemF ,  Frictional pressure loss term across a vertical pipe 

mvF  Frictional pressure loss (from inlet to the throat of  the Venturi) 

g  Acceleration of gravity  

mixG  Conductance of the mixture 

h  Water level 

ch   Heights defined in Figure 3-6 

ih  Heights defined in Figure 3-6  

ph  Pressure tapping separation in a vertical pipe 

th  Pressure tapping separation in a universal Venturi tube 

tth   Heights defined in Figure 3-6 

I  The intensity of a homogenous medium 

gasI  Intensity of the beam at the detector when the pipe is full of gas 

liqI  The intensity of the beam at the detector when the pipe is full of liquid 

0I  Initial radiation intensity 

k  Flow coefficient (including the respective product of the velocity of 

approach, the discharge coefficient and the net expansion factor) 

L Distance between two sensors (Figure 2-12)  

mM  Relative molecular mass of the air 

m&  Mass flow rate 

Tm&  Total mass flow rate 

n  de Leeuw number (Equations (2.52) and (2.53)) 

RO.  Over-reading factor 

P Static pressure 
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P̂  Pressure ratio (Equation (3-37)) 

Q  Volumetric flow rate 

cwQ ,  Water volume flow rate at the gas core 

R  Radius (Figure 5-5)) 

r  Specific gas constant 

)(τxyR  Cross-correlation function 

S  Slip ratio 

mS  Conductance of the mixture 

stS  Ratio of the slip velocity (throat to inlet) 

U  Average fluid velocity  

U  Velocity 

hU  Homogenous superficial velocity 

*
hU  Average homogenous velocity between inlet  and the throat of the 

Venturi 

u  Single phase (water) velocity 

corrfU ,  liquid film velocity by cross-correlation technique 

V  Dc output voltage    

VAFV  Dc output voltage from a Variable Area Flowmeter. 

SGV  Superficial gas velocity, Figure 1-2. 

SLV  Superficial liquid velocity, Figure 1-2. 

x  Mass flow quality 

modX  Modified Lockhart-Martinelli parameter 

P∆  Differential pressure drop 

homP∆  Differential pressure drop in a homogenous flow 

HP∆  Magnitude of the hydrostatic head loss between the inlet and the throat 

of the CMVM in annular (wet gas) flow 

TPP∆  Two phase pressure drop 
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Greek symbols 

 

hom,mQε  Percentage error in the predicted mixture volumetric flow rate 

wggm ,&
ε  Percentage error in the predicted gas mass flow rate in a wet gas flow 

wgwm ,&
ε  Percentage error in the predicted liquid film mass flow rate in a wet 

gas flow 

wgtotalwm ,,&
ε  Percentage error in the predicted total water mass flow rate in a wet 

gas flow 

stgm ,&
ε  Percentage error in the predicted gas mass flow rate in a stratified flow 

stgm ,&
ε  Percentage error in the predicted water mass flow rate in a stratified 

flow 

µ  Total attenuation coefficient per unit of length of the fluid 

α  Gas volume fraction 

τ  Variable time delay in cross-correlation technique 

pτ  Time shift between the maximum similarities in the two measurement 

signals 

ρ  Fluid density 

θ  Angle of inclination from vertical 

γ  Specific heat ratio (adiabatic index) 

α  Mean gas volume fraction (Equation (3-68)) 

δ  Water film thickness  

σ  Conductivity  

stθ  Angle of stratified flow defined by (Figure 5-9)) 

0hom,1
hom =∆

α
P

 Inlet gas volume fraction in a homogenous two phase flow 

when 0hom =∆P  

0hom,1 =∆ pipeP
α  Inlet gas volume fraction in a homogenous two phase flow 

when 0=∆ pipeP  
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Subscripts  

 

1 inlet of the Venturi in separated flow model 

2 throat of the Venturi in separated flow model 

a Upstream position  in a vertical pipe (Figure 3-2) 

b Downstream position  in a vertical pipe (Figure 3-2) 

Chisholm Chisholm correlation 

deLeeuw de Leeuw correlation 

f liquid (water) film 

g gas phase 

g,st gas in stratified gas water flow 

g1 gas at inlet of the Venturi 

g2 gas at throat of the Venturi 

1,sim,ann simulating annular flow at the inlet of CMVM 

2,sim,ann simulating annular flow at the throat of CMVM 

1,sim,st simulating stratified flow at the inlet of CMVM 

2,sim,st simulating stratified flow at the throat of CMVM 

g1,st gas phase at the Venturi inlet in a stratified flow 

g2,st gas phase at the Venturi throat in a stratified flow 

g1,wg gas at the inlet of the Venturi in wet gas flow 

g2,wg gas at the throat of the Venturi in wet gas flow 

hom Homogenous 

l liquid phase 

Lin Lin correlation 

m  mixture 

Murdock Murdock correlation 

o Oil phase 

pipe Pipeline. 

rod nylon rod 

ref reference 

s superficial 

S&L Smith and Leang correlation 

sw Superficial water 
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sg Superficial gas 

st stratified flow 

TP two phase 

w water phase 

wg wet gas 

w,wg water film in wet gas flow 

wc water at the gas core 

w,total total water (i.e. film+core) 

w1,st water phase at the Venturi inlet in a stratified flow 

w2,st water phase at the Venturi throat in a stratified flow 
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Chapter 1 

 
 

Introduction 

 

1.1 Introduction 

 

The primary objective of the research described in this thesis was to develop a novel 

multiphase flow meter which, when combined with appropriate flow models would 

be capable of measuring the gas and the water flow rates in separated annular and 

stratified two phase flows. Measurement of the gas and the water flow rates in 

multiphase flow plays an important role in the oil, gas, chemical and nuclear 

industries. 

 

In a multiphase flow, different components (e.g. gas and water) flow simultaneously 

in a pipe. Measurements of multiphase flow have been commonly accomplished by 

means of a test separator which separates the phases (for example, gas and water in 

two phase flows, and gas, water and oil in three phase flows) and then  single phase 

flow meters can be used separately to measure the flow rate of each component (see 

Figure 1-1). This is the traditional solution employed in multiphase flow applications.  

 

In many applications, well designed test separators can achieve accuracies of ±10% 

of the individual phases flow rates [1]. Although the separation technique is accurate, 

it is expensive and not practical in many sub-sea applications because it requires 

considerable space for the equipment and facilities. Nederveen (1989) [2] showed that 

a saving of up to $30 million would be achieved if the bulk separator on an offshore 

platform was replaced by a multiphase flow meter. For onshore applications, 

removing a separator could save up to $600,000. 
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Figure 1-1: Traditional solution to the problem of metering multiphase flows 

 

The phase separation technique has the following limitations: 

 

(i) It is difficult to install on an offshore application where the base of a 

separator must be mounted on the sea bed (substantial work and effort is 

needed). 

(ii) It takes a considerable time to test the oil or gas well compared with a 

multiphase flow meter. The response time of a separator may be hours 

while for a multiphase flow meter it may be minutes [2].  

(iii) Maintenance work is quite difficult especially in sub-sea applications.  

(iv) It is a very expensive technique.  

 

As a result of the above limitations of the phase separation technique in multiphase 

flow applications, in-line multiphase flow meters are increasingly being designed for 

use in multiphase flow measurement applications. As the name suggests, “in-line” 

measurement techniques replace the test separator and the measurement of phase 

fractions, and phase flow rates is performed directly in the multiphase flow pipeline 

[3-5]. In-line measurement of the flow rate components of the multiphase flow is the 

goal of the current work.  

Separator 

oil-water-gas 
flow 

SPF 

SPF 

SPF 

water flow 

SPF=Single Phase Flowmeter 

oil flow 
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The advantages of employing in-line multiphase flow meters over the phase 

separation technique in multiphase flow applications are; 

 

(i) Multiphase flow meters (MPFMs) are more suitable for offshore 

applications because a MPFM is more compact and lighter than a test 

separator. 

(ii) Instantaneous and continuous measurement of the phase fractions and 

phase flow rates can be achieved using multiphase flow meters. This is 

very important in detecting the variations in the phase fractions and the 

phase flow rates, especially, from unstable wells. 

(iii) Less materials, equipment and human (oversight, maintenance, etc) 

resources are needed [6].  

(iv) MPFMs can work under different pressure and temperature ranges. 

(v) MPFMs can be used to obtain well test data more rapidly than 

conventional test separators [7].  

(vi) MPFMs are cheaper than test separators. 

 

To justify the above claims, in-line multiphase flow meters must satisfy the following 

criteria in terms of their design, accuracy, maintenance and life, see Table 1-1, [8]. 

 

Table 1-1: Desirable parameters of the multiphase flow meters 

 

 

The criteria for selection of the multiphase flow meters such as, accuracy, 

consistency, reliability and track record have been discussed in detail by [7,8]. 

 

Since the novel multiphase flow meter investigated in this thesis is used in multiphase 

flows, it is necessary to briefly describe the physics governing multiphase flows 

including the definition of multiphase flows, the gas-liquid flow patterns and the wet 

Range Accuracy Life time Maintenance cost 

0-100 % of 

phase 

5% or less per 

phase 

At least  10 

years 
Reasonable 
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gas flows. This is done in Section 1.2. Section 1.3 introduces specific areas of 

multiphase flows and the need for measuring multiphase flow properties. Following 

this the aim of the current research is presented (see Section 1.4). Finally, the layout 

of the thesis is given to help readers keep track of the work presented in this thesis. 

 

1.2 Multiphase Flows  

1.2.1 What are multiphase flows  

 

Generally speaking, multiphase flow is a term used to describe a combination of two 

or more phases flowing simultaneously in a pipe. The term phase generally refers to a 

flow component rather than a state of matter. For example, gas-water flow is 

classified as a two phase flow (since two components are present in the flow, namely; 

the gas and the water) while oil-water-gas flow is classified as a three phase flow. 

Each phase can be defined in terms of the two main parameters: (i) the mean 

fractional volume occupied by each phase which is termed the mean volume fraction, 

and (ii) the mean velocity of each phase. Thus the sum of the volume fractions is 

unity. If the phases are well mixed and the velocities of all of the phases are equal 

then the mixture can be treated as homogenous flow. Separated flow is where each 

phase flows separately with its own velocity and there is little or no mixing of the 

phases. Examples of such flows are stratified and annular flows [9,10].  

 

Although multiphase flows can take many forms in industrial applications, the term 

multiphase flow in this thesis generally refers to gas-liquid two phase flow, or to be 

specific, it refers to air-water two phase flow. The major flow regimes found in 

vertical and horizontal gas-liquid flows are described in Section 1.2.2. 

 

 

1.2.2 Gas-liquid flow patterns 

 

The major flow regimes found in ‘vertical upward’ and ‘horizontal’ gas-liquid two 

phase flows are shown in Figures 1-2 and 1-3.  
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Figure 1-2: Flow regimes in vertical gas-liquid upflows [11] 

 

In vertical gas-liquid flows, at low gas flow rates, the bubble flow regime 

predominates (see Figure 1-2). As the gas flow rate increases, collisions between 

bubbles will occur [12]. During these collisions, bubbles will coalesce, forming large 

gas bubbles (slugs). Small bubbles may be distributed throughout the liquid phase 

between slugs. A further increase in the gas flow rate causes the slugs to distort and 

break up to form the churn/froth flow regime. When the gas flow rate is large enough 

to support a liquid film at the wall of the pipe then the annular flow regime occurs in 

which a gas core flows at the centre of the pipe with some entrained liquid droplets 

while liquid film flows at the pipe wall. 
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Figure 1-3: Flow regimes in horizontal gas-liquid flows [11] 

 

Unlike the vertical flow regimes, the gas-water flow regimes in a horizontal pipe are 

affected by gravity which causes the gas phase to flow at the upper side of the 

horizontal pipe (see Figure-1.3). At low gas flow rates, the flow regime called bubbly 

flow again predominates. When the gas flow rate increases, the bubbles again 

coalesce to give rise to the plug flow regime. As the gas flow rate increases further, 

the plugs coalesce to form a smooth continuous layer, giving rise to the stratified flow 

regime where the gas phase flows at the top of the pipe and the liquid flows in the 

bottom portion of the pipe. In real industrial life, the gas-liquid interface in a stratified 

flow may not always be smooth, ripples may appear on the interface between the 

phases. If these ripples increase in amplitude due to increases in the gas flow rate then 

the flow regime moves from stratified flow to the wavy flow regime. A further 

increase in the gas flow rate causes large waves to occur which may hit the top of the 

pipe producing slug flow (see Figure 1-3). Annular flow in a horizontal pipe occurs at 

very high gas flow rates in which a gas core flows at the centre of the pipe and a 

liquid film at the wall of the pipe. Some entrained liquid droplets may occur within 

the gas core [13,14]. As can be seen from Figure 1-3, the liquid film in the annular 

flow regime is thicker at the bottom of the pipe than that at the top. This is due to the 

effects of gravity. 
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In the current research, the flow regimes that were studied in gas-water flows were 

the “vertical bubbly” flow regime, “vertical annular” flow regime and “horizontal 

stratified” flow regime. It should be noted that the vertical bubbly air-water two phase 

flows studied in this thesis were approximately homogenous (i.e. the average 

properties on the scale of a few bubble diameters were approximately the same 

everywhere in the flow). Therefore, whenever the readers come across the term 

“homogenous flow” throughout this thesis, it refers to vertical bubbly two phase flow, 

allowing the homogenous flow model described in Chapter 3 to be used.  

 

1.2.2.1 Wet gas flows 

 

The term ‘wet gas flow’ has many definitions in the literature. Some researchers 

define a wet gas flow in terms of the gas volume fraction. Steven (2002) [15], for 

example, defines the ‘wet gas flow’ as the flow with gas volume fraction greater than 

95%. Others [16,17] state that the gas volume fraction in wet gas flow should be 

greater than 90%. Some authors define wet gas flows in terms of the Lockhart- 

Martinelli parameter, X, the ratio of the frictional pressure drop when the liquid phase 

flows alone to the frictional pressure drop when the gas phase flows alone in the pipe 

[18-20]. Mehdizadeh and Williamson (2004) [18] divided ‘wet gas flow’ into three 

types as shown in Table 1-2. 

 

 
Table 1-2: Types of wet gas [18] 

 
Type of 

Wet Gas 
 

Lockhart- 

Martinelli 

parameter, X   

 

 
Typical Applications 

 
Type 1 

 
 

025.0≤X  
 

Type 1 wet gas measurement represents measurement 
systems at production wellheads, unprocessed gas 
pipelines, separators, allocation points, and well test 
facilities. Liquid measurement is necessary to make 
correction for improved gas measurements. 
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Type 2 

 
 
 

0.025 < X ≤ 0.30 

Type 2 wet gas-metering systems cover higher liquid 
flow ranges so that the users often require more 
accurate gas and liquid flow rates. Applications include 
the flow stream at the production wellhead, co-mingled  
flow line, or well test applications. 

 
Type 3 

 
X > 0.30 

Type 3 meter must make an oil, gas and water rate 
determination at relatively high GVF > 80% or X≥0.3. 
Typical application is gas condensate wells and gas lift 
wells. 

 

In general [17], ‘wet gas flow’ is defined as a gas flow which contains some liquid. 

The liquid volume fraction may vary between one application and another, though 

generally, the gas volume fraction should be greater than 90%. More information 

about wet gas flows and wet gas flow meters can be found, for example, in [21-26]. 

 

1.3 Existence of multiphase flows and the need for measuring their properties  

 

Two phase or even three phase flows are commonly found in industry. The purpose 

of this section is merely to show the range of areas in which the current research 

could be applicable. The main industries and fields where multiphase flows exist are;  

 

� Oil and gas industry 

� Chemical industry 

 

The relevant applications for multiphase flows are described below. 

 

1.3.1 Oil and gas industry 

 

The fluids extracted from oil wells are found as a mixture of liquid and gaseous 

hydrocarbons. In other words, the fluid produced from an oil well is a mixture of 

natural gas and oil but, in many applications, water is also present. Solid components 

(e.g. sand) may also be present in the mixture. Multiphase flows can be also found in 

natural gas gathering (from wellheads) and both onshore and offshore transmission 

pipelines. The term gathering refers to the transport process of the gas stream from its 

source (e.g. wellhead) to the processing facility. Multiphase flows are found in all 
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stages of the oil-gas production. These stages are drilling, extracting and also refining 

(the drilling and extracting operations are described later in this section). Therefore, 

various multiphase flow configurations may occur in the oil and gas production. 

 

At this point, it is worthwhile to understand the fundamentals of an oil-gas-water 

production well. Fossil fuels are, essentially, made from the fossilized remains of 

plants, animals and microorganisms that lived millions of years ago. The question 

now is how do these living organisms turn into liquid or gaseous hydrocarbon 

mixtures?   

There are many different theories which exist to describe the formation of oil and 

natural gas under the ground. The most widely accepted theory states that when the 

remains of plants and animals or any other organic materials are compressed under 

the earth at very high pressure for a long time (millions of years), fossil fuels are 

formed. With the passage of time, mineral deposits formed on top of the organisms 

and effectively buried them under rock. The pressure and temperature then increased. 

For these conditions, and possibly other unknown factors, organic materials broke 

down into fossil fuels.  

Some people think that the oil under the earth is found in pools of liquid oil. In fact, 

oil reservoirs are made up of layers of porous, sedimentary rock with a denser, 

impermeable layer of rock on top which trap the oil and the gas (see Figure 1-4). Oil 

marinades into the porous rocks making them saturated like a wet sponge [27]. Water 

may also exist underneath the oil in the oil reservoir. 

 

 

 

 

 

 

 

 

 

 

Figure 1-4: Conventional oil reservoir 
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To extract the oil from an oil reservoir, an oil well must be drilled. This process is 

called ‘drilling process’ and is illustrated below.  

 

A drilling mud is a fluid which is pumped into the well during the oil well drilling 

process. The purpose of pumping this fluid into the well during the drilling operation 

is to lift the drilling cuttings, which accumulate at the bottom of the well, up to the 

well bore (see Figure 1-5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-5: Schematic diagram of the oil well drilling process 

 

 

Once the drilling operation is finished, oil can then be extracted using one of the oil 

extraction techniques. There are many techniques used in oil extraction, and the two 

most common are described below [27].  

 

Flow of drilling 
mud and drilling 
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(i)  Oil pump extraction 

 

Once the drilling process is completed (see Figure 1-5) the drilling rig is removed and 

a pump is placed on the well head as shown in Figure 1-6. The principle of operation 

of this system is that an electric motor which is placed on the ground surface drives a 

gear box that moves a lever (pitman arm) which is connected to the polishing rod 

through the walking beam. Any movement on the lever will move the polishing rod 

up and down (see Figure 1-6). The polishing rod is attached to a sucker rod, which is 

attached to a pump (placed underground). The purpose of this pump is to lower the 

pressure above the oil and so allow the oil to be forced up through the well head. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-6: Oil pump extraction technique 
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(ii)  Thermally enhanced oil recovery method (TEOR) 

 

In some cases, the oil is too heavy to flow up the well. To overcome this problem 

another well can be drilled adjacent to the production well, and through which steam 

under high pressure is injected into the second well (see Figure 1.7). Injection of 

steam into the reservoir also creates high pressure which helps push the oil up the 

well [27,28].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-7: TEOR method 

 

It should be noted that during the oil extraction processes, gas and water may be 

present in the flow. To measure the individual phase flow rates in such flows, 
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measurement of the multiphase flow properties (e.g. the mean volume fraction and 

the mean velocity of each phase) in the oil and gas industry is necessary.   

 

1.3.2 Chemical industry 

 

Multiphase flows occur in many chemical processes. In chemical processes that 

involve gas-liquid reactions, the contact between phases has to be sufficient to 

achieve optimal performance [29]. Gas-liquid two phase flows can be found in many 

chemical reactions such as chlorination, oxidation and aerobic fermentation reactions. 

To achieve optimal performance in chemical processes which involve such reactions, 

an accurate measurement of the mass transfer rate of the two phases and the 

interfacial area per unit volume must be performed [30].   

 

One of the most important devices in the chemical industry which involves 

multiphase flow is the bubble column reactor. Bubble column reactors provide 

several advantages in terms of design and operation over other reactors such as, 

excellent heat and mass transfer rate characteristics [31,32], high thermal stability, 

lack of mechanical moving parts, high durability of the catalyst material, online 

flexibility for catalyst addition/withdrawal during the process, little maintenance and 

low operational costs.  

 

In bubble column reactors, the gas volume fraction, bubble characteristics, local and 

mean heat transfer characteristics and mass transfer characteristics are all important in 

design and operation of the bubble columns. Therefore, measurements of multiphase 

flow parameters are important in order to achieve optimal performance in bubble 

column reactors [33-38].  

 

The other two types of multiphase reactors are fluidized bed reactor and fixed or 

packed trickle bed reactor. A comprehensive description of these types of reactors can 

be found in [39-46].  
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1.4 Aims of the present work 

 

The main aim of the research described in this thesis is to develop new techniques for 

accurate phase flow rate measurement in separated annular and stratified flows. The 

intention is to design a novel multiphase flow meter which is capable of measuring 

the gas and the water flow rates in two phase, water-gas, water continuous, vertical 

annular flows and horizontal stratified flows. A further aim is to investigate the use of 

the Universal Venturi Tube (UVT) in bubbly (approximately homogenous) gas-water 

two phase flows. The objectives, providing the solution to achieve the aims, are 

outlined below.  

 

Objectives  

 

1. To investigate a mathematical flow model for bubbly (approximately 

homogenous) gas-water two phase flows through a UVT, predicting the mixture 

(homogenous) flow rate.  

 

2. To develop an integrated system comprising the UVT and the flow density meter, 

allowing the homogenous flow model to be used to determine the mixture flow 

rate in bubbly (approximately homogenous) gas-water two phase flows.  

 

3. To develop a novel mathematical flow model for separated horizontal stratified 

gas-water two phase flows through a Venturi meter, predicting the gas and the 

water flow rates. 

 

4. To investigate a new mathematical flow model for separated vertical (wet gas) 

flows through a Venturi meter, predicting the gas and the water flow rates. 

 

5. To design a novel conductance multiphase flow meter, allowing the separated 

annular and stratified flow models (which will be investigated to achieve the 

objectives (3) and (4) above) to be used to determine the gas and the water flow 

rates.  
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6. To calibrate the conductance multiphase flow meter in simulated annular and 

stratified flows. 

 

1.5 Thesis Overview  

 

The underlying theme of the work described in this thesis is that of the use of Venturi 

meters in bubbly, stratified and annular gas-water two phase flows. This section gives 

the reader a brief description of the contents of each subsequent chapter of this thesis. 

 

CHAPTER 2 This chapter describes previous relevant research. A review of 

existing techniques for measuring multiphase flows is 

presented. The correlations that are used in calculating two 

phase flow rates using Venturi meters and orifice plates (i.e. 

Murdock, Chisholm, Smith and Leang, Lin, de Leeuw and 

Steven correlations) are also discussed in this chapter.   

 

CHAPTER 3 This chapter describes the mathematical modelling of the 

Venturi meter in bubbly (that are assumed to be approximately 

homogenous), stratified and annular two phase flows. This 

chapter introduces a homogenous gas-water two phase flow 

model through a UVT (non-conductance Venturi). A novel 

stratified and annular flow model which depends on the 

measurement of the gas volume fraction at the inlet and the 

throat of the Venturi is described.  

 

CHAPTER 4 The design and construction of the flow density meter, UVT, 

the conductance multiphase flow meter (Conductance Inlet 

Void Fraction Meter, CIVFM, and Conductance Multiphase 

Venturi Meter, CMVM) is described in this chapter. The UVT 

is used in conjunction with the flow density meter to study the 

homogenous two phase flow while the conductance multiphase 
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flow meter is used to study separated (vertical annular and 

horizontal stratified) gas-water two phase flows. 

 

CHAPTER 5 In this chapter, the bench tests on the CIVFM and the CMVM 

are performed. To simulate the film thickness (and hence the 

liquid volume fraction) in annular flow through a conductance 

multiphase flow meter different diameter nylon rods were 

inserted through the CIVFM and the throat section of the 

CMVM whilst the gap between the outer surface of the nylon 

rod and the inner surface of the pipe wall was filled with water, 

representing the water film in a real annular flow situation. For 

simulated horizontal stratified flows, the conductance 

multiphase flow meter was mounted horizontally and was 

statically calibrated by varying the level of water at the inlet 

and the throat of the Venturi. The height of water at the inlet of 

the Venturi was then related to the inlet water volume fraction 

while the water volume fraction at the throat of the Venturi was 

obtained from the height of the water at the throat section of 

the CMVM. Once the value of the water volume fraction at a 

given position in the Venturi was known the gas volume 

fraction could easily be found since the sum of the gas and 

liquid volume fractions is always unity. 

 

CHAPTER 6 This chapter introduces the experimental apparatus and 

procedures to carry out flow measurement of two phase flows 

using a Venturi meter in different horizontal and vertical flow 

regimes. The calibration procedures for the reference 

equipment are also described. 

 

CHAPTER 7 The results from the bubbly (approximately homogenous) gas-

water two phase flow experiments using the UVT and the flow 

density meter are discussed.  
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CHAPTER 8 This chapter discusses the results obtained from the 

conductance multiphase flow meter in annular gas-water two 

phase flows. An alternative technique of measuring the liquid 

flow rate using wall conductance sensors is also presented. 

 

CHAPTER 9 This chapter presents the experimental results obtained from 

the conductance multiphase flow meter in horizontal stratified 

gas-water two phase flows. Predicted gas and water flow rates 

in a stratified gas-water two phase flow were obtained from the 

conductance multiphase flow meter and compared with 

reference gas and water flow rates. 

 

CHAPTER 10 The conclusions of the thesis are presented in this chapter. 

 

CHAPTER 11 This chapter presents recommendations and suggestions for 

further work. 
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Chapter 2 
 

Previous Relevant Research on Multiphase 

Flow Measurement 

 

 

Introduction 

  

In industrial processes, the need for measuring the fluid flow rate arises frequently. 

Accurate and repeatable flow rate measurements are necessary for process 

development and control. 

 

Differential pressure devices (e.g. orifice plate and Venturi meter) have been widely 

used as two phase flow meters and considerable theoretical and experimental studies 

have been published. The study of multiphase flow through Venturi and orifice 

meters are described for example by; Murdock (1962) [47], Chisholm (1967,1977) 

[48,49], Smith and Leang (1975) [50], Lin (1982) [51], de Leeuw (1994,1997) 

[52,53] and Steven (2002) [15].  

 

In this chapter, a review of existing techniques for measuring multiphase flows is 

presented in Section 2.1. Following this, the previous correlations listed above with 

their flow conditions, assumptions and limitations are described (see Section 2.2).    

 

It should be noted that the purpose of presenting the previous correlations for the 

differential pressure devices (Venturis and orifice plates) in this chapter is mainly to 

show that all of them depend on prior knowledge of the mass flow quality, x, which is 

defined as the ratio of the gas mass flow rate to the total mass flow rate. Therefore, 

the study of the previous correlations described in Section 2.2 is not intended to give 

more details about how the gas and the water mass flow rates are derived. For more 
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details regarding the derivation of the gas and the water mass flow rates presented in 

Section 2.2, refer to the author’s M.Sc. dissertation [54].  In fact, online measurement 

of the mass flow quality, x, is difficult and not practical in nearly all multiphase flow 

applications. Therefore, the presentation of these correlations in this chapter is to 

assist the study and development of the new separated flow model (see Chapter 3) 

which depends on the measurement of the gas volume fraction at the inlet and the 

throat of the Venturi instead of relying on prior knowledge of the mass flow quality, 

x, as in previous correlations. 

 

2.1 A review of existing techniques for measuring multiphase flows  

 

Existing multiphase flow measurement techniques can be classified into two main 

categories; ‘invasive techniques’ and the ‘non-invasive techniques’. The difference 

between these two categories is that with an invasive technique, the sensor is placed 

(physically) in a direct contact with the fluid flow to measure the flow parameters. 

For a non-invasive technique, the sensing element does not directly interfere with the 

flow. For example, a hot film anemometer is an invasive technique while the 

differential pressure technique in multiphase flows is classified as non-invasive.   

 

Measuring techniques for multiphase flow can be accomplished either locally or 

globally. ‘Local measurement’ is a term used to describe the measurement of a 

specific parameter in a multiphase flow at a predefined position (single point) in a 

pipeline. ‘Global measurements’ give mean values of the multiphase flow (e.g. the 

mean volume fraction and the mean velocity and hence, the mean flow rate). For 

example, the conductive needle probes in bubbly two phase flow can be regarded as a 

local measurement. The ultrasound attenuation method is an example of global 

measurement.  

 

This section is not intended to describe all multiphase flow measurement techniques 

available in the literature but only to highlight the most common principles used for 

measuring the phase velocity and the phase fraction in multiphase flow technologies.   
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2.1.1 Phase fraction measurement  

  

In general, most of the multiphase flow meters available on the market today use one 

of the following methods to measure the phase volume fraction. 

 

2.1.1.1 Differential pressure technique   

 

The differential pressure technique is a non-invasive technique and can be considered 

as a global measurement. The differential pressure technique has proven attractive in 

the measurement of volume fraction. It is simple in operation, easy to handle and low 

cost. In a multiphase flow, differential pressure techniques can be used to measure the 

mean volume fraction in vertical and inclined flows. Differential pressure techniques 

may also provide information on the flow regime, especially, the slug flow regime 

where the fluctuations in the pressure drop can be easily indentified [55-57]. Detailed 

information about the numerical techniques used in multiphase flows to study the 

fluctuations in the differential pressure signal can be found in [58-61]. 

 

In the current research, the differential pressure technique is used to measure the gas 

volume fraction hom,1α  in bubbly (approximately homogenous) gas-water two phase 

flows at the upstream section of the UVT. This technique is discussed, in detail, in 

Section 3.1.1. 

 

In bubbly gas-water two phase flows, the gas volume fraction hom,1α  obtained from 

the differential pressure technique is given by (see Section 3.1.1 for full derivations); 

( )
)(cos

,
hom,1

gwP

pipempipe

gh

FP

ρ−ρθ

+∆
=α  

     Equation (2.1) 

where pipeP∆ is the pressure drop across the pipe (between the pressure tappings), 

pipemF , is the  frictional pressure loss term between the pressure tappings, ph is the 

pressure tapping separation, wρ  and gρ  are the water and the gas densities 

respectively, g  is the acceleration of the gravity and θ  is the angle of inclination 

from vertical.  
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The flow density meter (FDM) which is based on the differential pressure technique 

was designed as part of the current study to measure the mean gas volume fraction at 

the inlet of the UVT (see Chapter 4, Section 4.1 for more information). 

 

2.1.1.2 Electrical conductance technique 

 

Electrical conductance technique is used to measure the phase volume fraction in 

water continuous, multiphase flows. This technique has proven attractive for many 

industrial applications due to its fast response and relative simplicity in operation. 

Early work on this technique was proposed by Spigt (1966) [62] and Olsen (1967) 

[63] who studied the method and the design of electrodes. Olsen (1967) [63] showed 

that the ring electrodes were preferable for fixed field application rather than using 

electrodes which interfered with the flow. Barnea et al. (1980)  [14], Tsochatzidis et 

al. (1992) [64], Zheng et al. (1992) [65], Fossa (1998) [66]  are some of the many 

who used the conductance technique in multiphase flows.  

 

In multiphase flow applications, electrical conductance varies with concentration and 

distribution of the phases. The electrical conductance is typically measured by 

passing a known electrical current through the flow and then measuring the voltage 

drop between two electrodes in the pipe. Once the current and the voltage drop are 

obtained, the conductance (or resistance) of the mixture can be calculated [67]. 

 

The conductance technique is the basis of the current research. In other words, the gas 

volume fractions at the inlet and the throat of the Venturi in horizontal stratified gas-

water two phase flows and annular (wet gas) flows were measured using two ring 

electrodes flush mounted with the inner surface of the Venturi inlet, and two ring 

electrodes flush mounted with inner surface of the Venturi throat (see Chapter 4 for 

more details). The design and calibration of the novel conductance multiphase flow 

meter investigated in this thesis is described, in detail, in Chapters 4, and 5.  

 

The basic operation of the electrical conductance technique in gas-water two phase 

flows is that the conductance of the mixture depends on the gas volume fraction in the 
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water. The conductance of the mixture mixG  can be calculated using the circuit shown 

in Figure 2-1 (see also the full diagram of the electronic circuit in Section 4.5).  

 

 

 

 

 

 

 

 

 

 

Figure 2-1: Fluid conductance circuit 

 

From Figure 2-1, the output voltage outV  can be written as; 

 

in

mix

fb

out V
R

R
V −=  

   Equation (2.2) 

where mixR is the resistance of the mixture. 

 

By definition the conductance G is the reciprocal of the resistance. Therefore, 

Equation (2.2) can be re-written as; 

 

in

fb

mix
out V

G

G
V −=  

   Equation (2.3) 

where  mixG  is the conductance of the mixture. 

 

The conductance decreases with increasing gas volume fraction and increases with 

increasing water volume fraction as shown in Figure 2-2. 
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Figure 2-2: Variation of the conductance with gas and water volume fractions 

  

The choice of excitation frequency is very important because it can affect the 

operation of the conductance sensor. At low frequencies, the conductance between 

the electrodes is affected by a number of capacitive and resistive elements that arise at 

the electrode-electrolyte interface. This is commonly referred to the ‘double layer’ 

effect [33]. The excitation frequency should be high enough to eliminate this double 

layer effect [68]. Considerable studies have been published to study the influence of 

frequency of the signal on the measurement of the conductance system. It has 

generally been concluded that frequencies of at least 10kHz should be used [69]. In 

the current research, the amplitude and frequency of the excitation voltage were 

2.12V p-p and 10kHz respectively. 

 

2.1.1.3 Electrical capacitance technique  

 

The first systematic study of the capacitance technique in multiphase flow 

measurement was carried out by Abouelwafa et al. (1980) [70]. Electrical capacitance 

is a non-invasive technique and can be used for volume fraction measurement in 

multiphase flows only when the continuous phase is non-conducting (e.g. oil 

continuous, oil-water two phase flow).  

A typical capacitance system consists of two electrodes (different configurations and 

more than two sensors might be used, refer for example, to [71]) placed on each side 

of the flowing medium. The basic physics behind the capacitance technique is that the 

capacitance depends on the permittivity (dielectric) of the mixture between two 

electrodes. The permittivity of the mixture varies with the amount of oil, gas and 

water in the mixture.  
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From Maxwell’s equations [72], the formula which describes the relationship 

between permittivity (also known as dielectric constant) of an oil-gas mixture and the 

gas volume fraction α  is given by; 

( )
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     Equation (2.4) 

where gom −,ε  is the permittivity of the oil-gas mixture, α is the gas volume fraction, 

oε  is the permittivity of oil and gε  is the permittivity of gas. 

Maxwell’s equation can also be used for oil-water flows. Equation (2.5a) gives the 

relationship which expresses the permittivity of the oil-water mixture wom −,ε  in terms 

of the permittivity wε  of the dispersed phase (water), the permittivity oε  of the 

continuous phase (oil) and the volume fraction wα  of dispersed phase (water).  
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   Equation (2.5a) 

 

In oil-water-gas mixtures, the formula which expresses the permittivity mε  of the oil-

water-gas mixture in terms of the permittivity liqε  of the liquid (oil and water), the 

permittivity gε  of the gas and the gas volume fraction α  is [73]; 
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   Equation (2.5b) 

 

It should be noted that, the capacitance technique is used only when the continuous 

phase is non-conducting. However, if the continuous phase is conducting (e.g. gas–

water two-phase flow), the Maxwell equation is given by; 

2
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m  

     Equation (2.6) 
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where mσ and wσ are the  conductivities of the mixture and water respectively and 

α is the gas volume fraction. 

An extensive review of the electrical capacitance technique in multiphase flows was 

provided, for example, by Beek (1967) [74], Ramu and Rao (1973) [75], Shu et al. 

(1982) [76] and May et al. (2008) [77]. 

 

2.1.1.4 Gamma ray attenuation  

 

The gamma ray attenuation technique has been extensively used to measure the 

average gas and liquid volume fraction of gas-liquid two phase flows [78]. The idea 

behind this technique is that gamma rays are absorbed at different rates by different 

materials. The measurement of component ratios in multiphase flow using gamma-

ray attenuation was first suggested by Abouelwafa and Kendall (1980) [79].  

A gamma-ray densitometer consists of a radioactive source and a detector placed in a 

way so that the beam of gamma rays passes through the flow and is monitored on the 

opposite side of the multiphase mixture. The amount of radiation that is absorbed or 

scattered by the fluid is a function of both the density and the energy level of the 

source (see Figure 2-3). 

 

For a homogenous medium, the intensity I, of the received beam at the detector is 

given by; 

z
eII

µ−= 0  

     Equation (2.7) 

 

where I0 is the initial radiation intensity, µ is the total attenuation coefficient per unit 

of length of the fluid and z is the gamma ray path length through the medium. 

 

 

 

 

 

 

Figure 2-3: Gamma ray attenuation 
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Petrick and Swanson (1958) [80] studied how the distribution of the phases within the 

flow effects the measurement of the void fraction. In this study, two hypothetical 

flows were studied as described below. 

 

(i) In the first case, they proposed a hypothetical flow where the phases (i.e. gas and 

liquid) are arranged in layers at right angles to the radiation beam as shown in Figure 

2-4 ( see also Lucas (1987) [81]). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2-4: Gamma ray densitometer: A hypothetical flow where the liquid and 

gas phases are in Layers perpendicular to the radiation beam 

 

For the above case, the void fraction is given by; 
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     Equation (2.8) 

where I  is the intensity of the received beam at the detector in the presence of the 

homogeneous mixture, liqI  is the intensity of the received beam at the detector with 

the pipe full of liquid only and gI  is the intensity of the received beam at the detector 

with the pipe full of gas only. 
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(ii) In the second case, they considered a hypothetical flow where the phases are 

arranged in layers parallel to the beam as shown in Figure 2-5. 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-5: Gamma ray densitometer: A hypothetical flow where the phases are 

arranged in Layers parallel to the radiation beam 

 

 

If the beam applied is horizontal to the fluid layers then the void fraction is given by; 

 

liq

liq
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II

−
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α  

     Equation (2.9) 

 

The Gamma-ray detector can be calibrated by performing a static test on the known 

single phase fluid. This can be achieved by isolating the multiphase flow meter first 

and then performing a static single test measurement on a single phase flow. 

 

One of the major limitations of the single beam gamma ray attenuation technique 

described above is that the average void fraction is measured across a single pipe 

diameter. In other words, the estimated value of the void fraction may not represent 

the true value of the actual mean void fraction within the mixture. To overcome this 

problem, dual or multiple energy gamma ray attenuation methods can be used. For 
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more information on dual and multiple gamma ray attenuation techniques refer for 

example, to [80,82-87]. 

 

2.1.1.5 Quick closing valve technique 

 

This technique is a common technique for measuring the average gas volume fraction 

in gas-liquid two phase flows. The basic idea behind this technique is that, by 

simultaneously closing valves at either end of the test section the gas and the liquid 

can be trapped see Figure 2-6. 

