
University of Huddersfield Repository

Lockwood, Stephen

Design of an obstacle avoidance system for automated guided vehicles

Original Citation

Lockwood, Stephen (1992) Design of an obstacle avoidance system for automated guided vehicles.
Doctoral thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/9285/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

DESIGN OF AN OBSTACLE
AVOIDANCE SYSTEM FOR

AUTOMATED GUIDED
VEHICLES

Stephen Lockwood .

A thesis submitted to the University of
Huddersfield in Partial fulfillment of the
requirements for the degree of Doctor of

Philosophy.

October 1992

The University of Huddersfield in
collaboration with the Holset Engineering

Company Limited.

P ¥ "

CONTENTS

Page

ACKNOWLEDGEMENTS

ABSTRACT

LIST OF FIGURES

1 INTRODUCTION

1.1 Automated Guided Vehicles and Factory Automation 1

1.2 Research Objectives 2

2 BACKGROUND TO THE RESEARCH

2.1 Summary 6

2.2 An Introduction to the Guidance Methods A vailable for
Automated Vehicles 6

2.2.1 Line Following Techniques 7
2.2.1.1 Passive Line Guidance 7
2.2.1.2 Active Line Guidance 8
2.2.1.3 Other Line Following AGV Guidance Methods 8

2.2.2 Free Ranging AGV Navigation 9

2.3 Review of Obstacle Avoidance Research 10

2.3.1 Architectures For Obstacle Avoidance 11

2.3.2 Sensors and Systems Used For Obstacle Avoidance 11
2.3.2.1 Ultrasonic Systems 12
2.3.2.2 Optical Systems 13

2.3.3 The Need for a New Obstacle Avoidance System 15

3 DESIGN OF A LOW-COST OBSTACLE DETECTION
SYSTEM

3.1 Summary 17

3.2 The Application of Structured Light for Measurement
and Detection 17

3.3 Method of Light Generation and Projection 19

3.4 Design for a Novel Light Coding Scheme 20

I

4 HARDWARE FOR THE OBSTACLE DETECTION AND
EMBEDDED COMPUTER SYSTEM

Page

4.1 Summary 27

4.2 The CCD Video Camera as a Sensing Element 28

4.3 Description of the Video Digitising System 28

4.4 Introduction to the Intel MCS-51 Series Microcontroller 32

4.5 The Embedded Computer Development System 35

5 DIGITAL SIGNAL PROCESSING

5.1 Summary

5.2 Digital Filter Design

5.3 Direct Methods for Code Feature Extraction

6 REFLECTED LIGHT CODE RECOGNITION

6.1 Summary

6.2 Light Code Calibration Method

6.3 Light Code Recognition

7 EXPERIMENTAL VEHICLE DESIGN

38

39

46

50

50

53

7.1 Summary 57

7.2 Review of A GV Drive Configurations 57

7.3 Overview of the Experimental Vehicle Design 59

7.4 The HCTL-1100 Microprocessor Based Motor Controller 60

7.4.1 Interface With Intel-8031 Embedded Microcontroller 62

7.4.2 Types of Output 64

7.4.3 Types of Control 65

7.4.4 HCTL-1100 Digital Motor Controller Tuning 68

8 DEVELOPMENT OF THE OBSTACLE AVOIDANCE
STRATEGY

8.1 Summary

8.2 Obstacle Avoidance Algorithms

II

70

71

Page
8.2.1 'LeftOrRight' Subroutine 73

8.2.2 'TURNAGV'Subroutine 74

8.2.3 • ADV ANCEAGV' Subroutine 76

8.2.4 'RECOVER' Subroutine 78

8.3 Obstacle Avoidance Simulation Package 81

8.4 Obstacle Avoidance Algorithms Transferred to the Intel
8031 Embedded Microcontroller 84

9 EVALUATION OF THE OBSTACLE AVOIDANCE
SYSTEM

9.1 Summary 87

9.2 Obstacle Detection System 87

9.3 Response Time and Real-Time Operation Accuracy and
Repeatability 90

10 CONCLUSIONS, LIMITATIONS AND
RECOMMENDATIONS FOR FURTHER WORK

10.1 Conclusions 110

10.2 Limitations of the System and Recommendations for
Further Work 113

REFERENCES

APPENDICES

A 1 Embedded Computer and Memory Access Buffer Circuit
Diagrams

Al.l Intel 8031 Computer

A 1.2 Memory Access Buffers

A2 Pascal Tenninal Emulation Software Listing

A3 Assembler Obstacle Avoidance Software Listing

A4 Motor Control Circuits and HCTL-11 00 Specifications
A4.1 Dual Motor Control Circuit

A4.2 H-Bridge Motor Drive Amplifier

A5 Assembler Motor Control Software Listing

A6 Pascal Obstacle Avoidance Model Software Listing

III

ACKNOWLEDGEMENTS

I would like to express my gratitude to all in the School of Engineering at the

University of Huddersfield and AMECAS for their help and friendship throughout the

research project.

Thanks in particular to Dr Bruce Mehrdadi and Dr Jeff Chandler (Directors of Studies)

for their technical input and editorial assistance in the preparation of the thesis. Their

relentless encouragement, support and sense of humour have been invaluable. Special

thanks are also extended to Dr Mike Freeman (Supervisor) for his technical advice and

for proof reading the thesis. His feedback has been most helpful and constructive.

I would also like to express my gratitude to all the Technicians in the Engineering

Systems Division for their practical help during the development of the hardware for

. the research.

Finally I would like to thank my partner Jacinta. lowe her much for her help in

preparing the thesis, and more for her unwavering love and support.

ABSTRACT
Most Industrial Automated Guided Vehicles CAGV s) follow fixed guide paths

embedded in the floor or bonded to the floor surface. Whilst reliable in their basic

operation, these AGV systems fail if unexpected obstacles are placed in the vehicle

path. This can be a problem particularly in semi-automated factories where men and

AGVs share the same environment.

The perfonnance of line-guided AGVs may therefore be enhanced with a capability to

avoid unexpected obstructions in the guide path. The research described in this thesis

addresses some fundamental problems associated with obstacle avoidance for

automated vehicles.

A new obstacle avoidance system has been designed which operates by detecting

obstacles as they disturb a light pattern projected onto the floor ahead of the AGV. A

CCD camera mounted under the front of the vehicle senses obstacles as they emerge

into the projection area and reflect the light pattern.

Projected light patterns have been used as an aid to static image analysis in the fields

of Computer Aided Design and Engineering. This research extends these ideas in a

real-time mobile application. A novel light coding system has been designed which

simplifies the image analysis task and allows a low-cost embedded microcontroller to

carry out the image processing, code recognition and obstacle avoidance planning

functions.

An AGV simulation package has been developed as a design tool for obstacle

avoidance algorithms. This enables potential strategies to be developed in a high level

language and tested via a Graphical User Interface. The algorithms designed using the

simulation package were successfully translated to assembler language and

implemented on the embedded system. An experimental automated vehicle has been

designed and built as a test bed for the research and the complete obstacle avoidance

system was evaluated in the Flexible Manufacturing laboratory at the University of

H uddersfield.

LIST OF FIGURES
eage

2.3.1.1 Subsumption Architecture 11

3.3.1 Projector Lens System 19

3.3.2 Projector - Camera Geometry 20

3.3.3 Projected Light Distortion 20

3.4.1 Projector Masks 21

3.4.2 Obstacle Distorting Projected Dot Grid 21

3.4.3 Distorted Dot Grid After Edge Detection and Thresholding 22

3.4.4 Projected Light Pattern Tends to 'Grow' from the Ground 23

3.4.5 Uniform Vertical Bar Pattern 24

3.4.6 'Letterbox' Viewing Area 24

3.4.7 Projected CCD Elements are Approximately 3mm X 3mm

at a Distance of 1 Metre 25

3.4.8 Vertical Bar Code Projection Mask 26

4.3.1 Composite Video Signal 29

4.3.2 Video Frame Store and Memory Access Buffers 31

4.4.1 Intel 8051 Block Diagram 32

4.4.2 a) Embedded Computer System

b) 8031 Memory Map 34

4.4.3 Method of Digitising Video Image into Two Interleaved

Blocks 35

4.5.1 Development System 36

5.1.1 Obstacle Detection System 38

5.2.1 Grey Level Graph of a Horizontal Strip of the Image 39

5.2.2 Digital Transversal Filter 41

5.2.3 Transversal Filter Frequency Response 41

5.2.4 C-R Filter 43

5.2.5 Frequency Response of a Filter Derived Using Bilinear

Transform Method 43

5.2.6 Simply Derived Digital Version of a C-R Analogue Filter 44

I

~
5.2.7 Video Data After Recursive Filtering 46
5.3.1 Typical Filtered Code Pattern Shape 48
5.3.2 Relationship Between Code Features 48
5.3.3 Turning Point Detector Algorithm 49
5.3.4 Video Data and Results fonn Peak Extraction Algorithm 49

6.2.1 Code Calibration Board Must Fill Camera Field of View 52
6.2.2 Flow Chart for Automatic Code Calibration Algorithm 53
6.2.3 Calculation of T1, T2 and T3 54
6.3.1 Code Features Transfonned 54
6.3.2 Flow Chart of Code Detection Algorithm 55

7.2.1 Three Wheel AGV Design 58

7.2.2 Differential AGV Drive Arrangement 58
7.3.1 Experimental Vehicle Suspension System 59
7.3.2 Experimental Vehicle 61

7.3.3 Camera Mounting Detail 62

7.4.1 Experimental Vehicle Drives 63

7.4.2 Experimental Vehicle Drive Block Diagram 63

7.4.3 HCfL-l100 Simplified Functional Block Diagram 64

7.4.2.1 H-Bridge Amplifier 65

7.4.2.2 PWM Motor Controller Output Signals 66

7.4.3.1 HCTL-l100 rapezoidal Profile Mode 68

8.2.1 Automated Heading and Deviation 72

8.2.2.1 Flow Chart for 'TURN' Algorithm 75

8.2.2.2 Flow Chart for 'TEST_TURN' Procedure 75

8.2.3.1 Distance That Automated Vehicle Must Advance to Clear

an Obstacle 76

8.2.3.2 Flow Chart for 'ADVANCE' Procedure 77

8.2.3.3 'ADV ANCE' Procedure Fails if Gap is Too Small for

Automated Vehicle to Negotiate 78

8.2.4.1 Simplistic 'RECOVER' Procedure 79

8.2.4.2 AGV 'RECOVER' Procedure 80

II

8.2.4.3

8.3.1

8.3.2

9.2.1

9.2.2

9.2.3

9.2.4

9.2.5

9.3.1

9.3.2

9.3.3

9.3.4

9.3.5

9.3.6

9.3.7

9.3.8

9.3.9

9.4.1

9.4.2

9.4.3

9.4.4

9.4.5

Flow Chart for 'RECOVER' Procedure

Graphical Elements of Computer Model

a) Single Obstacle Avoidance

b) Double Obstacle Avoidance

c) A voidance of Three Obstacles

'Test Obstacle', Positioned in Light Pattern

Video Camera View of 'Test Obstacle'

Video Camera View of Matt Black Obstacle

Video Camera View of a Gloss White Board

Typical Obstacles Encountere in Factories

Oscilloscope Trace Showing Access Control Signal

Motor Control Signals lllustrating A voidance Response

Time

PWM Signal is Smoothed Due to Motor Inductance

Subtracted Motor Control Signals During 'TURN' Phase

of Obstacle Avoidance

Right Hand Motor Control Signal During 'ADVANCE'

Phase of Obstacle A voidance

Moving Obstacle Test

Sequence of Photographs Showing Moving Obstacle

Real-Time Test

Photograph Showing Real-Time Path Correction

Photograph Showing System Responding to Two Obstacles

Accuracy of Obstacle A voidance System

Vehicle Path Defmed Parallel to Laboratory Wall

Photograph Showing Accuracy Test

Photograph Showing Accuracy Test

Photograph Showing Repeatability Test

III

~e

81

82

84

85

86

89

89

90

90

91

94

95

95

98

98

99

100

102

103

104

105

106

108

109

1 INTRODUCTION

1.1 Automated Guided Vehicles and Factory
Automation

The frrst Automated Guided Vehicles (AGVs) were developed in the 19508 by Barrett

Electronics of the USA for use in warehouses[1J. These were automated trucks towing

trains of carts, guided by a wire system similar to that still used in many installations

today.

In 1990, the worldwide AGV market was worth about £2500 million having grown at

an annual rate of 12-15% in the previous decade[2]. This growth rate has led to the

appearance of AGVs in many guises ranging in complexity from basic units similar to

the original Barrett vehicles, to highly 'intelligenf legged automatons designed for

such tasks as extra-terrestrial exploration and hazardous environment inspection. In

general, the cost of automated vehicles is reflected in their performance. Complex and

expensive vehicles are used in applications where cost is secondary to safety or

research, whereas more basic types are employed in warehouses, offices and factories

where commercial viability is essential.

Only recently have automated vehicles been used widely in the manufacturing

industry. This is partly due to advancing computer technology and its falling cost, and

also, partly as a result of changing trends in industrial administration. In particular the

adoption of management philosophies such as Just In Time (JIT) coupled with the

concept of Flexible Manufacturing Systems (FMS) provide ideal environments for

AGVS[3].

The benefits brought about by automated vehicle systems include reduced labour costs

since drivers are not required, reduced paper work in the form of dockets and

1

requisitions and the fact that work need not be interrupted by rest periods. A further

major advantage of automated vehicles as opposed to traditional forms of factory

transport such as conveyors and railways, is that they allow more efficient use of the

available factory space. This is made possible by the fact that AGV s use unobtrusive or

hidden guide-paths that are only apparent when vehicles are actually present. At other

times, the thoroughfares can be used by people and other transport. Conveyors and

railways on the other hand, require exclusive routes constructed from intrusive steel

work and transport equipment.

1.2 Research Objectives

The research presented in this thesis has been carried out m collaboration with

AMECAS Ltd., (Advanced Manufacturing Equipment Control and Automation

Systems), a trading division of the Holset Engineering Company Ltd., Huddersfield.

This division was fonned as a small consultancy following the award winning in-house

implementation of a Flexible Manufacturing System at the Holset turbo-charger

manufacturing plant in Huddersfield.

The subject of the research was highlighted at an AMECAS Automated Guided

Vehicle installation in Doncaster, England. This factory is approximately 1/4 mile long

and several hundred metres wide. The AGV system is a wire-guided network of pallet

transporters operating along side manual trucks.

As mentioned in the previous section, a major benefit of AGV s is that they can share

space with people. However, as in the case of the Doncaster installation, a problem

occurs where automatic vehicles and similar manually operated vehicles are doing the

same job in the same work space. AGV s can not operate with the same level of

flexibility as manual truck drivers and require that their guide path be completely

unimpeded. In practice, objects such as untidily stacked pallets or bins are inevitably

2

---~-~---

placed in the AGV guide-path, which in turn leads to automated vehicles becoming

stranded. In a factory the size of the Doncaster installatio~ this is a severe problem as

the time taken to fmd and travel to stranded vehicles to clear obstructions can be

significant. This affects work schedules and hence disrupts production planning.

The problem of obstacle avoidance is associated with the guidance and navigation of

automated vehicles and two main solutions are possible:

o either completely replace the existing AGV system with a new

one that has the capability to avoid unexpected obstacles,

o or use an obstacle avoidance system that can be retrofitted to
existing vehicles.

As yet, no AGV system that can avoid unexpected obstacles is commercially available.

Even if such a system did exist, organisations would be unlikely to be persuaded to

reinvest heavily in a completely new installation. Rather, they would prefer to upgrade

existing vehicles with 'add on' obstacle avoidance units.

Much research has been carried out in the field of obstacle avoidance in attempts to

provide commercially viable systems. This is based on a variety of sensor systems and

techniques including ultrasound ranging systems, CCD camera systems, laser range

fmders and combinations of these. The research presented in this thesis is concerned

specifically with the rigorous requirements of the manufacturing industry and with the

high demands that such harsh operating environments place on any practicable design.

For example, a suitable system should not use moving parts since these would be

subject to the eventual ingress of dirt and wear resulting in a degradation of

perfonnance. This factor rules out the use of delicate mechanical sensors such as

rotating scanners and moving cameras etc.

Cost is a crucial factor affecting the acceptance of products by competitive industry.

Hence any retrofitting obstacle avoidance system must be low-cost. Not only in terms

3

of its relation to the value of the host vehicle, but also in its operation and

maintenance. This implies that the hardware must be relatively simple to install and

configure, preferably without the need for special calibration equipment.

A further constraint on the design of a retrofitting obstacle avoidance system is its

physical size. Although commercial automated vehicles come in many shapes and

sizes, an add-on system must be compact and light-weight enough to be relatively

unobtrusive when installed on the host vehicle. This excludes the use of relatively large

standard computers and suggests that a design based on compact, single-chip

microcontrollers is desirable.

Many automated vehicle systems described in the literature require detailed on-board

'knowledge' of the factory layout in order to perfonn obstacle avoidance tasks. These

tend to be application-specific and are not suited to general use. Although obstacle

avoidance is often treated as a completely separate issue to that of obstacle detection,

this research seeks to combine both detection and avoidance into a practical system

that is suitable for general applications.

The objectives discussed in the previous paragraphs have been translated into an

innovative obstacle avoidance system. This is based on a novel light pattern projection

system and a charged Coupled Device (CCD) imaging system. The light pattern is

projected onto the floor ahead of the automated vehicle and is not nonnally visible to

the CCD camera mounted under the front of the chassis. However, if an obstacle

emerges, the projected light pattern becomes visible to the camera, and the obstruction

is detected. The system then controls the vehicle drives to circumnavigate the

obstruction and rejoin the original guide path.

The complete obstacle avoidance system has been appraised in the Flexible

Manufacturing Laboratory at the University of Huddersfield. Extensive tests have been

carried out to confrrm the design specifications in terms of real-time operation, the

4

smallest detectable object, and the diverse range of obstructions that can be detected.

Several examples of the system detecting obstacles typical of those likely to be found

in factories are included. The perfonnance of the obstacle avoidance system is assessed

in terms of the accuracy with which it returns to the original guide path. The accuracy

with which it repeats a route given equivalent conditions and its ability to avoid

multiple obstacles are also presented

5

2 BACKGROUND TO THE
RESEARCH

2.1 Summary

This chapter explores the background to the problem of obstacle avoidance. A brief

overview of the guidance methods available for Automated Guided Vehicles (AGVs)

and mobile robots is presented. Options for solving the obstacle avoidance problem are

discussed and a solution is identified for further research. Relevant work by other

researchers is reviewed which highlights the key difficulties associated with detecting

and negotiating unexpected obstacles. This review confirms that further research work

is necessary towards the design of a low-cost, reliable obstacle avoidance system for

industrial automated guided vehicles.

2.2 An Introduction to the Guidance Methods
A vailable for Automated Vehicles

AGVs are guided using two basic systems:

o Line following. This is currently the most common method and

has been available since the birth of AGV technology

o Free ranging. Advanced systems which are only just starting to

be offered commercially.

6

2.2.1 Line Following Techniques

Line following is the most common method of automated vehicle guidance[41,

characterised by the fact that AGVs follow paths physically marked on the ground.

Either passive or active techniques can be used, depending on the application and the

operating environment[5).

2.2.1.1 Passive Line Guidance

Passive systems are common in relatively clean environments where AGV guide lines

are not vulnerable to hard wear and dirt. Various methods are used for marking and

detecting AGV guide paths depending on the particular design. An excellent review of

these and other methods of line guidance has been presented by Premi and Besant[6}.

. White line following systems use sensors consisting of infrared transmitters and

receivers to detect the presence and position of white or brightly coloured lines painted

or taped onto a dark floor, (or dark lines on light coloured floors). The position of a

line in relation to the sensors is used to derive control signals for the AGV drive

motors[7].

'Littons Patented Optical System'[l) uses a fluorescent compound to mark AGV guide

lines, which is invisible to the human eye under nonnal circumstances. Automated

vehicles are equipped with sensing heads consisting of ultra-violet lamps and optical

detectors which irradiate the chemical compound and detect its position. Control

actions are derived from the sensing heads in a similar fashion to white line following

systems.

Metal line systems differ from optical methods in that a metal adhesive tape is used to

mark AGV guide lines. This has the advantage that it can be concealed under carpets

or other floor coverings. Sensors on board AGVs (similar to metal detectors) are used

7

to detect the metal tape and derive control signals for the vehicle drives.

2.2.1 .2 Active Line Guidance

Active line guided systems are by far the most commonly used in factories, particularly

where the environment is too hostile for systems requiring paint or tape on the floor

surface. In active systems, AGV guide paths are marked by embedding large wire

loops 1 or 2cm below the floor surface which are driven by AC signals. Automated

vehicles equipped with pick-up coils sense the signals, the amplitude of which give a

measure of the proximity of the embedded wire and are used to derive steering control.

Each embedded guide loop is driven by a different frequency (typically in the range

I-15KHz) allowing AGVs to navigate between regions by using band pass filters to

select the required loop frequency and reject all others.

2.2.1 .3 Other Line Following AGV Guidance Methods

Other methods of AGV guidance which broadly fall into the category of passive line

following have been devised. In particular, Tsukagoshi, Miura and Yamauchi of Japan

have described a guidance system which uses ferrite tiles to construct lanes that cross

each other in a lattice arrangement[8J• AGV s follow the ferrite lanes using magnetic

sensors.

A variation on passive line following has been designed for a clean-room inspection

robot[9,lO,1l). This uses spot reflectors embedded in the floor at discrete intervals which

are illuminated using a powerful infrared lamp. Reflections from the spot marks are

detected using an infrared ceo camera. Steering control is derived from the position

of the spot reflections in the CCD image.

In general, passive line guided systems are not robust enough for harsh factory

8

environments because paint or foil tape can easily become worn away, and white lines

or spot reflectors can be obscured by dirt and debris. Also, white line following

systems depend on a high contrast between the line and the surrounding floor.

However, active embedded wire loops, are not subject to wear and debris and as a

result, have been installed widely in the manufacturing industries.

2.2.2 Free Ranging AGV Navigation

Free-ranging automated guided vehicles do not follow physical guide lines. Most

systems are based on odometry[12] (or dead reckoning) where vehicle position and

heading are derived from incremental encoders coupled to the AGV road wheels and

steering gear. Examples of this type of system can be seen in references[13,14,15J. The

main disadvantage of AGV navigation using odometry is its inaccuracy[12,161• If the

wheel diameters are not accurately matched, the floor not perfectly flat, or the wheels

pick up debris, errors accumulate in proportion to the distance travelled and can

become unacceptably large. This error may be reduced by combining odometry with

other methods of navigation. This approach has been adopted by Stephens Robins and

Roberts in their 'TURTLE' system which uses scanning lasers and optical sensors to

detect reflectors strategically positioned in known locations around the AGV

environment[17]. The angular bearing of the reflectors is used to triangulate the absolute

position of the vehicle, and this information is used to correct the accumulated

odometry error. Similar triangulation systems have also been designed which use

infrared beacons and detectors[18] and ultrasonic transponders and targets[19].

An alternative method of dead reckoning navigation based on inertial techniques has

been considered by Eaton-Kenway Incorporated of the USA[201. However, the cost of

mechanical or optical gyro sensors is high and as Tsumura points out[21], the technique

suffers from accumulative position errors in the same way as odometry.

9

Systems which do not use any fonn of dead reckoning guidance are based on

ultrasonic ranging[22) and imaging techniques[23,24,25) which attempt to build range

measurement maps of the AGV environment for navigation. Other systems employ

optical systems to achieve the same ends and also to recognise previously described

objects in the AGV environment[26,27].

Other work on free-ranging AGV navigation systems has tended towards the

integration of various sensing techniques in attempts to achieve high reliability and

accuracy [28,29,30] •

2.3 Review of Obstacle Avoidance Research

An obvious solution to the problem of obstacle avoidance would be to prevent objects

being placed in the path of automated vehicles. However, this undennines a major

benefit of AGV systems which is the sharing of common thoroughfares. In an

integrated environment, obstacles could only be totally prohibited from the working

environment by making the guide path exclusive to A GV s.

Alternatively, the whole wire guidance system could be replaced by a free-ranging

scheme with the means to avoid unexpected obstacles. Although considerable research

effort continues to be devoted to the design of free-ranging AGV systems the problems

which must be overcome to make such systems commercially viable are manifold.

These include high cost, high complexity, low speed of operation and low reliability.

Only one company has succeeded in commercially marketing a free-ranging AGV

system (based on the previously mentioned TURTLE laser range fmding system[l7,311),

and that does not overcome the crucial problem of obstacle avoidance.

10

2.3.1 Architectures For Obstacle Avoidance

Most current research on obstacle avoidance uses subsumption architecture[32) which

stems from work of biological origin[33). Subsumption architecture is a hierarchical

control structure with various priority levels. Each level of control has a set of

conditions which once met, triggers its action. A characteristic of the architecture is

that when a level of control is activated, all lower levels are inhibited. Figure 2.3.1.1

shows an example of an AGV hierarchical control structure incorporating three levels:

1. hardware safety devices

2. obstacle avoidance

3. navigation.

Level 3 is a general navigation control system which can be inhibited by an obstacle

avoidance control system should an unexpected obstacle be detected (level 2). Level 2

- can in turn be inhibited by the hard

wired safety bmnper (level 1) in the

event of an object being physically

touched by the Automated Guided

Vehicle.

2.3.2 Sensors and Systems
Used for Obstacle
Avoidance

Work on obstacle avoidance is almost

exclusive to free ranging AGV

systems since, to avoid unexpected

obstacles, the automated vehicle must

deviate from its planned path,

circumnavigate the obstruction and

11

AGVCONTROL
SYSTEM

LEVEL 1

Hardware Safety Devices

LEVEL 2

... Obstade Avoidanre Subsystem /

(
LEVEL 3 l

Navigation Control

~---~

Figure 2.3.1.1

Subsumption Architecture

either rejoin, or revise the original path. In order to achieve this, the AGV must have

some notion of where it is and where it is allowed to go on a new trajectory. This

knowledge is usually derived from a software model (or map) of the environment with

which the AGV compares its current perceived position[34,35,36J.

Although much work has been carried out on collision free path planning[37,38,39], a large

emphasis is now placed on sensing as the key probl em [34,36] and in particular achieving

reliable obstacle detection in real-time.

The sensors used in obstacle detection are either acoustic or optical and in some cases

both[40J.

2.3.2.1 Ultrasonic Systems

The relatively modest infonnation processing requirements of most ultrasonic ranging

systems can be met in real-time but their success is limited by inherent difficulties

associated with acoustics[34,35,40,41,42,43,44]. These include:

o Poor directionality which limits the accuracy in detennining the

spatial position of edges to about 10-50 em depending on the

distance of the target object from the sensor.

o Inaccuracies in distance measurements can easily occur due to

ultrasonic noise from external sources (for example, machine

tools, neighbouring sensors, hand tools being used or dropped on

the floor etc.) and also by multi-path echoes.

o Specular reflections occur when smooth surfaces are placed at an

angle to the sound source[41]. This leads to either the surface not

being detected at all or at best, appearing smaller than it actually

IS.

Systems have been designed to overcome the shortfalls of ultrasonic ranging methods

by integrating them with other technologies. For example, Evans and Krishnamurthy

12

et al(40) combine ultrasonic techniques with optical methods to navigate a 'health care

service' robot. An integrated system has been described by Hollingham[45J, which uses

twelve combined SONAR and infrared sensing heads distributed around the periphery

of an automated vehicle. Each Transputer based sensing head can be rotated by a small

stepper motor in order to scan its locality. A further transputer is used for overall

control of the system. Although these sensors may be useful in some automated

environments, their cost and delicate nature makes them unsuitable for most factory

based AGVs.

2.3.2.2 Optical Systems

Optical sensors used in obstacle avoidance systems range from laser range fmders to

CCD cameras and in general, present higher demands in terms of information

.processing because of their higher resolution. A system which uses both a colour video

camera and a laser range fmder[46) has been used to guide an Autonomous Land

Vehicle (AL V) along outdoor roadways[47J• The system uses the colour camera to

detect road edges and the laser range fmder to detect objects within the road edges.

Image processing is carried out by a powerful host computer and two dedicated digital

image processors. Range measurements are processed by a programmable systolic

array (the so-called 'warp machine')I48). Although this system is able to operate in real

time, (the warp machine has an array of 10 cells, each with a processor operating at 10

million floating point operations per second), the sheer size and cost of the hardware

makes it impractical in commercial industrial applications.

An obstacle avoidance system using stereo CCD video cameras has been described in a

multi-level architecture for vision based navigation[49). This system employs a powerful

multiprocessor computer work station and fast image processors to compare the stereo

disparity from the CCD camera images with that of a previously computed stereo

disparity map of the workspace floor. Although this obstacle avoidance system

13

operates in real time, the large multiprocessor work station is not carried on board the

mobile robot and the predetermined stereo disparity map of the ground floor is only

suitable for laboratory environments. For example, the system would fail if a new

pattern was introduced on the floor due to shadows, or spilt liquid, etc.

An alternative obstacle detection system has been described by Takeno and

Hachiyama[50], which proposes a new technology for processing stereo images called

the 'Laminated Difference Method'. However, this system does not avoid obstacles, it

only detects them and under controlled test conditions the system required four seconds

to process one pair of images. This performance is too slow for use on industrial

A utomated Guided Vehicles.

Stereo Obstacle detection systems require precise relative positioning of the cameras in

order to accurately calculate the position of features in the stereo image pair. An

obstacle avoidance system which uses a single, less critically positioned camera has

been described by Takeuchi, Enemoto and Nagai of Japan[51]. In this system a

monochrome CCD camera is mounted approximately 1 metre from the ground on top

of a mobile robot and focused on the floor ahead of the vehicle at an angle of 30

degrees from vertical. The obstacle detection system works on the principal that when

the scene in front of the mobile robot is illuminated (by two powerful lamps), changes

in grey level occur in the CCD image due to the boundaries between the plain floor

and potential obstacles. The CCD image is processed to detennine the positions of

such grey level changes and a "fuzzy" controller is implemented to execute collision

free motion[521. This system will operate successfully in controlled light conditions on

matt, uniformly coloured and textured surfaces. However, since the image processing

system takes no account of the true three dimensional nature of the robot environment,

it cannot distinguish between true obstacles and flat features on the floor such as pieces

of paper, changes in colour, or spilt liquids. Also, the system is easily deceived by

reflections from surrounding objects and glare from overhead lights.

14

2.3.3 The Need for a New Obstacle Avoidance System

A cost-effective approach to the obstacle avoidance problem is to design a modular

obstacle avoidance sub-system auxiliary to existing AGVs which does not reqUITe

modification to existing guidance networks. Enhanced performance of the overall

system would be achieved by enabling AGVs to negotiate unexpected obstacles.

AGV users who have invested heavily in line guided navigation systems are unlikely to

be persuaded to reinvest in free ranging systems to solve the problem of obstacle

avoidance. However, the prospect of improving the efficiency of an existing system by

installing a low cost modular obstacle avoidance unit is attractive. Existing

conventionally guided AGV systems may not have the "intelligence" to avoid

obstacles, but they are reliable if it is accepted that they will fail due to unexpected

obstructions. A low cost, modular obstacle avoidance system would not therefore

degrade the operation of an existing system; but it would enhance it by allowing AGVs

to avoid such objects in the guide path. A completely new, free-ranging system has a

high risk of for "teething" problems and may prove less reliable during nonnal,

obstacle free navigation.

The review of obstacle avoidance systems presented in this chapter has not revealed a

low cost and reliable system which is suitable for integrating into the control hierarchy

of existing AGV navigation systems.

For these reasons, the work presented in this thesis builds on that carried out by

Lockwood, Mehrdadi and Chandler[531, and is aimed at the design of a low cost,

modular system which can be retrofitted to existing conventional AGVs.

The single camera system described in the review[51,52) has provided a valuable preface

to the study of obstacle avoidance and using it as a starting point, this research is based

on the following hypotheses:

15

o The geometry of the optical system can be redesigned to enable

effective discrimination between true three dimensional objects

and two dimensional disturbances on the floor.

o illumination coding techniques can be developed to simplify the

image processing task and enable reliable obstacle detection.

o A low cost, self-contained system can be realised by employing

single chip microcomputers for image processing and steering

control.

16

3 DESIGN OF THE LOW COST
OBSTACLE DETECTION

SYSTEM

3.1 Summary

Light patterns have been used in applications such as metrology, Computer Aided

Engineering (CAE) and Computer Aided Design (CAD) to increase the information

content in optical systems. However, so called structured light is normally used in

static image analysis such'as off-line inspection and 3-D surface measurement.

This chapter reviews relevant research works based on projected light patterns and

introduces the concept of extending such systems for mobile use. Sections 3.3, 3.4 and

chapters 4,5 and 6 discuss the design of a novel obstacle detection system which is low

cost, simple to configure, self-contained and capable of operating in real-time.

3.2 The Application of Structured Light for
Measurement and Detection

Lighting with known geometrical properties that are used to obtain information in

illuminated scenes is referred to as 'structured' light[S4]. A 3-D machine perception

system which uses a standard slide projector and binary coded slide mask has been

describedrs51. The projector illuminates objects with a coded pattern (rather like a 'chess

board') and uses a CCD camera and image processing system to determine the range

of uniquely coded groups of light points. The surface of objects can be modelled from

these range datar56]. Two important features of this system are:

o The system has potential for use in mobile applications because

17

it requires only a single 'snap shot' image to completely analyse

a scene. This overcomes a problem called 'smudging' caused by

successive frame integration which can occur in mobile systems
that need multiple images[551•

o The hardware is low-cost since a standard slide projector and

single camera are used (ie. range measurement can be achieved

with a single camera as opposed to triangulation with a stereo
pair).

However, a major disadvantage of the 3-D machine perception system is the number of

computations required. As the authors point out, real-time operation could only be

achieved if the computations were speeded up by a factor of at least 300. This makes

the current system unsuitable for automated guided vehicles.

A 3-D measurement system has been designed using a similar projector but with a

uniform dot-grid mask rather than a binary codel571 • This system uses a CCD camera

which moves laterally on a sliding carriage. Images are acquired with the camera in

two positions and range measurements are derived from the relationship of the

projected dots in each image (rather like triangulating with stereo cameras). This

system has the disadvantages that it uses moving parts which will eventually need

service, and the image acquisition and processing procedures are too slow for mobile

applications. For example, if the moving camera was mounted on a vehicle which was

itself moving, the relationship between a pair of successive images would be extremely

complicated unless the precise relative motion of the vehicle was taken into account

(the 'smudging' problem described above).

