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ABSTRACT 
Most Industrial Automated Guided Vehicles CAGV s) follow fixed guide paths 

embedded in the floor or bonded to the floor surface. Whilst reliable in their basic 

operation, these AGV systems fail if unexpected obstacles are placed in the vehicle 

path. This can be a problem particularly in semi-automated factories where men and 

AGVs share the same environment. 

The perfonnance of line-guided AGVs may therefore be enhanced with a capability to 

avoid unexpected obstructions in the guide path. The research described in this thesis 

addresses some fundamental problems associated with obstacle avoidance for 

automated vehicles. 

A new obstacle avoidance system has been designed which operates by detecting 

obstacles as they disturb a light pattern projected onto the floor ahead of the AGV. A 

CCD camera mounted under the front of the vehicle senses obstacles as they emerge 

into the projection area and reflect the light pattern. 

Projected light patterns have been used as an aid to static image analysis in the fields 

of Computer Aided Design and Engineering. This research extends these ideas in a 

real-time mobile application. A novel light coding system has been designed which 

simplifies the image analysis task and allows a low-cost embedded microcontroller to 

carry out the image processing, code recognition and obstacle avoidance planning 

functions. 

An AGV simulation package has been developed as a design tool for obstacle 

avoidance algorithms. This enables potential strategies to be developed in a high level 

language and tested via a Graphical User Interface. The algorithms designed using the 

simulation package were successfully translated to assembler language and 

implemented on the embedded system. An experimental automated vehicle has been 

designed and built as a test bed for the research and the complete obstacle avoidance 

system was evaluated in the Flexible Manufacturing laboratory at the University of 

H uddersfield. 
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1 INTRODUCTION 

1.1 Automated Guided Vehicles and Factory 
Automation 

The frrst Automated Guided Vehicles (AGVs) were developed in the 19508 by Barrett 

Electronics of the USA for use in warehouses[1J. These were automated trucks towing 

trains of carts, guided by a wire system similar to that still used in many installations 

today. 

In 1990, the worldwide AGV market was worth about £2500 million having grown at 

an annual rate of 12-15% in the previous decade[2]. This growth rate has led to the 

appearance of AGVs in many guises ranging in complexity from basic units similar to 

the original Barrett vehicles, to highly 'intelligenf legged automatons designed for 

such tasks as extra-terrestrial exploration and hazardous environment inspection. In 

general, the cost of automated vehicles is reflected in their performance. Complex and 

expensive vehicles are used in applications where cost is secondary to safety or 

research, whereas more basic types are employed in warehouses, offices and factories 

where commercial viability is essential. 

Only recently have automated vehicles been used widely in the manufacturing 

industry. This is partly due to advancing computer technology and its falling cost, and 

also, partly as a result of changing trends in industrial administration. In particular the 

adoption of management philosophies such as Just In Time (JIT) coupled with the 

concept of Flexible Manufacturing Systems (FMS) provide ideal environments for 

AGVS[3]. 

The benefits brought about by automated vehicle systems include reduced labour costs 

since drivers are not required, reduced paper work in the form of dockets and 
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requisitions and the fact that work need not be interrupted by rest periods. A further 

major advantage of automated vehicles as opposed to traditional forms of factory 

transport such as conveyors and railways, is that they allow more efficient use of the 

available factory space. This is made possible by the fact that AGV s use unobtrusive or 

hidden guide-paths that are only apparent when vehicles are actually present. At other 

times, the thoroughfares can be used by people and other transport. Conveyors and 

railways on the other hand, require exclusive routes constructed from intrusive steel 

work and transport equipment. 

1.2 Research Objectives 

The research presented in this thesis has been carried out m collaboration with 

AMECAS Ltd., (Advanced Manufacturing Equipment Control and Automation 

Systems), a trading division of the Holset Engineering Company Ltd., Huddersfield. 

This division was fonned as a small consultancy following the award winning in-house 

implementation of a Flexible Manufacturing System at the Holset turbo-charger 

manufacturing plant in Huddersfield. 

The subject of the research was highlighted at an AMECAS Automated Guided 

Vehicle installation in Doncaster, England. This factory is approximately 1/4 mile long 

and several hundred metres wide. The AGV system is a wire-guided network of pallet 

transporters operating along side manual trucks. 

As mentioned in the previous section, a major benefit of AGV s is that they can share 

space with people. However, as in the case of the Doncaster installation, a problem 

occurs where automatic vehicles and similar manually operated vehicles are doing the 

same job in the same work space. AGV s can not operate with the same level of 

flexibility as manual truck drivers and require that their guide path be completely 

unimpeded. In practice, objects such as untidily stacked pallets or bins are inevitably 
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placed in the AGV guide-path, which in turn leads to automated vehicles becoming 

stranded. In a factory the size of the Doncaster installatio~ this is a severe problem as 

the time taken to fmd and travel to stranded vehicles to clear obstructions can be 

significant. This affects work schedules and hence disrupts production planning. 

The problem of obstacle avoidance is associated with the guidance and navigation of 

automated vehicles and two main solutions are possible: 

o either completely replace the existing AGV system with a new 

one that has the capability to avoid unexpected obstacles, 

o or use an obstacle avoidance system that can be retrofitted to 
existing vehicles. 

As yet, no AGV system that can avoid unexpected obstacles is commercially available. 

Even if such a system did exist, organisations would be unlikely to be persuaded to 

reinvest heavily in a completely new installation. Rather, they would prefer to upgrade 

existing vehicles with 'add on' obstacle avoidance units. 

Much research has been carried out in the field of obstacle avoidance in attempts to 

provide commercially viable systems. This is based on a variety of sensor systems and 

techniques including ultrasound ranging systems, CCD camera systems, laser range 

fmders and combinations of these. The research presented in this thesis is concerned 

specifically with the rigorous requirements of the manufacturing industry and with the 

high demands that such harsh operating environments place on any practicable design. 

For example, a suitable system should not use moving parts since these would be 

subject to the eventual ingress of dirt and wear resulting in a degradation of 

perfonnance. This factor rules out the use of delicate mechanical sensors such as 

rotating scanners and moving cameras etc. 

Cost is a crucial factor affecting the acceptance of products by competitive industry. 

Hence any retrofitting obstacle avoidance system must be low-cost. Not only in terms 
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of its relation to the value of the host vehicle, but also in its operation and 

maintenance. This implies that the hardware must be relatively simple to install and 

configure, preferably without the need for special calibration equipment. 

A further constraint on the design of a retrofitting obstacle avoidance system is its 

physical size. Although commercial automated vehicles come in many shapes and 

sizes, an add-on system must be compact and light-weight enough to be relatively 

unobtrusive when installed on the host vehicle. This excludes the use of relatively large 

standard computers and suggests that a design based on compact, single-chip 

microcontrollers is desirable. 

Many automated vehicle systems described in the literature require detailed on-board 

'knowledge' of the factory layout in order to perfonn obstacle avoidance tasks. These 

tend to be application-specific and are not suited to general use. Although obstacle 

avoidance is often treated as a completely separate issue to that of obstacle detection, 

this research seeks to combine both detection and avoidance into a practical system 

that is suitable for general applications. 

The objectives discussed in the previous paragraphs have been translated into an 

innovative obstacle avoidance system. This is based on a novel light pattern projection 

system and a charged Coupled Device (CCD) imaging system. The light pattern is 

projected onto the floor ahead of the automated vehicle and is not nonnally visible to 

the CCD camera mounted under the front of the chassis. However, if an obstacle 

emerges, the projected light pattern becomes visible to the camera, and the obstruction 

is detected. The system then controls the vehicle drives to circumnavigate the 

obstruction and rejoin the original guide path. 

The complete obstacle avoidance system has been appraised in the Flexible 

Manufacturing Laboratory at the University of Huddersfield. Extensive tests have been 

carried out to confrrm the design specifications in terms of real-time operation, the 
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smallest detectable object, and the diverse range of obstructions that can be detected. 

Several examples of the system detecting obstacles typical of those likely to be found 

in factories are included. The perfonnance of the obstacle avoidance system is assessed 

in terms of the accuracy with which it returns to the original guide path. The accuracy 

with which it repeats a route given equivalent conditions and its ability to avoid 

multiple obstacles are also presented 
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2 BACKGROUND TO THE 
RESEARCH 

2.1 Summary 

This chapter explores the background to the problem of obstacle avoidance. A brief 

overview of the guidance methods available for Automated Guided Vehicles (AGVs) 

and mobile robots is presented. Options for solving the obstacle avoidance problem are 

discussed and a solution is identified for further research. Relevant work by other 

researchers is reviewed which highlights the key difficulties associated with detecting 

and negotiating unexpected obstacles. This review confirms that further research work 

is necessary towards the design of a low-cost, reliable obstacle avoidance system for 

industrial automated guided vehicles. 

2.2 An Introduction to the Guidance Methods 
A vailable for Automated Vehicles 

AGVs are guided using two basic systems: 

o Line following. This is currently the most common method and 

has been available since the birth of AGV technology 

o Free ranging. Advanced systems which are only just starting to 

be offered commercially. 
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2.2.1 Line Following Techniques 

Line following is the most common method of automated vehicle guidance[41, 

characterised by the fact that AGVs follow paths physically marked on the ground. 

Either passive or active techniques can be used, depending on the application and the 

operating environment[5). 

2.2.1.1 Passive Line Guidance 

Passive systems are common in relatively clean environments where AGV guide lines 

are not vulnerable to hard wear and dirt. Various methods are used for marking and 

detecting AGV guide paths depending on the particular design. An excellent review of 

these and other methods of line guidance has been presented by Premi and Besant[6}. 

. White line following systems use sensors consisting of infrared transmitters and 

receivers to detect the presence and position of white or brightly coloured lines painted 

or taped onto a dark floor, (or dark lines on light coloured floors). The position of a 

line in relation to the sensors is used to derive control signals for the AGV drive 

motors[7]. 

'Littons Patented Optical System'[l) uses a fluorescent compound to mark AGV guide 

lines, which is invisible to the human eye under nonnal circumstances. Automated 

vehicles are equipped with sensing heads consisting of ultra-violet lamps and optical 

detectors which irradiate the chemical compound and detect its position. Control 

actions are derived from the sensing heads in a similar fashion to white line following 

systems. 

Metal line systems differ from optical methods in that a metal adhesive tape is used to 

mark AGV guide lines. This has the advantage that it can be concealed under carpets 

or other floor coverings. Sensors on board AGVs (similar to metal detectors) are used 
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to detect the metal tape and derive control signals for the vehicle drives. 

2.2.1 .2 Active Line Guidance 

Active line guided systems are by far the most commonly used in factories, particularly 

where the environment is too hostile for systems requiring paint or tape on the floor 

surface. In active systems, AGV guide paths are marked by embedding large wire 

loops 1 or 2cm below the floor surface which are driven by AC signals. Automated 

vehicles equipped with pick-up coils sense the signals, the amplitude of which give a 

measure of the proximity of the embedded wire and are used to derive steering control. 

Each embedded guide loop is driven by a different frequency (typically in the range 

I-15KHz) allowing AGVs to navigate between regions by using band pass filters to 

select the required loop frequency and reject all others. 

2.2.1 .3 Other Line Following AGV Guidance Methods 

Other methods of AGV guidance which broadly fall into the category of passive line 

following have been devised. In particular, Tsukagoshi, Miura and Yamauchi of Japan 

have described a guidance system which uses ferrite tiles to construct lanes that cross 

each other in a lattice arrangement[8J• AGV s follow the ferrite lanes using magnetic 

sensors. 

A variation on passive line following has been designed for a clean-room inspection 

robot[9,lO,1l). This uses spot reflectors embedded in the floor at discrete intervals which 

are illuminated using a powerful infrared lamp. Reflections from the spot marks are 

detected using an infrared ceo camera. Steering control is derived from the position 

of the spot reflections in the CCD image. 

In general, passive line guided systems are not robust enough for harsh factory 
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environments because paint or foil tape can easily become worn away, and white lines 

or spot reflectors can be obscured by dirt and debris. Also, white line following 

systems depend on a high contrast between the line and the surrounding floor. 

However, active embedded wire loops, are not subject to wear and debris and as a 

result, have been installed widely in the manufacturing industries. 

2.2.2 Free Ranging AGV Navigation 

Free-ranging automated guided vehicles do not follow physical guide lines. Most 

systems are based on odometry[12] (or dead reckoning) where vehicle position and 

heading are derived from incremental encoders coupled to the AGV road wheels and 

steering gear. Examples of this type of system can be seen in references[13,14,15J. The 

main disadvantage of AGV navigation using odometry is its inaccuracy[12,161• If the 

wheel diameters are not accurately matched, the floor not perfectly flat, or the wheels 

pick up debris, errors accumulate in proportion to the distance travelled and can 

become unacceptably large. This error may be reduced by combining odometry with 

other methods of navigation. This approach has been adopted by Stephens Robins and 

Roberts in their 'TURTLE' system which uses scanning lasers and optical sensors to 

detect reflectors strategically positioned in known locations around the AGV 

environment[17]. The angular bearing of the reflectors is used to triangulate the absolute 

position of the vehicle, and this information is used to correct the accumulated 

odometry error. Similar triangulation systems have also been designed which use 

infrared beacons and detectors[18] and ultrasonic transponders and targets[19]. 

An alternative method of dead reckoning navigation based on inertial techniques has 

been considered by Eaton-Kenway Incorporated of the USA[201. However, the cost of 

mechanical or optical gyro sensors is high and as Tsumura points out[21], the technique 

suffers from accumulative position errors in the same way as odometry. 
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Systems which do not use any fonn of dead reckoning guidance are based on 

ultrasonic ranging[22) and imaging techniques[23,24,25) which attempt to build range 

measurement maps of the AGV environment for navigation. Other systems employ 

optical systems to achieve the same ends and also to recognise previously described 

objects in the AGV environment[26,27]. 

Other work on free-ranging AGV navigation systems has tended towards the 

integration of various sensing techniques in attempts to achieve high reliability and 

accuracy [28,29,30] • 

2.3 Review of Obstacle Avoidance Research 

An obvious solution to the problem of obstacle avoidance would be to prevent objects 

being placed in the path of automated vehicles. However, this undennines a major 

benefit of AGV systems which is the sharing of common thoroughfares. In an 

integrated environment, obstacles could only be totally prohibited from the working 

environment by making the guide path exclusive to A GV s. 

Alternatively, the whole wire guidance system could be replaced by a free-ranging 

scheme with the means to avoid unexpected obstacles. Although considerable research 

effort continues to be devoted to the design of free-ranging AGV systems the problems 

which must be overcome to make such systems commercially viable are manifold. 

These include high cost, high complexity, low speed of operation and low reliability. 

Only one company has succeeded in commercially marketing a free-ranging AGV 

system (based on the previously mentioned TURTLE laser range fmding system[l7,311), 

and that does not overcome the crucial problem of obstacle avoidance. 
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2.3.1 Architectures For Obstacle Avoidance 

Most current research on obstacle avoidance uses subsumption architecture[32) which 

stems from work of biological origin[33). Subsumption architecture is a hierarchical 

control structure with various priority levels. Each level of control has a set of 

conditions which once met, triggers its action. A characteristic of the architecture is 

that when a level of control is activated, all lower levels are inhibited. Figure 2.3.1.1 

shows an example of an AGV hierarchical control structure incorporating three levels: 

1. hardware safety devices 

2. obstacle avoidance 

3. navigation. 

Level 3 is a general navigation control system which can be inhibited by an obstacle 

avoidance control system should an unexpected obstacle be detected (level 2). Level 2 

- can in turn be inhibited by the hard 

wired safety bmnper (level 1) in the 

event of an object being physically 

touched by the Automated Guided 

Vehicle. 

2.3.2 Sensors and Systems 
Used for Obstacle 
Avoidance 

Work on obstacle avoidance is almost 

exclusive to free ranging AGV 

systems since, to avoid unexpected 

obstacles, the automated vehicle must 

deviate from its planned path, 

circumnavigate the obstruction and 
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either rejoin, or revise the original path. In order to achieve this, the AGV must have 

some notion of where it is and where it is allowed to go on a new trajectory. This 

knowledge is usually derived from a software model (or map) of the environment with 

which the AGV compares its current perceived position[34,35,36J. 

Although much work has been carried out on collision free path planning[37,38,39], a large 

emphasis is now placed on sensing as the key probl em [34,36] and in particular achieving 

reliable obstacle detection in real-time. 

The sensors used in obstacle detection are either acoustic or optical and in some cases 

both[40J. 

2.3.2.1 Ultrasonic Systems 

The relatively modest infonnation processing requirements of most ultrasonic ranging 

systems can be met in real-time but their success is limited by inherent difficulties 

associated with acoustics[34,35,40,41,42,43,44]. These include: 

o Poor directionality which limits the accuracy in detennining the 

spatial position of edges to about 10-50 em depending on the 

distance of the target object from the sensor. 

o Inaccuracies in distance measurements can easily occur due to 

ultrasonic noise from external sources (for example, machine 

tools, neighbouring sensors, hand tools being used or dropped on 

the floor etc.) and also by multi-path echoes. 

o Specular reflections occur when smooth surfaces are placed at an 

angle to the sound source[41]. This leads to either the surface not 

being detected at all or at best, appearing smaller than it actually 

IS. 

Systems have been designed to overcome the shortfalls of ultrasonic ranging methods 

by integrating them with other technologies. For example, Evans and Krishnamurthy 
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et al(40) combine ultrasonic techniques with optical methods to navigate a 'health care 

service' robot. An integrated system has been described by Hollingham[45J, which uses 

twelve combined SONAR and infrared sensing heads distributed around the periphery 

of an automated vehicle. Each Transputer based sensing head can be rotated by a small 

stepper motor in order to scan its locality. A further transputer is used for overall 

control of the system. Although these sensors may be useful in some automated 

environments, their cost and delicate nature makes them unsuitable for most factory 

based AGVs. 

2.3.2.2 Optical Systems 

Optical sensors used in obstacle avoidance systems range from laser range fmders to 

CCD cameras and in general, present higher demands in terms of information 

.processing because of their higher resolution. A system which uses both a colour video 

camera and a laser range fmder[46) has been used to guide an Autonomous Land 

Vehicle (AL V) along outdoor roadways[47J• The system uses the colour camera to 

detect road edges and the laser range fmder to detect objects within the road edges. 

Image processing is carried out by a powerful host computer and two dedicated digital 

image processors. Range measurements are processed by a programmable systolic 

array (the so-called 'warp machine')I48). Although this system is able to operate in real 

time, (the warp machine has an array of 10 cells, each with a processor operating at 10 

million floating point operations per second), the sheer size and cost of the hardware 

makes it impractical in commercial industrial applications. 

An obstacle avoidance system using stereo CCD video cameras has been described in a 

multi-level architecture for vision based navigation[49). This system employs a powerful 

multiprocessor computer work station and fast image processors to compare the stereo 

disparity from the CCD camera images with that of a previously computed stereo 

disparity map of the workspace floor. Although this obstacle avoidance system 
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operates in real time, the large multiprocessor work station is not carried on board the 

mobile robot and the predetermined stereo disparity map of the ground floor is only 

suitable for laboratory environments. For example, the system would fail if a new 

pattern was introduced on the floor due to shadows, or spilt liquid, etc. 

An alternative obstacle detection system has been described by Takeno and 

Hachiyama[50], which proposes a new technology for processing stereo images called 

the 'Laminated Difference Method'. However, this system does not avoid obstacles, it 

only detects them and under controlled test conditions the system required four seconds 

to process one pair of images. This performance is too slow for use on industrial 

A utomated Guided Vehicles. 

Stereo Obstacle detection systems require precise relative positioning of the cameras in 

order to accurately calculate the position of features in the stereo image pair. An 

obstacle avoidance system which uses a single, less critically positioned camera has 

been described by Takeuchi, Enemoto and Nagai of Japan[51]. In this system a 

monochrome CCD camera is mounted approximately 1 metre from the ground on top 

of a mobile robot and focused on the floor ahead of the vehicle at an angle of 30 

degrees from vertical. The obstacle detection system works on the principal that when 

the scene in front of the mobile robot is illuminated (by two powerful lamps), changes 

in grey level occur in the CCD image due to the boundaries between the plain floor 

and potential obstacles. The CCD image is processed to detennine the positions of 

such grey level changes and a "fuzzy" controller is implemented to execute collision 

free motion[521. This system will operate successfully in controlled light conditions on 

matt, uniformly coloured and textured surfaces. However, since the image processing 

system takes no account of the true three dimensional nature of the robot environment, 

it cannot distinguish between true obstacles and flat features on the floor such as pieces 

of paper, changes in colour, or spilt liquids. Also, the system is easily deceived by 

reflections from surrounding objects and glare from overhead lights. 
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2.3.3 The Need for a New Obstacle Avoidance System 

A cost-effective approach to the obstacle avoidance problem is to design a modular 

obstacle avoidance sub-system auxiliary to existing AGVs which does not reqUITe 

modification to existing guidance networks. Enhanced performance of the overall 

system would be achieved by enabling AGVs to negotiate unexpected obstacles. 

AGV users who have invested heavily in line guided navigation systems are unlikely to 

be persuaded to reinvest in free ranging systems to solve the problem of obstacle 

avoidance. However, the prospect of improving the efficiency of an existing system by 

installing a low cost modular obstacle avoidance unit is attractive. Existing 

conventionally guided AGV systems may not have the "intelligence" to avoid 

obstacles, but they are reliable if it is accepted that they will fail due to unexpected 

obstructions. A low cost, modular obstacle avoidance system would not therefore 

degrade the operation of an existing system; but it would enhance it by allowing AGVs 

to avoid such objects in the guide path. A completely new, free-ranging system has a 

high risk of for "teething" problems and may prove less reliable during nonnal, 

obstacle free navigation. 

The review of obstacle avoidance systems presented in this chapter has not revealed a 

low cost and reliable system which is suitable for integrating into the control hierarchy 

of existing AGV navigation systems. 

For these reasons, the work presented in this thesis builds on that carried out by 

Lockwood, Mehrdadi and Chandler[531, and is aimed at the design of a low cost, 

modular system which can be retrofitted to existing conventional AGVs. 

The single camera system described in the review[51,52) has provided a valuable preface 

to the study of obstacle avoidance and using it as a starting point, this research is based 

on the following hypotheses: 
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o The geometry of the optical system can be redesigned to enable 

effective discrimination between true three dimensional objects 

and two dimensional disturbances on the floor. 

o illumination coding techniques can be developed to simplify the 

image processing task and enable reliable obstacle detection. 

o A low cost, self-contained system can be realised by employing 

single chip microcomputers for image processing and steering 

control. 
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3 DESIGN OF THE LOW COST 
OBSTACLE DETECTION 

SYSTEM 

3.1 Summary 

Light patterns have been used in applications such as metrology, Computer Aided 

Engineering (CAE) and Computer Aided Design (CAD) to increase the information 

content in optical systems. However, so called structured light is normally used in 

static image analysis such'as off-line inspection and 3-D surface measurement. 

This chapter reviews relevant research works based on projected light patterns and 

introduces the concept of extending such systems for mobile use. Sections 3.3, 3.4 and 

chapters 4,5 and 6 discuss the design of a novel obstacle detection system which is low 

cost, simple to configure, self-contained and capable of operating in real-time. 

3.2 The Application of Structured Light for 
Measurement and Detection 

Lighting with known geometrical properties that are used to obtain information in 

illuminated scenes is referred to as 'structured' light[S4]. A 3-D machine perception 

system which uses a standard slide projector and binary coded slide mask has been 

describedrs51. The projector illuminates objects with a coded pattern (rather like a 'chess 

board') and uses a CCD camera and image processing system to determine the range 

of uniquely coded groups of light points. The surface of objects can be modelled from 

these range datar56]. Two important features of this system are: 

o The system has potential for use in mobile applications because 
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it requires only a single 'snap shot' image to completely analyse 

a scene. This overcomes a problem called 'smudging' caused by 

successive frame integration which can occur in mobile systems 
that need multiple images[551• 

o The hardware is low-cost since a standard slide projector and 

single camera are used (ie. range measurement can be achieved 

with a single camera as opposed to triangulation with a stereo 
pair). 

However, a major disadvantage of the 3-D machine perception system is the number of 

computations required. As the authors point out, real-time operation could only be 

achieved if the computations were speeded up by a factor of at least 300. This makes 

the current system unsuitable for automated guided vehicles. 

A 3-D measurement system has been designed using a similar projector but with a 

uniform dot-grid mask rather than a binary codel571 • This system uses a CCD camera 

which moves laterally on a sliding carriage. Images are acquired with the camera in 

two positions and range measurements are derived from the relationship of the 

projected dots in each image (rather like triangulating with stereo cameras). This 

system has the disadvantages that it uses moving parts which will eventually need 

service, and the image acquisition and processing procedures are too slow for mobile 

applications. For example, if the moving camera was mounted on a vehicle which was 

itself moving, the relationship between a pair of successive images would be extremely 

complicated unless the precise relative motion of the vehicle was taken into account 

(the 'smudging' problem described above). 

Alternative light sources can be used to generate structured light. A system USIng 

coherent laser light has been designed which acquires range and surface information 

from two photographs of the same object with different laser light patterns[581. Surface 

information is extracted by projecting a vertical grid of equidistant lines onto a subject 

and analysing the image distortion. The system has the disadvantages that multiple 
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Images are required and image processmg IS carried out off line. Moreover, in 

monochrome laser light systems, surfaces with a narrow colour band will only reflect 

certain colours of light[59]. This problem does not occur when 'white' light, produced 

for example by tungsten-halogen light sources is used because its spectrum contains 

components of many colours. Detectable levels of white light are therefore reflected 

from a wide range of surfaces. 

The following design work draws on the research carried out for the machine 

perception system described earlier[55,56). A novel light pattern has been developed 

which allows the image processing task to be simplified in order to increase the speed 

of operation. The light generation and projection system is based on a white light 

source and adopts a single 'snap-shot' approach suitable for mobile systems. 

3.3 Method of Light Generation and Projection 

A standard slide projector is used to generate white light illumination. This allows 

experiments to be easily carried out using projection masks housed in a standard 35mm 

photographic slide format. Figure 

3.3.1 shows a diagram of the lens 

system. The geometry of the light 

projector and CCD camera 

(described in the next chapter) are 

illustrated in figure 3.3.2. The aim 

of the system is to project a light 

pattern onto the floor ahead of the 

automated guided vehicle, and 

detect the distortion of the light 

pattern caused by objects emerging 

Reflector 
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into the projection area (figure 3.3.3). The type of light pattern and the amount of 

information required to reliably detect obstacles determines the speed of operation. 

3.4 Design for a 
Novel Light 
Coding System 

Various projection masks were 

used in experiments, including 

those illustrated in figure 3.4.1. The 

presence of the ' pattern, for 

example the dot grid shown in 

figure 3.4.2 indicates the position 

of an obstacle. In order to detect 

the pattern by computer, images 
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were digitised into a matrix of grey levels. The resulting array was preprocessed using 

an edge detection and thresholding algorithm. Edge detection is essentially a high-pass 

filtering procedure which accentuates abrupt changes in contrast in an in1age. 

Thresholding is a selection procedure used to detennine which edges are accepted for 

image analysis and which are ignored[60,611• These processes help to eliminate the 

effects of disparate contrast 

caused by variable ambient 

lighting conditions and obstacle 

surfaces. The result of this 

computational stage produced 

the toroidal shapes visualised in 

figure 3.4.3. The presence and 

position of these shapes 

indicates the size and position 

of an obstacle. 

The most effective masks are 

those which project patterns that 

are unlikely to occur naturally 

Figure 3.4.2 

Obstacle Distorting Projected Dot Grid 
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Figure 3.4.3 

Distorted Dot Grid After Edge 
Detection and Thresholding 

(examples of ' naturally' 

occurring patterns m this 

context are graphics or text on 

packing case sides etc). All 

the projection masks with 

discrete shapes such as 

diamonds or dots set in a 

predetern1ined grid perfornled 

well and obstacles could be 

reliably detected. However the 

tasks of two-dimensional edge 

detection and thresholding are 

too time consuming to be 

can-ied out by a low-cost enlbedded conlputer. The design was therefore simplified to 

reduce the processing demands whilst maintaining its reliability. 

When objects enter the projection area, they disturb the light pattern. Consequently, 

this distortion appears to 'grow' from the floor and progress vertically in the in1age 

(figure 3.4.4). This effect is enhanced by virtue of the projector/camera geometric 

relationship as shown in the results presented in later chapters. Vertical bar patterns 

can be used to enable the image processing task to be reduced from two dimensions to 

one, providing that objects are stood on the floor (figure 3.4.5). In order to detect 

obstacles, the system needs to process only a narrow horizontal strip of the image 

which corresponds to the position where objects begin to distort the light pattern 

(figure 3.4.6). However, unifonn bar patterns may become confused with patterns 

ocurring on objects which are not obstacles to be avoided. For example unifonn 

markings on distant walls or packing cases, or iron railings with uniformly spaced 

vertical supports etc. A coded projection mask has been designed to assist in 

overcoming this possibility of false obstacle detection[531. 
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Figure 3.4.4 
Projected Light Pattern Tends to 'Grow' 

from the Ground 
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Figure 3.4.5 

In general, codes with a large 

'information' content will result in the 

Uniform Vertical Bar Pattern 

most reliable obstacle detection. Such 

a code could be realised in the form 

of a projection mask consisting of 

several differently spaced vertical 

bars. However, the major 

disadvantage of this approach, is that 

only large obstacles, disturbing the 

whole projected pattern could be 

reliably detected. Since the system 

must also be able to detect 'thin' 

obstacles, several discrete codes across the image must be used and a compromise 

between code size and video system resolution must be found. 