 

 

 

Figure 2-6: Quick closing valve technique 

 

The mean gas volume fraction α  can then be calculated using; 
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   Equation (2.10) 

 

Once the mean gas volume fraction α  is obtained, the mean liquid volume fraction 

liqα  can be easily determined using; 

 

αα −= 1liq  

   Equation (2.11) 

 

For more information about quick closing valve technique, see for example, [88,89] 

 

2.1.1.6 Electrical impedance tomography (EIT) 

 

Electrical impedance tomography (EIT) is a non- invasive visualisation technique that 

allows imaging of the distribution of electrical properties (e.g. capacitance and 

resistance) of a multiphase flow within a medium (e.g. a pipe). The idea of EIT is to 

reconstruct an image of a component based on its spatial distribution of electrical 

properties [90,91]. This enables the phase fractions to be measured.   

 

The main electrical properties measured with EIT are resistance and capacitance. The 

electrical properties of multiphase flows will specify the type of the electrical 

impedance tomography system. Therefore, if the measured property is resistance then 

the electrical resistance tomography (ERT) is used but if the measured property is 

capacitance then the electrical capacitance tomography is used (ECT).  It should be 

noted that ERT is appropriate for a conductive multiphase mixture where the 

continuous phase is a conductive phase while ECT is used in a non-conductive 

multiphase mixture. More information regarding EIT can be found in [92-97] 

 

2.1.1.7  Sampling technique 

 

One of the sampling techniques in a multiphase flow technology is called ‘internal’ or 

‘grab’ sampling. As the name indicates, internal or grab sampling is a process 
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whereby part (a sample) of a multiphase flow is periodically extracted from the main 

stream in order to provide information on the composition of the main flow. This 

technique is usually used in oil industry, where the oil-gas-water flow is present, to 

give information on the amount of water present in the oil.  

The idea behind this technique is that a tubular probe with an orifice plate is inserted 

inside the pipe. The orifice plate is used to homogenise the flow. A valve is installed 

on the sampling line which is opened for a short time at regular intervals. When 

suction is applied to the tube, the small volume of fluid can be extracted periodically 

into the collection vessel. The relative amounts of each component can then be 

measured. The composition of the entire flow in a pipeline is then determined by 

taking the average value of these samples over appropriate periods of time. 

 

The major limitation of this technique is that the flow must be homogenised since 

only one single probe is used. In other words, the water and oil must be well mixed 

upstream of the sampling probe otherwise significant error might occur. An extensive 

review on this technique was given by [98,99]. 

 

Another sampling technique used in multiphase flow is ‘Isokinetic sampling’. This 

technique is used for extracting a sample from a multiphase flowing stream at the 

same velocity as the fluid being sampled. The purpose of using this technique is to 

obtain a sample which represents the actual local composition of the bulk fluid in 

multiphase flows. The sampling probe is smaller than that used in the ‘grab’ 

sampling. Again, the major limitation of this technique is that the fluid needs to be 

homogenised. For non-homogenous two phase flows, the phases have different 

velocities and the use of isokinetic sampling in such cases is difficult [100-103].  

 

2.1.2 Phase velocity measurement 

2.1.2.1 Venturi meter  

 

A Venturi is basically designed to be used in a single phase flow. The use of a 

Venturi meter in a single phase flow is well understood and described in ISO 

5167:2003. However, the equations described by ISO standard for the Venturi in a 

single phase flow cannot be directly applied to multiphase flows without correction. 
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Considerable theoretical and experimental studies have been published to describe 

mathematical models of Venturi meters in multiphase flow applications including its 

use in vertical and horizontal flows. The study of multiphase flow through contraction 

meters are described for example by; [47,104,48-50,105-107,51,108-

112,52,53,113,15,114-116].  

 

Venturi meters are often used to measure the velocity of the multiphase flow. The 

Venturi meter, see Figure 2-7, consists of an upstream section (a), a convergent 

section (b), a throat section (c), a divergent section (d) and an outlet section (e). The 

principle of operation of the Venturi meter is that the fluid entering the Venturi is 

accelerated to a higher velocity as the flow area is decreased. In other words, at the 

throat, the pressure decreases to a minimum where the velocity increases to a 

maximum. If the area between an upstream section and the throat section are well 

designed, the relationship between the differential pressure across the Venturi meter 

and the velocity of the fluid (and hence the mass/volume flow rate) can be expressed 

in terms of Bernoulli's equation. It should be noted that in multiphase flow 

measurements, the relationship between the flow rate and the pressure drop across the 

Venturi meter is complex and not simple as in single phase flow and should include 

the flow quality or the phase holdups. 

 

The Venturi meter is essential to the current research. Two Venturis were used in this 

thesis. The first one was the Universal Venturi Tube, UVT, which was used to study 

the bubbly gas-water flows, and the second one was the conductance Venturi meter 

which was used in vertical annular (wet gas) flows and horizontal stratified two phase 

flows. For more information regarding the design and the flow model of these 

Venturis, see Chapters 3 and 4.  
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Figure 2-7: A Venturi meter 

 

2.1.2.2 Acoustic pulse technique 

 

Acoustic techniques are widely used in multiphase flow applications. The principle of 

operation of this technique is that an acoustic pulse is sent through the fluid between 

two transducers placed on either side of the pipe as shown in Figure 2-8. First of all, 

the pulse is sent from the downstream transducer to the upstream transducer and then 

from the upstream transducer to the downstream transducer. The travel time of the 

pulse in both directions is a function of the flow velocity. This technique is also 

known as pulse and return method. 

 
Figure 2-8: Principle of acoustic technique for measuring the velocity of the 

flow[99] 

 

This technique is usually used in homogenous flow where the velocities of the phases 

in the mixture are equal. For more information regarding this technique, see 

[117,118]. 

(a) (b) (d) (e) (c) 

Two pressure taps 
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2.1.2.3 Ultrasonic flow meter 

 

Ultrasound waves are sound waves with a frequency higher than the upper limit of 

human hearing. The basic idea behind ultrasonic techniques is that the required 

information about the measured medium can be obtained by using the reflection, 

absorption, and scattering effects of the medium on the incident ultrasonic waves. 

The ultrasonic signals are transmitted and received using a number of transducers. 

The transducers convert an electrical signal (voltage pulse) into acoustic signal and 

vice-versa. Figure 2-9 shows a schematic diagram of a common configuration of the 

ultrasonic flow meter. 

 

The ultrasonic flow meters are highly accurate, fast response, suitable for a wide 

range of fluids. In addition, there are no mechanical moving parts. 

 

Figure 2-9: A schematic diagram of a commonly used configuration for an 

ultrasonic flow meter 

 

In order to determine the fluid velocity U the following assumptions are made; (i) the 

acoustic path length, d is constant. (ii) the speed of sound, c is constant. The acoustic 

distance which is travelled by the ultrasonic beam can be expressed as; 

θsin
D

d =  

   Equation (2.12) 

The velocity du   of the ultrasonic beam along the downstream path (from T1 to R1) 

and the velocity uu  of ultrasonic beam along the upstream path (from T2 to R2) are 

respectively expressed as; 
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θcosUcud +=  

   Equation (2.13) 

and; 

θcosUcuu −=  

   Equation (2.14) 

where U is the fluid velocity and θ  is the angle shown in Figure 2-9. 

 

For more information regarding this technique, refer to [119-121].  

 

2.1.2.4 Turbine flow meters 

 

A turbine flow meter is one of the most important instruments used in the process 

industries for the measurement of liquid flow rate. A turbine flow meter consists of a 

multi-bladed rotor mounted on free running bearings. Usually two sets of bearings are 

used, one upstream and one downstream of the rotor. A typical turbine flow meter is 

shown in Figure 2-10.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-10: Layout of a typical turbine flow meter 
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The kinetic energy of the flowing liquids turns the rotor. For an ideal linear turbine 

flow meter, the angular speed of the rotor is proportional to the mean liquid velocity 

U through the turbine meter. Therefore, 

 

Ukf turbineturbine =  

   Equation (2.15) 

 

where turbinef  is the frequency in revolutions per second, U is the mean liquid velocity 

in ms-1 and turbinek is the constant of proportionality.  

 

The volumetric flow rate Q  is given by; 

AUQ =  

   Equation (2.16) 

where A is the ‘effective’ cross sectional area of the turbine meter. 

 

Combining Equations (2.15) and (2.16) gives; 

KQfturbine =  

   Equation (2.17) 

where K is the meter constant (or K-factor) and is given by; 

A

k
K =  

   Equation (2.18) 

 

It should be noted that K also represents the number of rotor revolutions per unit 

volume of liquid passing through the turbine flow meter.  

 

A pick-up coil is mounted in the casing of the turbine flow meter so that each time a 

specific rotor blade passes the coil, an output pulse is produced. These output pulses 

are transmitted to a frequency counter and/or totaliser, from which the instantaneous 

liquid flow rate and/or totalised liquid flow can be deduced, using Equation (2.17). It 

should be noted that some turbine flow meters have pick-ups which are sensitive to 

all of the rotor blades, whilst other turbine meters have more than one pick-up. 
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Many attempts have been made to use turbine flow meters in two-phase flows. There 

are several models describing the turbine velocity, turbineU  in a two phase flow. For 

example, Rouhani (1964, 1974) [122,123] derived a model for the turbine velocity 

turbineU  as follows; 
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   Equation (2.19) 

where LU is the liquid velocity, S is the slip ratio, Lρ and Gρ are the liquid and gas 

densities respectively and α is the gas volume fraction. 

 

Aya (1975) [124] modified the Rouhani model to obtain; 
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   Equation (2.20) 

The Rouhani and Aya models are based on the analysis of the different forces acting 

on the turbine blades. The assumptions that were made are; a steady state flow, a flat 

velocity profile and a flat void fraction profile.  

 

One of the major limitations of using a turbine flow meter in two phase flows is that 

for intermittent flow conditions, changes in angular momentum of the rotor and the 

fluid rotating within the rotor will occur. Therefore, the speed of the rotation does not 

truly represent the instantaneous value of the mass flux in a turbine flow meter [99]. 

Considerable theoretical and experimental studies have been published on the 

behaviour of the turbine flow meters in two phase flows, see for example; 

[125,126,124,127-129].  
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2.1.2.5 Vortex shedding meters 

 

Vortex shedding flow meters are widely used for measuring the liquid flow rate in a 

single phase flow. In common with the turbine flow meter discussed in Section 

2.1.2.4, vortex shedding meters produce a frequency that is proportional to the 

volumetric flow rate. Unlike the turbine flow meter however, the vortex shedding 

flow meter relies on the oscillation of a portion of the fluid, not on the motion of a 

mechanical element as in turbine flow meters.  

 

Vortex shedding is a natural phenomenon which arises when any (long) two 

dimensional body (e.g. 2-D bluff body) is placed in a cross-flow. Therefore, when a 

bluff body is placed in a rapidly moving flow stream it produces a disturbance called 

‘vortex shedding’ which is dependent on the fluid velocity and the properties of the 

fluid. Under certain conditions (e.g. an adverse pressure gradient or the presence of 

sharp discontinuities), the boundary layers can separate flow from the two 

dimensional body to form two free shear layers (see Figure 2-11). The free shear 

layers then roll up into vortices, alternately, on either side of the body and are shed 

into the wake. The vortices thus shed proceed downstream in a staggered procession 

known as a Karman vortex street.  

 

The frequency vf  at which the vortices in the Karman vortex street pass a fixed point 

in the wake is proportional to the fluid velocity vortexU , for a wide range of values of 

fluid velocity. For a vortex shedding meter, in a pipe flow, a meter constant vortexK  is 

given by; 

Q

f
K v

vortex =  

              Equation (2.21) 

where Q  is the fluid volumetric flow rate ( vortexAUQ = ). 

 

The meter constant vortexK  can also be expressed in terms of Strouhal number, St  

using; 
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WA

St
Kvortex =  

   Equation (2.22) 

where W is the bluff body base width and A is the effective cross-sectional area of the 

vortex shedding meter. St in Equation (2.22) is given by; 

 

vortex

v

U

Wf
St

 
=  

   Equation (2.23) 

 

The volumetric flow rate Q  through the vortex shedding meter is given by; 

D 
  

ρ

µ AR
Q e=  

   Equation (2.24) 

where eR is the pipe Reynolds number, µ is the viscosity of the fluid and D is the 

pipe internal diameter. 

 

Figure 2-11: A schematic diagram of Vortex shedding 

 

Vortex shedding meters are also used in two phase flows, but here the operation of 

the vortex shedding flow meter is complex because the frequency of shedding is 

strongly dependent on the gas void fraction. Foussat and Hulin (1983) [130] studied 

W 
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the conditions in which vortex shedding flow meter can be used in two phase flows. 

They concluded that at higher gas void fractions and low velocities, the 

implementation of vortex shedding techniques becomes very difficult. They 

recommend that the gas void fraction should be less than 10% and the velocity should 

be higher than 0.45ms-1.  

 

It should be also noted that, in two phase flows, whilst the meter constant vortexK  is 

approximately constant over a wide range of flow rates, its value can change with the 

fluid volumetric flow rate,Q . Also the repeatability of the vortex shedding meters in 

two phase flows is not quite as good as that of turbine flow meters. These facts have 

implications for the level of accuracy that can be expected from vortex shedding 

meters in multiphase flow applications. More details on the use of vortex shedding 

flow meters in two phase flows can be found in [131-133]. 

 

2.1.2.6 Cross correlation technique 

 

A fluid velocity in a pipe can be measured using cross-correlation techniques and 

signal processing methods (see Figure 2-12). A full review of the cross-correlation 

flow meters is given by [134]. The idea behind the cross-correlation technique is that 

some properties of the flow are measured by two identical sensors separated by a 

known distance. As the flow passes between the two sensors the output signal pattern 

x(t) from the first sensor will be repeated after a short period of time (dt) at the 

second sensor y(t). The time lag between y(t) and x(t) corresponds to the time taken 

for  discontinuities in the flow to travel between sensor (x) and sensor (y). A cross-

correlation algorithm is then applied to x(t) and y(t). These signals are compared to 

find the time elapsed between the maximum similarities in the two signals. This time 

shift corresponds to the time it takes the flow to travel from sensor (x) to sensor (y). If 

the distance between the sensors is known then the velocity of the flow can easily be 

determined.  
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Figure 2-12:  A schematic diagram of a Cross-correlation flow meter 

 

The sensing (detecting) techniques where the cross-correlation method is often used 

are (for example); electrical impedance techniques [135,136], optical probes [137], 

ultrasound sensors [138] and X-or-gamma ray densitometers [139,140].  

 

The cross-correlation function, )(τxyR of two random signals, )(tx and )(ty can be 

mathematically expressed as; 

∫ −=
∞→

T

T
xy dttytx

T
R

0

 )().(
1

lim)( ττ  

   Equation (2.25) 

where τ is variable time delay and T is time period over which the signals )(tx and 

)(ty are sampled. 
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The cross-correlation function, )(τxyR is plotted as a function ofτ . The maximum 

value (peak) of )(τxyR will occur at pττ = (where pτ is the time shift between the 

maximum similarities in the two measurement signals). Thus pτ can be measured by 

obtaining the value of τ which gives a maximum value of )(τxyR . Since the distance 

between two sensors, L is known, the average fluid velocity, U  can be expressed as; 

p

L
U

τ
=  

   Equation (2.26) 

For more information on multiphase flow metering techniques including phase 

fraction measurement methods (such as; neutron absorption and scattering, infrared, 

ultrasound, and others) and the phase velocity measurement methods (such as; laser 

doppler anemometry (LDA), positive displacement meter, magnetic flow meter and 

others), refer to [18,19,99,69].  

 

2.2 Previous models on Venturis and Orifice meters used for multiphase flow 

measurement 

 

As mentioned earlier, the purpose of studying the previous models for the Venturi 

and orifice meters in this section is to show the dependency of these correlations on 

the mass flow quality, x. Therefore, this section is not intended to give more details 

about the derivation of these models. For more details about the derivation of the 

models, refer to the author’s M.Sc. dissertation [54].  

 

The previous models for Venturi and orifice meters presented in this section include; 

Murdock (1962) [47], Chisholm (1967,1977) [48,49], Smith and Leang (1975) [50], 

Lin (1982) [51], de Leeuw (1994,1997) [52,53] and Steven (2002) [15]. At the end of 

this section it will be seen that all of the above correlations, which play an important 

role in the literature, depend on the mass flow quality, x. In practice, online 

measurement of x is difficult and not practical in nearly all multiphase flow 

applications. This demonstrates the need for investigating a new model which is not 

dependent on the mass flow quality x. This new model is one of the main objectives 
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in the current research and is described, in detail, in the next chapter (specifically, in 

Section 3.2). 

 
2.2.1 Murdock correlation 

2.2.1.1 Summary of Murdock correlation 

  

Murdock (1962) [47] carried out a study on the general case of two phase flow 

through an orifice plate meter which was not restricted to only wet gas flows. 

Murdock developed a rational equation modifying the single phase equation by 

introducing an experimental constant (correction factor). He considers a two phase 

flow to be a separated flow (stratified flow) and he computed the total mass flow rate 

using an experimentally obtained constant (constant=1.26 ) and assumed that the 

quality of the mixture was known. He stated that the two phase flow might be 

computed with a tolerance of 1.5 percent. 

 

The correction factor in Murdock correlation was a function of the modified version 

of Lockhart-Martinelli parameter defined as the ratio of the superficial flows 

momentum pressure drops and not the friction pressure drops as in the original 

definition of Lockhart-Martinelli parameter. The modified Lockhart-Martinelli 

parameter modX  was given by; 
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                                                                                                               Equation (2.27) 

where P∆ is the pressure drop, m& is the mass flow rate, k is the flow coefficient 

(including the respective product of the velocity of approach, the discharge 

coefficient and the net expansion factor), ρ is the density and x is the mass flow 

quality. The subscripts w and g refer to the water and gas phases flowing alone 

respectively.   

The gas mass flow rate in Murdock correlation is given by; 
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   Equation (2.28) 
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where x is the mass flow quality, tA is the area at the constriction, TPP∆ is the two 

phase pressure drop and apparentgm )( &  is the gas mass flow rate under two phase 

differential pressure [ )2)( gTPgtapparentg PkAm ρ∆=& ] 

 

Equation (2.28) can be written in terms of modified Lockhart-Martinelli parameter 

when Equation (2.27) is substituted into Equation (2.28); 
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                                                                                                               Equation (2.29) 

When the Venturi is used in water-gas annular flows the measured differential 

pressure TPP∆  will be higher than if the flow was gas phase alone, gP∆  [141]. If this 

additional pressure drop is not corrected for then it will lead to an over-reading of the 

gas mass flow rate, MurdockRO.  (see Equation (2.30)). 
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                                                                                                               Equation (2.30) 

 where )( gm& is the corrected gas mass flow rate. 

 

It is well known that; 
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                                                                                                               Equation (2.31) 

 

The water mass flow rate wm&  in the Murdock correlation can be obtained by 

substituting Equations (2.31) into (2.28) and solving for wm& . Then; 
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   Equation (2.32) 
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Equation (2.32) can be written in terms of modified Lockhart-Martinelli parameter by 

substituting Equations (2.27) into (2.32); 
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                                                                                                               Equation (2.33)                             

It is well known that the mass flow quality x is given by; 

T

g

m

m
x

&

&
=  

                                                                                                               Equation (2.34) 

where Tm& is the total mass flow rate. 

 

Substituting Equations (2.34) into (2.28) and solving for Tm&  gives the total mass flow 

rate in the Murdock correlation (see Equation (2.35)). 
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   Equation (2.35) 

  

2.2.1.2 Conditions and assumptions of the Murdock correlation 

 

The conditions and assumptions of Murdock correlation can be summarized as; 

(i) The model assumes zero interfacial shear stress. 

(ii) Orifice diameter (mm): 25.4, 31.7 

(iii) Pipe diameter (mm): 63.5, 102. 

(iv) The diameter ratio ( β ): 0.25 and 0.5. 

(v) The standard taps locations of radius: (1D and 1/2D). 

(vi) The range of modX (
g

w

P

P
X

∆

∆
=mod  ): 0.41 – 0.25 

(vii) The range of 
g

w

ρ

ρ
: 3.9 – 34.7 
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(viii) The minimum liquid Reynolds number: .50Re =w  

(ix) The minimum gas Reynolds number: 000,10Re =g , for more details, refer 

to [47,54] 

 

2.2.1.3 Limitations of Murdock correlation 

 

(i) The Murdock correlation is based on prior knowledge of the mass flow 

quality, x (prior knowledge of gas and liquid flow rates). Therefore, 

measuring the mass flow quality online is difficult and not practical. 

(ii) The Murdock correlation uses a simplified model of a two phase flow through 

the constriction meter in which it assumes that there is no friction between the 

phases. The friction influences can be neglected only when (i) the viscosities 

of the phases are small and (ii) the slip ratio between phases is negligible. Due 

to neglecting the influence of the friction between the phases, Agar and 

Farchy (2002) [142] showed that the Murdock correlation is not expected to 

give highly accurate results in wet gas flow applications.  

 

2.2.2 Chisholm correlation  

2.2.2.1 Summary of Chisholm correlation 

 

The Chisholm correlation [48,49] is a function of pressure and the modified 

Lockhart-Martinelli parameter, modX . The flow is assumed stratified flow. Chisholm 

uses the modified Lockhart-Martinelli parameter and the effect of interfacial shear 

force between the phases is also considered. Chisholm studied a general two phase 

flow through an orifice plate and then later modified his correlation for higher quality 

conditions. Chisholm stated that when the modified Lockhart-Martinelli parameter 

1mod >X , then the slip ratio, S, is given by; 
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   Equation (2.36) 

and when 1mod <X , the slip ratio is given by; 
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   Equation (2.37) 

where hρ is the homogenous density. 

 

The gas mass flow rate in Chisholm correlation is given by, (Steven, 2002); 

 

 

   Equation (2.38) 

 

Equation (2.38) can be re-written in terms of the over-reading factor, ChisholmRO.  
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   Equation (2.39) 

 

The Chisholm constant C in Equation (2.38) is defined as; 
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   Equation (2.40) 

 

where S is the velocity ratio (slip velocity) and is defined by Equations (2.36) or 

(2.37). 

 

2.2.2.2 Conditions and assumptions of the Chisholm correlation 

 

The conditions and assumptions of the Chisholm correlation are as follows; 
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(i) Orifice diameter (mm): 9.5 – 25.4 

(ii) Pipe diameter (mm): 51. 

(iii) Range of modified Lockhart-Martinelli parameter, modX : 0.5 - 5.0 

(iv) Range of 
g

w

ρ

ρ
   : ~ 29. 

(v) Value of C ( modX , from experiment): 5.3 

(vi) Value of C ( modX <1, from theoretical {
4
1

4
1










ρ

ρ
+









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



ρ

ρ
=

w

g

g

wC  }): 5.57 

(vii) The flow is assumed to be stratified flow. 

(viii) The shear force of boundary is considered, for more details see [48,49,54]. 

 

2.2.2.3 Limitations  of Chisholm correlation 

(i) The velocity ratio throughout the orifice meter is assumed 

constant.  

(ii) Again, the Chisholm correlation is based on prior knowledge of the 

mass flow quality, x.  

 

2.2.3 Lin correlation  

2.2.3.1 Summary of Lin correlation 

 

The Lin correction factor LinK  is a function of the velocity ratio S, and the density 

ratio wg ρρ . Lin (1982) [51] also uses the simplified Lockhart-Martinelli parameter. 

Lin includes the effect of the shear force between the phases in his correlation. He 

developed his model based on a separated flow model (i.e. for general stratified two 

phase flow) and he compared his model against the experimental data. This 

comparison showed that the Lin model can be used to calculate the flow rate or the 

quality of vapour-liquid (or steam-water) mixture in the range 0.00455 to 0.328 of the 

density ratio wg ρρ , and in pipe sizes ranging from 8 to 75 mm (β = 0.25 to 0.75).  

The corrective coefficient LinK  in Lin correlation is given by; 
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   Equation (2.41) 

The gas mass flow rate in the Lin correlation is given by; 
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                 Equation (2.42) 

 

In terms of an over-reading factor, LinRO. , Equation (2.42) can be written as; 
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   Equation (2.43) 

 

The water mass flow rate in Lin correlation can be expressed as; 
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   Equation (2.44) 

 

2.2.3.2 Conditions and assumptions of Lin correlation 

 

(i) The gas and liquid (water) phases flow separately through an orifice. 

(ii) The pipe diameter (mm): 32. 

(iii) The diameter ratio (β): 0.321 – 0.624 

(iv) The density ratio wg ρρ  : 0.1425 – 0.328 
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(v) The range of the mass flow quality x: (0 – 1.0). 

(vi) The orifice diameter (mm): 10.0, 20.0 

(vii) Lin assumes that the superficial flow coefficients gk and wk (including the 

respective product of the velocity of approach, the discharge coefficient 

and the net expansion factor. Note: expansion factor for water is 1) are 

equal. 

(viii) Line uses the modified Lockhart-Martinelli parameter. 

(ix)  The mass velocity passing through orifice ranged from 917.16 to 1477.42 

kg/m2.s. 

(x) The tested pressure ratios (P/Pc) were: 0.5698, 0.7108, 0.7401 and 0.8319, 

and the respective density ratios (ρg/ ρw) were: 0.1425, 0.2150, 0.2450 and 

0.3280. (Pc is the critical pressure), for more information, refer to [51,54] . 

 

2.2.3.3 Limitation of Lin correlation 

 

i) Again, prior knowledge of the gas and liquid mass flow rates is needed 

(i.e. mass flow quality must be known).  

 

 

2.2.4 The Smith and Leang correlation 

2.2.4.1 Summary of Smith and Leang correlation 

 

In general, two correlation approaches are used in two-phase flow. The first uses a 

function to relate the pseudo single-phase flow to the two-phase flow rate. The other 

uses a blockage factor (BF) to determine the gas mass flow rate. Smith and Leang 

(1975) [50] developed a model which accounts for the liquid presence by introducing 

a parameter called a blockage factor (BF) that takes account of the partial blockage of 

the pipe area by the liquid phase [15]. The Smith and Leang correlation can be used 

for orifice plates and Venturi meters. The (BF) is given by;  

2

00183.0
4211.0637.0)(

x
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   Equation (2.45) 

where x is the mass flow quality. 
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It is well known that, the single gas mass flow rate gm&  through a Venturi/orifice is 

given by; 

gggtg PkAm ∆= ρ2&  

   Equation (2.46) 

where tA  is the area at the constriction, gk is the gas flow coefficient (including the 

respective product of the velocity of approach, the discharge coefficient and the net 

expansion factor), gP∆ is the gas pressure drop and gρ is the gas density. 

  

The Smith and Leang correlation solves for the single phase flow rate directly rather 

than a pseudo rate (i.e. introducing the (BF) directly into Equation (2.46) and taking 

into accounts the gas flow area gA ). Therefore; 

ggggg PBFAkm ρ∆= 2)(&  

   Equation (2.47) 

 

The over-reading factor, LSRO &.  in Smith and Leang correlation can be expressed as; 

                              

2

& 00183.0
4211.0637.0

1
)(

1
.

x
x

BF
RO LS

−+

==  

             Equation (2.48) 

 

2.2.4.2 Conditions and assumptions of Smith and Leang correlation 

 

The conditions and assumptions of the Smith and Leang correlation can be 

summarised as; 

(i) Higher quality region is defined as 1.0>x . 

(ii) Lower quality region is defined as 1.0<x . 

(iii) BF would be linear at higher quality values. 

(iv) Smith and Leang (1975) used the same experimental data as James (1965), 

Murdock (1962) and Marriott (1970), for more details, see [50,54].  
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2.2.4.3 Limitations Smith and Leang correlation 

 

i) Again, Smith and Leang correlation is based on prior knowledge of the mass 

flow quality.  

ii) The model uses empirical method to define the blockage factor.  

 

2.2.5 The de Leeuw correlation 

2.2.5.1 Summary of de Leeuw correlation 

 

The de Leeuw correlation [52,53] uses the Venturi in wet gas applications. This 

correlation is a modified form of Chisholm correlation and is used to predict the 

effect of the presence of the liquid phase on Venturi meter reading for a wet gas 

horizontal flow application. The correction is based on experimental data. de Leeuw 

claimed that the deviations between his correlation and the  experimental data was 

less than 2%. The major difference between the de Leeuw correlation and the other 

well known orifice plate correlations (e.g. Murdock and Chisholm) is that the de 

Leeuw correlation is not only a function of the Lockhart-Martinelli parameter and 

pressure drop as with the Murdock and Chisholm correlations but does depend on the 

gas and liquid densiometric Froude numbers.  

 

de Leeuw mentioned that the best representation for the wet gas flow conditions 

should be through using the gas and liquid densiometric Froude numbers gFr  and lFr  

which are respectively expressed as; 

 

gw

gsg

g
gD

U
Fr

ρρ

ρ

−
=  

               Equation (2.49) 

and;  

gw

wsw
l

gD

U
Fr

ρρ

ρ

−
=  

   Equation (2.50) 
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where D, g, sgU  and swU  are the pipe diameter, 9.81ms-2, the superficial gas velocity, 

and the superficial liquid (water) velocity.  

 

It should be noted that the Froude numbers (Equations (2.49) and (2.50)) are purely 

empirical, no mathematical model was used.  

 

de Leeuw stated that the ratio of the liquid  Froude number to the gas Froude number 

equals the Lockhart-Martinelli parameter X. de Leeuw used the simplified version of 

the modified Lockhart-Martinelli parameter, simpX  by substituting wg kk = in 

Equation (2.27). Therefore;  
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   Equation (2.51) 

 

The de Leeuw correlation is given in the form of Chisholm correlation (Equation 

(2.38)) with the constant 1/4 replaced by a parameter denoted as n, where n is a 

function of the gas densiometric Froude number, gFr (i.e. a function of the gas flow 

rate, the fluid density and the meter geometry) and can be expressed as; 

n = 0.41       for  5.15.0 ≤≤ gFr   

   Equation (2.52) 

 

)1(606.0 746.0 gFr
en

−
−=    for 5.1≥gFr   

   Equation (2.53) 

 

Replacing the constant term 1/4 in Equation (2.38) by n gives; 
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   Equation (2.54) 
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where gk is the gas flow coefficient (including the respective product of the velocity 

of approach, the discharge coefficient and the net expansion factor), tA  is the area at 

the constriction, TPP∆ is the two phase pressure drop and LeeuwC is the modified 

Chisholm parameter defined by de Leeuw and can be written as; 

n

w

g

n

g

w
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ρ
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ρ

ρ
 

   Equation (2.55) 

 

where n is defined by Equations (2.52) and (2.53) 

 

The gas mass flow rate over-reading factor in de Leeuw correlation can be expressed 

as; 
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   Equation (2.56) 

 

The water mass flow rate in de Leeuw correlation is given by; 
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   Equation (2.57) 

 

where wk is the water flow coefficient (including the respective product of the 

velocity of approach and the discharge coefficient). 

 

2.2.5.2 Conditions and assumptions of de Leeuw correlation 

 

The experimental data for a Venturi meter in the de Leeuw correlation is summarised 

in Table 2-1. 
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Table 2-1: Summary of experimental data (de Leeuw correlation) [52-54] 
 

P 

bar 

Gas 

vel. 

[m/s] 

Gas 

Froude 

number 

 

Liq. 

vel. 

[m/s] 

Liquid 

Froude 

number 

Lockhart-

Martinelli 

parameter 

LGR 

[m
3
/10

6 

nm
3
] 

GVF 

[%] 

90 12 4.8 0-1.2 0-1.31 0-0.3 0-1000 100-90 

 8 3.2 0-0.9 0-0.97 0-0.3 0-1000 100-90 

 4 1.6 0-0.4 0-0.44 0-0.3 0-1000 100-90 

45 11.4 3.2 0-0.8 0-0.85 0-0.3 0-1500 100-92 

 5.8 1.6 0-0.4 0-0.42 0-0.3 0-1500 100-92 

30 14.5 3.2 0-0.8 0-0.83 0-0.3 0-1800 100-94 

 7.3 1.6 0-0.4 0-0.41 0-0.3 0-1800 100-94 

15 17 2.5 0-0.7 0-0.71 0-0.3 0-2500 100-96 

 10 1.5 0-0.4 0-0.41 0-0.3 0-2500 100-96 

 

 

2.2.5.3 Limitations of de Leeuw correlation 

 

(i) The Froude number in de Lueew correlation is purely empirical, no 

mathematical model was used.  

(ii) de Leeuw uses the simplified definition of the modified Lockhart-

Martinelli parameter which is a function of the mass flow quality 

x. In other words, prior knowledge of the mass flow quality is 

needed. 

 

2.2.6 Steven correlation   

2.2.6.1 Summary of Steven correlation 

 

Steven (2002) [15] found that, the de Leeuw correlation which is based on 4 inches 

(100mm) as the Venturi diameter with β = 0.40, was not suitable for NEL wet gas 

loop, (i.e. for the Venturi of a diameter of 6 inches and β = 0.55). Steven investigated 

a new correlation with new independent data from the NEL wet gas loop that would 
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give a better fit for a 6 inch Venturi and 0.55 diameter ratio geometry. The Steven 

correlation is also based on the Froude number. The experiment was conducted for 

three pressures (20, 40 and 60 bar). The Steven correlation is based on the form; 

),( g
TP FrXf
P

P
=

∆

∆
 

   Equation (2.58) 

 

The particular form of equation found to be the overall best fit for each of the three 

pressures used in Steven correlations is given by; 
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               Equation (2.59) 

 

where the constants SteA , SteB , SteC  and SteD  are respectively given by; 

 

146.18568.38951.2454
2

+







−








=

w

g

w

g

SteA
ρ

ρ

ρ

ρ
 

   Equation (2.60) 
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   Equation (2.61) 
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   Equation (2.62) 
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   Equation (2.63) 

 

The gas mass flow rate in Steven correlation can be expressed as; 
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   Equation (2.64) 

 

The gas mass flow rate over-reading factor, StevenRO. , can be written as; 
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   Equation (2.65) 

 

2.2.6.2 Conditions and assumptions of the Steven correlation 

 

The conditions and assumptions of Steven correlation can be summarised as follows; 

 

(i) The experiment was conducted for three pressures (20, 40 and 60 bar). 

(ii) The experiment has been run under four gas flow rates (400, 600, 800 and 

1000 m3/h). 

(iii) At a gas flow rate of 1000 m3/h, the desired upper range of the liquid flow 

rate could not be reached. 

(iv) The maximum liquid flow rate at which the blower could maintain a gas 

flow rate of 1000m3/h was at the upper end of the equipment range. 

(v) The lower liquid flow rate limits were close to zero as possible. 

(vi) The Venturi diameter: 6 inches. 

(vii) The diameter ratio, β: 0.55. 

(viii) The system fluid was nitrogen and kerosene, (substitute as the fluids 

simulating wet natural gas flows).  

(ix) Minimum value of modX : 0.001312. 

(x) Maximum value of modX : 
2

max
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(xi) The liquid flow coefficient Kl is assumed to be the product of the Venturi 

meter’s velocity of approach and the standard discharge coefficient when t 

Re < 106, i.e Cd = 0.995. In other words; )()
)1

1
(

4 dw Ck ×
β−

=  

(xii) Gas flow coefficient kg : due to the high value of Re for the superficial gas 

flow rates, the Venturi meter had to be calibrated at the three test 

pressures:  

For 20 bar;   046511.1001583806.0 +−= gg mk &  

For 40 bar;     051785.100125486.0 +−= gg mk &  

For 60 bar;    05646.10009251669.0 +−= gg mk &  

 

2.2.6.3 Limitations  

 

(i) The Steven correlation is a function of the modified Lockhart-Martinelli 

parameter which is a function of the mass flow quality. 

(ii) Steven applied the data using a surface fit software package. The limits of 

Steven correlation are the limits of the data set used to create it. 
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Summary 

 

A review of existing techniques for measuring multiphase flows was presented in 

Section 2.1. Different measurement principles were described which include phase 

fraction measurements (such as, differential pressure technique, electrical 

conductance technique, electrical capacitance technique, gamma ray attenuation, 

quick closing valve, EIT tomography, internal (grab) sampling and isokinetic 

sampling techniques) and the phase velocity measurements (such as, a Venturi meter, 

acoustic pulse, ultrasound flow meter, turbine flow meter, vortex shedding meter and 

cross-correlation technique).  

 

Considerable theoretical and experimental studies have been published to describe 

mathematical models of the Venturi and orifice meters in multiphase flow 

applications such as, Murdock, Chisholm, Lin, Smith and Leang, de Leeuw and 

Steven correlations (see Section 2.2).  

 

These correlations are based on the mass flow quality, x. In other words, prior 

knowledge of the mass flow quality is needed. In fact, online measurement of the 

mass flow quality is difficult and not practical in nearly all multiphase flow 

applications. 

 

The difficulty that arises from the online measurement of the mass flow quality for 

the previous correlations reflects the need to investigate a new model which is not 

dependent on the mass flow quality x. The development of such a model is one of the 

main objectives in the current research and is described, in detail, in the next chapter 

(specifically in Section 3.2). The new model depends on the measurement of the gas 

volume fraction at the inlet and the throat of the Venturi rather than requiring prior 

knowledge of the mass flow quality as in previous correlations, which makes the 

measurement technique described in this thesis more practical. The measurement of 

the gas volume fraction at the inlet and the throat of the Venturi was achieved by 

using a conductance multiphase flow meter.  
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The main aim of the research described in this thesis is to develop a novel 

conductance multiphase flow meter which is capable of measuring the gas and the 

water flow rates in two-phase, water-gas, water continuous, vertical annular flows 

and horizontal stratified flows. The separated annular and stratified flows are complex 

and the accurate measurement of the phase flow rate in such flows constitutes a major 

challenge in multiphase flow applications. The conductance multiphase flow meter 

consists of the Conductance Inlet Void Fraction Meter with two ring electrodes flush 

mounted with the inner surface of the pipe, which is capable of measuring the gas 

volume fraction at the inlet of the Venturi and the Conductance Multiphase Venturi 

Meter (CMVM), with two ring electrodes flush mounted with the inner surface of the 

throat section, which is capable of measuring the gas volume fraction at the throat of 

the Venturi meter. The reason for choosing the Venturi meters over other common 

differential pressure devices (e.g. orifice plates) in the current research is that the 

Venturi meter has a smooth flow profile that reduces the frictional losses which in 

turn, increases the reliability, repeatability and predictability of the device. 
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Chapter 3 

Mathematical Modelling of a Multiphase 

Venturi Meter 

Introduction 

  

Differential pressure devices can be used in multiphase flow metering. The most 

common differential pressure device is the Venturi meter, but orifice plates have also 

been used widely. The advantage of the Venturi meter over the orifice plate is that the 

Venturi meter is much more predictable and repeatable than the orifice plate for a 

wide range of flow conditions. Further, the smooth flow profile in a Venturi meter 

reduces frictional losses which (i) increases the reliability of the device and (ii) 

improves the pressure recovery [143].  