Alternative light sources can be used to generate structured light. A system USIng

coherent laser light has been designed which acquires range and surface information

from two photographs of the same object with different laser light patterns[581. Surface

information is extracted by projecting a vertical grid of equidistant lines onto a subject

and analysing the image distortion. The system has the disadvantages that multiple

18

Images are required and image processmg IS carried out off line. Moreover, in

monochrome laser light systems, surfaces with a narrow colour band will only reflect

certain colours of light[59]. This problem does not occur when 'white' light, produced

for example by tungsten-halogen light sources is used because its spectrum contains

components of many colours. Detectable levels of white light are therefore reflected

from a wide range of surfaces.

The following design work draws on the research carried out for the machine

perception system described earlier[55,56). A novel light pattern has been developed

which allows the image processing task to be simplified in order to increase the speed

of operation. The light generation and projection system is based on a white light

source and adopts a single 'snap-shot' approach suitable for mobile systems.

3.3 Method of Light Generation and Projection

A standard slide projector is used to generate white light illumination. This allows

experiments to be easily carried out using projection masks housed in a standard 35mm

photographic slide format. Figure

3.3.1 shows a diagram of the lens

system. The geometry of the light

projector and CCD camera

(described in the next chapter) are

illustrated in figure 3.3.2. The aim

of the system is to project a light

pattern onto the floor ahead of the

automated guided vehicle, and

detect the distortion of the light

pattern caused by objects emerging

Reflector

19

Ught Source

Slide Mask
Lens

\ Lens

. /
~t

", I \

Figure 3.3.1

Projector Lens System

Side View

----)

Side
View

~ Projector

Camera

- 1 metre --

Front View

11 metre

~
- - (' I
~

F ron t
View

Figure 3.3.2
Projector - Camera Geometry

into the projection area (figure 3.3.3). The type of light pattern and the amount of

information required to reliably detect obstacles determines the speed of operation.

3.4 Design for a
Novel Light
Coding System

Various projection masks were

used in experiments, including

those illustrated in figure 3.4.1. The

presence of the ' pattern, for

example the dot grid shown in

figure 3.4.2 indicates the position

of an obstacle. In order to detect

the pattern by computer, images

20

Figure 3.3.3

Projected Light Distortion

I •••••••••••••••

1 ••••••••••••••• \1 "
••••••••••••••• 1'

••••••••••••••• ••••••••••••••• ' ,
••••••••••••••• \1

c ••••••••••••••• 1,

••••••••••• •••• 1 1 •••••••••••• :::1 i "-........ .
~""'-~~--- --- ---

Figure 3.4.1
Projector Masks

(-------• •••••••• ••••••••• •••••••••
r •••••••••
~ ,
~ LI········· r ••••••••• 1

1 ••••••••• 1

L ••••••••• !
!

were digitised into a matrix of grey levels. The resulting array was preprocessed using

an edge detection and thresholding algorithm. Edge detection is essentially a high-pass

filtering procedure which accentuates abrupt changes in contrast in an in1age.

Thresholding is a selection procedure used to detennine which edges are accepted for

image analysis and which are ignored[60,611• These processes help to eliminate the

effects of disparate contrast

caused by variable ambient

lighting conditions and obstacle

surfaces. The result of this

computational stage produced

the toroidal shapes visualised in

figure 3.4.3. The presence and

position of these shapes

indicates the size and position

of an obstacle.

The most effective masks are

those which project patterns that

are unlikely to occur naturally

Figure 3.4.2

Obstacle Distorting Projected Dot Grid

21

Figure 3.4.3

Distorted Dot Grid After Edge
Detection and Thresholding

(examples of ' naturally'

occurring patterns m this

context are graphics or text on

packing case sides etc). All

the projection masks with

discrete shapes such as

diamonds or dots set in a

predetern1ined grid perfornled

well and obstacles could be

reliably detected. However the

tasks of two-dimensional edge

detection and thresholding are

too time consuming to be

can-ied out by a low-cost enlbedded conlputer. The design was therefore simplified to

reduce the processing demands whilst maintaining its reliability.

When objects enter the projection area, they disturb the light pattern. Consequently,

this distortion appears to 'grow' from the floor and progress vertically in the in1age

(figure 3.4.4). This effect is enhanced by virtue of the projector/camera geometric

relationship as shown in the results presented in later chapters. Vertical bar patterns

can be used to enable the image processing task to be reduced from two dimensions to

one, providing that objects are stood on the floor (figure 3.4.5). In order to detect

obstacles, the system needs to process only a narrow horizontal strip of the image

which corresponds to the position where objects begin to distort the light pattern

(figure 3.4.6). However, unifonn bar patterns may become confused with patterns

ocurring on objects which are not obstacles to be avoided. For example unifonn

markings on distant walls or packing cases, or iron railings with uniformly spaced

vertical supports etc. A coded projection mask has been designed to assist in

overcoming this possibility of false obstacle detection[531.

22

Figure 3.4.4
Projected Light Pattern Tends to 'Grow'

from the Ground

23

Figure 3.4.5

In general, codes with a large

'information' content will result in the

Uniform Vertical Bar Pattern

most reliable obstacle detection. Such

a code could be realised in the form

of a projection mask consisting of

several differently spaced vertical

bars. However, the major

disadvantage of this approach, is that

only large obstacles, disturbing the

whole projected pattern could be

reliably detected. Since the system

must also be able to detect 'thin'

obstacles, several discrete codes across the image must be used and a compromise

between code size and video system resolution must be found.

Several factors affect the design of a compromise light code including the

Obstacle

~1".:'~i:>L--__ 'Letterbox'
Viewing Area

Light Pattern

Figure 3.4.6
'Letterbox' Viewing Area

24

CCOARRAY

CCD
Elements

I'
1 metre

FlQure 3.4.7

Approx.
311m

Projected CCO
Array

Projected ceo Elements Are Approximately

3mm X 3mm At a Distance of 1 metre

afonnentioned resolution of the detection system, the 'thinnest' detectable object, and

the required speed of the infonnation extraction algorithm. The central theme of this

design is its low-cost in tenns of both hardware and software, and therefore to maintain

modest memory requirements and high processing speed, images are digitised with a

horizontal resolution of 1:256. This results in a projected resolution of approximately

3mm at a distance of 1m with a viewing angle of 45 degrees using a 12mm camera

lens as shown in figure 3.4.7. A repetitive code similar to that shown in figure 3.4.8

was found to produce reliable results. This code horizontally divides the projection

area into discrete regions. The detection of any complete code indicates the presence of

an obstacle and its position in the image reveals the position of the obstacle in front of

25

the projector and camera.

The prototype image processing software includes an algorithm which automatically

identifies the features of the code pattern in use. This allows various masks to be

deployed without the need to specify the physical dimensions of the code. Chapter 5

describes the processing algorithms in detail and the range of suitable masks used in

the course of this research.

Figure 3.4.8

Vertical Bar Code Projection Mask

26

4 HARDWARE FOR THE
OBSTACLE DETECTION AND

EMBEDDED COMPUTER
SYSTEM

4.1 Summary

The hardware for the obstacle avoidance system and the video camera used to detect

obstacles are described in this chapter. The advantages of using robust Charged

Coupled Device (CCD) image sensors are also highlighted.

The video digitising system is described in section 4.3. This unit takes a standard

monochrome composite video signal as input and transforms it via a high-speed

analogue to digital converter into a 256 X 256 array of grey levels. This array is in a

fOffil which can be processed by the embedded computer system.

In section 4.4, the main features of the Intel MCS-51 series microcontrollers are

discussed and the design for the embedded computer system is presented. A shared

memory access scheme is described which enables the microcontroller to gain fast

access to the digitised video image array.

Finally in section 4.5, the complete embedded software development system is

discussed with particular reference to the methods used to design and debug Intel 8051

assembler codes.

27

4.2 The CCD Video Camera as a Sensing
Element

The falling cost of CCD arrays together with their improving quality makes them

eminently suitable for use in machine vision systems. Also, the robustness of modern

CCDs allows their use in systems that may be subject to noise, vibration and other

harsh environmental conditions. A low-cost monochrome CCD video camera is used as

the detection element of the obstacle avoidance system.

A particular feature of the 1/2" CCD array used in this design is its sensitivity, which

enables the camera to operate in light levels down to 0.5 Lux. Conversely, a built in

auto-iris adjusts the camera aperture according to the average light intensity falling on

the CCD array to prevent saturation in bright ambient light conditions.

The array consists of 370 X 350 light sensitive elements. Since the overall vision

system resolution is limited by the Video Frame Store rather than the camera, this

CCD camera fulfils the system requirements.

For objects to be avoided without collision, the projected light pattern must produce an

image at least as wide as the automated vehicle when it is focused on the floor. A

viewing angle of 45 degrees is required for the camera to detect the full width of such

an image at a distance of approximately one metre. This is achieved by using a 12mm

wide-angle camera lens.

4.3 Description of the Video Digitising System

A central feature of digital image processing systems is that they convert standard

composite video signals generated by cameras of the type described in section 4.2 into

a fonn which can be processed by a computer. This is nonnally achieved by digitising

28

the video signal and storing it in a memory array. Each picture element (or pixel) has a

numeric value representing the light intensity, or grey level, of the corresponding point

in the video image. Figure 4.3.1 shows the fonn of a composite video signal. As its

name suggests, it is an amalgamation of video infonnation and timing wavefonns. As

can be seen from the figure, each video line (corresponding to lines on a video monitor

or television) takes 64 micro-seconds to update. Standard video frames consist of 625

lines (in the UK), and therefore the complete video image is updated in 50

milliseconds. However, since this update rate can be detected by the human eye and

becomes irritating after a short

viewing time, (the television or video

screen 'flickers'), a system of

'interlacing' is employed to alleviate

the effect. Rather than transmitting

. video signals as line 1 through to 625

consecuti vel y, interlacing operates by

transmitting odd lines in one screen

update and even lines in the next. This

effectively reduces the flicker effect

and makes television and video

screens less irritating to watch.

1 Une of
Video Image

/ Information

~T
i64uS: /
" I Une Syndlronisation

Pulses

Figure 4.3.1
Composite Video Signal

If the full resolution of 625 video lines are not required, the video interlacing need not

be used. For example if a video processing system has a vertical resolution of 256

lines, it is unimportant whether odd or even lines are used and therefore complete

screen updates can take place in 25 milliseconds.

With reference to figure 4.3.1, each video line signal lasts 64 microseconds. For a

horizontal resolution of say 256 pixels in a digitised image array, the video line signals

must be sampled at 250 nanosecond intervals (for real-time operation). As already

29

mentioned this would result in a video memory array being completely updated in

either 25 or 50 milliseconds depending on whether interlacing was used or not. High

speed analogue to digital conversion, (with a sampling rate in the order of 8-10

megahertz) is required to achieve such real time video digitisation. Some video

digitising systems overcome this need for high speed conversion by taking one sample

from each video line per screen update. However, for a digiti.sed image resolution of

256 X 256 pixels, this requires 256 screen updates. A system of this type will therefore

take 6.4 seconds to completely digitise a video frame. This is an unacceptable

perfonnance for most robotic systems.

The monochrome Video Frame Store described here[62] operates in real-time with a

resolution of 256 X 256 picture elements. Each pixel has a grey level value in the

range 0-255. Interlacing is not used and therefore complete video images are digitised

in 25 milliseconds.

Figure 4.3.2 shows the block diagram of the video frame store. An 8-bit analogue to

digital converter was used in the system for the following reasons:

o The obstacle avoidance system is based on a low-cost 8-bit

embedded microcontroller. Extra hardware and software

overheads would be necessary for a word length greater than 8

bits and the operating speed of the system would be reduced.

o The cost of greater resolution analogue to digital converters that

operate at speeds fast enough to digitise video signals in

real-time is high.

o The limitations of 8-bit grey level and spatial resolution can be

effectively overcome using digital filters implemented in

software (see chapter 5).

With reference to the video frame store block diagram (figure 4.3.2), the

synchronisation signals are separated from the video information and the resulting

video signal is amplified and converted into 8 bit digital words. The control section of

30

the frame store writes these digitised samples to the correct addresses in the 64K video

memory array via the memory access buffers shown in the diagram. (These are

discussed in section 4.4).

In the prototype video frame store, a digital to analogue converter and associated

control circuits are included to enable digitised images to be displayed on a standard

composite video monitor. The digitised video data written to the memory array is

constantly reread and converted back to an analogue signal. This signal is scaled and

clamped to the correct voltage levels and synchronisation waveforms are mixed with it

to reconstitute a composite video signal. The integrity of the video memory can be

checked using this facility since a read or write failure will be reflected in the

reconstituted video display. Also, the results of intermediate stages of video processing

may be viewed as an aid to development. This section of the video frame store would

be omitted from the fInished product.

CCO Camera Composite
Video Monitor

Control

Embedded
~:.-=--:...:....=....:=-=--, ..

Computer

Figure 4.3.2
Video Frame Store and
Memory Access Buffers

31

64K
Video
Memory

DATA

ADDR

CONT

4.4 Introduction to the Intel MCS-51 Series
Microcontroller

The MCS-51 senes Intel microcontrollers consist of a family of 8 bit single-chip

computers which are ideal for embedded applications. Figure 4.4.1 shows the block

diagram of the original member of the family, the 8051. The main features of this

integrated circuit are:

o 8 bit Central Processing Unit optimised for control applications.

o Boolean processing (ie. single bit) capabilities.

o 32 bidirectional and individually addressable I/O lines.

o 128 bytes of on-chip data RAM.

o Two fully programmable 16 bit timer / counters.

o Full duplex Universal Asynchronous Receiver Transmitter.

o 5 source interrupt structure with 2 priority levels.

External
Interrupts

4K bytes
ROM

r-------- ------- I
: 64K bytes :
i External
I

: Program
i Memory
I

: Address
I

: Space I

I ______ ---------~

Figure 4.4.1

Timer 1

Timer 0

~--------------i

! 64K bytes :
External i

Data 1

: Memory 1

: Address :
I

: Space I
I I l ______________ _

Intel 8051 Block Diagram

32

~Ul
CD_
-::J
Co.
::lc
0_

<..:>

TXD
RXD

o On chip clock oscillator.

o 4K bytes on-chip program memory (one time only programmable
ROM).

o 64K bytes program memory address space.

D 64K bytes data memory address space.

The second member of the family is the Intel 8031. This chip has all the features of the

8051 except for the 4K bytes on-chip ROM. Instead, the 8031 fetches all instructions

from external program memory.

Other members of the family include 80CXX CMOS versions of the chip featuring low

power consumption and 83CXX versions which incorporate facilities including a

watch-dog timer and power down mode of operation.

In this work a single 8031 microcontroller is used for both obstacle detection and

obstacle avoidance control. Figure 4.4.2.a shows the block diagram of the embedded

computer system incorporating the Intel 8031 and associated interface circuitry and

figure 4.4.2.b shows the data-memory map of the 8031 along with its allocation in this

system. An Intel 8255 Peripheral Interface Adapter (PIA) is used for interfacing with

the AGV main drive motor controllers discussed in later chapters. The Intel 8031

directly addresses the video image memory array directly in a shared access

arrangement.

Shared access is achieved by incorporating memory access buffers in the circuits that

enable the 8031 microcontroller to access the video data memory at high speed. No

modification to the video frame store circuits is necessary since the memory access

buffer circuit replaces the video RAM chips and uses the same connections.

If a single block of 64 Kbytes memory was used for the video frame store, the entire

addressing range of the Intel 8031 would be occupied. This would not leave address

33

To Video Frame Store
64K
Data

Memory
FFFFH

Video Memory

Not Used
Upper 32K

\
__________ --' I

8000H-8002H
ff)

8255 PIA I
~ 7FFFh ~

e
'E

Intel 8031
AS232-TTL

0 Protocol Video ()
~ Converter Memory
0
(5 (shared
::l: Lower 32K

I I

with
0 video
~ frame

Eprom store)

(Emulator)
To IBM Compatible

OOOOH

(a) Embedded Computer System (b) 8031 Memory Map

Figure 4.4.2

space for other devices such as the 8255 PIA and other possible system expansions.

Furthennore, the speed constraints on the system are critical since digitising a video

line into 256 pixels in real-time requires a write operation to the video memory

approximately every 256 nanoseconds. These problems are overcome by using two

interleaved 32 Kbyte 'pages' of memory rather than a single 64 Kbyte block. The

organisation of these memory pages leaves 32 Kbytes Intel 8031 address space

available and also relieves the system timing requirements. The two 32 Kbyte memory

blocks are configured as shown in figure 4.4.3.

The two memory pages appear in the lower half of the 8031 data memory address

map. Access to each 32K block is controlled via an additional control signal derived

from one of the microcontroller input/output port pins. Each 32K memory is accessed

once per two video-analogue to digital conversions effectively doubling the required

write access time to around 500 nanoseconds.

34

The video frame store continually

updates the video memory array so

that the latest possible CCD image

infonnation is always available.

When the 8031 microcontroller

requues access to the video

memory to perform obstacle

detection processIng, it switches

the memory access buffers to

suspend video updating (ie. it

'freezes' the image) to gain access

to the memory.

Full details of the memory access

a=RAMPAGEA
" b=RAMPAGEB

Pidure Elements

Figure 4.4.3
Method of Digitising Video Image

In Two Interleaved Blocks

buffers and embedded computer circuits are included in appendix 1.

4.5 The Embedded Computer Development
System

Figure 4.5.1 shows the schematic diagram of the embedded computer development

system. The program development cycle consists of the following stages:

i) Task evaluation and specification, (ie. what is required of the program and
how will it be achieved).

ii) Write program source code in 8051 assembler language mnemonics. The

source code consists of text files that can be generated using any text editor.

iii) Assemble source code files to produce 8051 machine code object files. This

stage converts assembler mnemonics to Intel 8051 machine operation codes.

iv) Link object files to produce a single contiguous machine code file. Most

larger assembler programs are developed in a modular fashion. This reduces

35

EPROM
Emulator Video

Mon i tor

Embedded Computer and

Video Frame Store

CCO Camera Projector

Figure 4.5.1
Development System

development time smce only the source code file being edited needs

assembling, (rather than the whole program). Also, small sections of large tasks

are more manageable and errors more easily isolated.

v) Transfer machine code file to EPROM Emulator in the embedded system.

(The code then appears as program memory to the embedded computer). In

general, the programs used in embedded computer systems can be referred to as

'fmnware'. This is because they are stored in non-volatile Read Only Memory

(ROM) chips on the embedded system circuit board. This is in contrast to

'software' which generally describes computer programs which are loaded into

volatile memory to be executed. The task of reprogramming and erasing an
Erasable ROM (EPROM) during development is time consuming and therefore

an EPROM emulator is used. This is essentially a volatile memory which can

be quickly loaded with a machine code file, but which appears to the embedded

computer as ROM firmware.

vi) Reset embedded system and test software. The software testing stage can be

particularly difficult in embedded systems, since often none of the debugging

tools and displays available in higher level programming environments are

available. The Intel 8031 on-chip Universal Asynchronous Receiver Transmitter

has therefore been used for serially communicating with an liM PC compatible

computer. This results in the additional development stage:

Transfer data and variables via serial communications link to

liM compatible computer for debugging purposes. Hence the

36

full power of the IBM compatible computer keyboard and

display can be used to aid software development.

In some complicated algorithms (for example the obstacle avoidance procedures

described later) the task of coding software directly into 8051 assembler is extremely

difficult. In these cases models were first developed in Turbo PASCAL and then

simplified for conversion to Intel 8051 source code. Again full use was made of the

fmal stage in the above development cycle to interface the PASCAL and machine code

software as it evolved.

The following two chapters describe m detail the algorithms implemented on the

embedded computer to process digitised video information and to detect obstacles.

37

5 DIGITAL SIGNAL
PROCESSING

5.1 Summary

Coded patterns occur in the CCD

video image due to the reflection of

projected light patterns from objects

on the floor ahead of the AGV. This

chapter describes the techniques

used to recover this code

infonnation from digitised video

data.

Figure 5.1.1 shows the block

diagram for the obstacle detection

system. With reference to the

figure, the obstacle detection system

operates on digitised video data and

is divided into three sections:

~ Transversal Recursive
Video --... Fi Iter f-- Fi Iter >--

Peak
L......, Detector f--

Pattern r R . I-- Code Positions

~ .. ec_og.nt.so.-'r

Feature
'- Extractor

L Code Code f-----l Measurement~. Parameters

Figure 5.1.1

Obstacle Detection System

o A preprocessing stage which employs two digital filters that are

described in section 5.2.

o Peak detection and feature extraction stages which isolate

potential code parameters (detailed in section 5.3).

o Code measurement and recognition stages which are discussed

fully in chapter 6

The digital filters described in section 5.2 perform a vital role in maximising the

operating speed of the obstacle detection system. They are used as a preprocessing

38

stage to 'clean up' the video signal and act as a coarse ' sieve' for the data. So called

'direct methods' (see section 5.3) are then applied to extract potential code features

from the preprocessed video data. Finally, valid codes are detected using a 'decision

theoretic', pattern recognition technique described in chapter 6.

5.2 Digital Filter Design

Since the low cost video frame store and associated hardware are relatively limited in

tenns of resolution and grey level accuracy, the system is subject to a certain amount

of quantisation error. This manifests itself as wide band noise superimposed on the

digitised video signal. The digital filters described in this section are designed to

reduce this effect.

Figure 5.2.1 shows a video-still together with a typically noisy graphical representation

of a single horizontal line scanned across the lower image(!).

Figure 5.2.1
Grey Level Graph of a Horizontal Strip of the Image

(1) This raph along with others similar throughout this chapter were d~rived ~y transferring data from the embedded system to the IBM PC
compati~e computer via a serial communications link and uSing a specially wntten PASCAL program to present the data.

39

Digital filters were chosen in preference to analogue filters in this work since after

digitising, video data are in a highly suitable fonn for processing using discrete digital

methods.

Dedicated digital signal processors were considered for the task of digital filtering.

Although the operating speed of such devices is high, a comparison between dedicated

signal processors and microcomputers showed the former to be relatively expensive

with a low degree of flexibility. On the other hand, Signal processing using

micro-computers is cost effective, flexible and requires a simple hardware designf631.

Hence, with the special design considerations described next, the required digital filters

were implemented in software on the Intel 8031 microcontroller.

The design of tightly specified fmite impulse response filters for microprocessors is a

complex task which is exacerbated by the restriction of using assembler language. This

is due to the need for numerical accuracy. Insufficient accuracy in both the storage of

numbers and calculations can compound the quantisation errors in the system and in

some cases render the filters unstable[641.

The following design work shows that acceptable digital filter characteristics can be

achieved using exactly specified integer arithmetic. This fact makes such filters simple

to implement with high execution speeds.

The fITSt stage of processing uses a non-recursive transversal filter to average eight

horizontal lines of the image in the "letter box' view described in section 3.4. The

operation of this filter is shown in figure 5.2.2. A special case of such a filter and one

which does not require floating point arithmetic is when all the weightings aO ... am are

equal. This is similar to a moving average filter[641 and is simple to implement in

assembler language. The one used in this work has the magnitude frequency response

shown in figure 5.2.3. The result of this filtering operation is a single line array in

which each element is the average of the corresponding elements from the original

40

horizontal lines. The effect of this

operation IS to enhance the

influence of persistent vertical

patterns in the image array whilst

reducing the effect of spurious

noise or ~snow'. The choice of the

number of lines to average depends

on both the minimum height of the

object being detected and the

required algorithm execution speed.

Whilst a large number of lines

results ill greater enhancement of

vertical patterns, if the object in the

x(n)

x(n-1)

1 x(rHll)

T T T T

I

I ee
I y(n)

~------------~+

Rgure 5.2.2
Digital Transversal Riter

. image is not tall enough to produce persistent vertical patterns, the process will fail.

Conversely, if too few lines are averaged, the process has a reduced immunity to noise.

In order to maximise the execution speed of the digital transversal filter, only ~powers

of two' horizontal lines were considered (ie. 2, 4, 8, 16 etc.). These values enable

division calculations to be carried out efficiently using machine code arithmetic shift

Ampli tude

Frequenclo:!

Figur e 5.2.3
Transversal Filter Frequency Response

41

right operations. Experiments showed that eight horizontal lines of the video image

provides reliable obstacle detection combined with high execution speed. In the

prototype design, this corresponds to a physical horizontal strip approximately 20mm

when projected onto an object one metre in front of the camera.

The resultant array of 256 averaged elements is further processed to remove high

frequency components in the horizontal direction. This is achieved by using a recursive

digital filter.

An effective method of designing digital filters is to model their analogue counterparts

using the bilinear transfonn method. This is the so called 'frequency transformation'

method and is described in the following work:

Consider the fraction F(z) = (z-l)/(z+ 1) where z = e(sT)

This is 'bilinear' in that both numerator and denominator are linear in the variable z. In

order to show the value of the bilinear transfonn method for converting analogue

filters to their digital counterparts, the spectrum of F(z) must be determined as follows:

. e(jroT)-l e(jroT/2){ e(jroT/2 - e(jroT/2)}
FOro) - -

e(jroT)+ 1 e(jroT/2){ e(jroT/2 + e(jroT/2)}

= j tan roT/2

F(jro) is purely imaginary and varies between 0 and infinity as ro varies between 0 and

IIIT radians/second. In order to covert the analogue filter of figure 5.2.4 to its digital

counterpart, all occurrences of the Laplace operator'S' are replaced with F(z):

H(s) = l/Cs + a) and therefore H'(z) l/[F(z) + a]

The frequency response of the filters is given by:

H(jro) = l/(jro + a)

and H'(jro) = 1/(F(jro) + a) = 1/(j tan roT/2 + a)

42

The magnitude response of the digital

filter is shown in figure 5.2.5. •

x

•

R

c

(5)

When the required time constant of this

low pass digital filter is specified, it can

be converted into a recurrence formula

as follows: Figure 5.2.4
C-R Filter

H'(z) = I/[F(z) + a] = I/[(z-I)/(z+ 1) + a] (where a = lIT)

therefore Y(z)/X(z) = K (z + l)/(z + A)

where K = 11(1 + a) and A = (a-I)/(a+ 1)

so Y(z) (z + A) = X(z) (z+ 1)

and the recurrence fonnula is:

K (Yn + AYn-I) = Xn + Xn-I

therefore Yn = Xn + Xn-1IK + AYn-1

•

y
(5)

•

An inspection of this result reveals that whilst the frequency response is of a suitable

Amplitude

o 1/16T l / BT 3/16T 1/ 4T 5/ 16T 3/ BT 7/ 16T 1/ 2T

Figure 5.2.5
Frequency Response of a Filter Derived

Using Bilinear Transform Method

43

Frequency

shape, in general the filter coefficients 'A' and 'K' will require an accuracy of around

four decimal places to give a satisfactory perfonnance[60J.

A more direct approach can be taken when digitising analogue filters which results in a

slightly degraded, but nevertheless acceptable, frequency response and which has the

major advantage that the filter coefficients can be expressed precisely as integers.

Considering again the analogue filter of figure 5.2.4

Y(s)/X(s) = 1/(1 +SCR) = 1/(1 +Sr) since r = CR

Writing this in the fonn of a difference equation (assuming a fITSt order approximation

for S):

Yen) + rjT(Y(n)-Y(n-1) = X(n)

Yen) =[X(n) + Yen-I) rjT] /[1 +r{f]

where T = sampling period

r = Time constant

For integer implementation with a time constant of 3T, the difference equation is:

Yen) =[X(n) + 3Y(n-l)]/4 (assuming T to be Wlity)

Amplitude

o 1/16T 1/8T 3/16T 1/4T 5/16T 3/ST 7/16T 1/2T

Figure 5.2.6 .
Simply Derived Digital Version of a C-R Analogue ~llter

'he 'Noise' on the Response is caused by Rounding
Errors in the Integer Calculations

44

Frequency

For this time constant, the filter coefficients are shown to be exactly 3 in the nmnerator

and 4 in the denominator. The magnitude frequency response of this filter is shown in

figure 5.2.6. A comparison between figure 5.2.5 the filter characteristic derived through

applying well known bilinear transform methods, and figure 5.2.6 using the simpler

approach reveals that the latter's frequency response is only slightly degraded, but that

the filter is much simpler and faster to implement. Furthermore, if a time constant is

chosen which results in the denominator of the recurrence equation being a power of

two, the algorithm can be efficiently encoded using arithmetic 'shift-rights' to perform

the division calculation quickly.

Whilst the low pass filtering stages are essential for removing high frequency noise

from the digitised image array to simplify later processing, care has to be taken not to

filter out important information. The nature of the code pattern being sought from the

arraY,(ideally high contrast light and dark bars) means that it has high frequency

components in the abrupt changes between light and dark. If the cut off frequency of

the low pass filter is excessively low, vital information may be lost. A compromise is

therefore found by selecting a filter time constant to give the frequency response

shown in figure 5.2.6. The fmal result of the filtering stages on the array from figure

5.2.1 is shown as the grey level graph in figure 5.2.7.

The recursive filtering stage affects the range of bar codes which can be used as

projection masks due to the cut off frequency characteristics described in the previous

paragraph. If the code period is short (ie. its frequency is high), true video data will be

attenuated along with the quantisation noise which the low-pass filter is designed to

remove. Conversely, when the code period is long, the 'thinnest' detectable object is

limited. A compromise is reached in the prototype design with a code period of 16

'horizontal pixels', resulting in a thinnest detectable object of approximately 5Omm.

45

221

Figure 5.2.7
Video Data After Recursive Filtering

5.3 Direct Methods for Code Feature Extraction

Direct methods (as opposed to frequency domain methods) are widely used in pattern

recognition, particularly in the fields of speech recognition, image analysis and medical

science[65] .

Frequency domain methods include Fourier analysis and matched filtering techniques

that isolate frequency components of signals in order to match certain characteristic

patterns. There are two main reasons why these methods are not adopted in this work:

o Frequency domain algorithms such as the Fast Fourier Transform

generally require complex floating point arithmetic which is

complicated to implement using assembler language.

o As already discussed in section 5.2, the video image of the

binary code may be contaminated with noise of a similar

frequency. It is not always possible to isolate useful information

from the digitised signal using frequency domain methods alone.

Direct methods operate on the time series of signals directly rather than transfonning

them into the frequency domain. Two principle techniques of pattern recognition using

direct methods are:

46

o The decision theoretic approach based on using numerically

valued features for distinguishing a pattern class from all others.

o Syntactic and structured methods which use the models and

techniques of fonnal language theory to analyse explicit or
implicit characteristics of sub-patterns which form larger
patterns(66).

Syntactic and structured methods are suited to recognising 'families' of patterns in

applications such as electro-cardiogram analysis and speech recognition. However, in

this application, the decision theoretic approach is most suitable since only one pattern

must be recognised. Features are extracted from the filtered data (figure 5.2.7) and

transformed into 'feature space' where they are tested against predetennined code

parameters. Positive test results indicate the presence of an obstacle to be avoided.

Care must be taken in selecting the parameters which identify codes. In the digitised

video signal the absolute magnitude of the signal cannot be used because this varies

widely depending on the nature of the object reflecting the light pattern and the

ambient lighting conditions. However, code patterns which appear in the image always

have the same shape which is illustrated in figure 5.3.1. This general shape is obtained

from the reflected light codes regardless of the absolute video signal magnitude. With

reference to figure 5.3.1, the features which do not depend on the magnitude of the

signal are the presence of maxima and minima of grey levels associated with the code

and the spatial relationship between them (in this case the horizontal distance between

them 'nT'). Figure 5.3.2 highlights these relationships.

The value of the digital filtering stages that act as a coarse 'sieve' for the video data

can now clearly be appreciated. The signal has been effectively 'cleaned up' by the

filters, reducing the nwnber of maxima and minima that need to be detected and

processed (compare figure 5.2.7 with figure 5.2.1).

The algorithm used to detect maxima and minima operates on groups of samples in the

47

Figure 5.3.1
Typical Filtered Code Pattern Shape

digitised array to isolate local peaks and troughs. This operation may be viewed as a

direct method of high pass filtering since it has the powerful effect of removing steady

state signal levels (analogous to DC offset) leaving only the differentials. With

reference to figure 5.3.3., the 'peak' detector algorithm works as follows:

For i = 2 to 253

if x[i] < x[i-2] and x[i] < x[i+2] then maxmin[i] = minima

else if x[i] > x[i-2] and x[i] > x[l +2] then maxmin[i] = maxima

else maxmin[i] = 0

nexti

,

T1 T2: T3

Figure 5.3.2
Relationship Between Code Features

48

The resultant array,

maxmin[i] consists of

markers indicating

maXima, minima or

neither with the index i

corresponding to the

spatial position of the

turning points in the

Figure 5.3.3
Turning Point Detector AlgOrithm

filtered data array x. Figure 5.3.4 shows this in graphical fonn, the filtered array is

shown on the upper graph, with the corresponding position of maxima and minima

shown beneath it.

The remaining task of isolating and recognising valid codes is described in chapter 6.

This task involves transforming the maxima-minima array into feature space, and

testing it for membership of a predetermined pattern class.

A~~er Recursive Fil~er

2

1

Figure 5.3.4
Video Data (Upper Graph) and Results from Peak Extraction

Algorithm (Lower Graph)

49

6 REFLECTED LIGHT CODE
RECOGNITION

6.1 Summary

This chapter describes the final processes that fonn the obstacle detection system. With

reference to the block diagram in figure 5.1.1 these are the code measurement and

pattern recognition stages.

A key factor contributing to the design presented in this research, is the ease with

which the obstacle detection system can be configured. This has been achieved by the

design of an automatic code measurement procedure (described in section 6.2) which

alleviates the need for precise camera and projector positioning.

Section 6.3 describes the code recognition algorithm. This is based on the so called

'decision theoretic' approach of numerically quantifying pattern features and checking

them against a predetermined template. Extra security is built into the system by

incorporating a majority polling scheme to increase the surety of valid light code

detection and reduce the sensitivity of the system to quickly moving obstacles.

6.2 Code Calibration Method

When a coded pattern is projected onto the floor ahead of the automated guided

vehicle, the dimensions of the code detected by the CCD camera depend on the

following criteria:

o The physical dimensions of the projection mask.

o The height and angle of the projector (and the lens system used).

o The relationship between the camera and projector.

50

o The camera lens system.

These criteria directly affect the code features T1, T2 and T3 in figure 5.3.2. The task

of calculating these features based on the geometry of the system is difficult since it

requires precise knowledge of the position of the projector and camera. One of the

chief design features of this work is that the system is simple to configure. This is

made possible by implementing a self calibration procedure in the obstacle detection

software which enables the system to determine the code parameters automatically.

