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Abstract 

Phytoextraction in the UAE desert soil (sandy, calcareous, less than 0.5% 

humus, and pH 7.9) has been studied. Twelve suspected polluted sites were 

investigated for contamination with eight heavy metals and sixteen local plants from 

the UAE desert were evaluated for their ability to accumulate heavy metals. The soil of 

Ajman industrial zone demonstrated high amounts of total chromium (1800 mg/kg) 

and of hexavalent chromium (97 mg/kg) which is a significant environmental threat. 

Portulaca oleracea (Purslane) has been shown to be the best candidate for Cr(VI) 

accumulation.  

Total chromium concentration exceeded 4600 mg/kg in roots and 1400 mg/kg 

in stems confirming the role of P. oleracea as a Cr(VI) accumulator. More than 95% 

of the accumulated Cr(VI) was reduced to the less toxic Cr(III) within the plant. 

The uptake of Cr(VI) by this plant has been investigated. The uptake of Cr(VI) 

increased as its concentration in soil increased between 50 and 400 mg/kg. The 

highest Cr(VI) uptake was observed at the high pH and low organic matter content of 

soil confirming the phytoextraction efficiency of P. oleracea in soils found in the UAE. 

The uptake of Cr(VI) increased in the presence of sulfate anion (suggesting that 

chromate uses the same carriers of sulfate in root cells) while nitrate and phosphate 

retarded the uptake. Potassium and ammonium ions, but not sodium ions, enhanced 

the uptake of Cr(VI) confirming the effect of accompanying cations. EDTA enhanced 

the translocation factor of chromium from roots to shoots in plants irrigated with 

either Cr(III) or Cr(VI). HPLC-MS analysis showed that ascorbic acid is the main 

antioxidant that reduced Cr(VI) to Cr(III) which is then mostly translocated to shoots 

after chelation with organic acids such as oxalate since glutathione and phytochelatins 

were not observed at significant levels in the tissues of plants exposed to Cr(VI). 
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CHAPTER 1 

INTRODUCTION 

1.1 Preamble 

 As human civilization progresses, there is always a price to be paid. When one 

generation pays the price for health and safety, the hope is that the next will not. This 

study focuses on the remediation of soil polluted by the toxic and carcinogenic heavy 

metal chromium (VI). The origin of the problem is the existence of a metallic 

extrusion factory which mainly uses chromic acid and discharges waste to an open site 

nearby, a problem aggravated by this polluted site being located within an urban area. 

This site was discovered by surveying twelve suspected polluted sites. In addition, 

another survey was carried out on sixteen plants to identify suitable candidate for 

phytoremediation. It is in brief the attempt to find an accumulator plant which will 

absorb, translocate, and then accumulate the toxic pollutant in its aerial tissue. The 

factors which may affect the uptake and the chemistry of the chromium within the 

plant were also studied. 

1.2 Background  

 Soil pollution or contamination is the mixing of hazardous substances with the 

natural soil. These pollutants maybe attached to the particles of soil or trapped within 

them. The sources of soil pollutants, in general, are spilling or burying liquid or solid 
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industrial wastes such as petroleum hydrocarbons, pesticides, chemical solvents, heavy 

metals and radionuclides in the soil. Soil pollution can harm plants, animals and 

humans. Plants may uptake these pollutants which drastically affect the growth of 

these plants. Pollutants may reach animals and humans through the food chain. Some 

pollutants can be absorbed through skin and others can be inhaled through airborne 

dust or small particles of soil. 

 Sometimes soil contamination can occur naturally because of the existence of 

natural ores of some heavy metals such as lead, cadmium, mercury and chromium or 

radionuclides. In this case, mining activities can spread these pollutants or expose 

them to some factors such as acid rain or water streams that may leach them to the soil.  

 Historically, the problem of soil contamination has been aggravated by the 

rupture or damage of underground storage tanks resulting in leaching of pollutants. 

Improper land filling also resulted in severe pollution of the subsurface soil. In the 

USA, a federal law for cleaning the contaminated sites, Comprehensive Environmental 

Response, Compensation, and Liability Act (CERCLA), was issued in 1980 [1]. This 

action increased the awareness of soil pollution, put many restrictions to prevent this 

offence, and stimulated the efforts to discover and clean up thousands of sites of 

underground storage of wastes. More than 200,000 polluted sites were identified for 

remediation.  

 In the UK, the Department for Environment, Food and Rural Affairs (DEFRA) 

published (in 1990) the soil guidelines values which determined the maximal accepted 
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limits for each substance in soil. These regulations were modified and included details 

for each soil pollutant and how to implement these guidelines such as: improvements 

to contaminated land guidance and guidance on the legal definition of contaminated 

land which were issued by DEFRA in 2008. 1n 2009, a scientific report named human 

health toxicological assessment of contaminants in soil was issued [2]. 

 In UAE, several governmental environmental agencies such as the Federal 

Environmental Agency (FEA 1993-2009), Ministry of Water and Environment which 

undertook the competences of FEA since it was closed in 2009, Environment Agency 

in Abu-Dhabi-1996 and Dubai Municipality were established. In spite of that, the 

implementation of environmental regulations is still at an early stage especially in the 

northern Emirates. In the last four decades, the oil and gas industries have prospered in 

the UAE, and in the absence of implementation of environmental regulations, large 

quantities of chemical waste have been dumped on and under the ground. Mining and 

metal industries are expanding in all of the Emirates and many factories and 

workshops are working without effective waste control. Some are transferring their 

waste to landfills and others are accumulating their waste in sites beside their factories. 

In relatively poor emirates such as Sharjah and Ajman, there is no real separation 

between inhabited areas and the industrial zones. The landfill sites are very close to 

populated areas and sometimes there is (offensive) overlapping between them. 

Suspected contaminated sites also exist in the east coast of the UAE. This area is rich 

in black sand which contains chromite, the major ore of chromium (a mixture of 

Cr(III) and Fe(II) oxides).  
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1.2.1 Remediation of contaminated soils   

 Contaminated soils can be remediated using physical, chemical, or biological 

techniques. Soil vacuum and soil washing are physical techniques and oxidation, 

neutralisation, and soil flushing are chemical ones [3]. Both physical and chemical 

techniques will alter the composition of soil and may stop all of the beneficial 

biological activities such as the role of bacteria and fungi in soil. Biological techniques 

of remediation essentially depend on the natural organisms of soil such as bacteria or 

yeast for the biodegradation of organic pollutants [4]. 

Remediation techniques may also be classified as ex-situ and in-situ 

techniques: 

 Ex-situ techniques involve remediating polluted soil away from the 

contaminated sites after the excavation and translocation of the polluted 

soil to prepared sites. Sometimes pre-treatment chemical or biological 

processes should be applied before the final treatment. Therefore ex-situ 

techniques are costly in general. 

 In-situ techniques are relatively cheap since they take place in the 

same contaminated site. The aim of in-situ remediation is to decrease 

the concentration of the pollutant to accepted levels by adding liquids or 

gases to the soil either to enhance the conditions of organisms work or 

to react directly with pollutants. Oxygen is a good example for both 

actions [2]. One of the relatively new in-situ biotechniques is 
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phytoremediation since living cells of plants are the bio-reactors in 

which the remediation process takes place. 

 

1.2.2 Phytoremediation   

Phytoremediation is defined as the use of plants to remediate [5] (contain, 

remove, or degrade) [6] soil or water pollutants. It is a promising technique for 

reducing the organic and inorganic pollutants to the accepted levels. Phytoremediation 

techniques can be thought of as involving three generations or categories. The first is 

the discovery of accumulators or the plants that can tolerate, absorb, and accumulate a 

specific pollutant in their tissues. The second is enhancement of phytoaccumulation 

using chemical reagents such as chelating agents or controlling conditions of soil such 

as pH, available ions or organic content of soil. The third is enhancement of 

phytoaccumulation using genetic modification of the accumulator plants, whereby the 

characteristics of the plant can be modified to increase its potential to tolerate more 

quantities of pollutants [7]. This type of research is still in its infancy and most of the 

research work in the field of phytoremediation is in the first and second categories for 

reasons related to the difficulty of developing equipment and capabilities that are 

required for third generation. 

Phytoremediation process takes place in the rhizosphere [8], the area of soil 

which contains roots and their activities (tillage area), or inside the plant tissues. 

Accordingly different phytoremediation techniques have appeared in the literature. The 
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nature and characteristics of pollutant also have a large effect on the phytoremediation 

technique since the response of the plant towards the pollutants depends on the nature 

of the pollutant. The response to organic pollutants differs from the inorganic and the 

uptake of anions differs from cations or metals uptake.    

     Phytosequestration or phytostabilization is one of the external mechanisms 

of phytoremediation. It is the prevention of mobility of the inorganic pollutants [9] 

such as heavy metals. This can be achieved by the precipitation or immobilization of 

the pollutants in the rhizosphere. Different causes are suggested for phytosequestration 

such as Vascular Arbuscular Mycorrhizas (VAM) fungi which reduce the 

bioavailability of heavy metals by fungi-metal binding. The exudates of the plants like 

organic anions and hydroxides to the soil alter the pH of soil; therefore the mobility of 

heavy metal will be affected. Rhizo-degradation is another external mechanism of 

phytoremediation. It is relevant to the degradation of organic pollutants in rhizosphere 

area [10, 11] by enhancing the oxygenation of the subsurface soil to initiate the role of 

the microorganisms in the aerobic biodegradation of these organic pollutants. The 

roots of the plant play an important role in the oxygenation process. This can take 

place either physically by aeration of the soil during the growth of roots or chemically 

by direct secretion of oxygen [11]. 

Phytodegradation is a mechanism of phytoremediation in which organic 

pollutants are biodegraded [12] using the specific exudates from roots.  It is still a 

matter of research to determine whether degradation takes place inside or outside the 
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plant tissue but it is accepted that the fragments of the organic pollutants are being 

translocated from the roots to the shoots of the plant.  

Phytoextraction and rhizofiltration are internal techniques of remediating 

inorganic pollutants such as toxic metals, metalloids and radionuclides [11]. The first 

is relevant to the use of plants in the removal of toxic metals from contaminated soils 

and the second belongs to the removal of heavy metals from wastewater. 

1.2.3 Toxic metals and heavy metals 

Toxic metals are the group of metals which have a poisonous effect on human 

health. Many elements can be listed under this category such as beryllium, cadmium, 

antimony, mercury, lead and bismuth. Heavy metals, defined as metals with a density 

of more than 5 g/cm
3 

[13], represent the majority of the toxic metals. Sixty-five of the 

known elements fall into this category including iron, the fourth most abundant 

element in the earth’s crust. 

 Heavy metals can also be defined as a group of metals and metalloids which 

are associated with pollution and toxicity [14]. However some of these elements are 

essential for living organisms at low concentrations [15]. Heavy metals can reach the 

environmental systems of soils and waters from the industrial and mining effluents and 

from natural resources if the area contains some ores of the heavy metals which may 

leach to the soil and water through water streams or acid rains. 
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 Not only the total element concentration but also more information about the 

oxidation state and binding form of the element (speciation) is required because the 

speciation also gives information on the mobility and therefore availability of the 

metal to living organisms, and their potential toxicity [16]. Speciation of heavy metals 

in contaminated soil or wastewater is also necessary for choosing the right technique 

of its removal or remediation. 

1.2.4 Phytoextraction 

Phytoextraction is defined as the potential of plant to uptake heavy metal 

pollutants from soil by the roots and to translocate and accumulate them in the above-

ground parts of plant [5, 9] such as shoots, leaves and stems. Normal plants have the 

ability to exclude and reduce undesired heavy metals up to 100 mg/kg but to uptake 

the nutrient elements up to 3% of its dry weight. The plant can be classified as a 

hyperaccumulator if it has high potential to accumulate heavy metals relative to the dry 

weight of plant, for example more than 0.1% (1000 mg/kg) for chromium, cobalt, 

copper, and nickel and more than 1.0% of both of zinc and manganese [17, 18]. To 

fulfil the removal process of heavy metals using hyperaccumulators these plants 

should be harvested after accomplishing the treatment process and safely disposed of 

by incineration [19]. As a technique of heavy metals removal and compared with other 

chemical and physical techniques, phytoextraction has the following merits [17, 6]:   
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 it is easy and cheap compared with other ex-situ techniques which require 

excavation,  transportation, using chemicals and washing, and in some cases 

returning the remediated soil to the original site, 

  phytoextraction technique is very efficient and represents rational solution 

when it reduces pollutant to below tolerated concentrations, 

 the harvested biomass can be used either as bio-energy resource, or for plant 

fibres production, 

 this technique gives a pleasant view for the treated sites since vegetation and 

remediation are inseparable,  

 using phytoextraction, some plant nutrients such as selenium can be 

translocated from a highly contaminated site to another poor one, and 

 using this technique, some precious metals could be extracted from soils 

containing small non-commercial quantities of them. For example gold was 

extracted from soil using Brassica juncea (Indian mustard) and Chilopsis 

linearis (desert willow) [20, 21]. 

However there are some restrictions for the use of phytoextraction. They include the 

following: 

 it is a slow (long term) technique compared with other physio-chemical 

techniques [6], 

 pollutant concentration should be in the range of plant tolerance since plants 

cannot grow in severely contaminated sites, therefore, phytoextraction is 

restricted to sites of moderate contamination[22], and 
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 in soils of high carbonate content, which have basic pH values, heavy metal 

cations exist as insoluble forms of metal hydroxide which reduces their uptake 

by plants. 

1.2.5 Ideal plants for phytoextraction  

  From 250,000 higher plants, only a limited number has been tested for 

phytoremediation or phytoextraction and among these tested plants only a small 

number has been founded to be hyperaccumulators. In general, a promising 

accumulator for a specific heavy metal is not necessarily efficient for another. One 

of the most efficient hyperaccumulators is Sebertia accuminata. This plant grows 

on metalliferous soil and can accumulate 260 g of zinc in one kilogram of its dry 

weight [23]. The Brassica family which includes broccoli and Indian mustard 

grows very fast producing considerable biomass. It has the ability to accumulate 

many heavy metals such as Cd, Cr (VI), Cu, Pb, Ni, and Zn more efficiently than 

many other plants [24, 25]. General characteristics of ideal accumulators can be 

summarized as follows [26]: 

 the ability to uptake heavy metal in roots then translocate it to shoots and 

accumulate high quantities of it without being severely affected, 

 high rate of growth and production of big biomass and ease of harvesting, 

 good ability of adapting especially outside its area of collection including 

resistance to disease and pests [27], and 

 production of a profuse and deep root system. 
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1.2.6 Applicability of phytoremediation in UAE 

The severe weather conditions in the Arabian Peninsula may suggest the plants 

of this environment as strong candidates for phytoextraction. These plants in general 

can tolerate hard conditions of hot climate, high salinity, high pH, and have 

exceptional potential for absorbing water from soil. Some plants which are available in 

the desert of UAE like Prosopis species were investigated in El-Paso, Texas which has 

similar climate conditions, and were found to yield promising results in accumulating 

lead and chromium [28, 29]. These results, beside the high tolerance of hard 

conditions, may form good motivation to investigate desert plants of UAE as 

accumulators for heavy metals in the soil of UAE. 

1.3 Chromium in soil; chemistry and phytoaccumulation  

1.3.1 Climatic and geochemical conditions of the soil of UAE 

 United Arab Emirates (UAE) is one of the fastest developing countries in the 

Middle East. The total area of the UAE is about 82,880 sq. km [30]. Oil export is the 

backbone of its economy but industrial activities have increased significantly over the 

last three decades. In 2008 and according to the Ministry of Finance and Industry the 

investment in the industrial field was about 77 billion dirham (£14 billion) [31]. 

Ajman is one of the seven emirates comprising the UAE. It is the smallest 

Emirate in area - about 260 sq. km - and surrounded to its north, south, and east by the 

Emirate of Sharjah. Approximately 95% of the population of the emirate of Ajman 
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reside in the city of Ajman. The population was only 361,000 in 2008 [32] and has 

grown considerably due to an influx of people from the neighbouring emirates of 

Dubai, Sharjah, and other countries. 

  Ajman has an arid subtropical climate, with sunshine all year round. The 

hottest months are between June and September, when temperatures can soar to 113°F 

(45°C) and more during the day and humidity levels are very high [33]. Even the sea 

temperature reaches 104°F (40°C) during the summer months. Temperatures are only 

slightly more moderate over the rest of the year; the coolest time being between 

December and April. There is very little rainfall in UAE but when showers do fall it is 

mainly in the cooler months [34]. 

   The soil of UAE is sandy granular with small amounts of silt and clay. Sand 

particles (2.0 – 0.05 mm) form about 95-97% of the soil of UAE [35]. The soil is very 

poor in organic matter content and in most cases organic matter does not exceed 

(0.5%). So, organic matter should be added frequently to maintain water and to 

enhance fertility [36]. The Arabian gulf shoreline is a classic carbonate coast 

(calcareous) [37] where calcium carbonate represents considerable component of the 

soil of UAE ranging from 25- 42% in the upper surface 10 meters of soil which raises 

the pH of the soil to 7.9 ± 0.1[36, 38]. 

The soil of UAE is saline due to frequent planting and irrigation using saline 

waters. These activities plus the hot climate lead to the accumulation of higher 

amounts of salt in the soil. Ajman is located adjacent to the sea and the level of soil is 
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lower than the level of sea. So, sea brackish water flows normally covering the soil 

forming a salt flat known as sabkha. This sabkha area contains mainly dolomite 

(calcium and magnesium carbonate) and halite (sodium chloride) [38]. 

1.3.2 Geochemistry of chromium 

 Chromium is a solid silvery heavy metal located in group 6 and period 4 of the 

periodic table. The average atomic mass of chromium is 51.996 a.m.u and its atom 

contains 24 electrons configured as [Ar] 3d
5
4s

1
. It is a transition element and it can be 

present in multiple oxidation states ranging from -2 to +6. The most common and 

stable oxidation states of chromium in the environment are +3 and +6 [39]. Chromium 

(IV) and (V) are reported to form as unstable intermediates in redox reactions between 

Cr(III) and Cr(VI) [40]. 

Chromium is available in different environmental systems. It is the 21
st
 most 

abundant element in earth’s crust with a concentration of 100 mg/kg [41]. The major 

ore of chromium in earth crust is chromite, FeCr2O4, which is a mixed metal oxide of 

Cr(III) and Fe(II) ions [42]. The concentration of chromium in soil ranges from 1 to 

1000 mg/kg with an average of 40 mg/kg in the soil of USA [43, 44].  

In soils, chromium (III) oxide (Cr2O3) and chromium hydroxide (Cr(OH)3 )  are 

the most common species of the oxidation state +3 and both of them are sparingly 

soluble in water [45]. Chromium (III) may be adsorbed by soil particles which prevent 

its leaching to the groundwater  but hexavalent chromium exists as soluble species 

such as  H2CrO4 , HCrO4
-
 , CrO4

2-
 and dichromate Cr2O7

2-
 [46].  
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Speciation of chromium in soil and water solutions is affected by the presence 

of organic matter and the inorganic compounds Fe(OH)3, MnO2, and CaCO3[45 - 48]. 

Organic matter, iron element, and Fe(II) in soil and usually reduce Cr (VI) to Cr (III). 

Conversely Mn(III) and Mn(IV)
 
will oxidize Cr(III) to Cr(VI) [40]. Calcium carbonate 

does not affect Cr(VI) in solution but it decreases the amount of dissolved of Cr(III) by 

precipitation as Cr(OH)3 [47]. Figure (1-1) shows the oxidation-reduction interactions 

between chromium, iron, and manganese species in soil [40]. 

 

 

Figure (1-1) Chromium Redox reactions in soil. [40] 
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The pH value has a strong effect on redox reactions and, consequently, on 

speciation and mobility of chromium in soil and wastewater. The diagrams of the 

activities of Eh (half- reaction reduction potential) vs. pH can be very useful in 

understanding the redox status of a system [48]. Figure (1-2) is a modified diagram of 

Pourbaix showing the most dominant chromium species at different values of Eh and 

pH[49]. 

 

Figure (1-2) Eh/pH modified Pourbaix distribution of Cr species [49]. 

In acidic soils and solutions (pH<4), chromium(III) mostly exists as hexa-

aquachromium(III), [Cr(H2O)6]
3+
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Cr(OH)3 as the pH increases [50]. Chromium (VI) may exist as soluble sodium 

chromate or sparingly insoluble CaCrO4 in neutral-alkaline soils, but in acidic soils 

HCrO4
-
 becomes the dominant form [39, 40]. As the concentration Cr(VI) increases in 

highly acidic aqueous  systems, hydrochromate ion may be converted to dichromate 

Cr2O7
2-

 [39] as illustrated in equation (1-1). Chromium (VI) in acidic solution reveals a 

very high oxidative behaviour in the presence of electron donors. The reduction of 

HCrO4
-
 is accompanied by the consumption of H

+
  as in equation (1-2) but in more 

basic solutions the reduction of CrO4
2-

 evolves OH
-
 as shown in equation (1-3) [38]. 

2HCrO4
-
                     Cr2O7

2-
  + H2O                                                   (1-1)  

HCrO4
- 
 +  7H

+
  + 3e

-
    Cr

3+
 + 4H2O                                                    (1-2) 

CrO4
2- 

 +  4H2O  + 3e
-
    Cr(OH)3 + 5OH

-
                                             (1-3) 

Dissolved oxygen has no direct effect on the oxidation- reduction changes of 

chromium in the environment but it may oxidize Mn
2+

 to Mn(III) or Mn(IV) which 

oxidise Cr(III) to Cr(VI) [39, 40].  

1.3.3 Chromium in industry  

Chromium may reach the environment as waste from metallurgical applications 

since 80% of chromium produced world- wide is being consumed in this sector of the 

industry [41]. Chromium has many uses in industry especially in steel, pigments, and 

refractory industries. It is also common in the field of plating since it gives shiny 

surface to the plated metals. Chromium sulfate is being used in leather tanning giving 
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leather the green-blue colour. Chromium is used with copper and arsenic as a wood 

preservative system resisting the fungi and insects that may induce decay [50]. 

Chromic acid is commonly used to increase the surface inert layer of the aluminium 

oxide as protecting technique for aluminium. This anodizing [51] is frequently used in 

Ajman metal extrusion factory. All of the previous industries form important sources 

for waste chromium which pose great dangers to the safety of environment.  

1.3.4 Toxicity of chromium for humans and plants 

 Chromium (III) is an essential micronutrient for mammals and humans. It is 

also believed to be important for the activity of insulin [52]. However, chromium (VI) 

is classified by World Health Organization (WHO) as a human carcinogen. Studies in 

Germany, England, and USA concluded that there is a correlation between lung cancer 

and working in the field of chromate and dichromate production [53]. Cases of 

gastrointestinal tract cancer were reported among ferrochromium workers and 

chromium plating industry workers [54]. Chromium (VI) is known to cause damage to 

respiratory tract tissues [55] and has toxicological effects such as ulcers, corrosive 

effects on the nasal septum, and harmful effects on kidneys, liver, and skin [53]. The 

US Environmental Protection Agency (EPA) set a limit of 100 μg/L of total chromium 

Cr(III) and Cr(VI) in drinking water and 52 μg/m
3
 of the same pollutant in the inhaled 

air for 8-hour work shifts[56]. EPA issued the Toxicity Characteristic Leaching 

Procedure (TCLP) in soil which sets the maximum tolerated concentration of 
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contaminants for toxicity characteristic. The limit for chromium is 5 ppm by this 

procedure [57]. 

The toxicity of Chromium (VI) is related to its fast reduction which is 

associated with the oxidation of components of the living tissues [58] producing 

reactive intermediates such as Cr(V) and Cr(IV) in addition to reactive oxygen which 

may react with protein and cause DNA damage [59]. For plants, chromium is not 

known to be an essential nutrient. Some studies indicate that small concentrations of 

chromium (III) may stimulate the growth of plants [60], but many other studies 

suggested the toxic role for both chromium (VI) and (III). Hexavalent chromium 

compounds are more toxic than chromium (III) due to their solubility and permeability 

through cell membranes and their ability to oxidise the intracellular proteins and 

nucleic acids [61]. It has been reported that Cr (VI) is potentially toxic to higher plants 

at total tissue concentrations of 5 mg/kg dry weight [55]. Symptoms of chromium 

toxicity are accompanied by insufficient chlorophyll (chlorosis) as a result of the 

inhibition of translocation of both iron and zinc from roots to shoots [62]. The pH of 

soil has strong effect on the chromium phyto-toxicity since at low pH (≥5.5) both of 

Cr(III) and Cr(VI) are available in soil. At higher pH range only Cr(VI) is available 

and this  increases its toxic effect on plants.      

1.3.5 Plant nutrients and their transporters 

 Plants can get their available and soluble nutrients from soil. These nutrients 

are divided according to their needed amounts for plants into: macronutrients such as 

nitrogen, potassium, and phosphorus which are essential for the plant to complete life 
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cycle normally and are needed in considerable quantity [63], or micronutrients which 

are needed as trace elements such as boron and molybdenum. Table (1-1) shows the 

plant nutrients and their quantities in dry plant. 

Table (1-1) Plant nutrients, their classification, and their quantity in dry weight [63]. 

Macronutrients 

 

Micronutrients 

 

Used in exceptionally large quantities 

(30-60 mol/kg) dry wt. 

C, H, and O. 

Used in moderate quantities (30-1000 

mmol/kg) dry wt. 

N, P, K, Ca, Mg, and S 

Used in small 

 quantities 

(0.001-2.00 mmol/kg) dry wt. 

B, Cl, Co, Cu,  

Fe, Mn, Mo, Ni, 

 Si, Na, Zn, and Va. 

 

 

Nutrient ions can be transported to root cells through specific transporters since 

root cell membranes prevent ions or charged species passing through. These 

transporters can be divided into three categories: 

 Primary pumps are cell membrane proteins which control the secretion of H
+
 

out of the cell to regulate the pH of cell and neutralise the charge [63]. These 

proton pumps (H
+ 

-ATPase) utilize up to 50% of adenosine triphosphate (ATP) 

energy of root cell [64] indicating that it may represent the major path for 

nutrient cations uptake in plants such as K
+
, NH4

+
. Electrochemical gradient 
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controls the flow of ion in or out of the cell membrane. It is the resultant of the 

effect of two opposite deriving forces, the first is chemical and related to its 

concentration in cell and the second is the trans-membrane potential which 

equals 120 mV under ideal conditions.  

 Coupled transporters are protein molecules of cell membrane. They transport 

two types of ions at the same time either in one direction which called symport 

or in two different directions as antiport. In symport process plant may take up 

two counter ions (anion and cation) such as nitrate accompanied with proton. 

Sulfate and phosphate may be taken up the same way. Antiport uptake may 

include the secretion of ion simultaneously with the uptake of another both of 

them are the same in charge for example the secretion of OH
-
 ions when taking 

up another anion like nitrate or sulfate [63, 64].  

 Channels are high selective transport proteins which allow the movement of 

some specific ions such as K
+
 or Ca

2+
. Sulfate may also be transported using 

high- affinity transport proteins available at cell membrane [63, 65]. 

1.3.6 Uptake and accumulation of heavy metals by plants 

 It is accepted that the total heavy metal content of the soil is not a real indicator 

for its availability to plants [66]. To study the heavy metal availability in soils, several 

factors like inorganic salts, pH and organic content of soil have to be taken in 

consideration. These factors affect the speciation of the heavy metals in the soil. Not 

only does the bioavailability of a heavy metal affect its uptake by plants but also plant 

metabolism [67]. Some plants may exclude some heavy metals in spite of their 
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availability in soil as a phytostabilization process [9]. In conclusion, when evaluating 

the phytoremediation capability of a plant, it is important to determine the real 

accumulated quantity of heavy metal in the plant. 

 Plants uptake metals, in general, as cations but some metals such as Cr(VI) can 

be taken up as anions. Both cations and anions have different pathways in the uptake 

and detoxification by the plant tissues. Plants can uptake heavy metal cations either 

using the primary pumps of H
+
 or the coupled transporters (the transporters of the 

nutrient cations). The secreted protons from the primary pumps may acidify the soil 

increasing the solubilised cations [68] which enter the roots. The process of heavy 

metal cations accumulation begins by the bonding between the heavy metal cation and 

ligands such as organic acids (citrate, oxalate and malate) or sulfur containing proteins 

forming complexes. Finally, these heavy metal complexes are transported and 

sequestered in the vacuole [69]. Two types of sulfur-containing low molecular weight 

proteins were identified as ligands in the accumulator plant tissues: metallothionein 

(MT) and phytochelatins (PC). Metallothioneins are cysteine-based proteins with low 

molecular weight ranging between 3500 and 14000 amu and present routinely in 

animals and fungi as a response to heavy metals toxicity. Metallothioneins have been 

found in a limited number of plants such as wheat, wall cress, and cotton [70- 72]. 

They play roles in root development and fruit ripeness [72] but there is no strong 

evidence confirming their role for heavy metals detoxification in plants.                  
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Phytochelatins are glutathione-based proteins with the general formula (γGlu-

Cys)n-Gly where the repeated unit is (glutamate – cysteine) and n = 2-11 (Figure 1-

3). Phytochelatins have been induced as natural ligands in higher plants [73] by 

different heavy metal cations such as cadmium, lead and mercury. Both 

metallothioneins and phytochelatins are complexing ligands for heavy metal cations 

but not anions like chromate and dichromate. Figure (1-4) shows the chelation of 

cadmium using the phytochelatin PC3 [74]. Organic acids such as citric acid and oxalic 

acid also play important role in the sequestration of heavy metals such as zinc and 

chromium [75].  

  

Figure (1- 3) General Formula of Phytochelatins 

 

 

Figure (1-4) Chelating cadmium using PC3 phytochelatin [74].  
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It is thought that plants take up the anions that contain heavy metals such as 

chromate and arsenate in a way similar to the uptake of nutrient anions. Chromate and 

sulfate are believed to use the same carriers [76] while arsenate may use the phosphate 

carriers [77]. Arsenate [As(V)] is reduced to As(III) and coordinated by three 

glutathione molecules as As
III

-tris-glutathione complex. It is also suggested that 

glutathione is used as reducing agent for arsenate [78]. The roles of ascorbic acid and 

glutathione as reducing agents for chromium (VI) have been shown in living cells of 

both animals and plants [79, 80]. Ascorbic acid is a well known antioxidant found in 

both animal and plant cells. Glutathione is a simple protein which can be produced by 

the condensation of the three amino acids: glutamic acid, cysteine and glycine. 

Equations (1-4) and (1-5) illustrate the reduction of Cr(VI) to Cr(III)  using ascorbic 

acid and glutathione respectively.     

                                                     

Ascorbic Acid                                           Dehydroascorbic Acid 

 

                                                       

       Glutathione                                                       Glutathione oxidised  

6 

2Cr
3+

 + 10 OH
-
      (1- 4)           

2CrO4
2-+10 H+ 

+ 2Cr
3+

 + 10 OH
-
      (1- 5)           

 

3 3 

2CrO4
2-

+2 H2O 

 

3 
3 

3 + 2CrO4
2-

+2 H2O 
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After the reduction of chromate inside the plant tissues, Cr(III) may be chelated using 

either phytochelatins or organic acid complexes. After Eichornia crassipes was 

supplied with Cr(VI) in nutrient culture, Cr(VI) was reduced to Cr(III) in roots and 

cations were subsequently translocated to stems and leaves. The researchers in this 

study suggested that chromium (III) may form a chelate with oxalate as organic 

complexing ligand [81] giving the complex ion [Cr(C2O4)3]
3-

. With another plant, 

Leptospermum scoparium, it was found that most of the absorbed Cr(VI) was 

accumulated in roots again as tris(oxalato)chromate (III) [82] . 

1.3.7 Phytoremediation of chromium 

The merits of phytoremediation technique as compared to other techniques of 

heavy metals removal and the toxicity of chromium have led to research in the field of 

chromium phytoremediation. Many studies concentrated on rhizofiltration or the 

removal of chromium from hydroponic systems for the ease of experimental design 

[83, 84], but other studies used phytoextraction technique in studying the removal of 

chromium from polluted soils [85 - 87].  

Early studies were carried out on chromium uptake by plants but they treated 

the chromium uptake as a problem of crops and plants contamination. Therefore, most 

of these studies were using plants of food crops such as wheat, barley and oat [88 -90]. 

Common vegetables were also investigated for hexavalent chromium absorption and 

results indicated that total chromium uptake decreased in the order: cauliflower> kale> 

cabbage> peas> collard> strawberry> lettuce> spinach>chive > celery> onion. These 
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crops were supplied with 1 mg/ L Cr(VI) and the concentration of total chromium in 

roots ranged between 500 and 0 mg /kg in dry roots and between 250 and 0 mg/ kg in 

dry shoots [91]. 

  Many plants were investigated and some of them were classified as 

hyperaccumulators for chromium (III) but because of the high toxicity of Cr(VI) a 

small number of plants were classified as Cr(VI) accumulators. Plants are classified as 

hyperaccumulators if the concentration of chromium exceeds 1000 mg/kg of the dry 

weight of plant [17, 18]. Two other important factors that should be taken in 

consideration for accumulator plants are bioaccumulation and translocation factors. 

Bioaccumulation factor (BAF) (bioconcentration coefficient) is the ratio of 

concentration of metal in dry roots (mg/kg dry weight) to the concentration of metal in 

dry soil or wastewater (mg/kg or ppm) [92, 93] while translocation factor, (TF), is the 

ratio of concentration of metal in dry shoots to its concentration in dry roots. The 

values of more than 1.0 for both BAF and TF are indication for a promising 

accumulator plant [92, 94]. 