 

In multiphase flow measurements, the relationship between the flow rate and the 

pressure drop across the Venturi meter is not simple as in single phase flow and 

should include the flow quality or the phase holdups. In a homogenous flow model 

where the slip is zero, the mixture densities at the inlet and the throat can be assumed 

equal and substitution of the mixture density at the inlet of the Venturi into the 

Bernoulli equation would be reasonably expected to lead to accurate results. This 

assumption is valid for low gas flow rates where the homogenous flow can be treated 

as a single phase flow. In some cases of two phase flow, the two- phases are normally 

well mixed and behave as a homogenous flow. The two phases are also assumed to 

have unity slip ratio S (i.e. the ratio of the water velocity to the gas velocity is unity) 

and therefore travel with the same velocities. 

Separated flow in a Venturi meter is highly complex (where the velocity ratio, S≠1) 

and the application of a homogenous flow model could not reasonably be expected to 

lead to highly accurate results. In other words, the gas volume fraction at the inlet is 
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not the same as that at the throat of the Venturi. If this is the case, a gas volume 

fraction measurement technique at the throat must also be introduced instead of just 

relying on the gas volume fraction measurement at the inlet of the Venturi. 

 

This chapter describes new mathematical models through a Venturi meter including; 

(i) a vertical/inclined homogenous gas-water two phase flow model 

(see Section 3.1).  

(ii) a horizontal stratified gas-water two phase flow model (see 

Section 3.2.1). 

(iii) a vertical separated (annular) gas-water two phase flow model 

(see Section 3.2.2). 

 

3.1 A homogenous gas-water two phase flow model through a Venturi meter   

 

In the case of homogenous flow where the two phases are normally well mixed, the 

gas and water are assumed to have the same velocity. That is, the velocity ratio or slip 

ratio is unity (S=1). Figure 3-1 is intended to illustrate homogenous gas-water two 

phase flow for the general case of an inclined Venturi meter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1: Homogenous gas-water two phase flow in a Venturi meter 
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From figure 3-1, it is possible to write;  

 

θρ cos21hom twghPPP −−=∆  

                                                                 Equation (3.1)  

where homP∆  is the differential pressure measured, using a dp cell, which is connected 

to the Venturi inlet and throat via water filled lines  in a homogenous flow, 1P and 

2P are the static pressure at the inlet and the throat of the Venturi, wρ is the water 

density, g is the acceleration of the gravity, th and θ  are the pressure tapping 

separation and the angle of inclination from vertical respectively. 

 

From Bernoulli's equation, it is possible to write that; 

 

mvtmm FghUUPP +θρ+−ρ=− cos)(
2
1 2

1
2
221  

                                                                                                     Equation (3.2) 

where mρ is the mixture density, mvF is the frictional pressure loss (from inlet to the 

throat of  the Venturi)  and U is the fluid velocity. The subscripts 1 and 2 refer to the 

inlet and the throat of the Venturi respectively.  

 

Substituting Equation (3.2) into (3.1) gives;  

 

( ) ( )2
1

2
2hom 2

1
cos UUFghP mmvmwt −ρ=−ρ−ρθ+∆  

     Equation (3.3) 

 

Assuming constant mixture density the mass conservation equation is given by; 

 

1

2
21

A

A
UU =  

     Equation (3.4) 

where 1A and 2A are the cross sectional areas at inlet and the throat of the Venturi. 

From Equations (3.3) and (3.4), it is possible to write; 
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2  

                                                                                                                 Equation (3.5) 

 

It is well known that the volumetric flow rate of the homogenous mixture, hom,mQ  can 

be expressed as; 

 

)( 22hom, AUQm =  

     Equation (3.6) 

 

Combining Equations (3.5) and (3.6) gives; 
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                                         Equation (3.7) 

 

mρ  in Equation (3.7) is given by; 

 

)1()1( hom,1hom,1hom,1 α−ρ≈ρα−+ρα=ρ wwgm  

                                                                                                                 Equation (3.8) 

where hom,1α  is the inlet gas volume fraction in the homogenous gas-water two phase 

flow through the Venturi meter and gρ is the gas density. 

 

Instead of using the frictional pressure loss term mvF , a discharge coefficient can be 

used. Involving a homogenous discharge coefficient, hom,dC  and combining 

Equations (3.7) and (3.8) gives; 
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     Equation (3.9) 

 

It is clear from Equation (3.9) that, in order to determine hom,mQ , the gas volume 

fraction, hom,1α  must be known. The gas volume fraction hom,1α  in Equation (3.9) can 

be measured by a differential pressure technique also known as an “online flow 

density meter”.  

 

3.1.1 Measurement of the gas volume fraction in a homogenous gas-water 

flow using the differential pressure technique 

 

The differential pressure technique has proven attractive in the measurement of 

volume fraction. It is simple in operation, easy to handle, non intrusive and low cost. 

This differential pressure technique can be used only in vertical or inclined pipelines. 

 

With reference to Figure 3-2, it is possible to write;  

 

pipempmba FghρPP ,cos ++= θ  

               Equation (3.10) 

where pipemF , is the  frictional pressure loss term between the pressure tappings in the 

parallel pipe section, and where ph is the pressure tapping separation. 

 

The differential pressure pipeP∆ measured by a differential pressure sensor which is 

connected to the tappings via water filled lines can be expressed as; 

 

apwbpipe PghPP −+=∆ θρ cos  

               Equation (3.11) 
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Figure 3-2: Measurement of the gas volume fraction using the differential 

pressure technique 

 

 

Combining Equations (3.10) and (3.11) gives; 

 

)(cos, mwppipempipe ghFP ρρθ −=+∆  

                                       Equation (3.12) 

 

The frictional pressure loss term, pipemF , can be expressed as [144]; 
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               Equation (3.13) 

where f is a single phase friction factor (see Equation (3.27) and Section 7.2), hU  is 

the homogenous velocity (or mixture superficial velocity), D  is the inner pipe 

diameter and ph is the axial pressure tapping separation. 
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Substituting Equation (3.8) into equation (3.12) and solving for hom,1α  gives; 

 

( )
)(cos

,
hom,1

gwP

pipempipe

gh

FP

ρ−ρθ

+∆
=α  

                                                                                                               Equation (3.14) 

 

Once the gas volume fraction, hom,1α  from Equation (3.14) is obtained, the total 

mixture volumetric flow rate in a homogenous flow, hom,mQ  can then be easily 

determined. The gas volumetric flow rate gQ  and the water volumetric flow rate wQ  

may also be needed individually (therefore, hom,hom,1  mg QQ α=  

and hom,hom,1 ) 1( mw QQ α−= ). 

 

3.1.2 A prediction model for the pressure drop sign change in a homogenous 

two phase flow through a Venturi meter 

 

Many differential pressure cells can not read negative differential pressure drops (i.e. 

they can not read a differential pressure if the pressure at the ‘+’ input is less than the 

pressure at the ‘-’ input (see Figure 3-1)). The two phase air-water pressure drop 

across a Venturi meter may change its sign from positive to negative. In other words, 

in a two phase flow through a Venturi, in which the inlet and throat are connected to 

the dp cell via water filled lines, because the mixture density is lower than the density 

of water the pressure at the ‘+’ input of the dp cell can be lower than the pressure at 

the ‘-’ input (see Figure 3-1). This situation can never arise in a single phase flow. A 

new model has been developed to predict the sign change in the pressure drop across 

the dp cell for a vertical and inclined Venturis.  This section describes how the sign 

change of the measured pressure drop can be predicted. The prediction model for the 

pressure drop sign change in two phase flow through a vertical and inclined pipe is 

described in Section 3.1.3.  

It is important that the pressure drop sign change in two phase flow can be predicted 

so that the differential pressure cell can be correctly installed. 
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In terms of the homogenous velocity, hU  the mass conservation equation (see 

Equation (3.4)) can be re-written as; 

2

1
2

A

A
UU h=  

                                                                                                               Equation (3.15) 

where 1UUh =  

 

Combining Equations (3.3), (3.8) and (3.15) gives; 

 

mvtwhw Fgh
A

A
UP +−













−







−=∆ θρααρ cos1)1(

2
1

hom,1

2

2

12
hom,1hom  

               Equation (3.16) 

 

The frictional pressure loss (from the inlet to the throat of the Venturi) mvF can be 

written as; 

*

*22
D

fUh
F htw

mv

ρ
=  

                           Equation (3.17) 

where *D is the average diameter between the inlet and the throat of the Venturi and 

*
hU  is the average homogenous velocity between inlet  and the throat of the Venturi 

and can expressed as; 

( )2
*

2
1

UUU hh +=  

               Equation (3.18) 

 

Combining Equations (3.15) and (3.18) gives; 

 









+=
2

1*

2
5.0

A

A
UU hh  

               Equation (3.19) 
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The homogenous velocity can be expressed in terms of the reference homogenous 

mixture volumetric flow rate, refmQ hom,,  using;  

 

1

hom,,hom,,

1

hom,,

A

QQ

A

Q
U

refwrefgrefm

h

+
==  

               Equation (3.20) 

where hom,,refgQ and hom,,refwQ are the reference gas and water volumetric flow rates 

respectively. 

 

Re-arranging Equation (3.16) gives; 

 

mvh FKUKP +α−α−=∆ 2hom,1
2

hom,11hom )1(  

   Equation (3.21) 

where; 













−







= 1

2
1

2

2

1
1

A

A
K wρ  

   Equation (3.22) 

and; 

θρ cos2 twghK =  

               Equation (3.23) 

 

Equation (3.21) can be re-written as; 

21hom CCP +−=∆  

               Equation (3.24) 

where; 

2hom,11 KC α=  

   Equation (3.25) 

and; 

mvh FUKC +α−= 2
hom,112 )1(  

   Equation (3.26) 
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It is clear from Equation (3.24) that the measured differential pressure across the dp 

cell is negative when; 

21 CC >  

and positive when; 

12 CC >  

 

3.1.3 Prediction model for the pressure drop sign change across the dp cell for 

homogenous two phase flow through a vertical or inclined pipe section 

 

The single phase friction factor, f in Equation (3.13) can be expressed as; 

22 uh

DP
f

pw

w

ρ

∆
=  

                           Equation (3.27) 

where wP∆ is the pressure drop across a parallel pipe section in a single phase flow 

(water only) and u is the single phase (water) velocity. 

Combining Equations (3.13) and (3.14) and solving for pipeP∆  gives; 

 

D

fUh
ghP

hpw

gwppipe

2

hom,1

2
)(cos

ρ
−ρ−ρθα=∆  

               Equation (3.28) 

 

It is clear from equation (3.28) that the pressure drop across the dp cell in two phase 

flow pipeP∆   becomes negative if; 

KU h
ˆ   2 >  

   Equation (3.29) 

where; 

w

gw

f

Dg
K

ρ

ρ−ρθα
=

2

)(cosˆ hom,1  

   Equation (3.30) 

Equation (3.30) can be re-arranged so that;  
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f
kK

hom,1*ˆ α
=  

               Equation (3.31) 

where; 

w

gw Dg
k

ρ

ρρθ

2

)(cos* −
=  

   Equation (3.32) 

 

It should be noted that the constant, *
k  depends on the flow and experimental 

conditions. 

 

3.2 A novel separated two phase flow model 

 

In a separated flow, the assumption of equal velocities for the different phases is no 

longer valid. In other words, the slip ratio S, is not unity. Stratified gas-water two 

phase flow is a separated flow where the gas and water travel with different 

velocities. A new stratified horizontal two phase flow model is described in Section 

3.2.1. A new annular flow model where the liquid film flows at the wall of the pipe 

and the gas core flows at the centre of the pipeline is described in Section 3.2.2.  

 

3.2.1 Stratified gas-water two phase flow model  

 

In horizontal stratified flow, the water phase flows at the bottom of the pipe while the 

gas flows at the top. Each phase travels with its own velocity. 

Figure 3-3 shows a horizontal stratified gas-water two phase flow through a Venturi 

meter. Due to the substantial difference between the water and the gas differential 

pressures across the Venturi in a stratified two phase flow, another low differential 

pressure device (i.e. an inclined manometer) may be used at the top of the Venturi to 

measure the differential pressure drop of the gas phase.  
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It should be noted that the horizontal interface in Figure 3-3 is symbolic only and it 

may not be horizontal in practice. This does not however affect the calculations-even 

if a non-horizontal interface is considered-since the measurement of the gas volume 

fraction at the inlet and the throat of the Venturi is exist.  

 
Figure 3-3: Stratified gas-water two phase flow through a Venturi meter 

 

  For the gas phase, the Bernoulli equation can be written as; 

 

2
222

2
111 2

1
2
1

gggggg UPUP ρρ +=+  

               Equation (3.33) 

where P , ρ and U are the static pressure, the density and the velocity respectively.  

The subscripts 1, 2 and g refer to the inlet, throat of the Venturi and the gas phase 

respectively. 

 

The continuity equation of the gas phase is given by; 

ggggg mAUAU &=ρα=ρα 22221111  

   Equation (3.34) 

where gm& is the gas mass flow rate. 

  D1 D2 
1gα  

1P  

GAS 
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2gα  
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wTPP ,∆  

+     - 
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water 
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gTPP ,∆  
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Water filled 
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The gas density at the inlet of the Venturi 1gρ  is related to the gas density at the 

throat of the Venturi, 2gρ  by the following equation; 

 

γγ ρρ 2

2

1

1

gg

PP
=  

   Equation (3.35) 

where γ is the specific heat ratio or adiabatic index. (
v

p

c

c
=γ ) where pc and vc are the 

specific heats at constant pressure and volume respectively. 

 

Equation (3.35) can be re-arranged to give; 

γρρ 1
12 )ˆ(Pgg =  

   Equation (3.36) 

where; 

1

2ˆ
P

P
P =  

   Equation (3.37) 

Combining Equations (3.34) and (3.36) gives; 

 

γαα 1
222111 )ˆ(PAUAU gg =  

   Equation (3.38) 

Equation (3.38) can be re-written as; 

2

22

112
1

22
2 )ˆ(









=
A

A
UPU gg

α

αγ  

   Equation (3.39) 

Combining Equations (3.33) and (3.36) gives; 

 

{ }2
1

2
2

1
121 )ˆ(

2
1

ggggg UUPPP −=− γρ  

   Equation (3.40) 

Substituting Equation (3.39) into (3.40) gives; 
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











−







=∆=− − 1)ˆ(

2
1 1

2

22

112
11,21

γ

α

α
ρ P

A

A
UPPP gggTPgg  

   Equation (3.41) 

where gTPP ,∆ is the measured gas pressure drop  under two phase flow. The pressure 

lines are gas filled and any differential pressure at the dp cell due to hydrostatic effect 

in the gas lines is negligible and so will be ignored. 

 

Equation (3.41) can be re-written as; 

1)ˆ(

12

1

2

22

11
1

,
1

−








∆
=

− γ

α

αρ
P

A

A

P
U

g

gTP

g  

               Equation (3.42) 

 

Substituting Equation (3.42) into (3.34) and introducing a discharge coefficient 

stdgC , for the gas phase in a horizontal stratified gas-water two phase flow gives;  

 

1)ˆ(

2

1

2

2,2

1,1

,11,
,11111,

−










α

α

α
∆ρ=αρ=

γ−
P

A

A

AC
PAUm

st

st

ststdg

gTPgggstg
&  

               Equation (3.43) 

where stgm ,& is the gas mass flow rate in a horizontal stratified gas-water two phase 

flow through a Venturi meter. The subscript st in Equation (3.43) is added to 

distinguish between a horizontal stratified flow and other flow regimes. 

 

The gas density 1gρ  in Equation (3.43) can be written as; 

1

1
1

rT

P
g =ρ  

   Equation (3.44) 

where 1P  and 1T  are the absolute pressure and absolute temperature at the inlet 

section respectively and r is the specific gas constant and is given by; 
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mM

R
r

1000
=  

   Equation (3.45) 

where R is the universal gas constant and mM is the relative molecular mass of the 

air. 

 

For the liquid phase, the Bernoulli equation can be expressed as; 

 

2
22

2
11 2

1
2
1

wwww UPUP ρρ +=+  

   Equation (3.46) 

where the subscript w refers to the water phase. 

 

The continuity equation of the water phase in a stratified gas-water two phase flow is 

given by; 

wwwww mAUAU &=−=− ραρα 222111 )1()1(  

   Equation (3.47) 

Re-arranging Equation (3.47) gives; 

22

11
12 )1(

)1(
A

A
UU ww

α

α

−

−
=  

   Equation (3.48) 

Substituting Equation (3.48) into (3.46) gives; 
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   Equation (3.49) 

 

Re-arranging Equation (3.49) gives; 

1
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1)(2
2
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
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   Equation (3.50) 
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Substituting Equation (3.50) into (3.47) gives; 

 

1
)1(

)1(

)1(
)(2

2

2,2

1,1

1,1
21,

−








−

−

−
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A

A

A
PPm
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st

st

wstw

α

α

α
ρ&  

   Equation (3.51) 

 

The subscript st is added in Equation (3.51) just to distinguish between a horizontal 

stratified flow and other flow regimes. 

 

Figure 3-4 shows the real shape of the gas-water boundary in the horizontal Venturi 

meter that has been observed in the current investigation. The boundary undergoes a 

step change in height from the inlet to the throat of the Venturi meter.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-4: A real (approximated) air-water boundary through a Venturi meter 

 

By basing the analysis on the water boundary at the interface, the influence of the 

change in water height on the expression of the water mass flow rate through the 

Venturi can be eliminated. With reference to Figure 3-4, Bernoulli’s equation for a 

particle of the water phase at the boundary can be written as; 
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))(5.0(
2
1

2
1

212
2

221
2
11 DDhgUPghUP wwwwww −+++=++ ρρρρ  

   Equation (3.52) 

 

Re-arranging Equation (3.52) gives; 

{ })(5.0)()(
2
1

)( 2121
2
1

2
221 DDhhgUUPP wwww −−−−−=− ρρ  

   Equation (3.53) 

 

Equation (3.53) can be re-written as; 

)(
2
1~

)( 2
1

2
221 www UUPPP −=∆−− ρ  

   Equation (3.54) 

where; 

{ })(5.0)(
~

2121 DDhhgP w −−−−=∆ ρ  

   Equation (3.55) 

 

From Figure 3-4, it is possible to write; 

 

{ } wTPawaw PhDDygPhygP ,221211 ))(5.0()( ∆=+−++−++ ρρ  

   Equation (3.56) 

where wTPP ,∆  is the measured pressure drop across the lower differential pressure 

sensor in Figure 3-4. Note that this dp cell is connected to the Venturi by water filled 

lines. 

 

Re-arranging Equation (3.56) gives; 

 

{ })(5.0)()( 2121,21 DDhhgPPP wwTP −−−−∆=− ρ  

   Equation (3.57) 

Substituting Equation (3.55) into (3.57) gives; 

PPPP wTP

~
)( ,21 ∆+∆=−  

   Equation (3.58) 
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Combining Equations (3.48), (3.54) and (3.58) and introducing a discharge 

coefficient stdwC , for the water phase in a stratified gas-water two phase flow enables 

derivation of the following expression for the water mass flow rate, stwm ,&  in stratified 

gas-water two phase flow; 

wTPw

st

st

st

stdwstw P

A

A

A
Cm ,2

2,2

1,1

1,1
,, 2

1
)1(

)1(

)1(
∆ρ

−








α−

α−

α−
=&  

   Equation (3.59) 

 

In a separated flow, the slip ratio, S is not unity as in homogenous flow. The slip 

ratio, S at the inlet and the throat of the Venturi can be expressed respectively as; 

1

1
1

w

g

U

U
S =  

   Equation (3.60) 

and; 

2

2
2

w

g

U

U
S =  

   Equation (3.61) 

 

Dividing Equation (3.34) by (3.47) and combining Equations (3.36), (3.60) and (3.61)  

gives; 
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   Equation (3.62) 

 

3.2.2 Vertical annular gas-water flow model through a Venturi meter 

 

The new model of a vertical annular gas-water flow through a Venturi meter depends 

on the measurements of the gas volume fractions at the inlet and the throat of the 
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Venturi rather than relying on prior knowledge of the mass flow quality as in 

previous models (see Section 2.2). This model is based on the fact that each phase 

flows separately as shown in Figure 3-5. 

 

 

Figure 3-5: Annular gas-water flow through a Venturi meter 

 

For the gas phase in vertical annular flow, the Bernoulli equation can be written as; 

Hgggg PUPUP ∆+ρ+=ρ+ 2
222

2
111 2

1
2
1

 

   Equation (3.63) 
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where HP∆ is the magnitude of the hydrostatic head loss between the inlet and the 

throat of the Venturi (i.e. between the pressure tappings shown in Figure 3-5). 

From Equations (3.34), (3.36) and (3.63) the following relationship is obtained; 
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   Equation (3.64) 

where wgTPP .∆ is the gas-water two phase differential pressure drop across the Venturi 

in annular flow and is equal to )( 21 PP − . 

 

Equation (3.64) can be re-arranged to give; 
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   Equation (3.65) 

 

Combining Equations (3.34) and (3.65) and introducing a discharge coefficient for 

the gas phase in annular flow gives; 
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   Equation (3.66) 

where wggm ,& and wgdgC , are the predicted gas mass flow rate in annular gas-water flow 

through the Venturi and the gas discharge coefficient in annular flow respectively. 

The subscript wg in Equation (3.66) is added to 1α and 2α  to distinguish between the 

gas volume fraction in annular gas-water flow and other flow regimes. 
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With reference to Figure 3-5 and given that the lines joining the pressure tappings to 

the dp cell are water filled, wgTPP ,∆ in Equation (3.66) can be written as; 

 

measwgvwwgTP PghP ,, ∆−=∆ ρ  

   Equation (3.67) 

where measwgP ,∆ is the differential pressure in annular gas-water flow measured by the 

dP cell. 

 

The hydrostatic head loss term HP∆  in Equation (3.66) can be calculated by making 

the assumption that the mean gas volume fraction in the converging section of the 

Venturi is α  (see Figure 3-6) where; 

2
,2,1 wgwg αα

α
+

=  

   Equation (3.68) 

where wg,1α and wg,2α are the gas volume fractions at the inlet and the throat of the 

Venturi in annular flow. 

 

The hydrostatic head loss term HP∆  can now be expressed as follows (using the 

position of the pressure tappings shown in Figure 3-6); 
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Equation (3.69) 

where ih , ch and tth  are the heights defined in Figure 3-6.      

 

The gas discharge coefficient wgdgC ,  can be expressed as; 
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=  

   Equation (3.70) 

where wgrefgm ,,&  is the reference gas mass flow rate in annular flow.  
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Figure 3-6: Inlet, converging and throat sections of the Venturi meter 

 

For the water phase in vertical annular flow, the Bernoulli equation can be written as; 

Hwwww PUPUP ∆++=+ 2
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ρρ  

   Equation (3.71) 

 

Equations (3.47), (3.48) and (3.71) can now be combined to give the water mass flow 

rate in annular gas-water flow wgwm ,& ;  
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   Equation (3.72) 

where wgdwC , is the water discharge coefficient in annular flow. wgTPP ,∆  and HP∆  are 

defined by Equations (3.67) and (3.69) respectively. Again the subscript wg in 

Equation (3.72) is added to 1α and 2α  to distinguish between the gas volume fraction 

in annular flow and the gas volume fraction in other flow regimes. 

 

It should be noted that for a given phase, the mass flow rate, m& is related to the 

volumetric flow rate, Q  by;  

Qm  ρ=&  

   Equation (3.73) 

where ρ is the density of the phase in question. Hence, the gas and water volumetric 

flow rates can be calculated using Equations (3.66), (3.72) and (3.73). 
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Summary  

 

A mathematical model of a homogenous gas-water two phase flow through a Venturi 

meter has been developed. In homogenous flow, the slip velocity can be assumed to 

be unity. The gas volume fraction throughout the Venturi meter in a homogenous 

flow can be assumed constant. The gas volume fraction at the inlet of the Venturi in a 

homogenous gas-water two phase flow hom,1α  can be measured by a differential 

pressure technique also known as an “online flow density meter”. The measurement 

of the gas volume fraction at the inlet of the Venturi meter enables the volumetric 

flow rate of the homogenous mixture, hom,mQ  to be determined (see Equation (3.9)).  

 

In a separated flow, the assumption of equal phase velocities is no longer valid and 

relying only on measurement of the gas volume fraction at the inlet of the Venturi 

would not reasonably be expected to lead to highly accurate results. New models 

were investigated to measure the gas/water mass flow rate in a stratified/annular two 

phase flows through a Venturi meter. The measurements of the differential pressure 

across the Venturi meter and the gas volume fractions at the inlet and the throat of the 

Venturi enable the gas and the water mass flow rates in separated flows (i.e. 

horizontal stratified and vertical annular flows) to be determined using Equations 

(3.43), (3.59), (3.66) and (3.72). 

 

It is clear that, the advantage of the new separated flow models (see Section 3.2) 

over the previous models described in Section 2.2 is that they do not require prior 

knowledge of mass flow quality, x. In other words, the new models depend only on 

the measurement of 1α  and 2α  which makes the measurement technique more 

practical than those used previously. 



Chapter 4: Design and Construction of a FDM, Universal Venturi meter and a conductance multiphase flow meter 

 
 103  

Chapter 4 

 

 

 

Design and Construction of a Flow Density 

Meter (FDM), Universal Venturi Meter and 

a Conductance Multiphase flow Meter  

 

 
 
 

Introduction  

 

Two Venturis were used in the research described in this thesis. The first Venturi 

which is a Universal Venturi Tube (UVT) (interchangeably called a non-conductance 

UVT in this thesis) was used to study a bubbly ( gas-water two phase flow while the 

second Venturi was used to study separated flows (i.e. annular and stratified flows). 

The second Venturi used in this research is called a Conductance Multiphase Venturi 

Meter (CMVM) because it contains apparatus for measuring the electrical 

conductance of flowing mixtures. The CMVM is combined with the Conductance 

Inlet Void Fraction Meter (CIVFM) to form the conductance multiphase flow meter.  

 

 In a homogenous gas-water flow, the gas volume fraction at the inlet and the throat 

of the Venturi can be assumed equal. Therefore, measurement of the gas volume 

fraction hom,1α  at the inlet of the Venturi enables estimation of the mixture volume 

flow rate hom,mQ  in a homogenous gas-water two phase flow through a Venturi meter 
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using Equation (3.9).  A Flow Density Meter (FDM) was designed and constructed to 

measure the gas volume fraction hom,1α  at the inlet of the non-conductance Venturi 

meter. The UVT was designed and constructed principally to study homogenous gas-

water two phase flows (see Section 4.2). 

 

Separated flow in a Venturi meter is highly complex and, therefore, to measure 

wggm ,& , wgwm ,& , stgm ,&  and stwm ,&  (see Equations (3.43), (3.59), (3.66) and (3.72)) in such 

conditions a gas volume fraction measurement technique must also be introduced at 

the throat of the Venturi instead of just relying on the gas volume fraction 

measurement at the Venturi inlet.  

 

An advanced conductance multiphase flow meter which is capable of measuring the 

gas volume fractions at the inlet and the throat of the Venturi was designed and 

constructed. This device combined the CIVFM and the CMVM. 

 

The CIVFM measured the gas volume fraction at the inlet of the Venturi while the 

CMVM measured the gas volume fraction at the throat of the Venturi meter. This 

arrangement enables gas volume fraction measurements to be made in horizontal 

flows unlike the FDM technique, described in Sections 3.1.1 and 4.1, which relies on 

some vertical separation between the pressure tappings. Two ring electrodes at the 

inlet and two ring electrodes at the throat of the Venturi were used to obtain the gas 

volume fraction at the inlet and the throat of the Venturi [145]. 

 

In this chapter, the design and construction of the FDM which is capable of 

measuring the gas volume fraction at the inlet of the UVT in a bubbly (approximately 

homogenous) gas-water two phase flow is presented in Section 4.1.  The FDM cannot 

be used in horizontal flows but homogenous air-water flows are normally only 

encountered in vertical or near vertical pipelines (and with gas volume fraction less 

than about 17%).  

 

This chapter also presents the design and construction of the UVT and the 

conductance multiphase flow meter which can be used to study homogenous and 
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separated flows respectively (see Sections 4.2 and 4.3). The design of the wall 

conductance sensors that can be used to measure the liquid film flow rate in annular 

gas-water two phase flow is also presented in Section 4.4. 

 

4.1 Design of the Flow Density Meter (FDM)  

 

A combination of the FDM and the non-conductance Venturi meter (or UVT) enables 

the mixture volumetric flow rate in a homogenous gas-water two phase flow to be 

determined (see Equation (3.9)). The design of the UVT is discussed in Section 4.2. 

Figure 4-1 shows the design of the online FDM.  

 

The gauge pressure sensor was used as shown in Figure 4-1. Measured gauge 

pressure was added to atmospheric pressure (from a barometer) to give absolute 

pressure in the FDM. The absolute pressure together with the measured temperature 

(from a thermocouple) in Ko were used to correct the measured reference gas mass 

flow rate from a thermal mass flow meter to a reference gas volumetric flow rate.  

 

In order to determine the gas volume fraction at the inlet of the UVT using the FDM, 

the differential pressure pipeP∆ (see Equation (3.11)) must be measured. A Yokogawa 

dp cell connected to the pressure tappings via water filled lines was installed to do 

this task. The pressure tapping separation in the vertical pipe section is 1m. It should 

be noted that the FDM can be used in vertical and inclined flows (but not horizontal). 

For the current study, it was only used in vertical flows (i.e. 0=θ in Equation (3.14)). 
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Figure 4-1: The design of the FDM 

 

4.2 Design of the Universal Venturi Tube (UVT) 

 

The UVT was used to study vertical bubbly (approximately homogenous) gas-water 

two phase flows, and Figure 4-2 shows the dimensions of the UVT. Basically, this 

Venturi meter was originally designed at the University of Huddersfield to measure 

the water or gas flow rate alone (i.e. single phase flow rate). Since a homogenous 

flow can be treated as a single phase flow, this Venturi design was used in 

conjunction with the FDM described in Section 4.1 to study vertical, bubbly 

(approximately homogenous) gas water two phase flows. 

 

The angles and dimensions of the UVT are identical to the hydraulic shape designed 

by [146]. This Venturi meter is composed of the transition section (which consists of 
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a o40 inlet and a o7 throat cone), the throat section and the o5 outlet section (see 

Figure 4-2). The Venturi meter and its 2D drawing were designed using “Solid 

Works” package.  

 

A differential pressure homP∆  measured by a dp cell connected between the inlet and 

throat of the Venturi meter via water filled lines was necessary to calculate the 

mixture volumetric flow rate hom,mQ  (see Equation (3.9)). This differential pressure 

was measured using a Honeywell differential pressure transmitter.  

 

Figure 4-2: The design of the non-conductance Venturi meter (UVT) 

(a) Assembly of the non-conductance Venturi meter (UVT) 

(b) 2D drawing of the non-conductance Venturi meter (UVT) 
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A schematic diagram of the combined FDM section and the UVT which represents 

the test section used to investigate vertical, bubbly (approximately homogenous) gas 

water two phase flows is shown in Figure 4-3. 

 

 

 
Figure 4-3: A schematic diagram of the FDM and the UVT (insert photo shows- 

the UVT) 
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4.3  Design of the conductance multiphase flow meter 

 

The reason for designing the novel conductance multiphase flow meter is to enable 

measurement of the gas volume fraction at the inlet and the throat of the Venturi 

using an electrical conductance technique. This, in turn, enables the gas and the water 

flow rates to be measured in separated flows (i.e. annular (wet gas) and stratified gas-

water two phase flows) using the theory outlined in Chapter 3. The use of electrical 

conductance techniques means that gas volume fraction measurement is possible even 

in horizontal flows. The FDM technique described in Section 4.1 relies on differential 

pressure measurement and so cannot be used in horizontal flows. Measurement of the 

gas volume fraction at the inlet and the throat of the Venturi gives an advantage over 

previous work because it is not necessary to know the mass flow quality, x (see the 

new mathematical model in Sections 3.2.1 and 3.2.2). This makes the measurement 

technique described in this thesis more reliable and practical. 

 

The conductance multiphase flow meter consists of two parts; 

 

(i) The Conductance Inlet Void Fraction Meter, CIVFM (see Section 4.3.1), and  

(ii) The Conductance Multiphase Venturi Meter, CMVM (see Section 4.3.2). 

 

The CIVFM is used to measure the gas volume fraction at the inlet of the Venturi. 

Electrodes at the throat section of the CMVM are used to measure the gas volume 

fraction at the throat of the Venturi.  

 

4.3.1 Design of the conductance inlet void fraction meter (CIVFM) 

 

The CIVFM was designed to measure the gas volume fraction at the inlet of the 

Venturi by measuring the electrical conductance of the water-air mixture between two 

electrodes (denoted ‘Electrode-1’ and ‘Electrode-2’ in Figure 4-4). Figure 4-4 shows 

the assembly of the CIVFM. The 2D drawing of the CIVFM is shown in Figure 4-5. 

Figure 4-6 shows some photos of the CIVFM. 
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Figure 4-4: Assembly parts of the conductance inlet void fraction meter CIVFM) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-5: 2D drawing of the conductance inlet void fraction meter (CIVFM) 
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Figure 4-6: Photos of the conductance inlet void fraction meter (CIVFM) 

 

4.3.2 Design of the Conductance Multiphase Venturi Meter (CMVM) 

 

The CMVM shown in Figure 4-7 consists of eleven elements; two threaded flanges, 

four O-rings, two stainless steel electrodes, and Venturi, inlet, throat, and outlet 

sections. The two stainless steel electrodes flush mounted with the inner surface of 

the Venturi throat are used for measuring the gas volume fraction at the throat by 

measuring the electrical conductance of the water-air mixture, as described in 

Sections 5.1 and 5.3. One of the most advanced features of this design is that all parts 

can be assembled/disassembled easily including the threaded flanges. Another 

advantage of this design is that it is very straightforward to change the throat section 

[145]. Changing the throat section with four electrodes enables the velocity of the 

water film in annular flow to be determined using a cross-correlation technique.  

 

2-D drawings of the inlet, electrode, throat and the outlet of the conductance Venturi 

section are shown in Figures 4-8 to 4-11. The complete 2-D drawing of the CMVM 

including all eleven parts; the inlet, four electrodes with eight o-rings, the throat and 

the outlet sections is shown in Figure 4.12. 
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Figure 4-7: The assembly parts of the conductance multiphase Venturi meter 

(CMVM) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 4-8: Inlet section of the CMVM 
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Figure 4-9: Design of the electrode and O-ring 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-10: Design of the throat section 

Scale 1:0.8 

(a) Electrodes 

(b) O-ring 
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Figure 4-11: Design of the outlet section 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-12: Full 2D drawing of the CMVM after assembly 

 

 

4.4  Design of the conductance wall sensor 

 

Wall Conductance Sensors (WCSs) were used as an alternative method of measuring 

the liquid film thickness and velocity in annular gas-water two phase flow (see 

Section 8.11). Figure 4-13 shows the design of the test section which includes two 

WCSs.  The electrodes in the WCS are made from stainless steel.  Figure 4-14 shows 

the non-scale 2-D drawing of the WCS [147]. The picture of the test section is also 

shown in Figure 4-14. 
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Figure 4-13: Test section with wall conductance sensors 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-14: Design of the wall conductance flow meter 

Wall conductance 
sensor 

Source of the picture: Al-Yarubi ( 2010) 

     Source of the figure: Al-Yarubi (2010) 

(a) 2-D  (non-scale) drawing of the wall conductance sensor 

(b) Picture of the wall conductance sensor 
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4.5 The measurement electronics system 

 

Conductance electronics circuits were built to measure the water film thickness in 

annular flow (and hence the gas volume fraction at the inlet and the throat of the 

Venturi). In horizontal stratified flows these circuits can be used to measure the water 

level at the inlet and the throat of the Venturi (and hence the gas volume fraction at 

the inlet and the throat of the Venturi meter in horizontal stratified flows).  

 

Two similar electronics circuits were built to measure the gas volume fraction at the 

inlet and the throat of the Venturi in annular and stratified flows respectively. The 

first circuit was connected to the electrodes at the CIVFM in which the inlet gas 

volume fraction can be measured in both vertical annular and horizontal stratified 

gas-water two phase flows. The second electronic circuit was connected to the 

electrodes at the throat of the CMVM in order to measure the gas volume fraction at 

the throat of the CMVM in vertical and horizontal stratified two phase flows.    

 

The complete block diagram of the measurement electronics system is shown in 

Figure 4-15. It consists of seven stages; a pre-amplifier (see Figure 4-17), an 

amplifier stage, a half-wave rectifier, a low-pass filter, a non-inverting amplifier, 

buffer and zero offset adjustment and RC ripple filter.  

 

To calibrate the conductance multiphase flow meter (i.e. CIVFM and CMVM) 

described in Sections 4.3.1 and 4.3.2, in simulated annular flow the zero offset stage 

(see Figure 4.16) was adjusted to give a zero output voltage when no water was 

present between the electrodes at the inlet and the throat of the Venturi (i.e. at the 

CIVFM and CMVM respectively). The amplifier stage (see Figure 4.16) was then 

adjusted to give a maximum output voltage when the area between the electrodes at 

the inlet and the throat of the Venturi was completely filled with water. After that, 

different diameters of nylon rods were inserted in the inlet and the throat of the 

Venturi to obtain the calibration curves for the CIVFM and the CMVM in which the 

water film thickness in annular flow (and hence the gas volume fraction at the inlet 

and the throat of the Venturi) can be related with the dc output voltages directly.  
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In a like manner, the conductance multiphase flow meter for use in simulated 

horizontal stratified flows was calibrated by adjusting a zero offset stage to give a 

zero output voltage when no water was present between the electrodes at the inlet and 

the throat of the Venturi. The area between the electrodes at the inlet and the throat of 

the Venturi was then completely filled with water and the amplifier stage was 

adjusted to give a maximum output voltage. Varying the water levels in simulated 

stratified flows and recording the dc output voltages enable the gas volume fraction at 

the inlet and the throat of the Venturi to be determined. The bench test on the 

conductance multiphase flow meter for simulated annular and simulated stratified 

flows is fully described in Chapter 5. 

 
Figure 4-15: Block diagram of the measurement electronics 

 

The circuit diagram of the conductance electronic circuit is shown in Figure 4-16. 

The excitation voltage and the wave frequency are 2.12 p-p volt and 10kHz 

respectively.  The choice of the excitation frequency is very important since it would 

affect the operation of the probes. It has previously been mentioned [148] that, at low 

frequencies, a double layer effects might be appeared in which the conductance 

between the electrodes is affected by capacitance and resistive elements at the 

electrode-electrolyte interfaces.  
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Figure 4-16: A schematic diagram of the conductance electronic circuit 
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Summary  

 

A non-conductance UVT which can be used to measure phase flow rates in bubbly 

(approximately homogenous) gas-water two phase flows was designed. A 

combination of the UVT and FDM forms a two phase flow meter for homogenous 

flows. 

