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SIMULATION OF ADAPTIVE SAMPLING IN PROFILE 
MEASUREMENT FOR STRUCTURED SURFACES 
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School of Computing and Engineering 
University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK 

 
 

ABSTRACT 
 
Adaptive sampling is a novel sampling design that can redirect sampling effort during a survey in 
response to the observed values. Its application on surface texture measurement is new, such as 
working with stylus profilometers. As a start, this paper focuses on a classical one-dimensional 
adaptive sampling in surface texture measurement for structured surfaces. The sampling simulations 
show that both the reconstruction accuracy and repeatability have a significant improvement 
compared to the uniform sampling – the most prevalent strategy at present.  
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1     INTRODUCTION 
 
It is well known that uniform sampling is the current mainstream sampling method in surface metrology 
and is employed in all the current areal surface measurement instruments [1]. However, along with the 
development of the structured surfaces which is recognized as more and more important, some 
intelligent sampling methods in surface measurement are brought forward. There are many different 
intelligent sampling methods at present which are usually non-uniform. Among them, “adaptive” 
sampling is an important branch because of its robust flexibility to a wide range of complex surfaces. 
Many scientists [2-5] in CMM industry have contributed on this field. Some of the methods have been 
demonstrated to work very well in scanning CMM for its flexible sampling path design. However, in 
surface metrology which is oriented to surface texture measurement in micro or nano scale, 
instrumentation limitation (for example the fixed uniform CCD pixel structure) determines the 
difficulties of the technique transfer. Development of the intelligent sampling methods for surface 
metrology instruments has a unique situation. 
 
As the mainstream of surface measurement, uniform sampling has been widely used in industry and 
scientific research such as precision engineering and biomedical analysis. An important viewpoint 
about the popularity of the uniform grid is that there is a reluctance to using anything other than a 
rectangular sampling scheme because it is perceptually more satisfactory for humans to observe 
straight vertical features on a square grid pattern [6]. Computing convenience benefits from the 
uniform grid sampling as well for example, it is very simple to move from a 1D FFT to a 2D FFT simply 
by taking all the rows in turn and then the columns, i.e. using the tensor product surface method [7].  
 
Along with the development of structured surfaces which is firstly strictly defined by Evans in 1999 [8], 
it is recognized that intelligent sampling methods are in need in surface texture measurements. Such 
surfaces are usually designed to provide special functions such as self-cleaning, wide spectrum light 
absorption and good heat transfer. Their surface textures are dominated by deterministic features 
rather than random imperfections. Because of the interest on structured surfaces is no longer the 
single roughness or form error, but rather the dimensional parameters are of more importance, 
intelligent sampling methods are required to make the measurement more efficient and accurate.  
 
One-dimensional adaptive sampling (profile measurement) is simulated in this study. It is known there 
are many different adaptive sampling methods and a single method can derive different sampling 
results because of the uncertainty of setting the starting sampling point or other pre-defined 
conditions. It has been shown [9] that for any iterative method, the final result is sensitive to the 
starting conditions. Therefore it is still a question that how stable adaptive sampling is compared to 
uniform sampling, though the method is expected to provide more accurate results. In this paper, 
working with the first degree spline reconstruction, the reconstruction accuracy for adaptive sampling 
is computed. By randomly setting initial conditions, the sampling repeatability is also analyzed.  
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2     THE ALGORITHM 

 
If we can identify the regions of the signal with frequencies higher than the Nyquist limit, we can take 
additional samples in those regions without needing to incur the computational expense of increasing 
the sampling frequency everywhere [10]. This is the basic premise of adaptive sampling. However, it is 
hard to find all the places where extra sampling is needed in practice if the CAD model of the signal is 
not given at the beginning. Even though a CAD model can be given in advance, the positioning error 
between the theoretical model and the practical work-piece is hard to control. Many proposed 
detecting techniques [2, 11] are based on examining adjacent sample values and finding places where 
there is a significant change in value between the two; the assumption is that the signal has high 
frequencies in that region [10]. Therefore, it is still the question to establish a robust technique to find 
the key places to be over sampled and the number of extra sampling points demanded. 
 