Several factors affect the design of a compromise light code including the 

Obstacle 

~1".:'~i:>L--__ 'Letterbox' 
Viewing Area 

Light Pattern 

Figure 3.4.6 
'Letterbox' Viewing Area 
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afonnentioned resolution of the detection system, the 'thinnest' detectable object, and 

the required speed of the infonnation extraction algorithm. The central theme of this 

design is its low-cost in tenns of both hardware and software, and therefore to maintain 

modest memory requirements and high processing speed, images are digitised with a 

horizontal resolution of 1:256. This results in a projected resolution of approximately 

3mm at a distance of 1m with a viewing angle of 45 degrees using a 12mm camera 

lens as shown in figure 3.4.7. A repetitive code similar to that shown in figure 3.4.8 

was found to produce reliable results. This code horizontally divides the projection 

area into discrete regions. The detection of any complete code indicates the presence of 

an obstacle and its position in the image reveals the position of the obstacle in front of 
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the projector and camera. 

The prototype image processing software includes an algorithm which automatically 

identifies the features of the code pattern in use. This allows various masks to be 

deployed without the need to specify the physical dimensions of the code. Chapter 5 

describes the processing algorithms in detail and the range of suitable masks used in 

the course of this research. 

Figure 3.4.8 

Vertical Bar Code Projection Mask 
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4 HARDWARE FOR THE 
OBSTACLE DETECTION AND 

EMBEDDED COMPUTER 
SYSTEM 

4.1 Summary 

The hardware for the obstacle avoidance system and the video camera used to detect 

obstacles are described in this chapter. The advantages of using robust Charged 

Coupled Device (CCD) image sensors are also highlighted. 

The video digitising system is described in section 4.3. This unit takes a standard 

monochrome composite video signal as input and transforms it via a high-speed 

analogue to digital converter into a 256 X 256 array of grey levels. This array is in a 

fOffil which can be processed by the embedded computer system. 

In section 4.4, the main features of the Intel MCS-51 series microcontrollers are 

discussed and the design for the embedded computer system is presented. A shared 

memory access scheme is described which enables the microcontroller to gain fast 

access to the digitised video image array. 

Finally in section 4.5, the complete embedded software development system is 

discussed with particular reference to the methods used to design and debug Intel 8051 

assembler codes. 
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4.2 The CCD Video Camera as a Sensing 
Element 

The falling cost of CCD arrays together with their improving quality makes them 

eminently suitable for use in machine vision systems. Also, the robustness of modern 

CCDs allows their use in systems that may be subject to noise, vibration and other 

harsh environmental conditions. A low-cost monochrome CCD video camera is used as 

the detection element of the obstacle avoidance system. 

A particular feature of the 1/2" CCD array used in this design is its sensitivity, which 

enables the camera to operate in light levels down to 0.5 Lux. Conversely, a built in 

auto-iris adjusts the camera aperture according to the average light intensity falling on 

the CCD array to prevent saturation in bright ambient light conditions. 

The array consists of 370 X 350 light sensitive elements. Since the overall vision 

system resolution is limited by the Video Frame Store rather than the camera, this 

CCD camera fulfils the system requirements. 

For objects to be avoided without collision, the projected light pattern must produce an 

image at least as wide as the automated vehicle when it is focused on the floor. A 

viewing angle of 45 degrees is required for the camera to detect the full width of such 

an image at a distance of approximately one metre. This is achieved by using a 12mm 

wide-angle camera lens. 

4.3 Description of the Video Digitising System 

A central feature of digital image processing systems is that they convert standard 

composite video signals generated by cameras of the type described in section 4.2 into 

a fonn which can be processed by a computer. This is nonnally achieved by digitising 
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the video signal and storing it in a memory array. Each picture element (or pixel) has a 

numeric value representing the light intensity, or grey level, of the corresponding point 

in the video image. Figure 4.3.1 shows the fonn of a composite video signal. As its 

name suggests, it is an amalgamation of video infonnation and timing wavefonns. As 

can be seen from the figure, each video line (corresponding to lines on a video monitor 

or television) takes 64 micro-seconds to update. Standard video frames consist of 625 

lines (in the UK), and therefore the complete video image is updated in 50 

milliseconds. However, since this update rate can be detected by the human eye and 

becomes irritating after a short 

viewing time, (the television or video 

screen 'flickers'), a system of 

'interlacing' is employed to alleviate 

the effect. Rather than transmitting 

. video signals as line 1 through to 625 

consecuti vel y, interlacing operates by 

transmitting odd lines in one screen 

update and even lines in the next. This 

effectively reduces the flicker effect 

and makes television and video 

screens less irritating to watch. 

1 Une of 
Video Image 

/ Information 

~T 
i64uS: / 
" I Une Syndlronisation 

Pulses 

Figure 4.3.1 
Composite Video Signal 

If the full resolution of 625 video lines are not required, the video interlacing need not 

be used. For example if a video processing system has a vertical resolution of 256 

lines, it is unimportant whether odd or even lines are used and therefore complete 

screen updates can take place in 25 milliseconds. 

With reference to figure 4.3.1, each video line signal lasts 64 microseconds. For a 

horizontal resolution of say 256 pixels in a digitised image array, the video line signals 

must be sampled at 250 nanosecond intervals (for real-time operation). As already 
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mentioned this would result in a video memory array being completely updated in 

either 25 or 50 milliseconds depending on whether interlacing was used or not. High 

speed analogue to digital conversion, (with a sampling rate in the order of 8-10 

megahertz) is required to achieve such real time video digitisation. Some video 

digitising systems overcome this need for high speed conversion by taking one sample 

from each video line per screen update. However, for a digiti.sed image resolution of 

256 X 256 pixels, this requires 256 screen updates. A system of this type will therefore 

take 6.4 seconds to completely digitise a video frame. This is an unacceptable 

perfonnance for most robotic systems. 

The monochrome Video Frame Store described here[62] operates in real-time with a 

resolution of 256 X 256 picture elements. Each pixel has a grey level value in the 

range 0-255. Interlacing is not used and therefore complete video images are digitised 

in 25 milliseconds. 

Figure 4.3.2 shows the block diagram of the video frame store. An 8-bit analogue to 

digital converter was used in the system for the following reasons: 

o The obstacle avoidance system is based on a low-cost 8-bit 

embedded microcontroller. Extra hardware and software 

overheads would be necessary for a word length greater than 8 

bits and the operating speed of the system would be reduced. 

o The cost of greater resolution analogue to digital converters that 

operate at speeds fast enough to digitise video signals in 

real-time is high. 

o The limitations of 8-bit grey level and spatial resolution can be 

effectively overcome using digital filters implemented in 

software (see chapter 5). 

With reference to the video frame store block diagram (figure 4.3.2), the 

synchronisation signals are separated from the video information and the resulting 

video signal is amplified and converted into 8 bit digital words. The control section of 
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the frame store writes these digitised samples to the correct addresses in the 64K video 

memory array via the memory access buffers shown in the diagram. (These are 

discussed in section 4.4). 

In the prototype video frame store, a digital to analogue converter and associated 

control circuits are included to enable digitised images to be displayed on a standard 

composite video monitor. The digitised video data written to the memory array is 

constantly reread and converted back to an analogue signal. This signal is scaled and 

clamped to the correct voltage levels and synchronisation waveforms are mixed with it 

to reconstitute a composite video signal. The integrity of the video memory can be 

checked using this facility since a read or write failure will be reflected in the 

reconstituted video display. Also, the results of intermediate stages of video processing 

may be viewed as an aid to development. This section of the video frame store would 

be omitted from the fInished product. 

CCO Camera Composite 
Video Monitor 

Control 

Embedded 
~:.-=--:...:....=....:=-=--, .. 

Computer 

Figure 4.3.2 
Video Frame Store and 
Memory Access Buffers 
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4.4 Introduction to the Intel MCS-51 Series 
Microcontroller 

The MCS-51 senes Intel microcontrollers consist of a family of 8 bit single-chip 

computers which are ideal for embedded applications. Figure 4.4.1 shows the block 

diagram of the original member of the family, the 8051. The main features of this 

integrated circuit are: 

o 8 bit Central Processing Unit optimised for control applications. 

o Boolean processing (ie. single bit) capabilities. 

o 32 bidirectional and individually addressable I/O lines. 

o 128 bytes of on-chip data RAM. 

o Two fully programmable 16 bit timer / counters. 

o Full duplex Universal Asynchronous Receiver Transmitter. 

o 5 source interrupt structure with 2 priority levels. 

External 
Interrupts 

4K bytes 
ROM 

r-------- ------- I 
: 64K bytes : 
i External 
I 

: Program 
i Memory 
I 

: Address 
I 

: Space I 

I ______ ---------~ 

Figure 4.4.1 

Timer 1 

Timer 0 

~--------------i 

! 64K bytes : 
External i 

Data 1 

: Memory 1 

: Address : 
I 

: Space I 
I I l ______________ _ 

Intel 8051 Block Diagram 
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o On chip clock oscillator. 

o 4K bytes on-chip program memory (one time only programmable 
ROM). 

o 64K bytes program memory address space. 

D 64K bytes data memory address space. 

The second member of the family is the Intel 8031. This chip has all the features of the 

8051 except for the 4K bytes on-chip ROM. Instead, the 8031 fetches all instructions 

from external program memory. 

Other members of the family include 80CXX CMOS versions of the chip featuring low 

power consumption and 83CXX versions which incorporate facilities including a 

watch-dog timer and power down mode of operation. 

In this work a single 8031 microcontroller is used for both obstacle detection and 

obstacle avoidance control. Figure 4.4.2.a shows the block diagram of the embedded 

computer system incorporating the Intel 8031 and associated interface circuitry and 

figure 4.4.2.b shows the data-memory map of the 8031 along with its allocation in this 

system. An Intel 8255 Peripheral Interface Adapter (PIA) is used for interfacing with 

the AGV main drive motor controllers discussed in later chapters. The Intel 8031 

directly addresses the video image memory array directly in a shared access 

arrangement. 

Shared access is achieved by incorporating memory access buffers in the circuits that 

enable the 8031 microcontroller to access the video data memory at high speed. No 

modification to the video frame store circuits is necessary since the memory access 

buffer circuit replaces the video RAM chips and uses the same connections. 

If a single block of 64 Kbytes memory was used for the video frame store, the entire 

addressing range of the Intel 8031 would be occupied. This would not leave address 
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Figure 4.4.2 

space for other devices such as the 8255 PIA and other possible system expansions. 

Furthennore, the speed constraints on the system are critical since digitising a video 

line into 256 pixels in real-time requires a write operation to the video memory 

approximately every 256 nanoseconds. These problems are overcome by using two 

interleaved 32 Kbyte 'pages' of memory rather than a single 64 Kbyte block. The 

organisation of these memory pages leaves 32 Kbytes Intel 8031 address space 

available and also relieves the system timing requirements. The two 32 Kbyte memory 

blocks are configured as shown in figure 4.4.3. 

The two memory pages appear in the lower half of the 8031 data memory address 

map. Access to each 32K block is controlled via an additional control signal derived 

from one of the microcontroller input/output port pins. Each 32K memory is accessed 

once per two video-analogue to digital conversions effectively doubling the required 

write access time to around 500 nanoseconds. 
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The video frame store continually 

updates the video memory array so 

that the latest possible CCD image 

infonnation is always available. 

When the 8031 microcontroller 

requues access to the video 

memory to perform obstacle 

detection processIng, it switches 

the memory access buffers to 

suspend video updating (ie. it 

'freezes' the image) to gain access 

to the memory. 

Full details of the memory access 

a=RAMPAGEA 
" b=RAMPAGEB 

Pidure Elements 

Figure 4.4.3 
Method of Digitising Video Image 

In Two Interleaved Blocks 

buffers and embedded computer circuits are included in appendix 1. 

4.5 The Embedded Computer Development 
System 

Figure 4.5.1 shows the schematic diagram of the embedded computer development 

system. The program development cycle consists of the following stages: 

i) Task evaluation and specification, (ie. what is required of the program and 
how will it be achieved). 

ii) Write program source code in 8051 assembler language mnemonics. The 

source code consists of text files that can be generated using any text editor. 

iii) Assemble source code files to produce 8051 machine code object files. This 

stage converts assembler mnemonics to Intel 8051 machine operation codes. 

iv) Link object files to produce a single contiguous machine code file. Most 

larger assembler programs are developed in a modular fashion. This reduces 
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Development System 

development time smce only the source code file being edited needs 

assembling, (rather than the whole program). Also, small sections of large tasks 

are more manageable and errors more easily isolated. 

v) Transfer machine code file to EPROM Emulator in the embedded system. 

(The code then appears as program memory to the embedded computer). In 

general, the programs used in embedded computer systems can be referred to as 

'fmnware'. This is because they are stored in non-volatile Read Only Memory 

(ROM) chips on the embedded system circuit board. This is in contrast to 

'software' which generally describes computer programs which are loaded into 

volatile memory to be executed. The task of reprogramming and erasing an 
Erasable ROM (EPROM) during development is time consuming and therefore 

an EPROM emulator is used. This is essentially a volatile memory which can 

be quickly loaded with a machine code file, but which appears to the embedded 

computer as ROM firmware. 

vi) Reset embedded system and test software. The software testing stage can be 

particularly difficult in embedded systems, since often none of the debugging 

tools and displays available in higher level programming environments are 

available. The Intel 8031 on-chip Universal Asynchronous Receiver Transmitter 

has therefore been used for serially communicating with an liM PC compatible 

computer. This results in the additional development stage: 

Transfer data and variables via serial communications link to 

liM compatible computer for debugging purposes. Hence the 
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full power of the IBM compatible computer keyboard and 

display can be used to aid software development. 

In some complicated algorithms (for example the obstacle avoidance procedures 

described later) the task of coding software directly into 8051 assembler is extremely 

difficult. In these cases models were first developed in Turbo PASCAL and then 

simplified for conversion to Intel 8051 source code. Again full use was made of the 

fmal stage in the above development cycle to interface the PASCAL and machine code 

software as it evolved. 

The following two chapters describe m detail the algorithms implemented on the 

embedded computer to process digitised video information and to detect obstacles. 
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5 DIGITAL SIGNAL 
PROCESSING 

5.1 Summary 

Coded patterns occur in the CCD 

video image due to the reflection of 

projected light patterns from objects 

on the floor ahead of the AGV. This 

chapter describes the techniques 

used to recover this code 

infonnation from digitised video 

data. 

Figure 5.1.1 shows the block 

diagram for the obstacle detection 

system. With reference to the 

figure, the obstacle detection system 

operates on digitised video data and 

is divided into three sections: 

~ Transversal Recursive 
Video --... Fi Iter f-- Fi Iter >--

Peak 
L......, Detector f--

Pattern r R . I-- Code Positions 

~ .. ec_og.nt.so.-'r 

Feature 
'- Extractor 

L Code Code f-----l Measurement~. Parameters 

Figure 5.1.1 

Obstacle Detection System 

o A preprocessing stage which employs two digital filters that are 

described in section 5.2. 

o Peak detection and feature extraction stages which isolate 

potential code parameters (detailed in section 5.3). 

o Code measurement and recognition stages which are discussed 

fully in chapter 6 

The digital filters described in section 5.2 perform a vital role in maximising the 

operating speed of the obstacle detection system. They are used as a preprocessing 
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stage to 'clean up' the video signal and act as a coarse ' sieve' for the data. So called 

'direct methods' (see section 5.3) are then applied to extract potential code features 

from the preprocessed video data. Finally, valid codes are detected using a 'decision 

theoretic', pattern recognition technique described in chapter 6. 

5.2 Digital Filter Design 

Since the low cost video frame store and associated hardware are relatively limited in 

tenns of resolution and grey level accuracy, the system is subject to a certain amount 

of quantisation error. This manifests itself as wide band noise superimposed on the 

digitised video signal. The digital filters described in this section are designed to 

reduce this effect. 

Figure 5.2.1 shows a video-still together with a typically noisy graphical representation 

of a single horizontal line scanned across the lower image(!). 

Figure 5.2.1 
Grey Level Graph of a Horizontal Strip of the Image 

(1) This raph along with others similar throughout this chapter were d~rived ~y transferring data from the embedded system to the IBM PC 
compati~e computer via a serial communications link and uSing a specially wntten PASCAL program to present the data. 
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Digital filters were chosen in preference to analogue filters in this work since after 

digitising, video data are in a highly suitable fonn for processing using discrete digital 

methods. 

Dedicated digital signal processors were considered for the task of digital filtering. 

Although the operating speed of such devices is high, a comparison between dedicated 

signal processors and microcomputers showed the former to be relatively expensive 

with a low degree of flexibility. On the other hand, Signal processing using 

micro-computers is cost effective, flexible and requires a simple hardware designf631. 

Hence, with the special design considerations described next, the required digital filters 

were implemented in software on the Intel 8031 microcontroller. 

The design of tightly specified fmite impulse response filters for microprocessors is a 

complex task which is exacerbated by the restriction of using assembler language. This 

is due to the need for numerical accuracy. Insufficient accuracy in both the storage of 

numbers and calculations can compound the quantisation errors in the system and in 

some cases render the filters unstable[641. 

The following design work shows that acceptable digital filter characteristics can be 

achieved using exactly specified integer arithmetic. This fact makes such filters simple 

to implement with high execution speeds. 

The fITSt stage of processing uses a non-recursive transversal filter to average eight 

horizontal lines of the image in the "letter box' view described in section 3.4. The 

operation of this filter is shown in figure 5.2.2. A special case of such a filter and one 

which does not require floating point arithmetic is when all the weightings aO ... am are 

equal. This is similar to a moving average filter[641 and is simple to implement in 

assembler language. The one used in this work has the magnitude frequency response 

shown in figure 5.2.3. The result of this filtering operation is a single line array in 

which each element is the average of the corresponding elements from the original 
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horizontal lines. The effect of this 

operation IS to enhance the 

influence of persistent vertical 

patterns in the image array whilst 

reducing the effect of spurious 

noise or ~snow'. The choice of the 

number of lines to average depends 

on both the minimum height of the 

object being detected and the 

required algorithm execution speed. 

Whilst a large number of lines 

results ill greater enhancement of 

vertical patterns, if the object in the 

x(n) 

x(n-1) 

1 x(rHll) 

T T T T 

I 

I ee 
I y(n) 

~------------~+ 

Rgure 5.2.2 
Digital Transversal Riter 

. image is not tall enough to produce persistent vertical patterns, the process will fail. 

Conversely, if too few lines are averaged, the process has a reduced immunity to noise. 

In order to maximise the execution speed of the digital transversal filter, only ~powers 

of two' horizontal lines were considered (ie. 2, 4, 8, 16 etc.). These values enable 

division calculations to be carried out efficiently using machine code arithmetic shift 

Ampli tude 

Frequenclo:! 

Figur e 5.2.3 
Transversal Filter Frequency Response 
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right operations. Experiments showed that eight horizontal lines of the video image 

provides reliable obstacle detection combined with high execution speed. In the 

prototype design, this corresponds to a physical horizontal strip approximately 20mm 

when projected onto an object one metre in front of the camera. 

The resultant array of 256 averaged elements is further processed to remove high 

frequency components in the horizontal direction. This is achieved by using a recursive 

digital filter. 

An effective method of designing digital filters is to model their analogue counterparts 

using the bilinear transfonn method. This is the so called 'frequency transformation' 

method and is described in the following work: 

Consider the fraction F(z) = (z-l)/(z+ 1) where z = e(sT) 

This is 'bilinear' in that both numerator and denominator are linear in the variable z. In 

order to show the value of the bilinear transfonn method for converting analogue 

filters to their digital counterparts, the spectrum of F(z) must be determined as follows: 

. e(jroT)-l e(jroT/2){ e(jroT/2 - e(jroT/2)} 
FOro) - -

e(jroT)+ 1 e(jroT/2){ e(jroT/2 + e(jroT/2)} 

= j tan roT/2 

F(jro) is purely imaginary and varies between 0 and infinity as ro varies between 0 and 

IIIT radians/second. In order to covert the analogue filter of figure 5.2.4 to its digital 

counterpart, all occurrences of the Laplace operator'S' are replaced with F(z): 

H(s) = l/Cs + a) and therefore H'(z) l/[F(z) + a] 

The frequency response of the filters is given by: 

H(jro) = l/(jro + a) 

and H'(jro) = 1/(F(jro) + a) = 1/(j tan roT/2 + a) 
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The magnitude response of the digital 

filter is shown in figure 5.2.5. • 

x 

• 

R 

c 

(5) 

When the required time constant of this 

low pass digital filter is specified, it can 

be converted into a recurrence formula 

as follows: Figure 5.2.4 
C-R Filter 

H'(z) = I/[F(z) + a] = I/[(z-I)/(z+ 1) + a] (where a = lIT) 

therefore Y(z)/X(z) = K (z + l)/(z + A) 

where K = 11(1 + a) and A = (a-I)/(a+ 1) 

so Y(z) (z + A) = X(z) (z+ 1) 

and the recurrence fonnula is: 

K (Yn + AYn-I) = Xn + Xn-I 

therefore Yn = Xn + Xn-1IK + AYn-1 

• 

y 
(5) 

• 

An inspection of this result reveals that whilst the frequency response is of a suitable 

Amplitude 

o 1/16T l / BT 3/16T 1/ 4T 5/ 16T 3/ BT 7/ 16T 1/ 2T 

Figure 5.2.5 
Frequency Response of a Filter Derived 

Using Bilinear Transform Method 
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shape, in general the filter coefficients 'A' and 'K' will require an accuracy of around 

four decimal places to give a satisfactory perfonnance[60J. 

A more direct approach can be taken when digitising analogue filters which results in a 

slightly degraded, but nevertheless acceptable, frequency response and which has the 

major advantage that the filter coefficients can be expressed precisely as integers. 

Considering again the analogue filter of figure 5.2.4 

Y(s)/X(s) = 1/(1 +SCR) = 1/(1 +Sr) since r = CR 

Writing this in the fonn of a difference equation (assuming a fITSt order approximation 

for S): 

Yen) + rjT(Y(n)-Y(n-1) = X(n) 

Yen) =[X(n) + Yen-I) rjT] /[1 +r{f] 

where T = sampling period 

r = Time constant 

For integer implementation with a time constant of 3T, the difference equation is: 

Yen) =[X(n) + 3Y(n-l)]/4 (assuming T to be Wlity) 

Amplitude 

o 1/16T 1/8T 3/16T 1/4T 5/16T 3/ST 7/16T 1/2T 

Figure 5.2.6 . 
Simply Derived Digital Version of a C-R Analogue ~llter 

'he 'Noise' on the Response is caused by Rounding 
Errors in the Integer Calculations 
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For this time constant, the filter coefficients are shown to be exactly 3 in the nmnerator 

and 4 in the denominator. The magnitude frequency response of this filter is shown in 

figure 5.2.6. A comparison between figure 5.2.5 the filter characteristic derived through 

applying well known bilinear transform methods, and figure 5.2.6 using the simpler 

approach reveals that the latter's frequency response is only slightly degraded, but that 

the filter is much simpler and faster to implement. Furthermore, if a time constant is 

chosen which results in the denominator of the recurrence equation being a power of 

two, the algorithm can be efficiently encoded using arithmetic 'shift-rights' to perform 

the division calculation quickly. 

Whilst the low pass filtering stages are essential for removing high frequency noise 

from the digitised image array to simplify later processing, care has to be taken not to 

filter out important information. The nature of the code pattern being sought from the 

arraY,(ideally high contrast light and dark bars) means that it has high frequency 

components in the abrupt changes between light and dark. If the cut off frequency of 

the low pass filter is excessively low, vital information may be lost. A compromise is 

therefore found by selecting a filter time constant to give the frequency response 

shown in figure 5.2.6. The fmal result of the filtering stages on the array from figure 

5.2.1 is shown as the grey level graph in figure 5.2.7. 

The recursive filtering stage affects the range of bar codes which can be used as 

projection masks due to the cut off frequency characteristics described in the previous 

paragraph. If the code period is short (ie. its frequency is high), true video data will be 

attenuated along with the quantisation noise which the low-pass filter is designed to 

remove. Conversely, when the code period is long, the 'thinnest' detectable object is 

limited. A compromise is reached in the prototype design with a code period of 16 

'horizontal pixels', resulting in a thinnest detectable object of approximately 5Omm. 
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Figure 5.2.7 
Video Data After Recursive Filtering 

5.3 Direct Methods for Code Feature Extraction 

Direct methods (as opposed to frequency domain methods) are widely used in pattern 

recognition, particularly in the fields of speech recognition, image analysis and medical 

science[65] . 

Frequency domain methods include Fourier analysis and matched filtering techniques 

that isolate frequency components of signals in order to match certain characteristic 

patterns. There are two main reasons why these methods are not adopted in this work: 

o Frequency domain algorithms such as the Fast Fourier Transform 

generally require complex floating point arithmetic which is 

complicated to implement using assembler language. 

o As already discussed in section 5.2, the video image of the 

binary code may be contaminated with noise of a similar 

frequency. It is not always possible to isolate useful information 

from the digitised signal using frequency domain methods alone. 

Direct methods operate on the time series of signals directly rather than transfonning 

them into the frequency domain. Two principle techniques of pattern recognition using 

direct methods are: 
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o The decision theoretic approach based on using numerically 

valued features for distinguishing a pattern class from all others. 

o Syntactic and structured methods which use the models and 

techniques of fonnal language theory to analyse explicit or 
implicit characteristics of sub-patterns which form larger 
patterns(66). 

Syntactic and structured methods are suited to recognising 'families' of patterns in 

applications such as electro-cardiogram analysis and speech recognition. However, in 

this application, the decision theoretic approach is most suitable since only one pattern 

must be recognised. Features are extracted from the filtered data (figure 5.2.7) and 

transformed into 'feature space' where they are tested against predetennined code 

parameters. Positive test results indicate the presence of an obstacle to be avoided. 

Care must be taken in selecting the parameters which identify codes. In the digitised 

video signal the absolute magnitude of the signal cannot be used because this varies 

widely depending on the nature of the object reflecting the light pattern and the 

ambient lighting conditions. However, code patterns which appear in the image always 

have the same shape which is illustrated in figure 5.3.1. This general shape is obtained 

from the reflected light codes regardless of the absolute video signal magnitude. With 

reference to figure 5.3.1, the features which do not depend on the magnitude of the 

signal are the presence of maxima and minima of grey levels associated with the code 

and the spatial relationship between them (in this case the horizontal distance between 

them 'nT'). Figure 5.3.2 highlights these relationships. 

The value of the digital filtering stages that act as a coarse 'sieve' for the video data 

can now clearly be appreciated. The signal has been effectively 'cleaned up' by the 

filters, reducing the nwnber of maxima and minima that need to be detected and 

processed (compare figure 5.2.7 with figure 5.2.1). 

The algorithm used to detect maxima and minima operates on groups of samples in the 
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Figure 5.3.1 
Typical Filtered Code Pattern Shape 

digitised array to isolate local peaks and troughs. This operation may be viewed as a 

direct method of high pass filtering since it has the powerful effect of removing steady 

state signal levels (analogous to DC offset) leaving only the differentials. With 

reference to figure 5.3.3., the 'peak' detector algorithm works as follows: 

For i = 2 to 253 

if x[i] < x[i-2] and x[i] < x[i+2] then maxmin[i] = minima 

else if x[i] > x[i-2] and x[i] > x[l +2] then maxmin[i] = maxima 

else maxmin[i] = 0 

nexti 

, 

T1 T2: T3 

Figure 5.3.2 
Relationship Between Code Features 
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The resultant array, 

maxmin[i] consists of 

markers indicating 

maXima, minima or 

neither with the index i 

corresponding to the 

spatial position of the 

turning points in the 

Figure 5.3.3 
Turning Point Detector AlgOrithm 

filtered data array x. Figure 5.3.4 shows this in graphical fonn, the filtered array is 

shown on the upper graph, with the corresponding position of maxima and minima 

shown beneath it. 

The remaining task of isolating and recognising valid codes is described in chapter 6. 

This task involves transforming the maxima-minima array into feature space, and 

testing it for membership of a predetermined pattern class. 

A~~er Recursive Fil~er 

2 

1 

Figure 5.3.4 
Video Data (Upper Graph) and Results from Peak Extraction 

Algorithm (Lower Graph) 
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6 REFLECTED LIGHT CODE 
RECOGNITION 

6.1 Summary 

This chapter describes the final processes that fonn the obstacle detection system. With 

reference to the block diagram in figure 5.1.1 these are the code measurement and 

pattern recognition stages. 

A key factor contributing to the design presented in this research, is the ease with 

which the obstacle detection system can be configured. This has been achieved by the 

design of an automatic code measurement procedure (described in section 6.2) which 

alleviates the need for precise camera and projector positioning. 

Section 6.3 describes the code recognition algorithm. This is based on the so called 

'decision theoretic' approach of numerically quantifying pattern features and checking 

them against a predetermined template. Extra security is built into the system by 

incorporating a majority polling scheme to increase the surety of valid light code 

detection and reduce the sensitivity of the system to quickly moving obstacles. 

6.2 Code Calibration Method 

When a coded pattern is projected onto the floor ahead of the automated guided 

vehicle, the dimensions of the code detected by the CCD camera depend on the 

following criteria: 

o The physical dimensions of the projection mask. 

o The height and angle of the projector (and the lens system used). 

o The relationship between the camera and projector. 
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o The camera lens system. 

These criteria directly affect the code features T1, T2 and T3 in figure 5.3.2. The task 

of calculating these features based on the geometry of the system is difficult since it 

requires precise knowledge of the position of the projector and camera. One of the 

chief design features of this work is that the system is simple to configure. This is 

made possible by implementing a self calibration procedure in the obstacle detection 

software which enables the system to determine the code parameters automatically. 

This feature has also simplified experimentation with different code masks. 

To operate the code learning procedure, the embedded computer system must be 

connected to a serial communications terminal or personal computer running a 

communications tenninal emulator. A Turbo PASCAL program has been specifically 

developed for this task (see appendix 2). By default, the embedded computer uses a 

communications protocol of 4800 baud, 8 data bits, no parity, 1 stop bit. When the 

embedded system is reset, a message is transmitted to the terminal offering the code 

learning procedure as an option should it be required. If "Q' is transmitted back to the 

embedded computer (by typing 'Q' at the tenninal), the obstacle avoidance system is 

initiated using default code parameters programmed in EPROM. However, if any other 

key is pressed at the terminal, the embedded computer prompts the system installer to 

position a test board in front of the camera and press "C' to continue. 