 

The FDM was designed and constructed to measure the gas volume fraction at the 

inlet of the UVT in a homogenous gas-water two phase flow (see Section 4.1).   

 

Separated flow in a Venturi meter is highly complex and the application of a 

homogenous flow model could not reasonably be expected to lead to accurate results. 

As a result, an advanced conductance multiphase flow meter was designed and 

constructed. One of the most advanced features of this design is that all parts can be 

assembled and disassembled easily. The conductance multiphase flow meter is also 

capable of measuring the gas volume fraction at the inlet and the throat of the 

Venturi. 

 

The conductance multiphase flow meter consists of two parts (see Section 4.3);  

(iii) the Conductance Inlet Void Fraction Meter (CIVFM) which is 

capable of measuring the gas volume fraction at the inlet of the 

Venturi.  

(iv) the Conductance Multiphase Venturi Meter (CMVM) in which two 

ring electrodes are mounted at the throat to measure the gas 

volume fraction at the throat of the Venturi.  

 

It should be noted that the advantage of designing and constructing the advanced 

conductance multiphase flow meter is that the gas volume fraction at the inlet and the 

throat of the Venturi can be obtained (instead of relying on prior knowledge of the 

mass flow quality, x) allowing the gas and the water mass flow rates in vertical 

annular and horizontal stratified flows to be measured using Equations (3.43), (3.59), 

(3.66) and (3.72). This makes the measurement technique described in this thesis 
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more practical in multiphase flow applications since the online measurement of x is 

difficult and not practical. 

 

The design of WCSs was presented in Section 4.4. A WCS was used as an alternative 

method of measuring the water film flow rate in annular gas-water two phase flows 

(see also Sections 8.11 and 8.12). 

 

The conductance electronic circuits were built and calibrated to give dc output 

voltages which are proportional to the conductance of the mixture which can then be 

related to the water film thicknesses in annular flow (and hence to the gas volume 

fraction at the inlet and the throat of the Venturi) and to the volume occupied by the 

liquid in a horizontal stratified flow (and hence, again, to the gas volume fraction at 

the inlet and the throat of the Venturi). 
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Chapter 5 

Bench Tests on the Conductance 

Multiphase Flow Meter  

 

 
Introduction  

 

At the beginning of this chapter it should be reiterated that the Conductance 

Multiphase Flow Meter is a combination of the Conductance Inlet Void Fraction 

Meter (CIVFM) which is capable of measuring the gas volume fraction at the inlet of 

the Venturi in annular and stratified gas-water two phase flow and the Conductance 

Multiphase Venturi Meter (CMVM) one of the purposes of which is to measure the 

gas volume fraction at the throat of the Venturi in separated flows (i.e. annular and 

stratified gas-water two phase flows). The reason for measuring the gas volume 

fraction at the inlet and the throat of the Venturi is to determine the gas and the water 

mass flow rates in vertical annular and horizontal stratified flows using Equations 

(3.43), (3.59), (3.66) and (3.72). Relying on the measurement of the gas volume 

fraction at the inlet and the throat of the Venturi instead of prior knowledge of the 

mass flow quality x (as in the previous work described in Section 2.2) makes the 

measurement techniques described in this thesis more practical since the 

measurement of x is difficult in multiphase flow applications. 

 

Before the CIVFM and the CMVM were used dynamically in the flow loop as a 

Conductance Multiphase Flow Meter, a number of experimental bench testing 

procedures were carried out. A bench test rig was designed and built in order to 

calibrate the conductance measurement systems of the conductance multiphase flow 

meter.  
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This chapter presents the static testing procedures carried out on the conductance 

multiphase flow meter to simulate annular and stratified flows. Section 5.1 describes 

the bench testing procedures for the conductance multiphase flow meter in simulated 

annular flow in which the calibration curve of the CIVFM that relates the gas volume 

fraction at the inlet of the Venturi with a dc output voltage can be obtained. The 

calibration of the CMVM in which the gas volume fraction at the throat of the 

Venturi can be found as a function of a second dc output voltage is also described in 

Section 5.1.  

 

The experimental bench testing procedures carried out for the conductance 

multiphase flow meter (i.e. CIVFM and CMVM) in simulated stratified flow are 

described in Section 5.2.  

 

5.1 Experimental procedure for the static testing of the conductance multiphase 

flow meter in simulated annular flow 

 

A test rig was built to measure the simulated gas volume fraction at the inlet and the 

throat of the Venturi (i.e. at the CIVFM and the CMVM respectively) in simulated 

annular gas-water two phase flow. It should be noted that the static and dynamic 

measurements were taken at the laboratory conditions in which the temperature of the 

water was kept constant at 22.5oC. Measurement of the water conductivity was taken 

using a conventional conductivity meter showed a value of 132.6µScm-1 for all of the 

experiments described in this thesis. [Note that for a device used in applications 

where the liquid conductivity is likely vary, the liquid conductivity should be 

measured on-line and the calibration curves should be compensated for such changes 

in conductivity, see further work  in Chapter 11].  

 

The simulation of the liquid film thickness and the gas volume fraction at the inlet of 

the Venturi (i.e. at the CIVFM) is described in Section 5.1.1. The experimental setup 

of simulated annular two phase flow through a CIVFM is presented in Section 5.1.2. 

The simulation of the liquid film thickness (and hence the gas volume fraction at the 

throat of the Venturi (i.e. at the CMVM)) and the experimental setup of simulated 

annular flow through a CMVM are described in Sections 5.1.3 and 5.1.4 respectively. 
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5.1.1 Simulation of the liquid film thickness and the gas volume fraction at the 

CIVFM in simulated annular flow  

  

To simulate the film thickness in the vertical CIVFM, different diameters of nylon 

rods were inserted through the CIVFM [145,149]. The gap between the outer surface 

of the rod and the inner surface of the pipe wall was then filled with water, 

representing the water film that would occur in a real annular flow as shown in Figure 

5-1. The nylon rod holder at the bottom of the system (see Figure 5-1) was used to 

hold different diameters of nylon rod in the static tests to ensure that the nylon rod 

was located at the precise centre of the system (i.e. the gap between the outer surface 

of the rod and the inner surface of the pipe wall was the same at any given axial 

location within the CIVFM). 

 

 

 

Figure 5-1: Configuration of the vertical simulated annular flow at the CIVFM; 

(a) film thickness in annular flow, (b) a picture of the nylon rod, (c) Nylon rod 

holder 
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From Figure 5-1, the water film thickness in simulated annular flow, annsim,,1δ at the 

inlet of the Venturi (i.e. at the CIVFM) is given by; 

 

2
1

,,1
rod

annsim

DD −
=δ  

     Equation (5.1) 

where 1D is the pipe diameter of the CIVFM (i.e. the same diameter as the inlet of the 

Venturi) and rodD is the rod diameter. 

 

The gas volume fraction at the inlet of the Venturi (i.e. at the CIVFM) is defined as 

the ratio of area occupied by the gas to the total flow area. Therefore, the gas volume 

fraction at the inlet of the Venturi in simulated annular flow annsim,,1α  can be expressed 

as; 
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     Equation (5.2) 

 

5.1.2 Experimental setup of simulated annular two phase flow through a 

CIVFM 

 

Figure 5-2 shows the bench test experimental setup in vertical simulated annular flow 

through the CIVFM. One of the electrodes at the CIVFM was connected to the signal 

generator in which the excitation voltage and the sine-wave frequency were 2.12V p-

p and 10kHz respectively. The other electrode (measurement electrode) was then 

connected to the conductance circuit (see Figure 4-16). The circuit was adjusted so 

that a zero output voltage was obtained when no water (only air) was present between 

the electrodes at the CIVFM. The area between the electrodes of the CIVFM was then 

completely filled with water and a maximum dc output voltage was obtained by 

adjusting the variable resistance in the amplifier stage (see Figure 4-16). Different 

diameters of nylon rod were then inserted through the CIVFM and the area between 
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the outer surface of the rod and the inner surface of the CIVFM was filled with water 

and the dc output voltages were recorded using the interfacing system (see Figure 5-

2). The dc output voltage for each test was related to the water film thickness and 

hence the gas volume fraction at the inlet of the Venturi. 

  

 

 

Figure 5-2: Bench test experimental setup of the simulated annular two phase 

flow through a CMVM 
 
 
 

Nylon rod 

Electrode 

Conductance 

circuit 

Interfacing system 

(Labjack- U12) 

annsim,,1δ , annsim,,1α  

M
a

tl
a

b
 c

o
d

e 

Signal 

generator 

CIVFM 



Chapter 5: Bench Tests on the Conductance Multiphase Flow Meter 

 
 126  

5.1.3 Simulation of the liquid film thickness and the gas volume fraction at the 

throat of the CMVM in simulated annular flow  

 

Static tests on the throat section of the CMVM were performed in the same manner of 

the CIVFM (see Section 5.1.1) in which non-conducting nylon rods with different 

diameters were inserted in the throat section of the CMVM. The gap between the 

outer surface of the rod and the inner surface of the throat wall was then filled with 

water, representing the water film that would occur in a real annular gas-water two 

phase flow as shown in Figure 5-3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-3: Configuration of the vertical simulated annular flow at throat 

section of the CMVM 

 

From Figure 5-3, the water film thickness in simulated annular flow, annsim,,2δ at the 

throat section of the CMVM can be written as; 
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The gas volume fraction at the throat of the CMVM in simulated annular flow 

annsim,,2α  can be expressed as; 
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     Equation (5.4) 

 

It should be noted that the water film thicknesses annsim,,1δ and annsim,,2δ  in Equations 

(5.2) and (5.4) are measured from the CIVFM and the CMVM respectively.  

 

Measurement of annsim,,1δ and annsim,,2δ  enables the gas volume fractions annsim,,1α and 

annsim,,2α  to be determined. 

 

5.1.4 Experimental setup of simulated annular two phase flow through a 

CMVM  

 

Figure 5-4 shows the bench test experimental setup for simulated annular flow 

through the CMVM. One of the electrodes at the throat of the CMVM was excited by 

a sine wave (2.12 V p-p and 10kHz) while the other electrode was connected to the 

conductance circuit (see Figure 4-16). A dc output voltage which is proportional to 

the water film thickness was recorded using the interfacing system (a Lab-jack U12) 

in which the relationship between the gas volume fraction annsim,,2α  and the dc output 

voltage was obtained. It should be noted that before different diameters of nylon rod 

were inserted in the throat of CMVM, a zero output stage (see Figure 4-16) was 

adjusted to give a zero output voltage when no water was present between the 

electrodes and then a maximum dc output voltage was set when the throat of the 

CMVM was completely filled with water. 
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Figure 5-4: Bench test experimental setup of the simulated annular two phase 

flow through a CMVM 

 

5.2 Experimental procedure for the static testing of the conductance multiphase 

flow meter in simulated stratified flow 

 

For simulated horizontal stratified flow, the conductance multiphase flow meter was 

statically calibrated by varying the level of water at the inlet and the throat of the 

Venturi. The height of the water at the inlet of the Venturi (i.e. at the CIVFM) could 

then be related to the inlet gas volume fraction while the gas volume fraction at the 

throat of the CMVM could be obtained from the height of the water at the throat 

section (see also Section 5.2.2). The height of the water at the inlet and the throat of 
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the Venturi was measured by a ruler (see Figure 5-6). Figure 5-5 shows the 

configuration of the horizontal stratified gas-water two phase flow. 

 

 

 

 

 

 

 

 

Figure 5-5: configuration of the horizontal stratified gas-water two phase flow. 

 

From Figure 5-5, it is possible to write; 

R

h1cos−=θ  

                 Equation (5.5) 

where R is the radius of the pipe, h and θ are the angle and the height shown in 

Figure 5-5. 

 

The area occupied by the gas gA in Figure 5-5 can be written as; 

BhRAg −×= 2

360
2

π
θ

 

     Equation (5.6) 

 

The parameter B in Equation (5.6) is given by; 

22
hRB −=  

     Equation (5.7) 

 

The general expression of the gas volume fraction α can then be expressed as; 

2
22 1

360
2

R
hRhR

A

Ag

π
π

θ
α ⋅





−−×==  

     Equation (5.8) 
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Equation (5-8) is a general form of the gas volume fraction. In other words, it can be 

used to calculate the gas volume fraction at the inlet and the throat of the Venturi.  

 

5.2.1 Gas volume fraction at the inlet and the throat of the Venturi in 

simulated stratified gas-water two phase flow  

 

The gas volume fraction at the inlet of the Venturi (i.e. at the CIVFM) and the gas 

volume fraction at the throat of the CMVM can both be determined with the aid of 

Equation (5.8) which is a general equation for the gas volume fraction and, by use of 

the appropriate variables, can be applied to either the CIVFM or the CMVM.  

 

Therefore, the gas volume fraction at the inlet of the Venturi (i.e. CIVFM) in 

simulated horizontal stratified flow stsim,,1α can be expressed as; 

 

2
,,1

,,1
2

,,1,,1
2

,,1
,,1

,.1

,,1
,,1

1
360

2

stsim

stsimstsimstsimstsim

stsim

stsim

stsimg

stsim
R

hRhR
A

A

π
π

θ
α ⋅








−−×==  

                 Equation (5.9) 

where the subscript stsim,,1  refers to the inlet of the Venturi which is the CIVFM. 

For example, stsimR ,,1 is the radius of the pipe at the CIVFM (i.e. 40 mm). 

 

In a like manner, the gas volume fraction at the throat section of the CMVM in 

simulated horizontal stratified flow stsim,,2α can be expressed as; 
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   Equation (5.10) 

where the subscript stsim,,2  refers to the throat of the Venturi. For example, 

stsimR ,,2 is the radius of the pipe at the throat of the CMVM (i.e. 24 mm). 
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5.2.2 Bench test experimental setup for simulating stratified gas-water two 

phase flow through the conductance multiphase flow meter 

 

This section describes the experimental setup for simulating stratified flow through 

the CIVFM and the CMVM. Figure 5-6 shows the bench experimental setup for 

simulated stratified two phase flow. 

 

 

Figure 5-6: Bench test experimental setup of horizontal simulated stratified two 

phase flow through a CIVFM and CMVM 
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The zero offset stage (see Figure 4-16) was first adjusted to give a zero dc output 

voltage from the conductance circuits for both the CIVFM and CMVM when no 

water was present. The pipe section (i.e. CIVFM and CMVM) was then filled 

completely with water and maximum dc output voltages obtained from both circuits 

were set by adjusting the gain of the amplifier stage for each circuit (see Figure 4-16). 

The water level was then gradually varied and the dc output voltages from the two 

electrical conductance circuits (one connected to the electrodes of the CIVFM and the 

other connected to the electrodes at the throat section of the CMVM) which were 

related to the height of the water in the system, and hence to the gas volume fraction 

at the inlet and the throat, were recorded. The dc output voltages from two electrical 

conductance circuits (see Figure 4-16) were interfaced to the PC via a data acquisition 

unit, Labjack U-12. The operation of the Labjack U-12 was controlled using 

MATLAB software. The gas volume fractions stsim,,1α  and stsim,,2α  (see Equations 

(5.9) and (5.10)) in simulated stratified two phase flow could then be calculated as the 

water level in the horizontal CIVFM/CMVM system was altered.  

 

It should be noted that cross-talk effects in simulated annular and stratified flows 

were examined and it was found that there were no effects on the conductance sensors 

of either CIVFM or CMVM. In simulated vertical annular flow, this was done as 

follows; 

 

(i) 1
st
 test: Cross-talk effect when the CIVFM was active; 

 

1. The CIVFM and the CMVM were filled with water. 

2. The excitation electrode at the CIVFM was then excited by the 10kHz 

2.12V p-p signal. 

3. The dc output voltages obtained from the measurement electrode at the 

throat section of the CMVM were recorded when different diameters 

of nylon rod were inserted at the CIVFM and the CMVM. 
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(ii) 2
nd

 test: Cross-talk effect when the CMVM was active; 

 

1. The CIVFM and the CMVM were filled with water. 

2. The excitation electrode at the throat section of the CMVM were 

excited (i.e. active CMVM). 

3. The dc output voltages were obtained from the measurement electrode 

at the CIVFM for different liquid film thicknesses (i.e. different 

diameters of nylon rod were used). 

 

In a like manner, the cross-talk effect in simulated horizontal stratified flow (see 

Figure 5-6) was checked by exciting the excitation electrode at the CIVFM and 

recording the dc output voltages from the measurement electrode at the throat of the 

CMVM for different levels of water. The same test was performed in which the 

excitation electrode at the throat of the CMVM was activated and the dc output 

voltages were obtained from the measurement electrode at the CIVFM for different 

levels of water. 

 

5.3 Experimental results from static testing of the conductance multiphase flow 

meter in simulated annular flow 

 

As mentioned earlier, the conductance multiphase flow meter consists of two parts; 

(i) the conductance inlet void fraction meter (CIVFM) which is capable of measuring 

the water film thickness annsim,,1δ  at the inlet of the Venturi in simulated annular flow 

and (ii) the Conductance Multiphase Venturi Meter (CMVM) which can be used to 

measure the water film thickness annsim,,2δ  at the throat of the Venturi. Measurement 

of annsim,,1δ and annsim,,2δ  enables the gas volume fractions annsim,,1α and annsim,,2α to be 

determined using Equations (5.2) and (5.4) respectively.  
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5.3.1 Experimental results from the conductance inlet void fraction meter 

(CIVFM) in simulated annular flow 

 

Figure 5-7 shows the relationship between the dc output voltage annsimV ,,1  from the 

CIVFM and the simulated water film thickness annsim,,1δ  in the CIVFM obtained from 

the vertical simulated annular flow experiments. This relationship enables the actual 

water film thickness 1δ  to be determined in a real annular gas-water two phase flow 

(see Section 8.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-7: The relationship between the dc output voltage and the water film 

thickness at the Conductance Inlet Void Fraction Meter in a vertical simulated 

annular flow 

 

 

Once the water film thickness annsim,,1δ  at the CIVFM was obtained, the gas volume 

fraction annsim,.1α  at the inlet of the Venturi (i.e. at the CIVFM) in simulated annular 

flow can then be easily determined from Equation (5.2).  The gas volume fraction 

annsim,.1α  can be plotted either as a function of the water film thickness annsim,.1δ  or as a 
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function of the dc output voltage annsimV ,,1  as shown in Figures 5-8 and 5-9 

respectively. 

 

It should be noted that the reason for plotting the independent variable (e.g. annsim,,1α , 

annsim,,2α , stsim,,1α  or stsim,,2α ) on the vertical axis and the dependent variable (e.g. 

annsimV ,,1 , annsimV ,,2 , stsimV ,,1  or stsimV ,,2 ) on the horizontal axis, in some of the graphs in 

this chapter, is that the gas volume fractions annsim,,1α , annsim,,2α , stsim,,1α  and stsim,,2α  

can be obtained from the corresponding dc output voltages  annsimV ,,1 , annsimV ,,2 , stsimV ,,1  

and stsimV ,,2 . Therefore plotting gas volume fraction against dc output voltage enables 

a more convenient best fit polynomial equation to be obtained. This polynomial 

equation enables the gas volume fractions to be determined directly from the dc 

output voltages (obtained from the conductance circuits) in real annular and stratified 

flows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-8: Variation of the gas volume fraction annsim,.1α  at Conductance Inlet 

Void Fraction Meter with the water film thickness,  annsim,.1δ  
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Figure 5-9: Variation of the gas volume fraction annsim,.1α  with the dc output 

voltage annsimV ,,1 from the Conductance Inlet Void Fraction Meter system 

 

 

Equation (5.11) shows a good fit to the static experimental data of annsim,.1α  over the 

full range of annsimV ,,1 . 
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               Equation (5.11) 

 

5.3.2 Experimental results from the conductance multiphase Venturi meter 

(CMVM) in simulated annular flow 

 

The two electrodes mounted at the throat of the CMVM were used to measure the 

film thickness annsim,.2δ  at the throat of the Venturi. Measurement of  annsim,.2δ  enables 

the gas volume fraction annsim,.2α   at the throat of the CMVM to be determined (see 

Equation (5.4)). Figure 5-10 shows the relationship between the dc output voltage 

annsimV ,,2  obtained from the CMVM and the water film thickness annsim,,2δ  in simulated 

annular flow. 

 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

0 0.5 1 1.5 2 2.5 3 3.5 4

Poly. (                   )

annsimannsim V ,,1,,1   vsα

annsimV ,,1  (V) 

α
1,

si
m

,a
n
n
 



Chapter 5: Bench Tests on the Conductance Multiphase Flow Meter 

 
 137  

The gas volume fraction annsim,.2α  at the throat of the CMVM can then be determined 

from the water film thickness annsim,,2δ  using Equation (5.4) as shown in Figure 5-11. 

The gas volume fraction annsim,.2α  at the Venturi throat can be also related to the dc 

output voltage  annsimV ,,2  as shown in Figure 5-12. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-10: Relationship between annsimV ,,2  and annsim,,2δ at throat of the 

Conductance Multiphase Venturi Meter in simulated annular flow 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 5-11 Variation of  annsim,.2α  with  annsim,,2δ  at the throat of the Conductance 

Multiphase Venturi Meter in simulated annular flow 
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Figure 5-12: Relationship between the gas volume fraction annsim,.2α  and the dc 

output voltage annsimV ,,2  at the throat of the Conductance Multiphase Venturi 

Meter in simulated annular flow 

 

A best fit to the static experimental data relating the gas volume fraction annsim,.2α  at 

the throat of the CMVM to the dc output voltage annsimV ,,2  (see Figure 5-12) is given 
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   Equation (5.12) 

 

5.4 Experimental results from the static testing of the conductance multiphase 

flow meter in simulated stratified flow 

 

In simulated horizontal stratified flow, the CIVFM was used to measure the gas 

volume fraction stsim,,1α at the inlet of the Venturi. The gas volume fraction stsim,,2α at 

the throat of the Venturi was measured by the two electrodes mounted at the throat of 

the CMVM (see Section 5.2.2). Reference measurements of stsim,,1α  and stsim,,2α  were 

obtained from the heights of the water at the CIVFM and the throat section of the 
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CMVM, stsimh ,,1 and stsimh ,,2  respectively using Equations (5.9) and (5.10). The water 

heights stsimh ,,1 and stsimh ,,2 were measured using a ruler as shown in Figure 5-6. The 

relationships between stsimV ,,1 and stsimh ,,1  and between stsimV ,,2 and stsimh ,,2 are described 

in detail below. 

 

5.4.1 Bench results from the conductance inlet void fraction meter (CIVFM) in 

simulated stratified flow 

 

Figure 5-13 shows the variation of the dc output voltage stsimV ,.1  with the water level 

stsimh ,,1  at the inlet of the Venturi in simulated stratified flow. Once the height stsimh ,,1 is 

obtained, the gas volume fraction stsim,,1α can be easily determined from Equation 

(5.9). The calibration curve which relates the gas volume fraction stsim,,1α and the dc 

output voltage stsimV ,.1  obtained from the CIVFM in simulated stratified flow is shown 

in Figure 5-14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-13: Variation of stsimV ,.1  with stsimh ,,1   

 

 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 0.5 1 1.5 2 2.5 3 3.5

stsimh ,,1  (m) 

V
1,

si
m

,s
t (

V
) 



Chapter 5: Bench Tests on the Conductance Multiphase Flow Meter 

 
 140  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-14: The relationship between the gas volume fraction, stsim,,1α and the dc 

output voltage, stsimV ,.1  

 

 

The red solid line in Figure 5-14 represents a best polynomial fit curve which relates 

the gas volume fraction, stsim,,1α and the dc output voltage, stsimV ,.1 . The best 

polynomial fit can be represented by the following equation; 
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   Equation (5.13) 

 

Equation (5.13) enables the gas volume fraction, stsim,,1α to be determined from the dc 

output voltage, stsimV ,.1 .  
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5.4.2 Bench results from the conductance multiphase Venturi meter (CMVM) 

in simulated stratified flow 

 

The height of the water stsimh ,,2  at the throat of the Venturi in a simulated stratified 

flow was measured by a ruler (see Figure 5-6). The variations of the water level 

stsimh ,,2  with the dc output voltage stsimV ,.2  at the throat of the CMVM is shown in 

Figure 5-15.  

 

Once stsimh ,,2 is measured, the gas volume fraction stsim,,2α  at the throat of the CMVM 

can be determined from Equation (5.10). Figure 5-16 shows the variation of the gas 

volume fraction stsim,,2α with the dc output voltage stsimV ,.2  at the throat of the CMVM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 5-15: Variation of the dc output voltage, stsimV ,,2 with the water level, 

stsimh ,,2   at the throat of the Conductance Multiphase Venturi Meter in simulated 

stratified flow 
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Figure 5-16: Calibration curve of the gas volume fraction stsim,,2α  at the throat of 

the Conductance Multiphase Venturi Meter in simulated stratified flow 

 

 

The polynomial fit (red solid line in Figure 5-16) represents the calibration curve of 
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   Equation (5.14) 

 

In real stratified two phase flows, the measurement of the dc output voltage at the 

throat of the CMVM enables the actual gas volume fraction st,2α (see Section 9.2)  at 

the throat of the CMVM to be determined using Equation (5.14). 
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Summary  

 

The reason for carrying out the static tests on the CIVFM and the CMVM was to find 

the relationships between the gas volume fractions and the dc output voltages (from 

the electrical conductance circuits) in both simulated annular flow and simulated 

stratified flow. These relationships enable the Conductance Multiphase Flow Meter to 

be used dynamically in real vertical annular and horizontal stratified gas-water two 

phase flows.  

 

A number of bench experiments were performed to calibrate the Conductance 

Multiphase Flow Meter (which consists of the CIVFM and the CMVM) before it was 

used dynamically in a flow loop as a multiphase flow meter. The CIVFM is used to 

measure the gas volume fraction at the inlet of the Venturi while the CMVM is used 

to measure the gas volume fraction at the throat of the Venturi. 

 

A bench test rig was designed and built in order to calibrate the Conductance 

Multiphase Flow Meter. Two different configurations of the bench test rig were used 

to calibrate the CIVFM and the throat section of the CMVM, respectively, in 

simulated annular and stratified flows (see Figures 5-2, 5-4 and 5-6). 

 

The calibrations of the CIVFM and the CMVM enabled the gas volume fractions 

annsim,,1α , annsim,,2α , stsim,,1α  and stsim,,2α  to be dynamically determined in real vertical 

annular and horizontal stratified flows using Equations (5.11), (5.12), (5.13) and 

(5.14) respectively.  

 

In simulated annular flow (see Section 5.1), the CIVFM and the CMVM were 

calibrated by inserting different diameters of nylon rod into the CIVFM and into the 

throat section of the CMVM and the gap between the outer surface of the rod and the 

inner surface of the pipe wall was filled with water, representing the water film that 

would occur in a real annular flow (see Figures 5-1, 5-2, 5-4 and 5-6). The dc output 

voltages annsimV ,,1  and annsimV ,,2  from the two electrical conductance circuits (see Figure 

4-16), which were connected to the electrodes at the CIVFM and the CMVM 
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respectively, were recorded from which the gas volume fractions annsim,,1α  and 

annsim,,2α could be determined from Equations (5.11) and (5.12).   

 

In simulated stratified flow (see Figure 5-6), the heights of the water stsimh ,,1 (at 

CIVFM) and stsimh ,,2  (at the throat of the CMVM) were measured. stsimh ,,1  and stsimh ,,2  

were then related to the dc output voltages stsimV ,,1 and stsimV ,,2  which were recorded 

from the electrical conductance circuits (see Figures 5-13 and 5-15). The gas volume 

fractions stsim,,1α  and stsim,,2α  could then be easily determined from stsimV ,,1 and 

stsimV ,,2 respectively using Equations (5.13) and (5.14). 

 

It should be noted that the CIVFM and the CMVM were calibrated independently. 

Therefore, the electronics (see section 4.5) were setup differently in each experiment. 

In other words, the maximum dc output voltages (when the CIVFM and the CMVM 

were filled completely with water) were adjusted differently for each experiment.  
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Chapter 6 

Experimental Apparatus and Procedures 

 

Introduction  

 

To carry out the measurements of two phase flows using the universal Venturi tube, 

UVT, (which was used for bubbly two phase flow, see Section 4.2) and the 

conductance multiphase flow meter (i.e. the conductance inlet void fraction meter, 

CIVFM and the conductance multiphase Venturi meter, CMVM, see Section 4.3) 

which was used to study the separated vertical annular and horizontal stratified flows, 

several items of equipment are needed. Note that, the UVT, the CIVFM and the 

CMVM represent the testing devices while other instruments in the flow loop (e.g. 

turbine flow meters, dp cells, etc) represent the reference and auxiliary devices. At the 

start of the current investigation the flow loop at the University of Huddersfield was 

capable of producing gas-liquid bubbly flows. This flow loop has an 80 mm internal 

diameter pipe and a 2.5 meter long test section and was used initially to study bubbly 

gas-water two phase flows using the UVT described in Chapter 4. 

 

It should be noted that the bubbly gas-water two phase flow used in this thesis is 

approximately homogenous (i.e. its average properties on the scale of a few bubble 

diameters are approximately the same everywhere in the flow). Therefore, whenever 

the readers come across the term “homogenous flow” throughout this thesis, it refers 

to bubbly two phase flow, allowing the homogenous flow model described in Chapter 

3 to be used. In effect, the flow is assumed to be homogenous and therefore assumed 

to behave as a single phase flow. 

The flow loop was further developed as part of the current investigation to enable 

vertical annular gas-water flows and horizontal stratified gas-water flows to be 

established. An air blower was used to provide the necessary high gas flow rates and 

a variable area flow meter (VAF) was installed to measure these high gas flow rates. 
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This chapter describes the experimental setups used with bubbly gas-water two phase 

flows and with separated (annular and stratified) gas-water two phase flows. The flow 

loop used has three different configurations (i) vertical bubbly flow, (ii) vertical 

annular flow and (iii) horizontal stratified flow (see Section 6.1).      

 

A description of the following instruments used on the flow loop, and the calibration 

of the reference measurement devices, is given in Section 6.2.  

 

i) Turbine flow meters to provide a reference measurement of the water 

volumetric flow rates in bubbly and separated two phase flows respectively. 

ii) Side channel blower (RT-1900) to provide the necessary high gas flow rates. 

iii) Variable area flow meter to provide a reference measurement of the necessary 

high gas volumetric flow rates. 

iv) Thermal mass flow meter to provide a reference measurement of the low gas 

flow rates. 

v) Differential pressure devices.  

vi) Temperature sensor, gauge pressure sensor and atmospheric pressure sensor. 

 

The change over valve and flushing system and the calibration of the wall 

conductance sensor are described in Sections 6.3 and 6.4 respectively.  

 

6.1 Multiphase flow loop capabilities  

 

One of the multiphase phase flow loops available at the University of Huddersfield is 

capable of producing flows with water as the continuous phase. The gas phase is air 

with approximate density of 1.2 kgm-3. For the current investigation the working 

section was constructed of an 80mm internal diameter pipe and was approximately 

2.5m long. Photographs of the gas-water two phase flow loop used in the current 

research are shown in Figure 6-1. This flow loop has three configurations; 

(i) vertical bubbly flow (see Section 6.1.1), 

(ii) vertical annular flow (see Section 6.1.2), and 

(iii) horizontal stratified flow (see Section 6.1.3).  
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These three configurations are described in detail below. Details of the reference 

measurement devices used in theses configurations are given in Section 6.2. 

 

 

(a) Front view 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(b) Right view  

 

Figure 6-1: Photographs of the gas-water two phase flow loop at the University 

of Huddersfield. 
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6.1.1 Vertical bubbly gas-water two phase flow configuration 

 

The vertical bubbly gas-water two phase flow configuration is capable of providing 

flows with water as a continuous phase and air as a dispersed phase. A schematic 

diagram of the vertical bubbly gas-water flow configuration is shown in Figure 6-2 

and this was used to conduct studies on the UVT in bubbly gas-water flows using the 

homogenous flow model described in Chapter 3. Combining the UVT and the flow 

density meter, FDM (which was used to measure the gas volume fraction hom,1α  at the 

inlet of the Venturi for bubbly (approximately homogenous) two phase flows, see 

Sections 3.1.1 and 4.1) enables the mixture volumetric flow rate, hom,mQ to be 

determined (see Equation (3.9)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-2: A schematic diagram of the vertical bubbly gas-water two phase flow 

configuration at the University of Huddersfield. 
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As shown in Figure 6-2, the water was pumped from the water tank into the test 

section (i.e. the vertical section which combines the FDM and the UVT, see also 

Figure 6-3) through turbine flow meter-1 using a multistage in-line centrifugal pump. 

The turbine flow meter-1 was used to provide a reference water volumetric flow rate, 

refwQ , . The calibration curve of this turbine flow meter is described in Section 6.2.2. 

It should be noted that two turbine flow meters were used in this study, one was used 

in the bubbly two phase flow configuration and was denoted “turbine flow meter-1”,  

and the other was used in the separated (vertical annular and horizontal stratified) 

flow configurations and was denoted “turbine flow meter-2” (see Sections 6.1.2 and 

6.1.3).  

 

The air, from the laboratory compressed air supply, was injected into the base of the 

test section (via a plate with a series of equi-spaced 1mm diameter holes) and passed 

through an air regulator and manual ball valve which controlled the gas flow rate. The 

reference gas volumetric flow rate, refgQ , , was measured using the thermal mass flow 

meter installed on the air flow line. The thermal mass flow meter can be used over a 

range of 0-200 standard litres per minute (SLPM) (see Section 6.2.6). The measured 

gauge pressure in the test section was added to atmospheric pressure (measured using 

a barometer) to give the absolute pressure. The absolute pressure along with the 

measured temperature (from a thermocouple) in Ko were used to correct the measured 

reference gas mass flow rate from the thermal mass flow meter to give the reference 

gas volumetric flow rate, refgQ , .  

 

The sum of the reference gas and water volumetric flow rates gives the reference 

mixture volumetric flow rate, refmQ , . The predicted mixture volumetric flow rate, 

hom,mQ  (see Equation 3.9) obtained from the homogenous flow model (described in 

Chapter 3) using the FDM and UVT can be compared with the reference mixture 

volumetric flow rate, refmQ ,  to analyse the error in the predicted measurement 

technique (see Chapter 7). In other words, the refmQ , measured using turbine flow 

meter-1 and the thermal mass flow meter represents the reference measurement while 

hom,mQ obtained from the FDM and the UVT in conjunction with the homogenous 
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flow model described in Section 3.1 represents the predicted (or estimated) 

measurement. 

 

The hopper load cell system (see Figure 6-2) was used to calibrate turbine flow 

meter-1 used in the bubbly gas-water two phase flow configuration (see Section 

6.2.1). 

 

The test section of the bubbly gas-water two phase flow (including the FDM and the 

UVT) with interfacing system is shown in Figure 6-3. Measurement of the pressure 

drop, pipeP∆ , across the FDM enables the gas volume fraction, hom,1α , to be 

determined using Equation (3.14). pipeP∆  was measured using a Yokogawa DP cell, 

EJA 110A (see Section 6.2.3). The pressure drop homP∆ across the UVT was measured 

by the Honeywell DP cell, ST-3000 (see also Section 6.2.3). Once the gas volume 

fraction, hom,1α , and the pressure drop, homP∆ , are measured, the predicted mixture 

volumetric flow rate, hom,mQ , in a bubbly two phase flow (assuming that the flow is 

homogenous) can then be estimated from Equation (3.9). 

 

Six signals were interfaced with the PC via a data acquisition unit, Labjack U-12 (see 

Figure 6-3). The operation of the Labjack U-12 was controlled using MATLAB 

software. The six signals were the two dp signals (see Section 6.2.3), the reference 

gas volumetric flow rate from the thermal mass flow meter (see Section 6.2.6), the 

reference water volumetric flow rate from a turbine flow meter-1(see Section 6.2.2) 

which was interfaced via the CNT channel on the Labjack-U12, the gauge pressure 

signal and the temperature signal (see Section 6.2.7). Once all required signals were 

interfaced with the LabJack-U12, the MATLAB test program was run and the 

required flow parameters recorded. It should be noted that the signal conditioning unit 

(see Figure 6-3) was used to display the gas flow rate in SLPM, the temperature in 

C
o  and the gauge pressure in bar. The gas flow rate through the thermal gas mass 

flow meter which was monitored by the signal conditioning unit (in SLPM) can be 

manually controlled using the ball valve and the air regulator installed on the air flow 

line (see Figure 6-2). 
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Since the CNT channel (i.e. a counter) in a data acquisition unit (Labjack-U12) was a 

TTL square wave input and the output signal from the turbine flow meter-1 was a 

sine wave voltage, it was necessary to convert this sine wave voltage to a square 

wave voltage. The circuit shown in Figure 6-4 was designed to convert the output 

signal (sine wave) from the turbine flow meter-1 into a square wave signal. 

 

Figure 6-3: Flow test section of the bubbly gas-water two phase flow with 
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Figure 6-4: Sine-to-square wave converter (left), Test result of a sine-to-square 

wave converter (right) 

 

The current outputs (4-20mA) from the two DP cells shown in Figure 6-3 were 

converted into voltage signals (1-5V) which could then be fed into the data 

acquisition unit (Labjack-U12). Figure 6-5 shows the current to voltage (I/V) 

converter circuit. It should be noted that two I/V converter circuits were built to 

convert the current outputs (4-20mA) from two dp cells into 1-5V signals 

simultaneously.  

 

 

 

 

 

 

 

 

 

Figure 6-5: Schematic diagram of I/V converter circuit  
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the Venturi in vertical annular and horizontal stratified two phase flows (see Section 

4.3.1) and (ii) the CMVM, which is capable of measuring the gas volume fraction at 

the throat of the Venturi in vertical annular and horizontal stratified two phase flows 

(see Section 4.3.2). A schematic diagram of the vertical annular two phase flow 

configuration is shown in Figure 6-6. This flow configuration also has an 80mm 

diameter, 2.5m long test section. 

 

As shown in Figure 6-6, the water was pumped into the test section through turbine 

flow meter-2. It should be noted that this turbine flow meter is not the same as that 

used in the bubbly gas-water two phase flow configuration. Turbine flow meter-2 is 

brand new and was installed to provide a reference water volumetric flow rate in 

annular gas-water two phase flow (described in this section) and horizontal gas-water 

two phase flow (described in Section 6.1.3). 

