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Abstract 

 

Measurement of the volumetric flow rate of each of the flowing components in 
multiphase flow is often required and this is particularly true in Production Logging 
applications.  Thus, an increasing level of interest has been shown in making flow rate 
measurements in multiphase flow. A new generation of tomographic instrument, 
which enables measurement of the instantaneous local velocity vector and the 
instantaneous local volume fraction of the dispersed phase, is now being introduced. 
However validation and calibration of such instruments is necessary. 

This thesis describes the development of a miniaturised local four-sensor conductivity 
probe capable of acquiring measurements of the local velocity vector, gas volume 
fraction and the local axial gas velocity in the bubbly gas-liquid flows. Experimental 
techniques in which the probe was used to obtain the local gas velocity vector and the 
local gas volume fraction in a bubbly gas-liquid flow are also described.  

High speed cameras are introduced for the measurement of the reference velocity of 
the bubbles. The camera images are also used to plot the trajectory of any bubble that 
hits all four-sensor of the probe.  

Extensive experimental results showing the distribution of the local gas volume 
fraction and the local axial, azimuthal and the radial bubble velocity components in 
vertical and swirling gas-liquid flows are presented.  
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Nomenclature 

A   Pipe cross sectional area 

Ta   Major axis of the bubble 

Tb   Length of minor axis of top part of bubble 

D  Pipe diameter 

d   Diameter of bubble 

F Frictional pressure loss 

f   Single phase friction factor 

fs   Sampling frequency 

h  Distance between pressure tapings 

i, j, k   unit vectors in x, y and z direction (probe coordinate system(m)) 

ppp kji ,,  Unit vector in direction ppp zyx ,,  respectively 

K   Probe calibration factor 

M   Number of test run at a given set of experimental condition 

gM   Gas mass flow rate 

m  m
th  test run at the given set of experimental condition 

1m   Slope of the major axis of the bubble 

2m   Slope of the minor axis of the bubble 
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im̂  Gradient between COG of bubble and iω  

N   Number of bubble striking sensor  

n  Refers to relevant value of nth bubble during mth  test run 

in̂   The unit vector in the direction of r 

vn̂    The unit vector in the direction of V  

atmP   Atmospheric pressure 

absP   Absolute pressure 

gQ    Gas volumetric flow rate (m3s-1) 

wQ   Water volumetric flow rate (m3s-1) 

R  Internal radius of the working section 

R   Radial position (pipe coordinate system (m)) 

r  Position vector of point of first contact of bubble with sensor 0(m) 

r  Magnitude of r (m) 

r1  Position vector of point of first contact of bubble with sensor 1(m) 

r1  Magnitude of r (m) 

S   Axial distance between the front and the rear sensor 

T  Sampling time (s) 

absT   Absolute Temperature  

ift ,1 , irt ,1  Time of first contact with the front and rear sensor for dual probe 
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irt ,2 , irt ,2  Time of last contact with the front sensor for dual probe  

dummyt   Dummy time threshold  

rest   Residence time 

threst   Time threshold 

Uh   Homogeneous velocity,  

gsU   Superficial velocities of gas  

wsU   Superficial velocities of water 

glu    Local axial gas velocity 

V   Velocity vector  

Vamp  Output voltage from op amp (V) 

Vin  Circuit input voltage (V) 

threslV ,   Voltage level threshold  

Vout  Circuit output voltage (V)  

bpV   Velocity vector of the bubble relative to the probe coordinate system 

btpV   Bubble velocity vector relative to the tank coordinate system 

v   Velocity magnitude 

measv   Measured local velocity  
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pmmeasv ,,  Measured mean velocity magnitude of th
m  flow condition and the th

p  

value of refα  

npmmeasv ,,,  Measured velocity magnitude of nth bubble th
m  flow condition and the 

th
p  value of refα  

rv   Radial velocity or the velocity at the Y-axis 

refν   Reference velocity 

zv   Axial velocity or the velocity at the z-axis 

θv   Azimuthal velocity or the velocity at the X-axis 

Xc, Yc, Zc Coordinate of Microscope 

zyx ,,   Probe Coordinate  

titi yx ,, , and tiz ,   Actual probe dimensions ( for sensitivity analysis)  