For the system to measure the code parameters, the plain board placed in front of the 

camera must fill the horizontal field of view as shown in figure 6.2.1. The algorithm 

operates by measuring all the visible code parameters and recording their maximum 

and minimum values denoted by: Tlmax, Tlmin; T2max, T2min and T3max, T3min. 

The use of maximum and minimum values of the code features builds tolerance to 

slight spatial distortions at the periphery of the camera field of view and also allows 

for variations in obstacle surface inclination. 
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The immunity of the 

measurement procedure to 

spurious readings is increased 

by averaging eight complete 

measurement cycles resulting in 

aggregate values of the 

maximum and minimum values 

of Tl, T2 and T3. Eight 

measurement cycles are 

averaged for the practical 

reasons outlined in section 5.2. 

The procedure of averaging 

eight numerical values can be 

easily and efficiently 

Figure 6.2.1 

COOe CaJibration 
Board 

Code Calibration Board 
Must Fill Camera Field of View 

implemented within the constraints of integer arithmetic using simple addition and 

three binary shift-right operations. Figure 6.2.2 shows the flow chart of the automatic 

code calibration algorithm. A video screen is captured, filtered and processed as 

described in chapter 5. The resultant array of maxima and minima (maxmin introduced 

in section 5.3) is searched for groups of four points in the sequence: maxima1, minim~, 

maxima3, minima4, (see figure 6.2.3). Tl, T2 and T3 are calculated from: 

T 1 = minim~ - maxima1 

T2 = maxima3 - minim~ 

T3 = minima4 - maxima3 

From these values, the features (Tlmin, Tlmax), (T2min, T2max) and (T3min, T3max) 

are updated. When eight passes have been made, the results are averaged to detennine 

[mal minimum and maximum values. These values are used to form the feature 

template described in the next section. The calibration procedure is flexible in that the 

test board can be any surface which is wide enough to fill the camera field of view. 
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The identified code parameters are 

then transmitted to the serial 

communications terminal and 

displayed. These can be programmed 

into the embedded system EPROM 

to complete the installation. 

The next section describes the 

procedure designed to detect code 

patterns and provide control signals 

to the obstacle avoidance control 

software. 

. 6.3 Light Code 
Recognition 

A decision theoretic approach has 

been adopted for recognising codes 

in the projected light pattern. This 

technique involves identifying key 

features of the pattern as described in 

chapter 5, transfonning them into 

'feature space' and testing them 

against the template derived in the 

last section. If a valid code is 

U pd ate 
Pointer 

I 
( Start ) 
~~ f 
For I - 1 to 8 

Capture video image 

Do digital filtering 
and . derive array of 

maxima and minima 

set pointer to start of 
maxima/minima array 

Calculate 11 ,T2,T3 

Update T1min,T1max 
T2min ,T2max and 

T3min,T3max 

NO end of 

i = 8? 

Divide features 
T1 mx/mn-T3mx/mn by 8 

End 

Figure 6.2.2 

Flow Chart for Automatic 

Code Calibration Algorithm 

detected, it is due to an obstacle entering the light code projection area in front of the 

AGV. The distortion of the light pattern is detected by the camera and obstacle 

detection software, and the system consequently responds by initiating the obstacle 
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I 

T1 12 

Milina 2 Mi1ina
4 

Figure 6.2.3 

Calculation of T1, T2 and T3 

avoidance manoeuvre (discussed 

in chapter 8). 

The six features: T1max, T1min, 

T2max, T2min and T3max, T3min 

are used in the template. These 

may be mapped in a three 

dimensional representation 

(,feature space') as illustrated in 

figure 6 . 3.1 . The code 

identification algorithm measures 

the parameters T1, T2 and T3 in figure 5.3.2 and tests them against the feature space 

template of figure 6.3.1. A code is only accepted as being valid if the measured Tl , T2 

and T3 result in a point in feature space lying inside the valid code region. This is 

T1 min T2min T3min 
T1max T2maxT3max 

Code Pattern 

Transfoonation 

Tl 

Figure 6.3.1 
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tested by considering T 1, T2 and T3 

on their corresponding axes In 

feature space. When a code IS 

detected, its spatial position in front 

of the A GV is derived from the 

position of the measured parameters 

in the maxima and minima array 

(maxmin described in section 5.3). 

A majority polling scheme has been 

designed to add further security to 

the code detection system and to 

reduce its sensitivity to non­

persistent obstacles such as people 

crossIng the AGV path. If a 

potentially valid code is detected, 

the obstacle avoidance system takes 

control of the AGV drives and 

brings the vehicle to a halt. The 

system takes two more video 

Images, extracts the features, and 

compares the three results. If at 

least two of the three results agree 

then either obstacle avoidance is 

initiated or the AGV is allowed to 

proceed, (depending on the outcome 

of the poll). 

With reference to the flow chart of 
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the complete obstacle detection algorithm in figure 6.3.2, video frames are captured 

and processed as described in chapter 5. The resultant array representing maxima and 

minima is processed and groups of values representing T 1, T2 and T3 are calculated. 

These values are then tested against the feature template as shown in figure 6.3.1, and 

appropriate motion control action is taken. Full software listings for all the obstacle 

detection and associated programs can be seen in appendix 3. 

In the next two chapters the practical implementation of the obstacle detection system 

on an experimental mobile platform and the design and development of the obstacle 

avoidance algorithms are described. 
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7 EXPERIMENTAL VEHICLE 
DESIGN 

7.1 Summary 

The next two chapters are devoted to the development of the obstacle avoidance 

strategy and the practical aspects of evaluating the obstacle avoidance system. In 

preparation for these topics, this chapter describes the experimental vehicle on which 

the system is mounted. 

Two alternative AGV designs are discussed in section 7.2 with particular reference to 

their manoeuvrability and control. The design chosen for the experimental vehicle is 

based on a differential drive arrangemen.t where steering is achieved by controlling the 

relative velocity of two drive wheels. 

An overview of the physical design of the experimental vehicle is given in section 7.3. 

The completed vehicle is illustrated with the aid of photographs which clearly show 

how the camera and projector are mounted. 

Dedicated single-chip microcontrollers are used to control the experimental vehicle 

drives. These are described in the fmal section of this chapter with reference to the 

interface with the Intel 8031 embedded controller (introduced in chapter 4). The 

various outputs and control modes available on the motor controllers are discussed 

together with the method used to select suitable digital control parameters. 

7.2 Review of AGV Drive Configurations 

Automated Guided Vehicles fall into two basic design categories, classified by the 
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method used to drive and steer them. The fIrst type is a three wheeled arrangement as 

shown in figure 7.2.1. In this design, the single front wheel serves as a combined 

steering and drive wheel whilst the other two rear wheels idle. The three wheeled 

arrangement is well suited to 'flat back' pallet transporters because the combined drive 

and steering head can take the fonn of a compact unit at the front of the vehicle. This 

leaves a large rear area available for a low-profile pallet fork lift. However, a 

disadvantage of the design is that it can be difficult to control. This arises in 

bidirectional systems because the steering geometry is different depending on whether 

the AGV is travelling forwards or 

backwards. 

The other major AGV design uses 

two drive wheels situated centrally 

under the vehicle as shown in figure 

7.2.2. Stability is achieved by using 

idling casters to support the front 

and rear of the vehicle and steering 

is achieved by varying the relative 

velocity of the two drive wheels. 

This technique is called differential 

steering and has advantages over the 

three wheeled design in certain 

operating conditions. The main 

advantage is that control of the 

vehicle is simplified by the fact that 

the steering geometry is the same for 

both directions of travel. Also, by 

driving each wheel at the same 

speed but in opposite directions, this 

Combined Drive \ 
and Steering Wheel 

E.; .;) . 

IdlingWhe~ 
Chassis 

Figure 7.2.1 
Three Wheel AGV Design 

Drive Wheels / casterk 
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type of vehicle can literally 'turn on the spot' in its own length (this is impossible with 

the three wheeled design). 

The experimental vehicle uses a differential steering arrangement because the ability to 

turn in a small area is essential for a laboratory environment where space is at a 

premnun. 

7.3 Overview of the Experimental Vehicle 
Design 

The physical design of the experimental vehicle is based on work carried out by 

Korean researchers[67]. They investigated the optimal steering control of an automated 

vehicle with two motorised drive wheels and developed optimum relationships between 

various dimensions. These include the radius of the drive wheels and their separation. 

Due to the space limitations of the laboratory environment, the experimental vehicle is 

smaller than commercial AGV s with overall measurements of approximately 1 metre 

long by 0.5 metre wide. The chassis is constructed from lightened angle-iron 

(,Dexion'). The vehicle is 

equipped with a cantilever 

suspenSIon sy stem as 

illustrated in figure 7.3.1 to 

assist in damping vibrations 

transmitted through the 

drives. The 90 amp-hour 

battery is mounted in a tray 

towards the front of the 

vehicle whilst the motor drive 

electronics are mounted on an 

kots 
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aluminium heat sink which fits over the rear of the chassis. An emergency stop switch 

and ammeter are also mounted on the rear of the vehicle. A thermal circuit-breaker is 

connected directly in the motor power supply circuit to prevent damage to the 

electrical gear in the event of an overload. 

A special mounting post has been fitted to the prototype vehicle to carry the coded 

light pattern projector and CCD camera. Additional 'crash bars' are included to prevent 

accidental damage to the latter. The photographs of figure 7.3.2 illustrate the 

completed vehicle. 

The relationship between the light pattern projector and the CCD camera can be seen 

from the photographs. The projector is mounted approximately 1 metre above the floor 

at an angle of approximately 45 degrees and the camera is in the protected position 

approximately 70mm from the floor. Figure 7.3.3 shows a more detailed view of the 

camera mounting. The physical relationship between these two items is not critical 

since the automatic calibration procedure (described in chapter 5), measures the code 

features of the light pattern after the camera and projector are fixed. 

7.4 HCTL - 1100 Microprocessor-Based Motor 
Controllers 

Figure 7.4.1 shows the schematic diagram of the experimental vehicle drives. Two 350 

watt DC motors are mounted parallel to the longitudinal axis of the vehicle coupled to 

'backlashless' 5: 1 worm reduction gear boxes. The drive wheels are mounted directly 

on the gear box output shafts and are fitted with hard rubber tyres for good grip on the 

floor. The worm drive shafts are coupled to 500 pulse/rev optical encoders. These have 

quadrature outputs to allow the direction of rotation to be sensed. Figure 7 A.2 shows 

the block diagram of one motor drive. 

The controller section of the system IS realised usmg Hewlett-Packard tYlk' 
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Figure 7.3.2 
Experimental Vehicle 
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Figure 7.3.3 

Camera Mounting Detail 

HCTL-IIOO general-purpose motion control integrated circuits. These are single-chip 

microcontrollers that incorporate fmnware to perform common control functions 

required by many drive control systems. Feedback to the controllers is taken directly 

from the optical encoders mounted on the gear box shafts. Figure 7.4.3 shows the 

functional block diagram of the HCTL-IIOO motor controller and the following 

sections discuss its various modes of operation. Full details of the specifications and 

circuit design can be seen in appendix 4. 

7.4.1 Interface with Intel 8031 Embedded Microcontroller 

The 8255 Peripheral Interface Adapter (PIA) included in the Intel 8031 embedded 

controller circuit was discussed in chapter 4. This provides 24 bidirectional 

input-output lines that are used to interface with the HCTL-IIOO motor cantrall r . 
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The basic operation of the interface 

is that variables and constants are 

written to the motor controllers in 

Gear Boxes 

/ 

/ 

Couplings \ 

DC Motors 

I 
/ 

) 

RubberTyre 

an initialisation phase which 

establishes the mode of operation. 

This includes the mode of control 

to be used, digital filter constants 

and the sampling interval. After 

initialisation, the Intel 8031 

controls the motors by writing 

demand values to the HCTL-1100 

Optical Encoders 

Figure 7.4.1 
Experimental Vehicle Drives 

motor controllers. Full closed-loop 

control is carried out by the HCTL-

1100s independently of the Intel 8031 which can be devoted to the task of detecting 

obstacles. Data is transferred between the Intel 8031 and the HCTL-ll00s in parallel 

via the 8255 PIA. Communication is asynchronous to alleviate the need for accurate 

timing requirements which simplifies the interface. The Hewlett-Packard motor 

controllers appear as banks of registers to the Intel 8031. Each register has a particular 

function and may be write-only, read-only or bidirectional. A suite of assembler 

i HCTL - 1100 I 
I Digital Controller I 
: : Sign : e---.r : H-Bridge . l-. + Controller : ....... DC Motor r-> Coupllng r-~ Gear BOX f 
: - ,Pulse AMP , , , , , , , , 
I , 

L I 
,--

Optical - - - ------
Encode r 

Figure 7.4.2 
Experimental Vehicle Drive Block Diagram 
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routines have been developed to operate the interface between the Intel 8031 and 

HCfL-ll00s, full descriptions and listings of which can be seen in appendix 5. 

Overviews of the types of output and control modes available using the HCfL-1100 

follow. 

7.4.2 Types of Output 

The HCTL-l100 motor controllers are designed for general use and therefore are 

supplied with a variety of outputs for interfacing with motor control systems. These 

are: 

o 8-bit digital output for driving digital to analogue converters. 

This output can be configured in an unsigned (unipolar) format 

or a two' s complement (bipolar) format. 
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o Pulse Width Modulated (PWM) sign and pulse outputs. These 

allow connection to H-Bridge amplifiers (see figure 7.4.2.1). The 

'sign' output is used to reverse the polarity of the motor current 
and thus reverse the direction of motor rotation. 

The experimental vehicle 

drive control systems use the 

PWM outputs to drive H­

Bridge amplifiers. When the 

direction of rotation of the 

motors is reversed, it is 

possible for all the 

transistors in the H -Bridge 

amplifier to be switched on 

at the same time (refer to 

figure 7.4.2.1). This may 

result in a short circuit 

across the power supply 

which could damage the 

circuit. The HCTL-1100s 

Vex; 
,~, . 

Pulse I I ~I_---+-i ________ --+--__ 
Sign~.1 i 

\~~I----------~ 
) 

Figure 7.4.2.1 
H-Bridge Amplifier 

can be configured to prevent this by missing a pulse at the time when the sign output 

changes state. This ensures that all the transistors are turned off at the instant of 

transition. Figure 7.4.2.2 shows the timing diagram illustrating this feature. 

7.4.3 Types of Control 

The HCTL-1100 motor controllers are pre-programmed to perform a range of control 

functions. In all cases some part of the digital filter equation shown below is used in 

the control loop. 

DCZ) = K(Z-A/256)/(Z+B/256) 
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Where: 

K = Digital filter gain 

A = Digital filter zero 

B = Digital filter pole 

This filter is preprogrammed in fmnware on the HCfL-l100 motor control chips and 

is used to provide the following modes of operation: 

Proportional Velocity Control. The HCTL-l100 uses the following digital 

control algorithm to achieve proportional control of the motor speeds: 

MCn = (K/4)Yn 

where: 

MCn = Motor command output at time n 

Yn = (Command velocity - Actual velocity) at time n 

When this control option is initialised, the demand speed is supplied to the 

relevant HCTL-I100 

registers (see appendix 4) 

in the form of a 16-bit 

two's complement number. 

The HCTL-l100 interprets 

v 

this as 12-bits integer and S91 -------

4-bits fraction, with 

positive two's complement 

numbers resulting In 

rotation in one direction 

and negative two's 

complement numbers 

rotation in the opposite 

direction. The value 

written to the motor 

Inhbited Pulse 

I 
I 

-------------------------------t 

Figure 7.4.2.2 

PWM Motor Controller Output Signals 
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controller physically corresponds to feedback encoder quadrature counts/sample 

time. Feedback encoder quadrature counts are derived from incremental pulse 

encoders mounted on the drive gearbox shafts. Each encoder produces two 

square wave signals with frequency in proportion to the rotational speed of the 

shaft. The two signals are 90 degrees out of phase with each other (one 

quadrant) which allows the direction of rotation to be established by detecting 

the 'leading' signal. 

The sampling time of the HCTL-l100 motor controller is derived from the 

master clock frequency and a divisor stored in the sample timer register (see 

reference 72). In the prototype design the master clock frequency is 2 MHz and 

the value written to the sample timer register is OF (hex). This results in a 

sampling interval of 128 microseconds which is sufficiently high to have little 

effect on the stability of the motor drive systems. 

Integral Velocity Control. In this mode the HCTL-l100 performs continuous 

velocity profiling. Velocity is specified as an 8-bit two's complement number 

and acceleration by a 16-bit value. The acceleration value is interpreted as a 

scalar with 8-bits integer and 8-bits fraction (for accuracy). The units of 

velocity and acceleration are expressed in encoder quadrature counts/sample 

time and quadrature counts/(sample time)2 respectively. Whilst this mode of 

control allows acceleration to be specified and therefore reduces the effects of 

manufacturing tolerances, it is not ideal for this work because it does not allow 

moves to be defmed in tenus of position. 

Proportional + Integral Trapezoidal Profiling. For this control mode the 

HCfL-ll00 uses the same algorithm as position control, but deviates from it in 

that the acceleration, maximum velocity and final positions are supplied to the 

motor controllers. This mode executes 'trapezoidal' motion profiling as 

illustrated in figure 7.4.3.1. Acceleration is supplied as a two byte scalar 

representing encoder quadrature counts/(sample time)2 and velocity is expressed 

as a single byte scalar corresponding to quadrature counts/sample time. As 

before, position is given as a three byte two's complement number in units of 
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HCTl-1100 
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encoder quadrature counts. The HCTL-ll00 detennines which direction of 

rotation is required by the value of the two's complement demand position 

relative to the actual position. 

This latter form of control is employed in the obstacle avoidance system. It enables full 

control of the acceleration, deceleration and velocity of the mobile vehicle during 

point -to-point position moves. Hence the effects of physical differences between the 

motor drives are overcome allowing precise motion control. 

7.4.4 HCTL-11 00 Digital Motor Controller Tuning 

In the experimental vehicle system, excessive overshoot in position moves is generally 

undesirable since it is potentially dangerous. The digital filter constants: K, A and B 

(identified at the beginning of section 7.4.3) have been set to critically damp the drive 

control system. 

To a large extent, these constants have been determined by 4trial and error'. Whilst the 

DC motor dynamic responses are relatively simple to establish, the complete system 
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including quadrature encoders and digital controller is somewhat difficult to model. 

Furthermore, flexibility of the motor-gear box couplings and inevitable backlash in the 

gear boxes introduces a certain degree of system non-linearity. The developed software 

enables point-to-point move performance tests to be carried out on the experimental 

vehicle. The software allows the digital filter constants to be changed quickly via the 

IBM compatible computer-keyboard and serial communications link with the Intel 

8031 embedded microcontroller. During tests, the parameters were systematically 

varied and the dynamic performance of the system was carefully monitored. The final 

control parameters resulted in an almost critically damped drive system performance. 

The complete time-domain digital control algorithm applied by the HCfL-ll00 motor 

controllers is therefore: 

MCn = Xn - (O.25X(n-l) + 0.894 MC(n-l)) 

These empirically derived constants have been used throughout the obstacle avoidance 

development work described in the next chapter and have proved to give reliable 

system performance. 
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8 DEVELOPMENT OF THE 
OBSTACLE AVOIDANCE 

STRATEGY 

8.1 Summary 

The procedures that enable the experimental automated vehicle to avoid obstacles are 

described in this chapter. Section 8.2 describes the design of algorithms for steering 

and advancing the automated vehicle and explains the method used to measure the 

distance the vehicle deviates from its original path. This work contrasts with that 

carried out by other researchers in that the automatic vehicle guide path is treated as a 

vector rather an orthogonally specified 'map'. Subsections of 8.2 describe how the 

motion of the vehicle has been reduced to basic 'tum' and 'advance' manoeuvres upon 

which all higher levels of obstacle avoidance are based. 

A computer simulation of the obstacle avoidance algorithms has been developed in 

Pascal and is discussed in section 8.3. This program models the response of the 

automated vehicle to unexpected obstructions in the guide path. The program uses high 

resolution colour graphics to simulate the vehicle, a roadway and any number of 

obstacles. The latter are positioned interactively using the computer keyboard and a 

graphic cursor. 

The model has been converted to Intel 8051 assembler language for testing on the 

experimental vehicle. Section 8.4 highlights the differences between the computer 

simulation and its real implementation. 
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8.2 Obstacle Avoidance Algorithms 

In general, automated vehicles that follow fixed paths are not equipped with sensors to 

determine their absolute position within a 'world' coordinate system[681. They simply 

follow the path and, if they deviate from it, at best can recognise the fact and halt. 

Many obstacle avoidance researchers deal with this problem by specifying the 

automated vehicle environment in the form of a map, complete with boundaries 

indicating • go' and 'no go' regions[69,70,71). On-board electronics keep track of the 

vehicle position in the form of orthogonal coordinates detennined from sensory data. 

Thus, if an obstacle is detected and the automated vehicle deviates from the guide path 

to avoid it, information is available to enable it to return to the path after the 

manoeuvre. However, the tasks of specifying and maintaining a 'map' of the AGV 

operating environment are critical. They require accurate measurement and constant 

re-evaluation in the face of environmental change. Furthermore, systems which use 

dead-reckoning sensors to obtain positional information over a large area are normally 

subject to unacceptable cumulative errors. 

In this research, a method has been devised for AGV control which avoids the 

labour-intensive and expensive task of detailing a factory in terms of two-dimensional 

coordinates. A local map is developed when an unexpected obstacle is detected. This is 

based on the following rules: 

o The section of the guide-path upon which the AGV is travelling 

when the obstacle is detected remains straight for the duration of 

the obstacle avoidance manoeuvre. 

o If an obstacle completely fills the CCD camera field of view, the 

decision of which direction to take is based on a priori 
information about the AGV guide path layout. For example, if 

the guide path is towards the left hand side of aisles then most 

space for avoiding the obstacle is likely to be available to the 

right. This would therefore be the most likely direction to result 

in successful avoidance. 
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o The maximum distance that the automated vehicle is allowed to 

deviate from the guide path during an obstacle avoidance 

manoeuvre is governed by the overall width of the aisles (see 
section 8.2.3). 

When the obstacle detection system senses an obstruction in the vehicle path, two 

variables representing the current deviation from the path and the current heading are 

set to zero. As the vehicle leaves the path to avoid the obstacle, its relative deviation 

and heading are referred to this 

initial 'zero vector'. The 

deviation and heading are 

denoted by 'y' and 'theta' 

respectively in figure 8.2.1. The 

vehicle rejoins the original guide 

path when the deviation and 

heading return to their initial 

zero values. The equation for the 

deviation y is: y = r sin(theta) 

where r is the distance travelled 

on a particular heading theta (see 

figure 8.2.1). 

Figure 8.2.1 

Zero Heading Angle 
Zero Deviation from Pa 

Automated Vehicle Heading and Deviation 

The motion of the automated vehicle is simplified to a pair of 'primary' movements as 

follows: 

o TURN(DIR): Turn the automated vehicle 5 degrees in the 

direction 'DIR'. Five degrees is chosen as the smallest increment 

of angular motion because it allows fast trigonometrical 

evaluation using a short look-up table. 'DIR' is a Boolean 

variable with TRUE representing an angular increment of -5 

degrees (a clockwise tum), and FALSE +5 degrees (an 

anti-clockwise tum). 
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o ADV ANCE: This primary manoeuvre advances the automated 

vehicle in a forward direction. The actual distance that one 

'advance' moves the vehicle is set to 50 tnm. This represents the 

increment that the automated vehicle travels in the forward 

direction before rechecking for obstacles (see section 8.2.2). 

In general, a complete obstacle avoidance sequence is constructed from several 

primary TURNs and ADVANCEs, and may involve the avoidance of more than one 

obstacle. A running total of aggregate headings and deviations is maintained to enable 

the system to recover the vehicle to the guide path after circumnavigating the 

obstruction. The following pseudo-code operations explain how this is achieved: 

NEW _HEADING = OLD _HEADING + (5 degrees * DIRECfION) 

where: 

DIRECfION = -1 for an anti-clockwise turn 

DIRECTION = + 1 for a clockwise turn } 

NEW_DEVIATION = OLD_DEVIATION + 

(ADV ANCE_INCREMENT * sin(NEW _HEADING)) 

The complete obstacle avoidance procedure is broken down into subroutines. These are 

described in the following sub-sections under titles assigned in the actual software 

source code (see appendices 3 and 6): 

8.2.1 'LeftOrRight' Subroutine 

This subroutine detennines which direction to turn to avoid an obstacle. The detection 

system provides infonnation for obstacle avoidance in the fonn of the three Boolean 

variables: OBSTFROMLEFf, OBSTFROMCENTRE, and OBSTFROMRIGHT. These 

variables indicate whether an obstacle is emerging from the left, centre or right of the 

CCD camera field of view and are detennined by dividing the video image into three 

equal regions. The obstacle detection software ascertains where obstacles lie in relation 
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to the AGV by establishing which regton the detected light codes appear. The 

LeftOrRight subroutine uses the three Boolean variables to detennine whether to tum 

to the left or right to avoid the obstacle. If the obstacle only occurs in the centre of the 

field of view, or if it fills the field of view, the decision is based on a priori knowledge 

of the automated vehicle environment. In the prototype, this is arbitrarily to the right. 

If the obstacle emerges in the left of the field of view then avoidance is attempted to 

the right. Conversely if an obstacle emerges from the right then the system will attempt 

to avoid the obstacle to the left. 

8.2.2 'TURNAGV' Subroutine 

Figure 8.2.2.1 shows the flow chart for the TURNAGV algorithm. All the sub-routines 

to be discussed return a Boolean variable 'RESULT' which is only FALSE if the 

automated vehicle can not pass the obstacle. All the subroutines which physically 

move the AGV execute a check for obstacles. This returns a Boolean variable 

'OBSTDETECfED' which is TRUE when an obstacle is detected (regardless of its 

position in the field of view) and FALSE otherwise. 

When the system detects an obstacle, the software determines which way to tum to 

avoid it using the LeftOrRight routine, and then turns in 5 degree increments until the 

obstacle no longer interferes with the projected light pattern. This results in the 

automated vehicle being orientated with a heading that will allow it to clear the 

obstacle. A further subroutine 'TESITURN' is included, whose flow chart is shown in 

figure 8.2.2.2. This checks for: 

o Another obstacle emergmg which will prevent the vehicle 

turning to avoid the flrst one. This occurs, for example, if the 

AGV is in a narrow gap and while turning to the right to avoid 

an obstacle on the left, encounters another obstacle on the right 

before the one from the left is cleared. In this case the vehicle 

cannot avoid the obstruction and a FALSE result is returned. 

74 



TLm AGV 5 degees 

Update Qrrent Heading 

Call TestTLm 

YES 

75 

Hpe82.2.1 

FbN Olartfor TURN' AIgoriIhm 

Is there an 
obstacle from the left N::l 

Pm 
no Obstacle from the right 

ND 
avoiding to right? 

Is there an 
....... ob5tac:le from the 

Pm 
no Obstacle from the lett 

ND 
avoiding to left? 



o If the AGV is faced with a semi-circular type of obstruction 

enveloping it then a maximum limit of 90 degrees is placed on 

the TURNAGV procedure. This prevents the automated vehicle 
turning back on itself. 

If the vehicle succeeds in turning to avoid the obstacle, it must next advance in a series 

of small steps, far enough to allow recovery to the guide path without colliding with 

the obstacle. 

8.2.3 'ADVANCEAGV' 
Subroutine 

The pnmary objective of the 

ADV ANCE procedure is to advance 

the automated vehicle in small 

increments - checking for further 

obstacles after each increment -

until the vehicle centre of turning is 

past the obstacle as shown in figure 

8.2.3.1. 

Figure 8.2.3.2 shows the flow chart 

for the ADVANCEAGV procedure. 

-
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Vehicle centre '" " -. 
of rotation past obstacle 

Figure 8.2.3.1 
Distance that the Automated Vehicle 
Must Advance to Clear an Obstacle 

As in the previous subroutine, the Boolean variable "RESULT' is used to indicate 

whether the automated vehicle can pass the obstruction or not. The ADV ANCEAGV 

routine uses an additional Boolean variable 'PASSEDYET' which signals that the 

vehicle has advanced far enough past the obstacle to begin the recovery procedure. 

The failure modes of the' ADVANCE' procedure are as follows: 

o The procedure will return a 'failed to pass' (RESULT=FALSE) 

result if a further obstacle is encountered emerging from the 
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opposite side to the ftrst. For example, if an initial obstacle was 

encountered in the left region of the CCD camera fteld of view, 

the system would attempt to avoid it by turning to the right. If a 

second obstacle emerges in the right hand region of the field of 

view before the vehicle had passed the ftrst, the system would 

halt. This condition arises when the gap between obstacles is too 

small for the vehicle to manoeuvre as shown in figure 8.2.3.3. 

o If a further obstacle emerges from the same side as the fITSt or 

from the centre of the CCD camera field of view, then the 

advance procedure will be aborted and the system will begin the 

obstacle avoidance procedure anew by turning to avoid the new 

obstruction before beginning to advance again. However, if 

obstacles continue to emerge which cause the vehicle to deviate 

excessively from the guide path, the system will halt the vehicle. 

This upper limit of deviation depends on the space available for 

the automated vehicle to manoeuvre and would nonnally be 

detennined by the width of the aisles. 

If the automated vehicle successfully passes the obstruction (returning from the 

advance procedure with RESULT = TRUE), the fmal ~RECOVER' phase of the 

Figure 8.2.3.3 
'ADVANCE' Procedure Fails if Gap is Too Small 

For Automated Vehicle to Negotiate 
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obstacle avoidance procedure is 

initiated. 

8.2.4 'RECOVER' 
Subroutine 

After the TURNAGV and 

ADV ANCEAGV procedures 

have been executed, the 

automated vehicle will be at 

some distance from the original 

guide path with an orientation 

which enabled it to pass the 



final obstacle. The 'RECOVER' procedure returns the vehicle to its original trajectory. 