Tolerance Index (TI) can give another indication about the growth of the roots 

of plant in the presence of pollutant. It can be calculated as the ratio of the length of 

roots of experimental relative to roots of control [95, 96]. In normal cases, it equals the 

value of 1.0, but when the plant is exposed to stress of toxic pollutants, this ratio is 

expected to decrease.   
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1.3.7.1 Chromium (VI) and common accumulators 

The high toxicity of chromium (VI) reduced the number of accumulators that 

may phyto-extract this pollutant. Even the common accumulators for heavy metals of 

Cd, Ni and Zn, such as willow (Salix spp) [97] and Indian mustard (Brassica juncea) 

[61], when investigated for their tolerance and uptake of chromium (VI), their results 

were not encouraging. Only traces of chromium were absorbed and translocated by 20 

species of willow. In this experiment, equal concentrations of both Cr(III) or Cr(VI) 

were used and the results were approximately the same regardless of the chromium 

species used [98].  

Brassica juncea showed a reduction in the total dry mass by 48% when 

stressed by 20 mg/kg of Cr(VI) in soil compared with plants in control experiments. 

The concentration of chromium in plant tissues did not exceed 18 mg/kg of dry weight 

of leaves, stems and roots [61]. Similar results were obtained for the same plant 

(Brassica juncea) when germinated in 100 mg/kg Cr(VI) soil; the concentration of 

chromium in shoots was about 20 mg/kg and less than 400 mg/kg
 
in roots [99]. The 

same plant was investigated for Cr(VI) and Cr(III) accumulation but it did not 

accumulate more than 1800 mg/kg in roots [100]. Although this concentration is 

regarded as relatively high compared with other results for the same plant and the same 

pollutant [61, 98], it is still low compared with other heavy metal pollutants  using the 

same plant (B. juncea can accumulate up to 6,000 mg/kg of lead in its dry weight) 

[101]. This study also concluded that Brassica juncea is not a good candidate for 

phytoextraction of Cr(VI) from polluted sites with low concentrations of chromium 
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(VI) [100]. These discouraging results of willow and Indian mustard with Cr(VI) 

suggest the need for further search for efficient Cr(VI) accumulators.  

1.3.7.2 Phytoextraction and rhizofiltration of Cr (VI)  

According to their response to the heavy metal in soil, plants can be divided 

into three categories:  

 excluders which reject the uptake of heavy metal and then keep it in minor 

quantities in aerial tissues of plant regardless of the concentration of heavy 

metals in the soil, 

  indicators which uptake the heavy metal to a concentration dependent upon the 

concentration of this metal in soil, and 

  hyperaccumulators which are plants that can accumulate the heavy metal in 

total plant to levels of concentrations far exceeding its concentration in soil 

[102]. 

Some studies were carried out on chromium (III) which is very low in toxicity 

to plants compared with chromium (VI). As a conclusion they made inaccurate 

generalizations such as discovering hyperaccumulators for chromium without 

determining if they were for Cr(III) or Cr(VI). Other studies used some natural 

polluted soils or wastewaters which contain mixtures of chromium (III) and chromium 

(VI) [103- 105]. These studies measured the total chromium in the polluted source and 

the total chromium in the plant tissue and finally suggested accumulators for 
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chromium in general or for chromium (VI) without regard to the proper design of the 

experiments in their investigations.  

A report issued from Amarillo National Resource Center for Plutonium 

(ANRCP) reviewed some accumulators for chromium. According to that report only a 

few plant species were identified as chromium hyperaccumulators when grown in high 

chromium soils [62]. The report mentioned ten plant species as chromium 

accumulators but did not determine if these ten plant species were accumulators for 

Cr(III) or Cr(VI). One of these plants is Leptospermum scoparium (Myrtaceae) which 

can accumulate 20,000 mg/kg of Cr in the ash of the plant.  This is a considerable 

quantity related to ash but when calculated regarding the dry weight of the plant this 

concentration will decrease by a factor of 30 to 50. This means that chromium in the 

dry weight of the plant will be about 400- 600 mg/kg which is below the value of 1000 

mg/kg. The same report suggested Berkheya coddii as a chromium accumulator even 

though the concentration of chromium in the dry weight of the plant was 238 mg/kg 

which is a small amount compared with real accumulators which should fulfil the 

condition of 1000 mg/kg of dry weight. In the following literature review, well-

designed experiments that introduced known concentrations of chromium (VI) in the 

soil or irrigation solutions are described taking in account; the accumulated amounts of 

chromium in the different plant tissues, the growth of the plant and the effect of the 

pollutant on it, the conditions of the experiments especially the tolerated concentration 

of Cr(VI), and the environment of germination such as soil or hydroponic cultures in 

each previous study.  
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Leersia hexandra (Gramineae) Chinese natural plant was investigated for its 

potential as chromium (VI) and chromium (III) accumulator [83]. Plant seedlings were 

grown in Hoagland’s nutrient solution. Both Cr(III) and Cr(VI) were added in six 

concentrations ranging from 0 to 60 ppm of Cr(III) and 0 to 30 ppm of Cr(VI). The 

plant could accumulate up to 3300 mg/kg of dry roots and 2160 mg/ kg of dry leaves at 

the Cr (VI) concentration of 30 mg/L. No significant decrease of biomass in the leaves 

of Leersia hexandra was observed and the plant grew rapidly with a great tolerance to 

chromium in the cultures of Cr (III). However, at the concentration of 20 ppm of Cr 

(VI) there was a significant decrease in the biomass of the leaves [83]. The pH of the 

hydroponic system was not mentioned in this study in spite of its importance for Cr 

(VI) speciation and Cr (III) availability. The researchers in this study avoided 

calculating the translocation factor from roots to shoots which was below 0.4 in most 

of their samples. Instead of that they calculated the bioaccumulation coefficient from 

the nutrient solution to shoots which is normally a higher ratio.    

Typha angustinfolia which is a kind of Typhaceae plant species was 

investigated for Cr(VI) tolerance in contaminated soil [85]. No change in plant growth 

or height was observed in plants which were exposed to 100 μM and 0 μM Cr(VI) but 

significant reduction in both height and biomass of the plant at concentrations  of 200 

– 800 μM Cr(VI) was observed. The highest concentration of total chromium was 

encountered in the roots of the plant and was 177.5 mg/ kg
 
when the plant was exposed 

to 800 μM Cr(VI) – about 41.6 ppm- for 30 days [85]. 
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Larra tridentata (Creosote bush grows in south western of North America) 

showed high ability for chromium (VI) accumulation [84]. Seedlings were grown in 

hydroponic solution of 520 ppm Cr(VI) and pH of 5.0. Three replicates were 

performed in this experiment using fluorescent light at room temperature. During 48-

hr time period of a flow rate of 2mL/hr of Cr(VI) solution, there was no evidence of 

chromium toxicity. After the analysis of the dried tissues of the plant, the 

concentrations of Cr(VI) in roots, stems and leaves were 57400 mg/kg, 14200 mg/kg 

and 19300 mg/kg, respectively [84]. These concentrations represent the highest among 

all the investigated plants for chromium (VI) accumulation but the short time of 

germination is not enough time to evaluate the plant tolerance for the pollutant.  

Azolla caroliniana, the small water fern, was investigated for Cr(VI), Cr(III) 

and Hg(II) accumulation [106]. For Cr(VI) investigation, 0.1, 0.5 and 1.0 mg/L
 

concentrations of Cr(VI) were introduced to the plants as potassium dichromate. The 

existence of Cr (VI) decreased the growth of biomass of plant by 20-27 % and the 

highest concentration of chromium in plant tissue was 350 mg/kg
 

[106]. The 

concentration of pollutant in dry weight of plant is considerable regarding the small 

concentration of the pollutant in the culture solution (1.0 mg/L) but this small 

concentration of chromium does not form a real test for Cr(VI) tolerance and 

accumulation. In spite of the importance of the pH of hydroponic culture, it was not 

mentioned in this study.  
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Zea mays (corn) was investigated for its ability to uptake Cr(III) and Cr(VI) 

[86]. Four replicates were grown in either pure sand (silica quartz) or natural soil with 

pH of 7.2 and 7.8 respectively. The concentrations of the irrigation solutions ranged 

between 0.5 -25 ppm. The plant showed an increased chromium accumulation as the 

concentration of both Cr(III) and Cr(VI) was increased in soil and sand (pure silica). 

The highest concentration of total chromium 1824 mg/kg was observed in roots when 

the concentration of Cr(VI) in pure sand was 25.0 ppm. At the same concentration of 

Cr(VI) in irrigation solution, the total chromium in roots decreased to 580 mg/kg. The 

concentration of chromium (III) in shoots was more than in roots but conversely in 

case of Cr(VI). The growing of roots when plants were irrigated by Cr(III) was more 

than in the plants irrigated by Cr(VI) [86].  

In another study, thirty six plants were investigated for chromium (III) and (VI) 

accumulation [87]. These plants were grown in pots containing contaminated soil 

either by chromium (III) or chromium (VI). There was a reduction in weight of all 

plants grown in Cr(VI) but there was no indication of biomass reduction with Cr(III). 

Among the 36 plants only three plants survived (alkali sacaton, switch grass and 

Bermuda grass) in soil contaminated with 500 mg/kg of Cr(VI). Chromium 

concentration in the shoots of all the other plants exceeded the 1000 mg/kg in the dry 

weight of shoots and all of these plants died [87] apparently due to the high content of 

Cr(VI) in soil.  
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A promising hyperaccumulator for Cr(VI) was introduced by J.L. Gardea-

Torresdey et al. [107]. Convolvulus arvensis seeds were germinated in an agar-based 

nutrient mediums which were spiked with concentrations ranged between 0 and 80 

ppm of Cr(VI). There was a reduction in the growth of roots and the biomass of the 

plants as the concentration of Cr(VI) was increased. The accumulated chromium in 

roots at 20 ppm was about 20,000 mg/kg of dry weight which is extraordinary amount 

but this amount was to decline to 8600 mg/kg at the concentration of 80 ppm. 

Convolvulus arvensis accumulated about 2100 mg/kg
 
of chromium(VI) in dry leaves 

when it was germinated for 15 days in an agar- based nutrient medium of 20 ppm 

Cr(VI) and this amount was approximately the same in the three concentrations of 

Cr(VI) [107]. According to the accumulated amounts of Cr(VI), this plant is 

considered to be a very promising hyperaccumulator for hexavalent chromium. This 

plant normally grows in Europe and North America and not common in the desert 

climate of UAE. In addition to that, a useful accumulator would have to be shown to 

be tolerant to local soil or water rather than an agar based nutrient medium.   

  In another study [108], six weed plants from Thailand were used and three 

replicates from each type were performed. The plants were grown for 120 days in three 

soils with either 100, 200 or 400 mg/kg of Cr(VI). A reduction of growth was observed 

in all the plants at the three soils. Cynodon dactylon accumulated 1500 mg/kg Cr(VI) 

in dry weight of roots. The concentration of total chromium in the tissues of the other 

five plants did not exceed 180 mg/kg at the same concentration of chromium (VI) in 

soil [108]. 
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In recent study [109], Prosopis laevigata was investigated for its ability for 

Cr(VI) accumulation. Seeds were germinated in culture tubes containing nutrient 

solution supplemented with potassium dichromate at pH of 5.8. Their results were very 

promising since the seedlings accumulated up to 8000 mg Cr/kg of dry root weight and 

5000 mg/kg in shoots. In spite of the high accumulation of chromium, translocation 

factors of chromium using this plant stayed below 0.7. Another Prosopis species was   

investigated before at pH of 5.3 [28], this calls for further investigations in real soil 

and at higher pH conditions similar to the UAE where more than one type of Prosopis 

naturally grow. 

1.3.8 Factors affecting chromium (VI) uptake by plants  

There are two types of factors that may affect the uptake of chromium (VI) by 

plants. The first type comprises factors related to the speciation of chromium (VI) in 

soil such as concentration, pH of soil and the organic content of soil. The second type 

of factors is related to the accompanying cations or competitive anions of chromate or 

dichromate. 

1.3.8.1 Effect of the concentration of Cr(VI) in soil or wastewater on the uptake of 

Cr(VI) by plants.   

In general as the concentration of the heavy metal in soil increases, its uptake 

and accumulation in the accumulator plant tissues will increase [110-112]. Regarding 

Cr(VI) accumulation Zhang et al. [83] suggested this and their results indicated that 

the uptake of Cr(VI) was increasing in both roots and shoots as the concentration of 

Cr(VI) in soil increased. The results obtained by Bennicelli et al. [106] and 
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Sampanpanish et al. [108] are in agreement with this conclusion. The same conclusion 

was obtained by Shewry and Peterson [89] when they introduced Cr(VI) to barley 

seedlings. They observed an increase in chromium uptake and translocation as 

chromium was increased in the nutrient solution. This relation stays consistent till the 

plant reaches the phytotoxic concentration which varies from accumulator to another. 

A study with Convolvulus arvensis grown in agar- based medium and irrigated with 

three concentrations of chromium (80, 40, and 20 ppm) [107] has been reported. The 

highest uptake of chromium (VI) was observed at the lowest of these concentrations 

(20 ppm). The authors of this study observed a decline in the uptake of chromium as 

the concentration of the Cr(VI) was increased [107]. This may be explained by the 

phytotoxic limit which may reached by plants at high concentrations where the 

biomass will be reduced and as a result, the total removed amount of the pollutant will 

decrease. It is very important to determine the concentration at which the best removal 

of pollutant will be achieved. 

 1.3.8.2 Effect of pH of soil on the uptake of Cr (VI) by plants 

Chromium (VI) is available for plants at a wide range of pH especially in basic 

medium like the soil of Ajman and UAE in general. It exists as chromate anions and 

will be neither reduced nor adsorbed but available in the soil and this poses an 

environmental challenge [88]. In acidic medium, it exists as dichromate which is 

highly oxidising and toxic to plants. Iron in the soil of UAE exists as Fe2O3 [113 -114] 

and this will not affect Cr(VI), while in the presence of Fe
2+

 (at pH <5), Cr(VI) can be 

reduced to Cr (III) [115]. All the previous studies which measured the effect of pH on 
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the uptake of Cr(VI) were carried out on nutrient crops plants[89, 116] or fungi and 

microorganisms[117, 118]. However very little, or no work, was done on the study of 

the effect of pH of soil on the uptake of Cr(VI) by non-crop plants as potential 

accumulators of Cr(VI).  

 It was found that the uptake of dichromate by barley seedlings from 

hydroponic culture was doubled when the pH of soil was increased from 3.0 to 6.7 

[89]. In this previous study the researchers introduced Cr(VI) as chromate anion which 

is known to exist as dichromate at this low range of pH. The range of pH in their 

experiment was limited to the acidic and neutral range (3.0 - 7.7) and it did not cover 

the high range of pH up to 9.0 to take deeper overview of chromium uptake with 

regard to different pH values. Cary et al. [116] expanded the range of pH from 5.0 to 

8.0 while studying the effect of pH on the uptake of Cr(VI) by wheat. They observed 

an increment in the uptake as pH increased from 5.0 to 6.0 but they observed a 

decrease in Cr(VI) uptake from 6.0 to 8.0. Chromium (VI) in this study was introduced 

as chromate in the hydroponic culture. Both of the two previous studies did not justify 

their results regarding the change of pH or chromium speciation at this change. In the 

aquatic fungi Aspergillus foetidus, there was an increase of Cr (VI) uptake when pH 

was increased over the range 4.0–7.0 [117]. In another study [118], it was found that 

chromium (VI) was accumulated by microorganisms with highest concentration at pH 

9.0 as compared to pH 7.0 or 8.0.  
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1.3.8.3 Effect of organic content of soil on the uptake of Cr (VI) by plants 

The organic content of soil is commonly effective in the reduction of Cr (VI) to 

Cr (III). Poorly organic soils such as the soil of UAE which contains an organic 

content of less than 0.5% do not provide an effective reducing environment for Cr(VI). 

Previous studies investigated the role of the organic content in soil on the reduction 

and the uptake of chromium (VI) by plants [62, 119 -121]. All of these studies 

confirmed the essential role of organic content of soil in the reduction of Cr(VI) to the 

less toxic and less soluble Cr(III). Investigation of the effect of organic content on 

phytoextraction of Cr(VI) in high pH soil does not appear in the literature.  

1.3.8.4 Effect of nutrient anions and accompanying cations on the uptake of Cr 

(VI) by plants 

The mutual effect of anions and accompanying cations on the uptake of each 

other by the plant was studied specifically for the nutrient ions of plants. The 

introduction of potassium associated with H2PO4
-
 stimulated its uptake more than in 

KCl solution in fungi [122]. In barley, the plant accumulated higher amounts of 

potassium when introduced as KNO3 as compared to KCl [123]. It is worth pointing 

out that chloride is not a plant nutrient, unlike phosphate and nitrate anions. The effect 

of counter ions seems to be important in understanding the relation between the uptake 

of an anion and its accompanying cation especially in the presence of coupled 

transporters which may explain the simultaneous uptake (co-transport) of both. 

Sodium cations efflux from root cells was increased when the plants were grown in 

solution of K2SO4 but decreased with KCl solution [122, 124]. The difference here was 

the counter anion; it was a nutrient in the first but not in the second case which may 
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suggest the co-uptake of both potassium and sulfate. The uptake of anions such as 

nitrate or phosphate will stimulate the formation of organic anions such as malate and 

oxalate inside the plant tissues or efflux OH
-
 anions but the uptake of cations such as 

NH4
+
 will initiate the efflux of H

+
 to the nutrient medium around the plant [124 -126] 

which can be understood according to the role of primary pumps of H
+
.  

Effect of associated cations on the uptake of nutrient anions was studied in 

some plants but the effect of cations on the uptake of pollutant anions such as 

chromate, dichromate or arsenate has not been studied deeply. In a detailed study by 

John Raven [126], it was suggested that when plant uptakes nitrogen as ammonium 

cations, hydrogen cations will be produced in response. This produced H
+
 will be 

excreted to the surrounding medium and will react with anions and molecules. These 

reactions of H
+
 consumption or OH

-
 production will facilitate the uptake of anions 

such as SO4
2- 

 and SeO4
2-

[127]. The effect of common anions such as nitrate, sulfate, 

chloride and hydrogen carbonate on the uptake of perchlorate anions by lettuce plant 

was also investigated [128]. A hydroponic system was used and the results of this 

study indicated that both nitrate and hydrogen carbonate inhibited the uptake of 

perchlorate. The researchers in this study justified the effect of nitrate as being due to 

that both anions have the same carrier. The effect of hydrogen carbonate was attributed 

to the co-transport of H
+
/HCO

- 
across the plasma membrane [128].     

Some researchers indicated that the presence of chromium (VI) as dichromate 

enhanced the concentration of phosphorus in the leaves of citrus plants but not in the 

roots [129]. The authors of this study did not introduce any explanation to the effect of 
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Cr(VI) on the uptake of phosphorus [129]. Opposite results were attained in radish 

plant irrigated by Cr (VI) in pot experiment at 10, 50,100 mg/kg of Cr (VI). The 

amount of phosphorus decreased in both roots and shoots [130]. 

In a recent study, the effect of available nitrogen on the removal of both Cr(VI) 

and Cr(III) from hydroponic system by willow plants was investigated [131]. Nitrogen 

was introduced as NaNO3 and Cr(VI) as K2Cr2O7. No significant variation of Cr(VI) 

removal was observed between N- free and N- containing nutrient solutions. They 

used five replicates from each type of solutions and found out that the presence of 

nitrogen has positive effect on the translocation of chromium from roots to stems and 

leaves. But the reality is that the uptake in roots was reduced significantly with minor 

or no observed increase in shoots so when translocation efficiency was calculated (the 

numerator stays as it and denominator is reduced) they got enhancement in the 

translocation. The researchers in this study did not indicate anything about the growth 

of the plants or the biomass during the 8 days of experiment [131].   

The effect of chromium (VI) on the growth and development of Arabidopsis 

thaliana seedlings was also investigated [132]. Small concentrations of chromium (less 

than 10.4 ppm) were used and no growth of roots was observed. Cr(VI) was 

introduced as potassium dichromate (at pH 5.7) with or without one of the nutrient 

anions (nitrate, sulfate or phosphate). The three nutrient anions resumed primary root 

growth in medium with dichromate. The lengths of roots were of 73%, 83% and 70% 

with SO4
2-

, PO4
3-

 and NO3
-
, respectively, compared to the lengths in medium free of 

Cr2O7
2-

 [132]. 
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In a recent study, the effect of nutrient anions and cations on the uptake of 

arsenate anions by the accumulator Pteris vittata was investigated [133]. The 

experiments were done as four replicates for each type in hydroponic system. It was 

concluded that both potassium and calcium enhanced the uptake of arsenate as counter 

anions. This study also indicated that both nitrate and phosphate anions reduced the 

amount of absorbed arsenate by roots and this may be due to competition between 

these anions and arsenate. This study did not mention the accompanying cation to 

arsenate in this investigation and probably did not take it into account, which 

represents a gap in the experimental design. It seems that the effect of accompanying 

cations such as Na
+
, K

+
 and NH4

+
, and the role of some nutrient anions such as nitrate, 

sulfate and phosphate on the uptake of Cr(VI) by plants need further investigation. 

1.3.8.5 Effect of sulfate anions on the uptake of Cr (VI) by plants 

It is suggested that chromate is taken up by plants using the same cellular 

transporters as sulfate in the plant cell membrane [78, 79, 134 -136]. This may be a 

consequence of the similarity in geometry, charge and size [137, 138] of both sulfate 

and chromate. Heavy metal accumulation will induce the plant to form thiols 

(glutathione and phytochelatins) and chromium (VI) may inhibit the uptake of sulfate 

which is required to produce thiols. Chromium(VI) causes a high stress on the plant, it 

not only may inhibit the formation of thiols but also, it may oxidise the available of 

them. 

The effect of chromate on the uptake of sulfate by two types of Zea mays 

grown in hydroponic system was investigated [135]. The authors of this study used 
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both deprived and supplemented sulfate systems. Chromium (VI) was introduced as 

potassium chromate (without mentioning the pH of medium). They observed that 

chromate reduced the uptake of sulfate by the two types of plants. An opposite 

observation was found by other authors, [129] indicated that the presence of Cr(VI) 

enhanced the uptake of sulphate by roots of citrus plants. 

Others investigated the effect of deprivation of sulfate on the uptake of 

chromate by wheat [136]. A hydroponic system with nutrient solution was used with 

pH of 6.0 ± 0.1. Chromate was added as 70 ml of 1 ppm Cr(VI) to both, with and 

without sulfate solutions. They concluded that sulfate is a strong inhibitor of chromate 

removal from wastewater [136]. This conclusion seems to be unreliable since they 

found that the absence of sulfate enhanced the uptake of Cr(VI) but they did not study 

the effect of different concentrations of SO4
2- 

on the uptake of Cr(VI). From another 

point of view, they used a solution of pH 6.0 at which most of the Cr(VI) is available 

as dichromate not chromate (as they suggested). This will alter the competition 

between SO4
2- 

and CrO4
2-

 and can be classified as defect in the design of the 

experiments.  

Stylosanthes hamata SHST1 gene is a high-affinity sulfate transporter located 

in the plasma membrane of plant cells. According to Lindblom and his colleagues [76], 

the initiation of SHST1 in Indian mustard, which is a common hyperaccumulator, 

increased the accumulated amount of Cr (VI) in roots from 750 mg/kg to 1100 mg/kg 

and in shoots from 30 mg/kg to 50 mg/kg. The plant was grown in a hydroponic 

system, where chromium was introduced as potassium chromate with concentration of 
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5 ppm (the pH of solution was not mentioned). The enhancement of the uptake of 

chromium after this genetic modification of Brassica juncea may provide the evidence 

for the role of sulfate in enhancing the uptake of Cr(VI). B. juncea was investigated 

before for Cr(VI) accumulation and the result was not encouraging enough [61]. The 

opposite conclusions related to sulfate-chromate uptake by plants call for further 

investigation 

1.3.8.6 Effect of chelating agents on the uptake of Cr(III) and Cr (VI) by plants 

Chelating agents such as EDTA (ethylenediaminetetra-acetic acid) and citric 

acid are commonly used to enhance the uptake of cations of heavy metals and 

radionuclides by plants [139, 140]. In general, the presence of organic acids such as 

citric acid and oxalic acid may enhance the translocation of chromium (III) from roots 

of plants to shoots. Chromium (III), as a heavy metal cation can be affected by 

chelating agents but few studies were carried out on the uptake of chromium (VI) 

using chelating agents [141]. In the following text the effect of chelators on the uptake 

of chromium is reviewed.  

Hydroponic systems were used to investigate the uptake and translocation of 

chromium (III) by tomato plants in the presence of organic acid such as citric and 

oxalic. Chromium accumulation increased significantly in various tissues of the plant 

as organic acids were increased [142]. 

EDTA and citric acid were investigated to enhance the uptake of Cr(III) and 

Ni(II) by Datura innoxia. An industrial soil contaminated mainly by Cr and Ni was 
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used. It was observed that citric acid increased the uptake of Cr by the plants and 

enhanced the translocation factors of Cr between 2 and 3.5 fold relative to the control 

samples [143]. 

The effect of oxalic acid, citric acid, and EDTA as chelating agents on 

phytoextraction of chromium and nickel by Brassica juncea was investigated.  

Experiments were carried out using soil containing 3100 mg/kg of Cr(III) and 3400 

mg/kg of Ni(II) irrigated by solutions of 0.05 and 0.10 mmol/kg dry soil of each 

chelating agent. As a result EDTA was an efficient chelator in increasing the uptake of 

Cr and Ni from soil. Significant reduction of plant shoot biomass was observed in the 

presence of EDTA. The translocation factor (TF) for chromium did not exceed the 

value of 1 for any chelator or control experiment. Only citric acid enhanced TF from 

0.80 in control experiment to 0.95 [140].  

The effect of EDTA on the uptake and translocation of Cr(III) by water spinach 

(Ipomonea aquatic) was investigated. Chromium (III) was introduced in three levels of 

concentration as CrCl3 in a hydroponic system at pH 6.0. It was found that EDTA 

significantly enhanced the uptake of chromium by roots but the translocation to shoots 

decreased at the same conditions. The authors of this study explained these 

observations by the formation of a Cr-EDTA complex which may enhance the transfer 

of Cr
3+

 to the root cells while the same complex retarded the translocation from shoots 

to roots [144]. 

The effects of EDTA on uptake and translocation of Cr(VI) and Cr(III) by two 

types of willow plants (hybrid and weeping) were investigated [141]. Hydroponic 
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solutions were spiked with either potassium chromate or chromium chloride at 

temperature of 24.0 ± 1°C. The two types of willow tend to uptake Cr(III) by 3 fold 

more than Cr(VI). Limited or negligible effects on the uptake and translocation of both 

Cr (III) and Cr (VI) by hybrid willow were observed in the presence of EDTA. In 

weeping willow, results showed that EDTA did not increase the uptake of Cr (VI) but 

the translocation of Cr(VI) in the presence of EDTA was possible. The researchers of 

this study claimed that the limited uptake of Cr(III) in the presence of EDTA may be 

explained due to the complexation reaction between Cr(III) and EDTA which may take 

place in the hydroponic solution keeping chromium in the hydroponic system [141]. 

The effect of organic acids such as citric and oxalic and some amino acids on 

the uptake and translocation of Cr(III)  by tomato  plants (Lycopersicum esculentum) 

was investigated [145]. The plants were grown in pots of sand and soil. Significant 

increases in Cr(III) accumulation in the treated plants were observed in the presence of 

organic acids but not with amino acids. The results indicated that Cr(III) may be 

chelated by organic acids and this may increase its uptake by roots of plant [145]. The 

conflicting conclusions related to the effect of chelating agents on the uptake of 

chromium suggest that the understanding of this issue is far from complete. 

1.3.9 Re-extraction of chromium from contaminated biomass 

One of the challenges that may face the workers in the field of 

phytoremediation is the safe discarding or reuse of the produced biomass. In most 
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cases incineration of this biomass is the most probable but, in other cases, the biomass 

can be reused in the field of the production of bio-fuel.  

Heavy metal cation mobility and solubility are pH dependent, and at low pH 

most of the heavy metal cations are soluble. At high pH range, these metals can be 

precipitated then removed from wastewater or any aqueous solution. 

Electrodeposition, adsorption on some active surfaces, and using the living cells are 

further techniques for heavy- metal removal. 

 The high carbonate content of the soil of UAE which raises the pH of 

the soil was used before in the removal of some cations of heavy metals from 

wastewater [146]. The pH of UAE soil is 7.9 ± 0.1 and from Figure (1-6) it is observed 

that the lowest solubility of Cr (III) is between 8.0 and 9.0 [147]. Therefore the soil of 

UAE with its high pH can be used for the precipitation then the removal of Cr(III) 

cations.  

Electrodeposition, or sometimes as it is called electrowinning, depends mainly 

on using direct current to reduce the cations from their solution to deposit on the 

cathode. In extracting chromium from electroplating sludge, HCl was used to acidify 

then mobilise Cr(III) [148]. Both precipitation of Cr(III) as Cr(OH)3 at high pH and 

electrodeposition may be alternative suggested techniques to the common process of 

incineration of the dry contaminated biomass after phytoextraction process.  
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Figure (1-5) Solubility of Cr(OH)3 at different levels of pH (modified from[147]). 

 

1.3.10 Gaps in the previous work 

 To summarise the previous work reported above the following gaps were 

found: 

 For reasons of designing controllable experiments many previous 

investigations were carried out using hydroponic systems. So it is logical to 

conclude that the discovered accumulators in these investigations are 

appropriate for the phytoremediation of heavy metals from wastewater 

(rhizofiltration). In some cases, researchers generalised their discovered 

accumulators for Cr(VI) regardless of the conditions of cultivation (in soil, 

water or agar) while these plants should be tested under real soil conditions 

before generalization. 
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 In some cases researchers used neither soil nor hydroponic systems in their 

investigations but agar-based nutrient medium and finally they introduced the 

plant as a promising accumulator neglecting the effects of many factors related 

the environment of growing. Others used very small concentrations of 

chromium Cr(VI) (close to the tolerated amount for plant) to study the uptake 

which cannot be considered as real test for these plants. 

 The discouraging uptake of Cr(VI) by the common accumulators of cations 

such as willow and Indian mustard calls for more investigations in the field of 

looking for other efficient Cr(VI) accumulators. 

 When calculating the concentration of the pollutant in the plant tissue, some 

researchers regarded the weight of ash of plant not the dry weight. This 

reduction of weight from dry weight to ash enhanced the calculated uptake 40 

fold. When corrected, it can be concluded that the plant has limited 

accumulation of chromium. 

  The contrast between chromium concentration in the contaminated site and the 

experimental conditions, For example, to use small concentrations in the 

experimental work while the real concentration of the pollutant in the 

contaminated soil is very high, so phytoremediation technique is not the best 

choice of treatment. When such studies recommend plant accumulators, these 

accumulators are mostly unsuccessful when tested in the real contaminated site. 
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 In many previous studies, the researchers used contaminated soils or 

wastewaters which contain a mixture of Cr(VI) and Cr(III) (mostly from 

industrial effluents) and finally they introduced the discovered plant 

accumulators as chromium accumulator ( in general). Therefore they did not 

use well- identified species of chromium with known concentration to claim 

that this accumulator is suitable for either Cr(VI) or Cr(III) phytoextraction. 

 Some other researchers did not take into consideration the effect of pH on the 

speciation of Cr(VI). When they were investigating the competition of sulfate 

with chromate
 
they used solutions of Cr(VI) with pH of 6.0 or below, and at 

this pH, Cr(VI) is available as dichromate not chromate. 

 The effect of accompanying cations on the uptake of chromate or dichromate 

by accumulators (not crops plants) has not been investigated. And the effect of 

the competitive nutrient anions such as sulfate, nitrate, or phosphate on the 

uptake of Cr(VI) by accumulator plants needs further investigation.   

 The relation between chromium (VI) speciation and its uptake by plants was 

not investigated regarding the interchange between chromate and dichromate in 

soil at different pH values of soil. 

 The effect of organic content of soils with high pH such as Emirates soil on the 

uptake of Cr(VI) by accumulator plants has not hitherto been investigated.  
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 Related to the use of chelating agents to enhance the uptake of chromium; only 

Cr(III) was chelated but not Cr(VI). This is due to the fact that chelating agents 

do chelate the cations of heavy metals as central ions but not their anionic 

forms like chromate. Very few investigations considered the effect of chelating 

agents on the translocation of Cr(III) originating from the reduction of Cr(VI) 

by plants. 

 Antioxidants that may reduce and detoxify Cr(VI) to Cr(III) and the natural 

ligands that may chelate it are not well identified in the scientific literature and 

need further investigation. 

1.4 Scope of the present work           

 In the present study the possibility of implementing the phytoextraction 

technique using native plants of UAE is investigated. To achieve this objective the 

following questions are addressed: 

1- What are the most problematic heavy metal(s) in the soil of the UAE?  

2- What are the desert plants that may be promising hyperaccumulators for the 

problematic heavy metals of the UAE soil? 