TTT zyx ,,  Tank coordinate system 

000 zyx ,,  Origin of probe coordinate system (and position of sensor 0) (m) 

321 xxx ,,  x coordinates of sensor 1, 2 and 3 with respect to sensor 0 (m) 

ppp zyx ˆ,ˆ,ˆ  Probe coordinate system described in Chapter 13 

),( cc zx  Centre of gravity (COG) of bubble 

)~,~( zx   New coordinate system of bubble as described in Section 7.3 

)ˆ,ˆ( zx   Coordinate system of bubble as described in Section 7.3 
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321 ,, yyy  y coordinates of sensor 1, 2 and 3 with respect to sensor 0 (m) 

321 ,, zzz  z coordinates of sensor 1, 2 and 3 with respect to sensor 0 (m) 

α    Polar angle  

*α   Inclination of hinged platform to create polar angle   

cα   Calculated polar angle 

measα   Measured polar angle 

pmmeas ,,α  Measured mean polar angle of th
m  flow condition and the th

p  value 

of refα  

npmmeas ,,,α   Measured polar angle of nth bubble th
m  flow condition and the th

p  

value of refα  

 refα   Reference polar angle 

tα   Actual polar angle (reference for sensitivity analysis)  

β   Azimuthal angle  

*β   Inclination of hinged platform to create azimuthal angle   

cβ   Calculated azimuthal angle 

measβ   Measured azimuthal angle 
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pmmeas ,,β   Measured mean azimuthal angle of th
m  flow condition and the th

p  

value of refα  

npmmeas ,,,β   Measured azimuthal angle of nth bubble th
m  flow condition and the 

th
p  value of refα  

 refβ   Reference azimuthal angle 

tβ   Actual azimuthal angle (reference for sensitivity analysis) 

p∆  Differential pressure  

at0δ   Time delays equal to zero (s) 

at0δ   Time taken for bubble to cross the sensor 0 (s) 

it ,1δ   Time difference between irt ,2  and ift ,1  

at1δ  bt1δ  Time delay between first bubble contact with the sensor 0 and first and 

last bubble contacts respectively with sensor 1(s) 

it ,2δ    Time difference between irt ,1  and ift ,1  

at2δ  bt2δ  Time delay between first bubble contact with the sensor 0 and first and 

last bubble contacts respectively with sensor 2(s) 

at3δ  bt3δ  Time delay between first bubble contact with the sensor 0 and first and 

last bubble contacts respectively with sensor 1(s) 
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11tδ , 22tδ , 33tδ   Time intervals defined in equations 2.29, 2.30 and 2.31 

respectively 

npmiit ,,,δ  Time interval of nth  bubble th
m  flow condition and the th

p  value of 

refα   ( )32,1 andi =  

pmiit ,,δ  Time interval of th
m  flow condition and the th

p  value of refα   

measiit ,δ  Measured time intervals ( )32,1 andi =  

tiit ,δ  Actual time intervals ( )32,1 andi =  

Vδ  Threshold voltage value 

αε ,abs   Absolute error in α  

pmabs ,,,αε  Absolute error in α  for th
m  flow condition and the th

p  value of refα  

βε ,abs   Absolute error in β  

pmabs ,,,βε  Absolute error in β  for th
m  flow condition and the th

p  value of refα  

νε   Percentage error in ν  

pmvabs ,,,ε  Absolute percentage error in ν  for th
m  flow condition and the th

p  

  value of refα  

pabs ,,αε   Mean value of absolute error in measured value of pmabs ,,,αε  
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pabs ,,βε  Mean value of absolute error in measured value of pmabs ,,,βε  

pvabs ,,ε   Mean value of absolute error in measured value of pmvabs ,,,ε  

btpη    The unit vector in the direction of btpV  

iλ  Point lies above the boundary of ellipse with the coordinate )'ˆ,'ˆ( ii zx  

with same gradient im̂ . 