The most direct method of achieving this would be to turn the automated vehicle so 

that it approached the original guide path in a perpendicular direction, and then turn it 

90 degrees onto its original heading when the deviation from the path reaches zero. 

However, a severe disadvantage with this approach is that if the guide path runs 

closely parallel with a wall, the vehicle would need to turn and advance many times 

before returning to its original route as shown in figure 8.2.4.1 . This method would 

eventually succeed if the wall was continuous. However, if it was discontinuous, the 

vehicle would at best meander back on course on an's' shaped trajectory after 

overshooting the guide path. 

The alternative approach developed in this work is to return the automated vehicle to 

the guide path on a hyperbolic trajectory as shown in figure 8.2.4.2. Using this 

approach, the greater the deviation from the guide path, the more severe the return 

heading angle. As the vehicle approaches its original guide path, the recovery angle 

converges with the original vehicle heading. 

- I I 
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r- -----.... -----
I 
:@ @ 
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,----------------

Figure 8.2.4.1 

Simplistic 'RECOVER' Procedure 

AGV Must Repeatedly 'Avoid' Corridor Wall 
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AGV'RECOVER'PROCEDURE 

AGV Returns to Guide Path on a Hypert?0lic Trajectory 

Figure 8.2.4.3 shows the flow chart for the recovery procedure. In order to avoid the 

need for floating point arithmetic, the hyperbolic equation in figure 8.2.4.2 has been 

reduced to a look-up table of headings (see appendix 3). Hence, for a given deviation 

from the guide path, a corresponding heading is determined (desired heading). The 

vehicle is then turned one 5 degree increment in the direction which will reduce the 

error: (desired heading - current heading). This process is repeated until the deviation 

and heading reduces and eventually converges to zero as the vehicle returns to its 

.original guide path. 

Should a further obstruction be encountered during the recovery phase of the obstacle 

avoidance process, the subroutine is abandoned and the whole obstacle avoidance 

sequence begins again until either the process fails or the vehicle regains its original 

path. 
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8.3 Obstacle Avoidance Simulation Package 

The obstacle avoidance algorithms discussed in the previous sections are implemented 

in 8051 assembler language on the Intel 8031 embedded computer system described in 

chapter 4. \ However, due to the complexity of coding the algorithms directly in 

assembly language, they were fIrst tested by developing a simulation package in Turbo 

Pascal. The computer model uses high resolution colour graphics to represent the 

automated vehicle, a roadway, 

and obstacles. Any number of 

obstacles can be placed in the 

simulated roadway by 

interactively positioning a 

graphic cursor on the screen. 

Figure 8.3.1 illustrates the 

graphical models. The 

automated vehicle chassis is 

represented by a rectangle with 

a further rectangle for the 

projected light pattern. The 

roadway is shown between two 

cross-hatched regions in the 

upper and lower portions of the 

display. Obstacles are 

represented as random four 

sided polygons in the same 

colour as the road edges. 

Procedures are included to turn 

Result=TRUE 

Yes 

Look-Up Desired Heading 
for Current Deviation 

Error Heading = 
(Desired - Actual) Heading 

Turn AGV 5 degrees to 
Minimise Error 

Advance AGV 
1 Increment 

Result = FALSE 

YES 

( EXit ) 

Figure 8.2.4.3 
Flow Chart for 'RECOVER' Procedure 
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Figure 8.3.1 
Graphical Elements of the Computer Model 

the AGV model in 5 degree increments and also to advance it in small increments. 

Infonnation about the position of the simulated vehicle and its heading is tabulated in 

the upper left hand corner of the display. To aid clarity, the latter infonnation is not 

shown in the 'screen dumps' of figures 8.3.1 and 8.3.2. 

Each time the AGV is turned or advanced, it is erased, redrawn in its new position and 

orientation, and the infonnation table updated. If no obstacle is placed in the path of 

the AGV model it will simply proceed on a straight line from the left of the display to 

the right. 

Obstacles are detected by testing for pixels of the obstacle colour, lying inside or on 

the boundary of the simulated projected light pattern. Turbo Pascal procedures and 

functions have been implemented to simulate the primary moves: TURN and 

ADVANCE and the secondary operations: LeftOrRight, ADVANCEAGV, TURNAGV, 

and RECOVER according to the flow charts developed in section 8.2. A full listing of 

the AGV system model can be seen in appendix 6. Figure 8.3.2 shows screen dumps of 

the model when faced with various obstacle situations. Figure 8.3.2a shows the 

response to single obstacles, 8.3.2b two obstacles and 8.3.2c three obstacles. The path 
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of the vehicle in each case is shown using a modified procedure which displays the 

'trail of the AGV. 

The model is a simplified version of the real system. However, it proved sufficiently 

accurate to test the algorithms developed in section 8.2. The main simplification is in 

the motion of the AGV. The inertia of the real vehicle as it halts on encountering the 

first obstacle is not taken into account. However, this factor does not affect the 

effectiveness of the simulation in testing the obstacle avoidance subroutines. 

8.4 Obstacle Avoidance Algorithms 
Transferred to the Intel 8031 Embedded 
Microcontroller 

The Pascal simulation program was converted to 8051 assembler language and tested 

on the real experimental vehicle. The only significant structural differences between 

the real system software and the model, are the language used for the source code and 

the method used to evaluate the sine function. In the Turbo Pascal model, this is 

carried out using the floating point sin(x) function included in the package. Floating 

point arithmetic has been avoided in 8051 assembler language by implementing a 

look-up table. Since the experimental vehicle is only moved in 5 degree increments as 

described earlier, the table needs only to hold sine values for multiples of five degrees. 

In order to both achieve accuracy and restrict the look-up table values to single bytes, 

the sine values have been stored as Ksin(x) where K is 256. The actual value of 

deviation is maintained as a two-byte two's compliment number with positive and 

negative values depending on which side of the guide path the vehicle is situated. Full 

listings of the assembler language obstacle avoidance program and the look-up tables 

are presented in appendix 3. 

The subroutines developed In the preceding sections were evaluated on the real 

experimental vehicle systen1 and the results are described in the next chapter. 
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Figure 8.3.2.a 
Single Obstacle Avoidance 
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Figure 8.3.2.b 
Double Obstacle Avoidance 
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Figure 8.3.2.c 
Avoidance of Three Obstacles 
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9 EVALUATION OF THE 
OBSTACLE AVOIDANCE 

SYSTEM 

9.1 Summary 

In support of the results presented as part of the design process in chapters 3,5,6 and 8, 

this chapter describes experiments carried out on the completed obstacle avoidance 

system. These are divided into three sections: 

o Obstacle Detection. Experiments were carried out to confrrm 
the size of the smallest detectable object and test the ability of 

the system to sense a diverse range of obstacles. 

o Response Time and Real-Time Operation. The speed of 

execution of the image processing software is examined and 

experiments carried out to detennine the response time of the 

complete system. A key objective of the research is that the 
system should operate in real-time. Tests have been conducted to 

demonstrate this feature. 

o Obstacle A voidance. These experiments determine the 

accuracy and repeatability of the obstacle avoidance system. 

All the practical work described in this chapter was carried out in the Flexible 

Manufacturing laboratory at the University of Huddersfield. 

9.2 Obstacle Detection System 

Chapter 5 described how the system is designed to detect objects of m1Ill1llum 

dimensions 50mm wide X 20 nun tall. This limit is imposed partly due to the method 

of processing video infonnation and partly due to the physical size of the projected 
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light code. The moving average filter which processes images in the vertical direction 

requires that obstacles are tall enough to reflect at least 8 video lines. In the horizontal 

direction, they must be wide enough to reflect a complete projected light code. The 

ability of the system to detect an object of these minimum dimensions was tested by 

placing the 50mm X 20mm test card on the floor ahead of the vehicle as illustrated in 

figure 9.2.1. The resulting video camera view of figure 9.2.2 shows that a complete 

light code is reflected. The system successfully detected the test card and therefore the 

height criteria was also verified. 

The hypothesis which forms the basis of the next experiment is that the use of a white 

light projector ensures sufficient light is reflected from objects with minimal reflective 

properties. An automobile radiator component with a black lustreless surface 

(specifically designed to minimise reflection and maximise heat absorption) was 

selected to test this premise. Figure 9.2.3 shows the video camera view of the 

component. The system successfully detected the radiator part even though the matt 

black surface was oblique to the projector and camera angle of incidence. 

The ability of the system to detect objects with efficient reflective properties without 

saturating is also important. The video camera adjusts the average amount of light 

falling on the CCD array by means of an auto-iris. The performance of this device was 

tested by replacing the matt black radiator component with a large gloss white board. 

The video camera view of figure 9.2.4 shows that the auto-iris successfully limited the 

light falling on the CCD array and prevented light saturation. This can be seen by the 

fact that the reflected light codes remain clearly defmed in the video image. 

The speed of operation of the auto-iris device was tested by placing the video camera 

in complete darkness and then introducing it to a bright light. This was achieved by 

positioning the gloss white board in front of the obstacle detection system and placing 

a dark cover over the camera lens. The cover was quickly removed and the response of 

the auto-iris timed. The system took approximately 0.25 seconds to adjust. Since this is 

88 



/' 
/' Projector 

Experimental Vehicle 

Test Obstacle' 

Figure 9.2.1 

'Test Obstacle' Positioned in Light Pattern 

Figure 9.2.2 

Video Camera View of 'Test Obstacle ' 
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nearly four times faster than the 

response time of the obstacle 

avoidance system (see section 

9.3), the auto-iris does not 

significantly influence the 

performance of the overall 

system. 

It is not feasible here to provide 

evidence of the system detecting 

all possible obstructions, neither 

Figure 9.2.3 
Video Camera View of a Matt Black Obstacle 

is there any particular definitive obstacle. However, further to the previous results, the 

video images of figure 9.2.5 show the camera view of a selection of obstacles as they 

were detected. These are typical of those likely to be encountered in factories and vary 

widely in colour, surface texture and shape. 

9.3 Response Time and Real-Time Operation 

Figure 9.2.4 
Video Camera View of a Gloss White Board 
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When the system initially detects 

an obstacle, the embedded 

computer system takes control of 

the vehicle drives and brings it to 

a halt. This is achieved by 

electronically switching buffer 

integrated circuits and supplying 

stop conunands to the motor 

controllers. The obstacle 

detection system then performs 



Steel Turned Component Wood Block 

Plastic Sack Copper Pipe 

Figure 9.2.5 

Typical Obstacles Encountered in Factories 
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Figure 9.2.5 

Typical Obstades Encountered in Factories 
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two further checks for obstacles and bases the decision of whether to avoid the 

obstacle or not on the majority consensus of the three results. Section 6.3 provides a 

comprehensive description of this majority polling scheme. The process increases the 

surety of obstacle detection and reduces the sensitivity of the system to non-persistent 

objects (such as people crossing the path of the vehicle). 

The response time of the obstacle avoidance system may therefore be considered as 

relating to two separate events: 

o Detection Response Time. The time taken for the obstacle 

avoidance computer to take control of the vehicle after an 
obstacle is introduced to the system. 

o Avoidance Response Time. The time interval from an obstacle 

being placed in front of the system to the instant when the 
vehicle begins to avoid it. 

The time taken to detect an obstacle is governed by the video processing system. This 

includes the time taken to capture a video image, perform digital filtering operations 

and carry out pattern recognition. The time taken to execute these tasks was measured 

by connecting the storage oscilloscope to the control signal asserted by the obstacle 

avoidance computer when it takes control of the vehicle. In storage mode, the 

oscilloscope trace was started at the same time as an obstacle was introduced to the 

system. Figure 9.3.1 is a hard copy of the oscilloscope trace which shows the time 

interval from the point when the obstacle was introduced (the left hand edge of the 

trace), to the point where the signal level changes. This is the Detection Response 

Time of the system which can be seen to be approximately 0.8 seconds. 

The A voidance Response Time as defmed above should be approximately three times 

the Detection Response Time (due to the majority polling scheme) and is therefore 

calculated as 3 X 0.8 = 2.4 seconds. This figure excludes the relatively negligible time 

taken to plan the motion of the vehicle. 
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Figure 9.3.1 

DATE: 08.06.1992 
TIME: 13:17 

SIGNALPARAMETER : 

CH1 - VOLTS/DIV: 1 V 
TII'IEBASE-SEC/DIY:.2 s 

PRINTERPARIl"1ETER : 

ZOOMRANGE - CH1:0-9 
HARDCOPY SOURCE :HI'I 295-3 

REMARKS: 

1-1 FI [VI E 13 

III 
Instruments 

11fl!l_ 

Oscilloscope Trace Showing Access Control Signal 
Asserted by Obstacle Avoidance Computer to 

Take Control of Vehicle 

The A voidance Response Time was measured by connecting the motor drive signals to 

two channels of a storage oscilloscope. In single sweep storage mode, the oscilloscope 

trace was triggered approximately simultaneously with an obstacle being introduced 

into the path of the vehicle. Figure 9.3.2 is a hard copy of the oscilloscope trace 

showing the motor control signals as the vehicle began to tum. These signals act with 

opposite polarity since to tum the vehicle, one motor is driven clockwise and the other 

anti-clockwise. The motor control signals are pulse width modulated, provided by the 

Hewlett-Packard digital motor controllers via H-Bridge amplifiers as described in 

chapter 7. The signals shown in figure 9.3.2 are subject to a smoothing effect because 
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Figure 9.3.2 
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Figure 9.3.3 

PWM Signal is Smoothed Due to Motor Inductance 
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of the large inductive motor loads (see figure 9.3.3). Nevertheless, the Avoidance 

Response Time of the system can be clearly seen as the interval from the left hand 

edge of the oscilloscope trace, to the point when the motor control signals are applied. 

With the time-base set to 0.5 seconds/division, this is approximately 2.48 seconds. The 

error between this and the predicted time of 2.4 seconds is mostly due to the difficulty 

of starting the oscilloscope trace at the same instant as the obstacle was introduced. 

Factors affecting the motion of the experimental vehicle after the control signals have 

been applied include the effects of the inertia of the vehicle, the digital control system 

and the horse power of the motor drives. 

Chapter 8 discussed how the motion of the experimental vehicle is reduced to two 

primary manoeuvres: 5 degree 'TURNs' and 50mm ' ADVANCEs'. In order to 

determine how long the experimental vehicle takes to turn in 5 degree increments, the 

motor control signals shown in figure 9.3.2 were subtracted from each other. The result 

was displayed on a single oscilloscope channel (figure 9.3.4). Since the separate signals 

are of opposite polarity, this combination highlights the instants when maximum 

control effort is applied to move the experimental vehicle to a new position. Referring 

to the overall motor drive block diagram of figure 7.4.2, these are the error signals 

from the motor controllers which decay as the vehicle moves from its current position 

to the desired position. With reference to figure 9.3.4, the time between each peak on 

the oscilloscope trace represents the time taken for the experimental vehicle to 

complete one 5 degree turn. This time varies slightly due to load disturbances on the 

system such as dirt under the road wheels and irregularities in the floor surface. Figure 

9.3.4 shows that the approximate angular velocity of the vehicle during the 'TURN' 

phase of obstacle avoidance is approximately 5 degrees every 2 seconds or 2.5 

degrees/second. 

A similar test was carried out during the 'ADVANCE', phase of avoidance where 

identical control signals are applied to each motor. The oscilloscope trace of figure 

96 



9.3.5 shows the right hand motor signal. As before, the pertinent features of the figure 
..... 

are the peaks where maximum control effort is applied to initiate a move to a new 

position. The oscilloscope trace shows the period of the peaks to be approximately 2 

seconds which corresponds to an average velocity during the 'ADVANCE' phase of 

avoidance of approximately 0.025m,1second. 

Real-time is defmed as, 'denoting or relating to a data-processing system in which a 

computer is on-line to a source of data and processes the data as it is generated'. Hence 

the obstacle avoidance system operates in real-time because it responds to unexpected 

obstacles as they are encountered. The following experiments demonstrate this feature 

by testing the response of the vehicle to changing situations and multiple obstacles. 

In the frrst experiment, an obstacle was placed in front of the experimental vehicle so 

that the system began to avoid it. As the vehicle turned to clear the obstacle, it was 

repositioned in the vehicle path as illustrated in figure 9.3.6. The obstacle avoidance 

system responded in real-time to the new situation and was repeatedly 'repelled' by the 

obstacle as it persisted in the path. The vehicle therefore continued turning in 5 degree 

increments to avoid the obstacle until the limit set up in software of 90 degrees was 

reached (see chapter 8). Figure 9.3.7 shows a series of photographs taken as the 

experiment progressed. The position of the obstacle as it was moved was marked 

periodically by orange card discs to aid the illustration. 

The second experiment to demonstrate the real-time operation of the system was 

similar to the previous test, except in this case, the obstacle was moved in the opposite 

direction (away from the path of the vehicle) after it had initially been detected. Figure 

9.3.8 shows a photograph taken after this experiment. The orange coloured card discs 

show the path that the vehicle took when the obstacle was placed fully in front of the 

vehicle. This original obstacle position is identified in the photograph by orange 

markers. On the second run, the obstacle was placed fully in front of the vehicle until 

it was detected and then moved to the new position where it is shown in the 
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Figure 9.3.6 
Moving Obstacle Test 

photograph of figure 9.3.8. The white card discs show the corrected path of the 

vehicle. This result demonstrates that the system responded to the changing obstacle 

situation by deviating less on the second run. 

The fmal real-time test was the introduction of a second obstruction whilst the system 

was already engaged in an avoidance manoeuvre. This experiment was conducted by 

placing a second obstacle ahead and to one side of the ftrst one to be negotiated. The 

path that the experimental vehicle followed to avoid both obstacles was marked with 

coloured card discs and the photograph of figure 9.3.9 shows the result of the test. The 

system was able to negotiate the second obstacle in real-time and therefore 

successfully avoided both obstructions. 

The next tests are concerned with the overall performance of the obstacle avoidance 

system. 
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Figure 9.3.8 
Photograph Showmg Real-Time Path Correction 



Figure 9 .3 .9 
Photograph Showing System 

Responding to Two Obstacles 
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9.4 Accuracy and Repeatability 

The obstacle avoidance algorithms were tested in terms of their accuracy and 

repeatability. In this work, accuracy is defmed as the error within which the 

experimental vehicle will return to the original guide path after avoiding an obstacle as 

shown in figure 9.4.1. Repeatability is defmed as the ability of the system to avoid an 

obstacle using the same route given equivalent starting conditions. 

For both experiments, the guide path of the experimental vehicle was defmed parallel 

to the laboratory wall as shown in figure 9.4.2. The deviation of the vehicle was then 

referred to this datum. 

In order to test the accuracy of the obstacle avoidance system, the vehicle was 

positioned 0.4 metres away from and parallel to the reference wall. An obstacle was 

placed in front of the vehicle and the system was allowed to avoid it. After the 

avoidance manoeuvre was complete, the deviation from the wall was measured. The 

experiment was repeated several times and the fmal position measurements were 

within the range 0.38 - 0.42 metres showing a deviation error of approximately +-0.02 

metres. Figure 9.4.3 shows photographs taken during the experiment. The path of the 

vehicle was marked using coloured card discs to aid the illustration. Similar tests were 

performed with various obstacles causing the vehicle to take different routes. Figure 

9.4.4 shows the results of a test where an obstacle was placed in front of the vehicle 

-
AGV 

Obstacle 
,­, 

- - -1- ·· ·_ ·- -,,;:..;---- - --- - .• . - - - -.,- -

'------=-=--" -.......::""", ,~_:. ____ ~::~ ____ ___ j I Deviation Error 
'", .// 

'"" / 
'- ."" 

Vehide Path 

Figure 9.4.1 
Accuracy of Obstacle Avoidance System 
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Laboratory Wall 

Guide Path 

Figure 9.4.2 
Vehicle Path Defined Parallel to Laboratory Wall 

and the route taken around the obstacle was marked with yellow card discs. The 

obstacle was moved further into the path of the vehicle and the experiment repeated. In 

this second case, the route that the vehicle used was marked with orange discs. The 

photograph of figure 9.4.4 shows that whilst a different route was taken for each 

situation, the vehicle returned to the original guide path . 

. The repeatability of the obstacle avoidance system was tested by arranging for the 

experimental vehicle to avoid the same obstacle repeatedly from the same starting 

position. 

The initial position of the experimental vehicle drive wheels were accurately marked 

on the laboratory floor and an obstacle introduced in front of the system. The route 

taken to avoid the obstacle was marked with yellow card discs. The vehicle was then 

returned to the previous initial position and the experiment repeated. On the second 

run, the vehicle route was marked with orange discs. The result of this experiment is 

illustrated in the photograph of figure 9.4.5. The figure shows that there is no 

significant difference in the paths taken by the vehicle on each run. 

The most likely cause of the +-0.02 metre position error stems from the contact 

between the experimental vehicle drive wheels and the floor. When odometry is used 

as a means of position sensing in differentially steered vehicles, both drive wheels 

must have the same diameter. Furthermore, both wheels must maintain positive contact 
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with the ground since any slippage will also result in errors. 

The experimental vehicle wheels are accurately machined to the same dimensions and 

fitted with hard rubber tyres. Whilst the latter ensure good adhesion to the ground, they 

also necessarily compress under the weight of the vehicle. If this compression does not 

occur equally in both wheels, the relative diameters will be altered. A similar effect 

will occur if one wheel picks up debris from the floor which again, effectively changes 

the relative wheel diameters. In general, position errors occurring due to these factors 

are proportional to the distance travelled by the vehicle. 

A further type of error which can occur in dead-reckoning systems is caused by uneven 

floor surfaces. If one drive wheel travels on a flat surface and the other over 

undulations, the result will be that the fonner wheel appears to travel a shorter distance 

than the latter and steering error will occur. 

Section 2.2.2 discussed how many researchers attempt to combine odometry with 

another absolute position sensing method in order to periodically correct the 

accumulating position errors. A key advantage of this system is that the position of the 

automated vehicle is referred to the point where it leaves the guide path. Since the 

distance that the vehicle travels from this point is relatively short, excessive errors do 

not occur. 

The distance from which commercial AGVs can sense their guide path depends on the 

design of the sensing head. In a commercial active wire-guided system installed by the 

collaborating establishment in Doncaster, England, the automated vehicles can detect 

the embedded guide wire from a distance in excess of 1 Oem. The position error in the 

obstacle avoidance system is well within this range and therefore odometry can be 

successfully used as the sole means of navigation. 

The conclusions drawn from the results presented In the preVIOUS sections and 
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throughout the thesis are discussed in the next chapter. The limitations of the system 

are explored and suggestions made for further work on the obstacle avoidance system. 

Figure 9.4.4 
Photograph Showing Accuracy Test 
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Figure 9.4.5 
Photograph Showing Repeatability Test 



10 CONCLUSIONS LIMITATIONS 
AND RECOMMENDATIONS FOR 

FURTHER WORK 

10.1 Conclusions 

The guidance methods available for automated vehicles and the current state of 

obstacle avoidance research were reviewed in chapter 2. The key fmdings of the 

review were that: 

o Most industrially based AGV systems use the inductive 

embedded wire method of guidance because of its ruggedness 
and proven reliability. 

o At present, there are no commercially available AGV systems 
that can avoid unexpected obstacles. 

o Although much research has been carried out in the field of 

obstacle avoidance, none has yet produced a system suitable for 

use in manufacturing factory environments. 

The research presented in this thesis has therefore aimed to design a stand-alone 

obstacle avoidance system that could eventually be retrofitted to existing automated 

vehicles. The performance of commonly used wire guided vehicles would then be 

enhanced at a small cost in relation to that of the entire installation. A retrofitting 

system would also incur low installation costs since the overall factory need not be 

disrupted whilst obstacle avoidance systems were fitted to vehicles. Furthennore, as the 

systems would be independent, any isolated failures would have little effect on the 

manufacturing process as a whole. 

Various sensor systems were considered for use in the design. These included 

ultrasonics, laser and other techniques. Ultrasonic methods are unsuitable because of 
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their susceptibility to extraneous high-frequency nOIse produced by some 

manufacturing processes. Also, sensors using moving parts such as delicate stepper 

motors or rotating mirrors etc., were considered unsuitable because of the risk of 

damage and the need for routine maintenance. Modern optical technology however, has 

produced extremely low-cost, robust and compact sensors in the form of CCD arrays. 

These use no moving parts and are maintenance free. A monochrome CCD video 

camera has therefore been employed as the sensing element of the new system. 

Some obstacle avoidance systems use CCD cameras to passively detect obstacles. A 

disadvantage of these, is that complex scene analysis must be carried out to 

discriminate between sections of the CCD image that represent obstacles to be avoided, 

and those that represent incidental features or illusions. An active system based on a 

novel light pattern projection system has been successfully developed to overcome this 

disadvantage. The task of scene analysis has been simplified by introducing coded light 

information into the system which enables pertinent sections of the image to be clearly 

identified. 

A study of the applications of structured light in computer aided engineering and 

design revealed that the systems used in this field are static and often take several 

seconds or in some cases minutes to process large amounts of video data. This research 

has successfully extended the use of structured light to a mobile system and has 

simplified the task of image processing by using a novel projected light, 'bar' coding 

scheme. When obstructions emerge into the path of the automated vehicle, they reflect 

the projected light bar pattern which is then detected by the CCD camera. 

A major design objective set out in chapter 1 was that the system should be low-cost, 

compact and robust. This has been successfully achieved using a single Intel 8031 

microcontroller to carry out image processing and obstacle avoidance tasks. The Intel 

8031 computer was chosen for its low-cost and range of on-chip features. These 

include on-board timers, internal and external interrupts, bidirectional parallel and 
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serial communications ports. 

Ancillary memory buffer and digital motor control circuits have been designed around 

this computer and the software developed entirely in assembler language. This has 

enabled optimum execution speed and efficiency to be achieved. 

The methods used to process video information and hence detect obstacles comprise a 

combination of digital filters and direct methods. High processing speed has been 

achieved by using minimmn word-length integer arithmetic and avoiding floating-point 

methods. The latter has placed constraints on the design of a suitable recursive digital 

futer since the coefficients usually require an accuracy in the order of three decimal 

places. However, a comparison of filters designed using the bilinear transform method 

and simple integer-only digital equivalents of a C-R filter has proved that a digitised 

C-R filter gives adequate and reliable performance. Direct methods have been 

successfully implemented to detect features in the filtered video information. A 

decision-theoretic method of pattern recognition analyses the relationships between 

these features which in turn, belies the presence of obstacles. 

A crucial design aim was that the obstacle avoidance system should be simple to 

configure and maintain. An algorithm which automatically calibrates the projected 

light detection system successfully achieves this by alleviating the need for critical 

projector-camera positioning. 

An experimental automatic vehicle has been designed and constructed to test the 

obstacle avoidance system. This is based on a differential steering arrangement which 

uses two drive wheels controlled by dedicated single-chip microcontrollers. The range 

of possible control actions has been investigated and suitable digital control parameters 

have been determined empirically. 

The complex obstacle avoidance control actions are broken down into basic 
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manoeuvres upon which higher levels of control are based. The control algorithms 

have been designed with the aid of a specially developed computer simulation. This 

uses high resolution colour graphics and allows various obstacle situations to be 

simulated. The operation of the model has been described and the results obtained 

during the design of the control algorithms presented in chapter 8. The resulting 

obstacle avoidance computer program was converted from Pascal, to Intel MCS-51 

assembler language for implementing on the embedded system. 

Tests have been successfully carried out on the obstacle avoidance system, the results 

of which are presented in chapter 9. These show that the new system operates in 

real-time and has the ability to negotiate multiple obstacles. The system was found to 

have a position error of approximately +/- 0.02 metres. This was considered acceptable 

since the vehicles in an AMECAS commercial system can locate the embedded wire 

guide-path from a distance in excess of 0.1 metres. Tests to establish the repeatability 

of the system showed that there was no significant variation in the paths taken by the 

experimental vehicle on repeat runs under similar starting and obstacle conditions. 

The overall cost benefits of the obstacle avoidance system to potential users are 

difficult to estimate as they depend on factory-specific factors such as the volume of 

traffic, the number of AGV s, and the size and complexity of the factory layout. 

However, it is estimated that each system would cost approximately 3 - 5% of the total 

value of the vehicle on which it would be installed (based on the approximate new cost 

of the AMECAS AGV s in the Doncaster installation). 

10.2 Limitations of the System and 
Recommendations for Further Work 

The pattern used for the projected light codes has provided reliable operation 

throughout the research. Nevertheless, it may be possible to design more efficient light 
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patterns for detecting smaller obstacles. This research has been primarily concerned 

with the design of a practical system embodying aspects of the mobile application of 

structured light and obstacle avoidance. The subject of developing optimum codes 

could be addressed in further research work. 

At present, the new obstacle avoidance system avoids obstacles on straight guide-paths. 

The performance of the system would be enhanced by the ability to avoid obstacles on 

curves. However, extra sensing equipment may be required on both the vehicle and the 

factory floor so that the obstacle avoidance system could determine where curves 

started and ended, and in which direction they turned. Also, since AGV systems may 

have curves of varying dimensions and shape, some standardisation of existing layouts 

may be required. The problem of achieving obstacle avoidance on curves whilst 

maintaining the generality of the system could be addressed as the subject of a further 

research project. 

Although the system operates in real-time, the obstacle detection response time of 

approximately 0.8 seconds is relatively modest. However, since the start of this 

research project, developments in electronics have resulted in the introduction of Intel 

MCS-51 series microcontrollers capable of operating with master clock frequencies 

over 30 megahertz (almost three times the speed of the present microcontroller). The 

detection response time of the obstacle avoidance system could be drastically reduced 

by using such a microcontroller. Time constraints have not allowed this modification to 

be carried out however, as the ancillary circuits would have to be redesigned in order 

to accommodate the increased processor operating speed. 

Several printed circuit boards are used for the electronics in the prototype obstacle 

avoidance system. The circuits could be customised by combining elements in 

integrated units. This development would further reduce the cost of the system and 

improve its reliability. 
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The obstacle detection system is not limited to application in this research project. The 

novel light coding scheme has the inherent feature that the approximate width of 

objects can be determined by virtue of the number of light codes reflected. 