 

Pressurised air was pumped from the side channel blower, RT-1900 (see Section 

6.2.5) into the test section through the VAF to provide the necessary high gas flow 

rates (up to 155 m3hr-1). A VAF was used to measure the reference gas volumetric 

flow rate supplied by the side channel blower (see Section 6.2.4). In order to measure 

the reference gas mass flow rate, wgrefgm ,,& , in annular (wet gas) flow, the absolute 

pressure 1P  and the absolute temperature 1T  were measured at the upstream section of 

the conductance multiphase flow meter. Measurements of  1P  (from a gauge pressure 

sensor, see Section 6.2.7) and 1T  (from a thermocouple) enabled the gas density 1gρ  

at the inlet of the Venturi (i.e. at the CIVFM) to be determined using Equations (3.44) 

and (3.45). The reference gas volumetric flow rate, wgrefgQ ,, , in annular (wet gas) 

flow obtained from the VAF was then converted into the reference gas mass flow rate 

wgrefgm ,,& using; 

wgrefggwgrefg Qm ,,1,, ρ=&  

     Equation (6.1) 

The predicted gas mass flow rate, wggm ,& , and the predicted water mass flow rate, 

wgwm ,& , obtained from the separated flow model described in Chapter 3 (Equations 

(3.66) and (3.72)) using the CIVFM and the CMVM can be compared with the 
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reference gas and water mass flow rates, wgrefgm ,,& and wgrefwm ,,& , measured from the 

VAF and turbine flow meter-2 respectively, so that the error between the predicted 

measurements and the reference measurements in annular (wet gas) flow can be 

analysed (see Chapter 8). 

 

 A Honeywell dp cell, ST-3000 was used to measure the differential pressure, 

wgTPP ,∆ , across the CMVM. A Yokogawa dp cell, EJA 110A, was used to measure 

the differential pressure, pipeTPP ,∆ , across the vertical pipe. Although, pipeTPP ,∆ was not 

necessary to calculate the predicted gas and water mass flow rates, wggm ,&  and wgwm ,& , 

it was recorded for use in possible further investigation that might be carried out in 

the future.   

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-6: A schematic diagram of the vertical annular gas-water two phase 

flow loop at the University of Huddersfield. 
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Two ring electrodes at the CIVFM and two ring electrodes at the throat section of the 

CMVM were used to measure the gas volume fractions wg.1α and wg.2α  at the inlet and 

the throat of the Venturi respectively. The excitation voltage and the wave frequency 

of the excitation electrodes at the Venturi inlet (i.e. CIVFM) and the Venturi throat 

(i.e. throat section of the CMVM) were 2.12 p-p V and 10kHz respectively. The 

measurement electrodes were connected to the electrical conductance circuit (see 

Section 4.5) in which the gas volume fractions, wg.1α  and wg.2α , could be obtained 

from the dc output voltages using Equations (5.11) and (5.12) respectively. All 

measured signals were interfaced to the PC via a data acquisition unit, Labjack U-12. 

The operation of the Labjack U-12 was controlled using MATLAB software. 

 

Figure 6-7: Schematic diagram of the vertical annular (wet gas) flow test section 

with interfacing system 

  

6.1.3 Stratified gas-water two phase flow configuration 
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The horizontal stratified gas-water flow configuration is similar to the annular gas-

water two phase flow configuration described in Section 6.1.2 except that in the 

horizontal stratified configuration, the test section which includes the CIVFM and the 

CMVM was mounted in a horizontal position (see Figures 6-8 and 6-9). In addition, 

the pressurised air was pumped into the test section using either; 

(i) the laboratory air compressor (as used in bubbly flow 

configuration, see Section 6.1.1) to provide the necessary low gas 

flow rates allowing the thermal mass flow meter to be used to 

measure the reference gas mass flow rate or, 

(ii) the side channel blower RT-1900 to provide a necessary high gas 

flow rates allowing the VAF to be used to measure the reference 

gas mass flow rate. 

The range of the VAF (see Section 6.2.4) is 30m3hr-1 to 200m3hr-1. Therefore, any gas 

flow rate below 30m3hr-1 could not be sensed by the VAF. This was the reason for 

using the laboratory air compressor line (as an alternative air supply) with the thermal 

mass flow meter to provide a reference gas mass flow rate for an air flow rate below 

30m3hr-1 (see the flow conditions of stratified gas-water two phase flows in Chapter 

9, Table 9-1). 

The same turbine flow meter used in annular two phase flow configuration (i.e. 

turbine flow meter-2) was used in the stratified two phase flow configuration to 

provide a reference water volumetric flow rate, strefwQ ,, . The gas mass flow rate, 

strefwm ,,& , in stratified two phase flows could be obtained by multiplying strefgQ ,, by the 

gas density, 1gρ , obtained from Equations (3.44) and (3.45).  

 

Since there was a substantial difference between the pressure drop in the gas phase at 

the top of the Venturi and the pressure drop in the water phase at the bottom of 

Venturi in stratified gas-water two phase flows, two differential pressure devices 

were used as shown in Figures 6-8 and 6-9. The inclined manometer (see Section 

6.2.3) was used at the top of the Venturi to measure the pressure drop in the gas phase 

while the Honeywell dp (ST-3000) was used to measure the pressure drop in the 

water phase at the bottom of the Venturi (see the stratified flow model described in 

Section 3.2.1).   
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Figure 6-8: A schematic diagram of the horizontal (stratified) gas-water two 

phase flow loop at the University of Huddersfield. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-9: Schematic diagram of the horizontal stratified flow test section with 

interfacing system 
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6.2 Reference and auxiliary measurement devices used on the gas-water two 

phase flow loop   

 

As mentioned earlier, the flow density meter, FDM (described in Section 4.1) and 

the UVT (described in Section 4.2) used in bubbly gas-water two phase flows and 

the conductance multiphase flow meters (CIVFM and CMVM) used in separated 

(vertical annular and horizontal stratified) two phase flows represent the testing 

devices. Other than the above devices, all other instruments on the flow loop are 

either reference measurement devices (e.g. hopper load cell system, turbine flow 

meters, thermal mass flow meter and VAF) or auxiliary devices (e.g. differential 

pressure transmitters, side channel blower RT-1900, temperature sensor, gauge 

pressure sensor and atmospheric pressure sensor). These devices are described 

below. 

 

6.2.1 Hopper load cell system 

 

The hopper load cell system with pneumatically actuated ball valve was used for 

calibrating water turbine flow meter-1 used in bubbly gas-water two phase flows 

(see Section 6.2.2). The hopper is suspended from a load cell as shown in Figure 

6-10.  

Figure 6-10: Photographs of the hopper load cell system 
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base of the hopper) are connected to a PC.  The resulting response (i.e. the output 

voltage) of the water hopper load cell wV  was recorded from the PC. The 

calibration curve of the water hopper load cell system is shown in Figure 6-11. 

 

The principle of operation of the hopper load cell system is very simple. By 

closing the valve at the base of the hopper and recording the time taken for a 

known mass to be collected in the hopper, the mass flow rate m&  can be 

calculated. The volumetric flow rate Q  can then be easily determined using;  

w

m
Q

ρ

&
=  

           Equation (6.2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-11: Calibration curve for water hopper load cell 

 

The relationship between the output voltage wV  obtained form the water hopper load 

cell and the water volume added wVol  (see Figure 6-11) can be expressed as; 
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     Equation (6.3) 
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6.2.2 Turbine flow meters  

  

A turbine flow meter is a device used to measure the fluid (normally water or gas) 

volume flow rate.  It is designed so that the rotation frequency is directly proportional 

to the volumetric flow rate Q  over the specified range of operation of the meter.  A 

photograph of a turbine flow meter is shown in Figure 6-12. Two turbine flow meters 

were used in the current study. One was used to provide a reference water volumetric 

flow rate in bubbly two phase flows (i.e. turbine flow meter-1 which generated the 

output signal with frequency, 1fq ) while the second turbine flow meter was used to 

provide a reference water volumetric flow rate in separated annular and horizontal 

stratified flows (i.e. the turbine flow meter-2 which generated the output signal with 

frequency, 2fq ). The turbine flow meter-2 used in separated flows (see Figures 6-6 

and 6-8) was relatively new and the calibration supplied by the manufacturer was 

assumed to be valid. The calibration data supplied by the manufacturer for this 

turbine flow meter gave the following relationship between the water volumetric flow 

rate wQ and the measured frequency 2fq  of the output signal from the turbine flow 

meter-2. 

 

)s(m         ]102712432.9[ 13
2

7 −− ××= fqQw  

     Equation (6.4) 

where the constant 7102712432.9 −× is called a meter factor. 

 

The turbine flow meter-1 which was used in a bubbly gas-water two phase flow (see 

Figure 6-2) was installed more than five years ago and needed to be calibrated to 

check for any wear instead of just relying on the factory calibration data. The factory 

calibration for this meter was 0.0462 113 Hzhrm −−  over a design range of 3.41 13hrm −  

to 40.8 13hrm − . For the current investigation, this meter was calibrated over a range of 

3.947 13hrm −  to 21.196 13hrm − . The calibration of the turbine flow meter-1 was 

carried out by plotting the turbine meter frequency 1fq  against the water volumetric 

flow rate read from the water hopper load cell system described in Section 6.2.1. The 

data acquired from this calibration is shown in Figure 6-13. 
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Figure 6-12: A photograph of a turbine flow meter 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-13: Calibration curve for turbine flow meter-1 

 

Figure 6-13 shows that the turbine flow meter-1 has experienced little wear. The 

relationship between the water volumetric flow rate and the turbine meter frequency 

1fq  of this meter is given by; 
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)hr(m       0460.0 13
1

−×= fqQw  

     Equation (6.5) 

where the constant 0.0460 is the meter factor obtained from the calibration. 

 

6.2.3 Differential pressure devices 

 

To estimate the mixture density (see Equations (3.8) and (3.14)) in a bubbly gas-

water two phase flow using a FDM (see Sections 3.1.1 and 4.1) and to measure the 

differential pressure across the UVT (see Section 4.2) and the CMVM (see Section 

4.3) accurately, it was necessary to calibrate the two differential pressure transmitters 

before running the air-water rig (see Figure 6-14). The two dp transmitters used were 

(i) Honeywell dp cell, ST-3000 and (ii) Yokogawa dp cell, EJA 110A [150]. A 

flushing system was installed to ensure that no air was trapped in either the transducer 

or the measurement lines. The flushing system is described in Section 6.3.  The 

factory calibrations of these transmitters were performed in a range of 0 to 40 

OH inches 2 . For the current investigation the two dp cells were also re-calibrated 

with the pressure tapping separation of 1m. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-14: Photographs of Honeywell (left) and Yokogawa (right) dp cells 
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Since the output from the both dp cells was an electrical (4-20 mA) current, two 

current-to-voltage (I/V) converter circuits were designed and used to convert the 

current output signals from the dp cells (i.e. 4-20 mA) into the dc output voltages (1-

5V) which can then be easily interfaced with a PC via a data acquisition unit, Labjack 

U-12. An I/V converter circuit was already described earlier in this chapter (see 

Section 6.1.1, Figure 6-5).  

 

The calibration was carried out in different stages with increasing and decreasing 

water levels in the 1m long pipeline. The calibration curves for both dp cells are 

shown in Figures 6-15 and 6-16. It should be noted that the reason for plotting the 

differential pressure on the y-axis and the dc output voltage on the x-axis is that the 

best fit polynomial equation, which describes the differential pressure as a function of 

the dc output voltage, can be obtained directly from the graph. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-15: Calibration of the Yokogawa dP cell 
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Figure 6-16: Calibration of the Honeywell dP cell 

 
In horizontal stratified gas-water two phase flows, an inclined manometer was used to 

measure the gas pressure drop, gTPP ,∆ (see Equation (3.43) in Section 3.2.1) across the 

top side of the CMVM  (see Figures 6-8 and 6-9 in Section 6.1.3). A photograph of 

an inclined manometer is shown in Figure 6-17. The manometer fluid is a red paraffin 

with a specific gravity S.G. of 0.784 at 20oC. This manometer has two inclined tubes; 

a long tube and a short tube as shown in Figure 6-17.  Table 6-1 shows the pressure 

ranges for long and short tubes at different tube positions. 

 

 

Figure 6-17: A photograph of an inclined manometer 
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Table 6-1: specifications of the inclined manometer 
 

Long tube Short tube Tube 

position Pressure 

range 

 (cm WG) 

Scale 

multiplier 

Pressure  

range 

(cm WG) 

Scale  

multiplier 

Vertical 50 1.0 25 1 

Top 

inclined 
10 0.2 5 0.2 

Middle 

inclined 
NA NA 2.5 0.1 

Bottom 

inclined 
5 0.1 1.25 0.05 

 

6.2.4 The Variable Area Flowmeter (VAF) 

 

A VAF meter was used to provide a reference measurement of the gas volumetric 

flow rate received from the side channel blower, RT-1900 (high air supply) that was 

used for annular and stratified gas-water two phase flows. A photograph of the VAF 

is shown in Figure 6-18. The output from the VAF can be analogue and/or dc voltage 

signals. The analogue signal can be directly read from the analogue gauge which was 

calibrated by the manufacturer to give the gas volumetric flow rate in a range of 

30m3hr-1 to 200m3hr-1. The dc output voltages from the VAF were related to the 

readings obtained from the analogue gauge for different values of the gas volumetric 

flow rate. In other words, the dc output voltage from the VAF was checked against 

the analogue signal read from the gauge meter on the front of the VAF for different 

values of the gas volumetric flow rates. The relationship between the dc output 

voltage VAFV  and the gas volumetric flow rate gQ (read from the gauge meter) is 

shown in Figure 6-19. 
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Figure 6-18: A photograph of the VAF 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-19: The relationship between the dc output voltage and the gas 

volumetric flow rate in a VAF 
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Note that, the gas volumetric flow rate gQ  can be converted into the gas mass flow 

rate, gm& , using; 

ggg Qm ρ=&  

     Equation (6.7) 

 

The gas density, gρ , in Equation (6.7) can be calculated using Equations (3.44) and 

(3.45), see also Section 6.2.7. 

 

6.2.5 Side channel blower (RT-1900) 

 

The side channel blower (RT-1900, 60Hz) was installed on the flow loop to provide 

the necessary high gas flow rates in separated vertical annular and horizontal 

stratified flows (see Sections 6.1.2 and 6.1.3). A photograph of the side channel 

blower (RT-1900) and its specification are shown in Figure 6-20. It is clear from 

Figure 6-20 that the gas volumetric flow rate gQ  supplied by the side channel blower 

depends on the differential pressure P∆ . 

 

 

Figure 6-20: A photograph of the side channel blower (RT-1900) and its 

specification 
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One of the challenges encountered in this study was that the side channel blower (RT-

1900) could not provide enough gas flow rate to support a smooth liquid film flow 

rate in vertical annular gas-water two phase flows. This in turn, produced pulsations 

in the liquid film and led to significant error in the water mass flow rate calculated 

from Equation (3.72). Therefore, an alternative technique was used to measure the 

water mass flow rate in annular two phase flows. This alternative technique was 

based on the wall conductance sensor (see Sections 4.4 and 6.3).  

 

6.2.6 The thermal mass flow meter 

 

The thermal mass flow meter was used to provide a reference measurement of the gas 

volumetric flow rate supplied by the laboratory air compressor (low air supply). The 

thermal mass flow meter (Hasting Model HFM, HFM 200 series) can be used in a 

range of 0-200 SLPM with accuracy of ±1% F.S and repeatability of ±0.1% F.S. The 

measured gauge pressure (obtained from the pressure transducer, PDCR 810-0799, 

see Section 6.2.7) in the test section was added to atmospheric pressure (from a 

barometer) to give the absolute pressure. The absolute pressure along with the 

measured temperature (from a thermocouple) in Ko are used to correct the measured 

reference gas mass flow rate from the thermal mass flow meter to give the reference 

gas volumetric flow rate, refgQ , . A photograph of the thermal mass flow meter is 

shown in Figure 6-21. 

 

 

 

 

 

 

 

 

 

 

Figure 6-21: Thermal mass flowmeter 
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The thermal mass flow meter was calibrated using the gas meter G10. The calibration 

curve is shown in Figure 6-22. The solid line in Figure 6-22 shows the reference line 

(i.e. o45 line).  

 

 

 

 

Figure 6-22: calibration of the thermal mass flowmeter 
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Measurement of the absolute pressure 1P   and the absolute temperature 1T  (from the 

thermocouple) at the upstream section of the Venturi meter enabled the gas density to 

be determined (see Chapter 3, Equations (3.44) and (3.44)). Measured gauge pressure 

was added to atmospheric pressure (from a barometer) to give absolute pressure.  
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Once the gas density at the upstream section of the Venturi was obtained, the gas 

mass flow rate can be easily converted into the gas volumetric flow rate or vice-versa. 

This was applied in the bubbly, vertical annular and horizontal stratified flows. 

 

The gauge pressure sensor used was silicon-diaphragm type, PDCR 810 series 

manufactured by RS Components LTD. The data sheet of the PDCR 810-0799 

pressure transducer claims a combined non-linearity, hysteresis and repeatability of 

±0.1% B.S.L (best straight line). The pressure range is 0-2 bar with temperature effect 

of ± 0.5% within 0 to 50oC. As mentioned earlier, adding the gauge pressure, from 

the pressure transducer PDCR 810-0799, and the atmospheric pressure, from a 

barometer, enabled the absolute pressure to be determined. The barometer used in this 

study was the electronic barometer BA888. The temperature was measured using a 

thermocouple (J-type). 

 

6.3 The change over valve and flushing system 

 

As mentioned in Chapter 3, many differential pressure transmitters can not read a 

differential pressure if the pressure at the ‘high’ input is less than the pressure at the 

‘low’ input. In a bubbly two phase flow through a Venturi, in which the inlet and the 

throat are connected to the dp cell via water filled lines, the two phase air-water 

pressure drop across a Venturi meter may change its sign from positive to negative. 

This situation can never arise in a single phase flow (see Section 3.1.2). A change-

over valve system was used to overcome this problem (see Figure 6-23). 

 

It should be noted that the change-over valve system was only used in a bubbly gas-

water two phase flow through a UVT in which the pressure drop across the Venturi 

may change its sign. The flushing system was used to remove any air bubble in the 

transducer diaphragms and the water filled lines connected to ‘+’ and ‘-’ inputs of the 

dp cells.  
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Figure 6-23: Change-over valve and flushing system 

 

6.4 Calibration of the wall conductance sensor 

 

As mentioned earlier, the side channel blower could not provide a smooth liquid film 

flow rate for all flow conditions causing the error in the water mass flow rate to be 

greater than the expected error. As a result, the wall conductance sensors were used 

(in parallel with the current research) as an alternative method for measuring the 

liquid flow rate in annular gas-water two phase flows (see Sections 4.4 and 8.7). It 

should be noted that the wall conductance sensors were investigated by Al-Yarubi 

(2010) [147]. The data provided from the wall conductance sensors (i.e. the 

relationship between the entrainment fraction in the gas core with the gas superficial 
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flow meter to measure the total water mass flow rate in annular two phase flows (see 

Chapter 8). 

 

Since the data obtained from the wall conductance sensors was used to modify the 

water mass flow rate using the conductance multiphase flow meter, it is necessary to 

give a brief description about the calibration of the wall conductance sensor carried 

out by Al-Yarubi (2010) [147]. This calibration was accomplished by placing 

different sizes of solid cylindrical non-conducting plugs concentrically in the main 

body of the flow meter. The gap between the outer diameter of a particular solid core 

and the inner surface of the pipe wall was then filled with water, representing the 

water film that would occur in a real annular flow as shown in Figure 6-24. The 

calibration procedure of the wall conductance sensors was similar to the calibration 

procedure for CIVFM and CMVM described in Section 4.5 and Chapter 5. Al-Yarubi 

(2010) [147] gives a full detail on the calibration of the wall conductance sensors (see 

Figure 6-25). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-24: Calibration setup of the wall conductance sensors 
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Figure 6-25: Calibration curve of the wall conductance sensor 
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Summary 

 

To carry out the measurements of two phase flows using a UVT and the conductance 

multiphase flow meter (i.e. CIVFM and CMVM) in different flow regimes, several 

items of equipment are needed. The experiments were carried out using the resources 

already available at the University of Huddersfield. The two phase flow loop was 

initially used to study the bubbly gas-water two phase flows. This flow loop was 

further developed as part of the current investigation to enable vertical annular gas-

water flows and horizontal stratified gas-water flows to be established. The flow loop 

used has three different configurations (i) vertical bubbly flow, (ii) vertical annular 

flow, and (iii) horizontal stratified flow (see Section 6.1).     

 

The FDM (see Section 4.1), the UVT (see Section 4.2), the CIVFM (see Section 

4.3.1) and the CMVM (see Section 4.3.2) represented the testing devices while all 

other devices on the flow loop were reference and auxiliary devices (e.g. turbine flow 

meter, dp cells, etc). A description of the reference and auxiliary devices was 

presented in Section 6.2. 

 

In bubbly gas-water two phase flows, the reference water volumetric flow rate was 

obtained from the turbine flow meter-1 while the reference gas volumetric flow rate 

was obtained from the thermal mass flow meter. In vertical annular two phase flows, 

the reference water volumetric flow rate and the reference gas volumetric flow rate 

were obtained from the turbine flow meter-2 (see Section 6.2.2) and the VAF 

respectively (see Section 6.2.4). In horizontal stratified flows, the reference water 

volumetric flow rate was also obtained from the turbine flow meter-2. Two reference 

gas flow meters were used in a horizontal stratified flow; (i) the thermal mass flow 

meter to provide a reference measurement for low gas flow rates, and (ii) the VAF to 

provide a reference measurement for high gas flow rates.  
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Chapter 7 

 

Experimental Results for Bubbly Gas-

Water Two Phase Flows through a 

Universal Venturi Tube (UVT)  

 

 

 

Introduction  

 

At the beginning of this chapter it should be restated that the bubbly gas-water two 

phase flow considered in this thesis is approximately homogenous (i.e. its average 

properties on the scale of a few bubble diameters are approximately the same 

everywhere in the flow). Therefore, whenever the readers come across the term 

“homogenous flow” throughout this thesis, it refers to bubbly two phase flow, 

allowing the homogenous flow model described in Chapter 3 to be used. In effect, the 

flow is assumed to be homogenous and therefore assumed to behave as a single phase 

flow. 

 

The UVT (see Section 4.2)  was used to study a bubbly (or approximately 

homogenous) gas-water two phase flow in which it was used in conjunction with the 

FDM (see Section 4.1) to measure the gas volume fraction hom,1α  at the inlet of the 

Venturi (see Equation (3.14)). The gas volume fraction hom,1α  measured by the FDM 

at the inlet of the Venturi in a homogenous flow is assumed to be constant throughout 

the UVT. Once the mixture density was obtained, the mathematical model described 
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in Section 3.1 can be used to determine the mixture volumetric flow rate hom,mQ  (see 

Equation 3.9). 

This chapter presents and discusses the experimental results obtained for homogenous 

gas-water two phase flow using a UVT. The slip ratio S in a homogenous gas-water 

two phase flow can be assumed unity since both phases are assumed to travel with the 

same velocity.  

 

The mathematical model of a homogenous gas-water two phase flow through the 

UVT described in Section 3.1 was applied to study the bubbly gas-water two phase 

flows in which the gas present within the liquid was in the form of many bubbles of a 

small size (approximately 5-8 mm diameter). It has been found that this model works 

well for %48.17hom,1 ≤α . Beyond this limit the mathematical model of a homogenous 

gas-water two phase flow through the UVT starts to break down. This is due to the 

onset of slug flow where individual gas bubbles merge to form a large gas mass or 

slug that is often cylindrical (bullet) in shape.  

 

 

7.1 Bubbly air-water flow conditions through the Universal Venturi Tube   

 

Experiments were carried out in vertical upward gas-water flows using a UVT (non-

conductance Venturi meter, without electrodes). 92 different flow conditions were 

tested with the water reference volumetric flow rate, hom,,refwQ  in the range of 

133 sm 10057.1 −−× to 133 sm 10152.4 −−×  (3.81 m3hr-1 to 14.9 m3hr-1). For the gas 

reference volumetric flow rate, hom,,refgQ  the range was 135 sm 10648.2 −−×  to 

133 sm 10264.1 −−×  (0.095 m3hr-1 to 4.551 m3hr-1). The homogenous velocity (or 

mixture superficial velocity) hU  was in the range of 0.237 to 1.055 ms-1.  

  

Three different sets of data were tested. The water flow rate in the first and second 

sets of data was kept constant while in the third set of data both the water and the gas 

flow rates were varied. The summary of the flow conditions of all three sets of data is 

given in Table 7-1. 
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Table 7-1: Flow conditions of all three sets of data in a homogenous flow 

 

 

7.2 Flow loop friction factor 

 

In fluid dynamics, the friction factor is the term which relates the pressure loss due to 

friction along a given length of pipe to the average velocity of the fluid flow (see 

Equation (3.27)). The value of the friction factor, f depends primarily on the relative 

roughness of the pipe surface. Benedict (1980) [151] and Massey (1989) [152] gave a 

full review of the frictional pressure loss in single liquid phase flows.  

 

Measurement of the differential pressures across a 1 meter long pipe at different 

values of the single phase (water) volumetric flow rate obtained from the turbine flow 

meter-1 described in Section 6.2.2 (and hence at different values of the water 

velocity) enabled the friction factor f to be determined using Equation (3.27). The 

experimental data in Figure 7-1 shows a classic increase in f as the flow (water) 

velocity decreases. A good fit equation to the experimental data over the full range of 

flow velocities is also shown in Figure 7-1. 

 

 

Flow conditions 

 

Set #1 Set #2 

 

Set #3 

hom,,refwQ  (m3s-1)  10339.1 3−×   10937.1 3−×  
 10057.1 3−× to 

 10152.4 3−×  

hom,,refgQ  (m3s-1) 
 10329.3 5−× to 

 10264.1 3−×  

 10178.1 4−× to 

 10015.1 3−×  

 10648.2 5−× to 

 10181.1 3−×  

 

hU (ms-1) 

 

0.309 to 0.574 0.448 to 0.651 0.237 to 1.055 
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Figure 7-1: Friction factor variation with single phase flow velocity 

 

 

In order to estimate the friction factor f for the two phase flows, it was necessary to 

determine the mixture superficial velocity (or homogenous velocity) hU  using the 

following equation; 
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where hom,,refwQ is the reference water volumetric flow rate in bubbly (homogenous) 
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flow obtained from the thermal mass flow meter described in Section 6.2.6 and A is 

the cross-sectional area of the pipe (ID = 80 mm). 

 

Combining the homogenous velocity hU , defined by Equation (7.1), and the single 

phase friction factor calibration data shown in Figure 7-1 enables the frictional 

pressure loss term pipemF ,  (which was defined by Equation 3.13) to be determined. 

The frictional pressure loss term pipemF , (see Equation 3.13) together with the 

measured differential pressure across a 1m length of pipe (using a Yokogawa dp cell, 

EJA 110A) were used to give a measure of the gas volume fraction, hom,1α , in the 

FDM (see Equation (3.14) and Sections 4.1 and 6.1.1).  

 

 

7.3 Analysis of the pressure drop across the Universal Venturi Tube in bubbly 

gas-water two phase flows  

 

In multiphase flow measurements, the relationship between the overall mass or 

volume flow rate and the pressure drop across the Venturi is not unique and includes 

also the flow quality or holdup. Figure 7-2 shows the relationship between the 

pressure drop across the UVT, homP∆  and the homogenous velocity (mixture 

superficial velocity), hU . It is seen that for %48.17hom,1 ≤α , the trend can be 

approximated by a square root relationship. For %48.17hom,1 >α  (i.e. the onset of slug 

flow), the points start to move away from the approximated trend.  

 

It should be mentioned that the homogenous flow model, described in Chapter 3, 

starts to break down when the gas volume fraction hom,1α increases above 17.48% (see 

Section 7.5).  
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Figure 7-2: Differential pressure drop across the Universal Venturi Tube, homP∆  

in bubbly gas-water two phase flows for all sets of data 
 

7.4 Variation of the discharge coefficient in a homogenous gas-water two phase 

flow through a Venturi meter  

 

To account for the frictional and turbulence losses in the UVT a discharge coefficient 

was introduced (see Equation (3.9)). It is defined as the ratio between the actual to 

theoretical flow rates. The homogenous discharge coefficient hom,dC  in Equation (3.9) 

is given by;  

hom,

hom,,
hom,
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refm

d
Q

Q
C =  

     Equation (7.2) 

where hom,,refmQ is the reference mixture volumetric flow rate obtained from adding 

the reference water volumetric flow rate hom,,refwQ (obtained from the turbine flow 

meter-1 described in Section 6.2.2) and the reference gas volumetric flow rate 

hom,,refgQ  ( obtained from the thermal mass flow meter described in Section 6.2.6). 

hom,mQ  in Equation (7.2) is the predicted mixture volumetric flow rate which was 

defined by Equation (3.9). 
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The data of the discharge coefficient for Venturi meters in single phase flows is well 

established in the literature. In contrast, existing literature on discharge coefficients in 

two phase flows is very limited. Most of the research conducted on Venturi meters 

defined the discharge coefficient similar to that in incompressible single phase flow 

(e.g.  Murdock (1962) [47], Chisholm (1967, 1977) [48,49] and Lin (1982) [51]). 

 

Moissis and Radovcich (1963) [104] defined the discharge coefficient similar to that 

in single phase flow. They showed that at low values of the gas volume fraction (< 

0.5), where the homogenous flow model was valid, the discharge coefficient was 

independent of the gas volume fraction. When the gas volume fraction was higher 

than about 0.5, the gas discharge coefficient increased with increasing the gas volume 

fraction. The authors concluded that, the reason of this was due to the effect of the 

slip velocity.  

 

Figure 7-3 shows the variations of the homogenous discharge coefficient hom,dC with 

the gas volume fraction hom,1α  for all three sets of data (i.e. sets #1, 2 and 3, (see 

Table 7-1)). It is seen that for ≤hom,1α  17.48% the variations in the homogenous 

discharge coefficient hom,dC shows that hom,dC can be treated as independent of the gas 

volume fraction hom,1α . For ≤hom,1α  17.48%, hom,dC  has an average value of   0.948. 

For >hom,1α  17.48% the calculated values of the homogenous discharge coefficient 

hom,dC  increased above 1 and the value of hom,dC  is now seen to be dependent upon 

the gas volume fraction hom,1α .  

 

It should be noted that the gas volume fraction hom,1α  at the inlet of the UVT, 

described in Section 4.2, was measured using the FDM described in Sections 3.1.1 

and 4.1. The gas volume fraction hom,1α (see Equation (3.14)) obtained from the FDM 

was assumed to be constant throughout the UVT since the bubbly gas-water two 

phase flow used in the current research was approximately homogenous. 
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Figure 7-3: Variations of the homogenous discharge coefficient hom,dC with the 

inlet gas volume fraction hom,1α  

 

 Figure 7-4 shows the variation of hom,dC  with the gas or water superficial velocity. It 

is clear from Figure 7-4 that, in general, at higher gas superficial velocity 

( -1ms  199.0>gsU ) and lower water superficial velocity ( -1ms  297.0<wsU ), the 

discharge coefficient hom,dC  increased above 1 and the value of hom,dC  is seen to be 

dependent upon the gas or water superficial velocity. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-4: Variation of the homogenous discharge coefficient, hom,dC with the 

gas/water superficial velocity  
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7.5  Analysis of the percentage error between the reference and the predicted 

mixture volumetric flow rates in homogenous gas-water two phase flows 

 

Once the appropriate signals from the UVT and the FDM have been measured (see 

Section 6.1.1), the predicted mixture volumetric flow rate hom,mQ   can be determined 

using Equation (3.9). The percentage error, 
hom,mQε  in the predicted mixture volumetric 

flow rate can be expressed as; 

 

%100
hom,,

hom,,hom,

hom,
×








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 −
=

refm

refmm

Q
Q

QQ

m
ε  

     Equation (7.3) 

 

Figures 7-5 to 7-7 show the percentage error 
hom,mQε in the predicted mixture 

volumetric flow rate for all sets of data (see Table-7-1) using different values of 

homogenous discharge coefficients (i.e. hom,dC =0.940, 0.948 and 0.950 respectively). 

It should be noted that the reason of using the two different values of hom,dC  (i.e. 

hom,dC =0.940 and 0.950) other than the mean value of the homogenous discharge 

coefficient (i.e. hom,dC =0.940) was to compare the mean value error 
hom,mQε at different 

values of hom,dC .   

 

It is again clear from Figures 7-5 to 7-7 that the homogenous model starts to break 

down when %48.17hom,1 >α . This is due to the onset of the slug flow regime. It is 

also seen that the minimum mean value error 
hom,mQε (i.e. minimum average value of 

hom,mQε ) for %48.17hom,1 ≤α  can be achieved at 948.0hom, =−optimumdC  (see Figure 7-6). 

Table 7-2 summarises the mean value error 
hom,mQε for different values of the discharge 

coefficient hom,dC . The homogenous flow model described in Section 3.1 works well 

for %48.17hom,1 ≤α . Beyond that, the transition between bubbly and slug flow 

regimes occurs and the use of the homogenous flow model is not expected to achieve 

accurate results.  
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Table 7- 2: Mean values of 
hom,mQε  for different values of hom,dC  

 

hom,dC  

 

hom,mQε (%) 

0.940 
 

-0.858 
 

 
0.948 

 
-0.015 

 
0.950 

 
0.196 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-5: Percentage error 
hom,mQε in the predicted mixture volumetric flow rate 

hom,mQ  at 940.0hom, =dC  
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 Figure 7-6: Percentage error 
hom,mQε in the predicted mixture volumetric 

flow rate hom,mQ  at at 948.0hom, =−optimumdC    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-7: Percentage error 
hom,mQε in the predicted mixture volumetric flow rate 

hom,mQ  at at 950.0hom, =dC    
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7.6 A prediction of two phase pressure drop sign change through a vertical pipe 

and a Venturi meter in homogenous gas-water two phase flows 

 

Most of the experimental data in bubbly (homogenous) two phase flow described in 

this thesis were taken with ‘+’ input of the dp cell connected to the inlet of the 

Venturi and the ‘-’ input of the dp cell connected to the throat of the Venturi. 

However, the two phase gas-water pressure drop across the UVT in a homogenous 

flow could sometimes change its sign and the pressure at the ‘+’ input of the dp cell 

could be less than the pressure at the ‘-’ input of the dp cell. This is because the 

mixture density is lower than the density of water. The prediction of the pressure drop 

sign change in two phase flow allows the differential pressure cell to be correctly 

installed. For correct operation of the dp cell, the pressure at the ‘+’ input of the dp 

cell must be greater than the pressure at the ‘-’ input of the dp cell. Therefore, the 

change-over valves can be used to ensure that the high pressure tap was always 

connected to ‘+’ input and the low pressure tap was always connected to ‘-’ input of 

the dp cell (see Section 6.3). 

  

A new series of experiments were carried out in vertical upward gas-water flows to 

predict the two phase pressure drop sign change through a vertical pipe and the 

Venturi meter in a homogenous gas-water two phase flow. A new model was 

developed (see Section 3.1.2) to predict the sign change of the two phase pressure 

drop across the Venturi, and checked against data recently obtained from the bubbly 

gas-water flow rig (see Figure 6-2) at the University of Huddersfield. The prediction 

of the two phase pressure drop through a vertical pipe was also investigated (see 

Section 3.1.3) and compared with experimental data. Four sets of data with different 

flow conditions were tested for the reference water volumetric flow rate hom,,refwQ in 

the range of 134 sm1008.3 −−−×  to 133 sm1003.5 −−−×   and for values of the reference 

gas volumetric flow rate hom,,refgQ  in the range of 136 sm1092.2 −−−×  

to 133 sm102.1 −−−× . At each set of data hom,,refwQ was fixed while hom,,refgQ  was varied. 

The homogenous velocity 
hU was in the range of 0.075 to 1.174 1ms− . The gas volume 
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fraction was in the range of 0.025 to 0.260. The flow conditions of all four sets of 

data are summarized in Table 7-3. 

 

Table 7-3: Flow conditions of two phase pressure drop sign change for all four 

sets of data in a homogenous gas-water two phase flow 

 

 

7.6.1 Experimental results of the predicted two phase pressure drop sign 

change through the Universal Venturi Tube  

 

From the dimensions of the UVT , described in Section 4.2, it is possible to calculate 

1K and 2K in Equations (3.22) and (3.23). Therefore; 

 

1.33581 =K  and 6.5882 =K  

     Equation (7.4) 

 

Substituting Equation (7.4) into Equations (3.25) and (3.26) would respectively give; 

hom,11 6.588 α=C  

     Equation (7.5) 

and; 

Flow 

conditions 
Set #I Set #II Set #III Set #IV 

hom,,refwQ  

(m3s-1) 
 1008.3 4−×   1022.1 3−×   1027.3 3−×    1003.5 3−×  

hom,,refgQ  

(m3s-1) 

 1044.6 5−× to 

 1071.4 4−×  

 1089.4 5−× to 

 1020.1 3−×  

 1092.2 6−× to 

 1008.1 3−×  

 1099.2 6−× to 

 1068.8 4−×  

 hom,1α  
0.046 to  

0.184 
0.025 to 0.260 0.050 to 0.165 

0.050 to 

0.110 

hU (ms-1) 0.075 to 0.156 0.254 to 0.485 0.651 to 0.866 
1.002 to 

1.174 
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mvh FUC +−= 2
hom,12 )1(1.3358 α  

     Equation (7.6) 

where mvF  is the frictional pressure loss (from the inlet to the throat of the Venturi) 

and is defined by Equation (3.17). 

 

It was demonstrated (in Section 3.1.2) that the measured differential pressure across 

the dp cell is negative when 21 CC >  and positive when 21 CC < .  

 

Figure 7-8 shows the variation of the differential pressure drop across the Venturi 

meter homP∆  with the reference gas volumetric flow rate hom,,refgQ (obtained from the 

thermal mass flow meter, see Section 6.2.6) for all sets of data. It is clear that at set-I, 

(in which hom,,refwQ  was small and 21 CC > ), homP∆   was negative for different values 

of hom,,refgQ . When hom,,refwQ   increased, homP∆   was always positive. It is seen from 

Figure 7-8 that at lower water and gas flow rates, the coefficient 1C  becomes greater 

than 2C which leads to negative differential pressure across the dp cell. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-8: Pressure drop sign change in a homogenous two phase flow through 

the Venturi meter  
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Since set-I demonstrates negative values of homP∆ , it is meaningful to represent the 

data as a clustered column chart as shown in Figure 7-9. This makes the comparison 

between the coefficients 1C  and 2C more visible. It should be noted that the values of 

the negative differential pressure were incorrect. Therefore the change over-valve 

system (see Section 6.3) could be used in set-I to correct the differential pressure drop 

and to ensure that the high pressure tap was connected to the ‘+’ input of the dp cell 

and the low pressure tap was connected to the ‘-’ input of the dp cell.  