λ    Gas volume fraction 

lλ    The local gas volume fraction 

λ    Mean gas volume fraction 

refλ    Reference mean gas volume fraction 

dρ  Density of dispersed phase (air) 

wρ  Density of water   

mρ  Density of mercury 

pabs ,,ασ  Standard deviation of absolute error in measured value of pmabs ,,,αε  

pabs ,,βσ  Standard deviation of absolute error in measured value of pmabs ,,,βε  

pvabs ,,σ  Standard deviation of absolute error in measured value of pmvabs ,,,ε  

ψ  Inclination of pipe 

iω  Boundary of the upper part of the image of the bubble with coordinate 

)ˆ,ˆ( ii zx  
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CHAPTER 1 

Introduction 

1.1. Generalities 

The main aim of the research was to design and build a probe that can be used to 

measure the local velocity vector of the dispersed phase in bubbly multiphase flow. 

The velocity vector can be defined in terms of a spherical coordinate system which 

requires velocity magnitude, a polar angle and an azimuthal angle [1-2]. Such a probe 

could be used to validate the images of the velocity vector obtained using 

tomographic devices [3]. However, a further objective was to explore other possible 

applications of this technology and to develop it as an industrial and laboratory tool.   

In recent years, there has been an increase in the level of interest shown in flow rate 

measurements in multiphase flow. This, in part, has been brought about by the 

metering requirements of the oil and natural gas industries. Measurement of the 

volumetric flow rate of each of the flowing components is often required. This is 

particularly true in production logging applications, where it may be necessary to 

measure the flow rates of oil and water down-hole in vertical and inclined oil wells. 

Within the University of Huddersfield [1-14], work has previously been undertaken 

on the study of vertical and inclined multiphase flow. These studies were based on the 

use of local, dual-sensor conductance probes to obtain the local axial velocity and 

local volume fraction distribution of the dispersed phase in bubbly multiphase flows 

[3].  
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As all the experiments described in this thesis were carried out in a multiphase flow 

environment, it is wise to describe briefly the basic physics underlying multiphase 

flows. In general, there is a fundamental division between single phase and 

multiphase flows. A single phase flow is where the flow consists of only one 

component; whereas, if more than one component is flowing, it is a multiphase flow. 

The physics of the flow becomes more extreme and complicated when there is more 

than one component flowing in the system. 

In a multiphase flow, the components that flow together are not mixed into a single 

fluid. Therefore, a multiphase flow can be gas-liquid, liquid-liquid (e.g. oil–water), 

liquid-solids, gas-solids, and gas-liquid-solids flows. The current investigation deals 

with gas-liquid flows, specifically air-water flows. Due to the fact that the behaviour 

of these types of flow changes with the inclination of the pipe [1], the current project 

only focuses on air-in-water multiphase flow in vertical pipes.  

1.2 Types of multiphase flow 

Due to the complex nature of the flow, it is difficult to accurately differentiate and 

define the number of flow regimes that exist in a vertical gas-liquid multiphase flow. 

However, they can be categorized into four basic types according to the flow structure 

(see Figure 1.1): (i) Bubbly flow; (ii) Slug flow; (iii) Churn flow and (iv) Annular 

flow. These flow regimes occur with increasing gas flow rate at a constant liquid flow 

rate.  

The flow structure normally depends on the superficial velocities of the continuous 

and dispersed phases; in this case, water and air. It also depends on the diameter of the 

pipe. The Superficial velocity (ratio between volume flow rate to cross-sectional area) 
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of a phase in multiphase flow in a pipe is the velocity that it would have if it was 

flowing alone.  