Furthermore, the system could be modified to provide object height information. With 

these developments, the obstacle detection system could fmd use in object 

classification or recognition systems. 

The obstacle avoidance computer model proved extremely helpful in the design of the 

obstacle avoidance algorithms and although it was developed specifically for this 

project, it would also be suitable as a development tool in other AGV research projects 

and also as a teaching aid. Similarly, whilst the experimental vehicle was built 

specifically as a test bed for the obstacle avoidance system, it could also be useful for 

continuing research and demonstration. 
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APPENDIX 1 

Embedded Computer and Memory Access 
Buffer Circuit Diagrams 

A1.1 INTEL 8031 COMPUTER CIRCUIT 

The 8Intel 031 single chip microcontroller is a version of the MCS-5I series 8-bit 

computers for embedded applications which does not incorporate on-board Read Only 

Memory (ROM). Program memory is therefore included in the circuit separately. The 

microcontroller provides control signals to address 64K external ram in addition to 128 

bytes internal RAM. 

In the circuit of figure A1.I, the lower 32K of external RAM address space is occupied 

by the video frame store memories and the upper 32K is used for a spare 2K RAM and 

an INTEL 8255 Peripheral Interface Adapter (PIA). The PIA is used to interface with 

the motor control embedded computers. 

Withe reference to figure Al.1, the INTEL 8031 has four 8 bit input/output ports 

PO-P3 that can provide various functions. Ports PO and P2 are dedicated to providing 

address and data lines to the external program and data memories and three port 1 lines 

are used to operate switching control signals. Port 3 has so-called alternate functions 

which include timer inputs, interrupt inputs, serial input/outputs and external RAM 

read and write signals. In this circuit the serial port pins RXD (p3.0) and TXD (p3.1) 

are configured as an RS232 link for communication with a dumb terminal. Protocol 

conversion circuitry has therefore been included to convert the 0-5V single levels used 

by the 8031 RXD/TXD to RS232. 

leI is the INTEL 8031 microcontroller. The chip has an on-board oscillator which is 
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Figure A1.1 
Intel 8031 Embedded Computer Circuit 

configured by the external capacitors Cl, C2 and the crystal Yl to operate at 12MHZ. 

C3 and R2 provide a timing network which ensures that the 8031 is reset slightly after 

the power supply to the circuit has been switched on. 

Address decoding for the video ram, 2K RAM (lC6) and the 8253 PIA (lC2) is 

provided by the quad NAND gate IC4. The video RAM decodes to addresses OOOOh -

7FFFh, the 2K RAM to 8000h - 87FFh and the PIA to COOOh-COO3h. 

The INTEL 8031 ports 0 and 2 are dedicated to bus functions when external program 

and date memory are used. The lower 8 bits (port 0) fonn the multiplexed low order 

address byte and date byte and the 8 bit latch IC3 is included as a demultiplexer. The 

8031 provides an Address Latch Enable (ALE) signal to control the latch. 

In this application provision has been made for 32K program memory to be stored in 
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the 27256 EPROM IC5. The 8031 provides a read strobe signal (PSEN) directly to this 

chip. 

Port pins Pl.3-Pl.7 and P3.2-5 are uncommitted and can be used for future expansion 

whilst PLO and Pl.l are used to control the video memory access buffers. Port pin 

P1.2 provides the memory select signal (video memory A or B, see Chapter 4). 

The TTL-RS232 protocol converter is formed by TRl, TR2, R2-R7, C4 and DI-D3. 

This allows simplex communication between the INTEL 8031 and RS232 terminal. 

A1.2 MEMORY ACCESS BUFFERS 
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Memory Access Circuit 
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The circuit of figure Al.2 allows the INTEL 8031 microcontroller to · share' the video 

image memory with the video frame store (62). Dual in-line header connections are 

used so that the circuit plugs directly into the video frame store circuit in place of the 

RAM chips. 

When the 8031fVFS signal is low and ICE high, the 8 bit buffer chips IC3, 4, 8, 10 and 

12 are enabled. The static RAMS IC5 and IC6 are then available to the video frame 

store and the memory access circuit is effectively transparent to the latter. However, 

when the 8031{VFS signal is high, ICs 3, 4, 10 and 12 are disabled with the pins in a 

high impedance state and the RAMs are unavailable to the video frame store. The 8031 

can then gain access to the video RAMs using the ICE signal to control the buffers 

ICl, 2, 7, 9 and 11. The 8031 board selects which 32K RAM to access using the BfA 

control signal. The ICE RAM chip enable signals are made mutually exclusive by 

using the inverter chip ICI3. This prevents both RAMS being enabled at the same 

time. 
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APPENDIX 2 

Pascal Terminal Emulation 
Software 



progran dumbterminal; 
{Program to communicate via serial port avoiding most DOS interrupts } 
{ie. progra~ accesses UARTs at low level and ignores DTS,RTS,DTR etc.} 
{So Lockwood IO/9I} 

uses 
crt,dos; 

const 
co~I =1; 
com.2 =2; 

var 
ch:char; 
buffer:array[O •. $4000J of char; 
buffermark,i:word; 

function IntToStr(i: Longint): string; 
{ Convert any Integer type to a string } 
var 

s: string[ 11] ; 
begin 

Str(i, s); 
IntToStr := s; 

end; {inttostring} 

procedure auxinit(port,params:word); 
{initialise serial communication port 'port' with parameter byte 'para~'} 

inline( 
$58/ 
$5A/ 
$B4/$OO/ 
$CD/$14) ; 

{pop ax ;pop parameters} 
{pop dx ;pop port nu~er} 
{mov ah,O;code for initialize} 
{int 14h ;call bios} 

function charready(base:word):boolean; 
{check line status to see if a character is ready for reading yet} 
var temp:byte; 
begin 

temp:=(port[base+5] and 1); {isolate bit 0 of line status} 
if (temp=I) then charready:=true 

else charready:=false; 
end; {charready} 

procedure readchar(comport:byte); 
{read a character from serial port} 
var temp,timeout,base:word; 
begin 
buffeaark:=O; 

A2.1 



if comport=2 then base:=$02F8 else base:=$03F8; 
tim.eout:=O; 
while tim.eout<50 do 
begin 
tim.eout:=tim.eout+l; 
if charready(base) then 

begin 
buffer[buffermark):=chr(port[base)}; 
buffermark:=buffermark+l; 
timeout:=O {wait until char ready} 

end; 
end; 

end; {readchar} 

function charsent(base:word):boolean; 
var temp:byte; 
begin 

{for reading} 

temp:=(port[base+5) and $20}; {isolate tx holding reg empty} 
if temp=$20 then charsent:=true else charsent:=false; 

end; {charsent} 

procedure writechar(ch:char;comport:byte}; 
var base:word; 
begin 

if comport=2 then base:=$02F8 else base:=$03F8; 
port[base):=ord(ch); 
while not charsent(base) do 

end; {writechar} 

procedure configure; 
{configure serial port} 
var 

exit:boolean; 
codebyte:byte; 
e:integer; 
baud:char; 
baudrate,parity:string; 
baudnum,chann:word; 
ch,pty,databits,stopbits:char; 

begin 
ch: =' '; 
pty:=' '; 
databi ts: =' '; 
stopbits: =' '; 
ch: =' '; 
baud:=' '; 
exit:=false; 
codebyte:=O; 
clrscr; 
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writeln; 
writeln('Serial Port Configuration'); 
writeln; 
writeln; 
writel n ( 'Whi ch Channel? Com.[ 1] or [2] , ) ; 

repeat 
if keypressed then 

begin 
ch:=readkey; 
if ch=chr(27) then exit:=true; 

end; 
until (ch='l') or (ch='2') or (exit=true); 

if not exit then 
begin 

writeln; 
writeln('Baud Rate? 1 - 110'); 
writeln(' 2 - 150'); 
writeln( , 3 - 300'); 
writeln(' 4 - 600'); 
writeln(' 5 - 1200'); 
writeln(' 6 - 2400'); 
writeln( , 7 - 4800'); 
writeln(' 8 - 9600'); 

repeat 
if keypressed then 

begin 
baud:=readkey; 
if baud=chr(27) then exit:=true; 

end; 
until (baud='l') or (baud='2') or (baud='3') or (baud='4') or (baud='5') or 

(baud='6') 
or (baud='7') or (baud='8') or (exit=true); 

end; 
case baud of 

'l':baudrate:='110'; 
'2':baudrate:='150'; 
'3':baudrate:='300'; 
'4':baudrate:='600'; 
'5':baudrate:='1200'; 
'6':baudrate:='2400'; 
'7':baudrate:='4800'; 
'8':baudrate:='9600'; 

end; 

if not exit then 
begin 

writeln; 
writeln('Data Bits? 7,8 '); 

repeat 
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if keypressed then 
begin 

databits:=readkey; 
if databits=chr(27) then exit:=true; 

end; 
until (databits='7') or (databits='8') or (exit=true); 

end; 
if not exit then 

begin 
writeln; 
writeln('Parity? N,E,D '); 

repeat 
if keypressed then 

begin 
pty:=readkey; 
if pty=chr(27) then exit:=true; 
pty:=upcase(pty); 

end; 
until (pty='N') or (pty='E') or (pty='O') or (exit=true); 

end; 

case pty of 
'N':parity:='No'; 
'E':parity:='Even'; 
'O':parity:='Odd'; 

end; 

if not exit then 
begin 

writeln; 
writeln('Stop Bits? 1,2 '); 

repeat 
if keypressed then 

begin 
stopbits:=readkey; 
if stopbits=chr(27) then exit:=true; 

end' , 
until (stopbits='l') or (stopbits='2') or (exit=true); 

end; 
if not exit then 

begin 
case baud of 

'l':codebyte:=codebyte OR 0; 
'2':codebyte:=codebyte OR 32; 
'3':codebyte:=codebyte OR 64; 
'4':codebyte:=codebyte OR 96; 
'5':codebyte:=codebyte OR 128; 
'6':codebyte:=codebyte OR 160; 
'7':codebyte:=codebyte OR 192; 
'B':codebyte:=codebyte OR 224; 

end; 
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case pty of 

end; 

'N':codebyte:=codebyte OR 0; 
'E':codebyte:=codebyte OR 24; 
'O':codebyte:=codebyte OR 8; 

case stopbits of 

end; 

'1 ':codebyte:=codebyte OR 0; 
'2':codebyte:=codebyte OR 4; 

case databits of 
'7':codebyte:=codebyte OR 2; 
'8':codebyte:=codebyte OR 3; 

end; 
val(ch,chann,e); 
auxinit(chann-l,codebyte); 

end; {if} 
writeln; 
writeln; 
if exit then writeln('******t*** Serial Re-Configuration Aborted ttttttt***') 
else 

begin 
writeln('Serial Configuration is Now:'); 
writeln; 
writeln(' Channel ',ch,', ',baudrate,' Baud, " 

databits,' Data bits, ',stopbits,' Stop bits, ',parity,' Parity'); 
end; end; 

{begin dcomm.} 
begin 
{ auxinit(l,$C3); 
{ auxinit(O,$E3); 

configure; 
repeat 
readchar(coml); 

if buffermark<>O then 
begin 

{initialise com2:4800,n,8,l} 
{initialise coml:9600,n,B,l} 

for i:=O to buffermark-l do 

end. 

begin 
if ord(buffer[i])<>O then write(buffer[i]J; 

end; 
end; 

if keypressed then 
begin 

end; 

ch:=readkey; 
writechar(ch,coml); 

until false; 
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APPENDIX 3 

Assembler Obstacle Avoidance 
Software Source Code 



c:\cbe\8051/ 
;Do complete preprocessing and pattern recognition 
;and transmit the results on the serial port at 4800 baud 
; S. Lockwood 1991 

psw equ 
b equ 
p3 equ 
pI equ 
seon equ 
tIl equ 
th1 equ 
ie equ 
bod equ 
sbuf equ 
tcon equ 
peon equ 
dph equ 
dpl equ 
count equ 
flagr equ 
rlinel 
rlineh 
tdpl equ 
tdph equ 
count1 
count2 
divcount 
avl equ 
avh equ 
xi equ 
yi equ 
yminus1h 
yminusll 
xarray 
yarray 
temp equ 
xm2 equ 
xp2 equ 
threshold 
fIminequ 
f1max equ 
f2min equ 
f2max equ 
f3min equ 
f3max equ 
t1 equ 
t2 equ 

ODOh 
OfOh 
ObOh 
090h 
98h 
08bh 
08dh 
Oa8h 
89h 
99h 
88h 
087h 
083h 
082h 
05fh 
20h 
equ 
equ 
33h 
34h 
equ 
equ 
equ 
38h 
39h 
3ah 
3bh 
equ 
equ 
equ 
equ 
40h 
4lh 
42h 
equ 
44h 
45h 
46h 
47h 
48h 
49h 
4ah 
4bh 

31h 
32h 

35h 
36h 
37h 

3eh 
3dh 
3eh 
3fh 

43h 
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t3 egu 4ch 
flminav egu 4dh 
flmaxav equ 4eh 
f2minav equ 4th 
f2maxav equ 50h 
f3minav equ 5Ih 
f3maxav egu 52h 
learncount egu 53h 

caminusll equ 54h 
call1inusIh equ 55h 
ip egu Ob8h 

contword egu 2Ih ;keep track of control word 
regadd egu 22h ;register address for m.C. 
pendflags egu 23h ;status flags for agv manual pendant 

;and motors 
obstdetected egu 24h 

apl egu 56h 
apm egu 57h 
aph egu 58h 
cvl egu 59h 
cvh egu 5ah 
pI egu 5bh 
pm egu 5ch 
ph egu 5dh 
leftmost equ 5eh 
rightmost equ 5fh 
aph equ 60h 
apm egu 61h 
apl equ 62h 
genpurp equ 63h 
gain equ 64h 
pole equ 65h 
zero equ 66h 
turns equ 67h 
mpointerh equ 68h 
mpointerl equ 69h 

;variables to do with obstacle avoidance 

deverrorl egu 6ah 
deverrorh equ 6bh 
turnslog egu 6ch 
howmanysofar egu 6dh 
oavtempreg egu 6eh 
errtheta egu 6fh 
destheta egu 70h 
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tempoa 
obavflags 

71h 
equ 

equ 
25h ; bit addressable 

#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 

maxdeverrorh #60h 
maxdeverrorl #Offh 
enough #24h 
allowable #30h 
turns inc #5 
lor obavflags. 0 
canpass obavflags.l 
passedyet obavflags.2 

#define txint scon.l 
#define rxint scon.O 
#define sent flagr.O 
#define recvd flagr.l 
#define resl flagr.2 
#define res2 flagr.3 
#define ramflag flagr.4 
#define eol flagr.5 
#define eo12 flagr.6 
#define nzflag flagr.7 

#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 

#define 
#define 
#define 
#define 

oeb contword.O 
hosta031 contword.l 
ddrwr contword.2 
rw contword.3 
ale contword.4 
csb contword.5 
csa contword.6 
oea contword.7 

piacont #Oc003h 
piab #OcOOlh 
piac #Oc002h 
piaa #OcOOOh 

;pia port b 
;pia port c 
;pia port a 

;pia control register 

#define keypressed pendflags.O ;indicates if a pendant button is 
;pressed or not 

#define motoraorb pendflags.l ;indicates which motor is addressed 
#define actionreq pendflags.2 ;used in obstacle avoidance control 

;action routine 
#define firstcodeflag pendflags.3 ;used in contaction 

#define forwardvell 60h 
#define forwardvelh Oh 
#define backwardvell OeOh 
#define backwardvelh Offh 
#define positionerror #80h ;used in compareposition 
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#define advinch #OOh ;used in straightmove 
#define advincm #Oah 
#define advincl #OOh 

#define 
#define 
#define 

obstfromleft obstdetected.O 
obstfromcentre obstdetected.l 
obstfromright obstdetected.2 

;define constants which represent a 5 degree turn 

#define 
#define 
#define 

#define 
#define 
#define 

segment 

public 
public 
public 
public 
public 
public 
public 
public 
public 
public 
public 
public 
public 
public 
public 
public 

extern 
extern 
extern 

start ljmp ini tial 
skip 19h,O 
ljmp timer! 
skip 05h,O 
ljmp serial 

posinch #00 ;used in incangle 
posincm #02h 
posincl #090h ;90h 

neginch #Offh 
negincm #Ofdh 
negincl #070h 

byte at 0000-3fff 'eprom' 

waitabit 
propvelcont 
allstop 
hostop 
triplescan 
obstavop 
resetflags 
sendmessage 
convert 
turnright 
turnleft 
straightmove 
return 
readposition 
seeifmovefinished 
tempmess 

report. w 
absolute.w 
obstav.w 
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initial 

aroundag 

waithere 

skip 019h,O 

lcall setup ;set up baud rates and interrupts etc. 

I callI earnseq ;learn code features 

mov dptr,#m7 
lcall sendmessage ;send wait for key press message 

clr recvd ;ready for reception 
jnb recvd,waithere ;wait for a char 

mov a,sbuf ;get char 
cjne a,#'C',start;if not C then reinitialise 

lcall obstavop 
lcall resetflags 

lcall resetmc 

;take control of motor controllers 
;reset motor controller flag register 

;************************************************************************ 
; * 
; * 
; * 

OBSTACLE DETECTION START 

;*************************************************t*t*t*tt***tt**tttt*t*t 

;scan for obstacles 

lcall propvelcont ;host control mode 
I call allstop ; stop agv motors 
lcall hostop ;select host operation 

oa#l lcall triplescan ;scan for obstacles 
mov a,obstdetected ;if no obstacle was detected ie. 

jz oa#1 ;a=O then go round again 

lcall obstav 

ljmp aroundag 

;include motor control routines 

;resetmc 
;initidle 

#include U mcincl. asm U 

resets and initialises motor controllers 
puts motor controllers into init/idle mode 
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;positioncont 
;writeposition 

; readposition 

; resetposi tion 

;hostop 
;obstavop 
;propvelcont 

; subrou tine 

puts motors into position control mode 
writes the 24 bit 2's complement number in ph,pm,pl to 
motor controller position command registers 
if flag motoraorb=O then write is to right motor 
if flag motoraorb=l then write is to left motor 
read actual position of motor returning result in aph,apm,apl 
if flag motoraorb=O then read is from right motor 
if flag motoraorb=l then read is from left motor 
Resets actual motor position registers to 0 
if flag motoraorb=O then right motor position is reset 
if flag motoraorb=l then left motor position is reset 
sets motor control board for host operation 
sets motor control board for obstacle avoidance operation 
puts motors in proportional velocity control 

;scan for obstacles but double check if it looks like there is one 
;return result in obstdetected 
triplescan 

;double check 

;triplecheck 

endtriplescan 

;subroutine 

lcall scan 

mov a,obstdetected 
jz endtriplescan 

lcall scan 
mov a, obstdetected 
jz endtriplescan 

lcall scan 

lcall report 

ret 

;scan for obstacles 

;see if any was present 
;if not go to end 

;else double check 

;initiate point to point straight line trapezoidal move using 
;acceleration and maximum velocities set up in trapezcont subroutine 

straightmove 

;reset current position command registers 

clr motoraorb ;select motor a 
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I cal! resetposi tion 
mov ph, #0 
mov pm, #0 
mov pl,#O 

lcal! writeposition 

setb motoraorb 
I call resetpositi on 

mov ph, #0 
mov pm, #0 
mov pl,#O 

lcal! writeposition 

;select llLOtor b 

;now write desired positions 

movenotdone 

;subroutine 

cl r motoraorb ; select motor a 

mov ph, advinch 
mov pm, advincm 
mov pI, advincl 

;advanceincrement 

lcall tzwriteposition ;write to motor controller 
setb motoraorb ;select motor b 
lcall tzwriteposition ;write to motor controller 
lcall trapezcont ;start move 

lcall triplescan ;check for obstacles 

lcall seeifmovefinished 
jz movenotdone 
inc howmanysofar 
ret 

;returns a:=l if it is 

;check to see if a point to point move has finished yet 
;return a=O if mov isn't finished or a=l if it is 
seeifmovefinished 

elr motoraorb 
lcall compareposition 
jnz movnotfinished 

setb motoraorb 
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lcall compareposi tion 
jnz novnotfinished 

nova, #1 
ret 

;indicate that nove is finished 

novnotfinished 

;subroutine 

elr a 
ret 

;compare actnal position registers with values in ph,pn,pl 
;retnrn a=O if the error is less than positionerror else a=l 
compareposi tion 

lcall readposition ;return with actnal position val use in 
;aph,apm,apl 

mov dptr, factual 
I call sendmessage 
mov a, aph 
I call convert 
nova, apm 
I call convert 

mov dptr,#desired 
lcall sendnessage 
mov a, ph 
lcall convert 
nova, pn 
I call convert 

mov a,ph 
snbb a, aph 
jnz cpfinish 

nov a,pn 
subb a, aplll 
jnz cpfinish 

nov a,pl 
subb a, apl 
lcall absolute 
cl r c 
subb a, #40h 
jnc cpfinish 

cl r a 

;put connand position high byte in a 
;a=ph-aph 

;junp if values aren't equal 

;put eonnand niddle byte in a 
;a=pm-aplll 

;put command low byte in a 
;a=pl-apl 

;get absolute error 

;allowable position error 
;if a>allowable error then jUlllP 
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epfinish 

; subroutine 

ret 

mov a, #1 
ret 

;positions are equal 

;positions are not equal 

;turn AGV on the spot by writing a positive position increment to left motor 
;and a negative position increment to right wheel 
;wait until move is complete 
turnright 

trwaitagain 

leall triplesean 

leal! positioneont 

elr motoraorb 
leal! resetposition 
mov ph, negineh 

mov pm, neginem 
mov pl,neginel-28h 
leal! writeposition 

setb motoraorb 
leall resetposition 
mov ph, posineh 

mov pm, posinem 
mov pl,posinel+28h 
leall writeposition 

;mov eount,#O 

;see if any obstacles are in the way 

;prepare to address right motor 
;zero actual position registers 

;load position registers with 
;position move 

;write new values to right motor cont 

;now write to left motor 
;zero actual position registers 

;load position registers with 
;position move 

;write new values to left motor cont 

;reset counter 

inewaitforpos ;wait until move is finished 

trearryon 
el r motoraorb 
mov ph, negineh 

mov pm, neginem 
mov ,pl,neginel 
leall eompareposition 

;aeeess right motor 
;load position registers with 

;position move 
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;subroutine 

jnz incwai tforpos 
setb motoraorb 
mov ph, posinch 

mov pm, posincm 
mov pI, posincl 
lcal! compareposition 
jnz incwaitforpos 
ret 

;if it isn't then jnmp 
;now test left motor 
;load position registers with 

;position move 

;see if left motor is in its final 
;position yet 

;turn AGV on the spot by writing a negative position increment to left motor 
;and a positive position increment to right wheel 
;wait until move is complete 
turnleft 

tlwaitagain 

lcal! triplescan 

lcall posi tioncont 

clr motoraorb 
lcall resetposi tion 
mov ph, posinch 

mov pm, posincm 
mov pI, posincl 
lcall wri teposi tion 

setb motoraorb 
lcail resetposition 
mov ph, neginch 

mov pm, negincm 
mov pI, negincl 
lcall writeposition 

;mov count,#O 

;see if any obstacles are in the way 

;prepare to address right motor 
;zero actual position registers 

;load position registers with 
;position move 

;write new values to right motor cont 

;now write to left motor 
;zero actual position registers 

;load position registers with 
;position move 

;write new values to left motor cont 

;reset counter 

decwai tforpos ;wait until move is finished 

tlcarryon 

setb motoraorb 
mov ph, neginch 

mov pm, negincm 

;access right motor 
;load position registers with 

;position move 
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; subroutine 

m.ov pI, neg incl 
I call comparepos iti on 

jnz decwai tforpos 

clr motoraorb 
m.ov ph, posinch 

mov pm, posincm 
mov pI, posincl 
lcall compareposition 
jnz decwai tforpos 
ret 

;see if right m.otor is in its final 
;position yet 

;now test left m.otor 
;load position registers with 

; positi on move 

;see if left m.otor is in its final 
;position yet 

;idling loop to give screen time to update 

wait25m.s 

w25lp1 
w25lp2 

m.ov count1,#50 

m.ov count2,#255 
djnz count2,w25lp2 

djnz countl,w25lp1 

ret 

;subroutine cause a delay 
pause mov rO, 255 
lp mov r1,255 
lpl djnz rl,lpl 

; subroutine 

djnz rO,lp 
ret 

;scan for obstacles and return: 

scan 

obstdetected = 0 for no obstacle 
= 1 for obstacle approaching from left 

= 2 or 3 if obstacle is in mid view 
= 4 if obstacle is emerging from right 
= 5 or 7 if obstacle is filling field of view 

caminus11 = suggested control action 

elr pl.O ;select 8031 control of video RAM 
lcall preprocess ;do digital filtering and cleaning up 
lcall parse ;find positions of valid codes 
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; subroutine 

lcall contaction ;send results of recognisor to serial 

setb pl.O 
lcall wait25ms 

ret 

;port and also return with value in 
;caminusll register 

;select vfs control of video RAM 
;wait for screen to update 

;Assuming avoidance is always to alter course to the right 
;work out control action and send it down serial line 
contaction 

;find left and right most codes 

mov rightmost,#O ;address of right most code 
mov leftmost,#255 ;register holding leftmost code 

;start at right hand side of image 

mov dptr, #76ffh ; 76ffh ; array base address 
elr pl.l ;select ramb 
clr firstcodeflag 

eontactionlpl movx a,@dptr 
cjne a,#16,canv ;if not a valid code then jump 

;if firsteodeflag has been set then don't look for right code anymore 

jb firstcodeflag,lookforleft 
mov rightmost,dpl ;else get address of code 
setb firstcodeflag ;set flag to say that rightmostcode 

;has been found 
lookforleft 

mov leftmost,dpl 

canv dec dpl 
mov a,dpl 
jnz contactionlpl ;go round until line completed 

cafnd mov a,rightmost 

cahere2 
mov obstdeteeted,#O ;assume no obstacle is present 
mov a,rightmost ;get control action 
jz noobstacle 
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notfromleft 

notfromright 

noobstacle 

;subrontine 
;stop agv motors 
allstop 

;subroutine 

setb 

mov a, leftmost 
clr c 
snbb a,#55h ;a=leftmost-55h 
jnc notfromleft ;if leftmost>55h then obstacle isn't 

;emerging from left 
setb obstfromleft ;else it is 
sjmp noobstacle 

mov 
clr 
snbb 
jc 

setb 
sjmp 

setb 

ret 

a, rightmost 
c 
a, #Oaah ; a=rightmost-aah 
notfromright;if a<aah then obstacle 

;isn't emerging from right 
obstfromright ;else it is 
noobstacle 

obstfromcentre ;else it is mid-view 
obstfromleft;if obstacle is emerging from centre 

;then default to obstfromleft 

;motor a 

ci r motoraorb 
mov cvI, #0 
mov cvh, #Oh 

I call command vel 

setb motoraorb 
mov cvl,#O 
mov cvh, #0 
I call command vel 

ret 

;first motor a 
;zero velocity 

;send it to mc 

;now motor b 
; zero velocity 

;send a message starting at address in dptr delimited by 0 chr to serial port 
sendmessage clr a 
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senmessok mov 

;subroutine 

movc a I @a+dptr 
jnz senmessok 
mov sbuf ,#0 
lcal! wai t 
ret 

sbuf/a 
lcal! wai t 
inc dptr 
ljmp sendmessage 

;read string table entry 
;if the chr isn't a delimiter cont. 