This feature has also simplified experimentation with different code masks.

To operate the code learning procedure, the embedded computer system must be

connected to a serial communications terminal or personal computer running a

communications tenninal emulator. A Turbo PASCAL program has been specifically

developed for this task (see appendix 2). By default, the embedded computer uses a

communications protocol of 4800 baud, 8 data bits, no parity, 1 stop bit. When the

embedded system is reset, a message is transmitted to the terminal offering the code

learning procedure as an option should it be required. If "Q' is transmitted back to the

embedded computer (by typing 'Q' at the tenninal), the obstacle avoidance system is

initiated using default code parameters programmed in EPROM. However, if any other

key is pressed at the terminal, the embedded computer prompts the system installer to

position a test board in front of the camera and press "C' to continue.

For the system to measure the code parameters, the plain board placed in front of the

camera must fill the horizontal field of view as shown in figure 6.2.1. The algorithm

operates by measuring all the visible code parameters and recording their maximum

and minimum values denoted by: Tlmax, Tlmin; T2max, T2min and T3max, T3min.

The use of maximum and minimum values of the code features builds tolerance to

slight spatial distortions at the periphery of the camera field of view and also allows

for variations in obstacle surface inclination.

51

The immunity of the

measurement procedure to

spurious readings is increased

by averaging eight complete

measurement cycles resulting in

aggregate values of the

maximum and minimum values

of Tl, T2 and T3. Eight

measurement cycles are

averaged for the practical

reasons outlined in section 5.2.

The procedure of averaging

eight numerical values can be

easily and efficiently

Figure 6.2.1

COOe CaJibration
Board

Code Calibration Board
Must Fill Camera Field of View

implemented within the constraints of integer arithmetic using simple addition and

three binary shift-right operations. Figure 6.2.2 shows the flow chart of the automatic

code calibration algorithm. A video screen is captured, filtered and processed as

described in chapter 5. The resultant array of maxima and minima (maxmin introduced

in section 5.3) is searched for groups of four points in the sequence: maxima1, minim~,

maxima3, minima4, (see figure 6.2.3). Tl, T2 and T3 are calculated from:

T 1 = minim~ - maxima1

T2 = maxima3 - minim~

T3 = minima4 - maxima3

From these values, the features (Tlmin, Tlmax), (T2min, T2max) and (T3min, T3max)

are updated. When eight passes have been made, the results are averaged to detennine

[mal minimum and maximum values. These values are used to form the feature

template described in the next section. The calibration procedure is flexible in that the

test board can be any surface which is wide enough to fill the camera field of view.

52

The identified code parameters are

then transmitted to the serial

communications terminal and

displayed. These can be programmed

into the embedded system EPROM

to complete the installation.

The next section describes the

procedure designed to detect code

patterns and provide control signals

to the obstacle avoidance control

software.

. 6.3 Light Code
Recognition

A decision theoretic approach has

been adopted for recognising codes

in the projected light pattern. This

technique involves identifying key

features of the pattern as described in

chapter 5, transfonning them into

'feature space' and testing them

against the template derived in the

last section. If a valid code is

U pd ate
Pointer

I
(Start)
~~ f
For I - 1 to 8

Capture video image

Do digital filtering
and . derive array of

maxima and minima

set pointer to start of
maxima/minima array

Calculate 11 ,T2,T3

Update T1min,T1max
T2min ,T2max and

T3min,T3max

NO end of

i = 8?

Divide features
T1 mx/mn-T3mx/mn by 8

End

Figure 6.2.2

Flow Chart for Automatic

Code Calibration Algorithm

detected, it is due to an obstacle entering the light code projection area in front of the

AGV. The distortion of the light pattern is detected by the camera and obstacle

detection software, and the system consequently responds by initiating the obstacle

53

Maxilla 1 Maxim 3 ,
I

T1 12

Milina 2 Mi1ina
4

Figure 6.2.3

Calculation of T1, T2 and T3

avoidance manoeuvre (discussed

in chapter 8).

The six features: T1max, T1min,

T2max, T2min and T3max, T3min

are used in the template. These

may be mapped in a three

dimensional representation

(,feature space') as illustrated in

figure 6 . 3.1 . The code

identification algorithm measures

the parameters T1, T2 and T3 in figure 5.3.2 and tests them against the feature space

template of figure 6.3.1. A code is only accepted as being valid if the measured Tl , T2

and T3 result in a point in feature space lying inside the valid code region. This is

T1 min T2min T3min
T1max T2maxT3max

Code Pattern

Transfoonation

Tl

Figure 6.3.1

73

. . -----. -~--- ~-=---~
---~ _ ... -.--,~~ ...

-~-.-. ~-

Feature Spare

Code Features Transformed

54

T3max

T3min

T2max

Vak1 CoOO Region

tested by considering T 1, T2 and T3

on their corresponding axes In

feature space. When a code IS

detected, its spatial position in front

of the A GV is derived from the

position of the measured parameters

in the maxima and minima array

(maxmin described in section 5.3).

A majority polling scheme has been

designed to add further security to

the code detection system and to

reduce its sensitivity to non­

persistent obstacles such as people

crossIng the AGV path. If a

potentially valid code is detected,

the obstacle avoidance system takes

control of the AGV drives and

brings the vehicle to a halt. The

system takes two more video

Images, extracts the features, and

compares the three results. If at

least two of the three results agree

then either obstacle avoidance is

initiated or the AGV is allowed to

proceed, (depending on the outcome

of the poll).

With reference to the flow chart of

55

Do digital filtering

and derive array of
maxima and minima

YES

Valid Code?

i = 3?

Poll spatial

positions[1 .. 3) to
ao:ept or reject codes

YES CcxJes :;-_ A\tid Obstoc:le

f9Jre6.32

FbNaat d Code DeIedm A9rihrn

the complete obstacle detection algorithm in figure 6.3.2, video frames are captured

and processed as described in chapter 5. The resultant array representing maxima and

minima is processed and groups of values representing T 1, T2 and T3 are calculated.

These values are then tested against the feature template as shown in figure 6.3.1, and

appropriate motion control action is taken. Full software listings for all the obstacle

detection and associated programs can be seen in appendix 3.

In the next two chapters the practical implementation of the obstacle detection system

on an experimental mobile platform and the design and development of the obstacle

avoidance algorithms are described.

56

7 EXPERIMENTAL VEHICLE
DESIGN

7.1 Summary

The next two chapters are devoted to the development of the obstacle avoidance

strategy and the practical aspects of evaluating the obstacle avoidance system. In

preparation for these topics, this chapter describes the experimental vehicle on which

the system is mounted.

Two alternative AGV designs are discussed in section 7.2 with particular reference to

their manoeuvrability and control. The design chosen for the experimental vehicle is

based on a differential drive arrangemen.t where steering is achieved by controlling the

relative velocity of two drive wheels.

An overview of the physical design of the experimental vehicle is given in section 7.3.

The completed vehicle is illustrated with the aid of photographs which clearly show

how the camera and projector are mounted.

Dedicated single-chip microcontrollers are used to control the experimental vehicle

drives. These are described in the fmal section of this chapter with reference to the

interface with the Intel 8031 embedded controller (introduced in chapter 4). The

various outputs and control modes available on the motor controllers are discussed

together with the method used to select suitable digital control parameters.

7.2 Review of AGV Drive Configurations

Automated Guided Vehicles fall into two basic design categories, classified by the

57

method used to drive and steer them. The fIrst type is a three wheeled arrangement as

shown in figure 7.2.1. In this design, the single front wheel serves as a combined

steering and drive wheel whilst the other two rear wheels idle. The three wheeled

arrangement is well suited to 'flat back' pallet transporters because the combined drive

and steering head can take the fonn of a compact unit at the front of the vehicle. This

leaves a large rear area available for a low-profile pallet fork lift. However, a

disadvantage of the design is that it can be difficult to control. This arises in

bidirectional systems because the steering geometry is different depending on whether

the AGV is travelling forwards or

backwards.

The other major AGV design uses

two drive wheels situated centrally

under the vehicle as shown in figure

7.2.2. Stability is achieved by using

idling casters to support the front

and rear of the vehicle and steering

is achieved by varying the relative

velocity of the two drive wheels.

This technique is called differential

steering and has advantages over the

three wheeled design in certain

operating conditions. The main

advantage is that control of the

vehicle is simplified by the fact that

the steering geometry is the same for

both directions of travel. Also, by

driving each wheel at the same

speed but in opposite directions, this

Combined Drive \
and Steering Wheel

E.; .;) .

IdlingWhe~
Chassis

Figure 7.2.1
Three Wheel AGV Design

Drive Wheels / casterk

58

Chassis

Figure 7.2.2
Differential AGV Drive Arrangement

type of vehicle can literally 'turn on the spot' in its own length (this is impossible with

the three wheeled design).

The experimental vehicle uses a differential steering arrangement because the ability to

turn in a small area is essential for a laboratory environment where space is at a

premnun.

7.3 Overview of the Experimental Vehicle
Design

The physical design of the experimental vehicle is based on work carried out by

Korean researchers[67]. They investigated the optimal steering control of an automated

vehicle with two motorised drive wheels and developed optimum relationships between

various dimensions. These include the radius of the drive wheels and their separation.

Due to the space limitations of the laboratory environment, the experimental vehicle is

smaller than commercial AGV s with overall measurements of approximately 1 metre

long by 0.5 metre wide. The chassis is constructed from lightened angle-iron

(,Dexion'). The vehicle is

equipped with a cantilever

suspenSIon sy stem as

illustrated in figure 7.3.1 to

assist in damping vibrations

transmitted through the

drives. The 90 amp-hour

battery is mounted in a tray

towards the front of the

vehicle whilst the motor drive

electronics are mounted on an

kots

59

\onve Assembly

Vehide Chassis

\ \Rubber Bushes

\Nut and Washer

Suspension Arm

Figure 7.3.1

Experimental Vehicle
Suspension System

aluminium heat sink which fits over the rear of the chassis. An emergency stop switch

and ammeter are also mounted on the rear of the vehicle. A thermal circuit-breaker is

connected directly in the motor power supply circuit to prevent damage to the

electrical gear in the event of an overload.

A special mounting post has been fitted to the prototype vehicle to carry the coded

light pattern projector and CCD camera. Additional 'crash bars' are included to prevent

accidental damage to the latter. The photographs of figure 7.3.2 illustrate the

completed vehicle.

The relationship between the light pattern projector and the CCD camera can be seen

from the photographs. The projector is mounted approximately 1 metre above the floor

at an angle of approximately 45 degrees and the camera is in the protected position

approximately 70mm from the floor. Figure 7.3.3 shows a more detailed view of the

camera mounting. The physical relationship between these two items is not critical

since the automatic calibration procedure (described in chapter 5), measures the code

features of the light pattern after the camera and projector are fixed.

7.4 HCTL - 1100 Microprocessor-Based Motor
Controllers

Figure 7.4.1 shows the schematic diagram of the experimental vehicle drives. Two 350

watt DC motors are mounted parallel to the longitudinal axis of the vehicle coupled to

'backlashless' 5: 1 worm reduction gear boxes. The drive wheels are mounted directly

on the gear box output shafts and are fitted with hard rubber tyres for good grip on the

floor. The worm drive shafts are coupled to 500 pulse/rev optical encoders. These have

quadrature outputs to allow the direction of rotation to be sensed. Figure 7 A.2 shows

the block diagram of one motor drive.

The controller section of the system IS realised usmg Hewlett-Packard tYlk'

60

Figure 7.3.2
Experimental Vehicle

oj

Figure 7.3.3

Camera Mounting Detail

HCTL-IIOO general-purpose motion control integrated circuits. These are single-chip

microcontrollers that incorporate fmnware to perform common control functions

required by many drive control systems. Feedback to the controllers is taken directly

from the optical encoders mounted on the gear box shafts. Figure 7.4.3 shows the

functional block diagram of the HCTL-IIOO motor controller and the following

sections discuss its various modes of operation. Full details of the specifications and

circuit design can be seen in appendix 4.

7.4.1 Interface with Intel 8031 Embedded Microcontroller

The 8255 Peripheral Interface Adapter (PIA) included in the Intel 8031 embedded

controller circuit was discussed in chapter 4. This provides 24 bidirectional

input-output lines that are used to interface with the HCTL-IIOO motor cantrall r .

62

The basic operation of the interface

is that variables and constants are

written to the motor controllers in

Gear Boxes

/

/

Couplings \

DC Motors

I
/

)

RubberTyre

an initialisation phase which

establishes the mode of operation.

This includes the mode of control

to be used, digital filter constants

and the sampling interval. After

initialisation, the Intel 8031

controls the motors by writing

demand values to the HCTL-1100

Optical Encoders

Figure 7.4.1
Experimental Vehicle Drives

motor controllers. Full closed-loop

control is carried out by the HCTL-

1100s independently of the Intel 8031 which can be devoted to the task of detecting

obstacles. Data is transferred between the Intel 8031 and the HCTL-ll00s in parallel

via the 8255 PIA. Communication is asynchronous to alleviate the need for accurate

timing requirements which simplifies the interface. The Hewlett-Packard motor

controllers appear as banks of registers to the Intel 8031. Each register has a particular

function and may be write-only, read-only or bidirectional. A suite of assembler

i HCTL - 1100 I
I Digital Controller I
: : Sign : e---.r : H-Bridge . l-. + Controller : DC Motor r-> Coupllng r-~ Gear BOX f
: - ,Pulse AMP , , , , , , , ,
I ,

L I
,--

Optical - - - ------
Encode r

Figure 7.4.2
Experimental Vehicle Drive Block Diagram

63

Limi t S t op Prof In i t

r------------------------------------- ------ --------- --- ----------------------,
I I

: I

I
I
I
I
I
I

ADO/DBa -+
AD1/0B1 --+
AD2/0B2 -+
AD3/0B3 --+
A D4/DB4---+­
AD5/0B5 -+ I/O

DB6 --+ Port

OB7-+
ALE~

C s--l-.
DE :

R/W-+
I
I

i "-~

SYNC
EXTCLCK

Reset

I
I
I
I
I
I
I
I

I
I

I
I
I
I

-i Sample
Timer -.

~
I

Position
Profile

Generator

Quadrature
Decoder!
Counter

Emergency
Flags

Status
F l ags

Motor
Command

Port

r--:-- MC O
r--:-- MC 1
r-~ MC2

MC3
r-+---- MC4

MC5
MC6
MC?

Pulse
I---!--- S i gn ... _-.-'

I

~----------------- --------t---- ---------------------------- -----------------------,
CHA CHB

Figure 7.4.3

HCTl-1100
Simplified Functional Block Diagram

routines have been developed to operate the interface between the Intel 8031 and

HCfL-ll00s, full descriptions and listings of which can be seen in appendix 5.

Overviews of the types of output and control modes available using the HCfL-1100

follow.

7.4.2 Types of Output

The HCTL-l100 motor controllers are designed for general use and therefore are

supplied with a variety of outputs for interfacing with motor control systems. These

are:

o 8-bit digital output for driving digital to analogue converters.

This output can be configured in an unsigned (unipolar) format

or a two' s complement (bipolar) format.

64

o Pulse Width Modulated (PWM) sign and pulse outputs. These

allow connection to H-Bridge amplifiers (see figure 7.4.2.1). The

'sign' output is used to reverse the polarity of the motor current
and thus reverse the direction of motor rotation.

The experimental vehicle

drive control systems use the

PWM outputs to drive H­

Bridge amplifiers. When the

direction of rotation of the

motors is reversed, it is

possible for all the

transistors in the H -Bridge

amplifier to be switched on

at the same time (refer to

figure 7.4.2.1). This may

result in a short circuit

across the power supply

which could damage the

circuit. The HCTL-1100s

Vex;
,~, .

Pulse I I ~I_---+-i ________ --+--__
Sign~.1 i

\~~I----------~
)

Figure 7.4.2.1
H-Bridge Amplifier

can be configured to prevent this by missing a pulse at the time when the sign output

changes state. This ensures that all the transistors are turned off at the instant of

transition. Figure 7.4.2.2 shows the timing diagram illustrating this feature.

7.4.3 Types of Control

The HCTL-1100 motor controllers are pre-programmed to perform a range of control

functions. In all cases some part of the digital filter equation shown below is used in

the control loop.

DCZ) = K(Z-A/256)/(Z+B/256)

65

Where:

K = Digital filter gain

A = Digital filter zero

B = Digital filter pole

This filter is preprogrammed in fmnware on the HCfL-l100 motor control chips and

is used to provide the following modes of operation:

Proportional Velocity Control. The HCTL-l100 uses the following digital

control algorithm to achieve proportional control of the motor speeds:

MCn = (K/4)Yn

where:

MCn = Motor command output at time n

Yn = (Command velocity - Actual velocity) at time n

When this control option is initialised, the demand speed is supplied to the

relevant HCTL-I100

registers (see appendix 4)

in the form of a 16-bit

two's complement number.

The HCTL-l100 interprets

v

this as 12-bits integer and S91 -------

4-bits fraction, with

positive two's complement

numbers resulting In

rotation in one direction

and negative two's

complement numbers

rotation in the opposite

direction. The value

written to the motor

Inhbited Pulse

I
I

-------------------------------t

Figure 7.4.2.2

PWM Motor Controller Output Signals

66

controller physically corresponds to feedback encoder quadrature counts/sample

time. Feedback encoder quadrature counts are derived from incremental pulse

encoders mounted on the drive gearbox shafts. Each encoder produces two

square wave signals with frequency in proportion to the rotational speed of the

shaft. The two signals are 90 degrees out of phase with each other (one

quadrant) which allows the direction of rotation to be established by detecting

the 'leading' signal.

The sampling time of the HCTL-l100 motor controller is derived from the

master clock frequency and a divisor stored in the sample timer register (see

reference 72). In the prototype design the master clock frequency is 2 MHz and

the value written to the sample timer register is OF (hex). This results in a

sampling interval of 128 microseconds which is sufficiently high to have little

effect on the stability of the motor drive systems.

Integral Velocity Control. In this mode the HCTL-l100 performs continuous

velocity profiling. Velocity is specified as an 8-bit two's complement number

and acceleration by a 16-bit value. The acceleration value is interpreted as a

scalar with 8-bits integer and 8-bits fraction (for accuracy). The units of

velocity and acceleration are expressed in encoder quadrature counts/sample

time and quadrature counts/(sample time)2 respectively. Whilst this mode of

control allows acceleration to be specified and therefore reduces the effects of

manufacturing tolerances, it is not ideal for this work because it does not allow

moves to be defmed in tenus of position.

Proportional + Integral Trapezoidal Profiling. For this control mode the

HCfL-ll00 uses the same algorithm as position control, but deviates from it in

that the acceleration, maximum velocity and final positions are supplied to the

motor controllers. This mode executes 'trapezoidal' motion profiling as

illustrated in figure 7.4.3.1. Acceleration is supplied as a two byte scalar

representing encoder quadrature counts/(sample time)2 and velocity is expressed

as a single byte scalar corresponding to quadrature counts/sample time. As

before, position is given as a three byte two's complement number in units of

67

>. -'0
o
CO
>

Acceleration

\
,..------.... ~-- Maximum Velocity

/

-Acceleration/

Reached
Final Position

~~--------------------------------~----__ t

Figure 7.4.3.1

HCTl-1100
Trapezoidal Profile Mode

encoder quadrature counts. The HCTL-ll00 detennines which direction of

rotation is required by the value of the two's complement demand position

relative to the actual position.

This latter form of control is employed in the obstacle avoidance system. It enables full

control of the acceleration, deceleration and velocity of the mobile vehicle during

point -to-point position moves. Hence the effects of physical differences between the

motor drives are overcome allowing precise motion control.

7.4.4 HCTL-11 00 Digital Motor Controller Tuning

In the experimental vehicle system, excessive overshoot in position moves is generally

undesirable since it is potentially dangerous. The digital filter constants: K, A and B

(identified at the beginning of section 7.4.3) have been set to critically damp the drive

control system.

To a large extent, these constants have been determined by 4trial and error'. Whilst the

DC motor dynamic responses are relatively simple to establish, the complete system

68

including quadrature encoders and digital controller is somewhat difficult to model.

Furthermore, flexibility of the motor-gear box couplings and inevitable backlash in the

gear boxes introduces a certain degree of system non-linearity. The developed software

enables point-to-point move performance tests to be carried out on the experimental

vehicle. The software allows the digital filter constants to be changed quickly via the

IBM compatible computer-keyboard and serial communications link with the Intel

8031 embedded microcontroller. During tests, the parameters were systematically

varied and the dynamic performance of the system was carefully monitored. The final

control parameters resulted in an almost critically damped drive system performance.

The complete time-domain digital control algorithm applied by the HCfL-ll00 motor

controllers is therefore:

MCn = Xn - (O.25X(n-l) + 0.894 MC(n-l))

These empirically derived constants have been used throughout the obstacle avoidance

development work described in the next chapter and have proved to give reliable

system performance.

69

8 DEVELOPMENT OF THE
OBSTACLE AVOIDANCE

STRATEGY

8.1 Summary

The procedures that enable the experimental automated vehicle to avoid obstacles are

described in this chapter. Section 8.2 describes the design of algorithms for steering

and advancing the automated vehicle and explains the method used to measure the

distance the vehicle deviates from its original path. This work contrasts with that

carried out by other researchers in that the automatic vehicle guide path is treated as a

vector rather an orthogonally specified 'map'. Subsections of 8.2 describe how the

motion of the vehicle has been reduced to basic 'tum' and 'advance' manoeuvres upon

which all higher levels of obstacle avoidance are based.

A computer simulation of the obstacle avoidance algorithms has been developed in

Pascal and is discussed in section 8.3. This program models the response of the

automated vehicle to unexpected obstructions in the guide path. The program uses high

resolution colour graphics to simulate the vehicle, a roadway and any number of

obstacles. The latter are positioned interactively using the computer keyboard and a

graphic cursor.

The model has been converted to Intel 8051 assembler language for testing on the

experimental vehicle. Section 8.4 highlights the differences between the computer

simulation and its real implementation.

70

8.2 Obstacle Avoidance Algorithms

In general, automated vehicles that follow fixed paths are not equipped with sensors to

determine their absolute position within a 'world' coordinate system[681. They simply

follow the path and, if they deviate from it, at best can recognise the fact and halt.

Many obstacle avoidance researchers deal with this problem by specifying the

automated vehicle environment in the form of a map, complete with boundaries

indicating • go' and 'no go' regions[69,70,71). On-board electronics keep track of the

vehicle position in the form of orthogonal coordinates detennined from sensory data.

Thus, if an obstacle is detected and the automated vehicle deviates from the guide path

to avoid it, information is available to enable it to return to the path after the

manoeuvre. However, the tasks of specifying and maintaining a 'map' of the AGV

operating environment are critical. They require accurate measurement and constant

re-evaluation in the face of environmental change. Furthermore, systems which use

dead-reckoning sensors to obtain positional information over a large area are normally

subject to unacceptable cumulative errors.

In this research, a method has been devised for AGV control which avoids the

labour-intensive and expensive task of detailing a factory in terms of two-dimensional

coordinates. A local map is developed when an unexpected obstacle is detected. This is

based on the following rules:

o The section of the guide-path upon which the AGV is travelling

when the obstacle is detected remains straight for the duration of

the obstacle avoidance manoeuvre.

o If an obstacle completely fills the CCD camera field of view, the

decision of which direction to take is based on a priori
information about the AGV guide path layout. For example, if

the guide path is towards the left hand side of aisles then most

space for avoiding the obstacle is likely to be available to the

right. This would therefore be the most likely direction to result

in successful avoidance.

71

o The maximum distance that the automated vehicle is allowed to

deviate from the guide path during an obstacle avoidance

manoeuvre is governed by the overall width of the aisles (see
section 8.2.3).

When the obstacle detection system senses an obstruction in the vehicle path, two

variables representing the current deviation from the path and the current heading are

set to zero. As the vehicle leaves the path to avoid the obstacle, its relative deviation

and heading are referred to this

initial 'zero vector'. The

deviation and heading are

denoted by 'y' and 'theta'

respectively in figure 8.2.1. The

vehicle rejoins the original guide

path when the deviation and

heading return to their initial

zero values. The equation for the

deviation y is: y = r sin(theta)

where r is the distance travelled

on a particular heading theta (see

figure 8.2.1).

Figure 8.2.1

Zero Heading Angle
Zero Deviation from Pa

Automated Vehicle Heading and Deviation

The motion of the automated vehicle is simplified to a pair of 'primary' movements as

follows:

o TURN(DIR): Turn the automated vehicle 5 degrees in the

direction 'DIR'. Five degrees is chosen as the smallest increment

of angular motion because it allows fast trigonometrical

evaluation using a short look-up table. 'DIR' is a Boolean

variable with TRUE representing an angular increment of -5

degrees (a clockwise tum), and FALSE +5 degrees (an

anti-clockwise tum).

72

o ADV ANCE: This primary manoeuvre advances the automated

vehicle in a forward direction. The actual distance that one

'advance' moves the vehicle is set to 50 tnm. This represents the

increment that the automated vehicle travels in the forward

direction before rechecking for obstacles (see section 8.2.2).

In general, a complete obstacle avoidance sequence is constructed from several

primary TURNs and ADVANCEs, and may involve the avoidance of more than one

obstacle. A running total of aggregate headings and deviations is maintained to enable

the system to recover the vehicle to the guide path after circumnavigating the

obstruction. The following pseudo-code operations explain how this is achieved:

NEW _HEADING = OLD _HEADING + (5 degrees * DIRECfION)

where:

DIRECfION = -1 for an anti-clockwise turn

DIRECTION = + 1 for a clockwise turn }

NEW_DEVIATION = OLD_DEVIATION +

(ADV ANCE_INCREMENT * sin(NEW _HEADING))

The complete obstacle avoidance procedure is broken down into subroutines. These are

described in the following sub-sections under titles assigned in the actual software

source code (see appendices 3 and 6):

8.2.1 'LeftOrRight' Subroutine

This subroutine detennines which direction to turn to avoid an obstacle. The detection

system provides infonnation for obstacle avoidance in the fonn of the three Boolean

variables: OBSTFROMLEFf, OBSTFROMCENTRE, and OBSTFROMRIGHT. These

variables indicate whether an obstacle is emerging from the left, centre or right of the

CCD camera field of view and are detennined by dividing the video image into three

equal regions. The obstacle detection software ascertains where obstacles lie in relation

73

to the AGV by establishing which regton the detected light codes appear. The

LeftOrRight subroutine uses the three Boolean variables to detennine whether to tum

to the left or right to avoid the obstacle. If the obstacle only occurs in the centre of the

field of view, or if it fills the field of view, the decision is based on a priori knowledge

of the automated vehicle environment. In the prototype, this is arbitrarily to the right.

If the obstacle emerges in the left of the field of view then avoidance is attempted to

the right. Conversely if an obstacle emerges from the right then the system will attempt

to avoid the obstacle to the left.

8.2.2 'TURNAGV' Subroutine

Figure 8.2.2.1 shows the flow chart for the TURNAGV algorithm. All the sub-routines

to be discussed return a Boolean variable 'RESULT' which is only FALSE if the

automated vehicle can not pass the obstacle. All the subroutines which physically

move the AGV execute a check for obstacles. This returns a Boolean variable

'OBSTDETECfED' which is TRUE when an obstacle is detected (regardless of its

position in the field of view) and FALSE otherwise.

When the system detects an obstacle, the software determines which way to tum to

avoid it using the LeftOrRight routine, and then turns in 5 degree increments until the

obstacle no longer interferes with the projected light pattern. This results in the

automated vehicle being orientated with a heading that will allow it to clear the

obstacle. A further subroutine 'TESITURN' is included, whose flow chart is shown in

figure 8.2.2.2. This checks for:

o Another obstacle emergmg which will prevent the vehicle

turning to avoid the flrst one. This occurs, for example, if the

AGV is in a narrow gap and while turning to the right to avoid

an obstacle on the left, encounters another obstacle on the right

before the one from the left is cleared. In this case the vehicle

cannot avoid the obstruction and a FALSE result is returned.

74

TLm AGV 5 degees

Update Qrrent Heading

Call TestTLm

YES

75

Hpe82.2.1

FbN Olartfor TURN' AIgoriIhm

Is there an
obstacle from the left N::l

Pm
no Obstacle from the right

ND
avoiding to right?

Is there an
....... ob5tac:le from the

Pm
no Obstacle from the lett

ND
avoiding to left?

o If the AGV is faced with a semi-circular type of obstruction

enveloping it then a maximum limit of 90 degrees is placed on

the TURNAGV procedure. This prevents the automated vehicle
turning back on itself.

If the vehicle succeeds in turning to avoid the obstacle, it must next advance in a series

of small steps, far enough to allow recovery to the guide path without colliding with

the obstacle.

8.2.3 'ADVANCEAGV'
Subroutine

The pnmary objective of the

ADV ANCE procedure is to advance

the automated vehicle in small

increments - checking for further

obstacles after each increment -

until the vehicle centre of turning is

past the obstacle as shown in figure

8.2.3.1.

Figure 8.2.3.2 shows the flow chart

for the ADVANCEAGV procedure.

-
-AG~---® , - ', ,,....

",/ "I : /" ,
I ~J. "',

I '
I......

~,,' rjt.. /
I '1../] ,

I ... , / ;1
", '~'. 'I

Vehicle centre '" " -.
of rotation past obstacle

Figure 8.2.3.1
Distance that the Automated Vehicle
Must Advance to Clear an Obstacle

As in the previous subroutine, the Boolean variable "RESULT' is used to indicate

whether the automated vehicle can pass the obstruction or not. The ADV ANCEAGV

routine uses an additional Boolean variable 'PASSEDYET' which signals that the

vehicle has advanced far enough past the obstacle to begin the recovery procedure.

The failure modes of the' ADVANCE' procedure are as follows:

o The procedure will return a 'failed to pass' (RESULT=FALSE)

result if a further obstacle is encountered emerging from the

76

No

Obst Detected
AN D NOT

Passed_ Yet?

Ex it

0esult=TRUE)

-f
Passed Yet NO

Obstacle
Detected?

Passed_ Yet?

Advance AGV
1 Increment

Yes
~ __ ... assed_ Yet ~ YES

Dev; ated YES
Resul t FALSE

Yes

Result FALSE

Figure 8.2.3.2
Flow Chart for 'ADVANCE' Procedure

77

opposite side to the ftrst. For example, if an initial obstacle was

encountered in the left region of the CCD camera fteld of view,

the system would attempt to avoid it by turning to the right. If a

second obstacle emerges in the right hand region of the field of

view before the vehicle had passed the ftrst, the system would

halt. This condition arises when the gap between obstacles is too

small for the vehicle to manoeuvre as shown in figure 8.2.3.3.

o If a further obstacle emerges from the same side as the fITSt or

from the centre of the CCD camera field of view, then the

advance procedure will be aborted and the system will begin the

obstacle avoidance procedure anew by turning to avoid the new

obstruction before beginning to advance again. However, if

obstacles continue to emerge which cause the vehicle to deviate

excessively from the guide path, the system will halt the vehicle.

This upper limit of deviation depends on the space available for

the automated vehicle to manoeuvre and would nonnally be

detennined by the width of the aisles.

If the automated vehicle successfully passes the obstruction (returning from the

advance procedure with RESULT = TRUE), the fmal ~RECOVER' phase of the

Figure 8.2.3.3
'ADVANCE' Procedure Fails if Gap is Too Small

For Automated Vehicle to Negotiate

78

obstacle avoidance procedure is

initiated.

8.2.4 'RECOVER'
Subroutine

After the TURNAGV and

ADV ANCEAGV procedures

have been executed, the

automated vehicle will be at

some distance from the original

guide path with an orientation

which enabled it to pass the

final obstacle. The 'RECOVER' procedure returns the vehicle to its original trajectory.

The most direct method of achieving this would be to turn the automated vehicle so

that it approached the original guide path in a perpendicular direction, and then turn it

90 degrees onto its original heading when the deviation from the path reaches zero.

However, a severe disadvantage with this approach is that if the guide path runs

closely parallel with a wall, the vehicle would need to turn and advance many times

before returning to its original route as shown in figure 8.2.4.1 . This method would

eventually succeed if the wall was continuous. However, if it was discontinuous, the

vehicle would at best meander back on course on an's' shaped trajectory after

overshooting the guide path.

The alternative approach developed in this work is to return the automated vehicle to

the guide path on a hyperbolic trajectory as shown in figure 8.2.4.2. Using this

approach, the greater the deviation from the guide path, the more severe the return

heading angle. As the vehicle approaches its original guide path, the recovery angle

converges with the original vehicle heading.

- I I

~-- ---~------ ~ ~---~

r- -----.... -----
I
:@ @
, I _

,----------------

Figure 8.2.4.1

Simplistic 'RECOVER' Procedure

AGV Must Repeatedly 'Avoid' Corridor Wall

79

D(Ky
angle =--

1 + KIYI

Figure 8.2.4.2

AGV'RECOVER'PROCEDURE

AGV Returns to Guide Path on a Hypert?0lic Trajectory

Figure 8.2.4.3 shows the flow chart for the recovery procedure. In order to avoid the

need for floating point arithmetic, the hyperbolic equation in figure 8.2.4.2 has been

reduced to a look-up table of headings (see appendix 3). Hence, for a given deviation

from the guide path, a corresponding heading is determined (desired heading). The

vehicle is then turned one 5 degree increment in the direction which will reduce the

error: (desired heading - current heading). This process is repeated until the deviation

and heading reduces and eventually converges to zero as the vehicle returns to its

.original guide path.

Should a further obstruction be encountered during the recovery phase of the obstacle

avoidance process, the subroutine is abandoned and the whole obstacle avoidance

sequence begins again until either the process fails or the vehicle regains its original

path.

80

8.3 Obstacle Avoidance Simulation Package

The obstacle avoidance algorithms discussed in the previous sections are implemented

in 8051 assembler language on the Intel 8031 embedded computer system described in

chapter 4. \ However, due to the complexity of coding the algorithms directly in

assembly language, they were fIrst tested by developing a simulation package in Turbo

Pascal. The computer model uses high resolution colour graphics to represent the

automated vehicle, a roadway,

and obstacles. Any number of

obstacles can be placed in the

simulated roadway by

interactively positioning a

graphic cursor on the screen.

Figure 8.3.1 illustrates the

graphical models. The

automated vehicle chassis is

represented by a rectangle with

a further rectangle for the

projected light pattern. The

roadway is shown between two

cross-hatched regions in the

upper and lower portions of the

display. Obstacles are

represented as random four

sided polygons in the same

colour as the road edges.