3- Are the previous investigated plants -which grow in similar conditions like 

Texas desert - such as Prosopis species suitable for the phytoextraction of 

some problematic heavy metal(s) in the soil of UAE? 
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4- What is the effect of Cr(VI) concentration in the soil on the uptake of this 

pollutant by Portulaca oleracea as a potential accumulator for Cr(VI)? 

5- What is the most dominant species of chromium that exists inside Portulaca 

oleracea tissue? 

6- What is the effect of pH of soil on the uptake of Cr(VI) by Portulaca oleracea? 

7- What is the effect of organic content in soil on the uptake of Cr(VI) by 

Portulaca oleracea? 

8- What are the effects of nutrient anions such as nitrate, sulfate, and phosphate 

on the uptake of Cr(VI) 

9- What is the effect of sulfate concentration in soil on the uptake of chromate by 

Portulaca oleracea? 

10- What are the effects of accompanying cations such as sodium, potassium, and 

ammonium on the uptake of Cr(VI) by Portulaca oleracea? 

11- What are the effects of chelating agents such as EDTA and citric acid on the 

uptake of Cr(III) and Cr(VI) by Portulaca oleracea plant? 

12- What are the optimum conditions that would maximise the uptake of Cr(VI) by 

Portulaca oleracea? 
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13- What is the effect of Cr(VI) in soil on the concentration of ascorbic acid and 

glutathione as antioxidants for this pollutant inside the plant tissue? 

14- What are the expected ligands to chelate Cr(III)) from roots to shoots of P. 

oleracea? 

15- What is the efficiency of filtration using Emirates sand and electrodeposition as 

alternative suggested techniques for the treatment of polluted plants other than 

incineration? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



67 

 

CHAPTER 2 

EXPERIMENTAL AND 

METHODOLOGY 

 

2.1 Chemicals and reagents 
 

Table (2-1) Chemicals, purity and suppliers. 

 

Material Supplier 

Standard solutions (1000 ppm) of Cd, Co, Cr, Cu, 

Fe, Mn, Ni, Pb, Zn and Na, K, Ca and Mg.  

Hydrochloric acid (Conc ≥37%, trace analysis grade) 

Sodium gluconate (≥ 99.0%) 

Fluka Chemicals,  

Gillingham, UK. 

Sodium chromate, potassium chromate, ammonium 

chromate, potassium dichromate, sodium nitrate, 

sodium sulfate, sodium phosphate, sodium 

carbonate, citric acid and EDTA  

(All analytical reagent grade) 

Panreac Química S.A.U, 

Sharjah, UAE 

 

Nitric acid (ACS Reagent ≥ 90.0%), ascorbic acid 

(reagent grade), dehydroascorbic acid, L-glutathione 

reduced (>98%) and L-glutathione oxidised (>98%), 

acetonitrile (HPLC grade), formic acid (HPLC 

grade), n-butanol (HPLC grade) 

Sigma-Aldrich,  

Gillingham, UK 

 

Phytochelatin 3 Cambridge Bioscience, 

Cambridge, UK 

Sodium tetraborate decahydrate (AR) Fisher Chemicals, 

Loughborough,  

Silica sand, General purpose  Dubai Sand Purification Co. 

Jebel Ali, Dubai 

Potting soil (70% organic content) Blumen Erde, Carrefour, 

Ajman, UAE 
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2.2 Instruments and equipment 

ICP-OES, Sequential Liberty AX (Varian, Victoria, Australia) 

Equipped with SPS3 autosampler and used for the measuring heavy metal 

concentration in soil and plant with the manufacturer recommended conditions. 

ICP-OES, iCAP 6300 (Thermo Scientific, Loughborough, UK) 

The coolant flow is fixed at 12 L/min and the nebulizer gas is computer controlled 

from 0 - 1.5 L/min with increments of 0.1 L/min.  

The procedure of analysis using ICP-OES is as follows [149]: 

(i) Multi-element standard solutions (0.1, 1, 10, 50, 100 mg/L) containing the 

heavy metals Cd, Cu, Co, Cr , Mn ,Ni, Fe, Pb, Zn were prepared from 1000 

ppm standard solutions by sequential dilution. 

(ii)  The wavelengths of the elements were directly selected by the software. Table 

(2-5) shows these wavelengths and the detection limit of each element.  

Table (2-2) The Characteristic wavelengths of metal cations determined 

using ICP-OES. 

 

 

 

 

 

 

 

Element Line (nm) Detection limit (ppm) 

Cadmium (Cd) 214.439 1.5 x 10
-3  

Copper (Cu) 324.754 2.0 x 10
-3  

Cobalt (Co) 228.615 5.0 x 10
-3  

Chromium (Cr) 267.716 4.0 x 10
-3  

Manganese (Mn) 257.610 3.0 x 10
-4  

Nickel (Ni) 231.604 5.5 x 10
-3 

 

Iron (Fe) 238.204 1.5 x 10
-3 

 

Lead (Pb) 220.353 1.4 x 10
-3  

Zinc (Zn) 206.200 9.0 x 10
-4  
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(iii) The blank solution was prepared by adding 2 mL of 1: 1 (v/v) HNO3 to 10 mL 

of 1:1 HCl and then the mixture was diluted by deionised water in 100 mL 

volumetric flask. 

(iv) The standard solutions and the blank solution were analysed to calibrate the 

instrument before each analysis. The samples were then analysed to determine 

the concentrations of the metals (Cd, Cu, Co, Cr, Mn, Ni, Fe, Pb, and Zn). 

 

UV- Visible spectrometer, HI 93723 (Hanna Instruments, Bedfordshire, UK). 

Used to determine hexavalent chromium in plant and soil according to EPA method 

(3060A) [150]: The extracted chromium (VI) was reacted with 1, 5-diphenylcarbazide 

in the presence of sulfuric acid and analysed using UV- spectrometry at the 

wavelength of 540 nm.  

Chromium (VI) was extracted from soil and plant samples according to the following 

procedure [150]: 

(i) The temperature of the hot plate was adjusted so as not to exceed 95 °C, then 

1.00g of dried soil or ground plant was placed into a clean and labelled 250 mL 

digestion vessel. 

(ii)  Fifty mL ± 1 mL of digestion solution (0.5 M NaOH + 0.28 M Na2CO3) were 

added to each sample using a graduated cylinder, then 400 mg of MgCl2, 

followed by 0.5 mL of 1.0M phosphate buffer. 
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(iii)  The samples were stirred continuously (unheated) for five minutes using 

magnetic stirrer. The samples were heated at 90-95 °C for 60 minutes with 

continuous stirring then gradually cooled to room temperature. 

(iv)  The contents were filtered through a 0.45µm membrane. The inside of the 

filter flask and filter pad were rinsed with reagent water and the filtrate and the 

rinses were transferred to a clean 250-mL vessel. 

(v)  The pH of the filtrate was neutralized to 7.0-7.5 range using concentrated 

nitric acid with continuous stirring to eject carbon dioxide from the solution. 

The neutralized filtrate was made up to 100 mL (in volumetric flask) using 

deionised water. 

Ion Chromatography, 6005 Controller with 616 Pump and 717 Plus autosampler 

and conductivity detector 432 (Waters Ltd., Hertfordshire, UK) 

Used for the determination of sulfate and other anions in plant and soil at the following 

conditions: 

IC-Pak Anion HR 6.4X 75 mm column was used for anions. The number of the 

efficiency plates of column was 2500 which is recommended by manufacturer for 

major anions. The flow rate was controlled to be 1.0 mL/min. and running time was 16 

minutes for each run.  
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HPLC Agilent 1100 – diode array detector with autosampler. 

Used for the determination of the phytochelatin 3 and glutathione in fresh plant tissues 

with the following conditions: 

The flow rate was adjusted to be 1.0 mL/minute and the column temperature was 30ºC. 

Twenty µL from either standards or samples were injected automatically into 250 x 4.6 

mm Prodigy ODS (octadecyl 3) column. Absorption wavelength of detector was 

adjusted to 214 nm and the period of running for each sample was 15 minutes.   

 

HPLC-MS, Ultra fast liquid chromatography (UFLC) XB (Shimadzu, Milton 

Keynes, UK) with Time of Flight Mass Spectrometer Micro TOFQ (Bruker 

Daltonics, Coventry, UK) with Electrospray Ionisation ESI 

Used for the determination of ascorbic acid, dehydroascorbic acid, reduced and 

oxidised glutathione in fresh plant tissues at the following conditions: 

The analytical column was Zorbax SB- C18, 5 µm 4.6 x 150 mm from Agilent. 

Column temperature was 20 ºC and the flow rate was 1.0 ml/min. The mass 

spectrometer was operated with endplate and spray tip potentials of 2.8 and 3.3 kV, 

respectively; in negative ion mode. Nitrogen (drying gas) pressure was kept at 30 psi. 

Spectra were acquired in the mass/charge ratio (m/z) range of 50- 3000. 

 

Microwave Oven, QLAB 6000 (Questron Technologies Corp, Ontario, Canada) 

Used for the digestion of plant and soil using the following procedure: 
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(i) A volume of 10 mL of 50% (v/v) nitric acid was added to 0.5 g of each dry, 

ground and sieved plant sample with 10 samples capacity in each run. 

(ii)  Programmed method for the plant tissue digestion was selected with a 

temperature of 170 ºC and 15 minutes of running time. 

(iii) After samples became cool, filtration and dilution to 100 mL for each sample was 

carried out.  

pH Meter, PerpHecT Basic Benchtop Model Orion 320 (Thermo- Orion, 

Loughborough, UK) 

 

Used for  measuring the pH of soil and irrigation solutions according to the following 

procedure:  

 

The value of the pH of the soil was measured according to the EPA method 

(9045D) [151] accredited for measuring pH of soil. The procedure of this method 

is summarized as follows:  

(i) Three composite 100g samples of soil were placed in three polyethylene 

plastic bottles. The electrode was calibrated using buffers at 4 and 7. 

(ii) In a 50-mL beaker 20 mL of deionised water were added to 20 g of each 

soil sample. The beakers were covered with watch glass, and the produced 

suspension was continuously stirred for 5 min. 

(iii) The soil suspension was allowed to stand for about two hours to allow most 

of the sand to settle out of the suspension, and then the solution was 

extracted using suction filtration. The electrode was lowered into the beaker 

containing the filtrate and immersed deep enough until readings were 

steady.  
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2.3 Quality Assurance  

2.3.1 Uncertainty 

Soil analyses were carried out using standard procedures and are reported with 

95% confidence limits. The soil under study is unusual in being predominantly sand 

and carbonate with very little humus. There is no certified reference material for soil of 

similar composition. In accordance with current convention, metal analyses of soils are 

reported as pseudo-totals. However, as a major component of the soils studied is silica 

rather than silicates, along with calcium carbonate, the totals are likely to be close to 

actual values. Metal ion binding is likely to be dominated by the large excess of Ca
2+

 

ions. Clay minerals are negatively charged and thus binding to anions such as 

chromate and dichromate will be very limited. 

Plant analyses are reported with 95% confidence limits. Whilst replicate experiments 

with plants were carried out, results will be dependent upon growing conditions and 

true uncertainties will be greater than quoted statistical limits. This does not detract 

from any conclusions reached as these depend upon relative results from experiments 

carried out at the same time. Available reference materials are for rye grass and an 

aquatic plant, neither of which is similar to the Portulaca genus.  

2.3.2 Statistical analysis   

Statistical analysis was carried out using SPSS software (Version 15, SPSS UK 

Ltd., Woking, Surrey) with Microsoft Excel (Microsoft UK, Reading, Berkshire) being 

used for the preparation of the graphs and for some simple statistical operations.  
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Results are reported in tables with 95% confidence intervals  

(where 


X is the average value, s is the standard deviation, n is the number of replicates 

which ranged between 3 and 6 in each experiment.)  

In studies which involved replicate sets of experiments with a change in one 

variable, analysis of variance (ANOVA) between the means is used to identify if there 

are significant differences between means, followed post hoc by a Tukey test to give 

the significance (p-value) of each pair of values under different conditions. The values 

of p for each experiment are listed in the appendices.  

2.3.3 Experiment design  

Experiments were designed to reduce uncertainties as follows: 

 Plants were propagated from the same origin by taking cuttings and then stem 

growing in order to control the genetic variability.  

 Only those plants similar in growth (length and vegetation) were selected for 

each investigation. 

 Plants used in each investigation were randomly distributed and grown under 

the same conditions of irrigation, soil components, temperature, light and 

nutrients. The only difference was the independent variable (such as sulfate 

concentration) which was intended to measure the change in the dependent 

variable which usually was chromium uptake. 

n

st
X n 1
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 The sufficient amount of water was determined for each size of pot before 

irrigation with pollutant (Cr(VI)) in order to ensure that all of added solutions 

remain in the soil of the pot. 

 All of irrigation solutions were prepared from chemicals of analytical grade 

and deionised water following the standard scientific procedure in preparing 

standard solutions. 

2.3.4 Extraction of analytes 

 Metaphosphoric acid and EDTA were used when ascorbic acid and protein 

were extracted from plants; the first can precipitate protein and behaves as 

antioxidant to ascorbic acid while EDTA forms chelates with heavy metals and 

deactivates the enzymatic activities which may destroy the protein structure. 

 Plant samples were extracted at low temperature and low levels of light and 

were then frozen in liquid nitrogen and kept in a freezer at below -80ºC until 

the HPLC analyses. 

 Fusion with sodium carbonate was used to extract chromium (III) from 

chromite since normal acid digestion was not effective. 

 For heavy metal extraction using acidic digestion on a hot plate, long neck 

beakers or conical flasks were used to minimise loss of the digested sample. 

The temperature was adjusted not to exceed 90ºC to prevent any effervescence 

or vigorous boiling during the digestion. Heating and adding acid continued 
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until a clear transparent solution was observed and there was no NO2 indicating 

complete digestion.   

 When sulfur was determined in plants and soil, closed microwave acidic 

digestion were used to prevent any loss by volatility of sulfur oxides. 

      2.3.5 Instrumental analysis  

 The environmental analytical methods were standard methods chosen from 

EPA, RSC etc. 

  Standard reagents that used in calibration of analytical instruments were 

purchased with the purity recommended. 

 Standards were freshly prepared just before each analysis and took into account 

the required conditions especially when preparing the standards of sulfur 

containing proteins or ascorbic acid which require low temperature and low 

levels of light which necessitated prior cooling. 

 Conditions for instrument (e.g. UV-visible, ICP-OES, HPLC) operation 

followed the recommendation of manufacturers regarding flow rates of gases, 

choosing the determinate wavelength, separation columns, pH of solutions, 

purity of samplers and solutions and the manner of sample introduction. 

 Standard addition was used to for calibration of the above instruments, taking 

in account that the curve should include the analyte concentration. Either 
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dilution or the preparation of further concentration standards were carried out 

to achieve this objective. 

 Reversed phase conditions with gradient elution were selected in the two 

HPLC techniques since the eluents were polar (proteins and ascorbic acid) in 

order to get fast and good resolution.  

 Electrospray ionisation technique was used when determination of sulfur 

containing proteins in the plants since this technique reduces the fragmentation 

of these proteins and can give real detection to the complete molecule of 

protein. In addition, this technique is appropriate and compatible with HPLC 

since the eluents can be aspirated in their liquid phase. 

 Detection systems in both HPLC experiments were MS or diode array. The 

first is very sensitive and gives both qualitative and quantitative information 

about the eluents while the other gives the opportunity to check the 

determinands at more than one wavelength to achieve the best UV absorbance. 
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2.4 Exploring suspected polluted soils 

Experiment (1) 

Purpose: To find contaminated sites fit for the implementation of phytoextraction as a 

technique for heavy metal removal.  

Steps   

(i) Composite samples of soil were collected from tillage area of twelve 

suspected polluted sites. Most of these sites were located in East Mountains 

and east coast areas such as   Kalba, Muzeera, Manama, Masfoot, Seiji, 

Bleeda, Dhaid, Bithna, Ajman Desert Masafi, Dadnah, and Ajman 

industrial zone. Figure 2-1 shows the sampled sites. 

(ii) Soil samples were dried, ground, sieved, then digested in concentrated 

nitric acid and analysed using ICP-OES for the following heavy metals: Co, 

Cr, Cu, Fe, Mn, Ni, Pb and Zn. Detailed steps are mentioned in section 

2.7.1 

(iii)  To determine chromium in black sand in Dadnah and Kalba coasts, 

composite soil samples were taken from coasts of Kalba and Dadnah coast 

(opposite to Zikt chromite mines).  

(iv) To extract chromium from chromite, samples were dried and then soda-ash 

roasted using sodium carbonate to extract chromium as soluble sodium 

chromate [152]. Figure 2-1 shows a map of the area of the study and 

illustrates the samples locations in this area. 
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                Figure   (2-1) Map of location of soil sampling 
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Determination of the pseudo-total heavy metals in soil samples 

During the investigation of the concentrations of the pseudo-total heavy metals 

the dry samples of soils were digested using concentrated nitric acid according to the 

following procedures:   

Drying of Samples [153-155] 

Samples of soil were dried in an oven at 60˚ C  for 48 hours, then ground using mortar 

and pestle, and then passed though a 12-mesh (approximately 2 mm) screen.  

Acidic digestion for determination total heavy metals 

The following steps were followed in the digestion process of soil or plant 

samples [155]: 

(v) One gram of dried, ground & sieved soil or plant was weighed into a 100 mL 

tall-form beaker (rinsed with concentrated HNO3 before using). Nitric acid (30 

mL, 1: 1 (v/v), 15 mL water + 15 mL concentrated HNO3) was added and 

mixed with the sample.  

(vi) The contents of the beaker were boiled gently on a hotplate until the volume 

was reduced to approximately 5 mL; a magnetic stirrer was used for stirring. 

(vii) A further 10 mL of 1: 1 (v/v) HNO3 were added, and then heating was 

repeated until a clear transparent solution was obtained. The beaker was then 

cooled and the contents were filtered through a Whatman no. 541 filter paper. 

The beaker and the filter paper were washed with successive small portions of 

0.25 M HNO3. 
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(viii) The filtrate was made up to 100 mL (in volumetric flask) using deionised 

water, and then analysed using ICP-OES to determine the pseudo-total heavy 

metals concentrations. 

Extraction of chromium from chromite 

 Since digestion in nitric acid is not efficient in the extraction of chromium from 

chromite, a fusion technique (Soda-Ash Roasting method) was used. It depends 

theoretically on transforming the insoluble form of chromium in chromite [Cr (III)] to 

soluble sodium chromate according to the equation [152, 156]:  

        2FeCr2O4 + 4Na2CO3 +   3.5O2                    4Na2CrO4 +  Fe2O3 + 4CO2      (2-1)         

   Steps 

(i) One gram of dried and sieved soil (or black sand) was weighed in clean 

clay crucible, and then mixed thoroughly with 2.5 g of dry (nonhydrated) 

sodium carbonate. 

(ii) The mixture was heated for four hours in a furnace at 975 ◦C. The contents 

of the crucible were dissolved in nitric acid then transferred to a 50-mL 

beaker. 

(iii) The residue was removed by washing with nitric acid and transferred to the 

beaker. The contents of the beaker were filtered and transferred to100-mL 

volumetric flask. The flask was made up to the mark using deionised water. 

The extract was analysed by ICP-OES. 
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Soil analysis of polluted site of Ajman industrial zone  

The following analytical methods were used in sampling or analysing the soil 

of the polluted site of Ajman industrial zone: 

(i)       Five composite samples, each is about 1.0 kg were composed from 11 

subsamples covering the site (from each acre, three subsamples were 

taken). Samples were taken from depth 0 to 30 cm in the last week of each 

month during the year. 

(ii)       Acid digestion for five dried soil samples was carried out using 50% nitric 

acid. Total chromium, other heavy metals (Fe, Mn, Ni, Co, Cu, and Pb) and 

major cations (Na, K, Ca, and Mg) were determined using ICP-OES. 

(iii)     In the aqueous extract of the soil, chromium (VI) was determined using UV-

visible spectrophotometry. Concentrations of dissolved anions and metal 

cations were determined using ion chromatography and ICP-OES 

respectively. PHREEQC program was used for the prediction of the 

speciation of chromium (VI) in soil using the generated data. 

(iv)       Five soil samples of the site, each of 3 g were dissolved in 100 mL of 

deionised water, then were analysed for the dissolved major anions (Cl
- 

, 

NO3
- 
, SO4

--
, and PO4

3-
) and chromate using ion chromatography. 

(v)       Total carbonate was determined by adding known volume of concentrated 

HCl to 5 grams of washed soil. The addition was with stirring until the 

evolution of carbon dioxide ceased. Back titration was carried out for the 

excess of HCl using sodium hydroxide. 
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(vi)      Organic matter content of soil was determined using the back titration of the 

excess of added dichromate using ferrous ammonium sulfate. 

 

2.5 Screening of local plants for potential heavy metal phytoextraction 

activity 

Experiment (2) 

Purpose: To identify natural accumulators for heavy metals growing in suspected 

polluted sites.  

Steps: 

(i) Local plants naturally growing within suspected polluted sites were 

sampled and analysed in order to recognize natural accumulators within 

these sites. Samples of shoots of the following 10 plants: Dactyloctenium 

aegyptium, Heliotropium calcareum, Pluchea arabica, Calotropis procera, 

Indigofera amblyantha, Asphodelus tenuifolius, Prosopis juliflora, Tamarix 

aucheriana, Euphorbia larica, and Cyperus conglomerates were washed, 

dried, weighed, ground, digested in concentrated nitric acid and analysed 

using ICP-OES for Cd, Co , Cr , Cu , Fe , Pb,  Mn , Ni and Zn. 

(ii) Additional samples of naturally growing plants were taken from other 

locations of the suspected area of East Coast (Zikt & Dadnah) which has 

mining activity of chromium ore (chromite). Further plant samples were 

taken from Ajman industrial zone site which contains a metal extrusion 

factory. This factory consumes and wastes chromic acid. Samples were 
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analysed to determine the concentration of the heavy metals in the plants of 

these areas. 

(iii)  Samples of plant species that are naturally growing in both normal clean 

and polluted areas (e.g. Prosopis juliflora) were sampled for comparison. 

Detailed analyses were carried out for different parts of Cyperus 

conglomerates (Stems, Leaves, Seeds, and Roots of) to identify the 

pollutant distribution in each part of the plant. 

Experiment (3)  

Purpose: To identify accumulator plants for heavy metals from natural and adapted 

desert plants. 

Steps: 

(i) Six plants were selected as satisfying the requirements of high level of 

vegetation and tolerance of soil salinity and semi-arid climate conditions. 

These plants were provided by the municipality of Ajman nursery and 

were: Portulaca oleracea, Bougainvillea spinosa, Atriplex halimus, Iresine 

herbestii, Pennisetum setaceum, and Azadirachta indica. 

(ii) One hundred and twenty six plastic pots of 500-ml volume each were filled 

with synthesized soil consisting of 85% Ajman washed soil and 15% of 

potting soil which contained 70% organic matter. The total weight of each 

pot was 350 ± 30g. Three seedlings of each plant type were grown to get 

three replicates of each type. Each pot was irrigated with 70 mL of 

deionised water every 72 hours for a period of one month. 
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(iii) A blank solution was prepared using deionised water and nitric acid to 

adjust the pH to 5.5 ± 0.1 for irrigation of control experiments. Pollutant 

solutions were prepared using the nitrate salts of Pb
2+

, Cu
2+

, Co
2+

, Ni
2+

 and 

Cr
3+

. A solution of chromium (VI)
 

was prepared using potassium 

dichromate. The pH of solutions was adjusted at the same pH as that of the 

blank solution.  

(iv) Three replicates of each one of the six plants in the experimental samples 

were irrigated with the synthesized heavy metals solutions. Each pot 

received about 700 mL of 50 ppm of one of the above heavy metal 

solutions in ten doses (10 x 70 mL) during one month. For each plant three 

pots were irrigated by 700 ml of acidified deionised water as control 

replicates.  

(v) After the one month period of irrigation, plants were harvested, washed, 

dried, weighed, ground, digested in concentrated nitric acid and analysed 

using ICP-OES for lead, copper, cobalt, nickel and total chromium. 

Experiment (4)  

Purpose: To investigate the potential of typical desert plants including Prosopis 

species as suggested accumulators for lead and chromium (VI) from soil of UAE. 

Steps: 

(i) Two types of mesquite (Prosopis cineraria & Prosopis juliflora) were 

propagated using stem cuttings. 
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(ii)  Twenty pots were prepared by mixing 85% washed soil from Ajman (Al-Jurf 

area) and 15% potting soil (70% of its composition is organic matter). The 

total weight of each pot was about 3000 ±100 gram. Ten replicates of each 

plant were prepared by growing 3 seedlings from each plant in each pot.  

(iii) Plants were irrigated by deionised water for three months where the plants 

became about 30 centimetres in height. Nine successful pots from each plant 

were chosen and divided into three groups. The first three were irrigated by 

deionised water acidified with nitric acid to pH 5.5 ± 0.1 to match the pH of 

the other heavy metal nitrate solutions. The second group was irrigated by 100 

ppm Pb(II) as lead nitrate, and  the third one by 100 ppm of Cr(VI) as 

potassium dichromate (pH also was 5.5± 0.1 for each). Period of irrigation was 

30 days for each group. 

(iv)  For 30 days each pot was irrigated with 7500 mL of either blank (acidified 

water as control), or Pb(II) or Cr(VI) (each dose = 500 mL of 100 ppm 

solution).  The plants were harvested, rinsed, dried, weighed, ground, digested 

in concentrated nitric acid and analysed using ICP-OES for lead and 

chromium.  

Determination of total heavy metals in plants  

Samples of plants were put in Petri dishes, dried in an oven at 65 ˚C for 48 hours, then 

ground using mortar and pestle and then sieved and digested in 50% v/v nitric acid as follows: 
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(i) One gram of dried, ground and sieved plant was weighed into a 100 mL tall-

form beaker (rinsed with concentrated HNO3 before using). Nitric acid (30 

mL, 1: 1 (v/v), 15 mL water + 15 mL concentrated HNO3) was added and 

mixed with the sample. 

(ii) The contents of the beaker were boiled gently on a hotplate until the volume 

was reduced to approximately 5 mL; a magnetic stirrer was used for 

stirring. 

(iii) Further 10 mL of 1: 1 (v/v) HNO3 were added, then heating was repeated until 

a clear transparent solution was obtained. The beaker was then cooled and 

the contents were filtered through a Whatman no. 541 filter paper. The 

beaker and the filter paper were washed with successive small portions of 

0.25 M HNO3. 

(iv) The filtrate was made up to 100 mL (in volumetric flask) using deionised 

water, and then analysed using ICP-OES to determine the total heavy 

metals concentrations. 

2.6 Factors that may affect the uptake of Cr(VI) by Portulaca oleracea 

  

The following experimental design aims to investigate the factors that may 

affect the uptake of Cr(VI) by P. oleracea in order to find out the best conditions that 

may maximise the uptake of Cr(VI) by this accumulator plant. Concentrations of 
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Cr(VI) in soil, pH and organic content of soil, nutrient anions of soil, accompanying 

cations, and chelating agents are investigated. 

2.6.1 Investigation of the effect of concentration of chromium (VI) on its 

uptake by Portulaca oleracea 

Experiment (5) 

Purpose: To investigate the effect of concentration of Cr(VI) in soil on the uptake of 

this pollutant by Portulaca  oleracea .  

Steps: 

(i) Forty pots of 85% (v/v) of normal clean soil from Ajman desert in the 

United Arab Emirates and 15% (v/v) of potting soil (contains 70% organic 

matter) were prepared. The total mass of soil in each pot was 1500 ±100 g. 

(ii) In each pot 5 stems of Portulaca oleracea were propagated by cuttings and 

irrigated by deionised water. 

(iii) Using a stock solution of 10,000 ppm of chromium (VI) (as Na2CrO4) and 

deionised water, solutions with the following concentrations were prepared: 

0, 50, 100, 150, 200, 250, 300, 350, and 400 ppm of Cr(VI). The volume of 

each solution was 5 litres and the pH of each solution was adjusted to 8.0 ± 

0.1.  

(iv) Once there was considerable vegetation in each pot (usually 60 days of 

growing) 27 pots were chosen according to the best vegetation. Pots were 

irrigated by each of the nine concentrations of Cr(VI) in triplicate. After 10 
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doses of irrigation by pollutant solutions each dose equals 150 mL, the 

plants were harvested, washed by deionised water and divided into; leaves, 

stems, and roots.  

(v) Samples of plants were dried in an oven at 65 °C for 48 hours, then 

weighed and ground using mortar and pestle. The samples were digested in 

two different ways: nitric acid digestion to determine the total chromium 

and alkaline digestion to determine the Cr(VI)  in each sample. The detailed 

steps of each digestion are described in sections 2.7.4 and 2.7.5 of this 

chapter.  

(vi) Composite soil samples were taken from each pot, dried, sieved, digested 

and three replicates from each sample were analysed for chromium (VI) 

and total chromium. 

2.6.2 Effect of pH of soil on the uptake of chromium (VI) by Portulaca 

oleracea 

Experiment (6) 

Purpose: To determine the most appropriate pH of soil which maximises the uptake of 

Cr (VI) by Portulaca oleracea.  

Steps: 

(i) Six groups of pots (each consisting of twelve pots) of different pH soil 

values were prepared. Table (2-1) shows the composition of each group.  
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(ii) Values of pH of soil were varied and set at 6.0, 7.0, 7.3, 7.6, 8.0, 9.0 ± 0.1.  

The total weight of each pot was 1200 ±100g. Buffer solutions were not 

used in order not to add anions or cations which may alter the uptake of 

Cr(VI). During the experiment periodic check of soil pH was carried out in 

order to maintain its constancy. 

(iii) Four Seedlings of Portulaca oleracea were grown in each pot and were 

irrigated by deionised water for three weeks. The temperature ranged from 

25ºC at night to 35ºC by day. 

(iv) Forty five litres of 200 ppm chromium (VI) were prepared by diluting 

10,000 ppm of Cr(VI) as sodium chromate solution which was used as 

irrigation solution. The thirty litres were divided into six solutions with pH 

range 6.0, 7.0, 7.3, 7.6, 8.0, and 9.0 matching the pH values of each type of 

soil (HCl and CaO were used in adjusting the pH of irrigation solutions).  

(v)  When considerable vegetation and rooting growth were observed at each 

level of pH, the group of twelve was divided into two six pots groups. The 

first six were irrigated with deionised water for control and the other six 

were irrigated with 1200 mL of 200 ppm Cr(VI) at six doses over 12 days 

(note that each soil was irrigated with Cr(VI) solution of the same pH). 

(vi) Each plant was harvested, washed, divided into roots and shoots, and dried 

at 65
◦
C for 48 hours, then weighed and ground using mortar and pestle. 



91 

 

Sieved and ground samples of plant and soil were digested using 50% 

HNO3, then analysed using ICP-OES for total chromium. 

(vii) Composite soil samples from each pot were collected, dried and analysed 

for total chromium.  

Table (2-3) Soil composition at different values of pH. 

 

2.6.3 Effect of organic content of soil on the uptake of chromium (VI) by 

Portulaca oleracea 

Experiment (7) 

Purpose: To investigate the effect of organic content of soil on the uptake of Cr(VI) 

by P. oleracea. 

Steps: 

(i) Three types of soil were prepared. Table 2-2 shows the components of each 

type and the organic matter content. 

pH of 

soil 

Soil Composition 

6.0 ± 0.1 Pure silica + 10% potting    soil 

7.0 ± 0.1 85 % Pure silica+5 % sand of Ajman(contains 42 % CaCO3) + 10% 

potting soil 

7.3 ± 0.1 80% Pure silica+10 % sand of Ajman(contains 42 % CaCO3) + 10% 

potting soil 

7.6 ± 0.1 75% Pure silica+15 % sand of Ajman(contains 42 % CaCO3) + 10% 

potting soil 

8.0 ± 0.1 90% sand of Ajman (contains 42%CaCO3) + 10% potting soil 

9.0 ± 0.1 90% sand of Ajman (contains 42%CaCO3) + 10% potting soil+ > 0.1 % 

CaO 
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Table (2-4) Organic matter in the soils and the components of each type 

 

(ii) The normal clean soil from Ajman, which has no detectable chromium (VI) 

content, was used either pure or mixed with the potting soil (Blumen Erde – 

Germany -of total organic content of 70%). 

(iii) The organic content (%) in the three types of soil was determined by back 

titration of the excess of potassium dichromate using ferrous ammonium 

sulfate. The pH of the three types of soil was measured and was in the same 

range (7.9 ± 0.1) because of the high content of carbonate in the three 

types. 

(iv)  From each type of soil 10 pots of 2 kilograms were prepared. Four 

seedlings of Portulaca oleracea were grown in each pot. Equal quantities 

of deionised water were used to irrigate the pots for four weeks until 

considerable vegetation and rooting were achieved.  

(v) Fifteen litres of 200 ppm of Cr(VI) as sodium chromate solution were 

prepared. Each pot was irrigated with 1.6 litre of chromate solution over a 

period of ten days (8 doses, each 200 mL). Another 15 pots (5 from each 

No Components of soil % organic 

content 

1 50% potting soil(wt/wt) + 50% Clean  soil of Ajman 35%  ± 0.5% 

2 25% potting soil(wt/wt)  + 75% Clean  soil of Ajman 17.5%  ± 0.5% 

3 100% Clean  soil of Ajman 0.42%  ± 0.02% 
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type of soil) were irrigated with the same quantity of deionised water as 

control groups. 