; send del imi ter 
;wait until its gone 
;else return 
;put chr in serial register 
;wait until its gone 

;get next character 

;learn feature parameters 
learnseq mov dptr/#ml ;point at first message 

learnseqlpl 

. learnseqendpt 

learnseqcontl 

learnseqlp2 

jnb 

lcall sendmessage ;send it down serial line 
mov sbuf ,#0 
clr recvd 

recvd/learnseqlpl 

mov a, sbuf 
mov sbuf I a 
lcall wait 

;clear for serial reception 
;wait here for serial reception 

;get character 
;echo character 

cjne a/#'O'/1earnseqcontl ;if it isn't a Q jump 
mov dptr /#m2 ;point at aborted message 

lcall sendmessage ;send it to serial port 
ret ;finished 

mov dptr /#m3 
lcallsendmessage ;send it 

clr recvd 
jnb recvd /learnseqlp2 

mov a, sbuf 
mov sbuf I a 
lcall wait 

cjne a/#'C'/learnseqendpt 

;point at continue message 

;get ready for serial reception 
;wait for chr 

;get character 
;echo character 

;if its not a C jump 

lcall learn ;else learn parameters 
mov dptr I #m4 ; point at results message 
lcall sendmessage ;send the message 

mov dptr I #m4a ; send parameter list 
lcal! sendmessage 
mov a/tImin 
1 ca l! convert 
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;subroutine 

IllOV dptr,#Ill4b 
lcall sendm.essage 
IllOV a, flmax 
I call convert 

IllOV dptr,#Ill4c ;send param.eter list 
lcall sendIllessage 
IllOV a, f2min 
lcall convert 

IllOV dptr / #Ill4d 
1 call sendIllessage 
IllOV a/ f2max 
1 call convert 

IllOV dptr, #Ill4e ; send paraIlleter list 
1 call sendIllessage 
IllOV a,f3Illin 
lcall convert 

IllOV dptr / #m4f 
I call sendmessage 
IllOV a/ f3max 
lcall convert 

mov dptr / #Ill5 
lcall sendm.essage 

ret 

;Learn feature paraIlleters for use by pattern recognisor 
;uses fIminav/fImaxav/f2Illinav,f2maxav/f3Illinav/f3maxav 

flmin/flmax/f2Illin/f2max/f3Illin,f3max 
;leaves with paraIlleters in fIIllin/flIllax ... 
learn 

IllOV flIllinav, #0 
IllOV flmaxav, #0 
IllOV f2Illinav/#0 
IllOV f2maxav,#0 
IllOV f3Illinav, #0 
IllOV f3maxav / #0 

mov learncount,#8 ;nuIllber of cOIllplete cycles 
learnlpl lcall preprocess ;process video signal 

IllOV dptr / #7640h ; base address of processed array; 7610h 
clr pl.I ;select raIll b 
cl r eol ; reset end of line fl ag 
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mov flmin, #255 
mov flmax,#O 
mov f2min, #255 
mov f2max,#0 
mov f3min, #255 
mov f3max, #0 

learnlp2 leall extfeat ;extract tl,t2,t3 from array 
mov a,tl 
elr c 
subb a,t3 ;a=tl-t3 
jnc learnt6 ;if t3 isn't bigger than tl then 

;ignore this peak 

mov a,t2 
elr e 
subb a, t3 ;a=t2-t3 
jne learnt6 ;if t3 isn't bigger than t2 then jump 

elr e 
mov a, flmax 
subb a, t! ; a=flmax-tl 
jne learnt! ;if flmax >= tl then jump 
mov flmax, tl ;else flmax=tl 

learnt! elr e 
mov a, t! 
subb a, flmin ;a=tl-flmin 
jne learnt2 ;if tl >= flIDin then jump 
mov flmin, t1 ;else fIIDin=t1 

learnt2 elr e 
mov a,f2max 
subb a,t2 ;a=f2max-t2 
jne learnt3 ;if f2max >= t2 then jump 
mov f2max,t2 ;else f2max=t2 

learnt3 elr e 
mov a,t2 
subb a, f2min ;a=t2-f2min 
jne learnt4 ;if t2 >= f2min then jump 
mov f2min,t2 ;else f2min=t2 

learnt4 clr e 
mov a, f3max 
subb a,t3 ;a=f3max-t3 
jne learnt5 ;if f3max >= t3 then jump 
mov f3max,t3 ;else f3max=t3 

learnt5 clr e 
mov a,t3 
subb a, f3min ; a=t3- f3min 
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learnt6 jnb 

learnfin 

jnc learnt6 ;if t3 >= f3min then jump 
mov f3min, t3 ;else f3min=t3 

eol,learnlp2 ;if not at end of line jump 

clr c 
mov a, flmin 
addc a, flminav 
mov flminav, a 

clr c 
mov a, flm.ax 
addc a, flm.axav 
mov flm.axav, a 

clr c 
mov a, f2min 
addc a, f2minav 
mov f2minav, a 

clr c 
mov a,f2m.ax 
addc a,f2maxav 
mov f2maxav,a 

clr c 
mov a,f3min 
addc a, f3minav 
mov f3minav, a 

clr c 
mov a, f3m.ax 
addc a, f3m.axav 
mov f3maxav, a 

dec learncount 
mov a,learncount 
jz learnfin 
ljmp learnlpl 

mov a, flminav 
I call di vby8 
mov flmin, a 

mov a, f2minav 
lcall divby8 
mov f2min, a 
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mov a, f3minav 
lcall divby8 
mov f3nin,a 

mov a,f11D.alaV 
lcall divby8 
mov f I1D.aI , a 

nov a,f21D.alaV 
lcall divby8 
mov f21D.aI, a 

nova, f31D.alaV 
1 call di vbyB 
nov f31D.aI, a 

ret ;results are now in place 

;subroutine to divide single byte nu1D.ber in a by B and leave result in a 
di vbyB nov b, #B 

;subroutine 

di v ab 
ret 

;preprocess video signal etc 
preprocess lcall average 

;subroutine 

lcalllpf 

lcalliocatepeaks 
ret 

;transversal filter 8 lines vertically 
;recursive low pass 

;filter horizontally 
;locate features in result 

;Average B lines starting at address 7bOOh ,destination 74h 

average 
mov rlinel, #00 ;this is where the result will go 
mov rlineh,#74h 
mov dptr,#7bOOh ;starting address 
mov count2, #128 ;load count2 with colu1D.n counter 

count2Ioop mov tdpl,dpl ;te1D.porarily store data pointer 
nov tdph,dph ;or colu1D.D address 

;ram a 
setb pl.l ;select RAM A 
nov avl,#O ;set current average to 0 

A3.18 



countlloopa 

divloopa ID.OV 

;ram b 
clr pl.l 

countlloopb 

ID.OV avh, #0 
ID.OV countl,#8 

ID.OVI 

clr 
addc 
ID.OV 
clr 
addc 
mov 

ID.OV a,#!28 
clr 
addc 
ID.OV 
clr 
addc 
ID.OV 

;Ioad count! with line number 
a,@dptr ;get first value from raID. a 

c ;add this value to average so far 
a,avl 
avl,a 
a 
a,avh 
avh,a 

;increlD.ent data pointer to next line 
c 
a,dpl 
dpl,a 
a 
a,dph 
dph,a 

djnz countI, countlloopa ; go round un til 

ID.OV 

rrc 
mov 
mov 
rrc 
mov 
djnz 

ID.OV 
ID.OV 
movx 
ID.OV 
ID.OV 

ID.OV 
ID.OV 
ID.OV 

divcount,#3 ;prepare to divide average by 8 
a,avh ;divide the average by 8 
a 
avh,a 
a,avI 
a 
avI,a 
divcount,divloopa 

dpl, rlinel ;prepare to store the result 
dph, rlineh 
@dptr,a ; store it 
dpI,tdpl ;retrieve column address 
dph,tdph 

;select RAM B 
avl,#OO ;set average to 0 
avh,#OO 
countI,#8 ;load count! with line count 
ID.OVX a,@dptr ;get a value 

clr c ;add it to average so far 
addc a,avl 
ID.OV avl,a 
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divloopb 

tst2 

finished 

;subroutine 

clr a 
addc a, avh 
mov avh,a 

mov a,#l28 
clr c 
adde a,dpl 
mov dpl,a 
clr a 
addc a,dph 
mov dph,a 

;set dptr to next line 

djnz countl, countlloopb ;go round again until 

mov divcount,#3 ;prepare to divide result by 8 

;8 lines have been 
;done 

mov a,avh ;do division 

ret 

rrc a 
mov avh, a 
mov a,avl 
rre a 
mov avl, a 
djnz divcount,divloopb 

mov dpl, rlinel ;get ready to store result 
mov dph, rlineh 
mon @dptr,a ; store it 
inc dptr ;increment result address 
mov rlinel, dpl 
mov rlineh, dph 
mov dpl,tdpl ;retrieve column address 
mov dph,tdph 
inc dptr ;increment to next column 

dec eount2 ;have all the columns been done yet? 
mov a,count2 
jz finished 
ljmp count2loop 

;finished averageing eight lines 

;now do low pass filter 
;using algorithm yfiJ:={xfiJtyfi-lJtt) div (ttl) for t=3 
;use l500-75ff to store result 
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;set initial values 

lpf mov 

filterloop 

;also put result in 7600h - 76ff RAM A 

mov 

mov 
mov 
mov 
mov 
mov 
mov 

tdpl,#O 
tdph,#76h ;destination 

yminusll, #0 
yminuslh, #0 
xarraY,#74h ;souree 
yarray, #75h ; destinati on 
rlinel,#O ;souree array low byte 
dpl,#OO 

setb pl.! 
mov dph,xarray 
mov dpl, rlinel 
movx a,@dptr 
leall doeales 
mov a, yi 
mov dph, yarray 
movx @dptr, a 

;seleet ram a 

;source low byte 
;get xi 
;ealculate filter algorithm 

;store result 

;also put result in array starting at address 7600h RAM A 

setb pl.! ;seleet ram a 
mov rlinel,dpl ;save source low byte 
ID.OV dph,tdph ;destination 
ID.OV dpl,tdpl 
ID.OVX @dptr,a ;store result 
inc dptr ;point at next location 
mov tdpl,dpl ;save address 

clr pl.! ;select raID. b 
mov dpl,rlinel ;retrieve source address 
mov dph,xarray 
movx a, @dptr ;get next xi value 
leall doealcs ;calculate filter algorithm 
mov a,yi 
mov dph,yarray 
movx @dptr,a ;store result 

;also put result in array starting at address !600h RAM A 

setb pl.! ;select ram a 
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mav rlinel,dpl ;save source low byte 
mov dph,tdph ;get destination address 
mav dpl,tdpl 
man @dptr,a ;store value 
inc dptr 
mov tdpl,dpl ;save destination address 

inc rlinel ;increment address to next 
;value 

mov a, rlinel 
cjne a,#128,filterloop ;finished yet? 
ret 

;subroutine 
;now extract maxima and minima from the remaining array which starts at 
;address [xarrayJ-75h and put resulting peaks in [yarray]-76h 

locatepeaks ;destination array 1600h-16ffh RAM B 

Iploop2 

lploopl 

mov xarray, #15h 
mov yarray, #16h 
mov rlinel,#Ol 
mov tdpl,#Ol 
mov dpl, #01 
mov count2, #128 

clr pl.I 
mov dptr,#1600h 
clr a 
movx @dptr,a 

mov 

cl r 
mov 
mov 

cpl 
mov 
mov 

countl,#02 

ramflag 
c, ramflag 
pl.l,c 

ramflag 
c,ramflag 
pl.l,c 

; input array 
;output array 
;use rlinel as xarray low byte 
;use tdpl as yarray low byte 

;input and output array low byte 
;use count2 to store column ref 

;select ram b 
;set undefined zero location of 

;output array to 0 

;use countl to reference RAM A & B 

;use ram flag to keep track of pl.l 
;pl.l=O 

;select other ram 

;get x[i],x[i-2J and x[i+2J 

mov dpl, rlinel ;get xarray low byte 
mov dph,xarray ;set up for getting xi 
movx a,@dptr ;get x[iJ 
mov xi, a 

dec dpl 
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movx a,@dptr 
mov xm2, a 

;get x[i-2] 

inc dpl 
inc dpl 

movx a,@dptr 
mov xp2,a 

;get x[i+2] 

dec dpl ;set dptr to point back to xli] 

mov rlinel, dpl ; save xarray col umn count 

mov dph,yarray ;set dptr to point at output array 
mov dpl, tdpl ; get yarray col umn count 

;next get values of: x[i]-x[i-2] and x[iJ-x[i+2J 
;the result is resI set if: xli] < x[i-2] and res2 set if xli] < x[i+2] 

resI clear if xli] >= x[i-2] and res2 clear if x[i] >=x[i+2] 

clr c 
mov a,xi 
subb a,xm2 ;a:=x[i]-x[i-2] 

mov resI,c ;carry will be set if result < 0 

clr c 
mov a,xi 
subb a,xp2 ;a:=x[iJ-x[i+2] 

mov res2,c 

;now do tests to detect maxima and minima 
;if resI AND res2 (x[i] < x[i-2] AND x[i] < x[i+2]) then yarray[i]:=I (-ve) 
;if not resI AND res2 (x[i] >= x[i-2] AND x[i] >= x[i+2] then 

yarray[i]:=2 (+ve) 
;eIse yarray[i]:=O 

Ipnotzero mov c,resI 
anI c,res2 ;if x[i] < x[i-2] AND x[i] < x[i+2] 
jc Ipneg ;then yarray[i] is a minimum 
mov c,resI 
cpl c ;resI:=-resI 
anI c,/res2 ;if xli] >= x[i-2] AND xli] >= x[i+2] 
jc lpposi ;then yarray[i] is a maximum 
clr a ;else yarray[i]:=O 
ljmp lpnext 

A3.23 



lpneg 

lpposi 

lpnext 

;subroutine 
doeales 

divlpfilt 

BlOV 

inc rl inel 

a,iOI 
1 jm.p lpnext 

BlOV 

elr 
BlOVX @dptr,a 
inc dptr 
m.ov tdpl,dpl 

;yarray(i}:=l (-ve) 

a,#02 ;yarray(i}:=2 (tve) 

pl.l ;seleet raBl b 
;write value to yarray 
;next yarray column 

;save yarray low byte 

djnz eountl,lploopl ;go round again for next RAM 

;next xarray address 
djnz eount2,lploop2 
ret 

;go round again for next column 

;do (y[i-I}*3txi)/(4) 
;enter this subroutine with a=xi 
;return with result in yi 

mov xi,a 
mov a, yntinusll 
BlOV b,#1 
Blul ab ;do y[i-l]*t 
mov yminuslh,b 
BlOV yntinusll,a ;store result 

;do y[i-I]*3tx[iJ 

elr e 
adde a, xi 
mov yntinusll, a 
elr a 
adde a, yntinuslh 
BlOV yntinus lh, a 

;do (y[i-IJt3tx[i]) div 4 

BlOV diveount,#3 ;prepare to divide by 4 
mov a,yntinuslh ;do division 

rre a 
BlOV yminuslh, a 
BlOV a, yntinusll 
rre a 
BlOV ym.inusll, a 
djnz diveount,divlpfilt 
m.ov yi,yntinusll 
ret 
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;subroutine 
;parse remaining peaks array for valid codes 
parse mov dptr,#7600h ;base address of array 

parselp 

;subroutine 

clr pl.l ;select ram b - peaks array] 
clr eol2 ; clear end of line flag 

lcall extfeat ;extract fetures from peaks array 
;tl,t2,t3 now = features 
;dptr = address of first +ve peak 

lcall testfeat 
movx @dptr, a 

jnb eol2, parselp 
ret 

;test features for pattern class 
;put result in peaks array 

;ie. peaks[] = 10h if a code exists 

;extract tl,t2,t3 from peaks array 
;enter with current address in dptr 
extfeat mov a, #02 ; fie peak 

lcall fnp ;find next +ve peak 
;returns with dptr=address, a=diff between exit and entry adds. 

;subroutine 
;find next peak 

mov a, #01 
lcall fnp 
mov tl,a 

mov a,#02 
lcall fnp 
mov t2, a 

mov tdpl, dpl 

mov a,#OI 
lcall fnp 
mov t3,a 

mov dpl, tdpl 
ret 

;enter with sense in a (l=-ve, 2=+ve) 
;enter with current address in dptr 

;-ve peak 
;find next -ve peak 
;first feature 

;+ve peak 
;find next +ve peak 
;second feature 

;starting point of next search 

;-ve peak 
;find next -ve peak 
;third feature 

;start for next search 

;exit with a = difference between current address and address of next 
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;peak with sense 'sense' 
fnp mov 

fnplp inc 

fnokcontl cjne 

temp, a 
mov r linel, dpl 

dptr 

;save sense 
;save current address 

;next location 
mov 
cjne 
setb 

setb 

a,dpl 
a,#239,fnokcontl ;used for learning only;239 
eol 
a,#255,fnokcont2 ;are we at end of line yet? 
eo12 ;yes set flag 

fnokcont2 movx a,@dptr ;get value from peaks array 
cjne a,temp,fnpnxt ;no this isn't correct peak goto 

;end of line test 
ljmp fnpfound ;else leave loop because peak found 

mov a,dpl fnpnxt 
jnz fnplp ;if not end of line go round again 
mov a,#O ;if end of line set this feature to 0 
ret ;leave subroutine 

fnpfound ;dptr=address of peak 
mov a, dpl ; curren t address low byte 
clr c 
subb a, rlinel ; find difference between addresses 
ret 

;subroutine 
;test features for membership of code class pattern 

rules are tImin (= tl (= fImax 
. AND t2min (= t2 (= f2max , 
. AND f3min (= t3 (= f3max in order to be a code class pattern , 

;first find individual results tl(=fImax, tl >=flmin etc 

testfeat clr 
mov 
subb 
mov 
cpl 

clr 
mov 
subb 
cpl 
anI 
mov 

elr 
mov 

c 
a, flmax 
a,tl 
resl,c 
resl 

c 
a,tl 
a, flmin 
c 
c,resl 
resl,c 

c 
a,t2max 

; a=flmax-tl 

;it resl = I then fImax>=tl 

;a=tl-flmin 
;if c=l then tl>= tImin 
;c=l if timin (= tl <= fimax 
;resl = result 
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test fend ret 

;subroutine 

subb a, t2 
cpl c 
anI c, resl 
mov resl, c 

clr c 
mov a, t2 
subb a, f2l1Lin 
cpl c 
anI c,resl 
mov resI, c 

clr c 
mov a, f3max 
subb a, t3 
cpl c 
anI c,resI 
mov resl, c 

clr c 
mov a, t3 

;a=f2max - t2 
;c=I if flmax > t2 

;resl = 1 if a code so far 

;a=t2-f2min 

; a=f3max - t3 

subb a, f3min ; a=t3-f3min 
cpl c 
anI c,resI 
;c=I if this is a code else c=O 

clr a 
jnc testfend 
mov a, #IOh ;indicate code present 

; to idle while waiting for a serial interrupt 
wait jnb sent, wait 

;subroutine 
convert 

clr sent 
ret 

mov rS, a 
swap a 
anI a,#Ofh 
I call decode 
mov r6,a 
mov a, rS 
anI a,#Ofh 
I call decode 

;convert single byte to 2 hex digits 
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mov r7,a 
mov sbuf,#24h ;$ 
lcall wait 
mov sbuf,r6 
lcall wait 
mov sbuf,r7 
lcall wait 
mov sbuf,#' , 
I call wai t 
ret 

;subroutine 
decode 

mov r4,a 
clr c 
subb a,#10 
jnc big 
mov a,r4 
add a,#30h 
ret 

big mov a,r4 
add a,#37h 
ret 

;subroutine 
setup 

clr p1.0 ;select 8031 
clr sent ;initialise sent flag 
clr nzflag ;flag indicating a nonzero control action 
clr actionreq ;flag indicating that oa is required 

setb ie.7 ;enable all interrupts 
orl pcon,#80h ;set double baud rate bit in pcon 
mov thl,#243 ;(OF3)timer 1 reload value to give 4800 baud 
orl tmod,#20h ;set timer 1 for mode 2 auto-reload 

;8 bit timer/counter 
setb scon.6 ;set serial port in mode 1 
clr scon.7 ;(start bit, 8 data bits, 1 stop bit) 
cl r tcon.2 ;intl low levekl triggered 
setb ip.4 ;intl high priority 

setb tcon.6 ;set timer 1 run control bit (ie. start tIl 
setb ie.4 ;enable serial interrupts 

setb ie.2 ;enable intI 
clr rxint ;clear serial interrupt rI 
setb scon.4 ;enable serial reception 

lcall pause ;allow pia time to reset 
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mov a,#90h. ;control word for pia 
mav dptr,placont;control register 

@dptr,a ;set ports band c outputs, a input 
;8 bit timer/counter 

man 

mov flmin, #2 ;2 ;set default values for features 
mov flmax, #6 ; 5 
mov f2min,#2 ;2 
mov f2max,#6 ;5 
mov f3min, #4 ;4 
mav f3max,#18h ;9 

lcall hostop ;make sure that agv is under host 
;computer operation 

mav caminus11,#0;initialise control action registers 
mov caminus1h, #0 

;initialise digital filter parameters for motor controllers 
mov gain, #05h ;Olh 
mov pole,#040h ;40h 
mov zero,#Oe5h ;e5h 

ret 

;interrupt subroutine 
serial jnb 

setb sent 
clr hint 
reti 

txint,nottx ;jump if not a transmit interrupt 

nottx setb recvd 
clr rxint 
reti 

;interrupt subroutine 
timerl reti 

;set busy flag 
;reset serial interrupt 

;must be a receive interrupt 
;reset serial interrupt 

ml string 13,10,13,10, IOBSTACLE AVOIDANCE LEARNING SEQUENCE',13,10,13,10 
string "If Not Required Press 'Q' Now, Any Other Key Will Continue The Sequence 1 ,13,10,0 

m2 string 13,10,13,10,1 Learning Sequence Aborted, System Now Using Defanlts l ,13,10,0 
m3 string 13,10,13,10,1 Position Calibration Object and Press 'C' To Continne D ,13,10,O 
m4 string 13,10,13,10,1 Learned Feature Parameters Are: u ,13,10,13,10,0 
m4a string 13,10,1 Tlmin = u,O 
m4b string 13,10,1 Tlmax = ·,0 
m4c string 13,10,13,10,1 T2min = 1,0 
m4d string 13,10,° T2max = 1,0 
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m4e string 13,10,13,10,· T3min = 1,0 
m4f string 13,10," T3max = 0,0 
m5 string 13,10,13,10,13,10, ° System is Now Running l ,13,10,O 
m6 string 13,10,13,10,0 Cont Act. is: D,13,10,O 
m7 string 13,10,13,10,1 Press rc r to continue, any other key will re-initialise the 
system l ,13,10,13,10,O 
actual string 13,10, • Actual Position : n, 0 
desired string a Desired Position: 1,0 
propvela string 13,10,IRight Motor velocity is : D,O 
propvelb string" Left Motor velocity is : ",0 
posa string 13,10,DRight motor actual position: ·,0 
posb string 13,10,DLeft motor actual position: 1,0 
obstpos string 13,10,1 Obstacle position code: D,O 
camessage string D Control Action : ",0 
obstdet string 13,10,·Obstacle Detected Code: 1,0 
turned string 13,10,IAGV is now turning to avoid obstacle·,O 
proceed string 13,10,IAGV is now proceeding past obstacleD,O 
movesmessage string 13,10,DDetails of move segments made: ",13,10,0 
return string 13,10,0 
tempmess string 13,10,·Writing moves table",13,10,O 

heremess string 13,10,Dhere l ,13,10,O 

end 
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c:\cbe\8051/ 
;obstacle avoidance routines 

#include 

segment 

extern 
extern 
extern 
extern 
extern 
extern 
extern 
extern 
extern 
extern 
extern 
extern 
extern 
extern 
extern 
extern 

public 
public 
public 

obstav 

Ddefinit1.asml 

'eprom' 

waitabit. w 
propvel cont. w 
allstop.w 
hostop.w 
triplescan.w 
obstavop.w 
resetflags.w 
sendmessage.w 
convert.w 
turnright.w 
turnleft. w 
straightmove.w 
return.w 
readposition.w 
seeifmovefinished.w 
tempmess 

absolute 
report 
obstav 

;subroutine name called from obstav4 when an obstacle has 
;been detected 

mov dptr, #hellomess 
1 call sendmessage 

;take control and stop agv 

;entry code 

lcall obstavop ; take control of motor controllers 
lcall resetflags ; reset motor controller flag register 

;obstacle avoidance routine 
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; REPEAT 
oarepeat 

ao#l jb 

mov howmanysofar,#O ;zero advances counter 
mov deverrorl,#O;zero deviation from path low byte 
mov deverrorh,#O;zero deviation high byte 
mov turnslog,#OOh ;zero turns made log 
clr passedyet ;flag to say if AGV has been passed or not 
setb canpass ;flag to say that AGV can avoid obstacle 

lcailleftorright ;find out which way to avoid obstacle 
;returns 10r=0 if left 

10r=1 if right 

jnb canpass,ao#l ;if can't pass obstacle then jump 
lcall turnagv ;else turn to avoid it 
clr passedyet ;clear flag to say not passed obstacle 

passedyet,ao#2 ;if passed obstacle then jump 
jnb canpass, ao#2 ; if can't pass then jump 
lcall advanceagv ;if not passedyet AND canpass then advance AGV 

ao#2 mov a,obstdetected ;if obstacle detected then jump 

ao#3 mov 

oaorcond 

ao#4 
oapossfin 

oafinished 

jnz ao#3 
jnb passedyet, ao#3 
1 call recover 

a,obstdetected 
jz oapossfin 

jnb canpass,oafinished 
Ijmp oarepeat 

jb passedyet,oafinished 
Ijmp oaorcond 

;if not passedyet then jump 
;if not obstdetected AND passedyet then 

;recover to original path 

;if not obstdetected then 
;possible finish 

;if not canpass then finished 
;if not obstdetected AND not passedyet then 

;go round again 

;if passedyet then finished 
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------ -----

;UNTIL (not obstdetected) and (passedyet) or (not canpass) 

;Exit Code 

lcall propvelcont 
I call all stop 
lcall hostop 

;host control mode 

ret 

1 eftorri ght 

;stop agv motors 
;select host operation 

;subroutine to determine whether to attempt to pass the obstacle from the 
;left or right 
;returns 10r=0 for left 

10r=1 for right 

jnb obstfromleft,lr#1 

setb lor 
1 jmp lr#end 

I r#l clr lor 

lr#end ret 

turnagv 

;if obstacle is mostly to the right 
;then jump 

;else set lor and avoid to right 

;clr lor and avoid to left 

;return 

;subroutine to turn agv in the direction given by lor to avoid obstacle 
;ie. if 10r=0 then turn left 

lor=! then turn right 
;returns canpass=O if agv can't turn to avoid obstacle 

tagvwhile 

tagv#l 

cpI lor 

~ov a,obstdetected 
jz tagv#l 
jnb canpass, tagv#1 

1 call turndi r 

I call test turn 

1 jmp tagvwhil e 

jnb 
lcall turndir 
lcall turndir 

;WHILE obstacle detected 
;AND canpass 
;DO turn (uses lor and returns obstdetected) 

;returns canpass=O if can't avoid obstacle 

;end WHILE 

canpass,tagv#3 ;if can't pass then ju~p 
;else do a couple of turns to ~ke 
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tagv#2 
cpl lor 
ret ; return 

tagv#3 mov dptr, #turnfail 
lcal! sendmessage 
I jmp tagv#2 

turndir 
;subroutine to turn according to lor 
;increments or decrements turnslogas appropriate 

jb lor,td#left 

td#left 

td#end ret 

test turn 

lcal! turnright 
dec turnslog 
ljmp td#end 

lcal! 
inc turnslog 

;if lor = ! then turn right 
;else turn right 

turnleft ;turnleft 

;subroutine which tests to see if the agv can turn effectively to avoid obstacle 
;returns canpass=! if it can, or canpass=O if it can't 

jnb obstfromleft, ttU 
jb obstfromright,tt#l 
jnb lor, ttU 

cl r canpass 
ljmp tUend 

ttl! jnb obstfromright,tt#2 

tt#2 setb 

jb obstfromleft, tt#2 
jb lor, tt#2 

canpass 

cl r canpass 
ljmp tt#end 

tt#end ret 

advanceagv 

;IF obstafromleft 
;AND not obstfromright 
;AND lor=left 

;THEN can't pass 

;OR IF obstfromright 
;AND not obstfromleft 
;AND lor=right 

;THEN can't pass 

;ELSE canpass = true 

;subroutine to advance agv passed an obstacle 
;uses maIdeverror 
;returns canpass=O if can't pass obstacle, otherwise canpass=! 
;retnrns passedyet=trne if obstacle has been passed 

setb canpass ;assume obstacle can be passed 
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mov howmanysofar,#O ;advance counter 
clr passedyet ;flag to say that obstacle hasn't been passed yet 

advwhile 
mov a,obstdetected ;WHILE not obstdetected 
jnz adv#l 
jb passedyet,adv#l ;AND not passedyet 
jnb canpass, adv#l ; AND canpass 

lcall straightmove ;DO advance agv 
lcall enoughadvances ; inc counter and check range 

;look up deviation error 
;returns passedyet=true or false 

adv#2ljmp 

adv#l mov 

adv#100 

lcall getdeviation ;uses current deverror and turnslog 

clr c 
mov a, deverrorl ; a=deverror low byte 
mov b,deverrorh ;b=deverror high byte 
lcall absolute16 ;get abs(b:a) 

clr c 
subb a,maxdeverrorl 
jc adv#2 
mov a, b 
clr c 
subb a,maxdeverrorh 
jc adv#2 
clr canpass 
mov dptr, #advfail 
I call sendmessage 

;a=a-maxdeverror low byte 
;if a<maxdeverror low byte then jump 
;otherwise check deviation high byte 

;jump if a<maxdeverror high byte 
;else can't pass obstacle 

advwhile ;go round again 

a,obstdetected ;IF obstdetected 
jz adv#3 
jb passedyet,adv#3 ;AND not passedyet 
mov a,howmanysofar ;AND ...... 
cl r c 
subb a,#4 ;a=a-4 
jc adv#3 ; ... AND howmanysofar>=4 

jb lor I adv#100 ; then if lor=left 
jnb obstfromleft, adv#100 ;and obstfromleft 
clr canpass ;then can't pass obstacle 
mov dptr,#advfail 
lcall sendmessage 
Ijmp adv#3 

jnb lor,adv#3 ;OR if lor=right 
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adv#3 ret 

jnb obstfromright,adv#3 
cl r canpass 
1Il0V dptr,hdvfail 
1 call sendJllessage 

enoughadvances 

;AND obstfromright 
;then can't pass obstacle 

;subroutine to increlllent advances counter and check to see if it is 
; in range 
;returns passedyet=true if agv has passed obstacle, else passedyet=false 

ea#l clr 

ea#end 

absolutel6 

IIlOV a, howlD.anysofar 
cl r c 
subb a, enough 
jc ea#l 
setb passedyet 
1 jmp ea#end 

passedyet 

ret 

;if a>=enough then passedyet=true 

;converts the 16 bit number in B:A to its 2's complelllent +ve forlll 
;result returned in B:A 

IIlOV telllpoa,a 

mov a,b 
anI a,#80h 
jz abs16#end 

1Il0V a,tempoa 
clr c 
cpl a 
addc a,#Ol 
1Il0V te1ll.poa,a 
1Il0V a,b 
cpl a 
addc a,#O 
mov b,a 
IIlOV a,te1ll.poa 
ljmp abs16#return 

;put lsbyte in temporary location 

;transfer b to a for logical operations 
;see if 1II.Sb of b is set 

;if its not then jump 

;retrieve a value 

;do 2's complelllent 
; increment a 
;save a temporarily 
;get b 

; add carry flag 
;restore value to b 
;restore value to a 
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abs16#end 
mov a, tempoa 

abs16#return 
ret 

absolute 

;restore value in a 

;converts the number in a to a positive value 
;result returned in a 

mov tempoa,a 
anI a,#80h ;see if msb is set 
jz abs#end ; jump if its not 

mov a,tempoa ;retrieve value 
cpl a ;do 2's complement 
inc a 
mov tempoa,a 

abs#end 
mov a,tempoa 
ret 
elr passedyet 
ret 

getdeviation 
;subroutine to look up deviation error and update deverror 

mov a,turnslog 
jz getdev#end 

lcall absolute 
mov dptr,#ltdeverror 
move a,@a+dptr 
mov tempoa,a 
mov a,turnslog 
anI a,#80h 
jz getdev#pos 
mov a,deverrorl 
clr c 
subb a, tempoa 
mov deverrorl,a 
mov a,deverrorh 
subb a,#O 
.Olov deverrorh,a 
I j.OlP getdev#end 

getdev#pos 
mov a,deverrorl 

;get abs(turnslog) 
;set dptr to beginning of look up table 
;get table entry 

;temporarily store table entry 

;see if turnslog is -ve 
;jump if its positive 
; a=deverror 

;deverror low byte=a-table entry 

;subtract borrow off high byte 
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elr e 
adde a,tempoa ;a=a+table entry m.ov deverrorl,a 
m.ov a,deverrorh 
adde a,tO 
m.ov deverrorh,a 

getdev#end 
ret 

recover 
;subroutine to return agv to original guide path 
;uses allowable (error) = 2 
;uses turnsinerem.ent 

recwhile 
m.ov a,obstdeteeted 
jz ree#!earryon ;WHILE not obstdetected 
ljmp ree#! 

rec#!earryon 

m.ov a,deverrorl ;a=deverror low byte 
m.ov b,deverrorh ;b=deverror high byte 
leall absolute16 ;b:a=abs(b:a) 

m.ov tem.poa I a 
m.ov a, b 
jnz ree#2 

m.ov a, tem.poa 
elr e 

;temporarily store a 
;test to see if high byte is zero 
;if high byte isn't 0 then no pOint testing low byte 

;else test deverror low byte 

subb a, allowable 
jne ree#2 

; a=a-allowable 

m.ov a I turns 1 og 
jnz ree#2 
ljmp ree#! 