Procedures are included to turn

Result=TRUE

Yes

Look-Up Desired Heading
for Current Deviation

Error Heading =
(Desired - Actual) Heading

Turn AGV 5 degrees to
Minimise Error

Advance AGV
1 Increment

Result = FALSE

YES

(EXit)

Figure 8.2.4.3
Flow Chart for 'RECOVER' Procedure

81

~GU O~ Hodel S_ LoOckwood .1992

Roadway

1 I Q -S' -Obstacle

Vehicle~';-----l ~
Projected Light Pattern

Figure 8.3.1
Graphical Elements of the Computer Model

the AGV model in 5 degree increments and also to advance it in small increments.

Infonnation about the position of the simulated vehicle and its heading is tabulated in

the upper left hand corner of the display. To aid clarity, the latter infonnation is not

shown in the 'screen dumps' of figures 8.3.1 and 8.3.2.

Each time the AGV is turned or advanced, it is erased, redrawn in its new position and

orientation, and the infonnation table updated. If no obstacle is placed in the path of

the AGV model it will simply proceed on a straight line from the left of the display to

the right.

Obstacles are detected by testing for pixels of the obstacle colour, lying inside or on

the boundary of the simulated projected light pattern. Turbo Pascal procedures and

functions have been implemented to simulate the primary moves: TURN and

ADVANCE and the secondary operations: LeftOrRight, ADVANCEAGV, TURNAGV,

and RECOVER according to the flow charts developed in section 8.2. A full listing of

the AGV system model can be seen in appendix 6. Figure 8.3.2 shows screen dumps of

the model when faced with various obstacle situations. Figure 8.3.2a shows the

response to single obstacles, 8.3.2b two obstacles and 8.3.2c three obstacles. The path

82

of the vehicle in each case is shown using a modified procedure which displays the

'trail of the AGV.

The model is a simplified version of the real system. However, it proved sufficiently

accurate to test the algorithms developed in section 8.2. The main simplification is in

the motion of the AGV. The inertia of the real vehicle as it halts on encountering the

first obstacle is not taken into account. However, this factor does not affect the

effectiveness of the simulation in testing the obstacle avoidance subroutines.

8.4 Obstacle Avoidance Algorithms
Transferred to the Intel 8031 Embedded
Microcontroller

The Pascal simulation program was converted to 8051 assembler language and tested

on the real experimental vehicle. The only significant structural differences between

the real system software and the model, are the language used for the source code and

the method used to evaluate the sine function. In the Turbo Pascal model, this is

carried out using the floating point sin(x) function included in the package. Floating

point arithmetic has been avoided in 8051 assembler language by implementing a

look-up table. Since the experimental vehicle is only moved in 5 degree increments as

described earlier, the table needs only to hold sine values for multiples of five degrees.

In order to both achieve accuracy and restrict the look-up table values to single bytes,

the sine values have been stored as Ksin(x) where K is 256. The actual value of

deviation is maintained as a two-byte two's compliment number with positive and

negative values depending on which side of the guide path the vehicle is situated. Full

listings of the assembler language obstacle avoidance program and the look-up tables

are presented in appendix 3.

The subroutines developed In the preceding sections were evaluated on the real

experimental vehicle systen1 and the results are described in the next chapter.

83

AGU O~ ModQl S. Lockuood ~992

AGU OA ModQl s. Lockwood 1992

---... -.-,.-.

Figure 8.3.2.a
Single Obstacle Avoidance

84

AGU OA ModQJ s _ Lockwood

AGU OA ModQl s _ Lockwood

Figure 8.3.2.b
Double Obstacle Avoidance

85

~992

D

.1992

D

caGU oca Modol2 1 S _ Loc)(uood ~ 992

AGU OA ModQl S. Lockwood 1992

Figure 8.3.2.c
Avoidance of Three Obstacles

86

D

9 EVALUATION OF THE
OBSTACLE AVOIDANCE

SYSTEM

9.1 Summary

In support of the results presented as part of the design process in chapters 3,5,6 and 8,

this chapter describes experiments carried out on the completed obstacle avoidance

system. These are divided into three sections:

o Obstacle Detection. Experiments were carried out to confrrm
the size of the smallest detectable object and test the ability of

the system to sense a diverse range of obstacles.

o Response Time and Real-Time Operation. The speed of

execution of the image processing software is examined and

experiments carried out to detennine the response time of the

complete system. A key objective of the research is that the
system should operate in real-time. Tests have been conducted to

demonstrate this feature.

o Obstacle A voidance. These experiments determine the

accuracy and repeatability of the obstacle avoidance system.

All the practical work described in this chapter was carried out in the Flexible

Manufacturing laboratory at the University of Huddersfield.

9.2 Obstacle Detection System

Chapter 5 described how the system is designed to detect objects of m1Ill1llum

dimensions 50mm wide X 20 nun tall. This limit is imposed partly due to the method

of processing video infonnation and partly due to the physical size of the projected

87

light code. The moving average filter which processes images in the vertical direction

requires that obstacles are tall enough to reflect at least 8 video lines. In the horizontal

direction, they must be wide enough to reflect a complete projected light code. The

ability of the system to detect an object of these minimum dimensions was tested by

placing the 50mm X 20mm test card on the floor ahead of the vehicle as illustrated in

figure 9.2.1. The resulting video camera view of figure 9.2.2 shows that a complete

light code is reflected. The system successfully detected the test card and therefore the

height criteria was also verified.

The hypothesis which forms the basis of the next experiment is that the use of a white

light projector ensures sufficient light is reflected from objects with minimal reflective

properties. An automobile radiator component with a black lustreless surface

(specifically designed to minimise reflection and maximise heat absorption) was

selected to test this premise. Figure 9.2.3 shows the video camera view of the

component. The system successfully detected the radiator part even though the matt

black surface was oblique to the projector and camera angle of incidence.

The ability of the system to detect objects with efficient reflective properties without

saturating is also important. The video camera adjusts the average amount of light

falling on the CCD array by means of an auto-iris. The performance of this device was

tested by replacing the matt black radiator component with a large gloss white board.

The video camera view of figure 9.2.4 shows that the auto-iris successfully limited the

light falling on the CCD array and prevented light saturation. This can be seen by the

fact that the reflected light codes remain clearly defmed in the video image.

The speed of operation of the auto-iris device was tested by placing the video camera

in complete darkness and then introducing it to a bright light. This was achieved by

positioning the gloss white board in front of the obstacle detection system and placing

a dark cover over the camera lens. The cover was quickly removed and the response of

the auto-iris timed. The system took approximately 0.25 seconds to adjust. Since this is

88

/'
/' Projector

Experimental Vehicle

Test Obstacle'

Figure 9.2.1

'Test Obstacle' Positioned in Light Pattern

Figure 9.2.2

Video Camera View of 'Test Obstacle '

89

nearly four times faster than the

response time of the obstacle

avoidance system (see section

9.3), the auto-iris does not

significantly influence the

performance of the overall

system.

It is not feasible here to provide

evidence of the system detecting

all possible obstructions, neither

Figure 9.2.3
Video Camera View of a Matt Black Obstacle

is there any particular definitive obstacle. However, further to the previous results, the

video images of figure 9.2.5 show the camera view of a selection of obstacles as they

were detected. These are typical of those likely to be encountered in factories and vary

widely in colour, surface texture and shape.

9.3 Response Time and Real-Time Operation

Figure 9.2.4
Video Camera View of a Gloss White Board

90

When the system initially detects

an obstacle, the embedded

computer system takes control of

the vehicle drives and brings it to

a halt. This is achieved by

electronically switching buffer

integrated circuits and supplying

stop conunands to the motor

controllers. The obstacle

detection system then performs

Steel Turned Component Wood Block

Plastic Sack Copper Pipe

Figure 9.2.5

Typical Obstacles Encountered in Factories

91

Cardboard Box Oil Drum

Shoe Power Tool

Figure 9.2.5

Typical Obstades Encountered in Factories

92

two further checks for obstacles and bases the decision of whether to avoid the

obstacle or not on the majority consensus of the three results. Section 6.3 provides a

comprehensive description of this majority polling scheme. The process increases the

surety of obstacle detection and reduces the sensitivity of the system to non-persistent

objects (such as people crossing the path of the vehicle).

The response time of the obstacle avoidance system may therefore be considered as

relating to two separate events:

o Detection Response Time. The time taken for the obstacle

avoidance computer to take control of the vehicle after an
obstacle is introduced to the system.

o Avoidance Response Time. The time interval from an obstacle

being placed in front of the system to the instant when the
vehicle begins to avoid it.

The time taken to detect an obstacle is governed by the video processing system. This

includes the time taken to capture a video image, perform digital filtering operations

and carry out pattern recognition. The time taken to execute these tasks was measured

by connecting the storage oscilloscope to the control signal asserted by the obstacle

avoidance computer when it takes control of the vehicle. In storage mode, the

oscilloscope trace was started at the same time as an obstacle was introduced to the

system. Figure 9.3.1 is a hard copy of the oscilloscope trace which shows the time

interval from the point when the obstacle was introduced (the left hand edge of the

trace), to the point where the signal level changes. This is the Detection Response

Time of the system which can be seen to be approximately 0.8 seconds.

The A voidance Response Time as defmed above should be approximately three times

the Detection Response Time (due to the majority polling scheme) and is therefore

calculated as 3 X 0.8 = 2.4 seconds. This figure excludes the relatively negligible time

taken to plan the motion of the vehicle.

93

·········:···········r·······.,.·········r········T········r········r········,··········T··········

·····'r········r······················,··········T···· , -r: + -t-......... ,

1P"'..,'IIMi~~~~ ; ~ ~ ~ ... ·········l············~············i
: : :
: : :

.. :::

r···········,···········,··········r···········! ·········r·········r··········t···········j···········1············:

,··········r···········r··········r·········: c······T··········:···········y···········j···········\ :

~··;·······r·········,··········T··········i ·········r·········-r··········,···········,··········-t-.......... :

··········t·········T··········~··········'··········j""·····r······t·········.,..········T········,

r·········T········r········T······_·r·········t··········r·········:············,········-r
:. .. : o. .. : : : : : : _ : ~

Figure 9.3.1

DATE: 08.06.1992
TIME: 13:17

SIGNALPARAMETER :

CH1 - VOLTS/DIV: 1 V
TII'IEBASE-SEC/DIY:.2 s

PRINTERPARIl"1ETER :

ZOOMRANGE - CH1:0-9
HARDCOPY SOURCE :HI'I 295-3

REMARKS:

1-1 FI [VI E 13

III
Instruments

11fl!l_

Oscilloscope Trace Showing Access Control Signal
Asserted by Obstacle Avoidance Computer to

Take Control of Vehicle

The A voidance Response Time was measured by connecting the motor drive signals to

two channels of a storage oscilloscope. In single sweep storage mode, the oscilloscope

trace was triggered approximately simultaneously with an obstacle being introduced

into the path of the vehicle. Figure 9.3.2 is a hard copy of the oscilloscope trace

showing the motor control signals as the vehicle began to tum. These signals act with

opposite polarity since to tum the vehicle, one motor is driven clockwise and the other

anti-clockwise. The motor control signals are pulse width modulated, provided by the

Hewlett-Packard digital motor controllers via H-Bridge amplifiers as described in

chapter 7. The signals shown in figure 9.3.2 are subject to a smoothing effect because

94

:";,:,!-,··,··········I········-:·····r········r·········r·········.,.·········!
·····:···T·········r·········,,···········I········ .. ·· , : 0···1···········,··········;

I···········~·········r········ ... ··········:············,······:·T·········I··········I""········"I

r····tJ······ ········T·········r·····.··· ··r·········,···········"1··········';"····:
: . ···l···········f··········~············(·········~

· : : : · . · . · . :---···:·····r······· ... ······r·····l····· ···,···········(········l········;···········,
: :: : ..: : : : ; : : :-........... ; :..... ; : :

i -: iii :: ~ ~
~ ~ : ;........... ~ : : : ~ : ;
:,.,,:: :::::: ..

~. ~ ~ ~ .. ~ ~ ~ ~
~ ;: ; ; ~ ~ ~
: ; : : : : : : : : ..

"

Figure 9.3.2

DATE: 03.06.1992
TIME: 09:54

SIGNALPRRAMETER :

CH1 - valTS/DIV: 2 Y
CH2 - VOLTS/D'I V: 2 Y
TIMEBASE-SEC/DIY:.5 s

PRINTERPARAMETER :
'.

ZOOMRANGE - CH1:0-9
ZOOMRANGE - CH2:0-9
HARDCOPY SOURCE :HM 205-3

REMARKS:

I-I.FI [VI E G III rvViruments

Motor Control Signals Illustrating Avoidance Response Time

(\ (\ ~
~. \ ~

I
I '\ •

'''---!

I
..-J

t t
o----------------------~

Figure 9.3.3

PWM Signal is Smoothed Due to Motor Inductance

95

of the large inductive motor loads (see figure 9.3.3). Nevertheless, the Avoidance

Response Time of the system can be clearly seen as the interval from the left hand

edge of the oscilloscope trace, to the point when the motor control signals are applied.

With the time-base set to 0.5 seconds/division, this is approximately 2.48 seconds. The

error between this and the predicted time of 2.4 seconds is mostly due to the difficulty

of starting the oscilloscope trace at the same instant as the obstacle was introduced.

Factors affecting the motion of the experimental vehicle after the control signals have

been applied include the effects of the inertia of the vehicle, the digital control system

and the horse power of the motor drives.

Chapter 8 discussed how the motion of the experimental vehicle is reduced to two

primary manoeuvres: 5 degree 'TURNs' and 50mm ' ADVANCEs'. In order to

determine how long the experimental vehicle takes to turn in 5 degree increments, the

motor control signals shown in figure 9.3.2 were subtracted from each other. The result

was displayed on a single oscilloscope channel (figure 9.3.4). Since the separate signals

are of opposite polarity, this combination highlights the instants when maximum

control effort is applied to move the experimental vehicle to a new position. Referring

to the overall motor drive block diagram of figure 7.4.2, these are the error signals

from the motor controllers which decay as the vehicle moves from its current position

to the desired position. With reference to figure 9.3.4, the time between each peak on

the oscilloscope trace represents the time taken for the experimental vehicle to

complete one 5 degree turn. This time varies slightly due to load disturbances on the

system such as dirt under the road wheels and irregularities in the floor surface. Figure

9.3.4 shows that the approximate angular velocity of the vehicle during the 'TURN'

phase of obstacle avoidance is approximately 5 degrees every 2 seconds or 2.5

degrees/second.

A similar test was carried out during the 'ADVANCE', phase of avoidance where

identical control signals are applied to each motor. The oscilloscope trace of figure

96

9.3.5 shows the right hand motor signal. As before, the pertinent features of the figure
.....

are the peaks where maximum control effort is applied to initiate a move to a new

position. The oscilloscope trace shows the period of the peaks to be approximately 2

seconds which corresponds to an average velocity during the 'ADVANCE' phase of

avoidance of approximately 0.025m,1second.

Real-time is defmed as, 'denoting or relating to a data-processing system in which a

computer is on-line to a source of data and processes the data as it is generated'. Hence

the obstacle avoidance system operates in real-time because it responds to unexpected

obstacles as they are encountered. The following experiments demonstrate this feature

by testing the response of the vehicle to changing situations and multiple obstacles.

In the frrst experiment, an obstacle was placed in front of the experimental vehicle so

that the system began to avoid it. As the vehicle turned to clear the obstacle, it was

repositioned in the vehicle path as illustrated in figure 9.3.6. The obstacle avoidance

system responded in real-time to the new situation and was repeatedly 'repelled' by the

obstacle as it persisted in the path. The vehicle therefore continued turning in 5 degree

increments to avoid the obstacle until the limit set up in software of 90 degrees was

reached (see chapter 8). Figure 9.3.7 shows a series of photographs taken as the

experiment progressed. The position of the obstacle as it was moved was marked

periodically by orange card discs to aid the illustration.

The second experiment to demonstrate the real-time operation of the system was

similar to the previous test, except in this case, the obstacle was moved in the opposite

direction (away from the path of the vehicle) after it had initially been detected. Figure

9.3.8 shows a photograph taken after this experiment. The orange coloured card discs

show the path that the vehicle took when the obstacle was placed fully in front of the

vehicle. This original obstacle position is identified in the photograph by orange

markers. On the second run, the obstacle was placed fully in front of the vehicle until

it was detected and then moved to the new position where it is shown in the

97

.. ····r·········;··········..,.·········r··········,···········,·········T···r·········r·········:
~ ; ~..... . .. ~ +...... ·i.·· .. ·· .. ·· .. ~.···· ~ ~ .. · .. ·· .. i.········· .. ·

I ! ! ! ! ~ ~ ~ :
1"···_····1· , ,- .

1' 1' "1'r· · .. ~ .. · ~ i · ~ · i·...... "'1

r········--;-··········(·······+·····_···:···········]"···)_ + + !
_······T········T········T········· ········-i··········r·········,············!·········l·········!
: : : : : : : : : :

Figure 9.3.4

DATE: 93.96. 1992
TIME: 11:23

SI~:

CH1 - VOLTS/DIY:.5 Y
. TIMEBASE-SEC/DIY: 1 s

PRINTERPARAMLTER :

ZOO"RANGE - CH1:9-9
HARDCOPY SOURCE :H" 295-3

REMARKS:

1-1 F\ (V1 E 13 III flI1Jiruments

Subtracted Motor Control Signals During 'TURN' Phase of Obstacle Avoidance
Each Peak Indicates a 5 degree turn

... -..
: ~ ~ ~ ~ ~ ~ ; ; ~ ..

.. : : : : : : : :
: : : : : : : : : :
:: :..: :::

~ .. · · 1 1 ~ · ·1··· .. ·· .. · .. 1 · · .. 1 · .. · .. i · .. ·+ .. · l .. · .. · .. · .. ·l
: : : : : :: ::

~ ~ ~ ~ ~ { ... ···· ·l··· · .. ··~ .. · .. · .. ····l· ·······~··· .. ··· .. ··~
~ ! i! !!"!

. . r- .. · .. · .. ·r· .. ·······~·· .. · .. · .. ·r· .. ···· .. ·~ .. ······ ~··· .. ·· ·~··· ··r· .. ·· ·j· ·j· ·· .. · .. ~
~ ~ ~ ~ ~ ~ j ~ ~ j 1·1·1" _.! ; 1" •••••• ···T· ··1········ ·1·· 1"

: = : ..•••••.... : : : : ••••...•••• : : ••.•.•••... : :

Figure 9.3.5

DATE: 03.96. 1992
TIME: 11:46

SIGNAL.PARAMETER :

CH2 - VOLTS/DIY: 1 Y
T HIEBASE-SEC/D I Y: 1 s

PRltfTERPRRAf1:TER :

ZOOMRANGE - CH2:9-9
HARDCOPY SOURCE :HM 295-3

REJ'mKS:

1-1 F\ fVI E E;

III
Instruments

!VlJ1~

Right Hand Motor Control Signal During 'ADVANCE' Phase of Obstacle Avoidance
Each Peak Indicates a 50mm Advance

98

-
\
\
\
\
\
\
\
\

\\ ""'-/
\ /

I

Projected Light / pattern
~---")
~', --_.//

~-'\
I \

l\ I

/" ---//0'/ / ... ---

;' \ Direction of
\"" ___ / Obstacle Movement

1 ___ --bstacle

Figure 9.3.6
Moving Obstacle Test

photograph of figure 9.3.8. The white card discs show the corrected path of the

vehicle. This result demonstrates that the system responded to the changing obstacle

situation by deviating less on the second run.

The fmal real-time test was the introduction of a second obstruction whilst the system

was already engaged in an avoidance manoeuvre. This experiment was conducted by

placing a second obstacle ahead and to one side of the ftrst one to be negotiated. The

path that the experimental vehicle followed to avoid both obstacles was marked with

coloured card discs and the photograph of figure 9.3.9 shows the result of the test. The

system was able to negotiate the second obstacle in real-time and therefore

successfully avoided both obstructions.

The next tests are concerned with the overall performance of the obstacle avoidance

system.

99

-(/)
Q.)
~
Q.)

E
i=

I

C5
Q.)

a:
Q.)

Q
CI3 -V)

D
,.....0
MOl

' c en -
~ ~
:J~

.Q'l Ol
LL c:

~
.t:.
C/)
(/)

1::.
Q
CI3
Ol o o

1::.
a..
'0
Q.)
C,.')
c:
Q.)
:J

~

OJ

-'

'" Q)
I­
Q)

E .=
I co

Q)

a:
Q)

C3
n1
-'

'" D
~O
MC)

ai .5
Q) >
.... 0
:::l~
.Q'l C)
l.L. c:

~
.c:
(/)

'" .c:
C.
(0:5
C)
o
(5
.c:
Cl.

"0
Q)
C)
c:
Q)
::I

£

Figure 9.3.8
Photograph Showmg Real-Time Path Correction

Figure 9 .3 .9
Photograph Showing System

Responding to Two Obstacles

- - -----------

9.4 Accuracy and Repeatability

The obstacle avoidance algorithms were tested in terms of their accuracy and

repeatability. In this work, accuracy is defmed as the error within which the

experimental vehicle will return to the original guide path after avoiding an obstacle as

shown in figure 9.4.1. Repeatability is defmed as the ability of the system to avoid an

obstacle using the same route given equivalent starting conditions.

For both experiments, the guide path of the experimental vehicle was defmed parallel

to the laboratory wall as shown in figure 9.4.2. The deviation of the vehicle was then

referred to this datum.

In order to test the accuracy of the obstacle avoidance system, the vehicle was

positioned 0.4 metres away from and parallel to the reference wall. An obstacle was

placed in front of the vehicle and the system was allowed to avoid it. After the

avoidance manoeuvre was complete, the deviation from the wall was measured. The

experiment was repeated several times and the fmal position measurements were

within the range 0.38 - 0.42 metres showing a deviation error of approximately +-0.02

metres. Figure 9.4.3 shows photographs taken during the experiment. The path of the

vehicle was marked using coloured card discs to aid the illustration. Similar tests were

performed with various obstacles causing the vehicle to take different routes. Figure

9.4.4 shows the results of a test where an obstacle was placed in front of the vehicle

-
AGV

Obstacle
,­,

- - -1- ·· ·_ ·- -,,;:..;---- - --- - .• . - - - -.,- -

'------=-=--" -.......::""", ,~_:. ____ ~::~ ____ ___ j I Deviation Error
'", .//

'"" /
'- .""

Vehide Path

Figure 9.4.1
Accuracy of Obstacle Avoidance System

104

Laboratory Wall

Guide Path

Figure 9.4.2
Vehicle Path Defined Parallel to Laboratory Wall

and the route taken around the obstacle was marked with yellow card discs. The

obstacle was moved further into the path of the vehicle and the experiment repeated. In

this second case, the route that the vehicle used was marked with orange discs. The

photograph of figure 9.4.4 shows that whilst a different route was taken for each

situation, the vehicle returned to the original guide path .

. The repeatability of the obstacle avoidance system was tested by arranging for the

experimental vehicle to avoid the same obstacle repeatedly from the same starting

position.

The initial position of the experimental vehicle drive wheels were accurately marked

on the laboratory floor and an obstacle introduced in front of the system. The route

taken to avoid the obstacle was marked with yellow card discs. The vehicle was then

returned to the previous initial position and the experiment repeated. On the second

run, the vehicle route was marked with orange discs. The result of this experiment is

illustrated in the photograph of figure 9.4.5. The figure shows that there is no

significant difference in the paths taken by the vehicle on each run.

The most likely cause of the +-0.02 metre position error stems from the contact

between the experimental vehicle drive wheels and the floor. When odometry is used

as a means of position sensing in differentially steered vehicles, both drive wheels

must have the same diameter. Furthermore, both wheels must maintain positive contact

105

with the ground since any slippage will also result in errors.

The experimental vehicle wheels are accurately machined to the same dimensions and

fitted with hard rubber tyres. Whilst the latter ensure good adhesion to the ground, they

also necessarily compress under the weight of the vehicle. If this compression does not

occur equally in both wheels, the relative diameters will be altered. A similar effect

will occur if one wheel picks up debris from the floor which again, effectively changes

the relative wheel diameters. In general, position errors occurring due to these factors

are proportional to the distance travelled by the vehicle.

A further type of error which can occur in dead-reckoning systems is caused by uneven

floor surfaces. If one drive wheel travels on a flat surface and the other over

undulations, the result will be that the fonner wheel appears to travel a shorter distance

than the latter and steering error will occur.

Section 2.2.2 discussed how many researchers attempt to combine odometry with

another absolute position sensing method in order to periodically correct the

accumulating position errors. A key advantage of this system is that the position of the

automated vehicle is referred to the point where it leaves the guide path. Since the

distance that the vehicle travels from this point is relatively short, excessive errors do

not occur.

The distance from which commercial AGVs can sense their guide path depends on the

design of the sensing head. In a commercial active wire-guided system installed by the

collaborating establishment in Doncaster, England, the automated vehicles can detect

the embedded guide wire from a distance in excess of 1 Oem. The position error in the

obstacle avoidance system is well within this range and therefore odometry can be

successfully used as the sole means of navigation.

The conclusions drawn from the results presented In the preVIOUS sections and

107

throughout the thesis are discussed in the next chapter. The limitations of the system

are explored and suggestions made for further work on the obstacle avoidance system.

Figure 9.4.4
Photograph Showing Accuracy Test

108

Figure 9.4.5
Photograph Showing Repeatability Test

10 CONCLUSIONS LIMITATIONS
AND RECOMMENDATIONS FOR

FURTHER WORK

10.1 Conclusions

The guidance methods available for automated vehicles and the current state of

obstacle avoidance research were reviewed in chapter 2. The key fmdings of the

review were that:

o Most industrially based AGV systems use the inductive

embedded wire method of guidance because of its ruggedness
and proven reliability.

o At present, there are no commercially available AGV systems
that can avoid unexpected obstacles.

o Although much research has been carried out in the field of

obstacle avoidance, none has yet produced a system suitable for

use in manufacturing factory environments.

The research presented in this thesis has therefore aimed to design a stand-alone

obstacle avoidance system that could eventually be retrofitted to existing automated

vehicles. The performance of commonly used wire guided vehicles would then be

enhanced at a small cost in relation to that of the entire installation. A retrofitting

system would also incur low installation costs since the overall factory need not be

disrupted whilst obstacle avoidance systems were fitted to vehicles. Furthennore, as the

systems would be independent, any isolated failures would have little effect on the

manufacturing process as a whole.

Various sensor systems were considered for use in the design. These included

ultrasonics, laser and other techniques. Ultrasonic methods are unsuitable because of

110

their susceptibility to extraneous high-frequency nOIse produced by some

manufacturing processes. Also, sensors using moving parts such as delicate stepper

motors or rotating mirrors etc., were considered unsuitable because of the risk of

damage and the need for routine maintenance. Modern optical technology however, has

produced extremely low-cost, robust and compact sensors in the form of CCD arrays.

These use no moving parts and are maintenance free. A monochrome CCD video

camera has therefore been employed as the sensing element of the new system.

Some obstacle avoidance systems use CCD cameras to passively detect obstacles. A

disadvantage of these, is that complex scene analysis must be carried out to

discriminate between sections of the CCD image that represent obstacles to be avoided,

and those that represent incidental features or illusions. An active system based on a

novel light pattern projection system has been successfully developed to overcome this

disadvantage. The task of scene analysis has been simplified by introducing coded light

information into the system which enables pertinent sections of the image to be clearly

identified.

A study of the applications of structured light in computer aided engineering and

design revealed that the systems used in this field are static and often take several

seconds or in some cases minutes to process large amounts of video data. This research

has successfully extended the use of structured light to a mobile system and has

simplified the task of image processing by using a novel projected light, 'bar' coding

scheme. When obstructions emerge into the path of the automated vehicle, they reflect

the projected light bar pattern which is then detected by the CCD camera.

A major design objective set out in chapter 1 was that the system should be low-cost,

compact and robust. This has been successfully achieved using a single Intel 8031

microcontroller to carry out image processing and obstacle avoidance tasks. The Intel

8031 computer was chosen for its low-cost and range of on-chip features. These

include on-board timers, internal and external interrupts, bidirectional parallel and

111

serial communications ports.

Ancillary memory buffer and digital motor control circuits have been designed around

this computer and the software developed entirely in assembler language. This has

enabled optimum execution speed and efficiency to be achieved.

The methods used to process video information and hence detect obstacles comprise a

combination of digital filters and direct methods. High processing speed has been

achieved by using minimmn word-length integer arithmetic and avoiding floating-point

methods. The latter has placed constraints on the design of a suitable recursive digital

futer since the coefficients usually require an accuracy in the order of three decimal

places. However, a comparison of filters designed using the bilinear transform method

and simple integer-only digital equivalents of a C-R filter has proved that a digitised

C-R filter gives adequate and reliable performance. Direct methods have been

successfully implemented to detect features in the filtered video information. A

decision-theoretic method of pattern recognition analyses the relationships between

these features which in turn, belies the presence of obstacles.

A crucial design aim was that the obstacle avoidance system should be simple to

configure and maintain. An algorithm which automatically calibrates the projected

light detection system successfully achieves this by alleviating the need for critical

projector-camera positioning.

An experimental automatic vehicle has been designed and constructed to test the

obstacle avoidance system. This is based on a differential steering arrangement which

uses two drive wheels controlled by dedicated single-chip microcontrollers. The range

of possible control actions has been investigated and suitable digital control parameters

have been determined empirically.

The complex obstacle avoidance control actions are broken down into basic

112

manoeuvres upon which higher levels of control are based. The control algorithms

have been designed with the aid of a specially developed computer simulation. This

uses high resolution colour graphics and allows various obstacle situations to be

simulated. The operation of the model has been described and the results obtained

during the design of the control algorithms presented in chapter 8. The resulting

obstacle avoidance computer program was converted from Pascal, to Intel MCS-51

assembler language for implementing on the embedded system.

Tests have been successfully carried out on the obstacle avoidance system, the results

of which are presented in chapter 9. These show that the new system operates in

real-time and has the ability to negotiate multiple obstacles. The system was found to

have a position error of approximately +/- 0.02 metres. This was considered acceptable

since the vehicles in an AMECAS commercial system can locate the embedded wire

guide-path from a distance in excess of 0.1 metres. Tests to establish the repeatability

of the system showed that there was no significant variation in the paths taken by the

experimental vehicle on repeat runs under similar starting and obstacle conditions.

The overall cost benefits of the obstacle avoidance system to potential users are

difficult to estimate as they depend on factory-specific factors such as the volume of

traffic, the number of AGV s, and the size and complexity of the factory layout.

However, it is estimated that each system would cost approximately 3 - 5% of the total

value of the vehicle on which it would be installed (based on the approximate new cost

of the AMECAS AGV s in the Doncaster installation).

10.2 Limitations of the System and
Recommendations for Further Work

The pattern used for the projected light codes has provided reliable operation

throughout the research. Nevertheless, it may be possible to design more efficient light

113

patterns for detecting smaller obstacles. This research has been primarily concerned

with the design of a practical system embodying aspects of the mobile application of

structured light and obstacle avoidance. The subject of developing optimum codes

could be addressed in further research work.

At present, the new obstacle avoidance system avoids obstacles on straight guide-paths.

The performance of the system would be enhanced by the ability to avoid obstacles on

curves. However, extra sensing equipment may be required on both the vehicle and the

factory floor so that the obstacle avoidance system could determine where curves

started and ended, and in which direction they turned. Also, since AGV systems may

have curves of varying dimensions and shape, some standardisation of existing layouts

may be required. The problem of achieving obstacle avoidance on curves whilst

maintaining the generality of the system could be addressed as the subject of a further

research project.

Although the system operates in real-time, the obstacle detection response time of

approximately 0.8 seconds is relatively modest. However, since the start of this

research project, developments in electronics have resulted in the introduction of Intel

MCS-51 series microcontrollers capable of operating with master clock frequencies

over 30 megahertz (almost three times the speed of the present microcontroller). The

detection response time of the obstacle avoidance system could be drastically reduced

by using such a microcontroller. Time constraints have not allowed this modification to

be carried out however, as the ancillary circuits would have to be redesigned in order

to accommodate the increased processor operating speed.

Several printed circuit boards are used for the electronics in the prototype obstacle

avoidance system. The circuits could be customised by combining elements in

integrated units. This development would further reduce the cost of the system and

improve its reliability.

114

The obstacle detection system is not limited to application in this research project. The

novel light coding scheme has the inherent feature that the approximate width of

objects can be determined by virtue of the number of light codes reflected.

Furthermore, the system could be modified to provide object height information. With

these developments, the obstacle detection system could fmd use in object

classification or recognition systems.

The obstacle avoidance computer model proved extremely helpful in the design of the

obstacle avoidance algorithms and although it was developed specifically for this

project, it would also be suitable as a development tool in other AGV research projects

and also as a teaching aid. Similarly, whilst the experimental vehicle was built

specifically as a test bed for the obstacle avoidance system, it could also be useful for

continuing research and demonstration.

115

REFERENCES
1 Hammond, G., AGVs at Work - Automated Guided Vehicle Systems, IFS

Publications Ltd., 1986, Chapter 1.

2 Mechanical Handling Economic Development Committee, Advanced Handling
Systems - Exploiting the Opportunities, 1986, PP 3-7.

3 Mortimer, J. (Editor), Ingersoll Engineers, The FMS Report, IFS Publications, 1982,
Chapters 1 and 2.

4 Clauzier, I. F., Gibbons, D. T., Improvements on the Guidance Systems of
A utomatically Guided Vehicles, IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing, 1987, PP 145-148.

5 Hollingham, J., Wagner AGVs Show Strength and Endurance, Industrial Robot,
Volume 18 Number 12, 1991, PP 12-14.

6 Premi, S. K., Besant, C. B., A Review of Guidance Techniques That Can Be Used by
Mobile Robots or AGVs, Proceedings of the 2nd International Conference on
AGV Systems, 1983, PP 195-209.

7 Boegli, P., Comparative Evaluation of AGV Navigation Techniques, Proceedings of
the 3rd International Conference on AGV Systems, 1985, PP 169-180.

8 Tsukagoshi, T., Miura, T., Yamauchi, F., Magnetic Lattice Lane Guide for AGVs,
Proceedings of the 8th International Conference on AGV Systems, 1987, PP
137-144.

9 Kato, A., Suzuki, T., Hosoi, M., Spotmark Guided Unmanned Vehicle System,
Proceedings of the Japan - USA Symposium on Flexible Automation, 1986, PP
361-364.