 

Figure 1.1 Four different types of vertical gas-liquid multiphase flow, with an 

increasing proportion of gas from left to right 

Bubbly flow: - bubbly flows are frequently encountered in nature. In a bubbly flow, 

the flow rate of water (continuous phase) is much greater than the flow rate of air 

(dispersed phase). Bubbly flow is characterized by a distribution of bubbles of various 

sizes throughout the liquid. In a gas-liquid flow, if the dispersed phase flow rate 

increases then bubble coalescence occurs.  

Slug flow: - with an increasing gas flow rate, the coalescence of small gas bubbles 

creates bigger bubbles and a transition occurs from the bubbly flow regime to the slug 

flow regime. Slug flow is characterized by large “bullet shaped” gas bubbles which 

occupy almost the whole cross-section of the pipe, but which do not touch the wall. 

These “bullet shaped” bubbles are axially separated from each other and between 

them there is a region where smaller bubbles may exist, immersed in the continuous 

phase (see Figure 1.1).  
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Churn flow: - if the gas flow rate is further increased, another transition occurs and 

the churn regime appears. The churn flow regime is characterized by the chaotic 

behaviour of the gas phase. The cross-section of the pipe is occupied by irregular 

shaped portions of gas and analysis of this kind of flow regime is extremely difficult.  

Annular flow: - if the gas flow rate is increased even more, the flow regime becomes 

annular. This flow regime is characterized by a thin layer of liquid at the pipe wall and 

the rest of the tube is occupied by fast flowing gas with very small entrained liquid 

droplets.  

In this thesis, the flow regime that is studied is the bubbly flow regime, for air-in-

water flows.  

Some key global parameters that are used to quantify the behaviour of multiphase 

flows are the volume fraction and actual velocity of a phase. Volume fraction is the 

fraction of the volume which is occupied by a phase, averaged over the time of 

interest. It is a dimensionless number between 0 and 1. Average actual velocity is the 

mean phase velocity, again averaged over the time of interest, and is equal to the 

phase superficial velocity divided by the phase volume fraction. 

The properties that are considered in the current research are the local volume fraction 

and the local velocity vector of the dispersed phase. In a steady state multiphase flow, 

both the volume fraction and the velocity vector of the dispersed phase can vary 

within a given flow cross-section. Values of these properties at a given point in the 

flow cross-section are referred to as local properties. In many bubbly gas-liquid flows, 

the local gas bubble velocity is a vector quantity which is not necessarily parallel to 

the pipe axis. Local flow properties must be distinguished from global flow properties 
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which refer to the average values of a property over the flow cross-section. A detailed 

description of the local properties of multiphase flows will be described later in this 

thesis.  

The reason for studying these local properties of multiphase flow is that, in many 

industries (e.g. oil, chemical and nuclear), knowledge of the local volume fraction and 

the local velocity profile of the dispersed phase is important for the optimal control of 

processes, the maximum exploitation of resources, and more importantly, the safety of 

the personnel. Some reasons why gas velocity and volume fraction profiles are 

important [6, 15-16] include: 

(a) Knowledge of the local gas volume fraction distribution is essential when 

calculating the pressure gradient in gas-liquid pipelines.  

(b) Optimization of chemical processes is essential in chemical engineering 

applications when bubbling gases into liquid solutions. Thus, knowledge of gas-

liquid interface conditions is necessary for determining optimum reaction 

kinetics.  

(c) Advanced nuclear reactor concepts rely on extremely high heat removal rates, 

which are only possible through liquid boiling. In this case, minor changes in 

local parameters can drastically change the flow conditions in steam-water 

systems. As a result, knowledge of the phase volume fraction and velocity 

distributions is important for producing reliable, accident-safe calculations.[6,15] 

(d) Techniques for measuring the local properties of multiphase flows enable the 

characterisation of such multiphase flows for comparison with and validation of 

numerical models of multiphase flow. 
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1.3 Application of multiphase flows and the need to measure their 

properties. 