;a=turnslog 

;look up new desired theta value 
rec#2 

mov dptr ,#1 tdestheta 
mov a,deverrorl 
mov b, deverrorh 
leall absolute16 
mov tempoa, a 

;if a>=allowable then jum.p 

;if turnslog<>O then jum.p 

;base of look up table 
;a=deverrorl 
;b=deverrorh 
;b:a=abs(b:a) 

;tem.porarily save deverror low byte 
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rec#lOOO 

rec#5000 

rec#100 

rec#200 

rec#3 mov 

reclD.ul#pos 

rec#domul 

rec#mulend 

mov a,b 
jnz ree#lOOO 
mov destheta, #5 
ljmp ree#200 

clr c 
subb a, #12 
jnc rec#5000 
mov destheta, #20 
I jmp rec#200 

mov a,b 
mov destheta,#40 
1 jm.p rec#200 

mov a, tempoa 
movc a, @a+dptr 

mov destheta, a 

mov a,deverrorh 
anI a,#80h 
jnz rec#3 

;a=deverror high byte 
;if its zero then look up desired theta 

;a:=a-3 
;if a >3 then jump 
;else destheta=20 degrees 

;else set destheta to 40 degrees 

;restore a with deverror low byte 
;get table entry pointed at by 

;deverror low byte 
;=desired theta 

;a=deverrorh 
;see if deverror is -ve 
; if it is jump 

mov a,destheta ;else if its He 
;destheta=-destheta cpl a 

inc a 
mov destheta,a 

a,turnslog 
anI a,#80h 
jz recmul#pos 
mov a,turnslog 
leall absolute 
setb nzflag 
1 jmp ree#domul 

cl r nzflag 
mov a,turnslog 

mov b,turnsinc 
mul ab 
jnb nzflag,rec#mulend 
cpl a 
inc a 

;destheta=a 

;a=turnslog 
;see if a is -ve 

;if its +ve then jump 

;m.ake tnrnslog +ve 
;set a flag to say that it has been done 

;clear flag to say turnslog was +ve 

;b=turnsinc 
;b:a=atb 

;if original tnrnslog was +ve then jump 
;else do 2's camp 
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--~ --- ---~~----~ --

rec#4 mov 

mov tem.poa,a 
mov a,destheta 
clr c 
subb a,tem.poa 
jb lor,rec#4 
cpl a 
inc a 

errtheta,a 

anI a,#80h 
jnz rec#5 

mov a,errtheta 
clr c 
subb a, turnsinc 
jc rec#5 
I call turndi r 
Ijmp rec#6 

rec#5cpl lor 
lcall turndir 
cpl lor 

rec#6lcall straightmove 

rec#! ret 

report 

lcall getdeviation 
ljmp recwhile 

mov dptr, #heremess 
lcall sendmessage 

lcall report 

;tem.porarily store a 
;a=destheta 

;a=destheta-tempoa 
;if avoidanceis to right then jump 

;else a=-a 

;errtheta=a 

;see if errtheta<O 
; j um.p if it i s 

;a=errtheta-turnsinc 
;if a<turnsinc then jump 
;turn agv 

;turn(-lor) 

;advance agv a bit 
;get current deviation from look up table 
;go round again 

;end 

;subroutine to report status of various variables and flags 
mov dptr, #reportti tle 
Icall sendmessage 
mov a, turnslog 
lcall convert 

mov dptr,#advancesmade 
I call sendmessage 
m.ov a, howmanysofar 
1 call convert 

m.ov dptr, #deviat 
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sendboolean 

I call sendmessage 
mov a/deverrorh 
lcall convert 
mov a, deverrorl 
lcall convert 

mov dptr I #dest 
lcall sendm.essage 
mov a, des theta 
lcall convert 

m.ov dptr I #errt 
1 call sendlllessage 
1Il0V a I errtheta 
1 call convert 

mov dptr I #passornot 
I call sendm.essage 
mov c, canpass 
1 call sendboolean 

mov dptr/#passedornot 
I call sendm.essage 
mov e I passedyet 
leall sendboolean 

mov dptr J #leftright 
1 call sendm.essage 
mov c/lor 
lcall sendboolean 

1Il0V dptr I #leftdetected 
lcall sendm.essage 
mov c/obstfrorueft 
leall sendboolean 

mov dptr I #centredetected 
lcall sendlllessage 
mov c/obstfromcentre 
lcall sendboolean 

1Il0V dptr I #rightdetected 
lcall sendmessage 
mov c/obstfromright 
lcall sendboolean 

ret 
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;subroutine to send a boolean variable in c to serial port 
jc sb#true 
mov dptr, #falsehood 
ljmp sb#end 

sb#true mov 

sb#end lcall 
ret 

falsehood string 
truthhood string 

reporttitle string 
turnsmade string 
advancesmade string 
passornot string 
deviat 
dest string 
errt string 

passedornot string 
leftright string 
leftdetected string 
centredetected string 
rightdetected string 
advfail 
turnfai I string 
hellomess string 
bell string 
heremess string 

#include 
#include 

;File agvltdev.tbl 
end 

dptr,#truthhood 

sendmessage 

I FALSE I 
, 0 

ITRUEa,O 

12,13,10,aAGV STATUS REPORTI,13,10,13,10 
aTurns made so far: a, 0 
13,lO,aAdvances made so far: ·,0 
13,10,13,10,ICANPASS: 1,0 
string 13,10,uDeviation from path: a,O 
13,10,aDesired Theta: 1,0 
13,10,IError Angle: ·,0 

13,10,apASSEDYET: 1,0 
13,10,aLOR: 1,0 
13,10,IOBSTFROMLEFT: 1,0 
13,10,·OBSTFROMCENTRE: ·,0 
13,10, DOBSTFROMRIGHT: u,O 
string 13,10, aFAILED DURING ADVANCED,O 
13,10,aFAILED DURING TURNu,O 
13,10,'Now Doing Obstacle Avoidance u ,13,10,0 
o 
13,10,·hereD ,13,10,0 

n agv ltdev. tbl' 
Uagvltdes.tbl ' 

;Look-up table for deviation from path 
;These values are approximately 256 tsine(index in tabletS) 

ltdeverror 
I tdev#1 
1 tdev#2 

; File agvltdes 

byte 
byte 

0,22,44,66,87,108,128,146,164,180 
195,209,221,231,240,246,251,254,255 

;Look-up table for desired angle values 
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Itdestheta 
byte 0,5,5,5,5,5,5,5 
byte 5,5,5,5,5,5,5,5 
byte 5,5,5,5,5,5,5,5 
byte 5,5,5,5,5,5,5,5 
byte 5, 5, 5, 5, 5, 5, 5, 5 
byte 5,5,5,5,5,5,5,5 
byte 5, 5, 5, 5, 5, 5, 5, 5 
byte 5, 5,5,5,5, 5,5, 5 
byte 5,5,5,5,5,5,5,5 
byte 5,5,5,5,5,5,5,5 
byte 5, 5, 5, 5, 5, 5, 5, 5 
byte 5, 5, 5, 5, 5, 5, 5, 5 
byte 5, 5, 5, 5 , 5, 5, 5, 5 
byte 5, 5,5,5,5,5,5,5 
byte 5, 5, 5, 5, 5, 5, 5, 5 
byte 5, 5,5,5,5,5,5, 5 
byte 5, 5, 5, 5, 5, 5, 5, 5 
byte 5,5,5,5,5,5,5,5 
byte 5,5,5,5,5,5,5,5 
byte 10,10,10,10,10,10,10,10 
byte 10,10,10,10,10,10,10,10 
byte 15,15,15,15,15,15,15,15 
byte 15,15,15,15,15,15,15,15 
byte 15,15,15,15,15,15,15,15 
byte 15,15,15,15,15,15,15,15 
byte 15,15,15,15,15,15,15,15 
byte 15, 15, 15, 15 , 15, 15, 15, 15 
byte 15,15,15,15,15,15,15,15 
byte 15,15,15,15,15,15,15,15 
byte 15,15,15,15,15,15,15,15 
byte 15,15,15,15,15,15,15,15 
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APPENDIX 4 

Motor Control Circuit Diagrams 

A4.1 DUAL MOTOR CONTROLLERS 

The circuit of figure A4.1 enables the 8031 embedded obstacle avoidance computer to 

gain control of the experimental vehicle drive motors from the Host navigation 

computer. The interface between this and the INTEL 8031 computer is that the INTEL 

8255 PIA (lC2) on the computer board (see figure A4.1). 

When the HOST/8031 signal is low, 8 bit buffers ICI and 3 are enabled and ICs 2 and 

4 disabled. The 8031 obstacle avoidance computer has access to the HCfL-ll00 motor 
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Figure A4.1 
Dual Motor Controllers 
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controllers (lC5 and 6) via the 8255 PIA on the computer board. When the HOST/8031 

signal is high, access is denied to the 8031 and the host computer has control of the 

motors. 

The detailed operation of the HCfL-ll00 motor controllers is discussed in Chapter 7 

and in the specification of section A4.3. Various outputs and status flags are produced 

by the controllers. In this application however, only the PULSE and SIGN (pULSE A, 

PULSE B, SIGN A, SIGN B), signals are used to drive the H-Bridge circuit described 

in section A4.2. 

Feedback to the HCfL-ll00 motor controllers is taken directly from the experimental 

vehicle wheel encoders. These devices have quadrature outputs connected to the CHA 

A, CHA B, and CHB A, CHB B inputs of the motor controllers. 

The inverters IC7B and IC7C, together with R2 and C2 form the master clock 

oscillator for the HCTL-ll00 chips. The timing network formed by Rl and Cl ensures 

that the motor controllers are reset when the power supply is initially switched on. 

A4.2 H-BRIDGE MOTOR DRIVE AMPLIFIER 

The amplifier of figure A4.2 enables the vehicle drive motors to be driven in both 

directions from a unipolar power supply. This is achieved using the SIGN signal from 

the HCTL-l100 motor controllers. 

Referring to figure A4.2, when the SIGN and PULSE signals are high, Pin 3 of ICS is 

low and the transistors TR6 and TR 7 are switched off. IC5 pin 6 is high and therefore 

current flows through the motor via transistors TR5 and TR8. When the SIGN signal is 

low and PULSE high however, the transistors are switched over and current flows via 

TR6 and TR7, reversing the direction of the motor. The HCfL-l100 motor controllers 

have a 'sign reversal inhibit' feature which prevents all the transistors being turned on 
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Figure A4.2 
H-Bridge Drive Amplifier 

at the same time and hence prevents a short circuit. 

The H-Bridge amplifier is operated from a separate power supply to the computer 

circuits to prevent damage in the event of a failure. Opto-isolators ICl-4 are used to 

eliminate any physical connection between the TTL signals and the motor drive circuit. 

Power transistors TR5-8 and free wheeling diodes D I-D4 are mounted on a large heat 

sink which covers the rear of the experimental vehicle. 
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APPENDIX 5 

Assembler Motor Control Software 
Source Code 



;Include file for Motor control routines 

;******************************************************************* 
;* 
;* 
;* 

MOTOR CONTROLLER READ AND WRITE ROUTINES 

;*************************tttt*ttt*ttttttt*ttttttttttttt**tttt*t*ttt 

setregm.c 
;subroutine to configure pia registers ready for motor control 
;enter with required motor controller register address in regadd 

mov contword, #Offh ;set motor controller control word all 
clr host8031 ;select motor control board 

setb ddrwr ;set data direction bit 

mov a,contword 
mov dptr,piac 
mon @dptr,a ;send to motor board 

mov a,regadd ;get motor controller register address 
mov dptr,piab ;ready to write to pia port b 
movx @dptr,a ;set up on pia port 

mov dptr,piac ;ready to write to pia port c 
clr ale ;send ale low 
mov a,contword 
mon @dptr,a ;send to pia port c 
setb ale ;set ale 
mov a,contword 
movx @dptr,a ;send control word to pia port c 

ret 

writemc 
;subroutine to write a value to motor controller register already set up 
;with setregmc 
;enter with value to be written in a reg and 0 in flag 'motoraorb' for motor a 
;or 1 in flag 'motoraorb' for motor B 

mov temp,a 
setb rw 

;save value to be written 
;send r/w high 

mov a, contword 
mov dptr, piac 
moVI @dptr, a 

;ready to write to pia port c . 
·write control word to pIa , 

AS.! 
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m.ov dptr,piab ;ready to write to port b of pia 
m.ov a,tem.p ;retreive data to be written 
m.OVI @dptr,a ;write to pia 

m.ov dptr,piac ;ready to write to pia port e 
jb m.otoraorb,m.otorbl ;if m.otoraorb is set then send csb low 
clr esa ;else send csa low 
ljmp m.otoral 

m.otorbl clr csb ;send csb low 
m.otoral mov a,contword ;get control word 

mon @dptr,a ;send to pia port c 

clr rw ;send r/w low 
m.ov a,contword 
m.oVI @dptr,a ;send control word to pia port c 

jb motoraorb,m.otorb2 ;if m.otoraorb is set then its m.otor b 
setb csa ;else it's m.otor a 
1 jmp m.otora2 

m.otorb2 setb csb ;set csb 
m.otora2 m.ov a,contword ;get control word 

m.ovx @dptr,a ;send it to pia port c 

setb rw ;send r/w high 
m.ov a,contword 
m.oVI @dptr,a ;send control word to pia port c 

ret 

readme 
;subroutine to read a value from the m.otor controller register already 
;set up using setregm.c. 
;if 'm.otoraorb' is low value is read from. m.otor A, if it's high then 
;value is read from m.otor B 

setb p1.0 

clr ddrwr ;ready to read 
mov a,contword 
mov dptr,piac ;ready to write to pia port c 
moVI @dptr,a ;write to pia port c 

jb motoraorb,m.otbl 
cl r csa 

'if motoraorb is set then access m.otor b , 
;else m.ust be motor a 

ljmp motal 
m.othl clr csb ;clear csb 
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motal mov 

motb2 setb 
mota2 m.ov 

motb3 clr 
mota3 m.ov 

motb4 setb 
mota4 mov 

a,contword ;get contword 
m.on @dptr,a ;write to pia port c 

setb rw ;send rw high 
mov a,contword 
m.on @dptr,a ;write to pia port c 

jb m.otoraorb,m.otb2 ;if m.otoraorb is set then access motor b 
setb csa ;else its motor a 
I jmp mota2 

csb ;set csb 
a,contword 

m.on @dptr,a ;write control word to pia port c 

clr rw ;send r/w low 
mov a,contword 
movi @dptr,a ;write control word to pia portc 

jb m.otoraorb,m.otb3 ;if motoraorb is set then access motor b 
clr oea 
ljmp m.ota3 

oeb 
a,contword 

mon @dptr,a 

mov dptr,piaa 
m.oVI a, @dptr 

mov temp,a 

;else it's motor a 

;clera oeb 

;write to pia port c 

;ready to read from pia port a 
;get value from pia port a 

;save data 

mov dptr, piac ; ready to write to pia port c 
jb m.otoraorb,lILotb4 ;if motoraorb is set then it's motor b 
setb oea ;else it's motor a 
ljmp mota4 

oeb 
a,contword 

movi @dptr, a 
mov a, temp 

clr p1.0 

ret 

;set oeb 

;write to pia port c 
;leave with a = result 

,***t*t*ttttt**tttt***ttt*t*tttttt*ttttttttttttttttttttttt*ttttt**tt , 
;* 
;* GENERAL MOTOR CONTROLLER SET UP ROUTINES 
;* 
,*ttttt*ttttt*tttttt*ttt*tttt*t*tttttttttttttt*tttttttt*ttttttttttt* , 
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; subroutine 
;clear al flags in flag register 
resetflags 

mov regadd,#OOh ;address of flag register 
I call setregmc ; get ready 

clr motoraorb 
clr a 
leall wri temc 
setb motoraorb 
clr a 
leall wri temc 

mov regadd,#OOh 
leall setregmc 

clr motoraorb 
mov a,#02h 
leal! wri temc 
setb motoraorb 
mov a,#02h 
leal! writeme 

mov regadd,#OOh 
leal! setregmc 

clr motoraorb 
mov a,#03h 
leal! wri temc 
setb motoraorb 
mov a,#03h 
lcall writemc 

mov regadd,#OOh 
lcal! setregmc 

clr motoraorb 
mov a,#04h 
lcall wri temc 
setb motoraorb 
mov a,#04h 
I call wri temc 

mov regadd,#OOh 
lcall setregmc 

clr motoraorb 

;select motor a 
;ready for flagO reset 
;reset flagO 

;now do it for motor b 

;address of flag register 
;get ready 

;select motor a 
;ready for flag2 reset 
; reset fl ag2 

;now do it for motor b 

;address of flag register 
;get ready 

;select motor a 
;ready for flag3 reset 
;reset flag3 

;now do it for motor b 

;address of flag register 
;get ready 

;select motor a 
;ready for flag4 reset 
;reset flag4 

;now do it for motor b 

;address of flag register 
;get ready 

;select motor a 
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;subroutine 

mov a, #05h 
lcal! wri temc 
setb motoraorb 
mov a, #05h 
lcal! writemc 

ret 

;ready for flag5 reset 
;reset flag5 

;now do it for motor b 

;to reset and initialise motor control chips 
resetmc 

mov reg add , #05h ; address of mc to be accessed 
lcal! setregmc ;get ready 

clr motoraorb 
clr a 
lcal! wri temc 
setb motoraorb 
clr a 
lcal! wri temc 

;select motor a 
;ready for reset 
;reset mca 
;now do it for motor b 

;set pwm duty cycle (write to R09h) 

mov reg add , #09h ; address of mc to be accessed 
lcal! setregmc ;get ready 

cl r motoraorb 
mov a, #064h 
lcal! wri temc 
setb motoraorb 
BIOV a, #064h 
lcal! wri temc 

;select motor a 
;write pwm duty cycle 

;now do it for motor b 
;write pwm duty cycle 

;set digital filter parameters (R22h - gain) 

;R21h pole 

BIOV regadd, #22h ; address of mc to be accessed 
lcal! setregmc ;get ready 

clr motoraorb 
mov a,gain 
lcal! wri temc 
setb motoraorb 
BIOV a, gain 
lcall writemc 

;select motor a 
;gain 
;reset mea 
;now do it for motor b 

mov regadd,#21h ;address of mc to be accessed 
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;R20h zero 

lcall setregmc 

cl r motoraorb 
mov a, pole 
I call writemc 
setb lILotoraorb 
IILOV a, pole 
I call wri temc 

;get ready 

;select motor a 
;gain 
;reset mca 
;now do it for lILotor b 

IILOV regadd, #20h ; address of me to be accessed 
lcall setregmc ;get ready 

clr motoraorb 
IILOV a, zero 
lcall writemc 
seth motoraorb 
IILOV a, zero 
I call writemc 

;set sample timer (write 20d to ROfh) 

;select motor a 
;gain 
;reset mca 
;now do it for lILotor b 

mov regadd, #Ofh ; address of mc to be accessed 
lcall setregmc ;get ready 

clr motoraorb 
IILOV a, #020h 
I call writemc 
seth motoraorb 
mov a, #020h 
I call wri temc 

;set sign inhibit bit 

mov regadd, #0 7h 
lcall setregmc 

cl r lILotoraorb 
IILOV a, #1 
I call wri temc 

setb IILOtoraorb 
IILOV a, #1 
I call writemc 

ret 

;select motor a 
;ready for writing 
;write to mca 
;now do it for motor b 
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;subroutine to put motor controllers in init/idle mode 
initidle 

hostop 

mav regadd, #05h ; address of mc to be accessed 
lcall setregmc ;get ready 

clr motoraorb 
mov a, #01 
lcall writemc 
setb motoraorb 
mov a, #01 
I call writemc 

ret 

;select motor a 
;ready for writing 
;wri te to mca 
;now do it for motor b 

;subroutine to reset motor control board for host operation 

obstavop 

setb host803! 
mov a, contword 
mov dptr,piac 
man @dptr, a 
ret 

;send host/B031 high 

;ready to writr to pia port c 
;write to pia port c 

;subroutine to set motor control board for obstacle avoidance operation 

clr hostB031 
mav a, contword 
mov dptr, piac 
man @dptr, a 
ret 

;send host/B031 low 

;ready to writr to pia port c 
;write to pia port c 

;ttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt 

;t 
;t PROPORTIONAL VELOCITY SUBROUTINES 
;t 
;ttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt 

;subroutine to put motorcontrollers in proportional velocity control mode 
propvelcont 

acall resetflags 
acall resetmc 

mov regadd, #05h ; address of mc to be accessed 
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I call setregmc 

elr motoraorb 
IIlOV a,#03 
Icall writemc 
setb motoraorb 
mov a, #03 
Icall writemc 

;get ready 

;set flag f3 to begin (ROO = Obh) 

;select motor a 
;ready for writing 
;write to mca 
;now do it for motor b 

mov regadd, #OOh ; address of mc to be accessed 
I call setregmc ; get ready 

clr motoraorb 
mov a,#Obh 
Icall writemc 
setb IIlOtoraorb 
mov a,#Obh 
Icall writemc 

ret 

;select motor a 
;ready for writing 
;write to mca 
;now do it for motor b 

;suhroutine to write the 16 bit 2's cpmplement number in cvh, cvl 
;to command velocity registers r24h (high byte) R23h (low nibble+fraction) 
;enter with motoraorb=O for motor a or IIlOtoraorb=1 for motor b 

cowndvel 

mov regadd,#24h;mc register to be accessed 
I call setregmc ; set up mc 

mov a, cvh 
Icall wri temc 

;get high byte of value 

mov regadd,#23h;mc register to be accessed 
Icall setregmc ; set up mc 

mov a, cvl 
Icall wri temc 

ret 

;get low byte of value 

;subroutine to read the contents of the Actual velocity registers (R35h,R34h) 
;and send the contents to the serial port 
;enter with motoraorb=O for motor a and motoraorb=l for IIlOtor b 
;result in cvh, cvl 

readpropvel 
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mov regadd,#35h;mc register to be accessed 
lcall setregmc ;set up me 

lcall readmc 
mov cvh, a 

;get high byte of value 

mov regadd,#34h;mc register to be accessed 
1 call setregmc ; set up mc 

1 call readmc 
mov cvl,a 

ret 

;get low byte of value 

;ttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt 

; t 

;t 
; t 

POSITION CONTROL SUBROUTINES 

;ttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt 

;subroutine to put controllers in position control mode (R05h=03,flags clear) 

positioncont 

acall resetfl ags 
acall resetmc 

mov regadd, #05h ; address of mc to be accessed 
1 call set regmc ; get ready 

clr motoraorb 
mov a, #03 
lcall wri temc 
setb motoraorb 
mov a, #03 
lcall writemc 

;select motor a 
;ready for writing 
;write to mca 
;now do it for motor b 

;clear flags to begin (ROO = DOh) 

mov regadd, #OOh ; address of mc to be accessed 
lcall setregmc ;get ready 

cl r motoraorb 
mov a, #Oh 

;select motor a 
;ready for writing 
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I call wri temc 
setb m.otoraorb 
DlOV a, tOh 
I call writemc 

ret 

;write to mca 
;now do it for motor b 

;subroutine to write 24 bit 2's complement number in ph,pm,pl to 
;motor controller position command registers 
;if m.otorab=O then write to motor a, res!=! then write to motor b 

writeposition 
mov regadd,#Och;mc register to be accessed 
I call setregmc ; set up mc 

mov a, ph 
I call wri temc 

;get high byte of value 

mov regadd,#Odh;mc register to be accessed 
I call setregmc ; set up mc 

mov a, pm 
lcall writemc 

;get middle byte of value 

mov regadd,#Oeh;mc register to be accessed 
I call setregmc ; set up mc 

mov a,pl 
lcal! writemc 

ret 

;get low byte of value 

;subroutine to read the actual position of the motors and put the result in 
;apl,apm,aph registers (R!2 R13, R14) 
;enter with motoraorb=O for m.otor a and motoraorb=l for motor b 

readposition 

rdmota 
writeposmess 

jnb motoraorb,rdmota ;if motorab is clear then message a 
mov dptr,#posb ;else write message b to serial port 
ljmp writeposmess 

mov regadd, #l2h ;prepare to read registers 
lcall setregmc 

I call readmc 

mov aph, a ;transfer value to holding register 

AS.IO 



mov regadd,#13h ;prepare to read registers 
lcall setregmc 

lcall readmc 
mov apm, a 

mov regadd, #14h ;prepare to read registers 
lcall setregmc 

I call readmc 
mov apI, a 

ret 

;subroutine to reset motor actual position registers 
;if motorab=O then write to motor a, resl=l then write to motor b 

resetposi tion 
mov regadd, #13h ;mc register to be accessed 
lcall setregmc ;set up mc 

mov a,#O ;write zero to register 
I call writemc 

ret 

;ttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt 

;t 
;t INTEGRAL VELOCITY CONTROL SUBROUTINES 
;t 
;ttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt 

;subroutine to put motor controllers in integral velocity control mode 

intvelcont 

acall resetf lags 
acall resetmc 

mov regadd, #05h ; address of mc to be accessed 
lcall setregmc ;get ready 

cl r motoraorb 
mov a, #03 
lcall writemc 
setb motoraorb 
mov a, #03 

;select motor a 
;ready for writing 
;write to mca 

;now do it for motor b 
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lcall writemc 

;set flag f5 to begin (ROO = Odh) 

m.ov regadd, #OOh ; address of me to be accessed 
1 call setregmc ; get ready 

cl r motoraorb 
m.ov a, #Odh 
lcall writemc 
setb m.otoraorb 
m.ov a, #Odh 
lcall writemc 

ret 

;select motor a 
;ready for writing 
;write to mea 
;now do it for motor b 

;subroutine to write an acceleration (R26h lsb, R27h msb) 
;enter with values to be written in cvh, cvl 
;motoraorb=O - motor a, motoraorb=l motor b 

writeaccel 
mov regadd, #27h ;mc register to be accessed 
1 call setregme ; set up mc 

mov a, cvh 
lcall writemc 

;get high byte of value 

mov regadd, #26h ;mc register to be accessed 
lcallsetregmc ;set up mc 

mov a, cvl 
lcall writemc 

ret 

;get low byte of value 

;subroutine to write the 8 bit 2's complement number in a to the integral 
;command velocity register (R3Ch) 
;enter with motoraorb=O for motora and motoraorb=l for motor b 

intvel 
mov cvl,a 
mov regadd, #3ch ;get add res to be accessed 
leall setregme ; set up mc 

mov a, cvl 
lcall writemc ;write value in a register to mc 
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ret 

;subroutine to read velocity command register 
;if motoraorb=O then read motor a motoraorb=l read motor b 
;exit with result in a 

readintvel 
mov regadd,#3ch ;get add res to be accessed 
lcall setregmc ;set up mc 

I call readmc ;read value from me 

lcall convert ;send it down serial line 

ret 

;**********tttttttttt*t*t*tttt*t*tttttttttt**tt*tttttttttttttt*tttt* 
;t 
;t 
;* 

TRAPEZOIDAL CONTROL ROUTINES 

;*tttttttt******t***ttttt****tt**ttttt*t**tttttt*t***tttttttttttt*tt 

; subroutine 
;put motors into trapezoidal control mode 

trapezcont 
acall resetflags ;clear flag register 
acall resetmc 

;put motors in position control mode 

mov regadd, #05h ; address of mc to be accessed 
lcall setregm.c ;get ready 

cl r motoraorb 
mov a, #03 
lcall writemc 
setb motoraorb 
mov a, #03 
I call wri temc 

;write acceleration to m.otor controllers 

clr motoraorb 
mov cvh, tOOh 
mov cvl,#Olh 
acall wri teaccel 

;select motor a 
;ready for writing 
;write to m.ca 
;now do it for motor b 

;first right motor 
;acceleration high byte 

'acceleration low byte , 
'write values to motor controller , 
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setb m.otoraorb 
mov cvh, #OOh 
mov cvl, #Olh 
acall wri teaccel 

;write maximum velocity 

clr m.otoraorb 
mov a, #Olh 
acall tzintvel 

setb motoraorb 
mov a, #Olh 
acall tzintvel 

;now do left m.otor 
;acceleration high byte 
;acceleration low byte 
;write values to motor controller 

;first do right m.otor 
;command velocity 

;write velocity to motor controller 

;now do left m.otor 
;command velocity 

;write velocity to motor controller 

;m.otors should now repond to position commands written to command 
;position registers using writeposition 