10 Takeda, Kato, Suzuki, Hosoi, Automated Guided Vehicle Guidance Using
Spotmark, IEEE International Conference on Robots and Automation, 1986,
Volume 2, PP 1349-1353.

11 Takeda T., Kato, A., Cleanroom Inspection Robot, Proceedings of the 5th
International Conference on AGV Systems, 1987, PP 277-288.

12 Robins, M. P., Free Ranging Automatic Guided-Vehicle System, GEC Review,
Volume 2 Number 2, 1986, PP 129-132.

1

13 Culley, G., Baldur, R., Free Wheel Approach to AGV Navigation, Proceedin<Ys of
the ASME Conference - Computers in Engineering, 1988, PP 267- 274. 0

14 Julliere, M., Marce, L., Perrichot, H., A Guidance System for a Vehicle Which Has
to Follow a Memorized Path, Nouvel Autom, Volume 28 Number 36, 1983, PP
52-60.

15 Kochan, A., British AGV is on the Right Course, The FMS MAgazine, July 1984,
PP 136-137.

16 Walker, S. P., Premi, S.K, Besant, C. B., Imperial College Free-Ranging AGV
(ICAGV) and Scheduling System, Proceedings of the 3rd International Conference
on AGV Systems, 1985, PP 189-198.

17 Stephens, P., Robins, M., Roberts, M., Truck Location Using Retroreflective Strips
and Triangulation with Laser Equipment, Proceedings of the 2nd European
Conference on Automated Manufacturing, 1983, PP 271-282.

18 Rathbone, R., Valley, R. A., Kindlemann, P. J., Beacon Referenced Dead
. Reckoning: A Versatile Guidance System, Robotics Engineering, December 1986,
PP 11-16.

19 Pears, N. E., Bumby, J. R., Guidance of an Autonomous Guided Vehicle Using
Low-Level Ultrasonic and Odometry Sensor Systems, Transactions of the Institute
of Measurement and Control, Volume 11 Number 5,1989, PP 231-249.

20 Eaton-Kenway Inc. USA, Inertial Guidance: Is it a Viable Guidance Syatem for
AGVs, Proceedings of the 4th International Conference on AGV Systems:
AGVS-4, 1986, PP 301-320.

21 Tsumura, T., Recent Development of Automated Guided Vehicles ill Japan,
Robotersysteme, 1986, PP 91-97.

22 Hamel, W. R., Babcock, S. M., Hall, M. G., et aI, Autonomous Robots for
Hazardous and Unstructured Environments, Oakridge National Laboratories, 1985,
PP 5.9-5.27.

23 Moravec, H. P., Elfes, A., High Resolution Maps from Wide Angle Sonar, IEEE
International Conference on Robotics and Automation, 1985, PP 116-120.

24 Weisbin, C. R., et al, Hennies-II: A Mobile Robot for Navigation and Manipulation
Experiments. Robots-9 Conference Proceedings, 1985, PP 1-24.

25 Normoyle, P. D., Huissoon, J. P., Ultrasonic Vision System for Use on Mobile
Robots and Automated Guided Vehicles, UK Research in Advanced Manufacture,
1986, PP 55-60.

11

26 Hall, E. L., Oh, S. J., Katten, E. U., Experience With a Robot Lawn Mower
Robots-10 Conference Proceedings, 1986, PP 4.1-4.26. '

27 Farsaie, A., McKnight, T. R., Ferren, B., Harrison, C. F., Intelligent Controllers for
an Autonomous System, Proceedings of the IEEE International Symposiwn on
Intelligent Control, 1987, PP154-158.

28 Corfield, S. J., Frazer, R. J. C., Harris, C. 1., Architectures for Real-Time Intelligent
Control of Autonomous Vehicles, Computing and Control Engineering Journal,
November 1991.

29 McTamaney, L. S., Mobile Robots: Real-Time Intelligent Control, IEEE Expert,
1988, Volume 2 Part 4, PP 55-68.

30 Parodi, A. M., Nitao, J. N., McTamaney, L. S., Intelligent System for an
Autonomous Vehicle, Proceedings of the IEEE International Conference on
Robotics and Automation, 1986, PP 1657-1663.

31 Hollingam, J., Caterpillar Make the Earth Move: Automatically, Industrial Robot,
1991, Volume 18 Number 2.

32 Probert, P. J., Stamper, R., Designing a Controller That Works: Using Fonnal
Techniques in Robotic Systems, Computing and Control Engineering Journal,
November 1991.

33 Brooks, R., A Robust Layered Control System for a Mobile Robot, IEEE Journal of
Robotics and Automation, March 1985, PP 31.

34 Ichikawa, Y., Kamimura, H., Autonomous Vehicle, Proceedings of the 3rd
International Conference on AGV Systems, 1985, PP 199-208.

35 Murata, M., Yamashita, T., Udagawa, S., Tabata, H., Ultrasonic Guided Vehicle,
Proceedings of the 5th International Conference on AGV Systems, 1987, PP
145-156.

36 Hock, C., Landmark Navigation with ATHENE, Proceedings of the 5th
International Conference on Advanced Robotics - Robots in Unstructured
Environments, 1991, PP 1099-1104.

37 Segovia, A., Rombaut, M., Preciado, A., Meizel, D., Comparative Study of the
Different Methods of Path Generation for a Mobile Robot in a Free Environment,
Proceedings of the 5th International Conference on Advanced Robotics - Robots in
Unstructured Environments, PP 1667-1670.

iii

38 Perrier, M., Zapata, R., Mobile Robot Navigation in TIl-Structured Worlds by Means
of Prediction Functions, Proceedings of the 5th International Conference on
Advanced Robotics - Robots in Unstructured Environments, PP 1675-1678.

39 Garibotto, G., Masciangelo, S., Path Planning Using the Potential Field Approach
for Navigation, Proceedings of the 5th International Conference on Advanced
Robotics - Robots in Unstructured Environments, PP 1679-1682.

40 Evans, J., Krishnamurthy, B., Pong, W., King, S., et aI, Help mate: A Service Robot
for Health Care, Industrial Robot, June 1989.

41 Borenstein, J., Koren, Y., Obstacle A voidance with Ultrasonic Sensors, IEEE
Journal of Robotics and Automation, 1988, Volume 4 Part 2, PP 213-218.

42 Xuan, G., Wang, L., Li, C., Liu, Y., Wang, J., Intelligent Searching Algorithm for
Robot Obstacle A voidance, Proceedings of the 8th International Conference on
Pattern Recognition, 1986, PP 958-960.

43 Brady, M., Durrent-Whyte, H., Leonard, J., Probert, P., Rao, B. S. Y., Sensor-Based
Control of AGVs, Computing and Control Engineering Journal, March 1990.

44 Borenstein, J., Koren, Y., High Speed Obstacle A voidance for Mobile Robots,
Proceedings of the 3rd International Symposium on Intelligent Control, 1988, PP
382-384.

45 Hollingham, J., Robots Free Range Between Town and Gown, Industrial Robot,
1991, Volwne 18 Number 2, PP 19-20.

46 Bair, M. E., Sampson, R., Z~ D., 3-D Imaging and Applications, SPIE Intelligent
Robotics and Computer Vision Conference Proceedings, October 1986.

47 Dunlay, R. T., Obstacle A voidance Perception Processing for the Autonomous Land
Vehic1e, Proceedings of the 1988 IEEE International Conference on Robotics and
Automation, 1988, PP 912-917.

48 Annaratone, M., et aI, Warp Architecture and Implementation, Proceedings of the
13th Annual International Symposium on Computer Architecture, June 1986.

49 Ferrari, F., Fossa, M., Grosso, E., Marassi, M., Sandini, G., A Practical
Implementation of a Multilevel Architecture for Vision-Base? Navigatio~,
Proceedings of the 5th International Conference on Advanced Robotics - Robots m
Unstructured Environments, 1991, PP 1092-1098.

tv

50 Takeno, J., Hachiyama, S., New Technology on Stereo Vision for Mobile Robots
Proceedings of the 5th International Conference on Advanced Robotics - Robots ~
Unstructured Environments, PP 1383-1391.

51 Takeuchi, Enomoto, Nagai, Fuzzy Control of a Mobile Robot for Obstacle
Avoidance, Information Sciences, 1988, Volume 45 Part 2, PP 231-248.

52 Takeuchi, T., Kajitani, M., Guidance of a Mobile Robot using Fuzzy Control for
Obstacle Avoidance, Proceedings of the Japan-China Mechatronics Symposium,
October 1988, PP 1-6.

53 Lockwood, S., Mehrdadi, B., Chandler, 1. R., Design of an Obstacle Avoidance
System for Automated Guided Vehicles, Proceedings of the 8th International
Conference on Systems Engineering, 1991, PP 428-433.

54 Hatzitheodorov, M., Kender, J. R., Optimal illumination Method for Surface
Reconstructio~ Sensor Fusion 2: Human and Machine Strategies, 1989, PP
367-376.

55 Vuylsteke, P., OOsterlinck, A., 3-D Perception with a Single Binary Coded
illumination Pattern, Optics, illumination and Image Sensing for Machine Vision,
1987, Volume 7 PP 195-202.

56 Vuylsteke, P., OOsterlinck, A., Range Image Aquisition with a Single Binary Coded
Light Pattern, IEEE Transactions on Pattern Analysis and Machine Intelligence,
Volume 12 Number 2, February 1990.

57 Feng, K., Sugihara, K., Sugie, N., Measurement of Three-Dimensional Objects by
Pattern Projection and Camera Advance, Advanced Robotics, Volume 4 Number
4, 1990, PP 319-335.

58 Bhatnager, D., Pujari, A. K., SeetharomuIu, P., Static Scene Analysis Using
Structured Light, Image and Vision Computing, April 1991, Volume 9 Number 2.

59 Padgham, C. A., Saunders, J. E., The Perception of Light and Colour, G. Bell and
Sons Ltd., 1975, Section 4.2.

60 Gonzales, R. C., Wintz, P., Digital Image Processing, Addison-Wesley Publishing
Co., 1977, Sections 2.1-2.2.

61 Uhr, L., Pattern Recognition. Learning and Thought, Prentice Hall, 1973, Chapter 3.

62 Clarke, D. E. A., Video Frame Store, Electronics and Wireless World, Reed
Business Publishing, November 1987, December 1987, January 1988.

y

63 Nolan, J., Working With nsp, Electronics and Wireless World, January 1989, PP
52-55.

64 Lynn, P. A., An Introduction to the Analysis and Processing of Signals, The
Macmillan Press Ltd., 1982, Chapter 9.

65 Niemann, H., Pattern Analysis and Understanding, Springer-Verlag, 1990, Section
1.5.

66 Bunke, H., Sanfeliu A. (Editors), Syntactic and Structural Pattern Recognition:
Theory and Applications, World Scientific, 1990, Chapter 1.

67 Ock Hyun Kim, Optimal Steering Control of an Auto-Guided-V ehide with Two
Motorized Wheels, Transactions of the Institute of Measurement and Control,
April-June 1987, Volume 9 Number 2.

68 Meystel, A., Hoffman, G., Koch, E., Looney, T., Intelligent Mobile System for
Industrial Application, Proceedings of the 2nd Annual International Motorcon' 82
Conference, 1982, PP 220-240.

69 Olgac, N., Wood, M., Optimal Trajectory Control of a Robotic Vehicle, IEEE
International Symposium on Intelligent Control, 1987, PP 234-238.

70 Hongo, T., Arakama, H., Sugimoto, G., Tange, K., Yamamoto, Y., An Automatic
Guidance System of a Self-Controlled Vehicle, IEEE Transactions on Industrial
Electronics, 1987, Volume IE-34, PP 5-10.

71 Shell, H. C., Pang, G. K. H., An Intelligent Control of Roving Robots, Transactions
of the IEEE, 1988, PP 481-485.

72 Hewlett-Packard, General Purpose Motion Control IC Technical Data HCfL-1100
Series, Hewlett-Packard.

VI

APPENDIX 1

Embedded Computer and Memory Access
Buffer Circuit Diagrams

A1.1 INTEL 8031 COMPUTER CIRCUIT

The 8Intel 031 single chip microcontroller is a version of the MCS-5I series 8-bit

computers for embedded applications which does not incorporate on-board Read Only

Memory (ROM). Program memory is therefore included in the circuit separately. The

microcontroller provides control signals to address 64K external ram in addition to 128

bytes internal RAM.

In the circuit of figure A1.I, the lower 32K of external RAM address space is occupied

by the video frame store memories and the upper 32K is used for a spare 2K RAM and

an INTEL 8255 Peripheral Interface Adapter (PIA). The PIA is used to interface with

the motor control embedded computers.

Withe reference to figure Al.1, the INTEL 8031 has four 8 bit input/output ports

PO-P3 that can provide various functions. Ports PO and P2 are dedicated to providing

address and data lines to the external program and data memories and three port 1 lines

are used to operate switching control signals. Port 3 has so-called alternate functions

which include timer inputs, interrupt inputs, serial input/outputs and external RAM

read and write signals. In this circuit the serial port pins RXD (p3.0) and TXD (p3.1)

are configured as an RS232 link for communication with a dumb terminal. Protocol

conversion circuitry has therefore been included to convert the 0-5V single levels used

by the 8031 RXD/TXD to RS232.

leI is the INTEL 8031 microcontroller. The chip has an on-board oscillator which is

Al.I

v<;;.c

C3 ~10U
11 <: IC3

~
~ oc

i

L9 07 Q7 --1~
I

)
T ~ I 14 Of> Qf>

R~ < BK2 c=-4
05 Q5 ~
04 Q4 l2

-=$'-
7 03 Q3 ~

02 Q2 £>

~
P O~ Ql S

DO QO --'
31 EA/VP PO.O 39

V

4L!n-7<> 10 I

Cl II ~ l....U.. PO.l -., AO 00

I ~~ t [ill
Xl. PO.2 36- or Al 01

ZMHZ PO.3 7 AZ 02

C2H: T LB PO.4 R3 03 ,~ ~ X2 PO.S 4 F+ :3-
A4 04

33P
PO.6 32 :--+ RS OS

~ i ~ L--...2.... PO.? R6 06

-:~
RESET 121

R7 07 ~
P2.0 R8

I? P2.1 2
4 A9 Y ')

.2 INTO ICl P2.2
1 Al0

:3'
~

p7 INT 1 6031 P2.3 z: All

~ ~ 14 2S
All

~
TO P2.4 26 A12 A

T1 P2.5 ?
R13 1.<>

--y:-- 1 P2.6 28-
A 14 rcs

i Fl i
"2 P1.0 P2.7 '''' IT 27256

1.J,.. PL.l ~
9/A !e.l. " P1.2 ro 7 -4:- VCC

OE ~ :>

1. 4 P1.3 WR 1. YPP

~ --.;; -Zg
.

~ 6" Pl.4 PSEN 0
~

...,- Pl.S RLE/P
l. Pl.6 TXO 1 ~t -Ef ~ ~ .E..,...,...L Pl.? RXe IC4A R AD

I 274LSOOr 7" A1
DO o ~ 01

~

b R2 02

rriH-10 PC7 i~ ~U"~
A3

f3C6 Y~C -+ 03

2;
PC6

R4 04

13 PCS ==f
RS OS

4 PC4 R2)
5 74LSOO A6 06 7

~ P ~3 PC3 IC2
R7 07 ...!1..J F

I~ 1S PC2 8255 4k7> 22 A8 F

PCl
R9 F

~ AlliQ:
1. peo L- 9 IC4C

R~O F

~S PB7 --10 74LSO~ 9 is IT
rC6 H

6lif>

~ ~ ~
4 PB6 G IF~ I

YH/ 1

PBS ~
4 PB4 RESET

rnzID

't P93 A1 T PBZ ~ ~ - 1 P9l ,"
PBO 1m" 5

/- ~ =-
'P1'i7 37 07~

~ :!
38 PA7

~ 39 PRG

~ Ie"" 'm 1 '"
PAS

2K RAM 9000H - 87FFH

1'14 4 PR4 04 1 ~R1 R3 4148 lKB BeSS7 R7

~ PR3
~ 03 I 1 100R PAZ 02 7 4K7 TR INTEL 8031 COMPUTER

~ PAl Dl' -:;r....,
.....ea.... PRO DO .-~ 146 ... ~ 31/::~u 5. Lockwood 1991

11X- 1 01 """=- R6 D3 4148

Figure A1.1
Intel 8031 Embedded Computer Circuit

configured by the external capacitors Cl, C2 and the crystal Yl to operate at 12MHZ.

C3 and R2 provide a timing network which ensures that the 8031 is reset slightly after

the power supply to the circuit has been switched on.

Address decoding for the video ram, 2K RAM (lC6) and the 8253 PIA (lC2) is

provided by the quad NAND gate IC4. The video RAM decodes to addresses OOOOh -

7FFFh, the 2K RAM to 8000h - 87FFh and the PIA to COOOh-COO3h.

The INTEL 8031 ports 0 and 2 are dedicated to bus functions when external program

and date memory are used. The lower 8 bits (port 0) fonn the multiplexed low order

address byte and date byte and the 8 bit latch IC3 is included as a demultiplexer. The

8031 provides an Address Latch Enable (ALE) signal to control the latch.

In this application provision has been made for 32K program memory to be stored in

Al.2

the 27256 EPROM IC5. The 8031 provides a read strobe signal (PSEN) directly to this

chip.

Port pins Pl.3-Pl.7 and P3.2-5 are uncommitted and can be used for future expansion

whilst PLO and Pl.l are used to control the video memory access buffers. Port pin

P1.2 provides the memory select signal (video memory A or B, see Chapter 4).

The TTL-RS232 protocol converter is formed by TRl, TR2, R2-R7, C4 and DI-D3.

This allows simplex communication between the INTEL 8031 and RS232 terminal.

A1.2 MEMORY ACCESS BUFFERS

8031./VFS

V
F"
5

B
o
A
R
D

e
o
3
1

B
o
A
R
D

8
§ 17/~I----'
1

R
A
H

5
o
C
K
E
T

VFS RAM
SOCKET

8

VFS RAM
SOCKET

A

8031 RAM
SOCKET

MEMORY ACCESS BUFFERS
S. LOCKWOOD 1991

L~~=:§m VIDEO FRAME STORE

Figure A1.2
Memory Access Circuit

A1.3

The circuit of figure Al.2 allows the INTEL 8031 microcontroller to · share' the video

image memory with the video frame store (62). Dual in-line header connections are

used so that the circuit plugs directly into the video frame store circuit in place of the

RAM chips.

When the 8031fVFS signal is low and ICE high, the 8 bit buffer chips IC3, 4, 8, 10 and

12 are enabled. The static RAMS IC5 and IC6 are then available to the video frame

store and the memory access circuit is effectively transparent to the latter. However,

when the 8031{VFS signal is high, ICs 3, 4, 10 and 12 are disabled with the pins in a

high impedance state and the RAMs are unavailable to the video frame store. The 8031

can then gain access to the video RAMs using the ICE signal to control the buffers

ICl, 2, 7, 9 and 11. The 8031 board selects which 32K RAM to access using the BfA

control signal. The ICE RAM chip enable signals are made mutually exclusive by

using the inverter chip ICI3. This prevents both RAMS being enabled at the same

time.

Al.4

APPENDIX 2

Pascal Terminal Emulation
Software

progran dumbterminal;
{Program to communicate via serial port avoiding most DOS interrupts }
{ie. progra~ accesses UARTs at low level and ignores DTS,RTS,DTR etc.}
{So Lockwood IO/9I}

uses
crt,dos;

const
co~I =1;
com.2 =2;

var
ch:char;
buffer:array[O •. $4000J of char;
buffermark,i:word;

function IntToStr(i: Longint): string;
{ Convert any Integer type to a string }
var

s: string[11] ;
begin

Str(i, s);
IntToStr := s;

end; {inttostring}

procedure auxinit(port,params:word);
{initialise serial communication port 'port' with parameter byte 'para~'}

inline(
$58/
$5A/
$B4/$OO/
$CD/$14) ;

{pop ax ;pop parameters}
{pop dx ;pop port nu~er}
{mov ah,O;code for initialize}
{int 14h ;call bios}

function charready(base:word):boolean;
{check line status to see if a character is ready for reading yet}
var temp:byte;
begin

temp:=(port[base+5] and 1); {isolate bit 0 of line status}
if (temp=I) then charready:=true

else charready:=false;
end; {charready}

procedure readchar(comport:byte);
{read a character from serial port}
var temp,timeout,base:word;
begin
buffeaark:=O;

A2.1

if comport=2 then base:=$02F8 else base:=$03F8;
tim.eout:=O;
while tim.eout<50 do
begin
tim.eout:=tim.eout+l;
if charready(base) then

begin
buffer[buffermark):=chr(port[base)};
buffermark:=buffermark+l;
timeout:=O {wait until char ready}

end;
end;

end; {readchar}

function charsent(base:word):boolean;
var temp:byte;
begin

{for reading}

temp:=(port[base+5) and $20}; {isolate tx holding reg empty}
if temp=$20 then charsent:=true else charsent:=false;

end; {charsent}

procedure writechar(ch:char;comport:byte};
var base:word;
begin

if comport=2 then base:=$02F8 else base:=$03F8;
port[base):=ord(ch);
while not charsent(base) do

end; {writechar}

procedure configure;
{configure serial port}
var

exit:boolean;
codebyte:byte;
e:integer;
baud:char;
baudrate,parity:string;
baudnum,chann:word;
ch,pty,databits,stopbits:char;

begin
ch: =' ';
pty:=' ';
databi ts: =' ';
stopbits: =' ';
ch: =' ';
baud:=' ';
exit:=false;
codebyte:=O;
clrscr;

A2.2

writeln;
writeln('Serial Port Configuration');
writeln;
writeln;
writel n ('Whi ch Channel? Com.[1] or [2] ,) ;

repeat
if keypressed then

begin
ch:=readkey;
if ch=chr(27) then exit:=true;

end;
until (ch='l') or (ch='2') or (exit=true);

if not exit then
begin

writeln;
writeln('Baud Rate? 1 - 110');
writeln(' 2 - 150');
writeln(, 3 - 300');
writeln(' 4 - 600');
writeln(' 5 - 1200');
writeln(' 6 - 2400');
writeln(, 7 - 4800');
writeln(' 8 - 9600');

repeat
if keypressed then

begin
baud:=readkey;
if baud=chr(27) then exit:=true;

end;
until (baud='l') or (baud='2') or (baud='3') or (baud='4') or (baud='5') or

(baud='6')
or (baud='7') or (baud='8') or (exit=true);

end;
case baud of

'l':baudrate:='110';
'2':baudrate:='150';
'3':baudrate:='300';
'4':baudrate:='600';
'5':baudrate:='1200';
'6':baudrate:='2400';
'7':baudrate:='4800';
'8':baudrate:='9600';

end;

if not exit then
begin

writeln;
writeln('Data Bits? 7,8 ');

repeat

A2.3

if keypressed then
begin

databits:=readkey;
if databits=chr(27) then exit:=true;

end;
until (databits='7') or (databits='8') or (exit=true);

end;
if not exit then

begin
writeln;
writeln('Parity? N,E,D ');

repeat
if keypressed then

begin
pty:=readkey;
if pty=chr(27) then exit:=true;
pty:=upcase(pty);

end;
until (pty='N') or (pty='E') or (pty='O') or (exit=true);

end;

case pty of
'N':parity:='No';
'E':parity:='Even';
'O':parity:='Odd';

end;

if not exit then
begin

writeln;
writeln('Stop Bits? 1,2 ');

repeat
if keypressed then

begin
stopbits:=readkey;
if stopbits=chr(27) then exit:=true;

end' ,
until (stopbits='l') or (stopbits='2') or (exit=true);

end;
if not exit then

begin
case baud of

'l':codebyte:=codebyte OR 0;
'2':codebyte:=codebyte OR 32;
'3':codebyte:=codebyte OR 64;
'4':codebyte:=codebyte OR 96;
'5':codebyte:=codebyte OR 128;
'6':codebyte:=codebyte OR 160;
'7':codebyte:=codebyte OR 192;
'B':codebyte:=codebyte OR 224;

end;

A2.4

case pty of

end;

'N':codebyte:=codebyte OR 0;
'E':codebyte:=codebyte OR 24;
'O':codebyte:=codebyte OR 8;

case stopbits of

end;

'1 ':codebyte:=codebyte OR 0;
'2':codebyte:=codebyte OR 4;

case databits of
'7':codebyte:=codebyte OR 2;
'8':codebyte:=codebyte OR 3;

end;
val(ch,chann,e);
auxinit(chann-l,codebyte);

end; {if}
writeln;
writeln;
if exit then writeln('******t*** Serial Re-Configuration Aborted ttttttt***')
else

begin
writeln('Serial Configuration is Now:');
writeln;
writeln(' Channel ',ch,', ',baudrate,' Baud, "

databits,' Data bits, ',stopbits,' Stop bits, ',parity,' Parity');
end; end;

{begin dcomm.}
begin
{ auxinit(l,$C3);
{ auxinit(O,$E3);

configure;
repeat
readchar(coml);

if buffermark<>O then
begin

{initialise com2:4800,n,8,l}
{initialise coml:9600,n,B,l}

for i:=O to buffermark-l do

end.

begin
if ord(buffer[i])<>O then write(buffer[i]J;

end;
end;

if keypressed then
begin

end;

ch:=readkey;
writechar(ch,coml);

until false;

A2.S

APPENDIX 3

Assembler Obstacle Avoidance
Software Source Code

c:\cbe\8051/
;Do complete preprocessing and pattern recognition
;and transmit the results on the serial port at 4800 baud
; S. Lockwood 1991

psw equ
b equ
p3 equ
pI equ
seon equ
tIl equ
th1 equ
ie equ
bod equ
sbuf equ
tcon equ
peon equ
dph equ
dpl equ
count equ
flagr equ
rlinel
rlineh
tdpl equ
tdph equ
count1
count2
divcount
avl equ
avh equ
xi equ
yi equ
yminus1h
yminusll
xarray
yarray
temp equ
xm2 equ
xp2 equ
threshold
fIminequ
f1max equ
f2min equ
f2max equ
f3min equ
f3max equ
t1 equ
t2 equ

ODOh
OfOh
ObOh
090h
98h
08bh
08dh
Oa8h
89h
99h
88h
087h
083h
082h
05fh
20h
equ
equ
33h
34h
equ
equ
equ
38h
39h
3ah
3bh
equ
equ
equ
equ
40h
4lh
42h
equ
44h
45h
46h
47h
48h
49h
4ah
4bh

31h
32h

35h
36h
37h

3eh
3dh
3eh
3fh

43h

A3.1

t3 egu 4ch
flminav egu 4dh
flmaxav equ 4eh
f2minav equ 4th
f2maxav equ 50h
f3minav equ 5Ih
f3maxav egu 52h
learncount egu 53h

caminusll equ 54h
call1inusIh equ 55h
ip egu Ob8h

contword egu 2Ih ;keep track of control word
regadd egu 22h ;register address for m.C.
pendflags egu 23h ;status flags for agv manual pendant

;and motors
obstdetected egu 24h

apl egu 56h
apm egu 57h
aph egu 58h
cvl egu 59h
cvh egu 5ah
pI egu 5bh
pm egu 5ch
ph egu 5dh
leftmost equ 5eh
rightmost equ 5fh
aph equ 60h
apm egu 61h
apl equ 62h
genpurp equ 63h
gain equ 64h
pole equ 65h
zero equ 66h
turns equ 67h
mpointerh equ 68h
mpointerl equ 69h

;variables to do with obstacle avoidance

deverrorl egu 6ah
deverrorh equ 6bh
turnslog egu 6ch
howmanysofar egu 6dh
oavtempreg egu 6eh
errtheta egu 6fh
destheta egu 70h

A3.2

tempoa
obavflags

71h
equ

equ
25h ; bit addressable

#define
#define
#define
#define
#define
#define
#define
#define

maxdeverrorh #60h
maxdeverrorl #Offh
enough #24h
allowable #30h
turns inc #5
lor obavflags. 0
canpass obavflags.l
passedyet obavflags.2

#define txint scon.l
#define rxint scon.O
#define sent flagr.O
#define recvd flagr.l
#define resl flagr.2
#define res2 flagr.3
#define ramflag flagr.4
#define eol flagr.5
#define eo12 flagr.6
#define nzflag flagr.7

#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define

oeb contword.O
hosta031 contword.l
ddrwr contword.2
rw contword.3
ale contword.4
csb contword.5
csa contword.6
oea contword.7

piacont #Oc003h
piab #OcOOlh
piac #Oc002h
piaa #OcOOOh

;pia port b
;pia port c
;pia port a

;pia control register

#define keypressed pendflags.O ;indicates if a pendant button is
;pressed or not

#define motoraorb pendflags.l ;indicates which motor is addressed
#define actionreq pendflags.2 ;used in obstacle avoidance control

;action routine
#define firstcodeflag pendflags.3 ;used in contaction

#define forwardvell 60h
#define forwardvelh Oh
#define backwardvell OeOh
#define backwardvelh Offh
#define positionerror #80h ;used in compareposition

A3.3

#define advinch #OOh ;used in straightmove
#define advincm #Oah
#define advincl #OOh

#define
#define
#define

obstfromleft obstdetected.O
obstfromcentre obstdetected.l
obstfromright obstdetected.2

;define constants which represent a 5 degree turn

#define
#define
#define

#define
#define
#define

segment

public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public

extern
extern
extern

start ljmp ini tial
skip 19h,O
ljmp timer!
skip 05h,O
ljmp serial

posinch #00 ;used in incangle
posincm #02h
posincl #090h ;90h

neginch #Offh
negincm #Ofdh
negincl #070h

byte at 0000-3fff 'eprom'

waitabit
propvelcont
allstop
hostop
triplescan
obstavop
resetflags
sendmessage
convert
turnright
turnleft
straightmove
return
readposition
seeifmovefinished
tempmess

report. w
absolute.w
obstav.w

A3.4

;used in decangle

;70h

initial

aroundag

waithere

skip 019h,O

lcall setup ;set up baud rates and interrupts etc.