(vi) The plants were harvested, washed by deionised water, dried at 65º C for 

48 hours, weighed, ground using mortar and pestle then sieved. Soil 

samples were taken from each pot and dried in the same oven at the same 

temperature. 

(vii)  Dried samples of about 1.0 g of shoots and 0.4 g of roots were digested 

using 50% HNO3. Total chromium in shoots, roots and soil was determined 

using ICP-OES. 

(viii) Chromium (VI) in soil was determined using UV-Visible spectrometry. 

 Determination of organic content of soil  

The total organic matter of soil was determined as reported in [155] with some 

modifications. The procedures of this method are summarised as follows:    

(i) An amount of 0.5g of air-dried and sieved soil was weighed and placed in 

conical flask. A volume of 10 mL of 0.083 M K2Cr2O7 standard solution 

was added and swirled to be mixed with the sample. 

(ii) A volume of 15 mL of concentrated H2SO4 was added carefully and drop- 

wise with gentle swirling to mix and to get rid of the generated heat. The 

conical flask was connected to the condenser, then cool water was turned 

on. The open end of the condenser was covered with a small beaker, then 

the apparatus was fixed on hot plate for 1 hour.  
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(iii) After cooling, the condenser was rinsed down with deionised water and the 

water was collected in the flask. The condenser was disconnected from the 

flask, then 100 mL of deionised water were added. Five drops of ferroin 

indicator [FeSO4.7H2O and 1, 10-phenanthroline monohydrate 

(C12H8N2.H2O) in water] were added. 

(iv) The mixture was titrated with ferrous ammonium sulfate. After the colour 

changed from blue-green to violet-red indicating to the end point, a blank 

solution (without the soil) was titrated in the same way.  

(v) The organic carbon (mg/g), organic carbon (%) and organic matter (%) in 

soil were  calculated from the following equations: 

            
M

VVVC
gmgCarbonOrganic

)/1(18
)/( 21


 

Where: 

 C is the molar concentration of the K2Cr2O7 solution (0.083M), while V is 

the added volume of that solution (10 mL). V1 is the volume of ferrous 

ammonium sulfate used up in the sample titration (mL), V2 is the volume of 

the same titrant used up in the titration of blank (mL), M is the sample 

weight (g). 

The organic carbon in % was calculated as: 

10

)/(
(%)

gmgCarbonOrganic
CarbonOrganic   

(vi) Carbon content represents 58% of the soil organic matter [155], therefore 

the organic matter (%) was calculated according to the following relation : 

     (%)58.0/1(%) CarbonOrganicMatterOrganic   
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2.6.4 Effect of nutrient anions on the uptake of chromium (VI) by 

Portulaca oleracea 

Experiment (8) 

Purpose: Investigation of the effect of some nutrient anions such as nitrate, 

sulfate and phosphate on the uptake of Cr(VI) by Portulaca oleracea.  

Steps:  

(i) Forty identical pots were prepared; each containing 1300 ±100 g of soil 

with 15% as potting soil (contains 70% as organic matter). The other 

component was normal sandy soil of Ajman area of pH of 7.9 ± 0.1. 

(ii) Three Seedlings of P. oleracea, originally propagated by cuttings, were 

grown in each pot. After one month of growing and irrigation with 

deionised water, twenty five pots (5 groups of five replicates) were labelled 

and irrigated with one of the following solutions: 

1- 1600 mL of 100 ppm of Cr(VI) as Na2CrO4 (for the control experiment). 

2- 1600 mL of 100 ppm of Cr(VI) as Na2CrO4 + 0.02M of NaNO3. 

3- 1600 mL of 100 ppm of Cr(VI) as Na2CrO4+ 0.02M of Na2SO4. 

4- 1600 mL of 100 ppm of Cr(VI) as Na2CrO4+ 0.02M of Na3PO4. 

5- 1600 mL of deionised water. 

(iii) The five groups of 5 replicates each received 8 doses of one of the previous 

five irrigation solutions (200 mL for each dose) through a period of 24 
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days. Temperature was in the range of 25 ± 3
◦
C by day and 20 ± 3 

◦
C at 

night. 

(iv)  Three other groups (5 pots each) were irrigated with the same quantity 

(0.02M, and 1600 mL) of nitrate, sulfate or phosphate only as control 

groups.   

(v) After 24 days of irrigation the plants were pulled out of the soil using water 

stream to remove the wedged soil among the roots. The plants were rinsed 

with deionised water and the length of the roots was measured for each 

plant as an indicator of the growth of the plant. The plants were divided 

into leaves, stems, and roots. Samples of plant were dried in an oven at 65 

°C for 48 hours, weighed, ground using mortar and pestle, sieved, digested 

in 50% nitric acid, then analysed using ICP-OES to determine the total 

chromium in both shoots and roots.  

(vi) Before harvesting, composite soil samples were taken from each pot. Each 

sample was dried at 65 °C for 48 hours, sieved, digested in 50% nitric acid, 

then analysed using ICP-OES to determine chromium in soil. 

2.6.5 Effect of sulfate on the uptake of chromate by Portulaca oleracea. 

The results of the previous investigation (section 2.6.4), especially those of 

sulfate, called for further investigation. Therefore, detailed experiments of the effect of 

sulfate ion in soil on the uptake of chromate by Portulaca oleracea were carried out. 

Two concentrations of Cr(VI) were used, the first is 200 mg/kg of dry soil matching 

the concentration of pollutant in soil at which the best chromium removal was 
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achieved. The second concentration of Cr(VI) in soil was 100 mg/kg (half of the first 

one) matching the concentration of Cr(VI) in the contaminated site of Ajman. The 

chromium: sulfur ratio stayed constant in the two experiments. Detailed steps of both 

experiments are reported below in Experiments 9 and 10.    

Experiment (9)  

Steps: 

(i) Thirty identical pots were prepared, each one containing 1500 ±100 g of 

synthetic soil consisting of 15% v/v potting soil and 85% of normal sand 

of the emirate of Ajman. 

(ii) Chemically pure sodium chromate and sodium sulfate from Panreac were 

used to prepare 1000 ppm stock solutions of both hexavalent chromium 

as chromate and sulphur as sulfate which were used in the preparation of 

the irrigation solutions. 

(iii) When considerable vegetation and rooting growth were observed each 

pot was irrigated with one of the solutions in Table (2- 3) during a period 

of two weeks at six doses. 
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 Table (2- 5) Concentrations of components of irrigation solutions in the presence of 

200 ppm of Cr(VI). 

 

(iv) The plants were harvested, separated into roots and shoots, washed, dried, 

and then digested using microwave acid digestion. Ion chromatography 

was used to determine total sulfur as sulfate, and ICP-OES was used to 

determine total chromium in each sample of plant.  

 

 

 

 

Components and 

Concentration 

Number 

of Pots 

Volume of each 

dose 

Final Volume of 

each pot 

1- Deionised water 

(Control) 

5 250 mL 1500 mL 

2- 200 ppm Cr (VI) as 

Na2CrO4 

5 250 mL 1500 mL 

3- 200 ppm Cr (VI)  as 

Na2CrO4 + 300 ppm  

sulfate as Na2SO4 

5 250 mL 1500 mL 

4- 200 ppm Cr (VI)  as 

Na2CrO4 + 600 ppm  

sulfate as Na2SO4 

5 250 mL 1500 mL 

5- 200 ppm Cr (VI) as 

Na2CrO4 + 1200 ppm 

sulfate  as Na2SO4 

5 250 mL 1500 mL 

6- 200 ppm Cr (VI)  as 

Na2CrO4 + 1800 ppm 

sulfate as Na2SO4 

5 250 mL 1500 mL 
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Experiment (10)  

Steps: 

(i) Thirty identical pots were prepared, each one containing 1.2 kg of synthetic 

soil consisting of 15% v/v potting soil and 85% of normal shore sand 

treated with calcium carbonate to reach the pH of 7.9 ± 0.1.  

(ii) Four seedlings of Portulaca oleracea were germinated in each pot and were 

irrigated with deionised water for four weeks. The temperatures were 

controlled at 25
 
ºC at night and at 35ºC at the daytime in an incubator. 

(iii) Chemically pure sodium chromate and sodium sulfate (Panreac Spain) were 

used to prepare 1000 ppm stock solutions of both hexavalent chromium as 

chromate and sulfur as sulfate, which were used in the preparation of the 

irrigation solutions. 

(iv) When considerable vegetation and root growth were observed, each pot 

was irrigated with one of the solutions in Table (2- 4) during a period of 

two weeks at six doses.  

(v) The plants were harvested, separated into roots and shoots, washed, dried, 

then digested using microwave acid digestion. ICP-OES was used to 

determine total chromium and total sulphur in each sample of plant. 
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Table( 2- 6)  Concentrations of components of irrigation solutions in the presence of 

100 ppm of Cr(VI). 

 

Determination of sulfur as sulfate in plant and soil samples using ion 

chromatography  

  

To determine the total sulfur as sulfate in plant and soil samples, an ion 

chromatography machine (6005 Controller and 616 Pump from Waters with 717 Plus 

autosampler from Waters) was used. Conductivity detector 432 from Waters was used 

as detecting system for the eluted ions. In the following steps, a brief description of the 

method is given [157]:   

(i) Four standards of sulfur as sulfate of the concentrations 1.0, 10, 50, and 100 

ppm were prepared by dilution of 1000 ppm of sulfate stock solution. 

Components and 

Concentration 

Number of 

Pots 

Volume of 

each dose 

Final Volume 

for each pot 

Deionised water  (Controlled 

Experiments) 

5 200 mL 1200 mL 

100 ppm Cr (VI) as Na2CrO4 5 200 mL 1200 mL 

100 ppm Cr (VI)  as Na2CrO4 

+ 150 ppm sulfate as Na2SO4 

5 200 mL 1200 mL 

100 ppm Cr (VI)  as Na2CrO4 

+ 300 ppm  sulfate as Na2SO4 

5 200 mL 1200 mL 

100 ppm Cr (VI) as Na2CrO4 + 

600 ppm  sulfate as Na2SO4 

5 200 mL 1200 mL 

100 ppm Cr (VI)  as Na2CrO4 

+ 900 ppm sulfate as Na2SO4 

5 200 mL 1200 mL 
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(ii) IC-Pak Anion HR 6.4X 75 mm column was used for anions. The number of 

the efficiency plates of column was 2500 and it was recommended for 

sulfate anions. Borate /Gluconate mobile phase was used with flow rate of 

1.0 mL/min. The running time was 16 minutes for each run.  

(iii) The microwave digested samples of both shoots and roots were diluted at 1: 

20 dilution factor to reduce the effect of the acidic medium of acid 

digestion on the stationary phase of column. Sample solutions were filtered, 

then analysed using the ion chromatography. 

(iv) Five samples of 3.0 g of each type of soil were suspended in 100mL of 

deionised water, then stirred using magnetic stirrer for two hours then 

filtered. The available sulfate in soil before and after irrigation was 

determined using the same technique and same conditions of analysis. 

Borate /Gluconate mobile phase preparation 

Five litres of Borate /Gluconate mobile phase were prepared as reported in [158, 

159] with some modifications: 

(i) A volume of 100 mL of concentrated borate /gluconate solution was 

prepared by dissolving 1.8 g of boric acid, 1.6 g of sodium gluconate and 

2.5 g of sodium tetra borate decahydrate in 50 mL of ultra pure water.  

(ii) A volume of 25 mL of glycerine was added to the solution then the mixture 

was completed to the mark using ultra pure water.  
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(iii) Of the previous concentrated borate /gluconate, 100mL solution was added 

to a 5 litres volumetric flask, then 100 mL of n-butanol HPLC grade was 

added to the solution.  

(iv) A volume of 600 mL of acetonitrile HPLC grade was added, and the flask 

was completed to the mark using ultra pure water. The mobile phase was 

then filtered through glass fibre membrane. 

 

2.6.6 Effect of accompanying cations on the uptake of Cr(VI) by Portulaca 

oleracea 

Experiment (11) 

Purpose: Investigation of the effect of cations of sodium, potassium and ammonium 

as accompanying cations on the uptake of Cr(VI) by Portulaca oleracea. 

Steps:  

(i) Twenty identical pots were prepared, each of 1300 ±100 g of soil 

containing 15% as potting soil (with 70% of organic matter). The make up 

component is normal sandy soil of Ajman area of pH of 7.9 ± 0.1. Three 

Seedlings of Portulaca, originally propagated by cuttings were grown in 

each pot. 

(ii) After one month of growing and irrigation by deionised water, each pot was 

labelled and irrigated with one of the following solutions. 

1- 1600 mL of 100 ppm of Cr (VI) as Na2CrO4. 
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2- 1600 mL of 100 ppm of Cr (VI) as K2CrO4.  

3- 1600 mL of 100 ppm of Cr (VI) as (NH4)2CrO4.  

4- 1600 mL Deionised water (for the control). 

(iii) The four groups (of 5 replicates each) received 8 doses (of 200 mL each) of 

one of the previous four irrigation solutions through a period of 24 days. 

Temperature was in the range of 25 ± 3
◦
C by day and 20 ± 3 

◦
C at night. 

(iv)  After 24 days of irrigation the plants were pulled out of the soil using 

water stream to remove the wedged soil among the roots. The plants were 

rinsed by deionised water and the length of the roots was measured for each 

plant as an indicator of the growth of the plant. The plants were divided 

into leaves, stems, and roots. 

(v) Samples of plant were dried in an oven at 65 °C for 48 hours, ground using 

mortar and pestle, sieved, digested in 50% nitric acid then analysed using 

ICP-OES to determine the total chromium in both shoots and roots. Before 

harvesting, composite soil samples were taken from each pot. Each sample 

was dried at 65 °C for 48 hours, sieved, digested in 50% nitric acid then 

analysed using ICP-OES to determine chromium in soil. 

2.6.7 Effect of chelating agents on the uptake of Cr (III) and Cr(VI) 

 Chelating agents such as EDTA and citric acid may enhance the uptake of 

heavy metal cations such as Cr(III). Anionic species such as chromate or dichromate 
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are most unlikely to be chelated in their anionic form but since Cr(VI) can be reduced 

to Cr(III) in root cells then translocated to shoots as Cr(III) cations, therefore, it is 

interesting to investigate the effect of chelating agents on the uptake of Cr(VI). In the 

next two experiments the effect of EDTA and citric acid on the uptake of Cr(III) and 

Cr(VI) was investigated.  

2.6.7.1 Effect of chelating agents on the uptake of Cr (III) 

Experiment (12) 

Purpose: To investigate the effect of chelating agents like citric acid and EDTA on the 

uptake of Cr (III) and by Portulaca oleracea. 

 Steps:  

(i) Twelve pots of the same volume, weight and composition were prepared. 

Each pot was made to contain 85% of washed sand and 15% of potting soil 

(70% of it is organic matter); the total weight of each pot was 500 ± 50g.  

(ii) The pH of soil of each pot was measured and it was 5.5 ± 0.1. Chromium 

(III) is soluble and available for plants at this relatively low pH. 

(iii) Three seedlings of Portulaca oleracea were grown in each pot and irrigated 

with deionised water for two weeks. The plants were incubated in a special 

incubator at 12 hours of light and 35 
◦
C; the other 12 hours were controlled 

at 25
◦
C and darkness. These conditions of relatively high temperature were 

designed to mimic the hot climate in the Arabian Gulf countries where 

Portulaca is a native plant. 
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(iv) Sets of three pots were irrigated with one of the following solutions: 100 

ppm of Cr(III) as chromium (III) nitrate, 100 ppm of Cr(III) as chromium 

(III) nitrate + 0.01 M of EDTA, 100 ppm of Cr(III) as chromium (III) 

nitrate + 0.01 M of citric acid or deionised water for the control. Each pot 

was irrigated with 500 mL of one of the previous solutions as 10 doses (50 

mL for each) through a period of 20 days. 

(v)  After this period each plant was harvested, washed, divided into roots and 

shoots, and dried at 65
◦
C for 48 hours then, ground using mortar and pestle. 

Samples of plant and soil were digested using 50% HNO3 and analysed 

using ICP-OES for total chromium. 

2.6.7.2 Effect of chelating agents on the uptake of Cr (VI) 

Experiment (13) 

Purpose: To investigate the effect of chelating agents such as citric acid and EDTA on 

the uptake of Cr(VI)  by Portulaca oleracea.  

Steps: 

(i) Twenty pots of the same volume, weight and composition were prepared. Each 

pot was made to contain 85% of washed shore sand and 15 % of potting soil 

(70% of it is organic matter); the total weight of each pot was 1200 ± 100g. 

The pH of soil of each pot was measured and it was 7.8 ± 0.1.  

(ii) Three seedlings of Portulaca oleracea were grown in each pot and irrigated by 

deionised water for two weeks. The plants were incubated for 12 hours of light 
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at 40 
º
C and 12 hours at 25

º
C and darkness. These conditions of relatively high 

temperature were designed to mimic the climatic conditions of the Arabian 

Gulf countries where Portulaca was originally grown. 

(iii) Every five pots (as group of five replicates) were irrigated with one of the 

following solutions: 100 ppm of Cr(VI) as sodium dichromate, 100 ppm of 

Cr(VI) as sodium dichromate + 0.01 M of EDTA, 100 ppm of Cr(VI) as 

sodium dichromate + 0.01 M of citric acid or acidified deionised water for the 

control. The pH of the three solutions was adjusted to 5.5 ± 0.1 by dropping 

small portions of HNO3 or NaOH. 

(iv) Each pot was irrigated with 1200 mL of one of the above solutions for a period 

of 2 weeks, after that each plant was harvested, washed, divided into roots and 

shoots , dried at 65
◦
C for 48 hours then ground using mortar and pestle. 

Samples of plant and soil were digested in microwave using 50% HNO3 then 

analysed using ICP-OES for chromium. 

2.7 Effect of chromium(VI) on the concentration of sulfur containing 

proteins and ascorbic acid in P. oleracea. 

This part of the investigation is devoted to the understanding of the 

biochemistry of chromium in P. oleracea tissues, in particular the  postulated reducing 

agents that may reduce Cr(VI) to Cr(III) and the postulated  ligand that may transport 

the complexed chromium(III) from roots to shoots. Glutathione in plants is a reducing 

agent and at the same time, it is the essential unit in the building of the natural plant 

ligands (phytochelatins). Ascorbic acid is found in P. oleracea and is a likely Cr (VI) 
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reductant. It was thus necessary to use two methods of extraction. The first discussed 

in section 2.7.1 was specifically for the extraction of antioxidants (reducing agents) 

and the second for the extraction of PC3 phytochelatins in section2.7.2. Since 

glutathione is essential in the two processes it was determined in both. 

2.7.1 Effect of chromium (VI) on the concentration of ascorbic acid and 

glutathione as antioxidants in Portulaca oleracea 

Experiment (14) 

Purpose: To investigate the effect of Cr(VI) concentration in soil on the concentration 

of ascorbic acid and glutathione as antioxidants in Portulaca oleracea tissues.  

Steps:  

Plants growing: 

(i) Pure shore sand was washed and enriched by 15 % as potting soil (contains 

70% as organic matter). The pH of the soil was amended to 7.9 ± 0.1 using 

calcium carbonate to match the soil of UAE. 

(ii)  Twelve pots were prepared; each containing 1000 ± 50 g of the above 

synthesised soil. Four seedlings of Portulaca oleracea (20 cm in length and 

originally propagated by cuttings from the same plant in Ajman municipality 

nursery, UAE) were grown in each pot. Seedlings were irrigated with deionised 

water and grown in an incubator at 25ºC in light and 35ºC in darkness for three 

weeks. 



108 

 

(iii)  After considerable vegetation was observed, nine successful pots were 

selected and divided into three groups of triplicate. The first was irrigated with 

50 ppm of chromium (VI) as sodium chromate over a period of two weeks. The 

chromate solution was introduced to the plants as 5 doses of 200 mL. 

(iv)  The second group was irrigated with the same volume and doses but with 100 

ppm of chromium (VI). And the third group was irrigated with deionised water 

for control. 

(v) After two weeks of irrigation the plants were cleaned from soil using cold 

water stream, washed with deionised water, divided into shoots and roots. 

(vi) The fresh plant tissues were sampled for extraction and the rest of the plant 

tissues were dried, weighed ground, digested in nitric acid using microwave 

and analysed using ICP-OES for chromium. 

Extraction of antioxidants (reduced and oxidised) from plant tissues 

The extraction process was carried out according to the method described in 

previous studies [160 -161] with some modification as follows: 

(i) Fresh plant tissues were weighed (200-300 mg of roots and 500-700 mg of 

shoots) then frozen in liquid nitrogen. 

(ii) One litre of extraction solution (5% (w/v) metaphosphoric acid (MPA) and 

1 mM EDTA in 0.1% formic acid) was prepared using ultra pure water then 

was filtered. 
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(iii) The frozen samples were ground using cool mortar and pestle. Then 1.0 mL of 

cool extraction solution added to the ground plant tissue accompanied with 1% 

(m/v) polyvinyl-polypyrrolidone (PVPP). 

(iv)  The suspension of ground plant in extraction solution was placed in hard 

plastic cryovials with stoppers, and then centrifuged at 15,000g for 20 min at 

4 °C. 

(v)  Supernatants were collected, then residues were suspended with 200 –300 μl 

of the same extraction solution and centrifuged again under the same 

conditions. The second supernatant obtained was combined with the first and 

taken to a final volume of 2 ml with extraction solution. The supernatants were 

filtered through cellulose acetate membrane. The extracted samples were 

frozen in liquid nitrogen and stored at −80 °C until analysis [160]. 

HPLC-MS Analysis 

(i) Chemicals of standards of glutathione, glutathione oxidised, ascorbic acid and 

dehydroascorbic acid were purchased from Sigma Aldrich. Solutions of 50 mL 

volume from the 4 standards were prepared using the same extraction solution 

used in the above procedures. Concentration of each standard was 1000 ppm 

which was diluted to prepare different concentrations used in preparing the 

calibration curve for each standard. 

(ii) The mobile phase was prepared for reversed phase using two solvents: A 

(filtered solution of 0.1% formic acid (HPLC grade) in ultrapure water) and B 

(0.1% formic acid in acetonitrile). Gradient elution method was programmed 
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on the machine of ultra fast liquid chromatography, UFLC XB, from 

Shimadzu.  

(iii)The mobile phase composition was changed on a period of 15 minutes 

according to the following percentages of A and B which was described in a 

previous study [160]: a linear gradient from 0 to 10% B (0–5 min) was used. 

Then, to wash the column, the concentration of B was increased linearly from 

10 to 50% from 5 to 6 min, and this solvent composition was maintained for 

9 min. Finally, to regenerate the column, the solvent was changed linearly to 

0% B for 11 min, and then was maintained at 0% B until 15 minutes, when a 

new sample could be injected. 

(iv) The analytical column was Zorbax SB- C18, 5 µm 4.6 x 150 mm from Agilent. 

Column temperature was 20 ºC and the flow rate was 1.0 ml/min. The detector 

was a time of flight mass spectrometer micro TOFQ from Bruker Daltonics 

with electrospray ionisation ESI. 

(v) Both standards then samples were introduced using the autosampler. From each 

sample 20-μl were injected. After 1.8 min. from sample injection the exit flow 

from the column was introduced to the ESI interface of the MS (TOF) 

apparatus using a T-connector. This precaution was observed to reduce the 

effect of metaphosphoric acid MPA on the ionisation process since it is being 

eluted in the first 1.5 minutes. 

(vi)  The mass spectrometer was operated with endplate and spray tip potentials of 

2.8 and 3.3 kV, respectively; in negative ion mode. Nitrogen (drying gas) 
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pressure was kept at 30 psi. Spectra were acquired in the mass/charge ratio 

(m/z) range of 50- 3000. The highest molecular weight of required analyte was 

glutathione oxidised (612.2), but the range of scanning was expanded to 3000 

to observe the dimers and polymers of the required analytes. 

2.7.2 Effect of chromium(VI) on the formation of PC3 phytochelatins and 

glutathione and in Portulaca oleracea. 

Experiment (15) 

Purpose: To investigate the effect of Cr(VI) concentration in soil on the concentration 

of glutathione and PC3 phytochelatins as sulfur containing proteins in Portulaca 

oleracea tissues.  

Steps:  

Plants growing: 

 Portulaca oleracea was grown and irrigated using Cr(VI) as mentioned in the 

previous investigation (experiment 14). 

Extraction of phytochelatins and glutathione and HPLC method 

Detailed steps of the method are mentioned in Hunaiti et al. [162] and in the 

following they are reported briefly with some modifications  

(i) Fresh plant samples (1 g of shoots or 0.5 g of roots) were immersed in liquid 

nitrogen then ground using a blender. Glutathione and phytochelatins were 

extracted using 60% perchloric acid (2 mL per g fresh weight). 

(ii) Homogeneous mixtures were vortexed then centrifuged at 13,000g for five 

minutes then the supernatents were filtered through cellulose acetate 
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membrane. 100 µL of each sample were transferred to autosampler vials of 

Agilent 1100 HPLC system with diode array detector. 

(iii) Reversed phase gradient elution conditions were applied using two solvents as 

mobile phase (solvents A and B). A consisted of 0.1% trifluoroacetic acid 

(TFA) and solvent B was 80% of acetonitrile in 0.1% TFA (v/v). The flow rate 

was adjusted to be 1.0 mL/minute and the column temperature was 30ºC. 

(iv)  Chemically pure glutathione (GSH) and PC3 phytochelatins were purchased 

from Sigma Aldrich to prepare the standards. Twenty µL from either standards 

or samples were injected automatically into 250 x 4.6 mm Prodigy ODS 

(octadecyl 3) column. Absorption wavelength of detector was adjusted to 214 

nm where best absorptions for GSH and PC3 were expected according to the 

method. The period of running for each sample was 15 minutes.   

 

2.8 Techniques for the treatment of polluted biomass of plants after 

their use in phytoextraction  
 

Contaminated plant biomasses are used to be incinerated after their use in the 

remediation process. Alternative techniques, rather than incineration, for re-extracting 

chromium(III) from the harvested dry P. oleracea such as acidification, 

electrodeposition, and filtration through the sand of emirates, were investigated.  

2.8.1 Extraction and determination of chromium in polluted plants 

Experiment (16) 

Purpose: To extract chromium from dry plant biomass and to determine the efficiency 

of this extraction. 
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Steps: 

(i) Fifty four grams of dry ground tissues (mixed shoots and roots) of 

Portulaca were mixed thoroughly. This amount is the residue of some pre-

analysed samples which had been irrigated with chromium (VI) solutions.  

(ii) Five samples were taken and each was about 1.0 g. These samples were 

digested using 50% HNO3, then analysed using ICP-OES to determine the 

total chromium. 

(iii) About 49 g of dry ground plants were divided into three equal samples, 

each weighing 16.33 g. Each of the three samples was dissolved in one litre 

of deionised water in 1 litre beaker.  

(iv) Concentrated hydrochloric acid was added as droplets to adjust the pH of 

the solutions at 5.0 ± 0.1 and 2.0. ± 0.1. The third beaker was left without 

any acid addition and its pH was measured to be 6.1 ± 0.1.  

(v) The two beakers of pH 2.0 and 5.0 were stirred using magnetic stirrer and 

heated to 80 ºC for two hours. About 30 mL of each solution were filtered 

and divided into three samples, then chromium (VI) was measured using 

UV-Visible spectrophotometry. Three replicates of each solution were 

analysed for total chromium using ICP-OES. 

(vi) The pH of the two solutions (of pH 6.1 and 5.0) were acidified using 

concentrated HCl to the pH of 2.0 ± 0.1 then heated to 80 ºC for two hours. 
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2.8.2 Removal of chromium from the dry biomass of P. oleracea 

Experiment (17) 

Purpose: To remove Cr(III) from the extract using UAE sand and electrodeposition. 

Steps: 

(i) An amount of exactly 400 g of sand of Ajman was washed using deionised 

water, dried, and then was placed in a cylindrical glass column with 

diameter of 5cm and length of 60 cm. This column was open from the top 

and fitted with valve from the bottom. 

(ii)  The sand was analysed for pH, some heavy metals and total carbonate. The 

two litres of the extract solution (pH 2.0) were filtered though plastic tiny 

net, then added gradually from the upper inlet of the column and passed 

through the sand. The filtrate solution was analysed for pH and total 

chromium using ICP-OES. 

(iii) The third litre of extract solution (pH 2) was divided into four equal 

volumes and each volume was placed in 400 mL beaker. Two cylindrical 

graphite electrodes (15 cm in length and 0.4 radius) were immersed in each 

solution then were connected to 9V battery for 12, 24 and 36 hours. After 

each period the solution was analysed for pH and total chromium using 

ICP-OES. 
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2.9 Sampling of soil 

Composite soil samples were taken as follows [163]:  

(i) A systematic sampling grid was planned for the area of sampling and from 

each 10 acres area six subsamples were taken (Plastic sampling containers, 

500-mL in volume and a steel spade were used. A V-shaped hole six inches 

deep was excavated. A 1-inch slice from one side of the hole was taken. 

The sides of slice were trimmed, leaving a 1-inch strip on the spade. Then 

these strips were transferred to a clean plastic container.) 

(ii) All soil samples were taken from a depth from 0 to 6 inches which is 

known as the tillage depth since most of root activities are restricted to this 

depth in most plants. 

(i) These subsamples were mixed thoroughly in a plastic container, and about 

1 kilogram of this mixture was saved for analysis as a composite soil 

sample.  

2.10 PHREEQC program 

PHREEQC (Version 2) is a computer program available from the U.S. 

Geological Survey (USGS, Denver, Colorado, USA) which is designed to perform a 

wide variety of aqueous geochemical calculations including the speciation of soluble 

ions [164]. This programme has capability to model almost any chemical reaction that 

is recognized to influence rain, soil, ground and surface water quality [165].  
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Soluble ions were extracted from soil using deionised water. Dissolved metal 

cations were determined using ICP-OES and ion chromatography was used to 

determine dissolved anions. Generated data from the program were then used to 

predict the actual species of chromium in the soil of Ajman industrial zone.  
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CHAPTER 3 

RESULTS AND DISCUSSION 

 3.1 Exploring suspected polluted soils 

 The main objective of this project is the implementation of phytoextraction to 

remediate polluted soil of UAE. Thus, twelve suspected polluted sites in northern 

emirates (Figure 3-1) were chosen on the recommendation of the environmental 

laboratory of Ajman municipality (personal communication). Some of these sites 

contained industrial waste, old landfill or mining activities for chromite like the east 

coast area of UAE. Composite soil samples of these sites were analysed for the 

following heavy metals: Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn. The results of the analysis 

of soil samples of these sites are listed in Table 3-1.  

 

 

 

Figure (3-1) The area of the sampled sites in the northern emirates. 
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Table (3-1) Concentration of heavy metals in soil samples of different sites in northern emirates of UAE. 

Zn Pb Ni Mn Fe Cu Cr Co *Conc. mg/kg 

Site 

46 ± 6 11.1 ± 2.1 590 ± 70 290 ± 40 (1.6
  
± 0.1) x104 

15.6 ± 2.1 135 ± 20 20.5 ± 3.3 Kalba 

33 ± 5 6.2 ± 1.1  520 ± 60 380 ± 30 (1.5
  
± 0.1) x104 15.2 ± 2.5 110 ± 16 <0.5  Muzeera 

24 ± 4 5.50± 0.68 420 ± 50 320 ± 30 (1.2
  
± 0.1) x104 9.2 ± 1.8 105 ± 17 18.2 ± 2.4 Manama 

40 ± 6 3.40± 0.42 430 ± 60 340 ± 40 (1.3
  
± 0.1) x104 12.9 ± 1.9 105 ± 20 14.2 ± 2.1 Masfoot 

30 ± 4 5.00± 0.61 340 ± 40 300 ± 40 (1.2
  
± 0.1) x104 14.2 ± 1.5 79 ± 11 10.4 ± 1.8 Seiji 

50 ± 6 10.5 ± 1.8 240 ± 30 420 ± 50 (1.3 
 
± 0.1) x104 41.6 ± 5.7 86 ± 13 11.2 ± 1.8 Bleeda 

20 ± 3 2.20 ± 0.25 460 ± 60 260 ± 30 (1.3
  
± 0.1) x104 12.8 ± 2.1 115 ± 18 12.3 ± 2.0 Dhaid 

48 ± 7 80.2 ± 11.6 680 ± 80 400 ± 40 (1.6
  
± 0.2) x104 19.5 ± 2.9 202 ± 31 24.0 ± 4.3 Bithna 

110 ± 10 21.9 ± 3.3 100 ± 20 370 ± 40 (4.8
  
± 0.5) x103 118 ± 15 145 ± 23 1.8  ± 0.3 Ajman Desert 

28 ± 4 4.4  ±  0.5 410 ± 50 300 ± 40 (1.2
  
± 0.1) x104 10.9 ± 1.7 118 ± 16 11.1± 2.0 Masafi 

63 ± 9 12.5 ± 1.9 680 ± 80 320 ± 40 (1.9
  
± 0.2) x104 17.6 ± 2.1 155 ± 30 22.5 ± 4.3 Dadnah 

90 ± 20 3.4 ±  0.4 30 ± 5.0 160 ± 20 (4.7
  
± 0.2) x103 6.7 ± 0.9 1300 ± 150 1.01±0.03 Ajman Industrial 

Zone 

* Concentration is expressed in mg of heavy metal per kg of dry soil (mg/kg) (Samples were analysed in February 2006 

for triplicates)
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It was believed that the level of chromium in black sand of Dadnah and Kalba 

is much higher than the value determined in table 3-1 using acidic digestion (155 and 

135 mg/kg) because it contains chromite FeCr2O4 as major component. Thus, fusion 

with Na2CO3 (Soda-Ash Roasting) was carried out for black sand of Dadnah and 

Kalba and the concentration of Cr(III) in soil was found  to be 3890 mg/kg and 25000 

mg/kg, respectively (Table 3-2). This confirms that it is unavailable to plants under 

normal conditions. 