 

The differential pressure drop across the Venturi meter, homP∆  for sets of data II,III 

and IV are always positive since 21 CC <  (see Figures 7-10 to 7-12).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-9: Comparison between 21  and CC  for set-I through the UVT 
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Figure 7-10: Comparison between 21  and CC  for set-II through the UVT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-11: Comparison between 21  and CC  for set-III through the UVT 
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Figure 7-12: Comparison between 21  and CC  for set-IV through the UVT 

 

7.6.2 Experimental results of the predicted two phase pressure drop sign 

change across the vertical pipe 

 

It was demonstrated in Section 3.1.3 that the pressure drop across the dp cell in the 

two phase flow pipeP∆   becomes negative if; 

KU h
ˆ   2 >  

     Equation (7.7) 

where;  

f
kK

hom,1*ˆ α
=  

     Equation (7.8) 

and; 

392.0
2

)(cos* =
−

=
w

gw Dg
k

ρ

ρρθ
 

     Equation (7.9) 
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It should be noted that the constant, *
k  depends on the flow and experimental 

conditions. Substituting Equation (7.9) into (7.8) gives; 

f
K

hom,1392.0ˆ α
=  

   Equation (7.10) 

Therefore, pipeP∆ is negative when; 

f
U h

hom,12 392.0   
α

>  

                  Equation (7.11) 

Figure 7-13 shows the relationship between the differential pressure drop across a 

vertical pipe pipeP∆  (i.e. across the flow density meter, FDM, see Section 4.1) and the 

gas superficial velocity gsU for all four sets of data. It is seen that the values of 

pipeP∆ are always positive in sets I and II where 2
hU  is always less than K̂ . In set-III, 

one value of pipeP∆  was negative while in set-IV two values were negative. A 

negative value of the differential pressure drop pipeP∆  indicates that, Equation (7.11) 

is satisfied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-13: Variation of gspipe UP   with ∆  for all sets of data in a homogenous 

vertical pipe flow 
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Figures 7-14 and 7-15 show the comparison between the homogenous velocity hU  

and the coefficient K̂  with differential pressure drop pipeP∆  across the vertical pipe 

for sets III and IV. It is clear from these figures that some values of differential 

pressure drop become negative when KUh
ˆ2 > .  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-14: Comparison between KUh
ˆ and 2  for set-III in a vertical pipe 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7- 15: Comparison between KUh
ˆ and 2  for set-IV in a vertical pipe 
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7.7 A map of the two phase pressure drop sign change across the Venturi meter 

and the vertical pipe 

 

At this stage, it is possible to develop a map of the two phase pressure drop sign 

change across the UVT and the vertical pipe (i.e. FDM). In other words, two 

theoretical lines can be plotted which represent margins or limits of the pressure drop 

sign change across the Venturi and the vertical pipe respectively. 

 

The theoretical line of the two phase pressure drop sign change across the Venturi can 

be determined by making homP∆  in Equation (3.24) equals to zero. Therefore; 

 

21 CC =  

   Equation (7.12) 

 

Combining Equations (7.5), (7.6), (7.12) and (3.17) and solving for hom,1α  gives; 

 

2

2*2
*

0hom,1  1.33586.588

 1.3358 
2

hom
h

hh
tw

P U

UUf
D

h

+

+








=
=∆

ρ

α  

   Equation (7.13) 

where 
0hom,1

hom =∆
α

P
 is the inlet gas volume fraction in a homogenous two phase flow 

when 0hom =∆P , f is the single phase friction factor (see Section 7.2 and Equation 

(3.27)), *
hU  is the average homogenous velocity between the inlet and the throat of 

the Venturi (see Equation (3.19), *D  is the average diameter between the inlet and the 

throat of the Venturi (i.e. (inlet diameter + throat diameter)/2) and hU is the 

homogenous velocity (see Equation (7.1)). 

  

The constants (3358.1 and 588.6) in Equation (7.13) depend on the flow and 

experimental conditions. 
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The theoretical line of the two phase pressure drop sign change across the vertical 

pipe can now be obtained by setting pipeP∆ in Equation (3.28) equals to zero. 

Therefore; 

 

D

fUh
gh

hpw

gwpPpipe

2

0hom,1

2
)(cos

ρ
ρρθα =−

=∆
 

   Equation (7.14) 

 

Since gw ρρ >> , then wgw ρ≈ρ−ρ . In a vertical pipe, 1cos =θ . Therefore, Equation 

(7.14) becomes; 

 

2

0hom,1  
 

2
hP

U
gD

f

pipe








=

=∆
α  

   Equation (7.15) 

 

Now, plotting 
0hom,1

hom =∆
α

P
 vs hU  and 

0=∆ pipeP
α  vs hU  in Equations (7.13) and (7.15) 

respectively, represents the theoretical lines of the two phase pressure drop sign 

change across the Venturi and the vertical pipe respectively. 

 

Figure 7-16 shows the map of the homogenous gas-water two phase pressure drop 

sign change across the UVT and the vertical pipe for all data sets. The limit between 

negative and positive values of homP∆  is indicated by Line-A in which 0hom =∆P (see 

Equation (7.13)). The theoretical line denoted as Line-B which represents the limit 

between positive and negative values of the homogenous two phase pressure drop 

sign change across the vertical pipe is also shown in Figure 7-16. 
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Figure 7-16: Map of the homogenous two phase pressure drop sign change 

across the Venturi and the vertical pipe for all sets of data 
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Summary 

 

Experiments were carried out in homogenous gas-water two phase flows through the 

UVT in which different flow conditions were tested. The gas volume fraction at the 

inlet of the Venturi hom,1α  was measured using the FDM. hom,1α  was assumed to be 

constant throughout the UVT since the bubbly two phase flow was approximately 

homogenous. 

 

The homogenous discharge coefficient hom,dC  (see Equation (7.2)) was investigated 

in Section 7.4. It was found that the average homogenous discharge coefficient 

hom,dC was 0.948, which represented the optimum value at which the minimum 

average error was obtained in the predicted homogenous volumetric flow rate (see 

Section 7.5).  

 The percentage error in the predicted mixture volumetric flow rate 
hom,mQε  in 

homogenous two phase flows through the UVT was plotted for different values of 

homogenous discharge coefficients (see Figure 7-5 to 7-7). It was observed that the 

homogenous flow model starts to break down when the gas volume fraction hom,1α  

increased above 17.48% (the onset of the slug flow regime). It was also inferred from 

Figures 7-5 to 7-7 that the optimum value of the mixture discharge coefficient hom,dC  

which gives the minimum mean value error 
hom,mQε (for %48.17hom,1 ≤α ) was 0.948.  

 

A new model to predict the two phase pressure drop sign change across the Venturi 

meter and the vertical pipe was investigated (see Section 7.6). It was observed that for  

homP∆  to be negative, 1C  must be greater than 2C and for pipeP∆  to be negative,   2
hU  

must be greater than K̂ (see Equations (7.4) to (7.11)). A map was developed which 

showed the pressure drop sign change across the Venturi meter and the vertical pipe 

for homogenous two phase flow (see Figure 7.16). Two theoretical lines were plotted 

which represent limits of the pressure drop sign change across the Venturi and the 

vertical pipe in a homogenous gas-water two phase flow (see Equations (7.13) and 

(7.15)). 



Chapter 8: Experimental Results for Annular (wet gas) Flow Through a Conductance Multiphase Flow Meter  

 

 
 198  

Chapter 8 

 

Experimental Results for Annular (wet gas) 

Flow through a Conductance Multiphase 

Flow Meter  

 

 

Introduction  

 

Separated flow in a Venturi meter is highly complex and the application of the 

homogenous flow model described in Section 3.1 could not be expected to lead to 

highly accurate results. If this is the case, the gas volume fraction measurement 

technique at the throat of the Venturi must also be introduced instead of just relying 

on the gas volume fraction measurement at the inlet of the Venturi as in homogenous 

flows [153]. The conductance multiphase flow Meter which consists of the 

Conductance Inlet Void Fraction Meter (CIVFM, see Section 4.3.1), and the 

Conductance Multiphase Venturi Meter (CMVM, see Section 4.3.2) was designed to 

measure the gas volume fraction at the inlet and the throat of the Venturi.  

 

Previous models described in Section 2.2 depend on prior knowledge of the mass 

flow quality x. Online measurement of x is difficult and not practical in multiphase 

flow applications. The new model described in this thesis (see Section 3.2) depends 

on measurement of the gas volume fraction at the inlet and the throat of the Venturi 

rather than prior knowledge of the mass flow quality x which makes the measurement 

technique more reliable and practical. 
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This chapter discusses the experimental results of vertical annular (wet gas) flow 

through a conductance multiphase flow meter. The error in the predicted water mass 

flow rate, using the conductance multiphase flow meter, in annular (wet gas) flows 

was larger than expected. This was due to (a) the limitation in the side channel blower 

which could not provide sufficient gas under all flow conditions causing a pulsation 

in the liquid film flow, and (b) the fact that the effect of the liquid droplets in the gas 

core was not considered in the vertical annular (wet gas) flow model described in 

Section 3.2.2. Therefore, an alternative approach which was based on the wall 

conductance sensor (WCS, see Sections 4.4 and 6.4) was used to measure the total 

water mass flow rate in annular flow. It should be noted that the work performed on 

the WCSs was investigated by Al-Yarubi (2010) [147]. The data (i.e. the relationship 

between the entrainment fraction and the gas superficial velocity) obtained from the 

WCSs was used to modify the equation for the water mass flow rate (Equation (3.72)) 

using the conductance multiphase flow meter, so that the total water mass flow rate 

can be predicted instead of just relying on the water mass flow rate in the liquid film. 

The results of the alternative method are presented and discussed in Section 8.7. 

 

8.1 Flow conditions of vertical annular (wet gas) flows 

  

Experiments were carried out in a vertical upward annular gas-water two phase flow 

(wet gas flow) using the conductance multiphase flow meter. Eighty five different 

flow conditions were tested. The summary of the flow conditions is given in Table 8-

1. Four different sets of data were investigated in which the water flow rates were 

kept constant while the gas flow rates were varied. The reason for fixing the water 

flow rate and varying the gas flow rate is that with varying water flow rate it was 

difficult to maintain the gas flow rate at a constant value for all flow conditions. This 

was due to the limitation in the air blower (see Sections 6.2.5 and 8.6). 
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Table 8-1: Flow conditions of all four sets of data in annular (wet gas) flow 

 

Data set no. 

Gas superficial velocity 

wggsU ,  (ms
-1

) 

Water superficial velocity 

wgwsU , (ms
-1

) 

wg-1 6.919 to 8.566 0.0104 

wg-2 6.350 to 8.259 0.0163 

wg-3 6.837 to 8.323 0.0153 

wg-4 6.451 to 7.903 0.0123 

 

 

 

8.2 Study of the gas volume fraction at the inlet and the throat of the Venturi in 

annular (wet gas) flows 

 

To determine the gas and the water mass flow rates using Equations (3.66) and (3.72) 

respectively, measurements of the gas volume fractions wg,1α  and wg,2α  (see 

Equations (5.11) and (5.12)) at the inlet and the throat of the Venturi in annular (wet 

gas) flow must be obtained. To do this, a novel conductance multiphase flow meter 

was designed and constructed (see Section 4.3). The two ring electrodes at the 

CIVFM and the two ring electrodes at the throat section of the CMVM were used to 

measure the gas volume fractions wg,1α  and wg,2α at the inlet and the throat of the 

Venturi (see Chapters 4 and 5). 

 

Figures 8-1 to 8-4 show the variations of the gas volume fractions wg,1α  and wg,2α  at 

the inlet and the throat of the Venturi with the gas and water superficial velocities 

wggsU , and wgwsU , respectively in vertical annular (wet gas) flows. It can be seen from 

these figures that, in general, the gas volume fraction wg,1α  at the inlet of the Venturi 

(obtained from the CIVFM) was greater than the gas volume fraction wg,2α  at the 
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throat of the Venturi (obtained from the two electrodes at the throat section of the 

CMVM). This difference becomes more visible at lower water flow rates (data set# 

wg1). It should be noted that, although, considerable theoretical and experimental 

studies have been published to describe the performance of the Venturi meters in 

annular flow, there is very limited, if any, data in the literature with which the current 

results can be compared. Most of the data available in the literature depends on prior 

knowledge of the mass flow quality x and the over-reading factor [154] and not the 

actual measurements of the gas volume fractions wg.1α   and wg.2α  at the inlet and the 

throat of the Venturi as in the current study. Online measurement of x is difficult and 

not practical in multiphase flow applications. However, the difference between the 

gas volume fraction at the inlet and the throat of the Venturi was investigated  by 

Malayeri et al. (2001) [155] who studied the behaviour of gas-liquid bubbly flow 

through a vertical Venturi using a gamma-ray densitometer and found that the gas 

void fraction at the throat was always less than that at the inlet of the Venturi at fixed 

water flow rate over a range of gas flow rates. Although their results were obtained in 

bubbly gas-liquid flows, the results reported in Figures 8-1 to 8-4, which was 

obtained from separated vertical annular (wet gas) flows, agree with the results 

obtained by Malayeri et al. (2001).  

  

A plot of wg,2α vs wg,1α is shown in Figure 8-5. Unlike homogenous flow, the gas 

volume fraction at the inlet and the throat of the Venturi in annular flow cannot be 

assumed to be equal. The data presented in Figures 8.1 to 8-5 proves that, measuring 

of the gas volume fraction wg,2α  at the throat of the Venturi is necessary in separated 

flows (since wg,1α is not equal wg,2α ), instead of just relying on the measurement of the 

inlet gas volume fraction as in homogenous flows described in Chapter 7, where the 

gas volume fraction at the inlet of the UVT was assumed to be constant throughout 

the UVT. 
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Figure 8-1: Variations of wg,1α  and wg,2α  (at -1
, ms  0104.0=wgwsU ) in vertical 

annular (wet gas) flows, set# wg-1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-2: Variations of wg,1α  and wg,2α  (at -1
, ms  0163.0=wgwsU ) in vertical 

annular (wet gas) flows, set# wg-2 
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Figure 8-3: Variations of wg,1α  and wg,2α  (at -1
, ms  0153.0=wgwsU ) in vertical 

annular (wet gas) flows, set# wg-3 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-4: Variations of wg,1α  and wg,2α  (at -1
, ms  0123.0=wgwsU ) in vertical 

annular (wet gas) flows, set# wg-4 
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Figure 8-5: The relationship between  wg,1α and wg,2α  

 

8.3 The liquid film at the inlet and the throat of the Venturi meter 

 

As mentioned in Chapter 4, two ring electrodes flush mounted with the inner surface 

of the CIVFM and two ring electrodes flush mounted with the inner surface of  the 

throat section in the CMVM were used to measure the film thickness at the inlet and 

the throat of the Venturi (see Section 5.3) . Figure 8-6 shows the variation of the film 

thickness at the inlet and the throat of the Venturi for all sets of data. It can be seen 

that, in general, the film thickness at the inlet was greater than the film thickness at 

the throat of the Venturi. For set# wg-1 (i.e. at lower fixed water superficial velocity, 

see Table 8-1), the film thicknesses 1δ  and 2δ  were close to each other. As the water 

superficial velocity increased (i.e. sets# wg-2, wg-3 and wg-4), the difference 

between 1δ and 2δ increased. 
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Figure 8-6: The relationship between the film thickness at the inlet and the 

throat of the Venturi 

 

Comparing the results for the liquid film thickness shown in Figure 8-6 with the 

results for inlet/throat gas volume fractions discussed in the previous section (Section 

8.2), one can observe that although the gas volume fraction at the inlet of the Venturi 

was greater than that at the throat, the liquid film thickness at the inlet is still greater 

than that at the throat. The physical interpretation of this is given below. 

 

It is well known that the gas volume fraction in annular flow is given by; 

( )
2

2
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R
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Ag

π

δπ
α

−
==  

     Equation (8.1) 

where gA is the area of the gas core, A is the cross-sectional area of the pipe, R is the 

internal radius of the pipe and δ is the film thickness.  

Re-arranging Equation (8.1) gives; 

2

22
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RR
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     Equation (8.2) 
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Since R<<δ , Equation (8.2) can be written as; 

 

R

δ
α

2
1−=  

     Equation (8.3) 

Differentiating Equation (8.2) gives; 

dR
R

d
R

d  
2

 
2

2 





+




−
=

δ
δα  

     Equation (8.4) 

 

In Equation (8.4), if dR  is negative then αd is negative. If δd is negative then αd is 

positive. However, if  0
22

2 <−
R

d
dR

R

δδ
 then αd is negative even if δd is negative. 

 

8.4 Study of the gas discharge coefficient in vertical annular (wet gas) flows  

 

The discharge coefficient is well defined in a single-phase flow. In multiphase flows, 

the discharge coefficient is still elusive in that it depends on the modelling approach 

adopted. The gas discharge coefficient wgdgC ,  in a vertical annular (wet gas) flow 

through the Venturi meter is given by Equation (3.70) which can be expressed as; 

 

wgg

wgrefg

wgdg
m

m
C

,

,,
,

&

&
=   

              Equation (8.5) 

where wgrefgm ,,&  is the reference gas mass flow rate obtained from the variable area 

flowmeter, VAF in annular wet gas flow (see Sections 6.1.2 and 6.2.4) and wggm ,&  is 

the predicted gas mass flow rate  obtained from the conductance multiphase flow 

meter and the separated vertical annular flow model described in Chapter 3 (see 

Equation (3.66)).  

  

In order to measure wgrefgm ,,&  in Equation (8.5), the absolute pressure 1P  (from the 

gauge pressure sensor and the barometer, see Section 6.2.7) and the absolute 
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temperature 1T  (from the thermocouple, see also Section 6.2.7) were measured at the 

upstream section of the Venturi. Measurement of 1P  and 1T  enabled the gas density 

1gρ  at the inlet of the Venturi to be determined (see Equations (3.44) and (3.45)). The 

reference gas volumetric flow rate wgrefgQ ,,  obtained from the variable area flow 

meter, VAF (see Section 6.2.4) could then be converted into the reference gas mass 

flow rate wgrefgm ,,& using; 

 

wgrefggwgrefg Qm ,,1,, ρ=&  

              Equation (8.6) 

 

Figures 8-7 to 8-10 show the variations of the gas discharge coefficient wgdgC , with 

the gas superficial velocity wggsU , for different, constant values of the water 

superficial velocity wgwsU ,  in vertical annular (wet gas) flows through the Venturi.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-7: Variation of wgdgC , with wggsU ,  (at 0104.0, =wgwsU ms
-1

) in vertical 

annular (wet gas) flows through the Venturi 
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Figure 8-8: Variation of wgdgC , with wggsU ,  (at 0163.0, =wgwsU ms
-1

) in vertical 

annular (wet gas) flows through the Venturi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-9: Variation of wgdgC , with wggsU ,  (at 0153.0, =wgwsU ms
-1

) in vertical 

annular (wet gas) flows through the Venturi  
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Figure 8-10: Variation of wgdgC , with wggsU ,  (at 0123.0, =wgwsU ms
-1

) in vertical 

annular (wet gas) flows through the Venturi  
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of the flow conditions is given by 932.0, =wgdgC . This value of the wgdgC ,  represents 

the optimum value where the minimum average percentage error in the predicted gas 

mass flow rate is obtained (see Section 8.5).   

 

8.5 Discussion of the percentage error in the predicted gas mass flow rate in 

vertical annular (wet gas) flows through the Venturi meter  

 

The percentage error 
wggm ,&

ε  in the predicted gas mass flow rate can be expressed as; 
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selected values of the gas discharge coefficient. The mean value of the percentage 

error (red solid line) in the predicted gas mass flow rate 
wggm ,&

ε  and the standard 

deviations STD of the percentage error in the predicted gas mass flow rate for 

different values of wgdgC ,  are shown in Figures 8-11 to 8-13 and Table 8-2.  

  

 

Table 8-2: summary of 
wggm ,&

ε  and STD with different values of wgdgC , in annular 

(wet gas) flows 
 

wgdgC ,  
wggm ,&

ε (%) STD(%) 

0.920 -1.330 0.97 

0.932 -0.043 0.98 

0.933 0.064 0.98 

 

 

The standard deviation STD shown in Figures 8-11 to 8-13 (and also in Table 8-2), 

which represents an indication of the scattered of the data about 
wggm ,&

ε , is given by; 

 

N

yy
STD

∑ −
=

2)(
 

              Equation (8.8)  

Where y, y and N are the sample, the sample mean (average) and the sample size 

respectively. 

 

It is clear from Figures 8-11 to 8-13 (and also from Table 8-2) that the minimum 

value of 
wggm ,&

ε  (i.e. -0.043%) is obtained at wgdgC , =0.932 (see Figure 8-12). This 

value of the gas discharge coefficient represents the optimum value in which the 

minimum value of 
wggm ,&

ε is attained.  An estimated error 
wggm ,&

ε  in the predicted gas 

mass flow rate for 932.0, =wgdgC  was scattered randomly between a maximum 

positive value of +1.79%  and a maximum negative value of -1.69%. 
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Figure 8-11: The percentage error in the predicted gas mass flow rate for all sets 

of data, 920.0, =wgdgC  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-12: The percentage error in the predicted gas mass flow rate for all sets 

of data, 932.0, =wgdgC  
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Figure 8-13: The percentage error in the predicted gas mass flow rate for all sets 

of data, 933.0, =wgdgC  

 

8.6 The percentage error in the predicted water mass flow rate in vertical 

annular (wet gas) flows through the Venturi meter 
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on the outlet of the fan blower, see Section 6.1.2) it was very difficult to maintain 

constant gas flow rate using an 80 mm ID pipe since the gas flow rate from the outlet 

of the side channel blower decreases as the water flow rate (and hence P∆ in Figure 

8-14) increases. This is why the water flow rate was kept constant while the gas flow 

rate was varied in each set of data (see Table 8-1). 
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Source of the picture: http://www.airtecairsystems.ltd.uk/pdf/rt/RT-1900.pdf 

 

Figure 8-14: The specifications of the side channel blower (RT-1900) 

 

Another challenge was that due to the limitation in the air fan (side channel blower 

(RT-1900)), the side channel blower could not achieve a stable liquid film flow rate at 

all flow conditions. In other words, pulsations occurred in the liquid film. 

 

A new set of data was analysed in which the gas flow rate was kept constant while the 

water flow rate was varied. The values of the water flow rates (and also the fixed 

value of the gas flow rate) in this set of data were chosen in a way so that the possible 

stable liquid film flow could be established. The gas superficial velocity was kept 

constant at an average value of 7.57 ms-1. The reference water volumetric flow rate 

was in the range of  10026.5 5−×  m3s-1 to  10378.6 5−×  m3s-1. This range of the water 

flow rate was quite narrow because as mentioned above, increasing the water flow 

rate increases the differential pressure in the side channel blower and hence decreases 

the outlet gas flow rate (see Figure 8-14) which produces pulsations in the water flow 

rate and leads to unstable liquid film flow. 
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The water discharge coefficient wgdwC , in annular two phase flows can be expressed 

as; 

wgw

wgrefw

wgdw
m

m
C

,

,,
,

&

&
=  

              Equation (8.9) 

The variation of the water discharge coefficient wgdwC ,  in vertical annular (wet gas) 

flows with the reference water mass flow rate wgrefwm ,,&  for the new set of data is 

shown in Figure 8-15. It is clear that the water discharge coefficient wgdwC , was above 

unity. This was due to the unsteady liquid film flow rate (caused by the limitation in 

the side channel blower) and also due to the assumption that there were no liquid 

droplets in the gas core. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-15: Variations of the water discharge coefficient 
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where wgrefwm ,,& is the reference water mass flow rate obtained from the turbine flow 

meter-2 (see Section 6.2.2). The reference water mass flow rate can be obtained from 

multiplying the reference water volumetric flow rate, measured directly from the 

turbine flow meter-2, by the water density. The predicted water mass flow rate, 

 ,wgwm& , is obtained from Equation (3.72). It should be noted that  ,wgwm& in Equation 

(3.72) and also in Equation (8.10) does not account for any water droplets in the gas 

core. 

 

It should be also noted that the water discharge coefficient wgdwC ,  shown in Figure 8-

15 (and also given by Equation (8.9)) is defined based on the predicted water mass 

flow rate wgwm ,& (see Equation (3.72)). The reasons for getting a relatively large error 

(> ± 10%) in the water mass flow rate were due to; (i) the assumption that the entire 

water flow existed in the liquid film (i.e. the water droplet flow rate was not included 

in the wgwm ,&  (Equation (3.72)), and (ii) the pulsations in the water film flow which 

caused an unsteady water film flow rate.  

 

Experiments were carried out in annular gas-water two phase flows in parallel with 

the current research at the University of Huddersfield to measure the water film flow 

rate (Al-Yarubi (2010) [147]). Section 8.7 discusses an alternative method of 

measuring the water film flow rate. This alternative method is based on the wall 

conductance sensor (WCS) which was described in Sections 4.4 and 6.4. 

 

 

8.7 Alternative approach of measuring the water mass flow rate in annular 

gas-water two phase flows 

 

It should be noted that the work done on the WCS by Al-Yarubi (2010) [147] was 

done using the flow loop described in Section 6.1.2. The purpose of presenting the 

work done on the WCSs was to show how this method could be used to give 

information about the variation of the entrainment fraction, E with the gas superficial 

velocity. The data on the entrainment fraction, E, obtained from the WCSs was then 
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used to estimate the total water mass flow rate using the conductance multiphase flow 

meter (see Equations (8.16) and (8.17)). In other words, the purpose of using the 

WCS was to find the entrainment fraction, E, reported in Figure 8-17.  

 

As stated above, the modulus of the error in the predicted water mass flow rate using 

Equation (3.72) was greater than expected (>10%). As a result, a new approach for 

measuring the water flow rate was adopted [147]. The new approach is based on 

WCSs (see Sections 4.4 and 6.4). Experiments with different flow conditions were 

carried out at the University of Huddersfield in parallel with the current research to 

measure the water flow rate in annular gas-water two phase flows in a 50mm ID pipe 

using the WCSs [147].  Carrying out the experiments in a 50mm ID pipe instead of an 

80mm ID pipe enables the side channel blower to achieve a stable water film flow. 

Different flow conditions were tested with the gas superficial velocity in the range of 

10.61 to 24.76 ms-1 and for values of the water superficial velocity in the range of 

0.047 to 0.260 ms-1. 

 

The water film thickness δ  in annular gas-water two phase flows using the WCSs 

could be determined from the data reported in Figure 6-25 (see the calibration of the 

WCS in Section 6.4, for more information, refer to [147]). Once the film thickness δ  

was obtained the cross-sectional area of the liquid film fA  can be determined using; 

 

{ }22 )( δπ −−= wcsf RRA
wcs

 

            Equation (8.11) 

where wcsR is the pipe internal radius  (the radius of the wall conductance meter, see 

Section 4.4) and δ  is the film thickness. 

 

Al-Yarubi used two WCSs to measure the liquid film velocity corrfU ,  using a cross 

correlation technique described in Section 2.1.2.6. Figure 8-16 shows the process of 

the cross-correlation that was applied to one of the flow conditions in annular gas-

water two phase flows using the WCSs in which the water film velocity corrfU , can be 

determined [147]. 
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Once the area of the water film fA  and the water film velocity corrfU ,  were obtained, 

the water film volumetric flow rate wfQ  can be determined using; 

 

corrffwf UAQ ,=  

            Equation (8.12) 

 

 

 

Figure 8-16: Cross correlation technique using the wall conductance sensors 
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The reference water volumetric flow rate wgrefwQ ,, (measured from the turbine flow 

meter-2, see Section 6.2.2) is the sum of the water film volumetric flow rate wfQ and 

the water droplet volumetric flow rate wcQ  in the gas core. Therefore; 

 

wcwfwgrefw QQQ +=,,  

            Equation (8.13) 

 

The water droplet volumetric flow rate at the gas core, wcQ can be related to the 

entrainment fraction, E , using [147]; 

 

)1( E

EQ
Q

wf

wc
−

=  

            Equation (8.14) 

 

Combining Equations (8.12), (8.13) and (8.14) gives; 

 

wgrefw

corrff

Q

UA
E

,,

,1−=  

            Equation (8.15) 

 

Figure 8-17, from Al-Yarubi (2010) [147], shows the relationship between the 

entrainment fraction, E , and the gas superficial velocity for different values of the 

water superficial velocity. A best fit equation of the average entrainment fraction over 

the full range of the gas superficial velocities for different values of the water 

superficial velocity is also shown in Figure 8-17. 
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Figure 8-17: Variations of the entrainment fraction E with the gas superficial 

velocity for different values of the water superficial velocity 

 

Up to this point, the required data has been obtained from the work done by Al-

Yarubi (2010) [147] (i.e. Figure 8-17). To benefit from his work, the data in Figure 8-

17 can now be used to estimate the entrainment fraction E. As mentioned in Section 

8.6, a new set of data was analysed in which the gas flow rate was kept constant while 

the water flow rate was varied. The values of the water flow rates and the fixed value 

of the gas flow rate in this set of data were chosen in a way so that the possible stable 

liquid film flow could be established. Since the value of the gas superficial velocity, 

in this set of data, was kept constant at an average value of 7.57 ms-1, the approximate 

value of the entrainment fraction E corresponding to this value of the gas superficial 

velocity was 0.0405 (i.e. the minimum value of the entrainment fraction E shown in 

Figure 8-17). It should be noted that this value of E could be assumed to be constant 

since the range of the water volumetric flow rate used for the new set of data was 

quite small (i.e.  10026.5 5−× m3s-1 to  10378.6 5−× m3s-1, see Section 8.6). 
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Equation (8-14) can be rewritten as; 

)1(

 ,
,,

E

mE
m

wgw

wggcw
−

=
&

&  

            Equation (8.16) 

where wggcwm ,,& is the mass flow rate of the entrained liquid droplets in the gas core and 

wgwm ,& is the water mass flow rate in the liquid film (i.e. Equation (3.72)). 

 

It is now possible to estimate the total water mass flow rate wgtotalwm ,,& in annular (wet 

gas) flow using; 

wgwwggcwwgtotalw mmm ,,,,, &&& +=  

            Equation (8.17) 

wgwm ,&  in Equation (8.17) is the water mass flow rate assuming that the entire liquid 

existed in the liquid film (i.e. the mass flow rate of the liquid film, see Equation 

(3.72)). 

 

The percentage error in the predicted total water mass flow rate can be then expressed 

as; 

%100
,,

,,,,

,
×

−
=

wgrefw

wgrefwwgtotalw

m
m

mm

wgtotal &

&&

&
ε  

            Equation (8.18) 

where wgrefwm ,,& is the reference water mass flow rate in annular (wet gas) flow 

obtained from multiplying the reference water volumetric flow rate wgrefwQ ,,  

(obtained directly from the turbine flow meter-2, see Section 6.2.2) by the water 

density.  

 

Figure 8-18 shows the percentage error 
wgtotalm ,&

ε  in the predicted total water mass flow 

rate. It should be noted that the average value of the water discharge coefficient 

wgdwC ,  for all of the flow conditions was 1.057 (see Figure 8-15). Whenever the 

selected values of wgdwC ,  were close to 1.057, the error in the total water mass flow 

rate 
wgtotalm ,&

ε  becomes less. Therefore, the selected value of the wgdwC ,  (which was used 
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in calculating wgwm ,& , see Equation (3.72)) was chosen to be 0.995. The mean 

percentage error in the predicted total water mass flow rate 
wgtotalm ,&

ε and the standard 

deviation were 0.550% and 6.495% respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-18: Percentage error in the predicted total water mass flow rate 

 

The new proposed technique to measure the total water mass flow rate and the gas 

mass flow rate in annular (wet gas) flows using a Conductance Cross Correlation 

Meter (CCCM) in conjunction with the Conductance Multiphase Venturi Meter 

(CMVM) is described, in detail, as possible further work in Chapter 11. 
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Summary  

 

A novel conductance multiphase flow meter (i.e. CIVFM and CMVM) in conjunction 

with the separated vertical annular flow model described in Section 3.2.2 was used to 

study annular gas-water two phase flows. Four sets of data were investigated in which 

the water flow rate was kept constant while the gas flow rate was varied (see Table 8-

1). An additional new set of data was also investigated in this study in which the gas 

flow rate was kept constant while the water flow rate was varied. 

 

One of the major difficulties encountered in this investigation was that the side 

channel blower could not achieve a stable liquid film flow rate in all flow conditions 

and pulsations occurred in the liquid film. An alternative method for measuring the 

water flow rate was discussed. This method was based on wall conductance sensors 

(see Sections 4.4 and 8.7).  

 

The gas volume fraction at the inlet and the throat of the Venturi was measured using 

two ring electrodes at the inlet (i.e. at the CIVFM) and two ring electrodes at the 

throat of the CMVM respectively. It was found that in general, the gas volume 

fraction wg,1α  at the inlet of the Venturi was greater than the gas volume fraction 

wg,2α  at the throat of the Venturi. At a lower water flow rate (data set# wg1), this 

difference becomes more visible.  

 

The gas discharge coefficient wgdgC , (Equation (8.5)) was investigated. The optimum 

value of the gas discharge coefficient which gives a minimum average value of the 

percentage error in the predicted gas mass flow rate (i.e. %043.0
,

−=
wggm&ε ) was found 

to be 0.932 (see Section 8.5).  

 

The percentage error in the predicted water mass flow rate using Equation (3.72) was 

larger than expected. This was because; (i) the wgwm ,& in Equation (3.72) assumed that 

the entire water flow rate was represented by the liquid film flow rate. In other words, 

the flow rate of the water droplets is not included in wgwm ,&  and, (ii) the pulsations 
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occurred in the water film which caused unsteady water film flow rate. An alternative 

technique (based on the wall conductance sensors, see Sections 4.4 and 6.4) was used 

so that the total water mass flow rate using the conductance multiphase flow meter 

(CIVFM and CMVM) was estimated. 
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Chapter 9 

Experimental Results for Stratified Gas-

Water Two Phase Flows through a 

Conductance Multiphase Flow Meter  

 

Introduction  

 

Stratified flow is one of the most common flow regimes encountered in horizontal 

gas-liquid two phase flows. In a horizontal stratified gas-water two phase flow, the 

water flows at the bottom of the pipe while the gas phase flows along the top of the 

pipeline. Since a stratified flow is one of the separated flow regimes the velocity ratio 

(i.e. slip ratio S, see Equations (3.60) and (3.61)) is not unity. Therefore, relying only 

on the measurement of the gas volume fraction at the inlet of the Venturi (as in 

homogenous flow model) would not be expected to give accurate results.  

 

A new mathematical model for horizontal stratified gas-water two phase flows 

through a Venturi meter was investigated (see Section 3.2.2). Unlike the previous 

models described in Section 2.2, this model does not require prior knowledge of the 

mass flow quality x but it depends on the measurement of the gas volume fractions 

st,1α  (measured from the two ring electrodes at the inlet of the Venturi (i.e. at the 

CIVFM, see Section 4.3.1)) and st,2α  (measured from the two ring electrodes at the 

throat of the CMVM, see Section 4.3.2). Measurement of st,1α  (see Equation (5.13)) 

and st,2α  (see Equation (5.14)) enables the gas and the water mass flow rates stgm ,&  

and stwm ,& to be determined (see Equations (3.43) and (3.59)). Due to the substantial 

difference between the water and the gas differential pressures across the CMVM in a 

stratified two phase flow (i.e. the maximum pressure drops in the gas and the water 

phases across the Venturi were 232.7 Pa and 100.0 Pa respectively), two differential 
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pressure measurement devices were used (see Section 6.2.3). A Honeywell dp cell 

(ST-3000) was used to measure the pressure drop in the water phase while an inclined 

manometer was used to measure the pressure drop in the gas phase (see Section 

6.3.2). 

 

This chapter presents and discusses the experimental results obtained in horizontal 

stratified gas-water two phase flows through a conductance multiphase flow meter, 

and in which the predicted gas and water mass flow rates, stgm ,&  and stwm ,&  were 

measured and compared with the reference gas and water mass flow rates. Following 

the convention in the literature, the gas and the water flow rates discussed in this 

chapter are presented in terms of the mass flow rates. 

 

9.1  Flow conditions of horizontal stratified gas-water two phase flows 

 

A series of experiments were carried out in horizontal stratified gas-water two phase 

flows using the conductance multiphase flow meter (i.e. CIVFM and CMVM, see 

Section 4.3). The experiments were conducted using one of the multiphase flow loops 

at the University of Huddersfield which was capable of providing stratified gas-water 

two phase flows (see the stratified flow configuration in Section 6.1.3). Five different 

sets of data were used to study horizontal stratified two phase flows. In the first three 

sets, the water flow rate was kept constant while the gas flow rate was varied. The gas 

flow rates were kept constant and the water flow rates were varied in the remaining 

two sets of data (see Table 9-1).  

 

It should be noted that the values of the low gas superficial velocity stgsU ,  in data 

sets; ‘st-1’, ‘st-2’, ‘st-4’ and ‘st-5’ (see Table 9-1) were obtained from dividing the 

reference gas volumetric flow rate (measured from the thermal mass flow meter 

which was installed on the low gas flow line, see Section 6.2.6) by the cross-sectional 

area of the pipe. The high values of the gas superficial velocity in the set of data ‘st-3’ 

were obtained from dividing the reference gas volumetric flow rate (measured from 

the Variable Area Flowmeter, VAF which was installed on the high gas flow line in 

which the side channel blower was used to provide high gas flows, see Sections 6.1.3 
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and 6.2.4) by the cross-sectional area of the pipe. The values of the water superficial 

velocity were obtained from dividing the reference water volumetric flow rate 

measured from the turbine flow meter-2 (see Section 6.2.2) by the cross-sectional 

area of the pipe. 

 

 

Table 9-1: Flow conditions in stratified gas-water two phase flow 

 

Data set 

no. 

water superficial 

velocity in stratified 

flows, stwsU , (ms
-1

) 

Gas superficial velocity in 

stratified flows, stgsU , (ms
-1

) 

st-1 0.013 0.171 to 0.595 

st-2 0.017 0.278 to 0.568 

st-3 0.019 1.467 to 4.444 

st-4 0.025 to 0.057 0.361 

st-5 0.037 to 0.070 0.321 

 

 

9.2 Variations in the gas volume fraction at the inlet and the throat of the 

Venturi in a stratified gas-water two phase flow  

 

The conductance multiphase flow meter, which consists of the CIVFM and the 

CMVM, was designed to measure the gas volume fraction at the inlet and the throat 

of the Venturi in separated horizontal stratified gas-water two phase flows. The 

CIVFM was used to measure the gas volume fraction st,1α   at the inlet of the Venturi 

(see Equation (5.13)) while the CMVM was used to measure the gas volume fraction 

st,2α at the throat of the Venturi (see Equation (5.14)).   

 

Figure 9-1 shows the variation of the gas volume fractions st,1α  and st,2α  at the inlet 

and the throat of the Venturi respectively with the gas superficial velocity stgsU ,  for 

data set ‘st-1’ and data set ‘st-2’ (i.e. at low gas flow rates and fixed values of the 
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water flow rate, see Table 9-1). It is clear from Figure 9-1 that the gas volume 

fraction st,2α (at the throat of the Venturi) is greater than the gas volume fraction 

st,1α (at the inlet of the Venturi). In addition, the variation in the gas volume fraction 

st,1α , from one flow condition to another, was greater than that which occurred in the 

gas volume fraction st,2α  at the throat of the Venturi. It should be mentioned that, 

although, considerable theoretical and experimental studies have been published to 

describe the performance of the Venturi meters in stratified flows, there is very 

limited, if any, data in the literature with which the current results can be compared. 