I callI earnseq ;learn code features

mov dptr,#m7
lcall sendmessage ;send wait for key press message

clr recvd ;ready for reception
jnb recvd,waithere ;wait for a char

mov a,sbuf ;get char
cjne a,#'C',start;if not C then reinitialise

lcall obstavop
lcall resetflags

lcall resetmc

;take control of motor controllers
;reset motor controller flag register

;**
; *
; *
; *

OBSTACLE DETECTION START

;***t*t*t*tt***tt**tttt*t*t

;scan for obstacles

lcall propvelcont ;host control mode
I call allstop ; stop agv motors
lcall hostop ;select host operation

oa#l lcall triplescan ;scan for obstacles
mov a,obstdetected ;if no obstacle was detected ie.

jz oa#1 ;a=O then go round again

lcall obstav

ljmp aroundag

;include motor control routines

;resetmc
;initidle

#include U mcincl. asm U

resets and initialises motor controllers
puts motor controllers into init/idle mode

A3.5

;positioncont
;writeposition

; readposition

; resetposi tion

;hostop
;obstavop
;propvelcont

; subrou tine

puts motors into position control mode
writes the 24 bit 2's complement number in ph,pm,pl to
motor controller position command registers
if flag motoraorb=O then write is to right motor
if flag motoraorb=l then write is to left motor
read actual position of motor returning result in aph,apm,apl
if flag motoraorb=O then read is from right motor
if flag motoraorb=l then read is from left motor
Resets actual motor position registers to 0
if flag motoraorb=O then right motor position is reset
if flag motoraorb=l then left motor position is reset
sets motor control board for host operation
sets motor control board for obstacle avoidance operation
puts motors in proportional velocity control

;scan for obstacles but double check if it looks like there is one
;return result in obstdetected
triplescan

;double check

;triplecheck

endtriplescan

;subroutine

lcall scan

mov a,obstdetected
jz endtriplescan

lcall scan
mov a, obstdetected
jz endtriplescan

lcall scan

lcall report

ret

;scan for obstacles

;see if any was present
;if not go to end

;else double check

;initiate point to point straight line trapezoidal move using
;acceleration and maximum velocities set up in trapezcont subroutine

straightmove

;reset current position command registers

clr motoraorb ;select motor a

A3.6

I cal! resetposi tion
mov ph, #0
mov pm, #0
mov pl,#O

lcal! writeposition

setb motoraorb
I call resetpositi on

mov ph, #0
mov pm, #0
mov pl,#O

lcal! writeposition

;select llLOtor b

;now write desired positions

movenotdone

;subroutine

cl r motoraorb ; select motor a

mov ph, advinch
mov pm, advincm
mov pI, advincl

;advanceincrement

lcall tzwriteposition ;write to motor controller
setb motoraorb ;select motor b
lcall tzwriteposition ;write to motor controller
lcall trapezcont ;start move

lcall triplescan ;check for obstacles

lcall seeifmovefinished
jz movenotdone
inc howmanysofar
ret

;returns a:=l if it is

;check to see if a point to point move has finished yet
;return a=O if mov isn't finished or a=l if it is
seeifmovefinished

elr motoraorb
lcall compareposition
jnz movnotfinished

setb motoraorb

A3.7

lcall compareposi tion
jnz novnotfinished

nova, #1
ret

;indicate that nove is finished

novnotfinished

;subroutine

elr a
ret

;compare actnal position registers with values in ph,pn,pl
;retnrn a=O if the error is less than positionerror else a=l
compareposi tion

lcall readposition ;return with actnal position val use in
;aph,apm,apl

mov dptr, factual
I call sendmessage
mov a, aph
I call convert
nova, apm
I call convert

mov dptr,#desired
lcall sendnessage
mov a, ph
lcall convert
nova, pn
I call convert

mov a,ph
snbb a, aph
jnz cpfinish

nov a,pn
subb a, aplll
jnz cpfinish

nov a,pl
subb a, apl
lcall absolute
cl r c
subb a, #40h
jnc cpfinish

cl r a

;put connand position high byte in a
;a=ph-aph

;junp if values aren't equal

;put eonnand niddle byte in a
;a=pm-aplll

;put command low byte in a
;a=pl-apl

;get absolute error

;allowable position error
;if a>allowable error then jUlllP

A3.8

epfinish

; subroutine

ret

mov a, #1
ret

;positions are equal

;positions are not equal

;turn AGV on the spot by writing a positive position increment to left motor
;and a negative position increment to right wheel
;wait until move is complete
turnright

trwaitagain

leall triplesean

leal! positioneont

elr motoraorb
leal! resetposition
mov ph, negineh

mov pm, neginem
mov pl,neginel-28h
leal! writeposition

setb motoraorb
leall resetposition
mov ph, posineh

mov pm, posinem
mov pl,posinel+28h
leall writeposition

;mov eount,#O

;see if any obstacles are in the way

;prepare to address right motor
;zero actual position registers

;load position registers with
;position move

;write new values to right motor cont

;now write to left motor
;zero actual position registers

;load position registers with
;position move

;write new values to left motor cont

;reset counter

inewaitforpos ;wait until move is finished

trearryon
el r motoraorb
mov ph, negineh

mov pm, neginem
mov ,pl,neginel
leall eompareposition

;aeeess right motor
;load position registers with

;position move

A3.9

;see if right motor is in its final
;position yet

;subroutine

jnz incwai tforpos
setb motoraorb
mov ph, posinch

mov pm, posincm
mov pI, posincl
lcal! compareposition
jnz incwaitforpos
ret

;if it isn't then jnmp
;now test left motor
;load position registers with

;position move

;see if left motor is in its final
;position yet

;turn AGV on the spot by writing a negative position increment to left motor
;and a positive position increment to right wheel
;wait until move is complete
turnleft

tlwaitagain

lcal! triplescan

lcall posi tioncont

clr motoraorb
lcall resetposi tion
mov ph, posinch

mov pm, posincm
mov pI, posincl
lcall wri teposi tion

setb motoraorb
lcail resetposition
mov ph, neginch

mov pm, negincm
mov pI, negincl
lcall writeposition

;mov count,#O

;see if any obstacles are in the way

;prepare to address right motor
;zero actual position registers

;load position registers with
;position move

;write new values to right motor cont

;now write to left motor
;zero actual position registers

;load position registers with
;position move

;write new values to left motor cont

;reset counter

decwai tforpos ;wait until move is finished

tlcarryon

setb motoraorb
mov ph, neginch

mov pm, negincm

;access right motor
;load position registers with

;position move

A3.10

; subroutine

m.ov pI, neg incl
I call comparepos iti on

jnz decwai tforpos

clr motoraorb
m.ov ph, posinch

mov pm, posincm
mov pI, posincl
lcall compareposition
jnz decwai tforpos
ret

;see if right m.otor is in its final
;position yet

;now test left m.otor
;load position registers with

; positi on move

;see if left m.otor is in its final
;position yet

;idling loop to give screen time to update

wait25m.s

w25lp1
w25lp2

m.ov count1,#50

m.ov count2,#255
djnz count2,w25lp2

djnz countl,w25lp1

ret

;subroutine cause a delay
pause mov rO, 255
lp mov r1,255
lpl djnz rl,lpl

; subroutine

djnz rO,lp
ret

;scan for obstacles and return:

scan

obstdetected = 0 for no obstacle
= 1 for obstacle approaching from left

= 2 or 3 if obstacle is in mid view
= 4 if obstacle is emerging from right
= 5 or 7 if obstacle is filling field of view

caminus11 = suggested control action

elr pl.O ;select 8031 control of video RAM
lcall preprocess ;do digital filtering and cleaning up
lcall parse ;find positions of valid codes

A3.II

; subroutine

lcall contaction ;send results of recognisor to serial

setb pl.O
lcall wait25ms

ret

;port and also return with value in
;caminusll register

;select vfs control of video RAM
;wait for screen to update

;Assuming avoidance is always to alter course to the right
;work out control action and send it down serial line
contaction

;find left and right most codes

mov rightmost,#O ;address of right most code
mov leftmost,#255 ;register holding leftmost code

;start at right hand side of image

mov dptr, #76ffh ; 76ffh ; array base address
elr pl.l ;select ramb
clr firstcodeflag

eontactionlpl movx a,@dptr
cjne a,#16,canv ;if not a valid code then jump

;if firsteodeflag has been set then don't look for right code anymore

jb firstcodeflag,lookforleft
mov rightmost,dpl ;else get address of code
setb firstcodeflag ;set flag to say that rightmostcode

;has been found
lookforleft

mov leftmost,dpl

canv dec dpl
mov a,dpl
jnz contactionlpl ;go round until line completed

cafnd mov a,rightmost

cahere2
mov obstdeteeted,#O ;assume no obstacle is present
mov a,rightmost ;get control action
jz noobstacle

A3.12

notfromleft

notfromright

noobstacle

;subrontine
;stop agv motors
allstop

;subroutine

setb

mov a, leftmost
clr c
snbb a,#55h ;a=leftmost-55h
jnc notfromleft ;if leftmost>55h then obstacle isn't

;emerging from left
setb obstfromleft ;else it is
sjmp noobstacle

mov
clr
snbb
jc

setb
sjmp

setb

ret

a, rightmost
c
a, #Oaah ; a=rightmost-aah
notfromright;if a<aah then obstacle

;isn't emerging from right
obstfromright ;else it is
noobstacle

obstfromcentre ;else it is mid-view
obstfromleft;if obstacle is emerging from centre

;then default to obstfromleft

;motor a

ci r motoraorb
mov cvI, #0
mov cvh, #Oh

I call command vel

setb motoraorb
mov cvl,#O
mov cvh, #0
I call command vel

ret

;first motor a
;zero velocity

;send it to mc

;now motor b
; zero velocity

;send a message starting at address in dptr delimited by 0 chr to serial port
sendmessage clr a

A3.13

senmessok mov

;subroutine

movc a I @a+dptr
jnz senmessok
mov sbuf ,#0
lcal! wai t
ret

sbuf/a
lcal! wai t
inc dptr
ljmp sendmessage

;read string table entry
;if the chr isn't a delimiter cont.

; send del imi ter
;wait until its gone
;else return
;put chr in serial register
;wait until its gone

;get next character

;learn feature parameters
learnseq mov dptr/#ml ;point at first message

learnseqlpl

. learnseqendpt

learnseqcontl

learnseqlp2

jnb

lcall sendmessage ;send it down serial line
mov sbuf ,#0
clr recvd

recvd/learnseqlpl

mov a, sbuf
mov sbuf I a
lcall wait

;clear for serial reception
;wait here for serial reception

;get character
;echo character

cjne a/#'O'/1earnseqcontl ;if it isn't a Q jump
mov dptr /#m2 ;point at aborted message

lcall sendmessage ;send it to serial port
ret ;finished

mov dptr /#m3
lcallsendmessage ;send it

clr recvd
jnb recvd /learnseqlp2

mov a, sbuf
mov sbuf I a
lcall wait

cjne a/#'C'/learnseqendpt

;point at continue message

;get ready for serial reception
;wait for chr

;get character
;echo character

;if its not a C jump

lcall learn ;else learn parameters
mov dptr I #m4 ; point at results message
lcall sendmessage ;send the message

mov dptr I #m4a ; send parameter list
lcal! sendmessage
mov a/tImin
1 ca l! convert

A3.14

;subroutine

IllOV dptr,#Ill4b
lcall sendm.essage
IllOV a, flmax
I call convert

IllOV dptr,#Ill4c ;send param.eter list
lcall sendIllessage
IllOV a, f2min
lcall convert

IllOV dptr / #Ill4d
1 call sendIllessage
IllOV a/ f2max
1 call convert

IllOV dptr, #Ill4e ; send paraIlleter list
1 call sendIllessage
IllOV a,f3Illin
lcall convert

IllOV dptr / #m4f
I call sendmessage
IllOV a/ f3max
lcall convert

mov dptr / #Ill5
lcall sendm.essage

ret

;Learn feature paraIlleters for use by pattern recognisor
;uses fIminav/fImaxav/f2Illinav,f2maxav/f3Illinav/f3maxav

flmin/flmax/f2Illin/f2max/f3Illin,f3max
;leaves with paraIlleters in fIIllin/flIllax ...
learn

IllOV flIllinav, #0
IllOV flmaxav, #0
IllOV f2Illinav/#0
IllOV f2maxav,#0
IllOV f3Illinav, #0
IllOV f3maxav / #0

mov learncount,#8 ;nuIllber of cOIllplete cycles
learnlpl lcall preprocess ;process video signal

IllOV dptr / #7640h ; base address of processed array; 7610h
clr pl.I ;select raIll b
cl r eol ; reset end of line fl ag

A3.15

mov flmin, #255
mov flmax,#O
mov f2min, #255
mov f2max,#0
mov f3min, #255
mov f3max, #0

learnlp2 leall extfeat ;extract tl,t2,t3 from array
mov a,tl
elr c
subb a,t3 ;a=tl-t3
jnc learnt6 ;if t3 isn't bigger than tl then

;ignore this peak

mov a,t2
elr e
subb a, t3 ;a=t2-t3
jne learnt6 ;if t3 isn't bigger than t2 then jump

elr e
mov a, flmax
subb a, t! ; a=flmax-tl
jne learnt! ;if flmax >= tl then jump
mov flmax, tl ;else flmax=tl

learnt! elr e
mov a, t!
subb a, flmin ;a=tl-flmin
jne learnt2 ;if tl >= flIDin then jump
mov flmin, t1 ;else fIIDin=t1

learnt2 elr e
mov a,f2max
subb a,t2 ;a=f2max-t2
jne learnt3 ;if f2max >= t2 then jump
mov f2max,t2 ;else f2max=t2

learnt3 elr e
mov a,t2
subb a, f2min ;a=t2-f2min
jne learnt4 ;if t2 >= f2min then jump
mov f2min,t2 ;else f2min=t2

learnt4 clr e
mov a, f3max
subb a,t3 ;a=f3max-t3
jne learnt5 ;if f3max >= t3 then jump
mov f3max,t3 ;else f3max=t3

learnt5 clr e
mov a,t3
subb a, f3min ; a=t3- f3min

A3.16

learnt6 jnb

learnfin

jnc learnt6 ;if t3 >= f3min then jump
mov f3min, t3 ;else f3min=t3

eol,learnlp2 ;if not at end of line jump

clr c
mov a, flmin
addc a, flminav
mov flminav, a

clr c
mov a, flm.ax
addc a, flm.axav
mov flm.axav, a

clr c
mov a, f2min
addc a, f2minav
mov f2minav, a

clr c
mov a,f2m.ax
addc a,f2maxav
mov f2maxav,a

clr c
mov a,f3min
addc a, f3minav
mov f3minav, a

clr c
mov a, f3m.ax
addc a, f3m.axav
mov f3maxav, a

dec learncount
mov a,learncount
jz learnfin
ljmp learnlpl

mov a, flminav
I call di vby8
mov flmin, a

mov a, f2minav
lcall divby8
mov f2min, a

A3.17

mov a, f3minav
lcall divby8
mov f3nin,a

mov a,f11D.alaV
lcall divby8
mov f I1D.aI , a

nov a,f21D.alaV
lcall divby8
mov f21D.aI, a

nova, f31D.alaV
1 call di vbyB
nov f31D.aI, a

ret ;results are now in place

;subroutine to divide single byte nu1D.ber in a by B and leave result in a
di vbyB nov b, #B

;subroutine

di v ab
ret

;preprocess video signal etc
preprocess lcall average

;subroutine

lcalllpf

lcalliocatepeaks
ret

;transversal filter 8 lines vertically
;recursive low pass

;filter horizontally
;locate features in result

;Average B lines starting at address 7bOOh ,destination 74h

average
mov rlinel, #00 ;this is where the result will go
mov rlineh,#74h
mov dptr,#7bOOh ;starting address
mov count2, #128 ;load count2 with colu1D.n counter

count2Ioop mov tdpl,dpl ;te1D.porarily store data pointer
nov tdph,dph ;or colu1D.D address

;ram a
setb pl.l ;select RAM A
nov avl,#O ;set current average to 0

A3.18

countlloopa

divloopa ID.OV

;ram b
clr pl.l

countlloopb

ID.OV avh, #0
ID.OV countl,#8

ID.OVI

clr
addc
ID.OV
clr
addc
mov

ID.OV a,#!28
clr
addc
ID.OV
clr
addc
ID.OV

;Ioad count! with line number
a,@dptr ;get first value from raID. a

c ;add this value to average so far
a,avl
avl,a
a
a,avh
avh,a

;increlD.ent data pointer to next line
c
a,dpl
dpl,a
a
a,dph
dph,a

djnz countI, countlloopa ; go round un til

ID.OV

rrc
mov
mov
rrc
mov
djnz

ID.OV
ID.OV
movx
ID.OV
ID.OV

ID.OV
ID.OV
ID.OV

divcount,#3 ;prepare to divide average by 8
a,avh ;divide the average by 8
a
avh,a
a,avI
a
avI,a
divcount,divloopa

dpl, rlinel ;prepare to store the result
dph, rlineh
@dptr,a ; store it
dpI,tdpl ;retrieve column address
dph,tdph

;select RAM B
avl,#OO ;set average to 0
avh,#OO
countI,#8 ;load count! with line count
ID.OVX a,@dptr ;get a value

clr c ;add it to average so far
addc a,avl
ID.OV avl,a

A3.19

;8 lines have been
;done

divloopb

tst2

finished

;subroutine

clr a
addc a, avh
mov avh,a

mov a,#l28
clr c
adde a,dpl
mov dpl,a
clr a
addc a,dph
mov dph,a

;set dptr to next line

djnz countl, countlloopb ;go round again until

mov divcount,#3 ;prepare to divide result by 8

;8 lines have been
;done

mov a,avh ;do division

ret

rrc a
mov avh, a
mov a,avl
rre a
mov avl, a
djnz divcount,divloopb

mov dpl, rlinel ;get ready to store result
mov dph, rlineh
mon @dptr,a ; store it
inc dptr ;increment result address
mov rlinel, dpl
mov rlineh, dph
mov dpl,tdpl ;retrieve column address
mov dph,tdph
inc dptr ;increment to next column

dec eount2 ;have all the columns been done yet?
mov a,count2
jz finished
ljmp count2loop

;finished averageing eight lines

;now do low pass filter
;using algorithm yfiJ:={xfiJtyfi-lJtt) div (ttl) for t=3
;use l500-75ff to store result

A3.20

;set initial values

lpf mov

filterloop

;also put result in 7600h - 76ff RAM A

mov

mov
mov
mov
mov
mov
mov

tdpl,#O
tdph,#76h ;destination

yminusll, #0
yminuslh, #0
xarraY,#74h ;souree
yarray, #75h ; destinati on
rlinel,#O ;souree array low byte
dpl,#OO

setb pl.!
mov dph,xarray
mov dpl, rlinel
movx a,@dptr
leall doeales
mov a, yi
mov dph, yarray
movx @dptr, a

;seleet ram a

;source low byte
;get xi
;ealculate filter algorithm

;store result

;also put result in array starting at address 7600h RAM A

setb pl.! ;seleet ram a
mov rlinel,dpl ;save source low byte
ID.OV dph,tdph ;destination
ID.OV dpl,tdpl
ID.OVX @dptr,a ;store result
inc dptr ;point at next location
mov tdpl,dpl ;save address

clr pl.! ;select raID. b
mov dpl,rlinel ;retrieve source address
mov dph,xarray
movx a, @dptr ;get next xi value
leall doealcs ;calculate filter algorithm
mov a,yi
mov dph,yarray
movx @dptr,a ;store result

;also put result in array starting at address !600h RAM A

setb pl.! ;select ram a

A3.21

mav rlinel,dpl ;save source low byte
mov dph,tdph ;get destination address
mav dpl,tdpl
man @dptr,a ;store value
inc dptr
mov tdpl,dpl ;save destination address

inc rlinel ;increment address to next
;value

mov a, rlinel
cjne a,#128,filterloop ;finished yet?
ret

;subroutine
;now extract maxima and minima from the remaining array which starts at
;address [xarrayJ-75h and put resulting peaks in [yarray]-76h

locatepeaks ;destination array 1600h-16ffh RAM B

Iploop2

lploopl

mov xarray, #15h
mov yarray, #16h
mov rlinel,#Ol
mov tdpl,#Ol
mov dpl, #01
mov count2, #128

clr pl.I
mov dptr,#1600h
clr a
movx @dptr,a

mov

cl r
mov
mov

cpl
mov
mov

countl,#02

ramflag
c, ramflag
pl.l,c

ramflag
c,ramflag
pl.l,c

; input array
;output array
;use rlinel as xarray low byte
;use tdpl as yarray low byte

;input and output array low byte
;use count2 to store column ref

;select ram b
;set undefined zero location of

;output array to 0

;use countl to reference RAM A & B

;use ram flag to keep track of pl.l
;pl.l=O

;select other ram

;get x[i],x[i-2J and x[i+2J

mov dpl, rlinel ;get xarray low byte
mov dph,xarray ;set up for getting xi
movx a,@dptr ;get x[iJ
mov xi, a

dec dpl

A3.22

movx a,@dptr
mov xm2, a

;get x[i-2]

inc dpl
inc dpl

movx a,@dptr
mov xp2,a

;get x[i+2]

dec dpl ;set dptr to point back to xli]

mov rlinel, dpl ; save xarray col umn count

mov dph,yarray ;set dptr to point at output array
mov dpl, tdpl ; get yarray col umn count

;next get values of: x[i]-x[i-2] and x[iJ-x[i+2J
;the result is resI set if: xli] < x[i-2] and res2 set if xli] < x[i+2]

resI clear if xli] >= x[i-2] and res2 clear if x[i] >=x[i+2]

clr c
mov a,xi
subb a,xm2 ;a:=x[i]-x[i-2]

mov resI,c ;carry will be set if result < 0

clr c
mov a,xi
subb a,xp2 ;a:=x[iJ-x[i+2]

mov res2,c

;now do tests to detect maxima and minima
;if resI AND res2 (x[i] < x[i-2] AND x[i] < x[i+2]) then yarray[i]:=I (-ve)
;if not resI AND res2 (x[i] >= x[i-2] AND x[i] >= x[i+2] then

yarray[i]:=2 (+ve)
;eIse yarray[i]:=O

Ipnotzero mov c,resI
anI c,res2 ;if x[i] < x[i-2] AND x[i] < x[i+2]
jc Ipneg ;then yarray[i] is a minimum
mov c,resI
cpl c ;resI:=-resI
anI c,/res2 ;if xli] >= x[i-2] AND xli] >= x[i+2]
jc lpposi ;then yarray[i] is a maximum
clr a ;else yarray[i]:=O
ljmp lpnext

A3.23

lpneg

lpposi

lpnext

;subroutine
doeales

divlpfilt

BlOV

inc rl inel

a,iOI
1 jm.p lpnext

BlOV

elr
BlOVX @dptr,a
inc dptr
m.ov tdpl,dpl

;yarray(i}:=l (-ve)

a,#02 ;yarray(i}:=2 (tve)

pl.l ;seleet raBl b
;write value to yarray
;next yarray column

;save yarray low byte

djnz eountl,lploopl ;go round again for next RAM

;next xarray address
djnz eount2,lploop2
ret

;go round again for next column

;do (y[i-I}*3txi)/(4)
;enter this subroutine with a=xi
;return with result in yi

mov xi,a
mov a, yntinusll
BlOV b,#1
Blul ab ;do y[i-l]*t
mov yminuslh,b
BlOV yntinusll,a ;store result

;do y[i-I]*3tx[iJ

elr e
adde a, xi
mov yntinusll, a
elr a
adde a, yntinuslh
BlOV yntinus lh, a

;do (y[i-IJt3tx[i]) div 4

BlOV diveount,#3 ;prepare to divide by 4
mov a,yntinuslh ;do division

rre a
BlOV yminuslh, a
BlOV a, yntinusll
rre a
BlOV ym.inusll, a
djnz diveount,divlpfilt
m.ov yi,yntinusll
ret

A3.24

;subroutine
;parse remaining peaks array for valid codes
parse mov dptr,#7600h ;base address of array

parselp

;subroutine

clr pl.l ;select ram b - peaks array]
clr eol2 ; clear end of line flag

lcall extfeat ;extract fetures from peaks array
;tl,t2,t3 now = features
;dptr = address of first +ve peak

lcall testfeat
movx @dptr, a

jnb eol2, parselp
ret

;test features for pattern class
;put result in peaks array

;ie. peaks[] = 10h if a code exists

;extract tl,t2,t3 from peaks array
;enter with current address in dptr
extfeat mov a, #02 ; fie peak

lcall fnp ;find next +ve peak
;returns with dptr=address, a=diff between exit and entry adds.

;subroutine
;find next peak

mov a, #01
lcall fnp
mov tl,a

mov a,#02
lcall fnp
mov t2, a

mov tdpl, dpl

mov a,#OI
lcall fnp
mov t3,a

mov dpl, tdpl
ret

;enter with sense in a (l=-ve, 2=+ve)
;enter with current address in dptr

;-ve peak
;find next -ve peak
;first feature

;+ve peak
;find next +ve peak
;second feature

;starting point of next search

;-ve peak
;find next -ve peak
;third feature

;start for next search

;exit with a = difference between current address and address of next

A3.25

;peak with sense 'sense'
fnp mov

fnplp inc

fnokcontl cjne

temp, a
mov r linel, dpl

dptr

;save sense
;save current address

;next location
mov
cjne
setb

setb

a,dpl
a,#239,fnokcontl ;used for learning only;239
eol
a,#255,fnokcont2 ;are we at end of line yet?
eo12 ;yes set flag

fnokcont2 movx a,@dptr ;get value from peaks array
cjne a,temp,fnpnxt ;no this isn't correct peak goto

;end of line test
ljmp fnpfound ;else leave loop because peak found

mov a,dpl fnpnxt
jnz fnplp ;if not end of line go round again
mov a,#O ;if end of line set this feature to 0
ret ;leave subroutine

fnpfound ;dptr=address of peak
mov a, dpl ; curren t address low byte
clr c
subb a, rlinel ; find difference between addresses
ret

;subroutine
;test features for membership of code class pattern

rules are tImin (= tl (= fImax
. AND t2min (= t2 (= f2max ,
. AND f3min (= t3 (= f3max in order to be a code class pattern ,

;first find individual results tl(=fImax, tl >=flmin etc

testfeat clr
mov
subb
mov
cpl

clr
mov
subb
cpl
anI
mov

elr
mov

c
a, flmax
a,tl
resl,c
resl

c
a,tl
a, flmin
c
c,resl
resl,c

c
a,t2max

; a=flmax-tl

;it resl = I then fImax>=tl

;a=tl-flmin
;if c=l then tl>= tImin
;c=l if timin (= tl <= fimax
;resl = result

A3.26

test fend ret

;subroutine

subb a, t2
cpl c
anI c, resl
mov resl, c

clr c
mov a, t2
subb a, f2l1Lin
cpl c
anI c,resl
mov resI, c

clr c
mov a, f3max
subb a, t3
cpl c
anI c,resI
mov resl, c

clr c
mov a, t3

;a=f2max - t2
;c=I if flmax > t2

;resl = 1 if a code so far

;a=t2-f2min

; a=f3max - t3

subb a, f3min ; a=t3-f3min
cpl c
anI c,resI
;c=I if this is a code else c=O

clr a
jnc testfend
mov a, #IOh ;indicate code present

; to idle while waiting for a serial interrupt
wait jnb sent, wait

;subroutine
convert

clr sent
ret

mov rS, a
swap a
anI a,#Ofh
I call decode
mov r6,a
mov a, rS
anI a,#Ofh
I call decode

;convert single byte to 2 hex digits

A3.27

mov r7,a
mov sbuf,#24h ;$
lcall wait
mov sbuf,r6
lcall wait
mov sbuf,r7
lcall wait
mov sbuf,#' ,
I call wai t
ret

;subroutine
decode

mov r4,a
clr c
subb a,#10
jnc big
mov a,r4
add a,#30h
ret

big mov a,r4
add a,#37h
ret

;subroutine
setup

clr p1.0 ;select 8031
clr sent ;initialise sent flag
clr nzflag ;flag indicating a nonzero control action
clr actionreq ;flag indicating that oa is required

setb ie.7 ;enable all interrupts
orl pcon,#80h ;set double baud rate bit in pcon
mov thl,#243 ;(OF3)timer 1 reload value to give 4800 baud
orl tmod,#20h ;set timer 1 for mode 2 auto-reload

;8 bit timer/counter
setb scon.6 ;set serial port in mode 1
clr scon.7 ;(start bit, 8 data bits, 1 stop bit)
cl r tcon.2 ;intl low levekl triggered
setb ip.4 ;intl high priority

setb tcon.6 ;set timer 1 run control bit (ie. start tIl
setb ie.4 ;enable serial interrupts

setb ie.2 ;enable intI
clr rxint ;clear serial interrupt rI
setb scon.4 ;enable serial reception

lcall pause ;allow pia time to reset

A3.28

mov a,#90h. ;control word for pia
mav dptr,placont;control register

@dptr,a ;set ports band c outputs, a input
;8 bit timer/counter

man

mov flmin, #2 ;2 ;set default values for features
mov flmax, #6 ; 5
mov f2min,#2 ;2
mov f2max,#6 ;5
mov f3min, #4 ;4
mav f3max,#18h ;9

lcall hostop ;make sure that agv is under host
;computer operation

mav caminus11,#0;initialise control action registers
mov caminus1h, #0

;initialise digital filter parameters for motor controllers
mov gain, #05h ;Olh
mov pole,#040h ;40h
mov zero,#Oe5h ;e5h

ret

;interrupt subroutine
serial jnb

setb sent
clr hint
reti

txint,nottx ;jump if not a transmit interrupt

nottx setb recvd
clr rxint
reti

;interrupt subroutine
timerl reti

;set busy flag
;reset serial interrupt

;must be a receive interrupt
;reset serial interrupt

ml string 13,10,13,10, IOBSTACLE AVOIDANCE LEARNING SEQUENCE',13,10,13,10
string "If Not Required Press 'Q' Now, Any Other Key Will Continue The Sequence 1 ,13,10,0

m2 string 13,10,13,10,1 Learning Sequence Aborted, System Now Using Defanlts l ,13,10,0
m3 string 13,10,13,10,1 Position Calibration Object and Press 'C' To Continne D ,13,10,O
m4 string 13,10,13,10,1 Learned Feature Parameters Are: u ,13,10,13,10,0
m4a string 13,10,1 Tlmin = u,O
m4b string 13,10,1 Tlmax = ·,0
m4c string 13,10,13,10,1 T2min = 1,0
m4d string 13,10,° T2max = 1,0

A3.29

m4e string 13,10,13,10,· T3min = 1,0
m4f string 13,10," T3max = 0,0
m5 string 13,10,13,10,13,10, ° System is Now Running l ,13,10,O
m6 string 13,10,13,10,0 Cont Act. is: D,13,10,O
m7 string 13,10,13,10,1 Press rc r to continue, any other key will re-initialise the
system l ,13,10,13,10,O
actual string 13,10, • Actual Position : n, 0
desired string a Desired Position: 1,0
propvela string 13,10,IRight Motor velocity is : D,O
propvelb string" Left Motor velocity is : ",0
posa string 13,10,DRight motor actual position: ·,0
posb string 13,10,DLeft motor actual position: 1,0
obstpos string 13,10,1 Obstacle position code: D,O
camessage string D Control Action : ",0
obstdet string 13,10,·Obstacle Detected Code: 1,0
turned string 13,10,IAGV is now turning to avoid obstacle·,O
proceed string 13,10,IAGV is now proceeding past obstacleD,O
movesmessage string 13,10,DDetails of move segments made: ",13,10,0
return string 13,10,0
tempmess string 13,10,·Writing moves table",13,10,O

heremess string 13,10,Dhere l ,13,10,O

end

A3.30

c:\cbe\8051/
;obstacle avoidance routines

#include

segment

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

public
public
public

obstav

Ddefinit1.asml

'eprom'

waitabit. w
propvel cont. w
allstop.w
hostop.w
triplescan.w
obstavop.w
resetflags.w
sendmessage.w
convert.w
turnright.w
turnleft. w
straightmove.w
return.w
readposition.w
seeifmovefinished.w
tempmess

absolute
report
obstav

;subroutine name called from obstav4 when an obstacle has
;been detected

mov dptr, #hellomess
1 call sendmessage

;take control and stop agv

;entry code

lcall obstavop ; take control of motor controllers
lcall resetflags ; reset motor controller flag register

;obstacle avoidance routine

A3.31

; REPEAT
oarepeat

ao#l jb

mov howmanysofar,#O ;zero advances counter
mov deverrorl,#O;zero deviation from path low byte
mov deverrorh,#O;zero deviation high byte
mov turnslog,#OOh ;zero turns made log
clr passedyet ;flag to say if AGV has been passed or not
setb canpass ;flag to say that AGV can avoid obstacle

lcailleftorright ;find out which way to avoid obstacle
;returns 10r=0 if left

10r=1 if right

jnb canpass,ao#l ;if can't pass obstacle then jump
lcall turnagv ;else turn to avoid it
clr passedyet ;clear flag to say not passed obstacle

passedyet,ao#2 ;if passed obstacle then jump
jnb canpass, ao#2 ; if can't pass then jump
lcall advanceagv ;if not passedyet AND canpass then advance AGV

ao#2 mov a,obstdetected ;if obstacle detected then jump

ao#3 mov

oaorcond

ao#4
oapossfin

oafinished

jnz ao#3
jnb passedyet, ao#3
1 call recover

a,obstdetected
jz oapossfin

jnb canpass,oafinished
Ijmp oarepeat

jb passedyet,oafinished
Ijmp oaorcond

;if not passedyet then jump
;if not obstdetected AND passedyet then

;recover to original path

;if not obstdetected then
;possible finish

;if not canpass then finished
;if not obstdetected AND not passedyet then

;go round again

;if passedyet then finished

A3.32

------ -----

;UNTIL (not obstdetected) and (passedyet) or (not canpass)

;Exit Code

lcall propvelcont
I call all stop
lcall hostop

;host control mode

ret

1 eftorri ght

;stop agv motors
;select host operation

;subroutine to determine whether to attempt to pass the obstacle from the
;left or right
;returns 10r=0 for left

10r=1 for right

jnb obstfromleft,lr#1

setb lor
1 jmp lr#end

I r#l clr lor

lr#end ret

turnagv

;if obstacle is mostly to the right
;then jump

;else set lor and avoid to right

;clr lor and avoid to left

;return

;subroutine to turn agv in the direction given by lor to avoid obstacle
;ie. if 10r=0 then turn left

lor=! then turn right
;returns canpass=O if agv can't turn to avoid obstacle

tagvwhile

tagv#l

cpI lor

~ov a,obstdetected
jz tagv#l
jnb canpass, tagv#1

1 call turndi r

I call test turn

1 jmp tagvwhil e

jnb
lcall turndir
lcall turndir

;WHILE obstacle detected
;AND canpass
;DO turn (uses lor and returns obstdetected)

;returns canpass=O if can't avoid obstacle

;end WHILE

canpass,tagv#3 ;if can't pass then ju~p
;else do a couple of turns to ~ke

A3.33

tagv#2
cpl lor
ret ; return

tagv#3 mov dptr, #turnfail
lcal! sendmessage
I jmp tagv#2

turndir
;subroutine to turn according to lor
;increments or decrements turnslogas appropriate

jb lor,td#left

td#left

td#end ret

test turn

lcal! turnright
dec turnslog
ljmp td#end

lcal!
inc turnslog

;if lor = ! then turn right
;else turn right

turnleft ;turnleft

;subroutine which tests to see if the agv can turn effectively to avoid obstacle
;returns canpass=! if it can, or canpass=O if it can't

jnb obstfromleft, ttU
jb obstfromright,tt#l
jnb lor, ttU

cl r canpass
ljmp tUend

ttl! jnb obstfromright,tt#2

tt#2 setb

jb obstfromleft, tt#2
jb lor, tt#2

canpass

cl r canpass
ljmp tt#end

tt#end ret

advanceagv

;IF obstafromleft
;AND not obstfromright
;AND lor=left

;THEN can't pass

;OR IF obstfromright
;AND not obstfromleft
;AND lor=right

;THEN can't pass

;ELSE canpass = true

;subroutine to advance agv passed an obstacle
;uses maIdeverror
;returns canpass=O if can't pass obstacle, otherwise canpass=!
;retnrns passedyet=trne if obstacle has been passed

setb canpass ;assume obstacle can be passed

A3.34

mov howmanysofar,#O ;advance counter
clr passedyet ;flag to say that obstacle hasn't been passed yet

advwhile
mov a,obstdetected ;WHILE not obstdetected
jnz adv#l
jb passedyet,adv#l ;AND not passedyet
jnb canpass, adv#l ; AND canpass

lcall straightmove ;DO advance agv
lcall enoughadvances ; inc counter and check range

;look up deviation error
;returns passedyet=true or false

adv#2ljmp

adv#l mov

adv#100

lcall getdeviation ;uses current deverror and turnslog

clr c
mov a, deverrorl ; a=deverror low byte
mov b,deverrorh ;b=deverror high byte
lcall absolute16 ;get abs(b:a)

clr c
subb a,maxdeverrorl
jc adv#2
mov a, b
clr c
subb a,maxdeverrorh
jc adv#2
clr canpass
mov dptr, #advfail
I call sendmessage

;a=a-maxdeverror low byte
;if a<maxdeverror low byte then jump
;otherwise check deviation high byte

;jump if a<maxdeverror high byte
;else can't pass obstacle

advwhile ;go round again

a,obstdetected ;IF obstdetected
jz adv#3
jb passedyet,adv#3 ;AND not passedyet
mov a,howmanysofar ;AND
cl r c
subb a,#4 ;a=a-4
jc adv#3 ; ... AND howmanysofar>=4

jb lor I adv#100 ; then if lor=left
jnb obstfromleft, adv#100 ;and obstfromleft
clr canpass ;then can't pass obstacle
mov dptr,#advfail
lcall sendmessage
Ijmp adv#3

jnb lor,adv#3 ;OR if lor=right

A3.35

adv#3 ret

jnb obstfromright,adv#3
cl r canpass
1Il0V dptr,hdvfail
1 call sendJllessage

enoughadvances

;AND obstfromright
;then can't pass obstacle

;subroutine to increlllent advances counter and check to see if it is
; in range
;returns passedyet=true if agv has passed obstacle, else passedyet=false

ea#l clr

ea#end

absolutel6

IIlOV a, howlD.anysofar
cl r c
subb a, enough
jc ea#l
setb passedyet
1 jmp ea#end

passedyet

ret

;if a>=enough then passedyet=true

;converts the 16 bit number in B:A to its 2's complelllent +ve forlll
;result returned in B:A

IIlOV telllpoa,a

mov a,b
anI a,#80h
jz abs16#end

1Il0V a,tempoa
clr c
cpl a
addc a,#Ol
1Il0V te1ll.poa,a
1Il0V a,b
cpl a
addc a,#O
mov b,a
IIlOV a,te1ll.poa
ljmp abs16#return

;put lsbyte in temporary location

;transfer b to a for logical operations
;see if 1II.Sb of b is set

;if its not then jump

;retrieve a value

;do 2's complelllent
; increment a
;save a temporarily
;get b

; add carry flag
;restore value to b
;restore value to a

A3.36

abs16#end
mov a, tempoa

abs16#return
ret

absolute

;restore value in a

;converts the number in a to a positive value
;result returned in a

mov tempoa,a
anI a,#80h ;see if msb is set
jz abs#end ; jump if its not

mov a,tempoa ;retrieve value
cpl a ;do 2's complement
inc a
mov tempoa,a

abs#end
mov a,tempoa
ret
elr passedyet
ret

getdeviation
;subroutine to look up deviation error and update deverror

mov a,turnslog
jz getdev#end

lcall absolute
mov dptr,#ltdeverror
move a,@a+dptr
mov tempoa,a
mov a,turnslog
anI a,#80h
jz getdev#pos
mov a,deverrorl
clr c
subb a, tempoa
mov deverrorl,a
mov a,deverrorh
subb a,#O
.Olov deverrorh,a
I j.OlP getdev#end

getdev#pos
mov a,deverrorl

;get abs(turnslog)
;set dptr to beginning of look up table
;get table entry

;temporarily store table entry

;see if turnslog is -ve
;jump if its positive
; a=deverror

;deverror low byte=a-table entry

;subtract borrow off high byte

A3.37

elr e
adde a,tempoa ;a=a+table entry m.ov deverrorl,a
m.ov a,deverrorh
adde a,tO
m.ov deverrorh,a

getdev#end
ret

recover
;subroutine to return agv to original guide path
;uses allowable (error) = 2
;uses turnsinerem.ent

recwhile
m.ov a,obstdeteeted
jz ree#!earryon ;WHILE not obstdetected
ljmp ree#!

rec#!earryon

m.ov a,deverrorl ;a=deverror low byte
m.ov b,deverrorh ;b=deverror high byte
leall absolute16 ;b:a=abs(b:a)

m.ov tem.poa I a
m.ov a, b
jnz ree#2

m.ov a, tem.poa
elr e

;temporarily store a
;test to see if high byte is zero
;if high byte isn't 0 then no pOint testing low byte

;else test deverror low byte

subb a, allowable
jne ree#2

; a=a-allowable

m.ov a I turns 1 og
jnz ree#2
ljmp ree#!