Table (3-2) Concentration of total chromium in east coast black sand, Kalba and 

Ajman industrial zone. 

 

The dominant heavy metal in the investigated sites is iron which ranged from 

4,700 to 19,000 mg/kg. Iron in soil does not represent environmental challenge at this 

limit according to U.S. Geological Survey (USGS) which indicated that the median of 

Fe in soil is 26,000 mg/kg [44]. Nickel and manganese are relatively high in different 

sites (more 300 mg/kg) especially in the sites which include high content of iron        

(such as Dadnah, Kalba, Manama, Masfoot, Bithna, Bleeda, and Muzeera), but both 

Mn and Ni concentrations are still below the maximum allowed limit according to 

USGS which is 7000 mg/kg for Mn and 700 mg/kg for Ni [44]. 

Concentration of Cr 

(mg/kg) 

Site 

(2.5 ± 0.2) x 10
4 

Dadnah Coast 

(3.9 ± 0.5) x 10
3
 Kalba Coast 

(1.3 ± 0.2) x10
3 

Ajman Industrial Zone 
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It is observed that the most problematic heavy metal in the main polluted sites 

of UAE is chromium. These sites are Dadnah coast, Kalba coast and Industrial Zone of 

Ajman. The highest concentration of chromium was found in the black sand of Dadnah 

cost which reached 25,000 mg/kg followed by Kalba sand up to 3900 mg/kg. 

Chromium (III) in the soil of Kalba and Dadnah is unlikely to be extracted to soil since 

chromite is a very stable compound and chromium was extracted from it in laboratory 

only using soda ash diffusion at 950 ºC. Therefore, chromium in black sand will not 

form a real environmental problem since its content of chromium is unavailable 

chromium (III), which is a less harmful form of chromium. According to USGS, in 

soils, chromium ranged between 3-300 mg/kg with a median of 54 mg/kg [44]. Except 

Ajman industrial zone, chromium in all investigated sites ranged between 79- 202 

mg/kg which falls within the range of USGS.  Moreover the UAE soil has a pH 7.9 ± 

0.1, at that value chromium (III) is mostly insoluble as Cr(OH)3. So if a small amount 

of it was extracted, it would not be available to plants at this pH. 

The average concentration of total chromium in Ajman industrial zone is 1300 

± 150 mg/kg. The risk associated with this quantity of chromium is its high content of 

hexavalent chromium (Cr(VI)). This site is a part of the city of Ajman and it is 

surrounded with schools and other civil establishments. The concentration of 

chromium in this site stays within the limit that some plants can tolerate, so 

phytoremediation may be the technique of choice for the remediation of this site. 

Detailed investigation for the soil of Ajman industrial zone was carried out. The results 

are reported and discussed in the next section. 
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3.1.1 The polluted site of Ajman industrial zone 

As a result of surveying twelve suspected sites for heavy metal contamination, 

Ajman industrial zone (Figure 3-2) was identified as polluted with chromium to an 

extent that calls for immediate remediation. Detailed chemical analyses of the soil of 

the site were carried out to measure the anions, cations, carbonate content, organic 

matter and pH. (The results are shown in table 3-3). Hexavalent chromium in the soil 

of the site was measured from October 2008 to June 2009 and the results are shown in 

Table 3-4. PHREEQC software from USGS [165] was used to predict the speciation of 

Cr(VI) in the soil extract ( Tables 3-5) and Cr(III) in soil (Table 3-6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (3-2) Satellite photograph and detailed sketch for the polluted site in Ajman 

Industrial Zone 
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Table (3.3) Concentrations of the cations and anions and the pH of soil of the site of 

Ajman industrial zone. 

Variable Measured Value Median in USGS (mg/kg) 

pH 7.9 ± 0.1 na 

Total Chromium 1760 ± 120 mg/kg 54 

Chromium (VI) 97.3 ± 14.8 mg/kg na 

Total Carbonate 42% wt/wt ± 3.6 % na 

Total Organic Matter 0. 42 % wt/wt ± 0.02 % 0.5-100% wt/wt 

Nitrate < 0.01 mg/kg na 

Sulfate 55.3 ± 8.8 mg/kg na 

Chloride 1300 ± 100 mg/kg na 

Phosphate < 0.01 mg/kg na 

Sodium 730 ± 80 mg/kg 12,000 

Potassium 500 ± 50 mg/kg 15,000 

Calcium 14700 ± 400 mg/kg 24,000 

Magnesium 6100 ± 300 mg/kg 9,000 

Iron 4700 ± 150 mg/kg 26,000 

Manganese 170 ± 20 mg/kg 550 

Copper 7.5 ± 1.1  mg/kg 25 

Zinc 95.3 ± 11.6 mg/kg 60 

Lead 3.6 ± 0.4 mg/kg 19 

Cobalt 1.0 ± 0.13 mg/kg 9.1 

na = not available. 

 

Table (3.4) Concentrations of total and hexavalent chromium in the soil of the site 

from October 2008 to June 2009. 

Month Total Chromium (mg/kg) Chromium (VI) (mg/kg) 

October 2008 1710 ± 120 97.3  ± 14.8 

December 2008 1740 ± 120 65.7  ± 16.4 

February 2009 1770 ± 130 52.8  ± 11.5 

April 2009 1820 ± 130 68.2  ± 13.7 

June 2009 1860 ± 140 74.6  ± 14.5 
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Table (3-5) Predicted chromium (VI) species in the soil extract of the polluted site 

using PHREEQC program. 

Chromium(VI) Species Predicted concentration (mg/kg) 

CrO4
-2 

88
 

KCrO4
- 

3.4
 

NaCrO4
-
 2.4

 

HCrO4
-
 2.0 

 

 

Table (3-6) Predicted chromium (III) species in soil of the polluted site using 

PHREEQC program. 

Chromium(III) Species Predicted concentration (mg/kg) 

Cr(OH)3 1400 

Cr(OH)2
+
 280 

CrO2
-
 3.2 

Cr(OH)
+2

 2.5 

Cr(OH)4
-
 1.2 

  

Analyses of composite soil samples indicate that the pH of the soil of 7.9 ± 0.1, 

which reflects the high carbonate content (42%) (Table 3-3). At this pH, chromium 

(VI) is available as chromate anions CrO4
2-

, which was confirmed by the PHREEQC 

program as the major Cr(VI) species (Table 3-5). Most of the chromium in the soil of 

the site exists as Cr(III) since the total chromium was 1800 mg/kg while Cr(VI) was 

97.3 mg/kg. According to EPA Toxicity Characteristic Leaching Procedure (TCLP), 

the maximum allowed concentration of chromium in soil is 5 ppm [57]. So 97 mg/kg 

of chromium (VI) in soil represents a direct threat to the environmental systems in the 

area of the site. 
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Meanwhile, the existence of iron in soil as Fe(III) [113, 114] does not alter the 

oxidation state of Cr(VI) leaving it available for living organisms (plants or 

microorganisms). The amount of organic matter content may contribute to the 

reduction of Cr(VI) to Cr(III) but its effect stays limited due to its small amount 

(<0.42% Table 3-3). Finally the decrease of Cr(VI) in winter months (Figure 3-3) is 

suggested to be due to the seasonal rains which fall in UAE within winter and it may 

leach soluble Cr(VI) to the ground water. 

Figure (3-3) Concentration of chromium (VI) in the soil of Ajman Industrial Zone 

and the mean of rain fall [166] in 2008-2009. 

  

The concentration of Cr(VI) observed ranged between 53 and 97 mg/kg in the 

polluted Ajman industrial zone  and this concentration is relatively moderate and may 

be below the phytotoxic limit of Cr(VI) towards certain plants, since some plants (e.g. 
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Tamarisk and Prosopis) were thriving in the site. In such sites with moderate pollution, 

phytoextraction technique is well suited for soil remediation.  

3.2 Screening of local desert plants for potential heavy metal 

phytoextraction activity 

 

Three approaches were used to identify accumulators for heavy metals 

including chromium (VI): 

1- Investigation of natural plants growing in the suspected polluted sites 

to find natural accumulator(s) for one or more heavy metals. 

2- Investigation of six recommended plants (by environmental 

municipality of Ajman) with respect to their tolerance of the harsh 

desert environment. 

3- Detailed investigation of two species of mesquite (Prosipis) plant 

which were reported in the literature as promising accumulators for 

both Pb and Cr(VI) [28, 29]. 

3.2.1 Investigation of natural plants growing in the suspected polluted sites 

Parallel to the analysis of the soils of polluted sites for 8 heavy metals, ten local 

desert plant species naturally growing within these sites were sampled and analysed 

for the same 8 heavy metals in order to find natural accumulator(s) growing in these 

sites. Cadmium in these plants was also analysed since it is highly toxic. The results 

are shown in Table 3-7. The major heavy metal encountered in the investigated plants 
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was iron which reached 1900, 1700 and 1500 mg/kg in Tamarix aucheriana grown in 

Ajman industrial zone, Dactyloctenium aegyptium and Heliotropium calcareum 

growing in Kalba, respectively. The second heavy metal taken up by plants was 

manganese which reached 252 mg/kg in Euphorbia larica grown in DC. Both iron and 

manganese are plant nutrients, so the uptake of these two metals does not represent an 

environmental threat and the concentration of manganese in Euphorbia larica is not 

considerable (Table 3-7). 

Cyperus conglomerates from Dadnah coast (DC) showed specific response 

towards cadmium (Table 3-7) therefore, a detailed analysis which included soil and 

different parts of this plant was carried out and the results are shown in (Table 3-8). 

Bioconcentration factors BCF(s) were calculated as concentration of heavy metal in 

whole dry plant (mg/kg) / concentration of heavy metal in dry soil mg/kg. 

Bioconcentration factors (≥ 1.0) for promising plants growing in these sites are shown 

in Table 3-9. Among the fourteen plants analysed, the most promising was Tamarix 

aucheriana growing in Ajman industrial site. It demonstrated a relatively high uptake 

for most of the measured heavy metals with bioconcentration factors greater than 2.0 

for Pb, Cu and Co (Table 3-9). Total chromium in Tamarix aucheriana growing in the 

same site is 28.5 mg/kg. This is a small amount compared to the amount of chromium 

in soil which is 1800 mg/kg suggesting that Tamarix is chromium excluder. 
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          Table (3-7) Analysis of dry plants growing in suspected polluted sites for some heavy metals uptake. 

 (Number of replicates =3)

Zn  Pb  Ni  Mn  Fe  Cu  Cr  Co  Cd 

 

            Concentration (mg/kg) 

Plant/ Site 

15.7±2.8 < 0.14 50.0±17.5 40.5±12.5 1700±230 8.30±0.23 8.29±0.00 1.85±0.23 < 0.15  Dactyloctenium aegyptium/ Kalba 

12.5±2.4 0.75±0.12 39.3±11.1 50.1±18.6 1500±194 10.8±2.3 7.80±1.63 1.30±0.17 < 0.15  Heliotropium calcareum/ Kalba 

22.5±0.4 6.10±1.22 3.10±0.65 52.1±14.7 164± 34 4.30±1.19 0.90±0.13 < 0.5 < 0.15  Pluchea Arabica/ Muzeera 

41.5±5.8 13.7±2.3 6.20±1.6 78.3±22.6 93.2±23.8 9.20±2.63 0.90±0.11 1.40±0.20 < 0.15  Calotropis procera/ Masfoot 

26.3±4.4 2.00±0.26 5.70±1.2 52.7±15.5 167±32 6.40±1.28 1.30±0.24 < 0.5 < 0.15  Indigofera/ Bithna 

24.4±3.6 0.30±0.08 4.30±0.93 77.6±21.4 81.2±20.1 3.40±1.11 0.90±0.14 1.10±0.13 < 0.15  Calotropis procera/ Bithna 

40.5±6.2 0.50±0.10 9.20±1.9 20.9±3.5 58.3±16.3 6.30±1.56 1.70±0.26 < 0.5 < 0.15  Asphodelus tenuifolius/ Bithna 

< 0.1 < 0.14 8.60±2.0 < 0.03 < 0.15  12.5±2.6 2.50±0.46 < 0.5 < 0.15  Prosopis juliflora/ Ajman Desert 

< 0.1 8.15±2.34 2.70±0.82 < 0.03 < 0.15  6.50±1.90 2.80±0.51 1.05±0.17 < 0.15  Calotropis procera/ Ajman Desert 

191±39 11.5±2.9 28.2±4.15 139±30 1900±280 28.4±4.2 28.5±6.23 2.30±0.32 < 0.15  Tamarix aucheriana/ Ajman I. Zone 

30.8 ± 5.2 0.42 ± 0.06 6.40 ± 0.56 40.8 ± 6.2  148 ± 16.5 4.83 ± 0.45 1.18 ± 0.19 < 0.5 < 0.15  Prosopis juliflora/  Dadnah coast 

36.0 ± 6.6 0.95 ± 0.14 3.23 ± 0.38 39.6± 5.3 132 ± 15.8 11.2 ± 2.1 1.83 ± 0.33 < 0.5 < 0.15  Prosopis juliflora/ Masfoot 

14.4 ± 1.8 0.75 ± 0.09 6.66 ± 0.75 252 ± 37.5 72.8 ± 10.3 3.51 ± 0.45 1.04 ± 0.21 2.75 ± 0.48 < 0.15  Euphorbia Larica / Dadnah Coast 

5.03 ± 0.65 0.90 ± 0.11 4.10 ± 0.5 79.2 ± 10.5 175 ±19.9 2.37 ± 0.35 0.99 ± 0.16 < 0.5 0.86 ± 0.14 Cyperus conglomerates / Dadnah  
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Table (3-8) Concentration of cadmium in different parts of Cyperus conglomerates 

naturally growing in Dadnah Coast (DC).   

       

 

 

Table (3-9) Bioconcentration Factor (BCF) for some investigated naturally growing 

plants (* BCF < 1.0). 

 

    

Translocation 

factor (TF) 

Concentration of 

cadmium (mg/kg)             

Cyperus conglomerates plant tissue  

0.8 ± 0.2 0.50 ± 0.08 Stems 

1.2 ± 0.3 0.76 ± 0.14 Leaves 

1.7 ± 0.4 1.12 ± 0.20 Flowers and seeds 

 0.65 ± 0.13 Roots 

                      Heavy metal  

Plant  Pb   Cu  Co  Cd 

Tamarix aucheriana 3.4 ± 0.5 4.4 ± 0.6 2.3 ± 0.2 * 

Cyperus conglomerates 

stem * 2.6 ± 0.3 * 26 ± 4.5 

Cyperus conglomerates 

flower& seeds   * 2.9 ± 0.4 * 59 ± 5.8 

Cyperus conglomerates 

leaves * 1.3 ± 0.1 * 40 ± 5.3 

Cyperus conglomerates 

roots  * 2.6 ± 0.4 * 34 ± 4.8 
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Bioconcentration factors (Table 3-9) of cadmium in Cyperus conglomerates 

exceeded the value of 26 and reached 59 in flowers and seeds. These results are 

very important since cadmium is classified as one of the most toxic pollutants in 

soil and water - with concentration of 1.0 mg/kg for toxicity [57] and these BCF 

values are very promising for such pollutant. The translocation factor of cadmium 

(Table 3-8) from roots to leaves exceeded the value of 1.0 (1. 2) and in flowers and 

seeds reached 1.7 which confirms the role of this plant in the accumulation of 

cadmium. 

In most plant samples the uptake of heavy metals was limited. This can be 

related to the limited number of accumulators in nature and the high pH of 

investigated soils (7.9 ±0.1). Most of the heavy metal cations are insoluble and 

unavailable to the plants at this pH. Total chromium in Dactyloctenium aegyptium, 

Heliotropium calcareum and Cyperus conglomerates, naturally growing in Kalba 

and Dadnah (Tables 3-7, 3-8), did not exceed 10 mg/kg although the soils of these 

sites are very rich in chromite. This confirms the conclusion that Cr(III) in black 

sand is not bioavailable for plants. The results suggest that none of the fourteen 

investigated plants reported in table 3-7 is a chromium accumulator. 

3.2.2 Investigation of recommended desert plants  

Six plant species either local or exotic, but well adapted to the environment, 

were chosen and propagated by stem cuttings. These plants were recommended by 

Ajman municipality nursery due to their potential to tolerate high temperature, soil 

salinity, and high pH of soil. The plants were irrigated either with acidified 

deionised water for control or heavy metal nitrate solution (Co, Pb, Cr(III), Cu,  Ni) 
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while chromium (VI) was introduced as K2Cr2O7. The plants were analysed for the 

six heavy metal ions. Figure 3-4 shows the concentration of heavy metals in the dry 

plants, BCF(s) were calculated and are shown in Table 3-10. 

Figure (3-4) Uptake of heavy metals by a range of local plants. (Mean of 

triplicates) 

 

Table (3-10) Bioconcentration factors (BCF) for some heavy metals ( * BF < 1.0) 

 

Portulaca oleracea demonstrated the greatest uptake of chromium (VI) 

accumulating 158 mg/kg of Cr (VI) giving a BCF of 1.6 which is the highest 

among the six investigated plants (Figure 3-3 and Table 3-10). P. oleracea can be 

Heavy Metal 

Plant  

Cr(III) Cr(VI)  Pb(II)   Cu (II)   Co(II)    

Portulaca oleracea * 1.6 ± 0.1 * * * 

Atriplex halimus 1.0 ± 0.1 * * 1.4 ± 0.1 1.0± 0.1 

Iresine herbestii   * * 1.0 ± 0.1 1.0 ± 0.10 * 
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classified as a promising plant for the phytoextraction of Cr(VI) since the BCF 

exceeded the value of one which means that the concentration of pollutant in the 

dry plant tissue is more than its concentration in the dry soil. There was no 

significant difference between the dry weight of P. oleracea in control and 

experimental samples in the presence of Cr(VI) (P > 0.05 using ANOVA Post hoc 

test ''Tukey''). This suggests that P. oleracea may accumulate concentrations of 

Cr(VI) higher than the 158 mg/kg value.  

 Iresine herbestii accumulated lead and copper with a BCF value of 1.0 for 

these two heavy metals. Atriplex halimus showed the capability to accumulate 

copper with a BCF of 1.4 and Cr(III) and Co(II) with a value of 1.0. These two 

plants have shown capability to solubilise and uptake heavy metal cations even 

from soil of high pH (7.9) which is in agreement with previous study [86]. In this 

study Cr(III) was introduced to Zea mays in sand and soils of pH 7.2 and 7.8 

respectively and observed considerable chromium uptake by plant at these pH 

values.  

For the three plants (Portulaca oleracea, Iresine herbestii and Atriplex 

halimus), no significant difference (P > 0.05 using ANOVA Post hoc test ''Tukey'') 

between the dry biomass of the experimental and the control plants was observed in 

the presence of the five heavy metals. This normal growth of plants in the presence 

of heavy metals may give these plants special characteristics of heavy metal 

phytoextraction in soils of high pH like the soil of UAE. 

 Bougainvillea spinosa and Pennisetum setaceum did not show significant 

absorption of any heavy metal among the six metal ions investigated in the 
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experiment. No significant difference was observed in the dry biomass between 

plants grown in control and experimental conditions (p > 0.05 using ANOVA Post 

hoc test ''Tukey''). These two plants can be classified as excluders for the six heavy 

metal ions. The sixth plant Azadirachta indica did not give sufficient vegetation 

when exposed to the five heavy metals. This indicates that these small 

concentrations of pollutants are phytotoxic to Azadirachta indica as demonstrated 

by limited growth, yellowish leaves and deterioration of roots. 

3.2.3 Investigation of mesquite species for the accumulation of lead and 

hexavalent chromium 

  

According to previous studies [28, 29] mesquite (Prosopis juliflora) 

demonstrated high ability to uptake Cr(VI) and Pb(II). Those studies were carried 

out in El-Paso Texas which has desert climatic conditions similar to those of the 

UAE. The potential of Prosopis species for phytoextraction of lead and chromium 

(VI) from soil of UAE was investigated in the present work. Two types of mesquite 

(Prosopis cineraria and Prosopis juliflora) were used in this investigation. In this 

experiment, the two plants were irrigated with either Cr(VI) or Pb(II) or deionised 

water for control. The concentrations and the BCF values for Pb (II) and Cr (VI) 

are shown in Tables 3-11 and 3-12 respectively.  

Table (3-11) Uptake of Pb (II) , Cr( VI ) by two types of  mesquite plants of UAE. 

(Mean of triplicates of whole plant) 

Cr )VI ( mg/kg Pb) II (    mg/kg Plant 

26.4 ± 5.37 12.4 ± 3.13 Prosopis cineraria 

11.4 ± 2.12 8.46  ± 1.52 Prosopis juliflora 
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Table (3-12) Bioconcentration factors for lead and Cr(VI) in mesquite (Prosopis 

species). 

 

The two types of Prosopis showed limited accumulation of either Pb (II) or 

Cr (VI) (Table 3-11). These results contradict those of previous studies on the same 

plants and pollutants [28, 29]. This difference is likely to be due to the different 

conditions used in these two studies. Agar paste and hydroponics at pH 5.3 were 

used in the El-Paso studies resulting in chromium (VI) being available as 

dichromate. In the present study, although the pH of the irrigation solution of 

dichromate was 5.5, the high carbonate content in soil (42%) which fixed the pH at 

7.9 would made Cr(VI) available as chromate. The difference in the uptake of 

Cr(VI) may be due to the introduction of chromium as different species of Cr(VI) 

at different pH values and in different nutrient media. In El-Paso, Pb (II) was 

introduced to the plants at pH of 5.3, where it will be soluble and available to the 

plant. In the present study, the soil pH of 7.9 would result in most of the lead being 

precipitated as Pb(OH)2 and not available to the plants.  

The results of analysis of Prosopis juliflora in four different locations of 

UAE (Tables 3-7, and 3-11) did not give any indication of heavy metal 

accumulation. This plant is very common in the UAE and it was sampled from 

different locations in the northern emirates hoping to find some high ability of 

accumulating any pollutant but the results were negative and inconsistent with the 

Bioconcentration of Cr 

)VI ( 

Bioconcentration of Pb 

)II( 
Plant 

0.11 0.05 Prosopis cineraria 

0.05 0.03 Prosopis juliflora 
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previous studies [28, 29]. Nevertheless, this observation is very important in the 

Emirates since Prosopis plant is the essential food of camels around UAE, so its 

insignificant accumulation of polluting metals would make it nontoxic to animals at 

UAE soil conditions.   

Since the concentrations of heavy metals in all the plants were found to be 

less than 1000 mg/kg in dry plant tissue, it could not be concluded that a 

hyperaccumulator was discovered. However, the bioconcentration factors for 

Portulaca, Atriplex, and Irisine (≥1.0) indicate that the concentration of the heavy 

metal in the dry plant is more than its concentration in the soil suggesting that these 

plants have phytoextraction potential.  

Ajman industrial zone which is the polluted site suitable for phytoextraction 

contains chromium (VI) as the problematic heavy metal. Concentration of total 

chromium in the site increased from 1300 ±150 mg/kg in 2006 to 1850 ±140 mg/kg 

in 2009, which confirms the continuity of discharging chromium (VI) wastes to the 

site by, for example chromic acid. This acid is routinely used in the factory of 

aluminium extrusion nearby the site.  

The plant that demonstrated potential to accumulate chromium (VI) is 

Portulaca oleracea since it has the highest bioconcentration factor for chromium 

(VI). It is also a succulent plant and can absorb significant quantities of water and 

this may enhance the phytoextraction process. P. oleracea grows in the UAE and 

its optimum season is in the hot months from April to November; so it is a perfect 

plant for Ajman industrial zone site which has the highest concentration of Cr(VI) 

in the summer season.  
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3.3 Factors that may affect chromium (VI) uptake by P. oleracea 

 As a result of the previous investigations, chromium (VI) was identified as 

the problematic heavy metal in Ajman industrial zone and  P. oleracea was the best 

option for its phytoextraction. In order to optimize chromium accumulation 

efficiency by P. oleracea, factors that may affect such efficiency were investigated. 

These factors include: concentration of pollutant in soil, pH of soil, organic content 

in soil, competitive anions, accompanying cations, and chelating agents.  

3.3.1 Effect of the concentration of chromium (VI) in the soil on its 

uptake by P. oleracea 

 

The effect of the concentration of Cr(VI) in soil on its uptake by some 

accumulators was previously investigated using different plant species, however 

conflicting results were reported [106-108]. The results of the present study may 

hopefully contribute to the solution of this disagreement at least with respect to P. 

oleracea. Plants were irrigated with 9 different levels of Cr(VI) as sodium 

chromate where each group consisted of three replicates in addition to a control, 

which was irrigated with deionised water. Plants were harvested and analysed for 

total chromium and chromium(VI). Chromium (III) was calculated by subtraction 

of chromium (VI) from total chromium in roots, leaves and stems.  

3.3.1.1 Concentration and speciation of chromium in plant tissues 

The concentrations of total chromium, (Cr (VI) and Cr (III)) in leaves of P. 

oleracea were calculated and plotted in Figure 3-5. The concentration of total 

chromium in leaves increased from 99.5 mg/kg to 1067 mg/kg when Cr(VI) in 
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irrigation solution increased from 50 to 350 ppm. Chromium (VI) in leaves 

increased from 3.3 to 30 mg/kg over the same range. Total chromium in stems 

increased from 72 mg/kg to 1404 mg/kg when chromium (VI) in the irrigation 

solution increased from 50 to 350 ppm (Figure 3-6). Chromium (VI) ranged from 

2.3 to 43 mg/kg in dry stems of the plant. Total chromium in roots increased from 

404 mg/kg of dry roots to 4624 mg/kg at the same level of increasing Cr(VI) in the 

irrigation solution (Figure 3-7). Chromium (VI) ranged from 32 to 135 mg/kg in 

dry roots of the plant. 
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Figure (3-5) Concentrations of total chromium, Cr (VI) and Chromium (III) in 

leaves of Portulaca oleracea at different concentrations of Cr (VI) in irrigation 

solution. (Mean of triplicates) 

 

When comparing mean values of concentration of chromium in the leaves, 

stems and roots, total chromium is observed to increase significantly in all plant 

parts as the concentration of the Cr (VI) in irrigation solution increases from 0 to 

300 ppm in increments of 100 ppm (p<0.01 using ANOVA Post hoc test ''Tukey'' , 

Figure 3-8). This increase tends to be linear in roots, stems and leaves. 
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Figure (3-6) Concentrations of total chromium, Cr (VI) and Chromium (III) in 

stems of Portulaca oleracea at different concentrations of Cr (VI) in irrigation 

solution. (Mean of triplicates) 
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Figure (3-7) Concentrations of total chromium, Cr (VI) and Chromium (III) in 

roots of Portulaca oleracea at different concentrations of Cr (VI) in irrigation 

solution. (Mean of triplicates) 
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Figure (3-8) Relation between the concentration of chromium in irrigation 

solution and the total chromium in roots, stems, and shoots of Portulaca 

oleracea. (Mean of triplicates) 

   

These results agree with some previous investigators who studied the uptake of 

chromium by plants other than P. oleracea such as Leersia hexandra [83], Typha 

angustinfolia [85], barley seedlings [89], Azolla caroliniana [106], and Cynodon 

dactylon [108]. The reports of these studies came to the same conclusion that the 

uptake of chromium by plants increases as the introduced chromium (VI) 

increased. The results of this study differ from the results reported in another study 

[107] which introduced Cr(VI) to Convolvulus arvensis in three concentrations 80, 

40, and 20 ppm and found that the highest uptake by roots was observed at the 

lowest concentration of Cr(VI) (20 ppm). The roots of C. arvensis began to be 

severely affected by Cr(VI) at concentrations higher than 20 mg/kg so the uptake of 

Cr(VI) decreased at the higher concentrations.  
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The total chromium in leaves of Portulaca increased from 99.5 to 1067 

mg/kg and in stems from 72 to 1404 mg/kg (Figures 3-5, 3-6) exceeding the barrier 

of the 1000 mg/kg of pollutant in both parts of the plant which indicates that a 

hyperaccumulator for Cr (VI) is at hand. The concentration of chromium in the 

roots broke the barrier of 1000 to reach 4600 mg/kg (Figure 3-7). Since Portulaca 

oleracea has the ability to uptake and accumulate these amounts of chromium(VI), 

it can be classified as a promising accumulator of chromium(VI). When comparing 

P. oleracea with the other accumulators of Cr(VI) such as Leptospepermum 

scoparium [62], Typha angustinfolia [85], Zea mays [86], and Leersia hexandra 

[93], it can be concluded that P. oleracea may be the best among them in achieving 

maximum concentration of chromium in roots and the second regarding chromium 

in shoots (Table 3- 13). 

Table (3-13) Concentration of chromium in dry plant tissues of Cr(VI) 

accumulators. 

Chromium(VI) 

accumulator 

Cr concentration in 

dry roots (mg/kg) 

Cr concentration 

in dry shoots 

(mg/kg) 

Leptospepermum scoparium 

[62] 

na 400-600 

Leersia hexandra [93] 3300 2160 

Typha angustinfolia [85] 177.5 5.6  

Zea mays [86] 1824 494 

Portulaca oleracea  4600 1067-1400 

 

The percentage of reduced chromium [(concentration of Cr (III) / 

Concentration of total chromium) x 100] was calculated (Table 3-13) and ranged 

between 92% and 99% in roots, 96 and 97% in stems and from 96% to 99% in 
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leaves. So almost all Cr(VI) that was accumulated by P. oleracea was reduced to 

Cr(III) inside the plant tissues. 

Table (3-14) Percentages reduced chromium (VI) in roots, stems and leaves of P.  

oleracea at different concentrations of Cr (VI) in the irrigation solution. 

Concentration of 

Cr(VI) in Irrigation 

solution (ppm) 

percentage of 

reduced Cr in 

roots % 

percentage of 

reduced Cr  in 

stems % 

percentage of 

reduced Cr  in 

leaves % 

50 92.2 96.8 96.7 

100 95.7 96.9 97.2 

150 96.0 97.3 98.3 

200 98.5 97.2 99.1 

250 97.3 96.8 99.4 

300 96.1 96.9 98.0 

350 97.0 96.9 96.9 

  

The major chromium species in both shoots and roots was Cr (III) by 

percentage up to 99.4% in shoots and over 98.5% in roots, whilst soil analysis after 

harvesting confirmed that Cr (VI) was still the major species in soil. This confirms 

that most of chromium was absorbed as Cr(VI) then was reduced with a high 

efficiency in plant tissues (Table 3-14). The percentage of reduction indicates that 

most of chromium (VI) was reduced in roots before reaching shoots and this may 

explain the degradation of roots at the high concentration of 400 ppm of Cr(VI) as 

compared to stems and shoots. These results are in agreement with results 

previously reported for other plants [79, 80, 83] and exactly what would be 

expected as chromate would be expected to oxidise the plant material. 
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3.3.1.2 Bioaccumulation Factors and Translocation Factors  

 Accumulators can be assessed using two factors, bioaccumulation and 

translocation factors. Bioaccumulation factor (BAF) is the ratio of concentration of 

heavy metal in roots to its concentration in soil while translocation factor (TF) is 

the ratio of concentration of heavy metal in shoots to its concentration in roots. For 

promising accumulators, the two factors have to exceed the value of 1.0. The 

values of BAF and TF were calculated and are shown in Table (3-15).  

 

Table (3-15) Bioaccumulation and translocation factors to leaves and stems at 

different concentrations of chromium (VI) in irrigation solutions. 

Conc. of Cr in 

Irrigation 

(ppm) 

Bioaccumulation          

factors  BAF 

Translocation 

Factor  TF for 

leaves 

Translocation 

Factor. TF 

for stems 

50 10.12 ± 1.15 0.25 ± 0.07 0.18  ± 0.04 

100 10.25 ± 1.14 0.24 ± 0.05 0.25  ± 0.08 

150 9.64 ± 1.11 0.26 ± 0.05 0.46  ± 0.07 

200 10.51 ±1.16  0.30 ± 0.05 0.30  ± 0.05 

250 10.47 ± 1.20 0.32 ± 0.07 0.33  ± 0.06 

300 12.21 ± 1.58 0.36 ± 0.06 0.36  ± 0.06 

350 15.36 ± 1.94 0.23 ± 0.05 0.31  ± 0.05 

 

The calculated bioaccumulation factors (Table 3-15) were around the value 

of 10.0 within the range of 50 to 250 ppm of Cr(VI) in irrigation solution indicating 

that P. oleracea accumulated Cr(VI) in roots in constant ratio within this range of 

Cr(VI) concentration. Bioaccumulation factors increased as the concentration of 

Cr(VI) increased over 250 ppm to reach 15.0 at 350 ppm of Cr(VI). 

Bioaccumulation factor values of 10 to 15 confirm the potential of P. oleracea as 
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an efficient hyperaccumulator for Cr (VI). No significant difference was observed 

in mean values of translocation factors which ranged between 0.24 and 0.35 for 

leaves and between 0.18 and 0.46 for stems. Translocation factors of chromium 

(VI) using other plants did not reach the value of 0.7 [83, 109] which is in 

agreement with the results of this study. The low translocation factors observed in 

P. oleracea are likely to be due to the stress of highly oxidative Cr(VI) species 

which would cause severe damage to plant tissues, especially roots. 