Nevertheless, in this study, the aim is to transfer the current adaptive sampling techniques to the 
surface metrology. Shih et al [2] developed an efficient one-dimensional adaptive sampling design 
algorithm which is presented as follows.  
 

1. For a given profile, divide the curve at inflection points, if any, into several segments that are 
solely concave or convex. 

2. For each segment, evaluate the approximation error of the interval containing the two 
endpoints on the profile curve. 

3. If the error is greater than a threshold that is a fraction of the initial error from step 2, an extra 
sampling point is inserted on the profile curve at the midpoint of the interval; Otherwise, stop; 

4. For each subinterval formed by insertion of a new point, repeat steps 3 and 4 until the 
approximation error of each interval is smaller than a threshold value.  

Applying the algorithm on several typical simulation signals, the tests are carried out (Figure 1). It is 
presented that the adaptive sampling allocate dense sampling points at key locations where has high 
curvatures. After reconstruction with linear interpolation, the root mean square error (RMSE) of the 
deviation from the original profile is computed using the Newton-Cotes formula in rectangle rule 
(N=400) (Table 1). It can be seen that except from the sinusoidal wave, adaptive sampling presents 
significantly lower RMS errors. Particularly for the triangle wave signal, the construction error is 
reduced an order of magnitude. 
 

3     TECHNIQUE TRANSFER 
 
To make the algorithm practical in profile measurement, an adaptive profile sampling measurement 
procedure is suggested for the stylus profilometer.  
 

1. For a given sample, locate the required sampling line under the stylus of a profilometer. 
2. Measure a profile using small enough sampling interval uniformly. 
3. Analyze the sampled profile and design the positions of necessary adaptive sampling points 

using the two-dimensional adaptive sampling algorithm mentioned in Part 2. 
4. Adaptively sample the profile again to obtain the data at designated locations. 

Thus the information at key positions is retained while other unnecessary information is excluded out. 
Basically the profile adaptive sampling acts like a data compress process. It does not reduce the 
measuring time because it samples a profile in twice, but storage of the sampling data is reduced. This 
is important when measuring the micro- form of a large (greater than 10 mm) profile in structured 
surface measurement. However, a key problem in this adaptive sampling process is the re-positioning 
of the second sampling. The repositioning accuracy of the stylus would be directly transferred to the 
consequent sampling positions. If a large enough bias from the anticipated sampling positions is 
occurred, a significant reconstruction error can be produced. 
 
A solution is suggested as follows in which the repositioning error can be ignored:  
 

1. For a given sample, locate the required sampling line under the stylus of a profilometer. 
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2. Measure a profile using small enough sampling interval uniformly. 
3. Analyze the sampled profile and design the positions of necessary adaptive sampling points 

using the two-dimensional adaptive sampling algorithm mentioned in Part  2. 
4. Retain the sampled data at the designated positions analyzed at step 3 while other information 

is excluded. 
 

Except from the fourth issue, the revised process is the same as the earlier process. In essence, this 
process has no difference from a data compression process in which only the important information in 
measurement is retained and others are pruned out.  

4     THE SIMULATION 
 
In this part, the proposed adaptive sampling method is tested. To make it practical, four typical 
structured surfaces containing bumps, triangle wave, saw-tooth and undulation curve are measured 
using the Talysurf PGI profilometer using 0.25 m as the sampling spacing. Considering the existence 
of the repositioning uncertainty, we set a random starting point for each sampling simulation. Then, the 
target data are adaptively or uniformly sampled by computing simulation using differing number of the 
sampling points. After simulating 100 times for each test, the reconstruction error and its variations are 
computed. The distribution of the sampling points is shown in figure 2, and the reconstruction 
accuracy and repeatability is presented in figure 3. 
 