;a=turnslog

;look up new desired theta value
rec#2

mov dptr ,#1 tdestheta
mov a,deverrorl
mov b, deverrorh
leall absolute16
mov tempoa, a

;if a>=allowable then jum.p

;if turnslog<>O then jum.p

;base of look up table
;a=deverrorl
;b=deverrorh
;b:a=abs(b:a)

;tem.porarily save deverror low byte

A3.38

rec#lOOO

rec#5000

rec#100

rec#200

rec#3 mov

reclD.ul#pos

rec#domul

rec#mulend

mov a,b
jnz ree#lOOO
mov destheta, #5
ljmp ree#200

clr c
subb a, #12
jnc rec#5000
mov destheta, #20
I jmp rec#200

mov a,b
mov destheta,#40
1 jm.p rec#200

mov a, tempoa
movc a, @a+dptr

mov destheta, a

mov a,deverrorh
anI a,#80h
jnz rec#3

;a=deverror high byte
;if its zero then look up desired theta

;a:=a-3
;if a >3 then jump
;else destheta=20 degrees

;else set destheta to 40 degrees

;restore a with deverror low byte
;get table entry pointed at by

;deverror low byte
;=desired theta

;a=deverrorh
;see if deverror is -ve
; if it is jump

mov a,destheta ;else if its He
;destheta=-destheta cpl a

inc a
mov destheta,a

a,turnslog
anI a,#80h
jz recmul#pos
mov a,turnslog
leall absolute
setb nzflag
1 jmp ree#domul

cl r nzflag
mov a,turnslog

mov b,turnsinc
mul ab
jnb nzflag,rec#mulend
cpl a
inc a

;destheta=a

;a=turnslog
;see if a is -ve

;if its +ve then jump

;m.ake tnrnslog +ve
;set a flag to say that it has been done

;clear flag to say turnslog was +ve

;b=turnsinc
;b:a=atb

;if original tnrnslog was +ve then jump
;else do 2's camp

A3.39

--~ --- ---~~----~ --

rec#4 mov

mov tem.poa,a
mov a,destheta
clr c
subb a,tem.poa
jb lor,rec#4
cpl a
inc a

errtheta,a

anI a,#80h
jnz rec#5

mov a,errtheta
clr c
subb a, turnsinc
jc rec#5
I call turndi r
Ijmp rec#6

rec#5cpl lor
lcall turndir
cpl lor

rec#6lcall straightmove

rec#! ret

report

lcall getdeviation
ljmp recwhile

mov dptr, #heremess
lcall sendmessage

lcall report

;tem.porarily store a
;a=destheta

;a=destheta-tempoa
;if avoidanceis to right then jump

;else a=-a

;errtheta=a

;see if errtheta<O
; j um.p if it i s

;a=errtheta-turnsinc
;if a<turnsinc then jump
;turn agv

;turn(-lor)

;advance agv a bit
;get current deviation from look up table
;go round again

;end

;subroutine to report status of various variables and flags
mov dptr, #reportti tle
Icall sendmessage
mov a, turnslog
lcall convert

mov dptr,#advancesmade
I call sendmessage
m.ov a, howmanysofar
1 call convert

m.ov dptr, #deviat

A3.40

sendboolean

I call sendmessage
mov a/deverrorh
lcall convert
mov a, deverrorl
lcall convert

mov dptr I #dest
lcall sendm.essage
mov a, des theta
lcall convert

m.ov dptr I #errt
1 call sendlllessage
1Il0V a I errtheta
1 call convert

mov dptr I #passornot
I call sendm.essage
mov c, canpass
1 call sendboolean

mov dptr/#passedornot
I call sendm.essage
mov e I passedyet
leall sendboolean

mov dptr J #leftright
1 call sendm.essage
mov c/lor
lcall sendboolean

1Il0V dptr I #leftdetected
lcall sendm.essage
mov c/obstfrorueft
leall sendboolean

mov dptr I #centredetected
lcall sendlllessage
mov c/obstfromcentre
lcall sendboolean

1Il0V dptr I #rightdetected
lcall sendmessage
mov c/obstfromright
lcall sendboolean

ret

A3.41

;subroutine to send a boolean variable in c to serial port
jc sb#true
mov dptr, #falsehood
ljmp sb#end

sb#true mov

sb#end lcall
ret

falsehood string
truthhood string

reporttitle string
turnsmade string
advancesmade string
passornot string
deviat
dest string
errt string

passedornot string
leftright string
leftdetected string
centredetected string
rightdetected string
advfail
turnfai I string
hellomess string
bell string
heremess string

#include
#include

;File agvltdev.tbl
end

dptr,#truthhood

sendmessage

I FALSE I
, 0

ITRUEa,O

12,13,10,aAGV STATUS REPORTI,13,10,13,10
aTurns made so far: a, 0
13,lO,aAdvances made so far: ·,0
13,10,13,10,ICANPASS: 1,0
string 13,10,uDeviation from path: a,O
13,10,aDesired Theta: 1,0
13,10,IError Angle: ·,0

13,10,apASSEDYET: 1,0
13,10,aLOR: 1,0
13,10,IOBSTFROMLEFT: 1,0
13,10,·OBSTFROMCENTRE: ·,0
13,10, DOBSTFROMRIGHT: u,O
string 13,10, aFAILED DURING ADVANCED,O
13,10,aFAILED DURING TURNu,O
13,10,'Now Doing Obstacle Avoidance u ,13,10,0
o
13,10,·hereD ,13,10,0

n agv ltdev. tbl'
Uagvltdes.tbl '

;Look-up table for deviation from path
;These values are approximately 256 tsine(index in tabletS)

ltdeverror
I tdev#1
1 tdev#2

; File agvltdes

byte
byte

0,22,44,66,87,108,128,146,164,180
195,209,221,231,240,246,251,254,255

;Look-up table for desired angle values

A3.42

Itdestheta
byte 0,5,5,5,5,5,5,5
byte 5,5,5,5,5,5,5,5
byte 5,5,5,5,5,5,5,5
byte 5,5,5,5,5,5,5,5
byte 5, 5, 5, 5, 5, 5, 5, 5
byte 5,5,5,5,5,5,5,5
byte 5, 5, 5, 5, 5, 5, 5, 5
byte 5, 5,5,5,5, 5,5, 5
byte 5,5,5,5,5,5,5,5
byte 5,5,5,5,5,5,5,5
byte 5, 5, 5, 5, 5, 5, 5, 5
byte 5, 5, 5, 5, 5, 5, 5, 5
byte 5, 5, 5, 5 , 5, 5, 5, 5
byte 5, 5,5,5,5,5,5,5
byte 5, 5, 5, 5, 5, 5, 5, 5
byte 5, 5,5,5,5,5,5, 5
byte 5, 5, 5, 5, 5, 5, 5, 5
byte 5,5,5,5,5,5,5,5
byte 5,5,5,5,5,5,5,5
byte 10,10,10,10,10,10,10,10
byte 10,10,10,10,10,10,10,10
byte 15,15,15,15,15,15,15,15
byte 15,15,15,15,15,15,15,15
byte 15,15,15,15,15,15,15,15
byte 15,15,15,15,15,15,15,15
byte 15,15,15,15,15,15,15,15
byte 15, 15, 15, 15 , 15, 15, 15, 15
byte 15,15,15,15,15,15,15,15
byte 15,15,15,15,15,15,15,15
byte 15,15,15,15,15,15,15,15
byte 15,15,15,15,15,15,15,15

A3.43

APPENDIX 4

Motor Control Circuit Diagrams

A4.1 DUAL MOTOR CONTROLLERS

The circuit of figure A4.1 enables the 8031 embedded obstacle avoidance computer to

gain control of the experimental vehicle drive motors from the Host navigation

computer. The interface between this and the INTEL 8031 computer is that the INTEL

8255 PIA (lC2) on the computer board (see figure A4.1).

When the HOST/8031 signal is low, 8 bit buffers ICI and 3 are enabled and ICs 2 and

4 disabled. The 8031 obstacle avoidance computer has access to the HCfL-ll00 motor

PCl.

~
vr

PAO

~ HCTL -1100

81" LS14
:2 I ~ T"" TO B2SS PI",
~A ~ "'l. Bl. 1"<:7 ..:-

/""""""""' ~i ~~~, "'2 B2 P<:t. c:= "u Bl. h A3 B3 P<:S PA7 A2 B2

P ~ ;~~.~ "'4 B4 - P<:4 ~ A3 B3
AS as ::----c ~ F"C~ 1"80

~
A4 84

At. B6 PC2 r.:= AS BS 8 ~ ~i: {~i
A7 97 Pco 8 p A6 96 - AS B8 "-:2 I

~ 8= A7 97 t::: r:= ~ :;:[1;: 'v<;.<:

AS 98 §A I- ''0 G

l~-~!
P97 DXR ~.~

TCl.,2,3,4,7 *<:1
lOu

~ 1
PIN 20 .. 1.4

~!tGN R1

f~~' H3;
J.K

.T '* '{,4 -=~ XC1,2,3,4.7
~ Ai IH PXN l.0.7

A2 82
?=j A.t B.t P ~go _;::- A3 93 A2 92

~~~~: 
A4 94 

~ A3 93 b AS BS 
5 A4 B4 

A6 a6 

~ 
AS 85 8 A7 87 < At. at. ~t I-;X' ~ 

AS Be '-r;::: A7 97 
t:::::1.o. AS B8 

C 

"" ~YS~'-PD D1R c 
~ DXR 

:",,;-; ,~~ '4L"24'o 

~sti pi§ 
"'~ ~~~~~J, R2 

~6'" "5 

J~ 
~~ ~;. I ct. 

~C7B 

IC'T=TIO 
rs' 

74L 

I. ~~OP 

r r 
~nIJAI MOTOR Hl:TL -1 1 00 l:nNTRnl I.F R c:; I n r k wo n rl 1 991 

Figure A4.1 
Dual Motor Controllers 

A4.1 



controllers (lC5 and 6) via the 8255 PIA on the computer board. When the HOST/8031 

signal is high, access is denied to the 8031 and the host computer has control of the 

motors. 

The detailed operation of the HCfL-ll00 motor controllers is discussed in Chapter 7 

and in the specification of section A4.3. Various outputs and status flags are produced 

by the controllers. In this application however, only the PULSE and SIGN (pULSE A, 

PULSE B, SIGN A, SIGN B), signals are used to drive the H-Bridge circuit described 

in section A4.2. 

Feedback to the HCfL-ll00 motor controllers is taken directly from the experimental 

vehicle wheel encoders. These devices have quadrature outputs connected to the CHA 

A, CHA B, and CHB A, CHB B inputs of the motor controllers. 

The inverters IC7B and IC7C, together with R2 and C2 form the master clock 

oscillator for the HCTL-ll00 chips. The timing network formed by Rl and Cl ensures 

that the motor controllers are reset when the power supply is initially switched on. 

A4.2 H-BRIDGE MOTOR DRIVE AMPLIFIER 

The amplifier of figure A4.2 enables the vehicle drive motors to be driven in both 

directions from a unipolar power supply. This is achieved using the SIGN signal from 

the HCTL-l100 motor controllers. 

Referring to figure A4.2, when the SIGN and PULSE signals are high, Pin 3 of ICS is 

low and the transistors TR6 and TR 7 are switched off. IC5 pin 6 is high and therefore 

current flows through the motor via transistors TR5 and TR8. When the SIGN signal is 

low and PULSE high however, the transistors are switched over and current flows via 

TR6 and TR7, reversing the direction of the motor. The HCfL-l100 motor controllers 

have a 'sign reversal inhibit' feature which prevents all the transistors being turned on 

A4.2 



rc~ 
.. ~ v 

rC3 

~ ~ 

+5V v 
R3 

TRS TR7 2K2 
MJ11016 M.J1.1.0.1.o. 

rC2 xc., 
6N13e 6N~36 

~ 
1.2V 20A 

~ 

R4 

TRG 
2K2 

02 [)4 TR6 
MJ1.101.6 1'141.-1.00 1'141.-1.00 MJli016 

-

H-BRIDGE MOTOR DRIVE AMPLIFIER 

Figure A4.2 
H-Bridge Drive Amplifier 

at the same time and hence prevents a short circuit. 

The H-Bridge amplifier is operated from a separate power supply to the computer 

circuits to prevent damage in the event of a failure. Opto-isolators ICl-4 are used to 

eliminate any physical connection between the TTL signals and the motor drive circuit. 

Power transistors TR5-8 and free wheeling diodes D I-D4 are mounted on a large heat 

sink which covers the rear of the experimental vehicle. 

A4.3 



APPENDIX 5 

Assembler Motor Control Software 
Source Code 



;Include file for Motor control routines 

;******************************************************************* 
;* 
;* 
;* 

MOTOR CONTROLLER READ AND WRITE ROUTINES 

;*************************tttt*ttt*ttttttt*ttttttttttttt**tttt*t*ttt 

setregm.c 
;subroutine to configure pia registers ready for motor control 
;enter with required motor controller register address in regadd 

mov contword, #Offh ;set motor controller control word all 
clr host8031 ;select motor control board 

setb ddrwr ;set data direction bit 

mov a,contword 
mov dptr,piac 
mon @dptr,a ;send to motor board 

mov a,regadd ;get motor controller register address 
mov dptr,piab ;ready to write to pia port b 
movx @dptr,a ;set up on pia port 

mov dptr,piac ;ready to write to pia port c 
clr ale ;send ale low 
mov a,contword 
mon @dptr,a ;send to pia port c 
setb ale ;set ale 
mov a,contword 
movx @dptr,a ;send control word to pia port c 

ret 

writemc 
;subroutine to write a value to motor controller register already set up 
;with setregmc 
;enter with value to be written in a reg and 0 in flag 'motoraorb' for motor a 
;or 1 in flag 'motoraorb' for motor B 

mov temp,a 
setb rw 

;save value to be written 
;send r/w high 

mov a, contword 
mov dptr, piac 
moVI @dptr, a 

;ready to write to pia port c . 
·write control word to pIa , 

AS.! 

Is 



m.ov dptr,piab ;ready to write to port b of pia 
m.ov a,tem.p ;retreive data to be written 
m.OVI @dptr,a ;write to pia 

m.ov dptr,piac ;ready to write to pia port e 
jb m.otoraorb,m.otorbl ;if m.otoraorb is set then send csb low 
clr esa ;else send csa low 
ljmp m.otoral 

m.otorbl clr csb ;send csb low 
m.otoral mov a,contword ;get control word 

mon @dptr,a ;send to pia port c 

clr rw ;send r/w low 
m.ov a,contword 
m.oVI @dptr,a ;send control word to pia port c 

jb motoraorb,m.otorb2 ;if m.otoraorb is set then its m.otor b 
setb csa ;else it's m.otor a 
1 jmp m.otora2 

m.otorb2 setb csb ;set csb 
m.otora2 m.ov a,contword ;get control word 

m.ovx @dptr,a ;send it to pia port c 

setb rw ;send r/w high 
m.ov a,contword 
m.oVI @dptr,a ;send control word to pia port c 

ret 

readme 
;subroutine to read a value from the m.otor controller register already 
;set up using setregm.c. 
;if 'm.otoraorb' is low value is read from. m.otor A, if it's high then 
;value is read from m.otor B 

setb p1.0 

clr ddrwr ;ready to read 
mov a,contword 
mov dptr,piac ;ready to write to pia port c 
moVI @dptr,a ;write to pia port c 

jb motoraorb,m.otbl 
cl r csa 

'if motoraorb is set then access m.otor b , 
;else m.ust be motor a 

ljmp motal 
m.othl clr csb ;clear csb 

AS.2 



motal mov 

motb2 setb 
mota2 m.ov 

motb3 clr 
mota3 m.ov 

motb4 setb 
mota4 mov 

a,contword ;get contword 
m.on @dptr,a ;write to pia port c 

setb rw ;send rw high 
mov a,contword 
m.on @dptr,a ;write to pia port c 

jb m.otoraorb,m.otb2 ;if m.otoraorb is set then access motor b 
setb csa ;else its motor a 
I jmp mota2 

csb ;set csb 
a,contword 

m.on @dptr,a ;write control word to pia port c 

clr rw ;send r/w low 
mov a,contword 
movi @dptr,a ;write control word to pia portc 

jb m.otoraorb,m.otb3 ;if motoraorb is set then access motor b 
clr oea 
ljmp m.ota3 

oeb 
a,contword 

mon @dptr,a 

mov dptr,piaa 
m.oVI a, @dptr 

mov temp,a 

;else it's motor a 

;clera oeb 

;write to pia port c 

;ready to read from pia port a 
;get value from pia port a 

;save data 

mov dptr, piac ; ready to write to pia port c 
jb m.otoraorb,lILotb4 ;if motoraorb is set then it's motor b 
setb oea ;else it's motor a 
ljmp mota4 

oeb 
a,contword 

movi @dptr, a 
mov a, temp 

clr p1.0 

ret 

;set oeb 

;write to pia port c 
;leave with a = result 

,***t*t*ttttt**tttt***ttt*t*tttttt*ttttttttttttttttttttttt*ttttt**tt , 
;* 
;* GENERAL MOTOR CONTROLLER SET UP ROUTINES 
;* 
,*ttttt*ttttt*tttttt*ttt*tttt*t*tttttttttttttt*tttttttt*ttttttttttt* , 

AS.3 



; subroutine 
;clear al flags in flag register 
resetflags 

mov regadd,#OOh ;address of flag register 
I call setregmc ; get ready 

clr motoraorb 
clr a 
leall wri temc 
setb motoraorb 
clr a 
leall wri temc 

mov regadd,#OOh 
leall setregmc 

clr motoraorb 
mov a,#02h 
leal! wri temc 
setb motoraorb 
mov a,#02h 
leal! writeme 

mov regadd,#OOh 
leal! setregmc 

clr motoraorb 
mov a,#03h 
leal! wri temc 
setb motoraorb 
mov a,#03h 
lcall writemc 

mov regadd,#OOh 
lcal! setregmc 

clr motoraorb 
mov a,#04h 
lcall wri temc 
setb motoraorb 
mov a,#04h 
I call wri temc 

mov regadd,#OOh 
lcall setregmc 

clr motoraorb 

;select motor a 
;ready for flagO reset 
;reset flagO 

;now do it for motor b 

;address of flag register 
;get ready 

;select motor a 
;ready for flag2 reset 
; reset fl ag2 

;now do it for motor b 

;address of flag register 
;get ready 

;select motor a 
;ready for flag3 reset 
;reset flag3 

;now do it for motor b 

;address of flag register 
;get ready 

;select motor a 
;ready for flag4 reset 
;reset flag4 

;now do it for motor b 

;address of flag register 
;get ready 

;select motor a 

AS.4 



;subroutine 

mov a, #05h 
lcal! wri temc 
setb motoraorb 
mov a, #05h 
lcal! writemc 

ret 

;ready for flag5 reset 
;reset flag5 

;now do it for motor b 

;to reset and initialise motor control chips 
resetmc 

mov reg add , #05h ; address of mc to be accessed 
lcal! setregmc ;get ready 

clr motoraorb 
clr a 
lcal! wri temc 
setb motoraorb 
clr a 
lcal! wri temc 

;select motor a 
;ready for reset 
;reset mca 
;now do it for motor b 

;set pwm duty cycle (write to R09h) 

mov reg add , #09h ; address of mc to be accessed 
lcal! setregmc ;get ready 

cl r motoraorb 
mov a, #064h 
lcal! wri temc 
setb motoraorb 
BIOV a, #064h 
lcal! wri temc 

;select motor a 
;write pwm duty cycle 

;now do it for motor b 
;write pwm duty cycle 

;set digital filter parameters (R22h - gain) 

;R21h pole 

BIOV regadd, #22h ; address of mc to be accessed 
lcal! setregmc ;get ready 

clr motoraorb 
mov a,gain 
lcal! wri temc 
setb motoraorb 
BIOV a, gain 
lcall writemc 

;select motor a 
;gain 
;reset mea 
;now do it for motor b 

mov regadd,#21h ;address of mc to be accessed 

AS.S 



;R20h zero 

lcall setregmc 

cl r motoraorb 
mov a, pole 
I call writemc 
setb lILotoraorb 
IILOV a, pole 
I call wri temc 

;get ready 

;select motor a 
;gain 
;reset mca 
;now do it for lILotor b 

IILOV regadd, #20h ; address of me to be accessed 
lcall setregmc ;get ready 

clr motoraorb 
IILOV a, zero 
lcall writemc 
seth motoraorb 
IILOV a, zero 
I call writemc 

;set sample timer (write 20d to ROfh) 

;select motor a 
;gain 
;reset mca 
;now do it for lILotor b 

mov regadd, #Ofh ; address of mc to be accessed 
lcall setregmc ;get ready 

clr motoraorb 
IILOV a, #020h 
I call writemc 
seth motoraorb 
mov a, #020h 
I call wri temc 

;set sign inhibit bit 

mov regadd, #0 7h 
lcall setregmc 

cl r lILotoraorb 
IILOV a, #1 
I call wri temc 

setb IILOtoraorb 
IILOV a, #1 
I call writemc 

ret 

;select motor a 
;ready for writing 
;write to mca 
;now do it for motor b 

A5.6 



;subroutine to put motor controllers in init/idle mode 
initidle 

hostop 

mav regadd, #05h ; address of mc to be accessed 
lcall setregmc ;get ready 

clr motoraorb 
mov a, #01 
lcall writemc 
setb motoraorb 
mov a, #01 
I call writemc 

ret 

;select motor a 
;ready for writing 
;wri te to mca 
;now do it for motor b 

;subroutine to reset motor control board for host operation 

obstavop 

setb host803! 
mov a, contword 
mov dptr,piac 
man @dptr, a 
ret 

;send host/B031 high 

;ready to writr to pia port c 
;write to pia port c 

;subroutine to set motor control board for obstacle avoidance operation 

clr hostB031 
mav a, contword 
mov dptr, piac 
man @dptr, a 
ret 

;send host/B031 low 

;ready to writr to pia port c 
;write to pia port c 

;ttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt 

;t 
;t PROPORTIONAL VELOCITY SUBROUTINES 
;t 
;ttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt 

;subroutine to put motorcontrollers in proportional velocity control mode 
propvelcont 

acall resetflags 
acall resetmc 

mov regadd, #05h ; address of mc to be accessed 

AS.7 



I call setregmc 

elr motoraorb 
IIlOV a,#03 
Icall writemc 
setb motoraorb 
mov a, #03 
Icall writemc 

;get ready 

;set flag f3 to begin (ROO = Obh) 

;select motor a 
;ready for writing 
;write to mca 
;now do it for motor b 

mov regadd, #OOh ; address of mc to be accessed 
I call setregmc ; get ready 

clr motoraorb 
mov a,#Obh 
Icall writemc 
setb IIlOtoraorb 
mov a,#Obh 
Icall writemc 

ret 

;select motor a 
;ready for writing 
;write to mca 
;now do it for motor b 

;suhroutine to write the 16 bit 2's cpmplement number in cvh, cvl 
;to command velocity registers r24h (high byte) R23h (low nibble+fraction) 
;enter with motoraorb=O for motor a or IIlOtoraorb=1 for motor b 

cowndvel 

mov regadd,#24h;mc register to be accessed 
I call setregmc ; set up mc 

mov a, cvh 
Icall wri temc 

;get high byte of value 

mov regadd,#23h;mc register to be accessed 
Icall setregmc ; set up mc 

mov a, cvl 
Icall wri temc 

ret 

;get low byte of value 

;subroutine to read the contents of the Actual velocity registers (R35h,R34h) 
;and send the contents to the serial port 
;enter with motoraorb=O for motor a and motoraorb=l for IIlOtor b 
;result in cvh, cvl 

readpropvel 

AS.8 



mov regadd,#35h;mc register to be accessed 
lcall setregmc ;set up me 

lcall readmc 
mov cvh, a 

;get high byte of value 

mov regadd,#34h;mc register to be accessed 
1 call setregmc ; set up mc 

1 call readmc 
mov cvl,a 

ret 

;get low byte of value 

;ttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt 

; t 

;t 
; t 

POSITION CONTROL SUBROUTINES 

;ttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt 

;subroutine to put controllers in position control mode (R05h=03,flags clear) 

positioncont 

acall resetfl ags 
acall resetmc 

mov regadd, #05h ; address of mc to be accessed 
1 call set regmc ; get ready 

clr motoraorb 
mov a, #03 
lcall wri temc 
setb motoraorb 
mov a, #03 
lcall writemc 

;select motor a 
;ready for writing 
;write to mca 
;now do it for motor b 

;clear flags to begin (ROO = DOh) 

mov regadd, #OOh ; address of mc to be accessed 
lcall setregmc ;get ready 

cl r motoraorb 
mov a, #Oh 

;select motor a 
;ready for writing 

A5.9 



I call wri temc 
setb m.otoraorb 
DlOV a, tOh 
I call writemc 

ret 

;write to mca 
;now do it for motor b 

;subroutine to write 24 bit 2's complement number in ph,pm,pl to 
;motor controller position command registers 
;if m.otorab=O then write to motor a, res!=! then write to motor b 

writeposition 
mov regadd,#Och;mc register to be accessed 
I call setregmc ; set up mc 

mov a, ph 
I call wri temc 

;get high byte of value 

mov regadd,#Odh;mc register to be accessed 
I call setregmc ; set up mc 

mov a, pm 
lcall writemc 

;get middle byte of value 

mov regadd,#Oeh;mc register to be accessed 
I call setregmc ; set up mc 

mov a,pl 
lcal! writemc 

ret 

;get low byte of value 

;subroutine to read the actual position of the motors and put the result in 
;apl,apm,aph registers (R!2 R13, R14) 
;enter with motoraorb=O for m.otor a and motoraorb=l for motor b 

readposition 

rdmota 
writeposmess 

jnb motoraorb,rdmota ;if motorab is clear then message a 
mov dptr,#posb ;else write message b to serial port 
ljmp writeposmess 

mov regadd, #l2h ;prepare to read registers 
lcall setregmc 

I call readmc 

mov aph, a ;transfer value to holding register 

AS.IO 



mov regadd,#13h ;prepare to read registers 
lcall setregmc 

lcall readmc 
mov apm, a 

mov regadd, #14h ;prepare to read registers 
lcall setregmc 

I call readmc 
mov apI, a 

ret 

;subroutine to reset motor actual position registers 
;if motorab=O then write to motor a, resl=l then write to motor b 

resetposi tion 
mov regadd, #13h ;mc register to be accessed 
lcall setregmc ;set up mc 

mov a,#O ;write zero to register 
I call writemc 

ret 

;ttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt 

;t 
;t INTEGRAL VELOCITY CONTROL SUBROUTINES 
;t 
;ttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt 

;subroutine to put motor controllers in integral velocity control mode 

intvelcont 

acall resetf lags 
acall resetmc 

mov regadd, #05h ; address of mc to be accessed 
lcall setregmc ;get ready 

cl r motoraorb 
mov a, #03 
lcall writemc 
setb motoraorb 
mov a, #03 

;select motor a 
;ready for writing 
;write to mca 

;now do it for motor b 

A5.II 



lcall writemc 

;set flag f5 to begin (ROO = Odh) 

m.ov regadd, #OOh ; address of me to be accessed 
1 call setregmc ; get ready 

cl r motoraorb 
m.ov a, #Odh 
lcall writemc 
setb m.otoraorb 
m.ov a, #Odh 
lcall writemc 

ret 

;select motor a 
;ready for writing 
;write to mea 
;now do it for motor b 

;subroutine to write an acceleration (R26h lsb, R27h msb) 
;enter with values to be written in cvh, cvl 
;motoraorb=O - motor a, motoraorb=l motor b 

writeaccel 
mov regadd, #27h ;mc register to be accessed 
1 call setregme ; set up mc 

mov a, cvh 
lcall writemc 

;get high byte of value 

mov regadd, #26h ;mc register to be accessed 
lcallsetregmc ;set up mc 

mov a, cvl 
lcall writemc 

ret 

;get low byte of value 

;subroutine to write the 8 bit 2's complement number in a to the integral 
;command velocity register (R3Ch) 
;enter with motoraorb=O for motora and motoraorb=l for motor b 

intvel 
mov cvl,a 
mov regadd, #3ch ;get add res to be accessed 
leall setregme ; set up mc 

mov a, cvl 
lcall writemc ;write value in a register to mc 

AS.12 



ret 

;subroutine to read velocity command register 
;if motoraorb=O then read motor a motoraorb=l read motor b 
;exit with result in a 

readintvel 
mov regadd,#3ch ;get add res to be accessed 
lcall setregmc ;set up mc 

I call readmc ;read value from me 

lcall convert ;send it down serial line 

ret 

;**********tttttttttt*t*t*tttt*t*tttttttttt**tt*tttttttttttttt*tttt* 
;t 
;t 
;* 

TRAPEZOIDAL CONTROL ROUTINES 

;*tttttttt******t***ttttt****tt**ttttt*t**tttttt*t***tttttttttttt*tt 

; subroutine 
;put motors into trapezoidal control mode 

trapezcont 
acall resetflags ;clear flag register 
acall resetmc 

;put motors in position control mode 

mov regadd, #05h ; address of mc to be accessed 
lcall setregm.c ;get ready 

cl r motoraorb 
mov a, #03 
lcall writemc 
setb motoraorb 
mov a, #03 
I call wri temc 

;write acceleration to m.otor controllers 

clr motoraorb 
mov cvh, tOOh 
mov cvl,#Olh 
acall wri teaccel 

;select motor a 
;ready for writing 
;write to m.ca 
;now do it for motor b 

;first right motor 
;acceleration high byte 

'acceleration low byte , 
'write values to motor controller , 

AS.!3 



setb m.otoraorb 
mov cvh, #OOh 
mov cvl, #Olh 
acall wri teaccel 

;write maximum velocity 

clr m.otoraorb 
mov a, #Olh 
acall tzintvel 

setb motoraorb 
mov a, #Olh 
acall tzintvel 

;now do left m.otor 
;acceleration high byte 
;acceleration low byte 
;write values to motor controller 

;first do right m.otor 
;command velocity 

;write velocity to motor controller 

;now do left m.otor 
;command velocity 

;write velocity to motor controller 

;m.otors should now repond to position commands written to command 
;position registers using writeposition 

;set flag fO to begin (ROO = OBh) 

mov regadd,#OOh ;address of mc to be accessed 
lcall setregmc ;get ready 

clr motoraorb 
iD.OV a,#08h 
lcall writemc 
setb m.otoraorb 
mov a, #D8h 
lcall wri temc 

ret 

;select motor a 
;ready for writing 
; wri te to mca 

;now do it for motor b 

;subroutine to write 24 bit 2's complement number in ph,pm,pl to 
;motor trapezoidal controller position command registers R2Bh,R2Ah,R29h 
;if motorab=O then write to motor a, resl:! then write to motor b 

tzwriteposition 
mov regadd, #2bh; mc register to be accessed 
1 call set regmc ; set up mc 

mov a, ph 
lcall writemc 

;get high byte of value 

mov regadd, #2ah ;mc register to be accessed 
lcallsetregmc ;set up mc 

mov a, pm ;get middle byte of value 
1 call writemc 

AS.14 



mov regadd,#29h;mc register to be accessed 
lcall setregmc ;set up mc 

mov a, pI 
lcall writemc 

ret 

;get low byte of value 

;subroutine to write the 8 bit 2's complement number in a to the integral 
;trapezoidal command velocity register (R28h) 
;enter with motoraorb=O for motora and motoraorb=l for motor b 

tzintvel 
mov cvl,a 
mov regadd, #28h ;get add res to be accessed 
leall setregme ;set up me 

mov a, evl 
leall writemc 

ret 

;write value in a register to me 

AS.IS 



APPENDIX 6 

Pascal Obstacle Avoidance 
Simulation Source Code 



program agvmodel; 
uses crt, graph; 
const 

in} 

roadleft=100; 
roadright = 400; 
obstaclecolor = lightgreen; 
colorin=true; 

check = true; 
nocheck = false; 

obstacles} 
turnsincrement = 5; 
advanceincrement = 5; 
enough = 15; 

clear an obstacle} 
failed=false; 

type 

{Constant Definitions} 
{left hand edge of roadway} 

{right hand edge of road way} 
{colour of obstacles} 
{Boolean constant to indicate colour fill-

{Indicates check for obstacles} 
{indicates don't check for 

{5 degree turn increment} 
{5 unit advance increment} 

{number of advances required to 

{indicates failure of a process} 

arr = array[0 .. 50] of integer; {define array type} 

var {Variable definitions} 
n,i:integer; 
Gd, Gm : Integer; 
obstdetected,obstfromleft,obstfromright,obstfromcentre:boolean; 
oldx,oldy:integer; 
oldagvx,oldagvY,oldheading:integer; 
head:integer; 
I,y:integer; 
exitt:boolean; 
cnt:word; 
ystart:word; 
Ix:array[1 •. 4,O .. 20] of integer; 
yy:array[1 •. 4,O .• 20] of integer; 
noofobstacles:integer; 
failedtopass:boolean; 
passedyet:boolean; 
howmanysofar:word; 
turnswithoutadvance:word; 
startdev,startheading:integer; 
Itdestheta:array[O .. 100] of integer; 
Itdeverror:array[O .. 20] of integer; 
t,deverror:inteqer; 
destheta,errtheta:integer; 

function IntToStr(i: Longint): string; 
{ Convert any Integer type to a string } 
var 

s: string[ll]; 

A6.1 



begin 
Str(i, s); 
IntToStr := s; 

end; {inttostring} 

function direction(angle:integer):real; 
{con~erts an angle in degrees to a direction in radians} 
begin 

angle:=angle-90; 
direction:=(angletpi)/180 ; 

end; 

procedure detectcollision(x6,y6,x7,y7:integer); 
{detects when AGV light pattern has touched an object on front edge} 
const 

var 
n=30; 

i,x,y:integer; 
xi,yi:real; 

begin 
obstdetected:=false; 
obstfromcentre:=false; 
obstfromleft:=false; 
obstfromright:=false; 
if not obstdetected then 

begin 
xi:=(x7-x6)/n; 
yi:=(y7-y6)/n; 
for i:=O to n do 

begin 
x:=round(xititx6); 
y:=round(yi tity6); 

if getpixel(x,y)=obstaclecolor then obstdetected:=trne; 
if (i<10) and (getpixel(x,y)=obstaclecolor) then 

obstfromright:=true; 

end; 
end; 

end; 

if (i>=10) and (i<=20) and (getpixel(x,y)=obstaclecolor) then 
obstfromcentre:=true; 

if (i>20) and (getpixel(x,y)=obstaclecolor) then 
obstfromleft:=trne; 

procedure detectcollisionleft(x6,y6,x7,y7:integer); 
{detects when AGV light pattern has touched an object on left hand edge} 
const 

n=30; 

A6.2 



var 
i,x,y:integer; 
xi,yi:real; 

begin 

xi:=(x7-x6)/n; 
yi:=(y7-y6)/n; 
for i:=O to n do 

begin 
x:=round(xititx6); 
y:=round(yitity6); 

if getpixel(x,y}=obstaclecolor then 
begin 

end; 
end; 

end; 

obstfromleft:=true; 
obstdetected:=true; 

procedure detectcollisionright(x6,y6,x7,y7:integer}; 
{detects when AGV light pattern has touched an object on right hand edge} 

const 
n=30; 

var 

begin 

i,x,y:integer; 
xi,yi:real; 

xi:=(x7-x6)/n; 
yi:=(y7-y6)/n; 
for i:=O to n do 

begin 
x:=round(xititx6); 
y:=round(yi tity6); 

if getpixel(x,y}=obstaclecolor then 
begin 

end; 
end; 

end; 

obstfromright:=true; 
obstdetected:=true; 

procedure drawroad(colorin:boolean); 
{draws road on screen} 
var 

oldcolor:word; 

A6.3 



linest:linesettingstype; 
begin 
oldcolor:=getcolor; 
setcolor(green); 
setfillstyle(ltslashfill,getcolor); 
setcolor(obstaclecolor); 
moveto(O,roadright); 
lineto(639,roadright); 
lineto(639,479); 
lineto(O,479); 
lineto(O,roadright); 
moveto(O,roadleft); 
lineto(639,roadleft); 
lineto( 639,50); 
lineto( 0 ,50); 
lineto(O,roadleft); 
if colorin then floodfill(400,450,obstaclecolor); 
if colorin then floodfill(400,80,obstaclecolor); 
setcolor(oldcolor); 
setcolor(oldcolor); 

end; 

procedure updateobst(noofobstacles:integer); 
{redraw obstacles on screen} 
var 

i:integer; 
oldcolor:word; 
oldfillpattern:fillpatterntype; 

begin 
oldcolor:=getcolor; 
getfillpattern(oldfillpattern); 
setcolor(obstaclecolor); 

setfillstyle(solidfill,obstaclecolor); 

for i:=O to noofobstacles do 
begin 

moveto(xx[l,ij,yy[l,ij); 
lineto(xx[2,ij,yy[2,ij); 
lineto(xx[3,ij,yy[3,ij); 
lineto(xx[4,ij,yy[4,ij); 
lineto(xx[l,ij,yy[l,ij); 
floodfill(round((xx[3,ij-xx[1,ij)/2+xx[1,ij),round((yy[3,ij-

yy[1,i])/2+yy[1,ij),getcolor); 

end; 

end; 
setfillpattern(oldfillpattern,oldcolor); 
setcolor(oldcolor); 

A6.4 



procedure drawagv(x,y:integer;angle:integer;e:boolean); 
{Draws AGV on screen} 
const 

var 

pi=3.142; 
1 = 36.06; 
r: array[0 .. 7) of real = (1,1,1,1,53.85,53.85,72.8,72.8); 
theta: array[0 .. 7) of real = (4.124,5.3,0.983,2.159,1.95,1.19,1.292,1.85); 

xp:array[0 •. 7) of integer; 
yp:array[0 .. 7) of integer; 
i,colonentry:integer; 
heading:real; 

begin 

outtextxy(10, 70, 'Deviation: '+inttostr(deverror)); 
outtextxy(10,80, 'Head err: '+inttostr(errtheta)); 
outtextxy(10,60, 'DesTheta : '+inttostr(round(destheta))); 
outtextxy(10,90, 'turns log: '+inttostr(t)); 
if obstdetected then outtextxy(50,30, 'Obstacle Detected'); 

y:=(getmaxy - y); 
colonentry:=getcolor; 

if e then setcolor(getbkcolor) else setcolor(yellow); 
heading:=direction(angle); 
xp[O):=round(x+(r[O]*cos(theta[O]+heading))); 
ypfO):=round(y-(r[O)*sin(theta[O]+heading))); 
for i:=O to 3 do 

begin 
xpfi]:=round(x+(rfi)*cos(theta[i)+heading))); 
yp[i):=round(y-(r[i)*sin(thetafi)+heading))); 

end; 
xp[4):=round(x+(rf4)*cos(theta[4)+heading))); 
yp[4]:=round(y-(r[4)*sin(theta[4]+heading))); 

for i:=5 to 7 do 
begin 

xp[i):=round(x+(r[i)tcos(theta[i)+heading))); 
yp[i):=round(y-(r[i)*sin(theta[i)+heading))); 

end; 

detectco11ision(xp[6),yp[6),xp[7],yp[7)); 
detectco1Iisionleft(xp[4),yp[4),xp[7),yp[7)); 
detectcollisionright(xp[5],yp[5],xp[6],yp[6]); 

A6.5 



moveto(xp[O],YP[O}); 
for i:=l to 3 do 
lineto(xp[i],yp[i}); 
lineto(xp[O],YP[O}); 
moveto(xp[4],yp[4}); 

if not e then setcolor(lightred)' 
for i:=5 to 7 do ' 
lineto(xp[iJ,yp[i)); 
lineto(xp[4],yp[4)); 
setcolor(getbkcolor); 
outtextxy(50,30, 'Obstacle Detected'); 
outtextxy(10, 70, :Deviation: '+inttostr(deverror)); 
outtextxy(10,80, ,Head err: '+inttostr(errtheta)); 
outtextxy(10,60, DesTheta : '+inttostr(round(destheta)))' 
outtextxy(10,90,'turns log: '+inttostr(t)); , 
setcolor(colonentry); 

if obstdetected then begin 
drawroad(not colorin); 
updateobst(noofobstacles); 

end; 

end; 

procedure placeobstacle(x,y:inteqer); 
{Defines a random obstacle} 
const 

size = 5; 

var x1,y1,x2,y2,x3,y3,x4,y4:integer; 
oldfillpattern:fillpatterntype; 
oldcolor:word; 
i:integer; 

polygon:array[O .. 3) of pointtype; 

begin 
noofobstacles:=noofobstacles+1; 
randomize; 
x1:=x-random(size)-10; if (x1<1) then x1:=1; if (x1>639) then x1:=639; 
y1:=y-random(size)-10; if (y1<roadleft) then y1:=roadleft; if (yl>roadright) then 

y1:=roadright; 
x2:=x+random(size)+10; if (x2<1) then x2:=1; if (x2>639) then x2:=639; 
y2:=y-random(size)-10; if (y2<roadleft) then y2:=roadleft; if (y2>roadright) then 

y2:=roadright; 
x3:=x+random(size)+10; if (x3<1) then x3:=1; if (x3>639) then x3:=639; 
y3:=y+random(size)+10; if (y3<roadleft) then y3:=roadleft; if (y3>roadright) then 

y3:=roadright; 
x4:=x-random(size)-10; if (x4<l) then x4:=1; if (x4>639) then x4:=639; 

A6.6 



y4::y+random(size)+lO; if (y4<roadleft) then y4::roadleft; if (y4>roadright) then 
y4::roadright; 

end; 

xx[l,noofobstacles]::xl; 
xx[2,noofobstacles]::x2; 
xx[3,noofobstacles]::x3; 
xx[4,noofobstacles]::x4; 
yy[l,noofobstacles]::yl; 
yy[2,noofobstacles]::y2; 
yy[3,noofobstacles]::y3; 
yy[4,noofobstacles]::y4; 
updateobst(noofobstacles); 

procedure drawcursor(x,y:integer;visible:boolean); 
{Draws cursor used for placing obstacles} 
var 

oldcolor:word; 
begin 

end; 

if x>633 then x::633; 
if x<6 then x::6; 
if y<{roadleft+6) then y::roadleft+6; 
if y>{roadright-6) then y::roadright-6; 
oldcolor::getcolor; 
setcolor(getpixel(oldx,oldy)); 
moveto(oldx-5,oldy-5); 
lineto(oldx+5,oldy-5); 
lineto(oldx+5,oldy+5); 
lineto(oldx-5,oldy+5); 
lineto(oldx-5,oldy-5); 
if visible then setcolor(lightblue); 
moveto(x-5,y-5); 
lineto(u5,y-5); 
lineto(u5,y+5); 
lineto(x-5,y+5); 
lineto( x-5, y-5); 
oldx::x; 
oldy::y; 
setcolor(oldcolor); 

procedure positionobstacle; 
{Allow cursor to be moved and obstacles to be placed} 
var 

x,y,i,xp,yp:integer; 
exitt:boolean; 
ch:char; 
tempcolor:word; 
finished:boolean; 

A6.7 



begin 
x:=(getmaxx div 2); 
y:=(getmaxy div 2); 
o~t~extxy(IO,IO, 'Position Cursor Using <ARROW> Keys and Press <RETURN>')' 
flnlshed:=false; , 

repeat 
exitt: =fal se; 

repeat 
drawcursor(x,y,true); 

if keypressed then 
begin 

ch:=readkey; 
case ch of 

chr($48):y:=y-IO; 
chr($50):y:=y+10; 
chr($4B):x:=x-IO; 
chr($4D):x:=x+lO; 
chr(13):exitt:=true; 
chr(27):finished:=true; 

end; {case} 
end; {if} 

until (exitt) or (finished) ; 
if not finished then 

begin 

end; 

placeobstacle(x,y); 
x:=1+50;y:=y+50; 

until finished; 
tempcolor:=getcolor; 
setcolor(getbkcolor); 
outtextxy(lO,lO, 'Position Cursor Using <ARROW> Keys and Press <RETURN>'); 
drawcursor(x,y,false); 
setcolor(tempcolor); 

end; 

procedure putagv(x,y,heading:integer); 
{Puts AGV on screen} 
const 

begin 
erase=true; 

drawagv(oldagvx,oldagvy,oldheading,erase); 
drawagv(x,y,heading,not erase); 

oldagvx:=x; 
oldagvy:=y; 

A6.8 



oldheading:=heading; 

end; 

procedure advance(advancestep:word;check:boolean); 
{advance agv 1 step at current heading} 
var 

heading:integer; 
x,y:integer; 

begin 

heading:=round(direction(oldheading+90)); 
x:=oldagvxtround(advancesteptcos(heading)); 

if t>=O then deverror:=deverrortltdeverror[abs(t)] 
else deverror:=deverror-Itdeverror[abs(t)]; 

y:=getmaxy-roadleft-150tdeverror; 
putagv(x,y,oldheading); 
if not check then obstdetected:=false; 

end; 

procedure turn(angleincrement:integer); 
{if dir=true turn to right else turn to left} 
var 

heading: integer; 
begin 
heading:=oldheadingtangleincrement; 
t:=tt(angleincrement div turnsincrement); 
putagv(oldagvx,oldagvY,heading); 
end; 

procedure readlookuptables; 
{read look up tables} 
type 

fil =text; 
var 

i:integer; 
f:fil; 

begin 
assign(f, 'agvltdes.dta'); 
reset(f); 
for i:=O to 99 do 

begin 
read(f,ltdestheta[i]); 

end; 
close(f); 
assign( f, 'agvltdev. dta' ); 
reset(f); 
for i:=O to 19 do 

A6.9 



end; 

begin 
read(f,ltdeverror[i]); 
ltdeverror[iJ:=ltdeverror[iJ div 2; 

end; 
close(f); 

procedure initialize; 
{Initialise graphics and variables etc} 
begin 

end; 

oldx:=O;oldy:=O; 
exitt:=false; 
cnt:=O; 
detectgraph(gd,gm); 
gd: = 0 ; gm: = 1 ; 
InitGraph(Gd, Gm, "); 
if GraphResult <> grOk then 

begin 

end; 

writeln('get lost'); 
Halt (l) ; 

setcolor(yellow); 
head:=O; 
noofobstacles:=O; 
failedtopass:=false; 
turnswithoutadvance:=O; 
startdev:=O; 
startheading:=O; 
x:=30; 
y:=getmaxy-roadleft-l50; 
ystart:=y; 
destheta:=O; 
for i:=l to 4 do 

begin 
xx[i,OJ:=O; 
yy[i ,0] :=0; 

end; 
setcolor(yellow); 

oldagvx:=x;oldagvy:=y;oldheading:=head; 
putagv(x,y,head); 
drawroad(colorin); 
positionobstacle; 
readlookuptables; 
t '-O' .- , 
deverror:=O; 

A6.10 



procedure plottelt(I,y:word;tlt:string}; 
{Draws messages on screen} 
var 

oldcolor:word; 
begin 

end; 

oldcolor:=getcolor; 
setcolor(lightred}; 
outtextlY(I,y,txt}; 
repeat until keypressed; 
setcolor(getbkcolor); 
outtextxY(I,y,txt); 
setcolor(oldcolor); 

function waytoavoid(oleft,ocentre,oright:boolean):integer; 
{Work out which direction to turn to avoid an obstacle} 
const 

left=-1; 
right = 1; 

var 
leftorright:integer; 

begin 
if oright then leftorright:=left else leftorright:=right; 
waytoavoid:=leftorright; 

end; 

function testturn(detected:boolean;lor:integer):boolean; 
const 

left=-1; 
right = 1; 

var 
result:boolean; 

begin 

if ((obstfromleft) and (not obstfromright) and (lor=left)) or 
((obstfromright) and (not obstfromleft) and (lor=right)) then result:=failed 

else result:=(not failed); 
testturn:=result; 

end; 

procedure turnagv(lor:integer;var result:boolean}; 
{returns true if agv failed to pass obstacle} 
var 

A6.11 



i:word; 
begin 

turnswithoutadvance:=turnswithoutadvance+l' 
result:=not failed; I 

while (obstdetected) and (result = not failed) do 
begin 

turn(-lortturnsincrement); 
result:=testturn(obstdetected,lor); 

end; {while} 
if result= not failed then for i:=O to 1 do turn(-lorttnrnsincrement); 

end; {turnagv} 

function enoughadvances(var howmanysofar:word):boolean; 
{see if AGV has advanced far enough to recover yet} 
const 

passed = true; 
var 

result:boolean; 

begin 

end; 

if howmanysofar>=enough then result:=passed 
else 

begin 
result:=not passed; 
howmanysofar:=howmanysofar+l; 

end; 
enoughadvances:=result; 

procedure advanceagv(var passedyet,result:boolean); 
{Advance AGV past obstacle} 
const 

begin 

passed=trne; 
maxdeverror=60; 

resnlt:=not failed; 
howmanysofar:=O; 
passedyet:=not passed; 
while (not obstdetected) and (not passedyet) and (result=not failed) do 

begin 
advance(advanceincrement,check); 
if enoughadvances(howmanysofar) then passedyet:=passed 

else passedyet:=not passed; 
if abs(deverror»maxdeverror then result:=failed; 

end; {while} . 
if (obstdetected) and (not passedyet) and (howmanysofar>3) then result:=falled; 

A6.12 



end; 

procedure recover(startdev,startheading,leftorright:integer); 
{recover AGV back onto original path} 
const 

k = 0.1; 
allowable=2; 

var 
deviation:integer; 

begin 
while (not obstdetected) and ((abs(deverror»allowable) or (ttturnsincrement<>O)) do 
begin 

end; 

destheta:=ltdestheta[abs(deverror)J; 
if deverror>=O then destheta:=-destheta; 
errtheta:=leftorrightt((destheta)-ttturnsincrement); 
if errtheta>= turnsincrement then turn(leftorrighttturnsincrement) 

else turn(-leftorrighttturnsincrement); 
advance(advanceincrement,check); 
if (abs(deverror)<35) and (abs(deverror»15) then obstdetected:=false; 

end; 

procedure avoidobstacle(var failedornot:boolean); 
{obstacle avoidance procedure} 
var 

anotherobstacle:boolean; 
i:integer; 

leftorright:integer; 
canpass:boolean; 

begin 
deverror:=O; 
t '-O' . - , 

passedyet:=false; 
canpass:=true; 
repeat . . 

leftorright:=waytoavoid(obstfromleft,obstfro~centre,obstfromrlght), 
if (canpass) then 

begin 
turnagv(leftorright,canpass}; 
passedyet:=false; 

end; 
if not canpass then 

plottext(10,30, 'Failed during TURN'}; 

A6.13 



if (not passedyet) and (canpass) then advanceagv(passedyet,canpass); 
if not canpass then plottext(lO,30, 'Failed During 

'+inttostr(howmanysofar)); 

if (not obstdetected) and (passedyet) 
then recover(startdev,startheading,leftorright); 

if not canpass then failedornot:=true; 

until ((not obstdetected) and (passedyet)) or (failedornot=true); 
end; 

begin {program} 
repeat 

initialize; 

repeat 

advance(5,true); 
if obstdetected then 

begin 

end; 

startdev:=oldagvy; 
oldheading:=oldheading; 
avoidobstacle(failedtopass); 

if oldagvx>500 then exitt:=true; 
until (exittl or (failedtopass) ; 
repeat until keypressed; 
until false; 

{ CloseGraph;} 
end. 

A6.14 

ADVANCE: 



{File AGVLTDES.DTA} 
{used to look-up required heading angle for current deviation} 

o 5 5 10 10 15 15 15 20 20 20 25 25 25 25 25 25 30 30 30 30 30 
30 30 30 30 30 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 
35 35 35 35 35 35 35 35 35 40 40 40 40 40 40 40 40 40 40 40 40 
40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 

{File AGVLTDEV.DTA} 
{used to look up deviation for a given heading} 

o 1 2 3 345 6 6 7 8 
8 9 9 9 10 10 10 10 

A6.15 



DESIGN OF AN OBSTACLE AVOIDANCE SYSTEM FOR 
AUTOMATED GUIDED VEHICLES 

S. Lockwood, B. Merhdadi, J. R. Chandler 

Control and Power Group, School of Engineering 

The Polytechnic of Huddersfield, Queensgate, Huddersfield, H01 30H, U.K. 

This paper describes a modular AGV obstacle avoidance system which 
operates auxiliary to the primary guidance systems with a minimum of 
modification. The system uses a CCO image sensor to detect the distortion 
caused by obstacles to a coded light pattern projected onto the floor ahead of the 
vehicle. The light encoding scheme and image processing methods employed 
allow an embedded controller to be incorporated in a compact and low cost 
design. 

INTRODUCTION 

Automated Guided Vehicles (AGVs) have emerged as a key element of 
materials transport in many modern flexible manufacturing systems. They offer 
many benefits over continuous conveyor or manual transport systems[1]. The 
most common method of AGV guidance used in such systems is an inductive 
buried wire scheme[2] where AGV routes are marked by embedding large signal 
carrying lOOps a few centimetres beneath the floor surface. Inductive sensing 
heads on board AGVs detect the presence and position of the wires. Buried wire 
guidance has a proven record of reliability and is relatively straight forward)o 
operate and maintain. 

However, the uninterrupted flow of materials is of paramount importance to 
the performance of rnanufacturing systems and a major drawback of wire 
guidance and many other systems is that disruptions to materials transport can 
occur. This is often caused by a lack of suitable mechanisms on AGVs to avoid 
unexpected obstacles-which have been placed in the guide path. 

Research work aimed at solving the problem of obstacle avoidance t1as 
included the use of scanning LASER range finders[3,4] and ultrasonic 
scanners[5,6,7J. However, these systems employ sensitive moving parts which 
are not generally suitable for use in harsh industrial environments. A vision 
system has been descrlbed[81 which uses a powerful lamp to illuminate the floor 
ahead of the AGV and a CCO video camera to detect the edges of obstacles as 
they are approached. A disadvantage of this system however is that it is 
susceptible to false detection due to the reflection of overhead lights and flat 
objects or markings on the floor. 

This paper describes a modular obstacle avoidance vision system which 



overcomes the problems of false detection described above. The system is 
intended to operate auxiliary to the primary guidance system with a minimum of 
modification. During normal operation, the obstacle avoidance system is 
transparent to the primary AGV guidance system. When an obstacle is 
encountered however, the system takes temporary control of the vehicle drives, 
circumnavigates the obstacle (if possible) and returns the vehicle to the primary 
guide path. 

OPERATION OF THE OBSTACLE AVOIDANCE SYSTEM 

The obstacle avoidance system projects a sharp coded illumination pattern 
onto the floor ahead of the AGV and uses a video camera to detect distortion to 
this pattern caused by obstacles in the path of the vehicle. The way in which the 
pattern is distorted depends on the position of the projector with respect to the 
point of view. In this system the distortion is confined to the vertical plane by 
positioning the projector vertically above the camera as shown in figure 1. When 
no objects are near enough to interfere with the projected light pattern, the code 
is not detected by the camera. However, when the AGV nears an obstacle, the 
projected light pattern is disturbed and the code is visible to the camera. Figures 
2a-2c show a sequence of images as an obstacle is approached. It can be clearly 
seen from figure 2 that the coded light pattern 'grows' from the bottom of the 
image confirming that the distortion occurs in the vertical direction only. 

'. 
The illumination code is a series of stripes similar to a bar code. This type of 

code is insensitive in the vertical direction but provides information about the 
horizontal position of obstacles. 

The use of spatially coded light patterns is a well established technique in the 
analysis of images[9], but is usually restricted to static image processing 
applications due to the large amount of data processing involved. The novel 
geometry of the obstacle avoidance system together with a bar type illumination 
code allows the image processing task to be greatly simplified. This is because 

Projector 

AGV AGV 
.... ~':" 

....... :~ .... 
~ ...... . 

__ LJ--,,· ......... . . ............. . 
.4 

..... ~ .. ,. . . . .. . ~ .' ,.-

Camera 

Figure 1 ~ Relative Position of Projector and Camera 



.. ' . 
.... 

'" ,. 

(a) 

. ~., ~. (c) .. .c. 

. ',' . .'. 

Figure 2 - Sequence of Images as an Obstacle is Approached 



250W Xenon 
Light Source 

1-

Lens 
Reflector 

Lens 
Lens 

Coded 
Mask 

Figure 3 - Coded Light Projector 

sufficient information for obstacle 
avoidance can be obtained from a 
horizontal band across the lower 
portion of the image. 

DESCRIPTION OF THE 
OBSTACLE AVOIDANCE 
SYSTEM 

The coded illumination pattern is 
recorded on a 24mm X 36mm 
transparency and projected onto the 
floor with the slide projector 
arrangement shown in figure 3. 

The sensing element in the 
obstacle avoidance system is a 
monochrome CCO video camera. A 
high sensitivity CGO array allows the 
camera to operate in near darkness, 
whilst an auto-iris device prevents 
saturation in bright light. 

. A video frame store has been developed to capture digitised images in 
real-time (figure 4). Captured images are stored as a 256 X 256 array of picture 
elements with grey levels from 0 to 255. 

Since obstacle information is obtained from a horizontal band in the lower 
portion of the image, an embedded controller can be used for image processing. 
This results in a very compact, low cost design. 

The video frame store memory is directly accessible to the embedded 
controller by making it appear as the controller main data memory. 

IMAGE PROCESSING 
SOFlWARE 

Since the dimensions of the 
projected light code are precisely 
known and remain constant (fixed 
by the projector-camera 
relationship), filters can be 
designed with optimal responses 
for extracting code information 
from images. Considering the 
coding scheme shown in figure 5, 
TI and T h represent the longest 
and shortest periods of the code. 
Since the sampling rate is known 
(the time between video line syncs/ 
horizontal resolution), a bandpass 
filter can be designed with cut off 
frequencies 1fTI and 1fT h as 
shown in figure 6. Thi~ results in 

CGO 
Camera 

nc 
Seperators 
andAmps 

64K 
Image 

Memory 

Figure 4 
Video Frame Store 

ND 

O/A 

Amplifiers 
and Mixer 

Embedded 
Controller 



very high rejection of signals due to high frequency nOise, and low frequency 
grey level variations across the image. 

In the experimental system the following stages of processing are used to 
extract the coded pattern: 

o Average a band of 8 lines close to the bottom of the image. 
o Pass the resultant array through a low pass filter to remove signals above 

1 fT h Hz and then through a high pass filter to remove frequency 
components below 1fT, Hz. 

o derive a binary array by comparing the filtered array with a threshold level. 
o Compare the binary array with a copy of the pattern originally projected to 

determine the position of obstacles if any are present. 

AVOIDANCE ALGORITHMS 

On detecting an obstacle, the AGV manoeuvres in an attempt to remove the 
distortion from the 
projected light pattern. The 
decision on which way to 
turn first depends on the 
position of the obstacle in 
the image and the layout of 
the primary guide path. For 
example if AGVs keep to 
the left of the factory aisles, 
the most likely direction to 
result in successful 
avoidance would normally. 
be to the right. All the 
avoidance manoeuvres 
must be recorded in order 

Figure 5 - Bandwidth of a Coding Scheme 

to use the infornlation for calculating a resultant return vector to rejoin the primary 
guide path. 

After turning, the AGV advances to clear the corner of the obstacle. If a wall 
or other obstacle interferes with the projected light pattern as the AGV advances, 
the control software would determine if enough space is available to complete the 
manoeuvre (determined by the geometry of the system). If the advance is 

Frequency 

Figure 6 - Filter. Cut-Off 
Frequencies 

successful, the control system 
calculates the return course, and the 
AGV proceeds to rejoin the main guide 
path. 

A more general case would be a 
larger obstacle or multiple objects, 
where ttle AGV could not immediately 
rejoin the guide path. In this situation, 
when the AGV attempts to rejoin the 
guide path, the obstacle will continue to 
interfere with the projected light pattern. 
The control system must then adjust the 
course, advance a further distance and 
calculate a new return vector. The 
vehicle again attempts to rejoin Ule 



guide path. This procedure repeats until the obstacles have been cleared. 

RESULTS AND CONCLUSIONS 

A machine vision for improving the performance of wire guided or other AGV 
systems which lack facilities to avoid unexpected obstacles has been described. 

Ttle use of a coded light pattern has minimised the image processing tasl< 
since sufficient obstacle information can be extracted from a relatively small 
section of the image. This allows a low cost embedded controller to be used for 
image processing and control tasks, resulting in a compact modular unit. 

Initial tests have shown that obstacle detection is reliable and flat objects or 
changes in floor colour and texture have no effect on the performance of the 
system. The work is part of an on-going research project and further 
development is at an advanced stage to implement the system on an 
experimental AGV. Particular emphasis is placed on optimising the coded light 
pattern in terms of the system bandwidth (the smallest detectable object) and the 
amount of data processing necessary for reliable obstacle detection. Whilst 
discrete digital filters have been implemented in software to reject signals outside 
the code bandwidth, their analogue counterparts are currently being implemented 
in hardware to further reduce the signal processing burden placed on tile 
embedded controller. 

REFERENCES 
1 Mortimer, J. (Ed.), Ingersoll Engineers, The FMS Report, IFS Publications, 

Chapter 1 ,2, 1982 

2 Dayal, R.; Rao, G. N.; Sen, A.P., D~sign of .an Automated. Guided Vehicle, 
Proceedings of the 12th All India MachIne Tool Design & Research 
Conference, PP 203-207, 1986 . 

3 Dunlay, R.T., Obstacle Avoidance Perception Processin.9 for the Autonomous 
Land Vehicle, Proceedings - 1988 IEEE International Conference on 
Robotics and Automation, PP 912-917, 1988 

4 McTamaney, L. S., Mobile Robots: Real Time Intelligent Control, IEEE Expert, 
PP 55-68 Volume 2, Part 4, 1988 , -

5 Brady M Durrant-Whyte, H., Huostlong, H., Leonard, J., Probert, ~., R~o, 
B.S.Y., Sensor Based Control of AGVs, Computing and Control EngIneenng 
Journal, PP 64-70, March 1990 

6 I h'kawa Y Kamimura H, Autonomous Vehicle, Proc~edings of the 3rd 
cln'ternational Conference 'on Automated Guided Vehicle Systems, PP 
199-208, 1985 

7 X G Wang L Li C Liu Y. Wang, J., Intelligent Searching Algorithm for 
u~~bot" Obsta~le" Av'oid'ance', Eighth International Conference on Pattern 
Recognition, PP 958-960, 1986 

8 T k h' T' Nagai y. Enomoto N. Fuzzy Control of a Mobile Robot for 
~~~t~clle A~oidance, I~formation Sources, PP 231-248, Vol. 45, Part 2, 1988 

Oosterlinck, A., Range Image Acquisition With A ,Single
9 V~~~te~~nc~ded Light Pattern, IEEE Transactions on Pattern AnalYSIS and

Mac~ne Intelligence, PP 148-164, Volume 12, Number 2, 1990

	306751_0000
	306751_0001
	306751_0002
	306751_0003
	306751_0004
	306751_0005
	306751_0006
	306751_0007
	306751_0008
	306751_0009
	306751_0010
	306751_0011
	306751_0012
	306751_0013
	306751_0014
	306751_0015
	306751_0016
	306751_0017
	306751_0018
	306751_0019
	306751_0020
	306751_0021
	306751_0022
	306751_0023
	306751_0024
	306751_0025
	306751_0026
	306751_0027
	306751_0028
	306751_0029
	306751_0030
	306751_0031
	306751_0032
	306751_0033
	306751_0034
	306751_0035
	306751_0036
	306751_0037
	306751_0038
	306751_0039
	306751_0040
	306751_0041
	306751_0042
	306751_0043
	306751_0044
	306751_0045
	306751_0046
	306751_0047
	306751_0048
	306751_0049
	306751_0050
	306751_0051
	306751_0052
	306751_0053
	306751_0054
	306751_0055
	306751_0056
	306751_0057
	306751_0058
	306751_0059
	306751_0060
	306751_0061
	306751_0062
	306751_0063
	306751_0064
	306751_0065
	306751_0066
	306751_0067
	306751_0068
	306751_0069
	306751_0070
	306751_0071
	306751_0072
	306751_0073
	306751_0074
	306751_0075
	306751_0076
	306751_0077
	306751_0078
	306751_0079
	306751_0080
	306751_0081
	306751_0082
	306751_0083
	306751_0084
	306751_0085
	306751_0086
	306751_0087
	306751_0088
	306751_0089
	306751_0090
	306751_0091
	306751_0092
	306751_0093
	306751_0094
	306751_0095
	306751_0096
	306751_0097
	306751_0098
	306751_0099
	306751_0100
	306751_0101
	306751_0102
	306751_0103
	306751_0104
	306751_0105
	306751_0106
	306751_0107
	306751_0108
	306751_0109
	306751_0110
	306751_0111
	306751_0112
	306751_0113
	306751_0114
	306751_0115
	306751_0116
	306751_0117
	306751_0118
	306751_0119
	306751_0120
	306751_0121
	306751_0122
	306751_0123
	306751_0124
	306751_0125
	306751_0126
	306751_0127
	306751_0128
	306751_0129
	306751_0130
	306751_0131
	306751_0132
	306751_0133
	306751_0134
	306751_0135
	306751_0136
	306751_0137
	306751_0138
	306751_0139
	306751_0140
	306751_0141
	306751_0142
	306751_0143
	306751_0144
	306751_0145
	306751_0146
	306751_0147
	306751_0148
	306751_0149
	306751_0150
	306751_0151
	306751_0152
	306751_0153
	306751_0154
	306751_0155
	306751_0156
	306751_0157
	306751_0158
	306751_0159
	306751_0160
	306751_0161
	306751_0162
	306751_0163
	306751_0164
	306751_0165
	306751_0166
	306751_0167
	306751_0168
	306751_0169
	306751_0170
	306751_0171
	306751_0172
	306751_0173
	306751_0174
	306751_0175
	306751_0176
	306751_0177
	306751_0178
	306751_0179
	306751_0180
	306751_0181
	306751_0182
	306751_0183
	306751_0184
	306751_0185
	306751_0186
	306751_0187
	306751_0188
	306751_0189
	306751_0190
	306751_0191
	306751_0192
	306751_0193
	306751_0194
	306751_0195
	306751_0196
	306751_0197
	306751_0198
	306751_0199
	306751_0200
	306751_0201
	306751_0202
	306751_0203
	306751_0204
	306751_0205
	306751_0206
	306751_0207
	306751_0208
	306751_0209
	306751_0210
	306751_0211
	306751_0212
	306751_0213
	306751_0214
	306751_0215
	306751_0216
	306751_0217
	306751_0218
	306751_0219
	306751_0220
	306751_0221
	306751_0222
	306751_0223
	306751_0224