1.3.1 Multiphase flow in the oil and gas industry 

Multiphase flow in the oil and gas industries can be observed during both the drilling 

and extraction processes. In an oil well drilling operation, there is a possibility that the 

drill bit may encounter a pocket of natural gas which rises rapidly through the drilling 

mud to the surface causing a ‘blowout’, which can be highly dangerous to operating 

personnel and extremely damaging to the environment. The initial entry of gas into 

the well may be detected by the driller as a so called “gas kick” and, if the operator is 

to take measures to prevent a blowout, it is essential that he knows how quickly the 

gas will reach the surface. Software which enables drillers to take the necessary 

measures to prevent blowouts relies heavily on experimental data for the rise velocity 

of gas in vertical and inclined gas-liquid multiphase flows. An understanding of 

multiphase fluid mechanics therefore allows the implementation of appropriate 

control strategies to prevent a well-head explosion or environmental damage due to 

massive fluid leakage from the well-head. 

 During the process of extracting the oil from a well, a pump is often placed at the 

well head. In some cases the oils are too heavy to be pumped, so a process called 

enhanced oil recovery is used that involves drilling a second hole adjacent to the 

original well, and pumping steam into the second hole. The pressure created by the 

steam in the oil bearing formation helps to move oil into the original well and up to 

the surface. In some cases, water and gases are also injected into the adjacent well to 

aid extraction. During such extraction processes, oil, gas and water may flow 
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simultaneously up the well. This emphasizes the importance of the study of 

multiphase flow to quantify the multiphase flow in such pipes. 

1.3.2 Multiphase flow in the mining industry 

Today, hydraulic transportation is commonly used in the mining industry. After their 

extraction, minerals usually need to be transported to other sites either for use or for 

ongoing shipment, and may be transported in pipelines - sometimes over long 

distances - using water as the medium of transportation. Traditionally this 

transportation process was carried out either by road or rail, but now hydraulic 

transportation is often a more attractive option. Seshadri et al. [17] argue that the 

transportation of solids using pipelines is a better method than the traditional 

techniques because (i) it is technically and economically attractive; (ii) it offers a high 

degree of efficiency, reliability and round the year availability and (iii) it has a lower 

environmental impact, making it desirable as a mode of transportation [17-19]. For 

example, Constantini et al. [18] estimate that the capital cost of a proposed 900 mile 

potash pipeline in Western Canada capable of transporting six million tons of potash 

per year would be one third of the equivalent rail transport network.  

To be able to specify the required pumps and to transport material successfully using 

the hydraulic transport method, the pressure drop per unit length must be known. It is 

also important to make sure the solids remain adequately suspended in the flow. 

Hence, accurate knowledge of the pressure drop and suspension velocity during the 

design of a hydraulic transportation pipeline can ultimately save considerable sums of 

money in the building and operating costs of the system. Constantini et al. [18] 

estimate the capital cost of a proposed 1000 mile coal pipeline in the USA capable of 

transporting 37 million tons of coal per year to be as much as $650 million, with an 
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estimated operating cost of $137 million per annum. These costs increase as the size 

of the hydraulic transportation pipeline increases. 

One of the key parameters that must be known in order to predict pressure drop per 

unit length is the solids volume fraction; this is an essential parameter that must be 

identified in order to minimise building and operating costs [7, 20-21]. This is 

especially true when capital and operating costs become competitive. For example, 

with regards to the coal pipeline discussed by Constantini, if improved knowledge of 

the pumping loads resulted in even a 1% operating cost reduction this would result in 

a saving of $1.37 million per annum.  

Suhashini et al. in [22] point out that quantitative information and accurate estimates 

of hydrodynamic properties are also essential for a safe and reliable design.  