3.3.1.3 Plant growth and total removed chromium  

 No significant difference was observed between means of roots dry weight 

in the level of 0-150 ppm of Cr(VI) and in shoots in level 0-100 ppm (p>0.05) 

Figure (3-9). This means that plants were not affected significantly by Cr(VI) at 

these concentrations which indicate that P. oleracea can grow normally in Ajman 

industrial zone which has similar content of Cr(VI). Significant decrease in dry wt. 

of plants was observed at levels higher than 200 ppm of Cr(VI) (p<0.01). 

Phytotoxicity symptoms were also noticed since leaves became yellow and inflated 

at concentrations higher than 300 ppm. When harvesting the roots of the plants at 

400 ppm of Cr (VI), they were degraded. This significant decline is an indication of 

the severe stress caused by Cr(VI) which will oxidize the bioorganic materials 

especially the protein of the cells. Several previous studies have indicated the 

reduction of other plants biomass as the concentration of Cr(VI) increases in the 

nutrient medium [79, 81, 87]. When the total chromium in both roots and shoots is 

calculated, the total amount removed by 5 plants grown in one pot was increased 
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from 0.90 ± 0.15 mg at 50 to 3.00 ± 0.34 mg at 200 ppm then it declined as the 

chromium in irrigation solution was increased above 200 ppm (Figure 3-10).  
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Figure (3-9) Dry weight of both shoots and roots of Portulaca oleracea at 

different concentration of Cr (VI) in irrigation solution.  
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Figure (3-10) The total removed chromium by the whole dry tissue of 5 seedlings 

of Portulaca oleracea germinated in one pot at different concentrations of Cr(VI) 

in irrigation solution. 

 



 
144 

3.3.2 Effect of soil pH on the uptake of chromium by Portulaca Oleracea 

Chromium speciation in soil or water is pH-dependent as reported by 

previous studies on the effect of pH on the uptake of Cr(VI) by crop plants or 

microorganisms [98, 116-118]. No research was done before on using pH of soil to 

enhance the uptake of Cr(VI) by potential non-crop accumulators of Cr(VI) like P. 

oleracea. The present work reports on the investigation of the effect of pH of soil 

on the uptake of Cr(VI) by P. oleracea as accumulator for this pollutant. 

Six types of soil were prepared with different six levels of pH (6.0, 7.0, 7.3, 

7.6, 8.0, 9.0 ± 0.1). Pure silica, sand of Ajman (which is very rich in carbonate 

content), and calcium oxide were used with specific percentages to obtain the 

different pH levels. P. oleracea seedlings were grown and irrigated either with 

deionised water or with 200 ppm of Cr(VI) as sodium chromate. Another six 

groups were irrigated with deionised water for control. Dry plants were analysed 

for total chromium in both roots and shoots. 

Concentrations of total chromium in both roots and shoots at the six 

different pH levels were determined and are shown in Figures 3-11 and 3-12, 

respectively. Bioaccumulation factors (BAF) from soil to roots of Portulaca and 

translocation factors (TF) from roots to shoots were calculated and the results are 

shown in Figure 3-13. Weight of dry biomass of plants in both control and 

experimental were calculated and the results are shown in Figure 3-14 and the total 

removed chromium was calculated in the total dry weight of the whole plants in 

each pot and the results are shown in Table 3-16. 
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Figure (3-11) Concentrations of chromium in the roots of Portulaca oleracea at 

different values of pH of Soil. (Mean of six replicates) 
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Figure (3-12) Concentrations of chromium in the shoots of Portulaca 

oleracea at different values of pH of Soil. (Mean of six replicates) 

 

The results indicate that as the pH of soil increases, the uptake of chromium 

(VI) in roots increases (Figure 3-11). Significant increments between the mean 

values of chromium in roots were observed when compared at the three levels of 
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pH (6.0, 7.3, 9.0) using ANOVA, Tukey test (p<0.01). In shoots, at the same three 

pH levels, chromium increases significantly as pH of soil increases (Figure 3-12). 

The increase of chromium in shoots is mostly a result to its increase in roots. These 

results are in agreement with two previous studies [117, 118], which investigated 

the effect of pH on the uptake of Cr(VI) from hydroponics using fungi and 

microorganisms. Researchers found that the accumulation of chromate by the 

aquatic fungi Aspergillus foetidus increased as pH of nutrient medium increased 

from 4-7 [117]. In another study, it was found that between the 3 values of pH; 7.0, 

8.0, 9.0; at pH 9 chromium (VI) was accumulated by microorganisms with highest 

concentration [118]. 

Concentration of Cr(VI) in roots of Portulaca at a pH range of 6.0 –7.0 was 

587 to 675 mg/kg of the dry roots with no significant difference (p>0.05 using 

ANOVA Post hoc test ''Tukey'') (Figure 3-12). At this relatively low range of pH, 

chromium (VI) mostly exists in soil as Cr2O7
2- 

species. At pH range of 7.6 – 9.0, 

the concentration of Cr(VI) in roots of Portulaca jumped to 1300-1500 mg/kg of 

the dry roots with no significant difference (p>0.05 using ANOVA Post hoc test 

''Tukey''). At this range of pH, chromium (VI) exists as CrO4
2- 

species. Those two 

observations reflect the effect of chromium(VI) speciation (which is pH- 

dependent) on the uptake of Cr (VI) by P. oleracea. The high uptake of CrO4
2-

 at 

pH levels above 7.0 confirms that Portulaca oleracea prefers to accumulate CrO4
2- 

rather than Cr2O7
2-

, which is available at the lower range of pH (below 7). 

According to previous studies, [76, 79, 134, 136]; it has been suggested that 

chromate anions use the carriers of sulfate (as an essential nutrient) in their uptake 
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by root cells due to the structural similarity between the two anions in charge, 

shape and size [137, 138]. 

The results of the present study are in disagreement with two previous 

studies carried out on the crop plants, barley and wheat [89, 116]. The investigators 

of those studies found that both barley and wheat accumulated higher amounts of 

Cr(VI) at the low levels of pH (below 6.1) which indicates that both barley 

(Hordeum vulgare) and wheat (Triticum aestivum) tend to take up Cr(VI) as 

dichromate  which is the most dominant at this low pH range.  

The concentration of chromium in the shoots of Portulaca shows an 

increase from 262 mg/kg at pH 6 to 813 mg/kg at pH 9. This increase seems to be 

linear at the six levels of pH (Figure 3 -12). The increase in the uptake of Cr(VI) as 

the pH of soil increases supports the role of P. oleracea as accumulator for Cr(VI) 

from soils like Ajman industrial site, which is contaminated with Cr(VI) and has 

pH of 7.9 . 
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Figure (3-13): Bioaccumulation and Translocation Factors of chromium using 

Portulaca oleracea at different pH values of soil. 
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The increase in bioaccumulation factor (Figure 3- 13) as the pH increases 

reflects the increase of the uptake of chromium in roots. Bioaccumulation factors 

ranged from 3.3 at pH 6.0 to 8.4 at pH 8.0, which was the best value of 

accumulation factor among the six levels of pH. The translocation factor ranged 

from 0.37 to 0.62 (Figure 3- 13). It seems to be independent of the pH of soil. This 

may be due to the reduction of Cr(VI) in roots to Cr(III) which suggest its 

translocation as chelated cation [65, 60].  

 

 

Figure (3- 14) Weight of dry biomass of Portulaca oleracea at controls and in 

presence of Cr(VI)  at different values of pH of soil. (Mean of six replicates) 

 

When comparing the means of the total dry biomass at the first 5 values of 

pH (6.0-8.0) in the control (Figure 3-14), no significant difference was observed 

(p>0.05 using ANOVA Post hoc test ''Tukey''). This means that there is no 

significant effect of the pH of soil on the growth of the plant at the range of 6.0-8.0. 

A significant reduction in the weight of control samples was observed at pH 9.0 
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compared with other pH levels. No significant reduction in dry biomass was 

observed in the experimental samples (irrigated with Cr(VI)) at the range of 6.0- 

8.0). But at the highest levels of pH (9.0) significant reduction in dry biomass of 

plants was observed (p< 0.05 using ANOVA Post hoc test ''Tukey''). This reduction 

may be due to the effect of high pH rather than the accumulated chromium since 

similar amounts of chromium were accumulated in roots at pH 8.0 and 9.0 without 

significant reduction in dry biomass.  

 

Table (3-16) The total removed chromium in the total dry weight of the whole 4 

plants in each pot at different levels of pH of soil. (Mean of six replicates) 

pH of 

Soil 

Wt. of total  dry 

biomass in each pot (g) 

Wt. of Removed Cr (mg) using the 4 

plants of one pot ( in 14 days ) 

6.0 ± 0.1 4.54 ±  0.43  1.46 ± 0.12 

7.0 ± 0.1 4.58 ± 0.45 2.15 ± 0.17 

7.3 ± 0.1 4.37 ± 0.36 2.43 ± 0.21 

7.6 ± 0.1 4.21 ± 0.25 2.52 ± 0.22 

8.0 ± 0.1 3.77 ± 0.29 2.63 ± 0.20 

9.0 ± 0.1 3.00 ± 0.31 2.66 ± 0.24 

 

When calculating the total amounts of chromium in the total dry weight of 

plants, it was observed that the highest amount removed by 4 seedlings was at the 

pH 8.0 -9.0, which was 2.63 – 2.66 mg respectively (Table 3-16). This result 

supports the conclusion that P. oleracea should be used in phytoextraction of 

chromium (VI) from soils of high pH such as that of Ajman polluted site (pH = 7.9 

± 0.1).  
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3.3.3 Effect of organic content of soil on the uptake of chromium (VI) by 

Portulaca oleracea. 

 

 The role of the organic content of the soil in the reduction of Cr(VI) to 

Cr(III) was previously investigated [62, 119-121]. High organic content of soil is 

mostly associated with low pH of soil so the investigation of the effect of organic 

content on phytoextraction of Cr(VI) in high pH soil such as Ajman industrial zone 

does not appear in the literature. To investigate the effect of organic content of soil 

on the uptake of Cr(VI) by Portulaca oleracea, three types of soil with different 

organic matter content (0.42%, 17.5% and 35.0 %) were prepared. P. oleracea was 

grown in the three types (5 replicates each) and irrigated with the same quantity of 

Cr (VI) as sodium chromate. Another batch of three groups of 5 replicates was 

irrigated with deionised water for control. The plants were harvested and analysed 

for total chromium (Figure 3-15). Soils were sampled and analysed for Cr(VI) and 

total chromium. 
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Figure (3-15) Concentrations of total chromium in both shoots and roots of 

Portulaca oleracea at different organic matter content of soil. (Mean of five 

replicates) 
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Significant decrease of  the uptake of chromium (VI) by Portulaca oleracea 

was observed in both roots and shoots as the organic matter content of soil 

increased (p<0.01 using ANOVA Post hoc test ''Tukey'') (Figure 3-15). P. oleracea 

could accumulate 3000 mg/kg Cr in dry roots in the presence of 0.42% of organic 

content of soil. This amount represents the highest value compared to other 

investigations in this study carried out using similar amounts of chromium in soil 

(150 – 200 mg/kg) but in the presence of 15% organic content. Chromium 

concentration in roots decreased to 500 mg/kg at 17.5% of organic content in soil 

and to below 160 mg/kg at 35% of organic content. The quantity of hexavalent 

chromium available in soil was measured and the results are shown in Figure 3-16. 

These results indicate that Cr(VI) decreases as the percentage of organic matter in 

soil increases. This relation seems to be linear since organic matter behaves as a 

reducing agent for soluble Cr(VI) to the less soluble Cr(III), which is consequently 

less available to the plant, especially at high pH range. These results confirm that 

the effect of organic content of soil on the uptake of Cr(VI) by plants is indirect 

since it reduces Cr(VI) in soil which will result as deficiency in its uptake by P. 

oleracea. These results are in agreement with previous studies which used the 

organic matter for soil amendment to reduce Cr (VI) to Cr (III) [62, 119-121]. 

Bioaccumulation factors (BAFs) were calculated for the total chromium and 

the available Cr(VI), results are shown in Figure 3-17. Translocation factor (TF) 

was calculated for total chromium and the results are shown in Table 3-17. 

Bioaccumulation factor for total chromium using P. oleracea was 20 at 0.42% 

organic matter and jumped to 28 when calculated for Cr(VI) at the same percentage 

of organic matter. At 35.0% organic matter in soil BAF of Cr(VI) decreased to 5.0 
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Figure (3-16) Concentration of hexavalent chromium in soil at different 

percentages of organic matter in soil 
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Figure (3-17) Bioaccumulation factors of total chromium and chromium (VI) at 

different levels of organic content in soil. 

 

confirming the role of Portulaca as hyperaccumulator for chromium (VI) even in 

soils that contain considerable organic matter. The value of BAF for Cr(VI) at 

0.42% of organic content of soil is 28 which is the highest achieved value in this 

study. This high BAF value confirms the role of P. oleracea in accumulation 
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Cr(VI) from soils of low organic content and high pH such as the soil of Ajman 

industrial zone.  

 

Table (3-17) Translocation Factors of total chromium using Portulaca oleracea 

at different organic matter content of soil. 

 

% Organic Matter Translocation Factor 

0.42% 0.40 ± 0.05 

17.5% 0.54 ± 0.04 

35.0% 0.60 ± 0.06 

 

 

There was significant decrease in the weight of dry shoots of plants in the 

controls (irrigated with deionised water) as organic matter content decreased which 

is expected (p< 0.05 using ANOVA Post hoc test ''Tukey''). In the experimental 

plants, (in the presence of Cr(VI)), significant decrease was also observed at 17.5% 

and 0.42% of organic content when compared with dry shoots at 35% organic 

matter (p< 0.05 using ANOVA Post hoc test ''Tukey'') (Figure 3-18). This is 

suggested to be due to the accumulated chromium (VI) in plant since as Cr(VI) 

accumulation increases, biomass reduction increases (3000 mg/kg at 0.42% and 

500 mg/kg at 17.5% while it was 160 mg/kg at 35%). No significant difference was 

observed in biomass of plants irrigated with Cr(VI) solution at the level of 35% 

organic matter compared with control of the same organic content (Figure 3-18). 

This is being due to the small accumulated amount of Cr(VI) (160 mg/kg). At this 

level of high organic content (35%) most of Cr(VI) is being reduced to Cr(III) 

which is unavailable to the plant at pH of 7.9±0.1.  
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Figure (3-18) Weight of dry shoots of Portulaca oleracea at different levels of 

organic matter in soil in both control and experimental samples.  

  

In addition to organic matter content, iron and manganese may alter the 

oxidation state of chromium in soil. These two elements were analysed in the soil 

of the polluted site and results are shown in Table 3-18. Previous studies of metal 

speciation in soil of different sites in the Emirates indicated that iron is present as 

Fe2O3 or Fe
3+

 [113, 114] and not Fe
2+

. According to Iron E-pH (Pourbaix diagram) 

at pH 8 (pH of soil) the most dominant iron species is Fe
3+

. The presence of iron as 

Fe
3+ 

will keep chromium in (VI) oxidation state. Manganese will not affect the 

reduction of chromium (VI). It may oxidise Cr(III) to Cr(VI) if it is available as 

Mn(IV) but at the  relatively small concentration detected (Table 3-18) it is 

unlikely to have an impact. Thus organic content is the most potential reducing 

agent that may affect the concentration of Cr(VI) in the soil. 

 

Table (3-18) Iron and manganese in the polluted soil of Ajman industrial zone. 

Element Concentration in soil of  polluted site (mg/kg)  

Fe 4700 ± 150   

Mn 170 ± 20   
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The organic matter content of the soil at the polluted site is < 0.5%. Soil 

with such a low organic content that is too low to reduce chromium (VI) to Cr(III), 

and in the absence of other reducing agents, would be highly favourable for  

phytoextraction of Cr(VI).  

 

3.3.4 Effect of anionic nutrients on the uptake of Cr(VI) by Portulaca 

oleracea 

The effects of the anions such as nitrate, sulfate and phosphate on the 

uptake of Cr(VI) by certain plants have been reported in the literature. Most of the 

previous work concentrated on chromate and sulfate [76, 79, 134-136], but nitrate 

and phosphate were investigated to a lesser extent [129-1132]. In both cases 

conflicting results were obtained for the effect of these anions on the uptake of 

Cr(VI) by plants. The effect of these three anions (nitrate, sulfate and phosphate) 

on the uptake of Cr(VI) by Portulaca oleracea has been investigated in the present 

work. Eight groups of pots each of five replicates were prepared. Each pot 

contained three seedlings of P. oleracea. Plants were irrigated with 100 ppm 

Cr(VI) as Na2CrO4 alone or accompanied with 0.02M of NaNO3, Na2SO4, Na3PO4 

or deionised water. The other three groups were irrigated with NaNO3, Na2SO4 or 

Na3PO4 (without chromate) for control. The conditions were identical for all 

groups and the dependant variable was the added anion. Plants were analysed for 

total chromium.  

Root lengths in the presence of nutrient anions with chromate are shown in 

Figure 3-19. No significant difference in root lengths was observed between 

experimental and control in plants irrigated with nitrate and phosphate in addition 
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to Cr(VI) or nitrate and phosphate only (p>0.05 using ANOVA Post hoc test 

''Tukey'') (Figure 3-19). A significant reduction in root lengths was observed in 

plants irrigated with either chromate plus sulfate or chromate only compared with 

plants irrigated with chromate accompanied with nitrate or phosphate (p<0.01 

using ANOVA Post hoc test ''Tukey''). These observations are supported by the 

chromium uptake in roots which indicated that the highest concentration of 

accumulated chromium was achieved in the presence of sulfate followed by Cr(VI) 

only while the lowest uptake was achieved in the presence of nitrate and phosphate. 
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Figure (3-19) Average length of the roots in the presence of nutrient anions 

beside chromate. (Mean of five replicates) 

 

Tolerance indices TI (length of roots in experimental / Length of roots in 

the control) were calculated and are shown in Figure 3-20. The values of TI of 

Cr(VI) in the presence of nitrate, phosphate, chromate only and sulfate were 0.99, 

0.88, 0.70, and 0.62 respectively. The high values of TI in the presence of both 
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nitrate and phosphate were accompanied by the lowest accumulated amounts of 

Cr(VI) in roots (Figure 3-21). This may suggest that both nitrate and phosphate 

may have an inhibitory effect on the uptake of chromate by P. oleracea which may 

prefer to uptake these macro-nutrients at the expense of chromate.  
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Figure (3-20) Tolerance indexes of chromium (VI) in the presence of nutrients 

anions. 

 

In a previous study [132], TI of chromium (VI) in Arabidopsis thaliana in 

the presence of SO4
2-

, PO4
3-

 and NO3
-
 was 0.73, 0.83 and 0.70, respectively. When 

comparing these results with the results obtained in the current study (Figure 3-20), 

the values of TI of chromium in the presence of phosphate were very close (0.88 

and 0.83). However, the higher concentration of chromium used in the current 

investigation (100 mg/kg) indicates that P. oleracea has a higher chromium (VI) 

tolerance than Arabidopsis thaliana which could not develop roots in 

concentrations above 10.4 mg/kg. The chromium TI of A. thaliana was about 0.60 

at 10.4 mg/kg of Cr(VI) only where as P. oleracea has a TI of 0.70 at 100 mg/kg of 
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Cr(VI) in dry soil. This value gives P. oleracea a preference for the phytoextraction 

of Cr(VI). 
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Figure (3-21) Concentration of Chromium in roots and shoots of P. oleracea 

using different nutrient anions beside Cr(VI). (Mean of five replicates) 

 

The existence of sulfate anions significantly enhanced the uptake of Cr (VI) 

from 860 mg/kg in roots of plants irrigated with Cr(VI) only to 1140 mg/kg in the 

roots of Portulaca irrigated with  Cr(VI) + Na2SO4 (Figure 3-21) (p < 0.05 using 

ANOVA Post Hoc Tukey test). This significant increase in the uptake of Cr (VI) in 

the presence of sulfate could be due to the similar pathway of uptake of CrO4
2-

 and 

SO4
-2

 as micronutrient [79, 134-136]. Chromium (VI) in the soil of Emirates with a 

pH of 7.9 will stay as chromate [CrO4
2-

] which is very similar to sulfate ion in 

charge, geometry, and size [137, 138]. Chromate anions seem to be taken up by 

root cells through the activities of sulfate carriers (transporters) [136]. These 

transporters are protein molecules on root cell's membrane and mostly are initiated 
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by the presence of sulfate [167], but they can also uptake chromate due to the 

similarity between the two anions. 

No significant difference in chromium uptake was observed by roots of 

plants irrigated with nitrate and phosphate (p > 0.05 using ANOVA Post hoc test 

''Tukey''). But there was significant decrease in chromium uptake by roots of P. 

oleracea irrigated with Cr (VI) and nitrate compared with Cr (VI) only (p<0.01 

using ANOVA Post hoc test ''Tukey'', Figure 3-20). The uptake of Cr (VI) in roots 

decreased from 840 mg/kg in the presence of Cr (VI) only to 550 mg/kg of dry 

roots of plants irrigated with Cr(VI) + nitrate. These results differ from the results 

of a study on willow [131] which indicated that there is no significant effect of 

nitrogen as nitrate on the uptake of Cr(VI) by hydroponically grown willow plants. 

In another study, carried out on the uptake of arsenate anions by the accumulator 

Pteris vittata, [133], the results confirmed the inhibitory effect of nitrate in the 

uptake of arsenate anions, which agrees with the result of the current study (taking 

into consideration the similarity between chromate and arsenate ions). 

In shoots, the uptake of chromium in plants irrigated with Cr(VI) only was 

significantly greater than its uptake in those irrigated with Cr(VI) accompanied 

with nitrate or phosphate (Figure 3-21) (p < 0.05 Using ANOVA Post hoc Tukey 

test). No significant difference was observed between chromium in shoots of plants 

irrigated with Cr(VI) + nitrate compared with plants irrigated with Cr(VI) 

accompanied with sulfate or phosphate (p > 0.05 using ANOVA Post hoc test 

''Tukey''). Chromium in shoots was: 182.5 mg/kg in the presence of nitrate, 132.3 

mg/kg in the presence of phosphate and 336.3 mg/kg for Cr (VI) only. 
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Figure (3 -22) Bioaccumulation factors (BAF) for chromium (VI) in P. oleracea 

in the presence of nutrient anions. 

 

 

Figure (3 -23) Translocation factors (TF) for chromium in P. oleracea in the 

presence of nutrient anions. 

 

Bioaccumulation factor (BAF) of chromium from soil to roots decreased in 

the order:   in presence of sulfate> in chromate only> in presence of phosphate> in 
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presence of nitrate (Figure 3-22). Bioaccumulation factor was 8.72 in the presence 

of Cr (VI) only but in the presence of sulfate, it increased significantly to 11.8 

which confirm the role of sulfate in enhancing chromium (VI) uptake by P. 

oleracea. Translocation factor (TF) values were 0.39, 0.33, 0.20 and 0.24 

corresponding to irrigation with Cr(VI) only, Cr(VI) + nitrate, Cr(VI) + phosphate 

and Cr(VI) + sulfate, respectively (Figure 3-23). It seems that the presence of 

sulfate and phosphate significantly decreased the translocation of chromium to 

shoots. 

3.3.5 Effect of sulfate ions on the uptake of chromate by P. oleracea 

 

 In the previous investigation, it was observed that the use of 0.02 M sulfate 

in irrigation solution significantly enhanced the uptake of chromium (VI) by P. 

oleracea. A detailed investigation of the effect of sulfate on the uptake of chromate 

by P. oleracea was therefore undertaken. Two experiments were carried out to 

study this effect. Chromium (VI) was introduced as 200 ppm in the first 

experiment. At this concentration of chromium, the highest removal was observed 

in a previous investigation (section 3.3.1). In the second experiment Cr(VI) was 

100 ppm to match the concentration of Cr(VI) in the polluted site of Ajman. The 

ratio of sulfate to chromate stayed constant in the two experiments. Sulfate was 

introduced at five different concentrations (0, 300, 600, 1200, 1800 ppm + 200 ppm 

of Cr(VI) in each solution) into five groups of identical pots each containing 4 

seedlings of P. oleracea. Each group consisted of five replicates. The sixth group 

was irrigated with deionised water as control. It is believed that the uptake of 

chromate takes place through the sulfate carriers in root cells. In order to determine 
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the sulfate concentration at which secretion of these carriers is being optimised, the 

second experiment was carried out using the sulfate concentrations of (0, 150, 300, 

600, 900 ppm + 100 ppm of Cr(VI) in each solution). The plants were harvested 

and analysed for total chromium using ICP-OES, and for total sulfur using ion 

chromatography. Concentrations of chromium in roots and shoots of P. oleracea at 

different levels of sulfate in the irrigation solution are shown in Figures 3-24, 3-25. 

Concentrations of sulfur in shoots and roots are shown in Figures 3-26, 3-27.  

Concentration of chromium in roots increased significantly (p<0.01 using 

ANOVA Post hoc test ''Tukey'') as the concentration of sulfate increased from 0.0 

ppm to 300 ppm. The same trend was observed in the results of the two 

experiments (200 and 100 mg/kg of Cr(VI) Figures 3-24, 3-25). From 300-600 

ppm of sulfate the uptake of Cr(VI) stayed without significant difference (p>0.05), 

however when the concentration of sulfate exceeded the value of 600 ppm, 

chromium in roots decreased significantly (p<0.01 using ANOVA Post hoc test 

''Tukey'' Figures 3-24, 3-25). This could be explained as being due to the role of 

sulfate in initiating sulfate carriers in the plant thus allowing chromate to get into 

the roots. But the increase of sulfate in the rhizosphere initiates a competition with 

chromate 
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Figure (3-24) Concentrations of chromium in roots and shoots of P. oleracea 

irrigated with 200 ppm of chromium (VI) at different concentrations of sulfate. 

(Mean of five replicates) 
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Figure (3-25) Concentration of chromium in roots and shoots of P. oleracea at 

the different levels of sulfate in irrigation solution (half concentrations). (Mean 

of five replicates)   

which explains the significant lowering of the uptake of chromate at the high levels 

of sulfate (over 600 ppm in the two experiments) since sulfate has the priority to be 

taken up due to its high concentration in soil. Similar impacts have been reported in 

previous study using wheat plants (Triticum aestivum) [136]. 
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No significant difference in mean chromium concentrations in shoots was 

observed over the range of 0 to 1800 ppm of sulfate at 200 ppm of Cr (VI) (p>0.05 

using ANOVA Post hoc test ''Tukey'', Figure 3-24). The same trend was observed 

in the second experiment at 100 ppm of Cr(VI) (Figure 3-25). Concentration of 

chromium in shoots approximately remained constant in each experiment. This 

may indicate that the translocation of chromium to shoots depends on the 

concentration of plant carrier ligands not the concentration of chromium in roots 

which differs. These ligands are proposed to be organic acids such as oxalate and 

not phytochelatins which are found to increase as sulfur in soil increases. 

It can be observed that the concentrations of sulfur in roots and shoots 

increased significantly (p<0.01 using ANOVA Post hoc test ''Tukey'') as the 

concentration of sulfate in soil increases at the levels 0, 600, 1200 (Figures 3-26) 

and the levels 0, 300, 600 (Figures 3-27). These significant increments are expected 

for a required nutrient as sulfate.  
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Figure (3- 26) Concentrations of sulfur in roots and shoots of P. oleracea 

irrigated with 200 ppm of chromium (VI) at different concentrations of sulfate. 

(Mean of five replicates)   
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Figure (3-27) Concentration of sulfur in roots and shoots of P. oleracea at the 

different levels of sulfate in irrigation solution (half concentrations).  

Bioaccumulation factors and translocation factors were calculated for 

chromium and sulfur (at different concentrations of sulfate) and they are shown in 

Table 3-19. The bioaccumulation factors of chromium in Portulaca oleracea are 

greater than the bioaccumulation factors of sulfur using the same plants, even when 

the concentration of sulfur was greater than chromium in the samples irrigated by 

1200 and 1800 ppm of sulfate. This can be attributed to the relatively low 

concentration of sulfur in roots since most of it is being translocated to shoots. 

Sulfate is reduced to sulfide (S
2-

) - either in roots or shoots [168] - because it is 

needed at low oxidation states for building sulfur- containing amino acids (thiols) 

which are mostly synthesised in leaves [169], while Cr(VI) is mostly reduced in 

roots to Cr(III). It seems that chromium and sulfur have different pathways of 

translocation in spite of their similar suggested pathway of take up by the same 

plants. 
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Table (3-19) Bioaccumulation and translocation factors for chromium and 

sulphur in P. oleracea at different concentration of sulfate. 

Concentration of sulfate  

in irrigation solution 

(ppm) 

Bioaccumulation factor 

for Translocation factor for 

chromium sulfur chromium sulfur 

0.0 5.2±1.1 1.3±0.2 0.55±0.13 1.3±0.2 

300 7.2±1.4 1.4±0.2 0.41±0.11 3.5±0.6 

600 7.2±1.3 1.2±0.2 0.42±0.12 3.2±0.5 

1200 4.6±1.0 2.5±0.3 0.53±0.14 1.2±0.2 

1800 3.4±0.9 2.1±0.3 0.70±0.16 0.9±0.1 

 

Figure 3-28 shows the bioaccumulation factors for sulphur and chromium 

and Figure 3-29 shows the translocation factors for the two elements at different 

concentrations of sulfur. The maximum bioaccumulation factor for chromium can 

be observed at 300-600 ppm of sulfate in irrigation solution, and, at the same range 

of sulfate in irrigation solution, the bioaccumulation of sulfur was the minimum. 

This observation may reflect the competitive relationship between sulfate and 

chromate in the uptake by roots, and suggest that both anions are being taken up 

within the same carriers when getting into the plant. The translocation factor was at 

its minimum value for chromium at 300-600 ppm of sulfate but it attained the 

maximum value for sulfur at the same level of sulfate. 
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Figure (3-28) Bioaccumulation factors of sulfur and chromium in the roots of P. 

oleracea at different concentrations of sulfate. 
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Figure (3-29) Translocation factors of sulfur and chromium from roots to shoots 

of P. oleracea at different concentrations of sulfate  

 

To evaluate the efficiency of phytoextraction process at the different levels 

of sulfur in irrigation solution, the total dry weight of four P. oleracea seedlings in 

each pot and the amounts of chromium removed by these plants were calculated. 
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The results are shown in Table 3-20. No significant differences between the 

weights of dry biomass of plants were observed (p> 0.05 using ANOVA Post hoc 

test ''Tukey''). This means that in the presence of sulfate, the effect of chromium 

(VI) on the vegetation of the plant remained limited. The total amount of chromium 

removed by the total dry weight of plant was the highest when the plant was 

irrigated with 300 and 600 ppm of sulfate solution (Table 3-20). This confirms the 

previous conclusion that the presence of sulfate in small amounts enhances the 

overall uptake of chromium (VI). 

 

 

Table (3-20) Total amount of chromium removed by the dry weight of 4 seedlings 

of P. oleracea grown in one pot.  

 

The sums of the concentrations of chromium and sulfur (mol/kg of dry 

roots) were calculated. The results are shown in Table (3-21). It can be observed 

that at the concentration of sulfate 300 ppm in irrigation solution or greater, the 

sum of both chromium and sulfur in roots ranged between 0.031 and 0.037 mol/kg 

of dry roots at the half concentrations investigation (from 0 to 900 ppm sulfate). 

The same sum ranged between 0.031 and 0.038 mol/kg at the double concentration 

(from 0 to 1800 ppm sulfur). These close concentrations at sulfate levels 300 ppm 

Concentration of sulfate in 

irrigation solution (ppm) 

Mean weight of total 

dry plant (g) 

weight of total Cr in 

4 seedlings (mg) 

0 3.00 ± 0.15 1.79 ± 0.14 

300 3.26 ± 0.19 2.06 ± 0.17 

600 3.21 ± 0.21 2.00 ± 0.16 

1200 3.49 ± 0.23 1.68 ± 0.13 

1800 3.45 ± 0.219 1.59 ± 0.13 
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and above (300, 600, 900, 1200 and 1800 ppm) may indicate that sulfate carriers 

are initiated in roots to their maximum level above 300 ppm of sulfate and are 

being produced in root cells with specific concentration regardless of the 

concentration of sulfate in soil which supports the role of sulfate carriers in the 

uptake of chromate in plants. 

 

Table (3-21) Sums of concentrations of both chromium and sulphur in roots of 

Portulaca at different levels of sulfate in irrigation solution. 