Most of the data available in the literature depends on prior knowledge of the mass 

flow quality x and the over-reading factor [154] and not the actual measurements of 

the gas volume fractions st.1α   and st.2α  at the inlet and the throat of the Venturi as in 

the current study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9-1: Variations of  st,1α and st,2α with stgsU , at low gas flow rates and fixed 

water flow rates (sets of data:  ‘st-1’ and ‘st-2’) 
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Figure 9-2 shows the variation of st,1α  and st,2α  with stgsU ,  for set of data ‘st-3’ (i.e. 

at high gas flow rates and fixed water flow rate, see Table 9-1). It can be seen from 

Figures 9-1 and 9-2 that at fixed values of the water flow rate and varying gas flow 

rates, the gas volume fraction st,2α  at the throat of the Venturi was greater than the 

gas volume fraction st,1α  at the inlet of the Venturi. It can be also seen from Figure 9-

2 that, as the gas superficial velocity increased the difference between st,1α  and st,2α  

decreased. 

 

The variations of the gas volume fractions st,1α and st,2α  at varying water flow rates 

and fixed values of the gas flow rate (i.e. sets of data: ‘st-4’ and ‘st-5’) are shown in 

Figure 9-3. It can be seen from Figure 9-3 that the gas volume fraction decreases as 

the water flow rate increases. The gas volume fraction st,2α  is always greater than 

st,1α . This is because the gas-water boundary undergoes a step change in height from 

the inlet to the throat of the Venturi (see Figure 3-4 in Section 3.2.1).  

 

 

 
Figure 9-2: Variations of st,1α and st,2α with stgsU , at high gas flow rates and fixed 

water flow rate (data set: ‘st-3’) 
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Figure 9-3: Variations of st,1α and st,2α with stwsU , at fixed gas flow rates and 

varying water flow rates (sets of data: ‘st-4’ and ‘st-5’) 
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The height of the water sth ,1 and sth ,2  at the inlet and the throat of the Venturi (i.e. at 

the CIVFM and the throat section of the CMVM) in a stratified gas-water two phase 

flow can be measured using the conductance technique described in Chapters 4 and 5. 

The relationship between the heights of the water sth ,1 and sth ,2  at the inlet and the 

throat of the Venturi and the water superficial velocity stwsU ,  when the gas flow rates 

were fixed (i.e. sets of data: ‘st-4’ and ‘st-5’, see Table 9-1) is shown in Figure 9-4. 

The height of the water sth ,1  at the inlet of the Venturi measured from the two ring 

electrodes flush mounted with the inner surface of the CIVFM (see Section 4.3.1) was 

always greater than the water height sth ,2  at the throat of the Venturi which was 

measured from the two electrodes at the throat section of the CMVM. Visual 

observation of the flow was also indicated that the gas-water boundary undergoes a 

reduction in height from the inlet to the throat of the Venturi (see Section 3.2.1). 
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Figure 9-4: The relationship between stwsU , and ( stst hh ,2,1  and ) at fixed gas flow 

rates and varying water flow rates (sets of data: ‘st-4’ and ‘st-5’) 
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Figure 9-5: The relationship between the relative heights of the water at the inlet 

and the throat of the Venturi for sets of data: ‘st-4’ and ‘st-5’ 
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The gas and the water discharge coefficients in a stratified gas-water two phase flow 

through a Venturi meter are respectively given by; 

stg

strefg

stdg
m

m
C

,

,,
,

&

&
=  

     Equation (9.1) 

 

and; 

stw

strefw

stdw
m

m
C

,

,,
,

&

&
=  

     Equation (9.2) 

 

where stgm ,& and stwm ,&  are the predicted gas and water mass flow rates (see Equations 

(3.43) and (3.59)). strefgm ,,&  and strefwm ,,& are the reference gas and water mass flow 

rates. strefgm ,,& was obtained from multiplying the reference gas volumetric flow rate 

from either the variable area flow meter (VAF) or the thermal mass flowmeter by the 

gas density 1gρ  obtained from Equations (3.44) and (3.45), while strefwm ,,&  was 

obtained from multiplying the reference water volumetric flow rate from the turbine 

flow meter-2 (see Section 6.2.2) by the water density. 

 

Figure 9-6 shows the variation of the gas discharge coefficient stdgC ,  for data set ‘st-

1’ and data set ‘st-2’ (i.e. at fixed values of the water flow rate and varying low gas 

flow rates). The variation of the stdgC ,  at fixed water flow rate and varying high gas 

flow rates (data set ‘st-3’) is shown in Figure 9-7.  

 

From Figures 9-6 and 9-7, a mean value for the gas discharge coefficient stdgC ,  is 

given by =stdgC , 0.965. This value of the stdgC ,  represents the optimum value where 

the minimum average percentage error in the predicted gas mass flow rate can be 

obtained (see Section 9.5). It should be noted that the mean value of the gas discharge 

coefficient was obtained by averaging the overall data reported in Figures 9-6 and 9-

7.  
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Figure 9-8 shows the variation of the water discharge coefficient stdwC ,  in a stratified 

gas water two phase flow at fixed values of the gas flow rate and varying water flow 

rates (i.e. sets of data: ‘st-4’ and ‘st-5’).  

  

From Figure 9-8, the water discharge coefficient stdwC ,  can be averaged to 0.935. 

This value of the stdwC ,  gives a minimum mean value error in the predicted water 

mass flow rate (see Section 9.5).  

 

The percentage error in the predicted gas and water mass flow rates for different 

values of the gas and water discharge coefficients, stdgC ,  and stdwC ,  are analysed in 

Section 9.5. Three different values of stdgC ,  and three different values of stdwC ,  

(including optimum (mean) values of the stdgC , and stdwC ,  given above) were chosen 

in which the percentage error in the predicted gas and water mass flow rates were 

compared for selected values of the stdgC , and stdwC ,  (see Section 9.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9-6: Variation stdgC , at fixed values of the water flow rate and varying low 

gas flow rates (sets of data: ‘st-1’ and ‘st-2’, Average value of stdgC , =0.967) 
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Figure 9-7: Variation of stdgC ,  at fixed water flow rate and varying high gas flow 

rates (data set ‘st-3’, Average value of stdgC , = 0.963) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9-8: Variation of the water discharge coefficient, stdwC , at fixed values of 

the gas flow rate and varying water flow rates (sets of data: ‘st-4’ and ‘st-5’) 
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9.5 The percentage error in the predicted gas and water mass flow rates in 

stratified gas-water two phase flows 

 

This section discusses the percentage error in the predicted gas and water mass flow 

rates for different values of the discharge coefficients. Three different values of stdgC ,  

(i.e. 0.970 and 0.965 ,960.0, =stdgC ) and three different values of stdwC ,  (i.e. 

0.940 and 0.935 ,930.0, =stdwC ) were chosen. It should be reiterated that the average 

values (i.e. optimum values) of the stdgC ,  and stdwC , were 0.965 and 0.935 respectively 

(see Section 9.4). The reason of choosing different values of stdgC ,  and stdwC ,  was to 

show the sensitivity of errors in the predicted gas and water mass flow rates to 

selected values of the discharge coefficient. The percentage error in the predicted gas 

and water mass flow rates, 
stgm ,&

ε  and 
stwm ,&

ε are given respectively by; 

%100
,,

,,,

,
×

−
=

strefg

strefgstg

m
m

mm

stg &

&&

&
ε  

     Equation (9.3) 

and; 

%100
,,

,,,

,
×

−
=

strefw

strefwstw

m
m

mm

stw &

&&

&
ε  

     Equation (9.4) 

 

Figure 9-9 shows the percentage error 
stgm ,&

ε  in the predicted gas mass flow rate  (see 

Equation (9.3)) at fixed values of the water flow rate and varying low gas flow rates 

(i.e. sets of data: ‘st-1’ and  ‘st-2’) for stdgC , = 0.960, 0.965, and 0.970. 

 

Figure 9-10 shows the percentage error in the predicted gas mass flow rate 
stgm ,&

ε  at 

fixed water flow rate and varying high gas flow rates (i.e. data set: ‘st-3’) for 

stdgC , =0.960, 0.965 and 0.970. The summary of the mean value error in the predicted 

gas mass flow rate, 
stgm ,&

ε  and the standard deviation (STD) at different values of the 

gas discharge coefficient which was obtained from the data reported in Figures 9-9 

and 9-10 is given in Table 9-2. 
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Figure 9-9: The percentage error in the predicted gas mass flow rate at fixed 

water flow rates and varying low gas flow rates (sets of data: ‘st1’ and ‘st2’) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9-10: The percentage error in the predicted gas mass flow rate at fixed 

water flow rate and varying high gas flow rates (data set: ‘st-3’) 
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Table 9-2: Mean value of percentage error 
stgm ,&

ε  and the STD of percentage 

error in the predicted gas mass flow rate for stdgC , = 0.960, 0.965 and 0.970 (at 

sets of data: ‘st-1’, ‘st-2’ and ‘st-3’)  

 

stdgC ,  
stgm ,&

ε (%) STD(%) 

0.960 -0.515 1.134 

0.965 0.003 1.140 

0.970 0.521 1.146 

 

 

It is clear from Figures 9-9 and 9-10 and also from Table 9-2 that the optimum value 

of the gas discharge coefficient optimumstdgC ,,  which gives a minimum value of the 

stgm ,&
ε is 0.965, even with small variations in the standard deviations. 

 

Figure 9-11 shows the percentage error in the predicted water mass flow rate 

stwm ,&
ε (see Equation (9.4)) at fixed values of the gas flow rate and varying water flow 

rates (i.e. sets of data: ‘st-4’ and ‘st-5’, see Table 9-1) for stdwC , = 0.930, 0.935 and  

0.940. Table 9-3 summarises the mean value of the percentage error 
stwm ,&

ε  and the 

standard deviation STD of the percentage error in the predicted water mass flow rate 

that could be obtained from the data reported in Figure 9-11. 

 

Figure 9-11 and Table 9-3 show that a water discharge coefficient optimumstdwC ,,  = 

0.935 gives a minimum value for 
stwm ,&

ε  (i.e. the average value of the water discharge 

coefficient, see Figure 9-8). It should be noted that the value of the water discharge 

coefficient was affected by the substantial change in the position of the gas-water 

boundary (interface) from the inlet to the throat of the Venturi (see Section 3.2.1 and 

Figure 3-4). 
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Figure 9-11: The percentage error in the predicted water mass flow rate at fixed 

values of the gas flow rate (sets of data: ‘st-4’ and ‘st-5’) 

 

 
 
Table 9-3: Mean value of the percentage error 

stwm ,&
ε  and the STD of percentage 

error in the predicted water mass flow rate for stdwC , = 0.930, 0.935, and 0.940 (at 

sets of data: ‘st-4’ and ‘st-5’)  

 

stdwgC ,  
stwm ,&

ε (%) STD(%) 

0.930 -0.486 2.281 

0.935 0.049 2.294 

0.940 0.584 2.306 

 

 

At the end of this section, it can be concluded that, based on the results described in 

this section, the performance of the novel conductance multiphase flow meter, was 

very good and can be relied upon in stratified two phase flow applications. Although, 

the conductance multiphase flow meter was tested under a maximum absolute 

pressure of about 103 KPa (measured at the inlet of the Venturi using the gauge 
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pressure sensor and the barometer, see Section 6.2.7), the conductance multiphase 

flow meter in conjunction with the horizontal stratified flow model described in 

Section 3.2.1 can still be used under very high pressure conditions.  

 

Unlike the previous correlations described in Section 2.2, the new stratified flow 

model (see Section 3.2.1) does not require prior knowledge of the mass flow quality x 

but depends on the measurement of the gas volume fraction at the inlet and the throat 

of the Venturi which makes the measurement technique described in this thesis more 

practical. 

 

9.6 Analysis of the actual velocity at the inlet and the throat of the Venturi in 

stratified gas-water two phase flows 

 

Once the gas and the water mass flow rates were determined using Equations (3.43) 

and (3.59) the actual gas and water velocities stgU ,1 , stgU ,2 , stwU ,1 and stwU ,2  at the 

inlet and the throat of the Venturi can be determined. The actual gas and water 

velocities  stgU ,1 , stgU ,2 , stwU ,1 and stwU ,2  at the inlet and the throat of the Venturi can 

be respectively expressed as; 

 

1,11

,
,1

gst

stg

stg
A

m
U

ρα
=

&
 

     Equation (9.5) 

and [by combining Equations (3.34) and (3.36)]; 
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and; 
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     Equation (9.7) 
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and; 

 

wst

stw

stw
A

m
U

ρα−
=

2,2

,
,2 )1(

&
 

     Equation (9.8) 

 

The subscript ‘st’ is added to distinguish between stratified flows and other flow 

regimes. 

 

It should be noted that stgm ,&  and stwm ,& in Equations (9.5) to (9.8) are determined using 

the optimum (mean) values of the gas and the water discharge coefficients (i.e. 

965.0, =stdgC and 935.0, =stwgC  respectively). 

 

Figure 9-12 shows the variation of the actual gas and water velocities at fixed values 

of the water flow rate and varying low gas flow rates (sets of data: ‘st-1’ and ‘st-2’). 

Figure 9-13 shows the variations of stgU ,1 , stgU ,2 , stwU ,1 and stwU ,2 with the stgsU , at 

fixed water flow rate and varying high gas flow rates (i.e. data set: ‘st-3’). It can be 

seen from Figures 9-12 and 9-13 that the velocity at the throat is greater than the 

velocity at the inlet. This is because the fluid entering the Venturi is accelerated to a 

higher velocity as the flow area is decreased. In other words, at the throat, the 

pressure decreases to a minimum where the velocity increases to a maximum. (i.e. 

Bernoulli equation). It is also clear from Figures 9-12 and 9-13 that the variations in 

the actual water velocities at the inlet and the throat of the Venturi were smaller than 

the variations in the actual gas velocities (note that, data set ‘st-1’ and data set ‘st-2’ 

were taken under constant values of the water superficial velocity). Therefore, at 

fixed values of the water flow rate and varying low and high gas flow rates (i.e. sets 

of data: ‘st-1’, ‘st-2’ and ‘st-3’), the effect of increasing the gas superficial velocity 

stgsU ,  on the water velocity was very small. In other words, the values of stwU ,1  and 

stwU ,2  seem to be independent of stgsU , . 

 



Chapter 9: Experimental Results for Stratified Gas-Water Two Phase Flows Through a Conductance Flow Meter 

 
 241  

 

  

 

  

 

 

 

 

 

 

 

 

 

 

Figure 9-12: Actual gas and water velocities at fixed values of the water flow rate 

and varying low gas flow rates (sets of data: ‘st-1’ and ‘st-2’) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9-13: Actual gas and water velocities at fixed water flow rate and varying 

high gas flow rates (data set: ‘st-3’)  
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Figure 9-14 shows the variations of stgU ,1 , stgU ,2 , stwU ,1 and stwU ,2 with the water 

superficial velocity, stwsU ,  at fixed values of the gas flow rate and varying water flow 

rates (i.e. sets of data: ‘st-4’ and ‘st-5’, see Table 9-1). It is seen that stgU ,1 and stgU ,2  

are strongly dependent on stwsU , . In other words, the effect of increasing stwsU , on 

stgU ,1 and stgU ,2 was very obvious. The reason of this might come from the fact that 

the water is an incompressible phase while the gas phase is compressible. Due to the 

difference in densities between the water and the gas phases in stratified flows, the 

gas phase is likely to move faster than the water phase. In addition, the effect of 

substantial change in the position of the gas-water boundary from the inlet to the 

throat of the Venturi (see Section 3.2.1 and Figure 3-4) on the gas phase (i.e. on the 

gas velocity) would be expected to be greater than that would occur for the water 

phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9-14: Actual gas and water velocities at fixed values of the gas flow rate 

and varying water flow rates (sets of data: ‘st-4’ and ‘st-5’) 
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9.7  Slip ratio (velocity ratio) at the inlet and the throat of the Venturi 

 

Slip ratio in two phase flow, which is defined as the ratio of the gas velocity to the 

water velocity, is an important parameter affecting the stability of the flow system. 

Bankoff (1960) [157] and Thang (1976) [33] proposed that the phase slip in bubbly 

two phase flow was entirely a result of the non-uniform distribution of both phases 

and the effect of the local relative velocity between the gas and the liquid phases that 

may be caused by buoyancy and flow acceleration. 

 

As mentioned earlier, most of the studies conducted in stratified two phase flows 

using Venturi meters depend on prior knowledge of the mass flow quality x and the 

over-reading factor O.R (see Chapter 2). Unlike the previous work, the new 

measurement technique (and also the novel separated flow model, see Chapter 3) 

described in this thesis depends on the measurement of the gas volume fraction at the 

inlet and the throat of the Venturi. Therefore, very limited, if any, data is available in 

the literature with which the current results can be compared.    

 

The slip ratio at the inlet and the throat of the Venturi were mathematically defined 

by Equations (3.60) and (3.61) as; 

 

 

stw

stg

st
U

U
S

,1

,1
,1 =  

     Equation (9.9) 

and; 

 

stw

stg

st
U

U
S

,2

,2
,2 =  

   Equation (9.10) 

 

where the subscript ‘st’ refers to the stratified gas-water two phase flow through a 

Venturi meter. 
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Figure 9-15 shows the relationship between the slip ratio ( stS ,1 and stS ,2 ) and the gas 

superficial velocity stgsU ,  at fixed values of the water flow rate and varying low gas 

flow rates (i.e. sets of data: ‘st-1’ and ‘st-2’). Figure 9-16 shows the variation of the 

slip ratio (velocity ratio) stS ,1 and stS ,2 with the gas superficial velocity at fixed water 

flow rate and varying high gas flow rates (data set: ‘st-3’). The slip ratio stS ,1 and stS ,2  

at the inlet and the throat of the Venturi at fixed values of the gas flow rate and 

varying water flow rates (i.e. sets of data: ‘st-4’ and ‘st-5’) is shown in Figure 9-17. 

 

It was inferred from Figures 9-15 to 9-17 that the slip ratio stS ,1  at the inlet is greater 

than the slip ratio stS ,2  at the throat of the Venturi. The effect of the substantial 

change in the position of the gas-water boundary from the inlet to the throat of the 

Venturi (see Section 3.2.1 and Figure 3-4) might contribute in this reduction of the 

slip ratios between the inlet and the throat of the Venturi.  

 

Thang (1976) [33] who studied the Venturi in bubbly two phase flows concluded that, 

at higher void fraction, the slip ratios were found to decrease between the inlet and 

the throat of the Venturi. He justified this by the effect of gas expansion at the throat 

of the Venturi which accelerated the liquid phase and thus reduced the relative 

velocity with an increasing turbulent mixing. He stated that a clear reduction of slip 

ratio between the inlet and the throat of the Venturi might also be due to the length of 

the converging channel which prompted more mixing in the flow. He also showed 

that at lower void fraction, the trend in the slip ratio was reversed between the throat 

and the inlet (i.e.  stst SS ,1,2 > ).  

 

Due to the lack of adequate information in the literature on slip ratios between the 

inlet and the throat of the Venturi in stratified two phase flows, the effect of the slip 

ratios in separated two phase flows using Venturi meters needs further study and 

research. 
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Figure 9-15: Variation of stst SS ,2,1  and with the gas superficial velocity at fixed 

values of the water flow rate and varying low gas flow rates (sets: st-1 and st-2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9-16: Variation of stst SS ,2,1  and with the gas superficial velocity at fixed 

water flow rate and varying high gas flow rates (data set: ‘st-3’) 
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Figure 9-17: Variation of stst SS ,2,1  and with the water superficial velocity at fixed 

values of the gas flow rates and varying water flow rates (sets: ‘st-4’ and s’t-5’) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

2

4

6

8

10

12

14

16

0 0.02 0.04 0.06 0.08

Water superficial velocity, stwsU , (ms-1) 

S
1,

st
 a

nd
 S

2,
st
 

 set# st-4, stwsst US .,1   vs  

set# st-4, stwsst US .,2   vs  

set# st-5, stwsst US .,1   vs  

set# st-5, stwsst US .,2   vs  



Chapter 9: Experimental Results for Stratified Gas-Water Two Phase Flows Through a Conductance Flow Meter 

 
 247  

Summary  

 

The experimental results for stratified gas-water two phase flows through a 

conductance multiphase flow meter were discussed in this chapter. Five sets of data 

were tested (see Table 9-1). It was observed from the analysis of the gas volume 

fraction at the inlet and the throat of the Venturi that the gas volume fraction st,2α  

(obtained from the two electrodes at the throat section of the CMVM) was higher 

than the inlet gas volume fraction st,1α  (obtained from the two electrodes at the 

CIVFM).  

 

The gas and the water discharge coefficients stdgC , and stwgC ,  were discussed in 

Section 9.4. It was inferred from the analysis of the gas and water discharge 

coefficients in stratified gas-water two phase flows that the gas discharge coefficient 

stdgC ,  can be averaged to 0.965 while the average value of the stwgC , was 0.935.  

These are the optimum values of the gas and water discharge coefficient in which the 

minimum mean value error in the predicted gas and water mass flow rates 

stwstg mm ,,
 and 

&&
εε  was obtained. 

 

The percentage error in the predicted gas and water mass flow rates, 
stwstg mm ,,

 and 
&&

εε  

(see Equations (9.3) and (9.4)) for different values of stdgC , and stwgC ,  were obtained 

and tabulated in Tables 9-2 and 9-3. It was found that the minimum value of the 
stgm ,&

ε  

and
stwm ,

 
&

ε were achieved for 965.0, =stdgC  and 935.0, =stwgC respectively.  

 

The slip ratio (velocity ratio) at the inlet and the throat of the Venturi was analysed in 

Section 9.7. It was seen that the slip ratio stS ,1 at the inlet of the Venturi was always 

greater than the slip ratio stS ,2 at the throat of the Venturi meter.  

 

The major advantage of the new model described in this research over the previous 

correlations (see Chapter 2) is that the new model does not require prior knowledge 

of the mass flow quality, x which makes the measurements more practical since an 
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online measurement of the mass flow quality is difficult and not practical in nearly all 

multiphase flow applications. The novel model is based on the measurement of the 

gas volume fractions at the inlet and the throat of the Venturi (see Section 3.2).   

 

 

 

 

 

 

 

 

 



Chapter 10: Conclusions 

 
 249  

Chapter 10 

Conclusions  

 

10.1 Conclusions   

 
 

The work in this thesis has been focused on the development of new solutions for 

non-invasive multiphase flow rate measurement by developing a novel conductance 

multiphase flow meter which is capable of measuring the gas and the water flow rates 

in vertical annular (wet gas) and horizontal stratified gas-water two phase flows. The 

conductance multiphase flow meter consists of the Conductance Inlet Void Fraction 

Meter (CIVFM), with two ring electrodes flush mounted with the inner surface of the 

pipe, which is capable of measuring the gas volume fraction at the inlet of the Venturi 

and the Conductance Multiphase Venturi Meter (CMVM), with two ring electrodes 

flush mounted with the inner surface of the throat section, which is capable of 

measuring the gas volume fraction at the throat of the Venturi meter. 

 

In bubbly gas-water two phase flows, the Universal Venturi Tube, UVT (i.e. non 

conductance Venturi meter, see Section 4.2) was used in conjunction with the flow 

density meter (which was used to measure the gas volume fraction hom,1α  at the inlet 

of the UVT, see Section 4.1) to study the bubbly (approximately homogenous) gas-

water two phase flows. Measurement of  hom,1α  enabled the mixture volumetric flow 

rate hom,mQ to be determined (see Equation (3.9)).  

 

It was inferred from the experimental results obtained for bubbly gas-water two phase 

flows that the minimum mean value error in the predicted mixture volumetric flow 

rate  could be achieved when the mixture discharge coefficient hom,dC  was 0.948 (see 

Section 7.5). The mean value of the percentage error in the predicted mixture 
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volumetric flow rate, 
hom,mQε  at  948.0hom, =dC  was -0.015%. Three different values of 

hom,dC  were chosen in order to show the sensitivity of errors in the predicted mixture 

volumetric flow rate to selected values of the discharge coefficient hom,dC . This is 

reported in Table 10-1 below (see also Section 7.5). 

 

 

Table 10-1: Summary of the  
hom,mQε  for different values of hom,dC  

 

hom,dC  

 

hom,mQε (%) 

 

0.940 
 

-0.858 
 

0.948 
 

-0.015 
 

0.950 
 

0.196 
 

 

It is clear from Table 10-1 that the minimum value of  
hom,mQε can be achieved at 

948.0hom, =dC . Note that, this value of hom,dC  represents the average value for all 

flow conditions.  

 

It was also inferred from the experimental results obtained in bubbly (approximately 

homogenous) gas-water two phase flows, see Chapter 7, that the homogenous flow 

model described in Chapter 3 started to break down when the gas volume fraction 

hom,1α  at the inlet of the Venturi (obtained from the flow density meter, see Section 

4.1) increased above 17.48%. This was due to the onset of the slug regime where the 

transition from bubbly-to-slug flow regime occurred. It should be reiterated that the 

gas volume fraction hom,1α  in bubbly (approximately homogenous) gas-water two 

phase flows was assumed to be constant throughout the universal Venturi tube. 

 

Separated flow in a Venturi meter is highly complex (where the velocity ratio, S≠1) 

and the application of a homogenous flow model could not reasonably be expected to 

lead to highly accurate results. In other words, the gas volume fraction at the inlet is 
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not the same as that at the throat of the Venturi. Therefore, the gas volume fraction 

measurement technique at the throat must also be introduced instead of just relying on 

the gas volume fraction measurement at the inlet of the Venturi. As a result, a novel 

conductance multiphase flow meter was designed and manufactured (see Chapter 4). 

A new separated (vertical annular and horizontal stratified) gas-water two phase flow 

model was also investigated (see Chapter 3). Unlike the previous models available in 

the literature, the new model depends on the measurement of the gas volume fraction 

at the inlet and the throat of the Venturi instead of prior knowledge of the mass flow 

quality as in the previous models. This makes the measurement techniques (including 

the new model) more practical since the online measurement of the mass flow quality 

is difficult and not practical in nearly all multiphase flow applications. 

 

The experimental results for the vertical annular (wet gas) flows (see Chapter 8) 

showed that the minimum average percentage error 
wggm ,&

ε  in the predicted gas mass 

flow rate, which was -0.043%, could be obtained at the gas discharge coefficient 

932.0, =wgdgC  (see Table 10-2). This value of the gas discharge coefficient, which 

represents the optimum value, was the average value of wgdgC , for all flow conditions 

in vertical annular flow.  

 

Table 10-2: Summary of 
wggm ,&

ε  with different values of wgdgC , in annular (wet gas) 

flows 

 

wgdgC ,  
wggm ,&

ε (%) 

0.920 -1.330 

0.932 -0.043 

0.933 0.064 

 

 

The percentage error in the predicted water mass flow rate in annular (wet gas) flows 

was larger than expected (>±10%). This was due to the pulsation that was occurred in 

the liquid film and also due to the fact that the water droplets mass flow rate at the 

gas core was not considered in the separated flow model described in Section 3.2. 



Chapter 10: Conclusions 

 
 252  

Therefore, an alternative method was used to measure the water mass flow rate in 

vertical annular two phase flows using the wall conductance sensors described in 

Chapter 4. The data obtained from the wall conductance sensors (i.e. the volume 

fraction of the liquid droplets in the gas core) was used in conjunction with the data 

obtained from the conductance multiphase flow meter to modify the predicted water 

mass flow rate wgwm ,& . The mean percentage error 
wgtotalm ,&

ε  in the predicted total water 

mass flow rate, which was determined using wgdwC , =0.995, was 0.550%.  

 

The experimental results for horizontal stratified gas-water two phase flows  (see 

Chapter 9) showed that the minimum mean percentage error 
stgm ,&

ε in the predicted gas 

mass flow rate can be attained when the gas discharge coefficient, 965.0, =stdgC . 

Again, this value of the gas discharge coefficient represents the average value for all 

flow conditions. The summary of 
stgm ,&

ε at different values of stdgC ,  is given in table 

10-3 (see Section 9.5). 

 

 

Table 10-3: Summary of the 
stgm ,&

ε    for different values of stdgC ,  

 

stdgC ,  
stgm ,&

ε (%) 

0.960 -0.515 

0.965 0.003 

0.970 0.521 

 

 

The mean percentage error in the predicted water mass flow rate in horizontal 

stratified gas-water two phase flows is summarised in Table 10-4.  
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Table 10-4: Summary of the 
stgm ,&

ε    for different values of stdgC ,  

 

stdwgC ,  
stwm ,&

ε (%) 

0.930 -0.486 

0.935 0.049 

0.940 0.584 

 

 

It is clear from Table 10-4 that the minimum average value of 
stgm ,&

ε is achieved at 

935.0, =stdwgC  (optimum value of the water discharge coefficient which was 

calculated from averaging the values of the water discharge coefficient for all flow 

conditions). An estimated error in the predicted water mass flow rate for horizontal 

stratified two phase flows at an optimum value of the water discharge coefficient (i.e. 

935.0, =stdwgC ) was found to be scattered randomly between +3.19% and - 3.86%. 

 

10.2 Present contribution 

 

The contribution made to knowledge by this thesis includes: 

 

� A separated flow model to measure the gas and the water mass flow rates in 

horizontal stratified gas-water two phase flows. 

 

� A separated flow model to measure the gas and the water flow rates in vertical 

annular (wet gas) flows. 

 

� Designing a novel conductance inlet void fraction meter (CIVFM) which is 

capable of measuring the gas volume fraction at the inlet of the Venturi (or at 

any other straight pipe section). 

 

� Designing a novel conductance multiphase Venturi meter (CMVM) which is 

capable of measuring the gas volume fraction at the throat of the Venturi. 
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� The work has resulted in a novel combination of online measurement 

techniques (i.e. CIVFM and CMVM) to measure the gas and liquid flow rates 

in annular (wet gas) flows and horizontal stratified gas-water two phase flows. 

 



Chapter 11: Further work 

 
 255  

Chapter 11 

 

Further work 

 

In this chapter, suggestions and recommendations are given for further work on 

measuring gas-water two phase flows using the conductance multiphase flow meter 

which consists of the Conductance Inlet Void Fraction Meter (CIVFM) and the 

Conductance Multiphase Venturi Meter (CMVM). The recommendations and 

suggestions for further work are divided into sections and sub-sections as follows; 

 

11.1 Water-gas-oil three phase flow meter  

 

The experimental work described in this thesis has focused on gas-water two phase 

flows. Further work would be required to develop a three phase flow meter (i.e. oil-

water-gas). A sensor tube is proposed (see Section 11.1.1). 

 

11.1.1 A bleed sensor tube 

 

The conductance techniques described in this thesis could also be applied to water-

gas-oil 3 phase flows, provided that water forms the continuous phase in the liquid 

film. This can be done using an on-line sampling system (a sensor tube) whereby part 

of the liquid film (oil and water) is periodically extracted into a vertical tube (see 

Figure 11-1). A density meter, based on the differential pressure measurement 

technique (see Sections 2.1.1.1 and 3.1), is then used to measure the liquid density, 

prior to the liquid being released back in to the main flow line. The liquid density 

measurement enables the oil and water volume fractions in the liquid to be measured. 

This sampling technique is only applicable to annular oil-water-gas three phase flows.  
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Figure 11-1: An on-line sampling system (bleeding sensor tube) 

 

 

With reference to Figure 11-1 (assuming that the differential pressure sensor is 

connected to the tappings via water filled lines), the density wo,ρ  of the oil and water 

mixture can be calculated using; 

 

awoaw hghgP        ,ρρ −=∆  

   Equation (11.1) 
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where P∆ is the pressure drop across the vertical sensor tube, wo,ρ  is the mixture (oil 

and water) density, wρ is the water density, g is the acceleration of the gravity and ah  

is the pressure tapping separation.  

 

Re-arranging Equation (11.1) gives; 

 

  ,






∆

−=
a

wwo
gh

P
ρρ  

   Equation (11.2) 

 

It is well known that; 

wfwofowo ραραρ ,,,    +=  

               Equation (11.3) 

where fo,α  and fw,α  are the volume fractions of the oil and water in the liquid film 

respectively and oρ  is the oil density. 

 

It is also known that; 

1 ,, ==+ ffwfo ααα  

   Equation (11.4) 

where fα  is the liquid (oil and water) volume fraction in the film. 

 

Combining Equations (11.2) to (11.4) enables the oil and the water volume fractions 

fo,α  and fw,α  in the liquid film to be determined. It should be noted that the values 

of fo,α  and fw,α  are also likely to be the correct values for the oil and water volume 

fractions in the gas core.  

 

The overall oil, gas and water volume fractions in a pipe can be expressed as; 

 

1  =++ gwo ααα  

   Equation (11.5) 
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where gα  is the gas volume fraction. 

 

 The overall oil and water volume fractions in Equation (11.5) are respectively given 

by; 

ffoo ααα  ,=  

   Equation (11.6) 

 

and; 

ffww αα=α  ,  

   Equation (11.7) 

 

Once the gas volume fraction fα  of the oil-water mixture in the liquid film is 

obtained from a sensor tube, the mixture (liquid film) conductivity mσ  can be easily 

determined using the Maxwell equation. Therefore; 

f

f

wm
α+

α−
σ=σ

2

22
 

Equation (11.8) 

where wσ is the water conductivity. 

 

Once the conductivity mσ  of the oil-water mixture in the liquid film is obtained, the 

calibration curves of the CIVFM and the CMVM (which relates the gas volume 

fractions to the output voltages obtained from the conductance electronic circuit, see 

Chapter 5) can then be modified to account for the actual liquid mixture conductivity, 

calculated from the sensor tube and the water conductivity which is also measured 

on-line. This can be done as follow, 

 

It is well known that the conductance of the mixture mS  is given by; 

mm KS σ=  

   Equation (11.9) 
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where K is the cell constant and mσ is conductivity of the mixture in the liquid film 

(Note that, if the water is only present in the liquid film then the conductivity of the 

mixture mσ  in Equation (11.9) is equal to the conductivity of the water, wσ ). 

 

If the water is only present in the liquid film then, the output voltage wV  from the 

conductance electronic circuit described in Section 4.5 is given by; 

maw SKV  =  

 Equation (11.10) 

where aK is the conductance circuit gain. 

 

Substituting Equations (11.9) into (11.10) gives; 

wgaw KKV σα )(=  

             Equation (11.11) 

The term )( gα  is added in Equation (11.11) just to show that K is a function of the 

gas volume fraction gα . 

 

Equation (11.11) is used when the liquid film contains water only. Equation (11.11) 

can be re-written as; 

aw

m
g

K

V
K

 
)(

σ
α =  

             Equation (11.12) 

where wσ is the water conductivity. 

 

From equation (11.12), it is possible to plot )( gK α vs gα  and obtain a relationship 

between gα and )( gK α . 

 

If the, water continuous, oil-water mixture presents in the liquid film, the output 

voltage mV  from the conductance circuit is given by; 

mgam KKV σα )(=  

 Equation (11.13) 
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Re-arranging Equation (11.3) gives; 

ma

m
g

K

V
K

σ
α

 
)( =  

 Equation (11.14) 

 

Since the relationship between  )( gK α and gα  when only water is present in the 

liquid film is known, the gas volume fraction, when the oil-water mixture is present 

in the liquid film, can be obtained using Equation (11.14). 

 

11.2 Segmental conductive ring electrodes   

 

In order to make the conductance multiphase flow meter (CIVFM and CMVM) 

independent of the probe calibration  in stratified gas-water two phase flows, the ring 

electrodes at the inlet and the throat of the Venturi (see Figures 4-7 and 4-9) can be 

replaced by segmental conductive ring electrodes, SCREs (see Figure11-2). The 

segmental electrodes act as on-off switches and they are independent on temperature 

and salinity of the water. Each electrode is connected to an electronic circuit. When 

the water flows through the SCREs, the electrodes that are in contact with the water 

will be active in which the output voltage from the corresponding electronic circuits 

can be recorded. This enables the water level to be measured. Measurement of the 

water level in stratified gas-water two phase flows enables the gas volume fraction to 

be determined using Equation (5.8).  The advantage of using SCREs over the 

conductance ring electrodes described in Section 4.3, is that the SCREs do not need a 

calibration. Further work should be continued using this type of electrodes. 
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Figure 11-2: Segmental conductive ring electrode 

 

 

11.3 Digital liquid film level sensor 

 

In annular gas-water two phase flows, a digital liquid film level sensor (DLFLS) 

could be designed to measure the liquid film thickness and hence the gas volume 

fraction at the inlet and the throat of the Venturi. The DLFLS consists of sensitive 

and insensitive regions as shown in Figure 11-3. Each probe is connected to an 

electronic circuit via insulating wire in insensitive region as shown in Figure (11-4). 

The separation between each probe could be less than 1 mm (or could need to be less 

than 0.5 mm). The basic principle of the DLFLS is that the probes which are in 

contact with the liquid (providing that the water is a continuous phase in the liquid 

film) will be ‘ON’ while other probes will be ‘OFF’. Therefore the probes in the 

DLFLS act as on-off switches and the output voltages from the corresponding circuits 

are proportional to the liquid film thickness in  annular two phase or even three phase 

flows (providing that the water is the continuous phase in the liquid film).  
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Figure 11-3: PCB layout of the Digital Liquid Film Level sensor (DLFLS)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11-4: A schematic diagram of the DLFLS setup 
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11.4 An intermittent model for the slug flow regime 

 

The separated flow model (i.e. vertical annular and horizontal stratified gas-water 

flows) was already investigated in Chapter 3. Slug flow models for horizontal and 

vertical flows through a Venturi are still elusive and have to be investigated. A 

possible model for slug flow could combine the homogenous flow model (described 

in Section 3.1) and the separated flow model (described in Section 3.2). If the 

intermittent model is used, instantaneous measurements of the differential pressure 

and the conductance impedance through the Venturi are required.  The intermittent 

flow model (see Figure 11-4) can be treated as a combination of; 

 

� Homogenous and separated flows or, 

� Homogenous and single phase (gas) flows, especially, when the gas 

phase in slug flow is assumed to occupy the total area of the pipe. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11-5: The intermittent flow model (a combination of the homogenous and 

separated flow model) 
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11.5 The proposed method of measuring the water mass flow rate in annular 

gas-water two phase flows 

 

As mentioned earlier in Chapter 8, the modulus of the error in the predicted water 

mass flow rate using Equation (3.72) was greater than expected (>10%). The reasons 

of getting a quite big error in the water mass flow rate were due to; 

 

� the assumption that the entire liquid flow existed in the liquid film (i.e. the 

water droplet flow rate was not included in the wgwm ,&  (Equation (3.72)). 

� the pulsations in the water film flow (due to the limitation in the side channel 

blower RT-1900, see Section 6.2.5) which caused unsteady water film flow 

rate. 