;set flag fO to begin (ROO = OBh) 

mov regadd,#OOh ;address of mc to be accessed 
lcall setregmc ;get ready 

clr motoraorb 
iD.OV a,#08h 
lcall writemc 
setb m.otoraorb 
mov a, #D8h 
lcall wri temc 

ret 

;select motor a 
;ready for writing 
; wri te to mca 

;now do it for motor b 

;subroutine to write 24 bit 2's complement number in ph,pm,pl to 
;motor trapezoidal controller position command registers R2Bh,R2Ah,R29h 
;if motorab=O then write to motor a, resl:! then write to motor b 

tzwriteposition 
mov regadd, #2bh; mc register to be accessed 
1 call set regmc ; set up mc 

mov a, ph 
lcall writemc 

;get high byte of value 

mov regadd, #2ah ;mc register to be accessed 
lcallsetregmc ;set up mc 

mov a, pm ;get middle byte of value 
1 call writemc 
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mov regadd,#29h;mc register to be accessed 
lcall setregmc ;set up mc 

mov a, pI 
lcall writemc 

ret 

;get low byte of value 

;subroutine to write the 8 bit 2's complement number in a to the integral 
;trapezoidal command velocity register (R28h) 
;enter with motoraorb=O for motora and motoraorb=l for motor b 

tzintvel 
mov cvl,a 
mov regadd, #28h ;get add res to be accessed 
leall setregme ;set up me 

mov a, evl 
leall writemc 

ret 

;write value in a register to me 
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APPENDIX 6 

Pascal Obstacle Avoidance 
Simulation Source Code 



program agvmodel; 
uses crt, graph; 
const 

in} 

roadleft=100; 
roadright = 400; 
obstaclecolor = lightgreen; 
colorin=true; 

check = true; 
nocheck = false; 

obstacles} 
turnsincrement = 5; 
advanceincrement = 5; 
enough = 15; 

clear an obstacle} 
failed=false; 

type 

{Constant Definitions} 
{left hand edge of roadway} 

{right hand edge of road way} 
{colour of obstacles} 
{Boolean constant to indicate colour fill-

{Indicates check for obstacles} 
{indicates don't check for 

{5 degree turn increment} 
{5 unit advance increment} 

{number of advances required to 

{indicates failure of a process} 

arr = array[0 .. 50] of integer; {define array type} 

var {Variable definitions} 
n,i:integer; 
Gd, Gm : Integer; 
obstdetected,obstfromleft,obstfromright,obstfromcentre:boolean; 
oldx,oldy:integer; 
oldagvx,oldagvY,oldheading:integer; 
head:integer; 
I,y:integer; 
exitt:boolean; 
cnt:word; 
ystart:word; 
Ix:array[1 •. 4,O .. 20] of integer; 
yy:array[1 •. 4,O .• 20] of integer; 
noofobstacles:integer; 
failedtopass:boolean; 
passedyet:boolean; 
howmanysofar:word; 
turnswithoutadvance:word; 
startdev,startheading:integer; 
Itdestheta:array[O .. 100] of integer; 
Itdeverror:array[O .. 20] of integer; 
t,deverror:inteqer; 
destheta,errtheta:integer; 

function IntToStr(i: Longint): string; 
{ Convert any Integer type to a string } 
var 

s: string[ll]; 
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begin 
Str(i, s); 
IntToStr := s; 

end; {inttostring} 

function direction(angle:integer):real; 
{con~erts an angle in degrees to a direction in radians} 
begin 

angle:=angle-90; 
direction:=(angletpi)/180 ; 

end; 

procedure detectcollision(x6,y6,x7,y7:integer); 
{detects when AGV light pattern has touched an object on front edge} 
const 

var 
n=30; 

i,x,y:integer; 
xi,yi:real; 

begin 
obstdetected:=false; 
obstfromcentre:=false; 
obstfromleft:=false; 
obstfromright:=false; 
if not obstdetected then 

begin 
xi:=(x7-x6)/n; 
yi:=(y7-y6)/n; 
for i:=O to n do 

begin 
x:=round(xititx6); 
y:=round(yi tity6); 

if getpixel(x,y)=obstaclecolor then obstdetected:=trne; 
if (i<10) and (getpixel(x,y)=obstaclecolor) then 

obstfromright:=true; 

end; 
end; 

end; 

if (i>=10) and (i<=20) and (getpixel(x,y)=obstaclecolor) then 
obstfromcentre:=true; 

if (i>20) and (getpixel(x,y)=obstaclecolor) then 
obstfromleft:=trne; 

procedure detectcollisionleft(x6,y6,x7,y7:integer); 
{detects when AGV light pattern has touched an object on left hand edge} 
const 

n=30; 
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var 
i,x,y:integer; 
xi,yi:real; 

begin 

xi:=(x7-x6)/n; 
yi:=(y7-y6)/n; 
for i:=O to n do 

begin 
x:=round(xititx6); 
y:=round(yitity6); 

if getpixel(x,y}=obstaclecolor then 
begin 

end; 
end; 

end; 

obstfromleft:=true; 
obstdetected:=true; 

procedure detectcollisionright(x6,y6,x7,y7:integer}; 
{detects when AGV light pattern has touched an object on right hand edge} 

const 
n=30; 

var 

begin 

i,x,y:integer; 
xi,yi:real; 

xi:=(x7-x6)/n; 
yi:=(y7-y6)/n; 
for i:=O to n do 

begin 
x:=round(xititx6); 
y:=round(yi tity6); 

if getpixel(x,y}=obstaclecolor then 
begin 

end; 
end; 

end; 

obstfromright:=true; 
obstdetected:=true; 

procedure drawroad(colorin:boolean); 
{draws road on screen} 
var 

oldcolor:word; 

A6.3 



linest:linesettingstype; 
begin 
oldcolor:=getcolor; 
setcolor(green); 
setfillstyle(ltslashfill,getcolor); 
setcolor(obstaclecolor); 
moveto(O,roadright); 
lineto(639,roadright); 
lineto(639,479); 
lineto(O,479); 
lineto(O,roadright); 
moveto(O,roadleft); 
lineto(639,roadleft); 
lineto( 639,50); 
lineto( 0 ,50); 
lineto(O,roadleft); 
if colorin then floodfill(400,450,obstaclecolor); 
if colorin then floodfill(400,80,obstaclecolor); 
setcolor(oldcolor); 
setcolor(oldcolor); 

end; 

procedure updateobst(noofobstacles:integer); 
{redraw obstacles on screen} 
var 

i:integer; 
oldcolor:word; 
oldfillpattern:fillpatterntype; 

begin 
oldcolor:=getcolor; 
getfillpattern(oldfillpattern); 
setcolor(obstaclecolor); 

setfillstyle(solidfill,obstaclecolor); 

for i:=O to noofobstacles do 
begin 

moveto(xx[l,ij,yy[l,ij); 
lineto(xx[2,ij,yy[2,ij); 
lineto(xx[3,ij,yy[3,ij); 
lineto(xx[4,ij,yy[4,ij); 
lineto(xx[l,ij,yy[l,ij); 
floodfill(round((xx[3,ij-xx[1,ij)/2+xx[1,ij),round((yy[3,ij-

yy[1,i])/2+yy[1,ij),getcolor); 

end; 

end; 
setfillpattern(oldfillpattern,oldcolor); 
setcolor(oldcolor); 
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procedure drawagv(x,y:integer;angle:integer;e:boolean); 
{Draws AGV on screen} 
const 

var 

pi=3.142; 
1 = 36.06; 
r: array[0 .. 7) of real = (1,1,1,1,53.85,53.85,72.8,72.8); 
theta: array[0 .. 7) of real = (4.124,5.3,0.983,2.159,1.95,1.19,1.292,1.85); 

xp:array[0 •. 7) of integer; 
yp:array[0 .. 7) of integer; 
i,colonentry:integer; 
heading:real; 

begin 

outtextxy(10, 70, 'Deviation: '+inttostr(deverror)); 
outtextxy(10,80, 'Head err: '+inttostr(errtheta)); 
outtextxy(10,60, 'DesTheta : '+inttostr(round(destheta))); 
outtextxy(10,90, 'turns log: '+inttostr(t)); 
if obstdetected then outtextxy(50,30, 'Obstacle Detected'); 

y:=(getmaxy - y); 
colonentry:=getcolor; 

if e then setcolor(getbkcolor) else setcolor(yellow); 
heading:=direction(angle); 
xp[O):=round(x+(r[O]*cos(theta[O]+heading))); 
ypfO):=round(y-(r[O)*sin(theta[O]+heading))); 
for i:=O to 3 do 

begin 
xpfi]:=round(x+(rfi)*cos(theta[i)+heading))); 
yp[i):=round(y-(r[i)*sin(thetafi)+heading))); 

end; 
xp[4):=round(x+(rf4)*cos(theta[4)+heading))); 
yp[4]:=round(y-(r[4)*sin(theta[4]+heading))); 

for i:=5 to 7 do 
begin 

xp[i):=round(x+(r[i)tcos(theta[i)+heading))); 
yp[i):=round(y-(r[i)*sin(theta[i)+heading))); 

end; 

detectco11ision(xp[6),yp[6),xp[7],yp[7)); 
detectco1Iisionleft(xp[4),yp[4),xp[7),yp[7)); 
detectcollisionright(xp[5],yp[5],xp[6],yp[6]); 
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moveto(xp[O],YP[O}); 
for i:=l to 3 do 
lineto(xp[i],yp[i}); 
lineto(xp[O],YP[O}); 
moveto(xp[4],yp[4}); 

if not e then setcolor(lightred)' 
for i:=5 to 7 do ' 
lineto(xp[iJ,yp[i)); 
lineto(xp[4],yp[4)); 
setcolor(getbkcolor); 
outtextxy(50,30, 'Obstacle Detected'); 
outtextxy(10, 70, :Deviation: '+inttostr(deverror)); 
outtextxy(10,80, ,Head err: '+inttostr(errtheta)); 
outtextxy(10,60, DesTheta : '+inttostr(round(destheta)))' 
outtextxy(10,90,'turns log: '+inttostr(t)); , 
setcolor(colonentry); 

if obstdetected then begin 
drawroad(not colorin); 
updateobst(noofobstacles); 

end; 

end; 

procedure placeobstacle(x,y:inteqer); 
{Defines a random obstacle} 
const 

size = 5; 

var x1,y1,x2,y2,x3,y3,x4,y4:integer; 
oldfillpattern:fillpatterntype; 
oldcolor:word; 
i:integer; 

polygon:array[O .. 3) of pointtype; 

begin 
noofobstacles:=noofobstacles+1; 
randomize; 
x1:=x-random(size)-10; if (x1<1) then x1:=1; if (x1>639) then x1:=639; 
y1:=y-random(size)-10; if (y1<roadleft) then y1:=roadleft; if (yl>roadright) then 

y1:=roadright; 
x2:=x+random(size)+10; if (x2<1) then x2:=1; if (x2>639) then x2:=639; 
y2:=y-random(size)-10; if (y2<roadleft) then y2:=roadleft; if (y2>roadright) then 

y2:=roadright; 
x3:=x+random(size)+10; if (x3<1) then x3:=1; if (x3>639) then x3:=639; 
y3:=y+random(size)+10; if (y3<roadleft) then y3:=roadleft; if (y3>roadright) then 

y3:=roadright; 
x4:=x-random(size)-10; if (x4<l) then x4:=1; if (x4>639) then x4:=639; 

A6.6 



y4::y+random(size)+lO; if (y4<roadleft) then y4::roadleft; if (y4>roadright) then 
y4::roadright; 

end; 

xx[l,noofobstacles]::xl; 
xx[2,noofobstacles]::x2; 
xx[3,noofobstacles]::x3; 
xx[4,noofobstacles]::x4; 
yy[l,noofobstacles]::yl; 
yy[2,noofobstacles]::y2; 
yy[3,noofobstacles]::y3; 
yy[4,noofobstacles]::y4; 
updateobst(noofobstacles); 

procedure drawcursor(x,y:integer;visible:boolean); 
{Draws cursor used for placing obstacles} 
var 

oldcolor:word; 
begin 

end; 

if x>633 then x::633; 
if x<6 then x::6; 
if y<{roadleft+6) then y::roadleft+6; 
if y>{roadright-6) then y::roadright-6; 
oldcolor::getcolor; 
setcolor(getpixel(oldx,oldy)); 
moveto(oldx-5,oldy-5); 
lineto(oldx+5,oldy-5); 
lineto(oldx+5,oldy+5); 
lineto(oldx-5,oldy+5); 
lineto(oldx-5,oldy-5); 
if visible then setcolor(lightblue); 
moveto(x-5,y-5); 
lineto(u5,y-5); 
lineto(u5,y+5); 
lineto(x-5,y+5); 
lineto( x-5, y-5); 
oldx::x; 
oldy::y; 
setcolor(oldcolor); 

procedure positionobstacle; 
{Allow cursor to be moved and obstacles to be placed} 
var 

x,y,i,xp,yp:integer; 
exitt:boolean; 
ch:char; 
tempcolor:word; 
finished:boolean; 
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begin 
x:=(getmaxx div 2); 
y:=(getmaxy div 2); 
o~t~extxy(IO,IO, 'Position Cursor Using <ARROW> Keys and Press <RETURN>')' 
flnlshed:=false; , 

repeat 
exitt: =fal se; 

repeat 
drawcursor(x,y,true); 

if keypressed then 
begin 

ch:=readkey; 
case ch of 

chr($48):y:=y-IO; 
chr($50):y:=y+10; 
chr($4B):x:=x-IO; 
chr($4D):x:=x+lO; 
chr(13):exitt:=true; 
chr(27):finished:=true; 

end; {case} 
end; {if} 

until (exitt) or (finished) ; 
if not finished then 

begin 

end; 

placeobstacle(x,y); 
x:=1+50;y:=y+50; 

until finished; 
tempcolor:=getcolor; 
setcolor(getbkcolor); 
outtextxy(lO,lO, 'Position Cursor Using <ARROW> Keys and Press <RETURN>'); 
drawcursor(x,y,false); 
setcolor(tempcolor); 

end; 

procedure putagv(x,y,heading:integer); 
{Puts AGV on screen} 
const 

begin 
erase=true; 

drawagv(oldagvx,oldagvy,oldheading,erase); 
drawagv(x,y,heading,not erase); 

oldagvx:=x; 
oldagvy:=y; 
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oldheading:=heading; 

end; 

procedure advance(advancestep:word;check:boolean); 
{advance agv 1 step at current heading} 
var 

heading:integer; 
x,y:integer; 

begin 

heading:=round(direction(oldheading+90)); 
x:=oldagvxtround(advancesteptcos(heading)); 

if t>=O then deverror:=deverrortltdeverror[abs(t)] 
else deverror:=deverror-Itdeverror[abs(t)]; 

y:=getmaxy-roadleft-150tdeverror; 
putagv(x,y,oldheading); 
if not check then obstdetected:=false; 

end; 

procedure turn(angleincrement:integer); 
{if dir=true turn to right else turn to left} 
var 

heading: integer; 
begin 
heading:=oldheadingtangleincrement; 
t:=tt(angleincrement div turnsincrement); 
putagv(oldagvx,oldagvY,heading); 
end; 

procedure readlookuptables; 
{read look up tables} 
type 

fil =text; 
var 

i:integer; 
f:fil; 

begin 
assign(f, 'agvltdes.dta'); 
reset(f); 
for i:=O to 99 do 

begin 
read(f,ltdestheta[i]); 

end; 
close(f); 
assign( f, 'agvltdev. dta' ); 
reset(f); 
for i:=O to 19 do 
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end; 

begin 
read(f,ltdeverror[i]); 
ltdeverror[iJ:=ltdeverror[iJ div 2; 

end; 
close(f); 

procedure initialize; 
{Initialise graphics and variables etc} 
begin 

end; 

oldx:=O;oldy:=O; 
exitt:=false; 
cnt:=O; 
detectgraph(gd,gm); 
gd: = 0 ; gm: = 1 ; 
InitGraph(Gd, Gm, "); 
if GraphResult <> grOk then 

begin 

end; 

writeln('get lost'); 
Halt (l) ; 

setcolor(yellow); 
head:=O; 
noofobstacles:=O; 
failedtopass:=false; 
turnswithoutadvance:=O; 
startdev:=O; 
startheading:=O; 
x:=30; 
y:=getmaxy-roadleft-l50; 
ystart:=y; 
destheta:=O; 
for i:=l to 4 do 

begin 
xx[i,OJ:=O; 
yy[i ,0] :=0; 

end; 
setcolor(yellow); 

oldagvx:=x;oldagvy:=y;oldheading:=head; 
putagv(x,y,head); 
drawroad(colorin); 
positionobstacle; 
readlookuptables; 
t '-O' .- , 
deverror:=O; 
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procedure plottelt(I,y:word;tlt:string}; 
{Draws messages on screen} 
var 

oldcolor:word; 
begin 

end; 

oldcolor:=getcolor; 
setcolor(lightred}; 
outtextlY(I,y,txt}; 
repeat until keypressed; 
setcolor(getbkcolor); 
outtextxY(I,y,txt); 
setcolor(oldcolor); 

function waytoavoid(oleft,ocentre,oright:boolean):integer; 
{Work out which direction to turn to avoid an obstacle} 
const 

left=-1; 
right = 1; 

var 
leftorright:integer; 

begin 
if oright then leftorright:=left else leftorright:=right; 
waytoavoid:=leftorright; 

end; 

function testturn(detected:boolean;lor:integer):boolean; 
const 

left=-1; 
right = 1; 

var 
result:boolean; 

begin 

if ((obstfromleft) and (not obstfromright) and (lor=left)) or 
((obstfromright) and (not obstfromleft) and (lor=right)) then result:=failed 

else result:=(not failed); 
testturn:=result; 

end; 

procedure turnagv(lor:integer;var result:boolean}; 
{returns true if agv failed to pass obstacle} 
var 
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i:word; 
begin 

turnswithoutadvance:=turnswithoutadvance+l' 
result:=not failed; I 

while (obstdetected) and (result = not failed) do 
begin 

turn(-lortturnsincrement); 
result:=testturn(obstdetected,lor); 

end; {while} 
if result= not failed then for i:=O to 1 do turn(-lorttnrnsincrement); 

end; {turnagv} 

function enoughadvances(var howmanysofar:word):boolean; 
{see if AGV has advanced far enough to recover yet} 
const 

passed = true; 
var 

result:boolean; 

begin 

end; 

if howmanysofar>=enough then result:=passed 
else 

begin 
result:=not passed; 
howmanysofar:=howmanysofar+l; 

end; 
enoughadvances:=result; 

procedure advanceagv(var passedyet,result:boolean); 
{Advance AGV past obstacle} 
const 

begin 

passed=trne; 
maxdeverror=60; 

resnlt:=not failed; 
howmanysofar:=O; 
passedyet:=not passed; 
while (not obstdetected) and (not passedyet) and (result=not failed) do 

begin 
advance(advanceincrement,check); 
if enoughadvances(howmanysofar) then passedyet:=passed 

else passedyet:=not passed; 
if abs(deverror»maxdeverror then result:=failed; 

end; {while} . 
if (obstdetected) and (not passedyet) and (howmanysofar>3) then result:=falled; 
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end; 

procedure recover(startdev,startheading,leftorright:integer); 
{recover AGV back onto original path} 
const 

k = 0.1; 
allowable=2; 

var 
deviation:integer; 

begin 
while (not obstdetected) and ((abs(deverror»allowable) or (ttturnsincrement<>O)) do 
begin 

end; 

destheta:=ltdestheta[abs(deverror)J; 
if deverror>=O then destheta:=-destheta; 
errtheta:=leftorrightt((destheta)-ttturnsincrement); 
if errtheta>= turnsincrement then turn(leftorrighttturnsincrement) 

else turn(-leftorrighttturnsincrement); 
advance(advanceincrement,check); 
if (abs(deverror)<35) and (abs(deverror»15) then obstdetected:=false; 

end; 

procedure avoidobstacle(var failedornot:boolean); 
{obstacle avoidance procedure} 
var 

anotherobstacle:boolean; 
i:integer; 

leftorright:integer; 
canpass:boolean; 

begin 
deverror:=O; 
t '-O' . - , 

passedyet:=false; 
canpass:=true; 
repeat . . 

leftorright:=waytoavoid(obstfromleft,obstfro~centre,obstfromrlght), 
if (canpass) then 

begin 
turnagv(leftorright,canpass}; 
passedyet:=false; 

end; 
if not canpass then 

plottext(10,30, 'Failed during TURN'}; 
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if (not passedyet) and (canpass) then advanceagv(passedyet,canpass); 
if not canpass then plottext(lO,30, 'Failed During 

'+inttostr(howmanysofar)); 

if (not obstdetected) and (passedyet) 
then recover(startdev,startheading,leftorright); 

if not canpass then failedornot:=true; 

until ((not obstdetected) and (passedyet)) or (failedornot=true); 
end; 

begin {program} 
repeat 

initialize; 

repeat 

advance(5,true); 
if obstdetected then 

begin 

end; 

startdev:=oldagvy; 
oldheading:=oldheading; 
avoidobstacle(failedtopass); 

if oldagvx>500 then exitt:=true; 
until (exittl or (failedtopass) ; 
repeat until keypressed; 
until false; 

{ CloseGraph;} 
end. 
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{File AGVLTDES.DTA} 
{used to look-up required heading angle for current deviation} 

o 5 5 10 10 15 15 15 20 20 20 25 25 25 25 25 25 30 30 30 30 30 
30 30 30 30 30 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 
35 35 35 35 35 35 35 35 35 40 40 40 40 40 40 40 40 40 40 40 40 
40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 

{File AGVLTDEV.DTA} 
{used to look up deviation for a given heading} 

o 1 2 3 345 6 6 7 8 
8 9 9 9 10 10 10 10 
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DESIGN OF AN OBSTACLE AVOIDANCE SYSTEM FOR 
AUTOMATED GUIDED VEHICLES 

S. Lockwood, B. Merhdadi, J. R. Chandler 

Control and Power Group, School of Engineering 

The Polytechnic of Huddersfield, Queensgate, Huddersfield, H01 30H, U.K. 

This paper describes a modular AGV obstacle avoidance system which 
operates auxiliary to the primary guidance systems with a minimum of 
modification. The system uses a CCO image sensor to detect the distortion 
caused by obstacles to a coded light pattern projected onto the floor ahead of the 
vehicle. The light encoding scheme and image processing methods employed 
allow an embedded controller to be incorporated in a compact and low cost 
design. 

INTRODUCTION 

Automated Guided Vehicles (AGVs) have emerged as a key element of 
materials transport in many modern flexible manufacturing systems. They offer 
many benefits over continuous conveyor or manual transport systems[1]. The 
most common method of AGV guidance used in such systems is an inductive 
buried wire scheme[2] where AGV routes are marked by embedding large signal 
carrying lOOps a few centimetres beneath the floor surface. Inductive sensing 
heads on board AGVs detect the presence and position of the wires. Buried wire 
guidance has a proven record of reliability and is relatively straight forward)o 
operate and maintain. 

However, the uninterrupted flow of materials is of paramount importance to 
the performance of rnanufacturing systems and a major drawback of wire 
guidance and many other systems is that disruptions to materials transport can 
occur. This is often caused by a lack of suitable mechanisms on AGVs to avoid 
unexpected obstacles-which have been placed in the guide path. 

Research work aimed at solving the problem of obstacle avoidance t1as 
included the use of scanning LASER range finders[3,4] and ultrasonic 
scanners[5,6,7J. However, these systems employ sensitive moving parts which 
are not generally suitable for use in harsh industrial environments. A vision 
system has been descrlbed[81 which uses a powerful lamp to illuminate the floor 
ahead of the AGV and a CCO video camera to detect the edges of obstacles as 
they are approached. A disadvantage of this system however is that it is 
susceptible to false detection due to the reflection of overhead lights and flat 
objects or markings on the floor. 

This paper describes a modular obstacle avoidance vision system which 



overcomes the problems of false detection described above. The system is 
intended to operate auxiliary to the primary guidance system with a minimum of 
modification. During normal operation, the obstacle avoidance system is 
transparent to the primary AGV guidance system. When an obstacle is 
encountered however, the system takes temporary control of the vehicle drives, 
circumnavigates the obstacle (if possible) and returns the vehicle to the primary 
guide path. 

OPERATION OF THE OBSTACLE AVOIDANCE SYSTEM 

The obstacle avoidance system projects a sharp coded illumination pattern 
onto the floor ahead of the AGV and uses a video camera to detect distortion to 
this pattern caused by obstacles in the path of the vehicle. The way in which the 
pattern is distorted depends on the position of the projector with respect to the 
point of view. In this system the distortion is confined to the vertical plane by 
positioning the projector vertically above the camera as shown in figure 1. When 
no objects are near enough to interfere with the projected light pattern, the code 
is not detected by the camera. However, when the AGV nears an obstacle, the 
projected light pattern is disturbed and the code is visible to the camera. Figures 
2a-2c show a sequence of images as an obstacle is approached. It can be clearly 
seen from figure 2 that the coded light pattern 'grows' from the bottom of the 
image confirming that the distortion occurs in the vertical direction only. 

'. 
The illumination code is a series of stripes similar to a bar code. This type of 

code is insensitive in the vertical direction but provides information about the 
horizontal position of obstacles. 

The use of spatially coded light patterns is a well established technique in the 
analysis of images[9], but is usually restricted to static image processing 
applications due to the large amount of data processing involved. The novel 
geometry of the obstacle avoidance system together with a bar type illumination 
code allows the image processing task to be greatly simplified. This is because 
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Figure 1 ~ Relative Position of Projector and Camera 
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Figure 2 - Sequence of Images as an Obstacle is Approached 
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Figure 3 - Coded Light Projector 

sufficient information for obstacle 
avoidance can be obtained from a 
horizontal band across the lower 
portion of the image. 

DESCRIPTION OF THE 
OBSTACLE AVOIDANCE 
SYSTEM 

The coded illumination pattern is 
recorded on a 24mm X 36mm 
transparency and projected onto the 
floor with the slide projector 
arrangement shown in figure 3. 

The sensing element in the 
obstacle avoidance system is a 
monochrome CCO video camera. A 
high sensitivity CGO array allows the 
camera to operate in near darkness, 
whilst an auto-iris device prevents 
saturation in bright light. 

. A video frame store has been developed to capture digitised images in 
real-time (figure 4). Captured images are stored as a 256 X 256 array of picture 
elements with grey levels from 0 to 255. 

Since obstacle information is obtained from a horizontal band in the lower 
portion of the image, an embedded controller can be used for image processing. 
This results in a very compact, low cost design. 

The video frame store memory is directly accessible to the embedded 
controller by making it appear as the controller main data memory. 

IMAGE PROCESSING 
SOFlWARE 

Since the dimensions of the 
projected light code are precisely 
known and remain constant (fixed 
by the projector-camera 
relationship), filters can be 
designed with optimal responses 
for extracting code information 
from images. Considering the 
coding scheme shown in figure 5, 
TI and T h represent the longest 
and shortest periods of the code. 
Since the sampling rate is known 
(the time between video line syncs/ 
horizontal resolution), a bandpass 
filter can be designed with cut off 
frequencies 1fTI and 1fT h as 
shown in figure 6. Thi~ results in 
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very high rejection of signals due to high frequency nOise, and low frequency 
grey level variations across the image. 

In the experimental system the following stages of processing are used to 
extract the coded pattern: 

o Average a band of 8 lines close to the bottom of the image. 
o Pass the resultant array through a low pass filter to remove signals above 

1 fT h Hz and then through a high pass filter to remove frequency 
components below 1fT, Hz. 

o derive a binary array by comparing the filtered array with a threshold level. 
o Compare the binary array with a copy of the pattern originally projected to 

determine the position of obstacles if any are present. 

AVOIDANCE ALGORITHMS 

On detecting an obstacle, the AGV manoeuvres in an attempt to remove the 
distortion from the 
projected light pattern. The 
decision on which way to 
turn first depends on the 
position of the obstacle in 
the image and the layout of 
the primary guide path. For 
example if AGVs keep to 
the left of the factory aisles, 
the most likely direction to 
result in successful 
avoidance would normally. 
be to the right. All the 
avoidance manoeuvres 
must be recorded in order 

Figure 5 - Bandwidth of a Coding Scheme 

to use the infornlation for calculating a resultant return vector to rejoin the primary 
guide path. 

After turning, the AGV advances to clear the corner of the obstacle. If a wall 
or other obstacle interferes with the projected light pattern as the AGV advances, 
the control software would determine if enough space is available to complete the 
manoeuvre (determined by the geometry of the system). If the advance is 

Frequency 

Figure 6 - Filter. Cut-Off 
Frequencies 

successful, the control system 
calculates the return course, and the 
AGV proceeds to rejoin the main guide 
path. 

A more general case would be a 
larger obstacle or multiple objects, 
where ttle AGV could not immediately 
rejoin the guide path. In this situation, 
when the AGV attempts to rejoin the 
guide path, the obstacle will continue to 
interfere with the projected light pattern. 
The control system must then adjust the 
course, advance a further distance and 
calculate a new return vector. The 
vehicle again attempts to rejoin Ule 



guide path. This procedure repeats until the obstacles have been cleared. 

RESULTS AND CONCLUSIONS 

A machine vision for improving the performance of wire guided or other AGV 
systems which lack facilities to avoid unexpected obstacles has been described. 

Ttle use of a coded light pattern has minimised the image processing tasl< 
since sufficient obstacle information can be extracted from a relatively small 
section of the image. This allows a low cost embedded controller to be used for 
image processing and control tasks, resulting in a compact modular unit. 

Initial tests have shown that obstacle detection is reliable and flat objects or 
changes in floor colour and texture have no effect on the performance of the 
system. The work is part of an on-going research project and further 
development is at an advanced stage to implement the system on an 
experimental AGV. Particular emphasis is placed on optimising the coded light 
pattern in terms of the system bandwidth (the smallest detectable object) and the 
amount of data processing necessary for reliable obstacle detection. Whilst 
discrete digital filters have been implemented in software to reject signals outside 
the code bandwidth, their analogue counterparts are currently being implemented 
in hardware to further reduce the signal processing burden placed on tile 
embedded controller. 
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