Con. Of 

sulfate 

(ppm) 

Concentration in 

Roots (mol/kg) 

Sum of 

S and 

Cr 

(mol/kg) 

Con. Of 

sulfate 

(ppm) 

Concentration in 

Roots (mol/kg) 

Sum of 

S and 

Cr 

(mol/kg) 
Sulfur  Chromium Sulfur  Chromium 

0 0.004 0.011 0.014 0 0.002 0.019 0.021 

150 0.008 0.013 0.022 300 0.005 0.026 0.031 

300 0.012 0.019 0.031 600 0.007 0.025 0.032 

600 0.015 0.019 0.034 1200 0.023 0.016 0.039 

900 0.024 0.012 0.037 1800 0.026 0.012 0.038 

 

The results of this investigation suggest that chromate is taken up by plants 

using the same cellular carriers of sulfate in the plant cell membrane which is in 

agreement with previous studies carried out using different plants [76, 79, 134-

136]. The effect of chromate on the uptake of sulfate by Zea mays was investigated 

[135]. Chromium (VI) was introduced as potassium chromate. The reporters of that 

study observed that the presence of chromate reduced the uptake of sulfate by the 

plants, which agrees with the conclusion of the current study related to the 

competitive relationship between chromate and sulfate at high concentrations of 

sulfate. The results of the present investigation suggest that when Cr(VI)-

contaminated soils are remediated using phytoextraction technologies, the 

concentration
 
of sulfate in soil must be taken in account.     
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3.3.6 Effect of accompanying cations on the uptake of Cr(VI) using 

Portulaca oleracea      

The effect of counter ions seems to be important in understanding the 

relation between the uptake of an anion and its accompanying cation by plants [63, 

65] especially when regarding the role of coupled transporters of both. Effect of 

associated cations on the uptake of nutrient anions such as nitrate or phosphate was 

studied in some crops plants [122- 127] but the effect of cations on the uptake of 

pollutant anions such as chromate, dichromate or arsenate has not been studied 

deeply. The present work looked into the effect of accompanying cations such as 

sodium, potassium and ammonium on the uptake of Cr(VI) by P. oleracea. Four 

groups of plants were irrigated with Cr(VI) either as Na2CrO4, K2CrO4, 

(NH4)2CrO4 or with deionised water for control. Plants were analysed for total 

chromium. Tolerance indexes (TI) were calculated as indicators of chromium (VI) 

tolerance and the results are shown in Figure 3-30.  

There was significant difference between TI values in the different groups 

including control except between the two groups irrigated with potassium and 

ammonium chromate (p<0.01, using ANOVA Post hoc test ''Tukey'') (Fig 3-30). 

This confirms the effect of accompanying cation of chromate on the plant growth 

and root developing. The plants in the two groups irrigated with potassium and 

ammonium chromate demonstrated significant close reduction in root growth. This 

can be explained as being due to the higher amounts of chromium (VI) 

accumulated in roots in the presence of potassium and ammonium (Figure 3-31).  
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Figure (3-30) Tolerance Indexes of chromium in P. oleracea in presence of 

accompanying cations of chromate. 
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Figure (3 -31) Concentration of chromium in dry tissues of P. oleracea irrigated 

with chromate accompanied with different cations. (Mean of five replicates)   

 

There was significant reduction in the uptake of chromium by roots and 

shoots of plants irrigated with sodium chromate compared to those irrigated with 

potassium and ammonium chromate (p<0.01 using ANOVA Post hoc test 

''Tukey''). Chromium content in both roots and shoots was in the order of the 
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accompanying cation as: K
+ 

≥ NH4
+ 

> Na
+
. No significant difference was observed 

between chromium uptake in roots or shoots of plants irrigated with potassium and 

ammonium chromate (Figure 3-31) (p >0.05 using ANOVA Post hoc test ''Tukey'').  

The highest uptake of chromium was observed in the presence of K2CrO4 

which was around 1802 mg/kg in roots and 820 mg/kg in shoots followed by   

(NH4)2CrO4 with 1560 mg/kg in roots and 709 mg/kg in shoots (Figure 3-31). The 

lowest concentration of chromium in Portulaca tissues was observed when 

Na2CrO4 was used for irrigation which was around 862 mg/kg in roots and 336 

mg/kg in shoots. 

The high uptake of Cr (VI) in the presence of both potassium and 

ammonium may be due to the counter cation effect since the plant requires both of 

ammonium and potassium cations as primary plant macronutrients. Plants may 

uptake both of potassium and ammonium cations using coupled transporters [65] 

which may suggest that chromate may be coupled with these counter cations 

through passing the root cell membrane. These results confirm the role of the 

accompanying nutrient cations in enhancing the uptake of counter anions by plants. 

These results are in agreement with the results of a previous study carried out using 

the accumulator Pteris vittata [133]. The workers of this study concluded that both 

of potassium and calcium enhanced the uptake of arsenate as counter anions using 

P. vittata. 
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Table (3-22) Bioaccumulation factors and Translocation factors of chromium in 

P. oleracea in the presence of accompanying cations of chromate 

 

Both bioaccumulation and translocation factors (BAF and TF) were 

calculated and tabulated in Table 3-22. Bioaccumulation factors were 20.0 and 

17.3, respectively, for chromium(VI) when potassium chromate and ammonium 

chromate were used in irrigation solutions. When sodium chromate was used the 

bioaccumulation factor was reduced to 8.7, reflecting the fact that sodium is not an 

essential element for plants. This clearly reflects the priority need of plant for both 

nitrogen and potassium and illustrates the effect of accompanying cation on the 

uptake of chromium (VI) anions. These results suggest that the enrichment of a 

polluted site with potassium and ammonium cations would enhance the 

phytoextraction of chromate. 

No significant difference was observed in the mean values of the 

translocation factors of chromium from roots to shoots of P. oleracea (Table 3-22). 

The values of TF in the presence of ammonium chromate, potassium chromate and 

sodium chromate were 0.46, 0.46 and 0.39 respectively. These results may suggest 

that the translocation of chromium in P. oleracea is independent of ammonium, 

potassium or sodium cations as expected since translocation takes place inside the 

plant tissues. 

Irrigation 

Solution  Bioaccumulation Factor  Translocation Factor  

K2CrO4  20.0 ± 2.4 0.46 ± 0.11 

(NH4)2CrO4  17.3 ± 2.1 0.46 ± 0.10 

Na2CrO4  8.7 ± 1.2 0.39 ± 0.10 
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3.3.7 Effect of chelating agents on the uptake of chromium by P. 

oleracea  

Investigation of the effect of chelating agents on the uptake of cations such 

as Cr(III) occurs in the scientific literature of phytoextraction but it is rarely to find 

investigation on such effect for Cr(VI). It was concluded previously (section 3.3.1) 

that most of Cr(VI) was reduced to Cr(III) in roots of P. oleracea. It may seem 

reasonable to claim that chelating agents may affect the translocation of this cation 

since it may chelate and translocate it to shoots. It has thus been decided to 

investigate the effect of chelating agents such as citric acid and EDTA on the 

uptake of Cr(III) and Cr(VI) by Portulaca oleracea.  

3.3.7.1 Effect of chelating agents on the uptake of chromium(III) by P. 

oleracea  

 Twelve pots of soil with pH of 5.5 ± 0.1 were prepared. At this relatively 

low pH, chromium (III) is soluble and available for plants. Three seedlings of 

Portulaca oleracea were grown in each pot. Sets of three pots were irrigated with 

one of the following solutions: chromium (III) nitrate, chromium (III) nitrate + 0.01 

M of EDTA, chromium (III) nitrate + 0.01 M of citric acid in addition to a fourth 

set irrigated with deionised water for the control. Plants were harvested then 

analysed for total chromium. 

Concentrations of chromium in roots and shoots of Portulaca were 

measured and the results are shown in Figure (3-32). Table (3-23) shows 

bioaccumulation and translocation factors of chromium in Portulaca oleracea in 

the presence of citric acid and EDTA as typical chelating agents. 
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Figure (3-32) Uptake of Chromium (III) in roots and shoots of Portulaca in the 

presence of EDTA and citric acid. (Mean of  triplicates)   

 

 

Table (3-23) Bioaccumulation and translocation factors of chromium (III) in 

Portulaca in the presence of chelating agents 

 

The highest concentration of chromium in roots was observed in plants 

irrigated with citric acid at 930 mg/kg followed by plants irrigated with Cr(III) only 

which reached 650 mg/kg. This significant increment in the presence of citric acid 

(Figure 3- 32, p< 0.05 using ANOVA Post hoc test ''Tukey'') confirms its effect in 

enhancing the uptake of Cr (III) by P. oleracea. Citric acid occurs naturally in 

Portulaca plants [170], so it is easily accepted by the plants while it chelates 

Cr(III). Bioaccumulation factor was the highest with citric acid (10.3) followed by 

Irrigation Solution 

Bioaccumulation Factor 

BAF Translocation Factor  TF 

Cr (III) only  7.2 ± 2.1 0.34 ± 0.08 

Cr (III)  + Citric Acid  10.3 ± 2.8 0.46 ± 0.11 

Cr (III) + EDTA  2.3 ± 0.4 1.8 ± 0.44 
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BAF for Cr(III) only with 7.2. When comparing the quantities of accumulated 

chromium in the whole plant (both roots and shoots), it can be concluded that the 

presence of citric acid gave P. oleracea the best chromium accumulation among 

the plants in control and in EDTA, which is in line with literature reports on 

Brassica juncea [140] and Lycopersicum esculentum [142, 145].   

Significant decrease in the uptake of Cr(III) was observed in roots in the 

presence of EDTA compared to Cr(III) only (p<0.05 using ANOVA Post hoc test 

''Tukey'') indicating the role of EDTA in retarding the uptake of Cr(III). When 

calculating the total chromium in plant (in roots and shoots), it was found that its 

amount in the presence of EDTA may exceed its amount in the presence of 

chromium only. This can be explained due to the enhancement of translocation of 

Cr(III) in the presence of EDTA which should be taken in consideration. This 

interpretation is supported by the enhanced translocation factor of Cr( III) from 

roots to shoots from 0.34 in control to 1.8 (Table 3-23) in the presence of EDTA 

which explains the low concentration of chromium in roots. The current results are 

in line with the results of a previous study which investigated the effect of citric 

acid and EDTA on the uptake of Cr(III) by Datura innoxia [143]. The researchers 

in that study found that citric acid enhanced the uptake of Cr(III) compared to 

EDTA but EDTA enhanced the translocation of Cr(III) compared to citric acid. In 

another study, the role of EDTA on the uptake of chromium (III) by willow trees 

was investigated [141]. The investigators of this study reported the decrease of 

chromium in roots and the elevation of translocation factor in the presence of 

EDTA. Their explanation of this behaviour was that EDTA may keep Cr (III) in the 
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nutrient medium which seems strange with the high translocated amount of this 

element to shoots which explains its decrease in roots. 

The result of the current study is in disagreement with the result of recent 

study investigated the effect of EDTA on the uptake of Cr(III) by roots and shoots 

of water spinach (Ipomonea aquatic) [144]. They found that EDTA significantly 

enhanced the uptake of chromium by roots but inhibited its translocation to shoots. 

They explained their observations due to the formation of Cr-EDTA which 

enhanced the transfer of Cr
3+

 to the root cells and retarded the translocation from 

shoots to roots. This explanation seems unlikely since EDTA is commonly used to 

enhance translocation of cations of heavy metals such as Cd, Pb and Ni [139, 140, 

171-173].  

The highest concentration of chromium in shoots was observed in plants 

irrigated with citric acid which was 426 mg/kg, followed by plants irrigated with 

Cr(III) plus EDTA at 391 mg/kg (Figure 3-32). These significant increments of 

chromium in shoots in the presence of the two chelating agents compared with 

shoots in the presence of Cr(III) only confirm the role of the two chelating agents 

in enhancing the translocation of Cr(III) (Table 3- 23).  

There was no significant difference in the weight of the dry biomass 

between plants irrigated with Cr(III) with and without citric acid or EDTA (p> 

0.05). This may be due to the low toxicity of chromium (III) on the root cells on the 

one hand and to the relatively small amounts of accumulated chromium which may 

not reach the phytotoxic limit on the other (Fig 3- 33). 
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Figure (3-33) Weight of whole dry plants in one pot at different chelating   

agents added with chromium (III). 

 

 

3.3.7.2 Effect of chelating agents on the uptake of chromium(VI) by P. 

oleracea.  

 

Portulaca oleracea demonstrated the highest quantity of accumulated 

Cr(III) in the presence of citric acid, while EDTA confirmed significant 

enhancement for Cr(III) translocation using the same plant. Since Cr(VI) is likely 

to be reduced and translocated as Cr(III), it is interesting to investigate EDTA and 

citric acid for their effect on the phytoextraction of Cr(VI). To investigate the effect 

of the two chelating agents on the uptake of Cr(VI)  by P. oleracea, four groups of 

five replicates were irrigated with one of the following solutions: sodium 

dichromate, sodium dichromate + 0.01 M of EDTA , sodium dichromate + 0.01 M 

of citric acid, or acidified deionised water for the control. Each plant was harvested 

then analysed for total chromium. Table (3-24) shows the uptake of chromium (VI) 

in roots and shoots of Portulaca in the presence of EDTA and citric acid and Table 
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(3-25) shows bioaccumulation and translocation factors of chromium(VI) in the 

presence of these two chelating agents. Figure (3- 34) show the mean weights of 

dry whole plants in one pot of Cr(VI). 

 

Table (3-24) Uptake of chromium (VI) in roots and shoots of Portulaca in the 

presence of EDTA and citric acid. (Mean of triplicates)   

 

 

 

Table (3-25) Bioaccumulation and translocation factors of chromium (VI) in 

Portulaca in the presence of EDTA and citric acid 

 

 

Irrigation Solution 

Components 

Concentration of 

chromium in Root 

(mg/kg) 

Concentration of 

chromium in Shoot 

(mg/kg) 

Cr(VI) 740 ±70 250 ± 46 

Cr(VI) + EDTA 730 ±120 400 ± 60 

Cr(VI) + Citric acid 450 ± 90 110 ± 30 

Irrigation 

solution 

Bioaccumulation factor 

(BAF) 
Translocation factor (TF) 

Cr(VI) 
7.4 ± 1.8 0.34 ± 0.07 

Cr(VI) + EDTA 
7.3 ± 2.1 0.54 ± 0.11 

Cr(VI) + Citric 

acid 
4.5 ± 1.2 0.25 ± 0.07 
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Figure (3-34) Weight of whole dry plants in one pot at different chelating agents 

added with chromium(VI). 

 

No significant difference was observed between mean concentrations of 

chromium in the roots of plants irrigated with Cr(VI) only and with Cr(VI) + 

EDTA (p>0.05 using ANOVA Post hoc test ''Tukey'', Table 3- 24). This means that 

EDTA has no significant effect on the uptake of Cr(VI) which is expected since 

chromium(VI) is available as chromate anion and most unlikely to be chelated with 

EDTA. The uptake of Cr(VI) by roots in the presence of citric acid decreased 

significantly compared with its uptake in the presence of Cr(VI) only (Table 3-24). 

It is possible that citric acid was oxidised by dichromate in the acidic solution 

which means that Cr(VI) in irrigation solution was decreased which explain the 

negative effect of citric acid on the uptake of Cr(VI). 

 The highest concentration of chromium in shoots was 394 mg/kg and it 

was achieved in the presence of Cr(VI) accompanied with EDTA. The presence of 

EDTA significantly enhanced the translocation factor of Cr (III) (originated from 
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reduced Cr(VI) (p<0.05 using ANOVA Post hoc test ''Tukey'') from 0.34 to 0.54 

but this enhancement is still small compared to the value of TF in the presence of 

EDTA for Cr(III) which was 1.8. The role of EDTA in enhancing the translocation 

of Cr(VI) ( after its reduction to Cr(III) in roots ) is in agreement with the results of 

a previous study carried out on two types of willow plants (Salix matsudana and 

Salix babylonica) [141]. No significant differences in weight of dry plants was 

observed between the plants irrigated with Cr(VI) only, Cr(VI) + EDTA or Cr(VI) 

+ citric acid (p>0.05 using ANOVA Post hoc test ''Tukey''). This may be due to the 

relatively small amounts of chromium in the plants (Figure 3- 34). 

In conclusion, EDTA has a significant effect in increasing the translocation 

factor of both Cr(III) and Cr(VI) in Portulaca oleracea but it has no significant 

effect on the bioaccumulation of the chromium. This confirms the role of EDTA 

inside the plant and specifically from roots to shoots which means that the 

chelation of Cr(III) takes place inside the plant tissues. Citric acid enhanced the 

uptake of Cr(III) but did not show such enhancement with Cr(VI).  

3.3.8 Maximising the uptake of Cr(VI) using P. oleracea 

 As a comprehensive evaluation of the factors that affect the uptake of 

Cr(VI) using P. oleracea, it can be observed that the values of bioaccumulation 

factor (BAF) represent a conclusive indicator of the effect of each investigated 

factor on enhancing the uptake process. Regarding the pH of soil, it was concluded 

that at pH 8.0 and above, the BAF values ranged from 8.5 to 10 but these values 

were achieved in the presence of 15% organic content in soil. When the organic 

content decreased to 0.42% (the real percentage of organic matter in Ajman 
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industrial zone) the value of BAF increased to 20.0 and jumped to 28.0 when 

calculated regarding available Cr(VI) in soil. Meanwhile, the effect of nutrient 

anions on BAF exhibited an increase from 7.0 in control to 12.0 in the presence of 

sulfate and while the effect of cations showed the highest BAF in the presence of 

potassium (17.0) and ammonium (20.0). In conclusion, the best bioaccumulation 

for Cr(VI) using P. oleracea can be achieved at: pH of soil 7.9 and organic content 

0.42%  where both conditions are already available in the polluted site of Ajman. 

The best bioaccumulation of Cr(VI) also can be achieved in the presence of 0.02 M 

of sulfate and 0.002 M of potassium or ammonium. 

The translocation factor (TF) of chromium using P. oleracea ranges from 

0.25 to 0.45 but this value was enhanced in the presence of 0.02 M sulfate and in 

the presence of 0.002 M potassium or ammonium (0.5). A translocation factor 

value of 0.6 was achieved in the presence of 35% organic content and pH of 7.0 but 

these results were achieved in experimental work and far from the real conditions 

in the polluted site of Ajman industrial zone.   

3.4 Effect of chromium(VI) on the concentration of sulfur 

containing proteins and ascorbic acid in P. oleracea. 

  Glutathione is a sulfur containing simple protein and it is the basic building 

block of phytochelatins which are thought to chelate cations through the 

translocation process from roots to shoots. Chromium (VI) is mostly reduced in 

roots to chromium(III) cations then chelated either with phytochelatins or organic 

acids such as oxalate. Both glutathione and ascorbic acid are thought to reduce 

chromium(VI) in root tissues. In this section, two investigations were carried out. 

Glutathione and ascorbic acid in P. oleracea were investigated as Cr(VI) 
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antioxidants firstly. In another investigation glutathione and the phytochelatin PC3 

were determined as sulfur containing proteins. This investigation was designed to 

find the most probable antioxidant for Cr(VI) and the suggested ligand to chelate it 

to shoots after its reduction as Cr(III).  

3.4.1 Investigation of the antioxidants of chromium(VI) in 

Portulaca oleracea. 

The effect of sulfate in enhancing the uptake of chromate has been 

confirmed in the present study. Sulfate is being reduced, then used in the synthesis 

of sulfur-containing amino acids or thiols such as glutathione which are common 

antioxidants in plants. Ascorbic acid is a natural component in P. oleracea and it 

may act as antioxidant. Both glutathione and ascorbic acid were investigated for 

their probable participation in the reduction of chromium (VI) in P. oleracea.  The 

effect of Cr(VI) on the concentration of these two antioxidants in P. oleracea was 

also investigated. Plants were grown in identical soils then irrigated with three 

different concentrations of Cr(VI); 0, 50 and 100 ppm. The fresh shoots and roots 

of P. oleracea were analysed using HPLC-MS for ascorbic acid (ASA), 

dehydroascorbic acid (DASA), glutathione (GSH) and oxidised glutathione 

(GSSG). The four compounds of ASA, DASA, GHS, and GSSG were eluted at 

retention times of 2.4, 2.5, 3.4, 4.4 min. respectively in standards and samples with 

m/z 175.1, 173.1, 306.2, 611.2. 
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Figure (3- 35) shows the chromatogram of the four compounds extracted from 

shoots of Portulaca oleracea irrigated with 50 ppm of chromium(VI). Figure (3-

36) shows the mass spec (MS) peaks of ASA and DASA. Figures (3-37) and (3-38) 

show the MS peaks of, GSH and GSSG. Table (3-26) shows the concentrations of 

the four compounds in roots and shoots of Portulaca oleracea. Total thiols (sum of 

concentration of glutathione and oxidised glutathione) and total ascorbic (sum of 

ascorbic acid and dehydroascorbic acid) were calculated and the results are shown 

in Figures (3-39) and (3-40). Concentration of total chromium in shoots and roots 

were calculated at the different levels of chromium in irrigation solution and are 

shown in table (3-27).  

Figure(3-35) Mass Spec. Chromatogram showing the retention time and 

intensity of ascorbic acid, dehydroascorbic acid, glutathione and glutathione 

oxidised in shoots of Portulaca irrigated with 50 ppm of chromium(VI). 

Ascorbic acid 
Glutathione 

Glutathione 

oxidised 

Dehydroscorbic 

acid 

Retention time (min) 
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Figure (3-36) Ascorbic acid (M-1= 175) and dehydroascorbic acid (M-1 = 173) in 

shoots of Portulaca irrigated with 50 ppm of Cr(VI).  

 

 

Figure (3-37) Glutathione reduced (M-1 = 306.08) in shoots of Portulaca 

irrigated with deionised water (control).  

 

m/z 

m/z 
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Figure (3-38) Oxidised glutathione (M-1= 611.16) in shoots of Portulaca 

irrigated with 50 ppm of Cr(VI). 

 

Table (3-26) Concentration of ascorbic acid ASA, dehydroascorbic acid DASA, 

glutathione GSH and oxidised glutathione GSSG in fresh tissues of Portulaca at 

different concentrations of Cr(VI) in irrigation solution.  

Plant tissue and 

 concentration of  Cr(VI) 

ASA 

 (mg/kg) 

DASA 

(mg/kg) 

GSH 

(mg/kg) 

GSSG 

(mg/kg) 

0 ppm root 134 ± 37 99 ± 26 3.4 ± 0.2 1.8 ± 0.3 

50 ppm  root 254± 49 780 ± 120 < 0.01 < 0.01 

100 ppm root < 0.1 1387 ± 153 < 0.01 < 0.01 

     

0 ppm shoot 251 ± 52 173 ± 32 4.1 ± 0.8 2.5 ± 0.6 

50 ppm shoot 212 ± 47  743 ±134 2.7 ± 0.3 3.4 ±1.5 

100 ppm shoot < 0.1 914.0 ±140.6 < 0.01 1.5 ±1.3 

m/z 
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Figure (3-39) Concentration of total ascorbic acid (sum of ascorbic and 

dehydroascorbic acid in the fresh weight (FW) of the whole plant of Portulaca 

oleracea at different levels of Cr(VI) in irrigation solution. (Mean of triplicates) 
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Figure (3-40) Concentration of total thiols (sum of glutathione and oxidised 

glutathione) in the fresh weight (FW) of the whole plant of Portulaca oleracea at 

different levels of Cr(VI) in irrigation solution. (Mean of triplicates) 
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Figure (3-41) Concentration of total ascorbic acid (sum of ascorbic and 

dehydroascorbic acid) in roots and shoots of Portulaca oleracea at different 

levels of Cr(VI) in irrigation solution. 

 

Table (3-27) Concentration of total chromium in roots and shoots of Portulaca 

irrigated with 50, 100 ppm of hexavalent chromium.  

Cr(VI) in irrigation solution 

 (ppm) 

Cr in Roots  

(mg/kg) 

Cr in Shoots 

 (mg/kg) 

50 452 ± 87 257 ± 54 

100 675 ± 116 304 ± 62 

 

A significant difference was observed between the mean values of ascorbic 

acid ASA in roots of Portulaca (p< 0.01 using ANOVA Post hoc test ''Tukey'')). 

Concentration of ASA increased in roots from 134 mg/kg of fresh roots in control 

to 254 mg/kg then declined to below detectable limit (BDL) at 100 ppm of Cr(VI) 

(Table 3-26). This implies that the plant increased the amount of ascorbic acid 
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produced as a response to the stress of Cr(VI) but when Cr(VI) increased to 100 

ppm in irrigation solution the amount of ASA decreased to BDL which means that 

this entire amount was oxidised by Cr(VI). In shoots the concentration of ASA 

decreased from 251 mg/kg of fresh shoots of the controls to 212 mg/kg at 50 ppm 

of Cr(VI) then declined to BDL at 100 ppm of Cr (VI). The decrease of ASA in 

shoots may be due to the mobility of this material from shoots to roots as response 

to the increased amounts of Cr(VI) in roots. This explanation is supported by the 

increase of the dehydroascorbic acid (DASA) in both roots and shoots of plant. 

This increase was significant (p< 0.01 using ANOVA Post hoc test ''Tukey'') in 

both roots and from 0 to 50 ppm of Cr(VI) in shoots. In roots DASA increased 

from 99 in the controls to 1387 mg/kg of fresh roots at 100 ppm of Cr(VI). In 

shoots, DASA increased from 173 mg/kg in control to 914 mg/kg in the presence 

of 100 ppm of Cr(VI). These increased amounts of DASA in both roots and shoots 

are in line with the increase of Cr(VI) in the irrigation solution from 0 to 100 ppm. 

A previous study also interpreted the decrease of ascorbic acid due to its 

consumption in reducing chromium (VI) [174]. 

Comparing the amounts of total thiols (sum of glutathione and oxidised 

glutathione) which were less than 8.0 mg/kg with the total ascorbic acid (sum of 

ascorbic and dehydroascorbic acid) which increased from 500 mg/kg of fresh 

weight to 1200 mg/kg, strongly suggests that chromium(VI) reduction in P. 

oleracea is due to the use of ascorbic acid as antioxidant. This conclusion can 

explain the increase of dehydroascorbic acid in the plant tissue from 99 mg/kg in 

fresh roots of control to 8 fold as the chromium (VI) in irrigation solution was 

increased to 50 ppm which confirms the effect of Cr(VI) in increasing the 
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formation of ascorbic acid by the plant as response to this stress. These results are 

in agreement with the results of Shanker et al. [175] who confirmed the priority of 

ascorbic acid as antioxidant versus the glutathione in mung bean (Vigna radiate) 

when irrigated with 50 µM of Cr(VI). 

3.4.2 Effect of chromium(VI) on the concentration of glutathione and PC3 

phytochelatins in Portulaca oleracea 

 

The current study confirmed the role of P. oleracea in the reduction of 

chromium (VI) in roots to chromium (III) cations (section 3.3.1). These cations 

then formed chelates either with phytochelatins or organic acids such as oxalate. 

This investigation aims to find the most probable ligand to chelate Cr(III) in roots. 

HPLC reversed phase was used to separate and identify glutathione and the 

phytochelation PC3. Standards of glutathione were eluted at a retention time of 4.7 

min and PC3 at 6.2 min. In the samples only glutathione and at low concentrations 

was detected to be 1.2 ± 0.7 mg/kg fresh wt. (irrigated with 50 ppm of Cr(VI)). 

Phytochelatin PC3 was not detected in any sample. The lack of detection of 

phytochelatins in the presence of Cr(VI) may suggest that the chromium(III) - 

which originated from reduced Cr(VI) in roots – may be translocated to shoots of 

P. oleracea using the organic acid ligands such as oxalate. These results are in line 

with the results of a previous study [176] carried out on tomato plants. This study 

reported that no phytochelatins were detected when tomato was irrigated with 

Cr(VI) suggesting that chromium is chelated by organic acids which agree with 

previous suggestions [81, 82]. 
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 The results of previous investigation of the current study, carried out to 

determine the concentration of ascorbic acid and glutathione using HPLC-MS, 

confirmed the priority to the role of ascorbic acid as antioxidant. Only small 

concentrations of glutathione were detected (less than 5 mg/kg fresh wt) which 

supports the results of this investigation. It seems that Cr(VI) is being reduced to 

Cr(III) using ascorbic acid  and then translocated as chelated cation with organic 

acids such as oxalate.      

3.5 Techniques for the removal of chromium from the polluted dry 

biomass of P. oleracea. 

Incineration is the most common way to treat the harvested contaminated 

plants (after their use in the phytoextraction process). In this investigation, two 

alternative proposed techniques for extraction and removal of chromium from the 

dry Portulaca plants were investigated. Heavy metal cations mobility and solubility 

are pH- dependent and at low pH most of the heavy metal cations are soluble thus 

the suspension of ground plant was acidified using hydrochloric acid to pH 6.1, 

then divided into two volumes of low different values of pH (2.0 ± 0.1and 5.0 ± 

0.1) by further acidification. The two solutions were analysed for chromium (VI) 

and chromium (III) then were treated either by passing through the calcareous sand 

of Emirates or by electrodeposition. 

Concentration of extracted chromium at different pH values is shown in 

Table (3-28). Table (3-29) shows the concentration of chromium, the pH of 

solutions before and after treatment using the sand, and the time for each litre to be 

leached out. Table (3-30) shows the concentration of chromium before and after 
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electrodepositing and the pH of the solution after the electrodepositing process. 

The percentages of removal (BOR) were calculated from the following relation: 

 

 BOR = (concentration of Cr before – concentration of Cr after) x 100 

                                   Concentration of chromium before 

The results are included in Tables 3-29 and 3-30. 

 Table (3-28) The concentration of extracted chromium at different pH values 

pH 6.1  5.0 2.0 

Concentration of total extracted chromium 

(ppm) 1.0 4.0 6.8 

% Extraction 12.3% 52.3% 88.5% 

 

 

Table (3-29) the concentration of chromium before and after treatment using the 

sand of the emirates. 

Extract  

Solution 

Concentration 

of Chromium 

(ppm) 

% 

removal 

pH of 

solution 

Time of 

treatment 

(min.) 

Extracted at pH 2 (before 

passing through sand)  6.80 ± 0.40  2.0  

The First litre (after 

passing through sand) 0.20 ± 0.03 97.5% 7.8 74 

The Second  litre (after 

passing through sand) 0.70 ± 0.05 89.2% 7.8 92 
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Table (3-30) The concentration of chromium before and after different periods of 

time of implementing electrodeposition technique. 

Solution  

Concentration of 

chromium (ppm) % Removal pH 

Extracted at pH 2  6.8 ± 0.4   2.0 

after 12h  3.0 ± 0.3  56.1% 2.4 

after 24h  1.3 ± 0.2  80.8% 2.5 

after 36h  1.2 ± 0.2  82.3% 2.6 

 

The amount of chromium (VI) in the whole samples of the extracted 

chromium was below the detection limit and this confirms the previous conclusion 

which indicated that most of the chromium(VI) absorbed by P. oleracea was 

reduced to chromium(III). When the dissolved chromium (III) in the acidified 

ground plant suspension was filtered through the calcareous sand of the Emirates, 

most of the Cr(III) was precipitated as Cr(OH)3. The percent removal of chromium 

ranged between 89 to 97% and the amount of chromium in the filtrate was reduced 

to below 1.0 ppm. This concentration meets the accepted limits of chromium in the 

effluent wastewater according to Dubai municipality and the percentage of removal 

of chromium in this work is in agreement with the results of removal of some 

heavy metals using the same sand [146].  

The use of the sand of the Emirates with high carbonate content (42%) is an 

efficient and cheap technique for the removal of Cr(III) cations. When comparing 

the two techniques, of using sand and using electrodepositing it is clear that the 

first one is faster, more efficient in BOR and the pH of the effluent solution was 7.8 

which occurs within the accepted range (6-9) of many environmental organizations 
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whereas effluent solutions in electrodeposition process are high acidic, pH < 2.6 

which is still far from the accepted pH range. 

As conclusion, these experiments show that the filtration of extracted 

Cr(III) solution through calcareous sand of Emirates is more efficient and gives 

effluents within the accepted range of pH compared with electrodeposition, 

therefore, it may represent suggested alternative technique other than incineration. 
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CHAPTER 4 

CONCLUSIONS    AND 

RECOMMENDATIONS 

 

4.1 Conclusions 

From this study, it can be concluded that: 

- Of the twelve sites investigated, Ajman industrial zone demonstrated the 

highest pollution with chromium at 1800 mg/kg of which 97 mg/kg is 

chromium(VI), classified as carcinogen by the world health organization 

[177]. This moderate pollution calls for the implementation of a technique 

such as phytoextraction to remove this heavy metal from soil. 

- Black sand in the east coast of the Emirates does not represent real threat to 

the environment in spite of its huge content of chromite and Cr(III) which is 

unlikely to be extracted and it is unavailable to the plants growing in the 

same area (Kalba and Dadnah).   

- Of more than twenty plants investigated, Portulaca oleracea demonstrated 

the highest potential for accumulating Cr(VI). Atriplex halimus showed the 

capability to accumulate Cu(II), Cr(III) and Co(II), and Cyperus 

conglomerates demonstrated selective cadmium accumulation with 

bioconcentration factors ranging from 20 to 50, which is very high for such 

a toxic element. 
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- Prosopis juliflora did not demonstrate any potential for the accumulation of 

chromium(VI) or lead, either in experimental or in natural plants growing in 

polluted sites. This conclusion is important in the UAE since Prosopis is a 

major food for camels and other animals in Emirates.  

- Portulaca oleracae can be classified as a promising Cr(VI) 

hyperaccumulator since it could accumulate high amounts of this pollutant 

exceeding 4600 mg/kg in dry roots and 1500 mg/kg in dry stems. The 

accumulated chromium increased linearly in all parts of P. oleracea as the 

concentration of Cr(VI) increased in the soil. Bioaccumulation factors for 

Cr(VI) in P. oleracea exceeded the value of 28 in some experiments which 

means that the concentration of chromium in the plant tissue exceeded its 

concentration in soil by 28 fold. These merits put P. oleracea in a 

favourable position compared to some other known Cr(VI) accumulators 

like Leptospepermum scoparium, Leersia hexandra, Typha angustinfolia 

and Zea mays.   