As a result of the above limitations, an alternative technique for measuring the total 

water mass flow rate in annular two phase flows is proposed. The proposed technique 

of measuring the total water mass flow rate in annular two phase flows is based on 

the Conductance Cross-Correlation Meter (CCCM) as shown in Figure 11-6. In other 

words, the inlet section of the Venturi meter (i.e. CIVFM, see Section 4.3)) could be 

replaced by the CCCM. Carrying out the experiments in a 50 mm internal diameter 

pipe instead of an 80 mm internal diameter pipe enables the side channel blower (RT-

1900) to establish a stable water film flow. The new approach of measuring the total 

water mass flow rate in annular gas-water two phase flows is described below. 

 

The water film thickness δ  in annular gas-water two phase flows can be measured 

using the upstream conductance electrodes (or the downstream conductance 

electrodes) flush mounted with inner surface of the Conductance Cross-Correlation 

Meter, CCCM (see Figure 11-6). It should be noted that the calibration of the CCCM, 

the electronic circuits and the measurement technique used to measure the film 

thickness at the inlet of the Venturi are similar to that used for the conductance inlet 

void fraction meter, CIVFM described in Section 4.5 and Chapter 5.  Once the film 

thickness δ  is obtained the cross sectional area of the liquid film fA  can be 

determined using; 
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{ }22 )( δπ −−= cccmf RRA
cccm

 

          Equation (11.15) 

where cccmR is the pipe internal radius  (the radius of the conductance cross-correlation 

meter, CCCM, see Figure 11-6) and δ  is the film thickness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11-6: A conductance cross-correlation meter 

 

The liquid film velocity corrfU ,  in annular flow can be determined by the conductance 

cross-correlation meter, CCCM using the conductance electronic circuit described in 

Section 4.5 (see also Section 2.1.2.6). Once the area of the water film fA  and the 

water film velocity corrfU ,  is obtained, the water film volumetric flow rate wfQ  can be 

determined using; 

 

corrffwf UAQ ,=  

          Equation (11.16) 
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It is well know that the reference water volumetric flow rate wgrefwQ ,, (measured from 

the turbine flow meter-2, see Section 6.2.2) is the sum of the water film volumetric 

flow rate wfQ  and the water droplet volumetric flow rate wcQ  in the gas core. 

Therefore; 

 

wcwfwgrefw QQQ +=,,  

          Equation (11.17) 

 

The water droplet volumetric flow rate in the gas core, wcQ can be related to the 

“entrainment fraction” E using; 

)1( E

EQ
Q

wf

wc
−

=  

          Equation (11.18) 

Combining Equations (11.16), (11.17) and (11.18) gives; 

 

wgrefw

corrff

Q

UA
E

,,

,1−=  

          Equation (11.19) 

 

It is now possible to estimate the total water mass flow rate totalm& in annular two phase 

flow using; 

wfwctotal mmm &&& +=  

          Equation (11.20) 

where wcm& is the water mass flow rate of the entrained water droplets and wfm&  is the 

mass flow rate of the liquid film.  

 

wcm&  and wfm& in Equation (11.20) can be respectively given by; 

wcwwc Qm ρ=&  

             Equation (11.21) 

and; 
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wfwwf Qm ρ=&  

 Equation (11.22) 

 

where wρ is the water density. 

 

The percentage error in the predicted total water mass flow rate can be then expressed 

as; 
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          Equation (11.23) 

where wgrefwm ,,& is the reference water mass flow rate in annular (wet gas) flow 

obtained from multiplying the reference water volumetric flow rate wgrefwQ ,,  

(obtained directly from the turbine flow meter-2, see Section 6.2.2) by the water 

density.  

  

Combining the conductance cross-correlation meter (which is capable of measuring 

the gas volume fraction and the liquid film velocity at the inlet of the Venturi) with 

the conductance multiphase Venturi meter, CMVM described in Section 4.3 (which is 

capable of measuring the gas volume fraction at the throat of the Venturi) enables the 

gas and the water flow rate to be determined. In other words, the liquid flow rate 

could be measured from the conductance cross correlation meter while the CMVM in 

conjunction with the inlet gas volume fraction data provided by the cross-correlation 

meter could be used to measure the gas flow rate using the vertical annular flow 

model described in Section 3.2.2.  

 

 

 

 

 

 

 

 



References  

 
 268  

References 
 

[1] Scott Bufton and Gene Thomas, “Calibration Requirements for Multiphase 
Meters,” 3rd International Conference on Multiphase Metering Conference,  
Aberdeen, Scotland: IBC UK Conference Limited, 1997. 

[2] Nederveen, N., et al., “Wet Gas Flow Measurement,” Paper Number  19077-
MS , SPE Gas Technology Symposium. Dallas, Texas, 1989. 

[3] A.D. Hall, “State-of-the art and the future of multiphase flowmeters,” The 

Future of Multiphase Metering,  London, UK: IBC UK Conference Limited, 
1998. 

[4] P. Mehdizadeh, 2006 Worldwide Multiphase and Wet Gas Metering 

Installations’, 2007. 
[5] K. Kelly, “Operating Experiences for the World’s First Commercial Installed 

Multi-Phased Meters in the Liverpool Bay Field,” 5th International Conference 

-Field Application & New Technologies for Multiphase Metering,  Aberdeen: 
IBC UK Conference Limited, 1999. 

[6] E.F. Caetano, R.T.H. Machado, C.B. Kuchpil, Costa e Silva, and Borges Filho, 
“Multiphase Metering Qualification Process at PETROBRAS-field application 
stage,” 5th International Conference -Field Application & New Technologies 

for Multiphase Metering,  Aberdeen: IBC UK Conference Limited, 1999. 
[7] A. Humphrey, “Criteria For Selection of the Multiphase Meter for BP ETAP,” 

3rd International Conference on Multiphase Metering Conference,  Aberdeen, 
Scotland: IBC UK Conference Limited, 1997. 

[8] P. Mehdizadeh, “Multiphase Measuring Advances Continue’,” Oil & Gas 

Journal,  vol. July 9, 2001. 
[9] G.F. Hewitt, Measurement of the two phase flow parameters,  London: 

Academic Press, 1978. 
[10] G.W. Govier and K. Aziz, The Flow of Complex Mixtures in Pipes, Litton 

Educational, Inc. van Nostrand Ltd., 1972. 
[11] Afshin J. Ghajar and Clement C. Tang, “Chapter 1: Advances in Void Fraction, 

Flow Pattern Maps and Non-Boiling Heat Transfer Two-Phase Flow in Pipes 
with Various Inclinations,” Advances in Multiphase Flow and Heat Transfer, 
Advances in Multiphase Flow and Heat Transfer. eISBN: 978-1-60805-080-2, 
2009. 

[12] P. Spedding and D. Spence, “Flow regimes in two-phase gas-liquid flow,” 
International Journal of Multiphase Flow,  vol. 19, Apr. 1993, pp. 245-280. 

[13] J.M. Mandhane, G.A. Gregory, and K. Aziz, “A flow pattern map for gas--
liquid flow in horizontal pipes,” International Journal of Multiphase Flow,  
vol. 1, Oct. 1974, pp. 537-553. 

[14] D. Barnea, O. Shoham, Y. Taitel, and A. Dukler, “Flow pattern transition for 
gas-liquid flow in horizontal and inclined pipes. Comparison of experimental 
data with theory,” International Journal of Multiphase Flow,  vol. 6, Jun. 1980, 
pp. 217-225. 

[15] R.N. Steven, “Wet gas metering with a horizontally mounted Venturi meter,” 
Journal of Flow Measurement and Inst.,  vol. 361-372, 2002, pp. 361-372. 



References  

 
 269  

[16] A.W. Jamieson, Wet gas metering – The unexpected challenge status and 

trends on 

technology and applications, 2001. 
[17] Department of Trade and Industry DTI, Guidance Notes for Petroleum 

Measurement Under the Petroleum (Production) Regulations,  Licensing and 
Consents Unit, Issue 7: 2003. 

[18] P. Mehdizadeh and J. Williamson, Principles of Multiphase Measurements,  
State of Alaska: Alaska Oil and Gas Conservation Commission, 2004. 

[19] Dykesteen, Eivind, et al, Handbook of Multiphase Metering, Norwegian 
Society for Oil and Gas Measurement, published by NFOGM, 2005. 

[20] R.W. Lockhart and R.C. Martinelli, “Proposed correlation of data for 
isothermal two-phase, two-component flow in pipes,” Chem. Eng. Prog.,  vol. 
45, 1949, pp. 39–48. 

[21] J. Couput, P. Gajan, V. de Laharpe, and A. Strzelecki, “Wet gas metering in the 
upstream area: needs, applications & developments.,”  Scotland: 18th North 
Sea Flow Measurement Workshop, 2000. 

[22] P. Mehdizadeh and J. Marrelli, “Wet gas metering: trends in applications and 
technical developments,”  San Antonio, TX: SPE 77351, 2002 SPE Annual 
Technical Conference and Exhibition, 2002. 

[23] NEL, The Evaluation of Wet Gas Metering Technologies for Offshore 

Application: Part1 – Differential Pressure Meters, Flow Measurement 

Guidance Note,  no. 40, London, UK: 2003. 
[24] Y. GENG, J. ZHENG, T. SHI, and G. SHI, “Wet Gas Meter Development 

Based on Slotted Orifice Couple and Neural Network Techniques,” Chinese 

Journal of Chemical Engineering,  vol. 15, Mar. 2007, pp. 281-285. 
[25] ASME, The American Society of Mechanical Engineers, Wet Gas 

Flowmetering Guideline,  Technical Report, ASME MFC-19G-2008: 2008. 
[26] Y. Li, J. Wang, and Y. Geng, “Study on wet gas online flow rate measurement 

based on dual slotted orifice plate,” Flow Measurement and Instrumentation,  
vol. 20, Aug. , pp. 168-173. 

[27] J. Coad, Finding and Using Oil, Oxford: Heineman Library, 2009. 
[28] Royal Dutch/Shell Group of Companies, The Petroleum handbook, 

Amsterdam; Oxford: Elsevier, 1966. 
[29] W.-. Deckwer and A. Schumpe, “Improved tools for bubble column reactor 

design and scale-up,” Chemical Engineering Science,  vol. 48, 1993, pp. 889-
911. 

[30] J. Steinemann and R. Buchholz, “Application of an Electrical Conductivity 
Microprobe for the Characterization of bubble behavior in gas-liquid bubble 
flow,” Particle and Particle Systems Characterization,  vol. 1, 1984, pp. 102-
107. 

[31] M.P. Dudukovic, Y. Pan, and S. Degaleesan, “Experimental study of gas-
induced liquid-flow structures in bubble columns,” AIChE Journal,  vol. 47, 
pp. 1913-1931. 

[32] R. Lau, R. Mo, and W.S. Beverly Sim, “Bubble characteristics in shallow 
bubble column reactors,” Chemical Engineering Research and Design,  vol. 
88, Feb. 2010, pp. 197-203. 

[33] N.T. Thang, “A study of two-phase flow through Venturis,” PhD, University of 
New South Wales, 1976. 

[34] A. Prakash, A. Margaritis, H. Li, and M.A. Bergougnou, “Hydrodynamics and 



References  

 
 270  

local heat transfer measurements in a bubble column with suspension of yeast,” 
Biochemical Engineering Journal,  vol. 9, Dec. 2001, pp. 155-163. 

[35] C. Tang and T.J. Heindel, “Estimating gas holdup via pressure difference 
measurements in a cocurrent bubble column,” International Journal of 

Multiphase Flow,  vol. 32, Jul. 2006, pp. 850-863. 
[36] K. Tsuchiya and O. Nakanishi, “Gas holdup behavior in a tall bubble column 

with perforated plate distributors,” Chemical Engineering Science,  vol. 47, 
Sep. , pp. 3347-3354. 

[37] S. Saxena and N. Rao, “Heat transfer and gas holdup in a two-phase bubble 
column: Air-water system -- Review and new data,” Experimental Thermal 

and Fluid Science,  vol. 4, Mar. 1991, pp. 139-151. 
[38] H. Jin, S. Yang, M. Wang, and R. Williams, “Measurement of gas holdup 

profiles in a gas liquid cocurrent bubble column using electrical resistance 
tomography,” Flow Measurement and Instrumentation,  vol. 18, Oct. , pp. 191-
196. 

[39] H. Cui, J. Chaouki, and Mostoufi, “A Comparison of Two- and Single-Phase 
Models for Fluidized-Bed Reactors,”  vol. 40, pp. 119-127. 

[40] J.A.M. Kuipers, W.P.M. van Swaaij, and P.J.G. Huttenhuis, “The effect of gas-
phase density on bubble formation at a single orifice in a two-dimensional gas-
fluidized bed,” Chemical Engineering Science,  vol. 51, pp. 5273-5288. 

[41] J. Werther, “Measurement techniques in fluidized beds,” Powder Technology,  
vol. 102, Apr. 1999, pp. 15-36. 

[42] M. Asif, “Volume contraction behaviour of binary solid-liquid fluidized beds,” 
Powder Technology,  vol. 145, Jul. 2004, pp. 113-122. 

[43] B.G. Ravelli S Perichizzi A, “Description, applications and numerical 
modelling of bubbling fluidized bed combustion,” Progress in Energy and 

Combustion Science,  vol. 34, pp. 224-253. 
[44] Q. Zhang, C. Huang, D. Jiang, X. Wei, Z. Qian, and F. Wei, “Particle 

Measurement Sensor for in situ determination of phase structure of fluidized 
bed,” Particuology,  vol. 7, Jun. 2009, pp. 175-182. 

[45] H. Piepers, H. Piepers, and Song, “Investigation on bubble characteristics in a 
gas fluidized bed,” Chemical Engineering Science,  vol. 52, pp. 829-841. 

[46] S.D. Kim and Y. Kang, “Heat and mass transfer in three-phase fluidized-bed 
reactors--an overview,” Chemical Engineering Science,  vol. 52, Nov. 1997, 
pp. 3639-3660. 

[47] J.W. Murdock, “Two-phase flow measurements with orifices,” Journal of 

Basic Engineering,  vol. 84, 1962, pp. 419-433. 
[48] D. Chisholm, “Flow of Incompressible Two-Phase Mixtures Through Sharp-

Edged Orifices,” Journal of Mechanical Engineering Science,  vol. 9, 1967, pp. 
72-78. 

[49] D. Chisholm, “Research note: Two-Phase Flow Through Sharp-Edged 
Orifices,” Journal of Mechanical Engineering Science,  vol. 19, 1977, pp. 128-
130. 

[50] R.V. Smith and J.T. Leang, “Evaluations of Correction For Two-Phase 
Flowmeter Three Current-One New,” Journal of Engineering for Power,  vol. 
97, 1975, pp. 589-594. 

[51] Z.H. Lin, “Two-phase flow measurements with sharp-edged orifices,” 
International Journal of Multiphase Flow,  vol. 8, 1982, pp. 683-693. 

[52] de Leeuw, “Wet Gas Flow Measurement by Means of a Venturi Meter and a 



References  

 
 271  

Tracer Technique,” North Sea Flow Measurement Workshop, Norway, Shell 

Expro.,  Scotland: 1994. 
[53] de Leeuw, “Liquid correction of Venturi meter readings in wet gas flow,” 

North Sea Flow Measurement Workshop, Norway, Shell Expro.,  The 
Netherlands: 1997. 

[54] Abbas H. A. M. Hasan, “An Investigation of Homogenous and Non-
Homogenous Two Phase Flow Model by Means of Venturi Meter,” University 
of Huddersfield, 2005. 

[55] A.J. Holt, B.J. Azzopardi, and Biddulph, “Calculation of two-phase pressure 
drop for vertical upflow in narrow passages by means of a flow pattern specific 
model,” Trans IChemE,  vol. 77, 1999, pp. 7-15. 

[56] Chistophe Boyer, Anne-Marie Dquenne, and Gabriel Wild, “Measuring 
techniques 
in gas-liquid and gas-liquid-solid reactors,” Chemical engineering Science,  
vol. 57, 2002, pp. 3185-3215. 

[57] Li-qiu Ping, Zhi-ming Wang, and Jian-guang Wei, “Pressure drop models for 
gas-liquid two-phase flow and its application in underbalanced drilling,” 
Journal of Hydrodynamics, Ser. B,  vol. 18, 2006, pp. 405-411. 

[58] G. Matsui, “Identification of flow regimes in vertical gas-liquid two-phase flow 
using differential pressure fluctuations,” International journal of multiphase 

flow,  vol. 10, 1984, pp. 711-720. 
[59] L.A. Glasqow, L.E. Erickson, C.H. Lee, and S.A. Patel, “Wall pressure 

fluctuations and bubble size distributions at several positions in an airlift 
fermentor,” Chemical engineering communications,  vol. 29, 1984, pp. 311-
336. 

[60] J. Drahos and J. Cermak, “Diagnostics of gas-liquid flow patterns in chemical 
engineering systems,” Chemical engineering and processing,  vol. 26, 1992, 
pp. 4069-4075. 

[61] F. Jonhsson, R.C. Zijerveld, J.C. Schouten, C.M. van den Bleek, and B. 
Leckner, “Characterization of fluidization regimes by time-series analysis of 
pressure fluctuations,” International journal of multiphase flow,  vol. 26, 2000, 
pp. 663- 715. 

[62] C.L. Spigt, On the hydraulic characteristics of a boiling water channel with 

natural circulation,  University of Eindhoven: 1966. 
[63] H.O. Olsen, Theoretical and experimental investigation of impedance void 

meters,  Norway,: 1967. 
[64] N.A. Tsochatzidis, T.D. Karapantsios, M.V. Kostoglou, and A.J. Karabelas, “A 

conductance probe for measuring liquid fraction in pipes and packed beds,” 
International Journal of Multiphase Flow,  vol. 18, 1992, pp. 653-667. 

[65] Gui-Bo Zheng, Ning-De Jin, Xiao-Hui Jia, Peng-Ju Lv, and Xing-Bin Liu, 
“Gas–liquid two phase flow measurement method based on combination 
instrument of turbine flowmeter and conductance sensor,” International 

Journal of Multiphase Flow,  vol. 34, 1992, pp. 1031-1047. 
[66] M. Fossa, “Design and performance of a conductance probe for measuring the 

liquid fraction in two-phase gas-liquid flows,” International Journal of 

Multiphase Flow,  vol. 9, 1998, pp. 387-397. 
[67] E.A. Hammer and G.A. Johansen, “Measurement Principles in Multiphase 

Metering- Their Benefits and Limitations,” The Future of Multiphase 

Metering,  London, UK: IBC UK Conference Limited, 1998. 



References  

 
 272  

[68] James Cory, “The Measurement of Volume Fraction and Velocity Profiles in 
Vertical and Inclined Multiphase Flows,” University of Huddersfield, 1999. 

[69] Nickolaos Panagiotopoulos, “Measurement of the Local Properties of 
Multiphase Flows,” University of Huddersfield, 2009. 

[70] M. Abouelwafa, A. Sami, E. Kendall, and M. John, “The Use of Capacitance 
Sensors for Phase Percentage Determination in Multiphase Pipelines,” IEEE 

Instrumentation and Measurement Society,  vol. 29, 1980, pp. 24 - 27. 
[71] M.H. Chun and C.K. Sung, “Parametric effects on the void fraction 

measurement 
by capacitance transducers,” International Journal of Multiphase Flow,  vol. 
12, 1986, pp. 627–640. 

[72] J. Maxwell, A Treatise on Electricity and Magnetism, Clarendon Press, Oxford, 
1881. 

[73] K.H. Albusaidi, “An investigation of multiphase flow metering techniques.,” 
PhD Thesis, University of Huddersfield, 1997. 

[74] V. Beek, “Dielectric behavior of heterogeneous system,” Progr. Dielec., 1967, 
pp. 76-77 and 92-101. 

[75] T.S. Ramu and Y. Rao, “On the Evaluation of Conductivity of Mixtures of 
Liquid Dielectrics,” IEEE Transactions on Electrical Insulation,  vol. EI-8, 
1973, pp. 55-60. 

[76] M.T. Shu, C.B. Weinberger, and Y.H. Lee, “A simple capacitance sensor for 
void fraction measurement in two-phase flow,” Ind. Eng. Chem. Fundam,  vol. 
21, 1982, pp. 175–181. 

[77] E.F. May, B.F. Graham, A.S. Chauhan, and R.D. Trengove, “Shear and 
electrical property measurements of water-in-oil emulsions and implications 
for multiphase flow meters,” Energy Fuels,  vol. 22, 2008, pp. 3308–3316. 

[78] P.B. Whalley, “Handbook of Multiphase Systems. Edited by G. HETSRONI. 
Hemisphere/McGraw Hill, 1982. 1492 Pp. US $64.50,” Journal of Fluid 

Mechanics,  vol. 129, 1983, pp. 500-502. 
[79] M.S.A. Abouelwafa and E. Kendall, “The measurement of component ratios in 

multiphase systems using alpha -ray attenuation,” Journal of Physics E: 

Scientific Instruments,  vol. 13, 1980, pp. 341-345. 
[80] M. Petrick and B.S. Swanson, “Radiation attenuation method of 

measuring density of a two-phase fluid,” The Review of Scientific Instruments,  
vol. 29, 1958, pp. 1079-1085. 

[81] G.P. Lucas, “The Measurement of Two-Phase Flow Parameters in Vertical and 
Deviated Flows,” PhD, University of Manchester Institute of Science and 
Technology, 1987. 

[82] A.V. Smith, “Fast response multi-beam X-ray absorption technique for 
identifying phase distributions during steam–water blowdowns,” Journal of the 

British Nuclear Energy Society,  vol. 14, 1975, pp. 227–235. 
[83] R.D. Wesley, “Performance of drag-disc turbine and gamma densitometer in 

LOFT,” USNRC, Proceedings of Meeting of Review Group on Two-Phase 
Flow Instrumentation, NUREG-0375 (Paper No. 15), 1977. 

[84] A. Chan and S. Banerjee, “Design aspects of gamma densitometers for void 
fraction measurements in small scale two-phase flows,” Nuclear Instruments 

and Methods in Physics Research,  vol. 190, Nov. 1981, pp. 135-148. 
[85] G. Sonneck, On the computation of the density of a two-phase mixture using 

data from a three-beam gamma densitometer,  Osterreichisches 



References  

 
 273  

Forschungszentrum Seibersdrof, Austria, Report OEFZS-4206: 1983. 
[86] C. Bishop and G. James, “Analysis of multiphase flows using dual-energy 

gamma densitometry and neural networks,” Nuclear Instruments and Methods 

in Physics Research Section A: Accelerators, Spectrometers, Detectors and 

Associated Equipment,  vol. 327, Apr. 1993, pp. 580-593. 
[87] E. Åbro and G.A. Johansen, “Improved void fraction determination by means 

of multibeam gamma-ray attenuation measurements,” Flow Measurement and 

Instrumentation,  vol. 10, Jun. 1999, pp. 99-108. 
[88] H.A. Johnson and A. Abou-Sabe, “Heat transfer and pressure drop for 

turbulent flow of air-water mixtures in a horizontal pipe,” Transactions of the 

ASME,  vol. August, 1952, pp. 77-985. 
[89] E.A. Hammer, “Three component flow measurement in oil/gas/water mixtures 

using capacitance transducers,” Ph.D. thesis, University of Manchester, 1983. 
[90] K. Cho, S. Kim, and Y. Lee, “A fast EIT image reconstruction method for the 

two-phase flow visualization,” International Communications in Heat and 

Mass Transfer,  vol. 26, Jul. 1999, pp. 637-646. 
[91] D. Schmitz and D. Mewes, “Tomographic imaging of transient multiphase 

flow in bubble columns,” Chemical Engineering Journal,  vol. 77, Apr. 2000, 
pp. 99-104. 

[92] T. Dyakowski, “Process tomography applied to multi-phase flow 
measurement,” Measurement Science and Technology,  vol. 7, 1996, p. 343. 

[93] D.L. George, J.R. Torczynski, K.A. Shollenberger, T.J. O'Hern, and S.L. 
Ceccio, “Validation of electrical-impedance tomography for measurements of 
material distribution in two-phase flows,” International Journal of Multiphase 

Flow,  vol. 26, Apr. 2000, pp. 549-581. 
[94] M. Byars, “Developments in electrical capacitance tomography,”  Hannover, 

Germany: Keynote Review Paper presented at the Second World Congress on 
Industrial Process Tomography, 2001. 

[95] S. Liu, H. Wang, F. Jiang, R. Yan, X. Dong, and W.Q. Yang, “ECT 
Visualization of Two Phase Flows,” Volume 1,  Manchester, England: 2004, 
pp. 443-449. 

[96] M. Soleimani, “A Shape Reconstruction Method for Two Phase Materials 
Using Resistance Tomography Data,” Fluids Engineering,  Orlando, Florida, 
USA: 2005, pp. 771-774. 

[97] I. Ismail, J. Gamio, S. Bukhari, and W. Yang, “Tomography for multi-phase 
flow measurement in the oil industry,” Flow Measurement and 

Instrumentation,  vol. 16, 2005, pp. 145-155. 
[98] N.W. King and G.L. Purfit, “Design and operation of a test facility for 

evaluating 
water-in-oil samples,”  London: BHRA 2nd International Conference on Multi-
Phase Flow (Paper J3), 1985. 

[99] G. Falcone, G.F. Hewitt, and C. Alimonti, Multiphase Flow Metering: 

Principles and Applications: 54, Elsevier Science, 2009. 
[100] N. Adorni, F. Casagrande, and L. Cravorolo, Experimental data on two-phase 

adiabatic flow; liquid film thickness, phase and velocity distributions, pressure 

drops in vertical gas-liquid flow,  CISE Report R35 (EUREAC 150): 1961. 
[101] F.A. Schraub, “Isokinetic Sampling Probe Techniques Applied to Two 

Component, Two-Phase Flow,” ASME,  vol. Paper No. 67-WA/FE-28, 1966. 
[102] G.F. Hewitt and L.G. Gill, “Sampling probe studies of gas core in annular two-



References  

 
 274  

phase flow -- 3,” Chemical Engineering Science,  vol. 23, 1968, pp. 677-686. 
[103] G.J. Zhang and M. Ishii, “Isokinetic sampling probe and image processing 

system for droplet size measurement in two-phase flow,” International Journal 

of Heat and Mass Transfer,  vol. 38, Jul. 1995, pp. 2019-2027. 
[104] R. Moissis and N.A. Radovcich, “Two phase flow through a vertical Venturi,” 

Heat transfer conference AIChE-ASME,  Boston: 1963. 
[105] R.A. Herringe, “Slurry flow metering by pressure differential devices,” 

International Journal of Multiphase Flow,  vol. 3, 1977, pp. 285-298. 
[106] N.T. Thang and M.R. Davis, “The structure of bubbly flow through venturis,” 

International Journal of Multiphase Flow,  vol. 5, 1979, pp. 17-37. 
[107] N.T. Thang and M.R. Davis, “Pressure distribution in bubbly flow through 

venturis,” International Journal of Multiphase Flow,  vol. 7, 1981, pp. 191-
210. 

[108] B.J. Azzopardi and A.H. Govan, “The modelling of Venturi scrubbers,” 
Filtration and separation,  vol. 21, 1984, pp. 196-200. 

[109] R. Kowe, J.C.R. Hunt, A. Hunt, B. Couet, and L.J.C. Bradbury, “The effects of 
bubbles on the volume fluxes and the pressure gradients in unsteady and non-
uniform flow of liquids,” International Journal of Multiphase Flow,  vol. 14, 
1988, pp. 587-606. 

[110] B. Couët, J.C.R. Brown, and A. Hunt, “Two-phase bubbly-droplet flow 
through a contraction: Experiments and a unified model,” International 

Journal of Multiphase Flow,  vol. 17, 1990, pp. 291-307. 
[111] A. Wolf, “Film structure of vertical annular flow,” PhD, Imperial  college, 

1995. 
[112] C. Boyer and H. Lemonnier, “Design of a flow metering process for two-phase 

dispersed flows,” International Journal of Multiphase Flow,  vol. 22, 1996, pp. 
713-732. 

[113] J.R. Fincke, “Performance Characteristics of an Extended Throat Flow Nozzle 
for the Measurement of High Void Fraction Multi-phase flows,” 4th 

International Symposium Fluid Flow Measurement, 1999. 
[114] S. Guet, S. Decarre, V. Henriot, and A. Line, “Void fraction in vertical gas-

liquid slug flow: influence of liquid slug content,” Journal of Chemical 

engineering science,  vol. 61, 2006, pp. 7336-7350. 
[115] Frang Lide, Zhang Tao, and Jin Ningde, “A comparison of correlations used 

for venturi wet gas metering in oil and gas industry,” Journal of Petroleum 

science & engineering,  vol. 57, 2006, pp. 247-256. 
[116] G.L. Shires, A comparison of two-phase venturi measurements at high and low 

pressure,  UK: 1966. 
[117] F.C. Lowell and F. Hirschfeld, “Acoustic flow meters for pipelines,” Mech. 

Eng.,  vol. 101, 1979, pp. 29–35. 
[118] J.S. Gudmundsson and H.K. Celius, “Gas–liquid metering using pressure-pulse 

technology,”  Houston: SPE 56584 presented at the SPE Annual Technical 
Conference and Exhibition, 1999. 

[119] M. Aritomi, S. Zhou, M. Nakajima, Y. Takeda, M. Mori, and Y. Yoshioka, 
“Measurement System of Bubbly Flow Using Ultrasonic Velocity Profile 
Monitor and Video Data Processing Unit.,” Journal of Nuclear Science and 

Technology,  vol. 33, 1996, pp. 915-923. 
[120] D. Horvat, J. Mozina, I. zun, and M. Perpar, “Laser ultrasonics for bubbly flow 

detection,” Ultrasonics,  vol. 36, Feb. 1998, pp. 565-568. 



References  

 
 275  

[121] Y. Murai, Y. Tasaka, Y. Nambu, Y. Takeda, and S.R. Gonzalez A., “Ultrasonic 
detection of moving interfaces in gas-liquid two-phase flow,” Flow 

Measurement and Instrumentation,  vol. In Press, Corrected Proof, 2010. 
[122] S. Rouhani, “Application of the turbine-type flowmeters in the measurement of 

steam quality and void,”  Oslo: Presented at the Symposium on In-Core 
Instrumentation, 1964. 

[123] S. Rouhani, “Measuring techniques,” Von Karman Institute of Fluid Dynamics, 
Lecture Series 71, Two-phase flows in application to Nuclear Reactor Design 
Problems., 1974. 

[124] I. Aya, A model to calculate mass flow rates and other quantities of two-phase 

flow in a pipe with a densitometer, a drag disc, and a turbine meter,  
November, ORNL/TM-4759: 1975. 

[125] N.O. Clark, “A Meter for the Measurement of the Properties and Quantity of 
Foam,” Journal of Scientific Instruments,  vol. 23, 1946, pp. 256-259. 

[126] A.E. Arave and L.D. Goodrich, Drag discs, turbine steam-water two-phase 

flow tests,  Nuclear Technology Division Annular Progress Report. ANCR-
1177, pp. 252–255: 1974. 

[127] P.N. Kamath and I. Lahey, A turbine-meter evaluation model for two-phase 

transients (TEMT),  Report prepared for EG & G Idaho Inc., #RPI Institute,  
Report NES-459: 1977. 

[128] P. Mark, M. Johnson, J. Sproston, and B. Millington, “The turbine meter 
applied to void fraction determination in two-phase flow,” Flow Measurement 

and Instrumentation,  vol. 1, Oct. 1990, pp. 246-252. 
[129] M.W. Johnson and S. Farroll, “Development of a turbine meter for two-phase 

flow measurement in vertical pipes,” Flow Measurement and Instrumentation,  
vol. 6, Oct. 1995, pp. 279-282. 

[130] J.M. Foussat and J.P. Hulin, “Vertical liquid–liquid and liquid–gas two phase 
flow 
measurement with a vortex flowmeter,”  Nancy, France: IUTAM Symposium 
on Measuring Technique in Gas Liquid Two-Phase Flow, 1983. 

[131] J. Hulin, C. Fierfort, and R. Coudol, “Experimental study of vortex emission 
behind bluff obstacles in a gas liquid vertical two-phase flow,” International 

Journal of Multiphase Flow,  vol. 8, Oct. 1982, pp. 475-490. 
[132] R. Baxter and J.E. Deacon, “Tests on turbine, vortex and electromagnetic 

flowrates in two phase air–water upward flow,”  Coventry, England: 
International Conference on Physical Modelling of Multi-Phase Flow, 1983. 

[133] Sun, Z. Q. et al, “On measurement property of vortex flowmeter in bubbly two-
phase flows,”  China: Proceedings of the 5th International Symposium on 
Measurement Techniques for Multiphase Flows, 2006. 

[134] M. Beck and A. Plaskowski, Cross-correlation Flowmeters: Their Design and 

Applications, Institute of Physics Publishing, 1987. 
[135] L. Cimorelli and R. Evangelisti, “Experimental determination of the "slip ratio" 

in a vertical boiling channel, under adiabatic conditions at atmospheric 
pressure,” International Journal of Heat and Mass Transfer,  vol. 12, Jun. 
1969, pp. 713-726. 

[136] R.J.N. Bernier, Unsteady two-phase flow instrumentation and measurement,  
Report no: E200.4 Division of &gineering and Applied Science, California 
Institute of Technology.: 1981. 

[137] W. Matthes and W. Riebold, “Measurement of the velocity of gas bubbles in 



References  

 
 276  

water by a correlation method,” Review of Scientific Instruments,  vol. 41, 
1970, pp. 843-845. 

[138] H. Murakawa, H. Kikura, and M. Aritomi, “Application of ultrasonic multi-
wave method for two-phase bubbly and slug flows,” Flow Measurement and 

Instrumentation,  vol. 19, 2008, pp. 205-213. 
[139] S. Jung, J. Kim, J. Kim, and T. Kwon, “Flow-rate measurements of a dual-

phase pipe flow by cross-correlation technique of transmitted radiation 
signals,” Applied Radiation and Isotopes,  vol. 67, 2009, pp. 1254-1258. 

[140] O.C. Jones Jr. and N. Zuber, “The interrelation between void fraction 
fluctuations and flow patterns in two-phase flow,” International Journal of 

Multiphase Flow,  vol. 2, Dec. 1975, pp. 273-306. 
[141] Fang Lide and Zhang Tao, “Performance of a Horizontally Mounted Venturi in 

Low-pressure Wet Gas Flow,” Chinese Journal of Chemical Engineering,  vol. 
16, 2008, pp. 320-324. 

[142] J. Agar and D. Farchy, “Wet Gas Metering Using Dissimilar Flow Sensor: 
Theort and Field Trial Results,” SPE Annual Technical Conference and 

Exhibition,  San Antonio, Texas: Society of Petroleum Engineers, SPE 77349, 
2002. 

[143] R.W. Miller, Flow measurement engineering handbook, New York : McGraw-
Hill, 1996. 

[144] Abbas H. A. M. Hasan and G.P. Lucas, “Modeling of a homogenous gas-water 
two phase flow through a Venturi and vertical pipe; (A prediction of pressure 
drop sign change in two phase flow),” School of Computing and Engineering 

AnnualResearchers’ Conference,  University of Huddersfield, UK: School of 
Computing and Engineering, University of Huddersfield, 2007. 

[145] Abbas H. A. M. Hasan and G.P. Lucas, “Simulation and Static Measurement of 
the Gas Volume Fraction in a Separated Flow Model Using a Conductance 
Multiphase Venturi Meter (CMVM),” The proceedings of the Computing and 

Engineering Annual Conference,  Huddersfield, UK: University of 
Huddersfield, 2008, pp. 69-74. 

[146] D. Halmi, “Metering Performance Investigation and Substantiation of the 
"Universal Venturi Tube" (UVT), Part 1- Hydraulic Shape and Discharge 
Coefficient.,” Journal of Fluid Engineering,  vol. 73-WA/FM-3, 1974, pp. 124-
131. 

[147] Q. Al-Yarubi, “Phase Flow Rate Measurements of Annular Flows,” PhD (to be 
submitted in 2010), University of Huddersfield, 2010. 

[148] M. Coney, “The theory and application of conductance probes for the 
measurement of liquid film thickness in two-phase flow,” Journal of Physics 

E: Scientific instruments., 1973. 
[149] Abbas H. A. M. Hasan and G.P. Lucas, “Experimental and theoretical study of 

the gas-water two phase flow through a conductance multiphase Venturi meter 
in vertical annular (wet gas) flow,” Nuclear Engineering and Design Journal,  
vol. (Accepted, under publication ), 2010. 

[150] yokogawa, “User's Manual: Model EJA110A, EJA120A and EJA130A 
Differential Pressure Transmitters,” 2002. 

[151] R.B. Benedict, Fundamentals of Pipe Flow,  New York, U.S.A: John Wiley & 
Sons, 1980. 

[152] B.S. Massey, Mechanics of Fluids,  London, U.K: Chapman & Hall, 1989. 
[153] Abbas H. A. M. Hasan and G.P. Lucas, “MODELLING AND 



References  

 
 277  

MEASUREMENT OF THE GAS FLOW RATE IN VERTICAL ANNULAR 
GAS-WATER FLOW USING A ‘CONDUCTANCE MULTIPHASE 
VENTURI METER’,” What Where When Multi-dimensional Advances for 

Industrial Process Monitoring,  Leeds, UK: University of Leeds, 2009. 
[154] Fang Lide, Zhang Tao, and Xu Ying, “Venturi Wet Gas Flow Modeling Based 

on Homogeneous and Separated Flow Theory,” Mathematical Problems in 

Engineering Journal,  vol. 2008 (2008), Article ID 807287, 2008, pp. 1-25. 
[155] M.R. Malayeri, J.M. Smith, and H. Steinhagen, “The behaviour of gas-liquid 

and vapour-liquid upward bubbly flows passing through a vertical Venturi,” 
Trans. IChemE,  vol. 79, 2001, pp. 371-375. 

[156] K.J. Zanker, The influence of air on the performance of differential pressure 

water flowmeters,  Report RR870, British Hydro-mechanics Research 
Association: 1966. 

[157] S.G. Bankoff, “A variable density single-fluid model for two phase flow with 
particular reference to steam-water flow,” Tran. A.S.M.E., Journal of Heat 

Transfer,  vol. series C, 82, 1960, p. 265. 
 

 

 

Line-A, 
0hom =∆P  

 Inlet gas 
volume 
fraction, 

-30
-27
-24
-21
-18
-15
-12
-9
-6
-3
0
3
6

0 0.05 0.1 0.15 0.2 0.25 0.3

 

% Error of 
the 

theoretical 
gas volume 

flow rate 

 
wggQEr

,2
% , 

Set# wg-4 

-5

0

5 942.0at , =stdwC

 
0.3

0.35Reference 
line 

97.0at , =stdwC

 

96.0at , =stdwC

 

95.0at , =stdwC

 

94.0at , =stdwC

 

Predicted 
water mass 
flow rates, 
(kgs-1) 
 

Reference 
water mass 
flow rates, 
(kgs-1) 

98.0at , =stdwC

 

99.0at , =stdwC

 

Sin to square 

wave converter 