In the simulated sampling processes for the four practical samples, the same result as described in 
part 2 is found. Adaptive sampling allocates dense sampling points at key locations with high 
curvatures. Under a predefined condition, adaptive sampling has lower reconstruction errors and 
uncertainties compared to the uniform sampling with the same size. It can be seen clearly from Figure 
3 that adaptive sampling presents a better performance of reconstruction error both on accuracy and 
precision. The RMS error of adaptive sampling is usually half of the error of uniform sampling. This is 
understandable because generally a dense uniform sampling has a lower reconstruction error and 
uncertainty than a sparse uniform sampling. Therefore, the adaptive sampling which is based on an 
initial dense uniform sampling and the second process to retain the key information leads to a better 
reconstruction performance. 
 
With increasing sampling size, the reconstruction errors of adaptive sampling and uniform sampling 
tend to converge. For the four samples above, when sampling points exceed 1000, the advantage of 
adaptive sampling becomes blurred. Therefore, if the required sampling size cannot be too large, 
adaptive sampling presents clearly a better performance of surface reconstruction both in accuracy 
and repeatability.  
 

5     CONCLUSIONS AND THE FUTURE WORK 
 
A profile adaptive sampling algorithm proposed by Shih et al [2] was redeveloped to two practical 
versions for stylus profilometers. Ignoring the potential repositioning error of the sensing stylus, the 
reconstruction accuracy and repeatability of the adaptive algorithms were tested on four practical 
structured surface samples. Compared with the uniform sampling at the same sampling size, the 
results show that the reconstruction accuracy and repeatability of adaptive sampling is clearly higher 
than uniform sampling when sampling size is not large enough. Thus it has smaller sampling 
uncertainties. 
 
However, the measuring time has not been reduced in practice for the profile measurement cases. 
The unique advantage of this method is that the data storage is reduced when keeping the same 
reconstruction accuracy comparing with uniform sampling. It acts like a data compression which has 
been investigated in image processing.  
 
Although the one-dimensional adaptive sampling has no advantage in reducing the measuring 
duration, the two-dimensional adaptive sampling (areal measurement) based on an adaptive selection 
of measuring cross-sections is expected to improve efficiency. The method based on the CAD model 
has been proposed by Shih [2] in 2008. However, in practical measurement, there are some difficulties 
need to be solved. The most awkward two problems are: 
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1. The deviations exist between the practical samples and the CAD models. If a sampling design 
based on the CAD model is given, the consequent measurement could miss some 
imperfections such as defects. 

2. The positioning or repositioning error of the applied instrument always exists. Therefore, the 
practical sampling positions would have a bias from the anticipated positions.  

 
The next step of the research is to implement the method on areal measurement. The advantage both 
on measuring time, data storage and reconstruction uncertainty is expected to be realized in that case. 
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 Table 1. The RMS error of uniform sampling and adaptive sampling for the typical periodic signals 
 
Signal type Triangle wave (42 

points) 
Square wave (65 
points) 

Sinusoidal signal (49 
points) 

RMSE of uniform 
sampling 

3.6  10-3 m2 9.5  10-3 m2 2.1  10-3 m2 

RMSE of adaptive 
sampling 

3.2  10-4 
m2 5.2  10-3 

m2 2.2  10-3 
m2 

 
 

 
 
Figure 1. Comparison of uniform sampling and adaptive sampling. (a) 42 points uniform sampling and 

(b) 42 points adaptive sampling for triangle-wave signal; (c) 65 points uniform sampling and (d) 65 
points adaptive sampling for square wave signal; (e) 49 points uniform sampling and (f) 49 points 

adaptive sampling for sinusoidal signal. 
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Figure 2. Comparison of adaptive sampling and uniform sampling for (a, b) bumps, (c, d) triangle 
wave, (e, f) saw-tooth and (g, h) undulation curve. 

 
 

.  
 

Figure 3. RMS reconstruction error and variations of adaptive sampling (blue) and uniform sampling 
(mauve) using different sampling sizes for practical samples (a) bumps (b) triangle wave (c) saw-tooth 

wave and (d) undulation wave. 
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