- P. oleracea has the ability to reduce Cr(VI) to Cr(III) with percentages 

ranging from 95 to 99%, which indicated the high ability of this plant to 

change the toxic and highly oxidative form of Cr(VI) to the safer, nontoxic 

Cr(III).  

- Chromium(VI) phytoextraction by P. oleracea can be enhanced by 

elevating the pH of soil above 7.5 which reflects the effect of 

chromium(VI) speciation on its uptake by P. oleracea. This plant 

accumulated high quantities of Cr(VI) as the pH of soil increased which 
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means that P. oleracea absorbed Cr(VI) as chromate species which is much 

more abundant at this high range of pH.   

- The organic content of soil decreased the available Cr(VI) which resulted as 

a lack of its uptake by P. oleracae. This is due to the ability of organic 

content of soil to reduce Cr(VI) to Cr(III) which is mostly unavailable to the 

plants at the high pH levels like the soil of Emirates (pH 7.9) At this level 

of pH most of Cr(III) is unavailable  as insoluble Cr(OH)3. 

- The highest Cr(VI) uptake using P. oleracea was achieved in the presence 

of the smallest amount of organic content of soil (0.42% in soil of Ajman). 

This gives Portulaca a preference in accumulation Cr(VI) from soils of 

small organic content and high pH such as soil of Emirates.  

- The presence of nutrient anions such as nitrate and phosphate reduced the 

uptake of chromate by P. oleracea which may be due to the need of the 

plant to absorb these nutrient anions at the expense of chromate uptake. 

- The presence of sulfate in specific concentrations (300-600 ppm) 

significantly enhanced the uptake of chromate by P. oleracea. Chromate is 

analogous to sulfate anion since they are similar in charge, geometry, and 

size. So chromate is likely to be taken up by P. oleracea using sulfate 

transporters (carriers) in roots. It can be also concluded that at concentration 

of sulfate above 300 ppm these transporters are being formed to the 

maximum extent. 
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- At high concentrations of sulfate, there is a competitive relationship 

between the uptake of chromate and sulfate using P. oleracea. It was 

observed that chromate decreased as sulfate increased in the roots of P. 

oleracea. In shoots the plant translocated sulfate in larger amounts than 

chromate since it is one of the macronutrients that is required for the plant.      

- The presence of ammonium or potassium cations significantly enhanced the 

uptake of chromate by P. oleracea reflecting the effect of accompanying 

cation on the uptake of the anions. Since both of ammonium and potassium 

are being taken up by coupled transporters (in root cell membrane) it is 

suggested that chromate may be taken up coupled with these nutrient 

cations. The effect of counter cation on the uptake of accompanying anions 

needs future investigation.  

- When evaluating the effect of chelating agents on the uptake of chromium 

by P. oleracea, it was found that EDTA in the soil enhanced the 

translocation of both Cr(III) and Cr(VI) (after its reduction). This plant 

demonstrated a high potential for accumulating Cr(III) in the presence of 

citric acid, while it did not show this potential in the uptake of Cr(VI) in the 

presence of the same chelating agent.  

- The translocation factor of Cr(VI) (after its reduction in roots), using P. 

oleracea or other Cr(VI) accumulators is still below the value of 1.0. The 

enhancement of the translocation factor of Cr(VI) still needs further 

investigation.   
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- Ascorbic acid is the most dominant reducing agent for Cr(VI) to Cr(III) 

inside P. oleracea tissues, while glutathione  has a minor effect in the 

reduction of Cr(VI). The effect of sulfate in enhancing the role of 

glutathione in the reduction of Cr(VI) needs more investigation.  

- P. oleracea demonstrated considerable ability to increase the production of 

ascorbic acid as the concentration of Cr(VI) in the irrigation solution 

increased, which indicates the strong adaptability of this plant under the 

stress of such oxidative pollutant.  

- Phytochelatin PC3 was not detected in P. oleracea grown in the presence of 

Cr(VI) which may suggest that chromium(III) - which originated from 

reduced Cr(VI) in roots – may be translocated to shoots of P. oleracea 

using the organic acid ligands such as oxalate. 

- The extraction of Cr(III) from dried plant tissue is most efficient after 

acidification of a suspension of ground plant material. The use of 

calcareous sand in the filtration of Cr(III) is a very efficient technique. The 

percentage of removal of chromium using this technique ranged between 89 

to 97% and the amount of chromium in the filtrate was reduced to <1.0 

ppm. This concentration meets the accepted limits of chromium in the 

effluent wastewater according to Dubai environmental regulations. The pH 

of the effluent solution was (7.8) which lies within the accepted range (6.0-

9.0) of many environmental organizations.  
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4.2 Recommendations 

- Chromium (VI) in the soil of Ajman industrial zone represents a serious 

threat and should be removed urgently since this contaminated area 

contains many civilian establishments such as schools and workshops. 

- Phytoremediation seems to be promising, cheap, and easily implemented in 

the remediation of the soil of UAE and this study recommends that more 

research is carried out in this field not only with heavy metals but also with 

organic pollutants since the oil industry is common in UAE. 

- Desert plants may be of interest in the field of phytoremediation research 

since they have exceptional potential to tolerate the hard conditions of 

desert. Among these plants Iresine herbestii and Atriplex halimus which 

have shown capability to solubilise and uptake heavy metal cations such as 

cobalt, copper, chromium(III) and lead from soil of Emirates with the high 

pH (7.9).  

- The environmental regulations should be developed and applied in the field 

especially in the northern emirates whereas many factories and workshops 

do not implement these regulations. 

- This study suggests the need to carry out further investigations on the effect 

of sulfate on the role of glutathione in the reduction of Cr(VI) and the effect 

of counter cation on the uptake on accompanying pollutant anions such as 

chromate. 
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- Designing experiments in the field of phytoremediation and phytoextraction 

needs more control of especially the pH of the nutrient medium which 

strongly affects heavy metal speciation and availability. Plant nutrients 

(cations and anions) may enhance or inhibit the uptake of heavy metal, so 

they must be taken in account when designing experiments. Researchers 

should be more careful when declaring that a plant is an accumulator to 

specific heavy metal e.g. a plant may be efficient accumulator for Cr(III) 

but not necessary be efficient for Cr(VI). 
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Appendices 
 
 

 

Appendix (1) 

 

Numerical data for section 3.2 

 
 

Uptake of heavy metals by a range of local plants.  

 

 

 

 

 

Concentration of total added chromium in soil and the measured concentration at 

harvesting time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ni(II) Cr (III)  Cu (II) Cr (VI ) Pb( II) Co (II )             Heavy metal 

(mg/kg) 

Plant  

20 ± 3 60 ± 10 <0.2 158 ± 27 37  ± 8 <0.5 Portulaca oleracea   

<0.6 <0.4 <0.2 8 ± 1 12  ± 2 <0.5 Bougainvillea spinosa  

40 ± 6 95 ± 14 140 ± 15 40 ± 8  9 ± 2 110 ± 20 Atriplex halimus 

9 ± 1 7 ± 2 94 ± 11 90 ± 14  100 ± 10 2.4 ± 0.3 Iresine herbestii   

<0.6 16 ± 4 35 ± 5 <0.4  <0. 14 <0.5 Pennisetum setaceum  

Measured quantity at 

the harvest (mg/kg) 

Total added chromium 

or other heavy metal in 

soil  (mg/kg) 

Experiment  (Number 

and details) 

90 ± 5  100 (3) 

230 ± 10 250 (4) 
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Appendix (2) 

 

Numerical data for section 3.3.1 

 

Total added concentration of chromium in soil and the measured at harvesting time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comparing the means of concentration of Cr in roots at 50, 150, 250 and 350 ppm levels 

of chromium in irrigation solution. 

Dependent Variable: Concentration of total chromium in roots (SPSS- Tukey HSD)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

Measured quantity at 

the harvest (mg/kg) 

Total added chromium in 

soil  (mg/kg) 

Concentration of Cr(VI) 

in irrigation solution 

(ppm) 

40 ±5 50 50 

90 ±7 100 100 

130 ±10 150 150 

190 ±5 200 200 

220 ±10 250 250 

250 ±15 300 300 

300 ±15 350 350 

360 1± 5 400 400 

Conc.  of Cr(VI) in 

irrigation soln. 

(ppm) 

 

Conc.  of Cr(VI) in 

irrigation soln. in 

groups of 

comparison (ppm) 

Mean chromium 

concentration in roots 

for each group (mg/kg) 

 

Significance  

(p value) 

 

50 
  
  

150 1200 0.01 

250 2300 <0.001 

350 4600 <0.001 

150 
  
  

50 400 0.01 

250 2300 0.003 

350 4600 <0.001 

250 
  
  

50 400 <0.001 

150 1200 0.003 

350 4600 <0.001 

350 
  
  

50 400 <0.001 

150 1200 <0.001 

250 2300 <0.001 
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Comparing the means of concentration of Cr in roots at 100, 200, 300 and 350 ppm levels 

of chromium in irrigation solution 

Dependent Variable: Concentration of total chromium in roots (SPSS- Tukey HSD) 
 

Conc.  of Cr(VI) in 

irrigation soln. 

(ppm) 

Conc.  of Cr(VI) in 

irrigation soln. in groups 

of comparison (ppm) 

Mean chromium 

concentration in roots 

for each group (mg/kg) 

Significance  

(p value) 

100 
  
  

200 2000 0.005 

300 3100 <0.001 

350 4600 <0.001 

200 
  
  

100 900 0.005 

300 3100 0.009 

350 4600 <0.001 

300 
  
  

100 900 <0.001 

200 2000 0.009 

350 4600 0.001 

350 
  
  

100 900 <0.001 

200 200 <0.001 

300 3100 0.001 

  
 
 

Multiple Comparisons of means of concentration of Cr in leaves at 50, 150, 250 and 350 

ppm levels of chromium in irrigation solution 

Dependent Variable: Concentration of total chromium in leaves (SPSS- Tukey HSD) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conc.  of Cr(VI) in 

irrigation soln. 

(ppm) 

 

Conc.  of Cr(VI) in 

irrigation soln. in 

groups of comparison 

(ppm) 

Mean chromium 

concentration in leaves 

for each group (mg/kg) 

 

Significance  

(p value) 

 

leaf 50 
  
  

leaf 150 320 0.031 

leaf 250 760 <0.001 

leaf 350 1100 <0.001 

leaf 150 
  
  

leaf 50 100 0.031 

leaf 250 760 0.001 

leaf 350 1100 <0.001 

leaf 250 
  
  

leaf 50 100 <0.001 

leaf 150 320 0.001 

leaf 350 1100 0.005 

leaf 350 
  
  

leaf 50 100 <0.001 

leaf 150 320 <0.001 

leaf 250 760 0.005 
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Multiple Comparisons of means of concentration of Cr in leaves at 100, 200, and 300 ppm 

levels of chromium in irrigation solution 

Dependent Variable: Concentration of total chromium in leaves (SPSS- Tukey HSD) 
  

 

  

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Multiple Comparisons of means of concentration of Cr in stems at 100, 200, 350 and 350 

ppm levels of chromium in irrigation solution 

 

Dependent Variable: Concentration of total chromium in stems (SPSS- Tukey HSD) 
 
 
 
 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conc.  of Cr(VI) in 

irrigation soln. 

(ppm) 

Conc.  of Cr(VI) in 

irrigation soln. in groups 

of comparison (ppm) 

Mean chromium 

concentration in leaves 

for each group (mg/kg) 

Significance  

(p value) 

leaf 100 
  

leaf 200 610 0.003 

leaf 300 1100 <0.001 

leaf 200 
  

leaf 100 210 0.003 

leaf 300 1100 0.001 

leaf 300 
  

leaf 100 210 <0.001 

leaf 200 610 0.001 

Conc.  of Cr(VI) in 

irrigation soln. 

(ppm) 

Conc.  of Cr(VI) in 

irrigation soln. in groups 

of comparison (ppm) 

Mean chromium 

concentration in stems 

for each group (mg/kg) 

Significance  

(p value) 

stem 100 
  

stem 200 600 0.008 

stem 350 1400 <0.001 

stem 200 
  

stem 100 220 0.008 

stem 350 1400 <0.001 

stem 350 
  

stem 100 220 <0.001 

stem 200 600 <0.001 
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Multiple Comparisons of means of concentration of Cr in stems at 100, 150, and 300 ppm 

levels of chromium in irrigation solution 

 

Dependent Variable: Concentration of total chromium in stems (SPSS- Tukey HSD) 
 
 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Multiple Comparisons of means of concentration of Cr in stems at 50, 150, and 300 ppm 

levels of chromium in irrigation solution 

 

Dependent Variable: Concentration of total chromium in stems (SPSS- Tukey HSD) 

 
 
   
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

Conc.  of Cr(VI) in 

irrigation soln. 

(ppm) 

 

Conc.  of Cr(VI) in 

irrigation soln. in 

groups of comparison 

(ppm) 

Mean chromium 

concentration in stems 

for each group (mg/kg) 

 

Significance  

(p value) 

 

stem 100 
  

stem 150 570 0.004 

stem 300 1100 <0.001 

stem 150 
  

stem 100 220 0.004 

stem 300 1100 <0.001 

stem 300 
  

stem 100 220 <0.001 

stem 150 570 <0.001 

Conc.  of Cr(VI) in 

irrigation soln. 

(ppm) 

 

Conc.  of Cr(VI) in 

irrigation soln. in 

groups of comparison 

(ppm) 

Mean chromium 

concentration in stems 

for each group (mg/kg) 

 

Significance  

(p value) 

 

stem 50 
  

stem 150 570 0.001 

stem 300 1100 <0.001 

stem 150 
  

stem 50 70 0.001 

stem 300 1100 <0.001 

stem 300 
  

stem 50 70 <0.001 

stem 150 570 <0.001 
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Appendix (3) 

Numerical data for section 3.3.2 

 

 

Concentration of total chromium in shoots and roots of P. oleracea at different pH values 

of soil 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Total added concentration of chromium in soil and the measured at harvesting time at 

different pH values of soil.  

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

pH 

Concentration of Chromium 

in Roots of P. oleracea 

Concentration of Chromium in 

shoots of P. oleracea 

 

6.0 ± 0.1 590 ± 100 260 ± 60 

7.0 ± 0.1 680 ± 70 420 ± 60 

7.3 ± 0.1 1060 ± 150 450 ± 60 

7.6 ± 0.1 1290 ± 180 480 ± 70 

8.0 ± 0.1 1490 ±170 60  ± 100 

9.0 ± 0.1 1450 ± 160 800 ± 70 

Measured quantity 

at the harvest mg/kg 

Total added chromium 

or other heavy metal in 

soil  mg/kg 

Experiment  (6) 

pH of soil 

180 ±10 200 6.0 

180 ±10 200 7.0 

180 ±10 200 7.3 

175 ±15 200 7.6 

177 ±15 200 8.0 

175 ±15 200 9.0 
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Multiple Comparisons of means of concentration of Cr in shoots at different values of soil 

pH.   

Dependent Variable: Concentration of total chromium in shoots (SPSS- Tukey HSD) 
 

pH of soil 

 

 

pH of soil of 

compared groups 

 

Mean 

Concentration of 

total chromium in 

shoots (mg/kg) 

Significance  

(p value) 

 

6.0 
  
  
  
  

7.0 420 <0.001 

7.3 450 <0.001 

7.6 480 <0.001 

8.0 560 <0.001 

9.0 810 <0.001 

7.0 
  
  
  
  

6.0 260 <0.001 

7.3 450 0.95 

7.6 480 0.83 

8.0 560 0.01 

9.0 810 <0.001 

7.3 
  
  
  
  

6.0 260 <0.001 

7.0 420 0.95 

7.6 480 1.00 

8.0 560 0.08 

9.0 810 <0.001 

7.6 
  
  
  
  

6.0 260 0.00 

7.0 420 0.83 

7.3 450 1.00 

8.0 560 0.17 

9.0 810 <0.001 

8.0 
  
  
  
  

6.0 260 <0.001 

7.0 420 0.01 

7.3 450 0.08 

7.6 480 0.17 

9.0 810 <0.001 

9.0 
  
  
  
  

6.0 260 <0.001 

7.0 420 <0.001 

7.3 450 <0.001 

7.6 480 <0.001 

8.0 560 <0.001 
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Multiple Comparisons of means of concentration of Cr in shoots at three different values 

of soil pH.   

Dependent Variable: Concentration of total chromium in shoots (SPSS- Tukey HSD) 
  

pH of soil 

 

pH of soil of 

compared group 

Mean Concentration 

of total chromium in 

shoots (mg/kg) 

Significance  

(p value) 

6.0 
  

7.3 450 <0.001 

9.0 810 <0.001 

7.3 
  

6.0 260 <0.001 

9.0 810 <0.001 

9.0 
  

6.0 260 <0.001 

7.3 450 <0.001 

 
 
 
 
 
 

Multiple Comparisons of means of concentration of Cr in roots at three different values 

of soil pH.   
 

Dependent Variable: Concentration of total chromium in roots (SPSS- Tukey HSD) 
 

pH of soil 

 

pH of soil of 

compared group 

Mean Concentration 

of total chromium in 

roots (mg/kg) 

Significance  

(p value) 

6.0 
  

7.3 1100 <0.001 

9.0 1500 <0.001 

7.3 
  

6.0 600 <0.001 

9.0 1500 <0.001 

9.0 
  

6.0 600 <0.001 

7.3 1100 <0.001 
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Multiple Comparisons of means of concentration of Cr in roots at different values of soil 

pH.   
Dependent Variable: Concentration of total chromium in roots (SPSS- Tukey HSD) 
  

pH of soil 

 

pH of soil of 

compared 

group 

Mean Concentration 

of total chromium in 

roots (mg/kg) 

Significance  

(p value) 

6.0 
  
  
  
  

7.0 700 0.81 

7.3 1100 <0.001 

7.6 1300 <0.001 

8.0 1500 <0.001 

9.0 1500 <0.001 

7.0 
  
  
  
  

6.0 600 0.81 

7.3 1100 <0.001 

7.6 1300 <0.001 

8.0 1500 <0.001 

9.0 1500 <0.001 

7.3 
  
  
  
  

6.0 600 <0.001 

7.0 700 <0.001 

7.6 1300 0.03 

8.0 1500 <0.001 

9.0 1500 <0.001 

7.6 
  
  
  
  

6.0 600 <0.001 

7.0 700 <0.001 

7.3 1100 0.03 

8.0 1500 0.08 

9.0 1500 0.23 

8.0 
  
  
  
  

6.0 600 <0.001 

7.0 700 <0.001 

7.3 1100 <0.001 

7.6 1300 0.08 

9.0 1500 0.99 

9.0 
  
  
  
  

6.0 600 <0.001 

7.0 700 <0.001 

7.3 1100 <0.001 

7.6 1300 0.23 

8.0 1500 0.99 
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Appendix (4) 

 

Numerical data for section 3.3.3 

 

Concentration of total chromium in shoots and roots of P. oleracea at different 

concentrations of organic content of soil 

 

 

Concentration of chromium(VI) in soil at different concentrations of organic content of 

soil. 

 

% Organic 

Matter Concentration of Chromium (VI) in soil (mg/kg) 

35%  org 30 ± 6 

17.5% org  60 ± 10 

0.42% org  110 ± 18 

 

 

Multiple Comparisons of means of concentration of Cr in roots in the presence of 

different concentrations of organic content of soil. (SPSS- Tukey HSD). 

Dependent Variable: Concentration of total chromium in roots . 

 

Percentage of 

organic content 

 

 

Per. of organic 

content  of compared 

groups 

 

Mean Concentration 

of total chromium in 

roots (mg/kg) 

Significance  

(p value) 

.042%  17.5% 500 
<0.001 

35% 200 
<0.001 

17.5%  .042% 3000 
<0.001 

35% 200 
<0.001 

35%  .042% 3000 
<0.001 

17.5% 500 
<0.001 

 

% Total Organic Matter  

Content 

Concentration of 

Chromium in Shoots 

(mg/kg) 

Concentration of 

Chromium in Roots 

(mg/kg) 

35%  93  ± 14 160 ± 16 

17.5%  280 ± 23 520 ±  40 

0.42% 1200  ± 140 3000  ±  210 
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Appendix (5) 

 

Numerical data for section 3.3.4 

 

Concentration of Chromium in roots and shoots of P. oleracea using different nutrient 

anions beside Cr(VI). 

 

Average length of the roots in each type of investigated plants and tolerance index 

 

 

 

Added chromium in soil and concentration measured at harvesting time.  

 
 

 

 

 

Companying Ion to 

Cr(VI)  and Plant Tissue 

Concentration of Cr in 

dry roots (mg/kg) 

Concentration of Cr in dry 

shoots (mg/kg) 

NO3
-
    550 ± 90 180 ± 90 

SO4
2-

   1100 ± 130 280 ±  90 

PO4
3-

   650 ± 100 130 ± 30 

Cr (VI) only 840 ± 100 400 ± 100 

Cr(VI) only With nitrate With sulfate With phosphate 

Control Exp. Control Exp. Control Exp. Control Exp. 

23.8 ± 2.2 16.6 ± 2.7 24.4 ± 2.7 24.2 ± 2.4 24.0 ± 3.0 15.0 ± 2.5 24.1 ± 2.8 21.4 ± 3.1 

Tolerance 

Index 

0.70 ± 0.14  0.99± 0.14  0.62 ± 0.10  0.88± 0.15 

Irrigation Solution 

 

Added chromium 

(mg/kg) 

Measured at harvesting 

time (mg/kg) 

Na2CrO4 + 0.02M of NaNO3 120 110 ± 5 

Na2CrO4+ 0.02M of Na3PO4 120 105 ± 5 

Na2CrO4only 120 
95 ± 10 

Na2CrO4+ 0.02M of Na2SO4 120 90 ± 10 
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Multiple Comparisons of means of concentration of Cr in roots in the presence of 

different nutrient anions in the irrigation solution. (SPSS- Tukey HSD) 

Dependent Variable: Concentration of total chromium in roots of P. oleracea  
 
  

           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Multiple Comparisons of means of concentration of Cr in shoots in the presence of 

different nutrient anions in the irrigation solution. (SPSS- Tukey HSD) 

Dependent Variable: Concentration of total chromium in shoots. 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Anions in 
irrigation 
solution 

Compared groups 
 
 

Mean Concentration 

of total chromium in 

roots (mg/kg) 

Significance  

(p value) 

Cr(VI) only 
  
  

Cr(VI) + Nitrate  550  <0.001 

Cr(VI) + Sulfate  1100 0.02 

Cr(VI) + Phosphate 650  0.06 

Cr(VI) + Nitrate  
  
  

Cr(VI) only 840  <0.001 

Cr(VI) + Sulfate 1100 <0.001 

Cr(VI) + Phosphate 650 0.49 

Cr(VI) + Sulfate 
  
  

Cr(VI) only 840 0.02 

Cr(VI) + Nitrate 550 <0.001 

Cr(VI) + Phosphate 650 <0.001 

Cr(VI) + Phosphate 
  
  

Cr(VI) only 840 0.06 

Cr(VI) + Nitrate 550 0.49 

Cr(VI) + Sulfate 1100 <0.001 

Anions in 
irrigation 
solution 

Compared groups 
 
 

Mean Concentration 

of total chromium in 

roots (mg/kg) 

Significance  

(p value) 

Cr(VI) only 
  
  

Cr(VI) + Nitrate  180 <0.001 

Cr(VI) + Sulfate  280  0.13 

Cr(VI) + Phosphate 130  <0.001 

Cr(VI) + Nitrate  
  
  

Cr(VI) only 400  <0.001 

Cr(VI) + Sulfate 280 0.10 

Cr(VI) + Phosphate 130 0.59 

Cr(VI) + Sulfate 
  
  

Cr(VI) only 400 0.13 

Cr(VI) + Nitrate 180 0.10 

Cr(VI) + Phosphate 130 0.01 

Cr(VI) + Phosphate 
  

Cr(VI) only 400 0.00 

Cr(VI) + Nitrate 180 0.59 

Cr(VI) + Sulfate 280 0.01 
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Appendix (6) 

 

Numerical data for section 3.3.5 

 

 

 

Concentration of sulfur and chromium in roots and shoots of Portulaca at different levels 

of sulfate in the irrigation solution (at half concentration of both elements) 

In irrigation solution 

(mg/kg) 
In Roots (mg/kg) In Shoots (mg/kg) 

Sulfur Chromium Sulfur Chromium Sulfur Chromium 

0 100 112 ± 21 562 ± 90 182 ± 39 315 ± 80 

150 100 262 ± 37 701 ± 107 380 ± 72 272 ± 81 

300 100 370 ± 72 990 ± 117 561 ±102 294 ±74 

600 100 470 ± 70 1010 ± 94 679 ± 138 270 ± 67 

900 100 779 ± 78 635 ± 82 891 ±152 208 ± 61 

Control (Irrigated by 

deionised water 

173 ± 40 <0.5  288 ± 56 <0.5 
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Multiple Comparisons of means of concentration of Cr in roots in the presence of 

different concentrations of sulfur in the irrigation solution. 

Dependent Variable: Concentration of total chromium in roots (SPSS- Tukey HSD) 
 

Conc. of sulfur 
in irrigation 

soln.  (mg/kg) 
 

Compared 
groups 

 

Mean Concentration of 
total chromium in roots 

(mg/kg) 

Significance  

(p value) 

S0 
  
  
  

S300 1350 <0.001 

S600 1300 <0.001 

S1200 830 0.06 

S1800 640 <0.001 

S300 
  
  
  

S0 990 <0.001 

S600 1300 0.99 

S1200 830 <0.001 

S1800 640 <0.001 

S600 
  
  
  

S0 990 <0.001 

S300 1350 0.99 

S1200 830 <0.001 

S1800 640 <0.001 

S1200 
  
  
  

S0 990 0.06 

S300 1350 <0.001 

S600 1300 <0.001 

S1800 640 0.02 

S1800 
  
  
  

S0 990 <0.001 

S300 1350 <0.001 

S600 1300 <0.001 

S1200 830 0.02 
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Multiple Comparisons of means of concentration of Cr in shoots in the presence of 

different concentrations of sulfur in the irrigation solution. (SPSS- Tukey HSD) 

Dependent Variable: Concentration of total chromium in shoots.  

Conc. of sulfur in 
irrigation soln.  

(mg/kg) 
 

Conc. of sulfur 
in compared 

groups 
 

Mean Concentration of 
total chromium in 

shoots (mg/kg) 

Significance  

(p value) 

S0 S300 550 1.00 

  S600 550 1.00 

  S1200 450 0.19 

  S1800 440 0.18 

S300 S0 450 1.00 

  S600 550 1.00 

  S1200 450 0.15 

  S1800 440 0.14 

S600 S0 450 1.00 

  S300 550 1.00 

  S1200 450 0.17 

  S1800 440 0.16 

S1200 S0 450 0.19 

  S300 550 0.15 

  S600 550 0.17 

  S1800 440 1.00 

S1800 S0 450 0.18 

  S300 550 0.14 

  S600 550 0.16 

  S1200 450 1.00 
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Appendix (7) 

 

Numerical data for section 3.3.6 

 

Average length of the roots and tolerance indexes for chromium(VI) in the presence of 

different cations. 
 

 

 

 

 

 

 

 

 

 

Concentration of Chromium in dry tissues of Portulaca oleracea irrigated by chromate 

accompanied with different cations. 

 

 

 

 

 

 

 

 

 

 

Added chromium in soil and measured at harvesting time  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Irrigation solution Average Length 

of Roots (cm) 

Tolerance Index TI 

Na2CrO4  17 ± 2.2 0.74 ± 0.11 

K2CrO4  9.1  ± 1.5 0.39 ± 0.08 

(NH4)2CrO4  12.1 ± 2.1 0.53 ± 0.10 

Control 23.1 ± 3.1  

Accompanying cation to 

Cr(VI) 

 

 

Concentration of Cr mg/kg 

In Dry Roots In Dry Shoots 

Na
+
   860 ±100 340 ± 100 

K
+
        1800  ± 300 820 ± 190 

NH4 
+
  1560  ±130 710 ± 120 

Irrigation Solution 

 

Added chromium 

(mg/kg) 

Measured at harvesting 

time (mg/kg) 

Na
+
   120 100 ± 5 

K
+
        120 90 ± 10 

NH4 
+
  120 90 ± 10 
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Multiple Comparisons of means of concentration of Cr in roots in the presence of 

different cations in the irrigation solution (SPSS- Tukey HSD). 

Dependent Variable: Concentration of total chromium in shoots.  
 

Cation 

 

 

 

Cations of compared 

groups 

 

Mean Concentration of 
total chromium in roots 

(mg/kg) 
 

Significance  

(p value) 

sodium  potassium -1300 
<0.001 

 
ammonium -10000 

<0.001 

potassium  sodium 1300 
<0.001 

 
ammonium 240 

0.08 

ammonium  sodium 1000 
<0.001 

 
potassium -240 

0.08 
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Appendix (8) 

Numerical data for section 3.3.7  

Uptake of chromium (III) in roots and shoots of Portulaca in the presence of EDTA and 

citric acid. 

 

 

 

 

 

 

Added chromium in soil and measured at harvesting time  

 
 

 

 

 

 

 

 

 

 

 

Multiple Comparisons of means of Uptake of chromium (III) in of Portulaca in the 

presence of EDTA and citric acid using SPSS, Tukey- HSD. 

Dependent Variable: Concentration of total chromium in roots. 

 

Chelating agent 

added to chromium 

 

 

Compared 

groups 

 

Mean Concentration of 
total chromium in roots 

(mg/kg) 
 

Significance  

(p value) 

Cr  only  citric 
930  

0.004 

 EDTA 
220  

0.001 

citric  Cr only 650  0.004 

 EDTA 220 .<0.001 

EDTA  Cr only 650 0.001 

 citric 930 <0.001 

 

Irrigation Solution 

Components 

Concentration in 

Root (mg/kg) 

Concentration in Shoots 

(mg/kg) 

Cr (III) only  650 ±110 220 ± 30 

Cr (III) + Citric Acid  930 ± 130 430 ± 190 

Cr (III) + EDTA  220 ± 40 390 ± 60 

Irrigation Solution 

Added chromium 

(mg/kg) 

Measured at harvesting 

time (mg/kg) 

Cr (III) only  
100 90 ± 5 

Cr (III) + Citric Acid  100 
90 ± 5 

Cr (III) + EDTA  100 
94 ± 5 
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Multiple Comparisons of means of Uptake of chromium (VI) in of Portulaca in the 

presence of EDTA and citric acid using SPSS, Tukey- HSD. 

Dependent Variable: Concentration of total chromium in roots. 

 

Chelating agent 

added to chromium 

 

 

Compared 

groups 

 

Mean Concentration of 
total chromium in roots 

(mg/kg) 
 

Significance  

(p value) 

Cr  only  citric 
450 

<0.001 

 EDTA 
730  

0.091 

citric  Cr only 740 
<0.001 

 EDTA 730 
<0.001 

EDTA  Cr only 740 0.091 

 citric 450 <0.001 
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Appendix (9) 

 

Numerical data for section 3.4.1 

 

Calibration curves of ascorbic acid, dehydroascorbic acid, glutathione, glutathione 

oxidised using HPLC-MS.  
 

y = 348.41x + 7534.7
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Calibration curve of ascorbic acid 
 

y = 124.04x + 1638.6

R2 = 0.9994
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Calibration curve of dehydroascorbic acid 
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y = 3291.1x - 535.22

R2 = 0.9998

0

5000

10000

15000

20000

25000

30000

35000

0 2 4 6 8 10 12

Concentration ppm

P
e
a
k
 A

re
a

 
Calibration curve of glutathione  
 
 

y = 2968.6x + 128.68

R2 = 0.9991
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Calibration curve of oxidised glutathione  
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Appendix (10)  

Portulaca oleracea  

Portulaca oleracea or Purslane (Figure 1) is a succulent plant that grows naturally in 

the coast line of the UAE. The growth of this plant is mostly between March and December 

or in the warm to hot seasons of UAE. The plant is being used for nutrient and medical 

purposes. In Arabian countries, it is used in salad since it is rich in vitamins such as A and C 

and omega-3 fatty acids. It has both laxative and diuretic effect and it is used for treatment 

of burns and as an anti-scorbutic. The whole plant is effective as an antibacterial in bacterial 

dysentery. The plant can  be reproduced either by seeds which are tiny and black or by 

cuttings of the stem of the plants which are much branched [1]. The plant can spread 

vertically up to 16 inches and horizontally between 2-3 feet.  

 

 

 

 

 

 

 

Figure(1) Portulaca oleracea or Purslane. 

 [1] M.V.D Jongbloed, Wildflowers of the United Arab Emirates, Environmental Research 

and Wildlife Development Agency (ERWDA), 2003. 
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Appendix (11)  

Portulaca oleracea grown in the incubator in Huddersfield laboratory  
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Appendix (12) 
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Names and pictures of some investigated plants in the present study. 

 

 
 

 
 

 

Euphorbia Larica  

Cyperus conglomerates  Tamarix aucheriana  Prosopis juliflora  

Calotropis procera  Prosopis cineraria 

Portulaca oleracea Atriplex halimus Bougainvillea spinosa 

Iresine herbestii Pennisetum setaceum Azadirachta indica 