Because of these considerations of potential savings and improved safety and 

reliability, a wide range of investigations of the relevant multiphase flows is 

continually reported. However, a survey of the literature shows that examples of local 

measurements acquired in such flows are limited [7, 20-22].  

1.3.3 Multiphase flow in nuclear plants 

Multiphase-flow is also present in nuclear reactor plants where two phase flow occurs 

in cooling equipment. The nuclear reactor uses radioactive materials to heat the water 

and the resultant steam drives a steam turbine which, in turn, spins the generator to 

produce power. Then the steam is cooled before it re-enters the steam generator. The 

steam-water flow is two phase. It is essential to know bubble sizes and volume 

fractions, since these parameters are important for calculating heat transfer, which is 

an important parameter for both efficient and safe operation of the reactor [24]. 
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Models of flow patterns of the two phase flows are important for design, optimization 

and safety analysis in nuclear plants, as stated by Lucas et al. [24].  

The void fraction distribution in forced-convection, sub-cooled flow boiling in 

vertical channels is important for properly evaluating the flow stability and neutron 

moderation characteristics. Since the condensation rate in sub-cooled flow boiling is 

significantly affected by the lateral bubble distribution within the channel cross-

section, adequate knowledge of the lateral bubble migration from the heating surface 

towards the sub-cooled liquid region is essential to accurately predict the net 

vaporization rate and also the axial development of void fraction [25]. 

1.3.4 Multiphase flow in the chemical industry 

A vast number of multiphase flows occur in chemical processes. In gas-liquid 

reactions, sufficient contact of the two phases is important in order to attain optimal 

performance. In these kinds of cases, the interfacial area per unit volume and the mass 

transfer rate of the two phases are important parameters that must be measured and 

controlled for a better overall performance of the process [26]. 

Manufacturing techniques of microstructures have made possible the development 

and assembly of micro-chemical devices. These devices are better than common batch 

reactors due to the fact that they use minimal amounts of fluids, have high heat and 

mass transfer rates, and shorter reaction times [27]. In these micro-chemical reactors, 

multiphase flows are present. It is highly desirable to recognise the characteristics of 

the multiphase flows in these microstructures in order to properly design, develop and 

operate them. Knowledge of flow patterns, phase volume fractions, pressure drops, 

liquid film thicknesses, and internal mixing quality is essential [27, 28]. 
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During fermentation reactions in chemical and biochemical processes, foam is 

produced. Depending on the conditions of the process, different effects may occur; for 

example, a loss of sterility may take place as a result of excessive foaming. Also, in 

order to store the unwanted foam, over-sizing of vessels must occur. This increases 

the costs of the process, so it is important to monitor and control the different foam 

phases that may occur during the process [29].  

Bubble columns are multiphase reactors which are used in the chemical and 

biochemical industries. They have advantages over other multiphase reactors, 

including the simplicity of their construction, good heat and mass transfer rate 

properties, an absence of mechanical moving parts, high thermal stability, good 

mixing, low power consumption, and low operational costs. In these reactors, gas is 

injected into a continuous liquid phase. Applications include oxidation and 

chlorination reactions, in which kinetically slow gas-liquid reactions take place. The 

generated bubbles are dependent on: the reactor geometry, the primary gas 

distribution, the operational conditions, and the physical-chemical properties of the 

two phases. These parameters affect the size, velocity, shape, and interfacial area of 

the bubbles. Also, in some applications it is important to quantify the bubble 

coalescence. Therefore, it is obvious that these parameters must be measured and 

understood in order to build a representative model of the bubble columns for better 

operational efficiency [30]. 

Another device that is used widely in the chemical industry and involves multiphase 

flow is the riser. Gas and solids usually flow concurrently upward. One example of 

the use of risers is in Fluid Catalytic Cracking (FCC). The associated type of 

multiphase flow has a complex behaviour due to the existence of turbulence. This 
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complexity introduces many difficulties in designing, scaling-up and optimizing the 

operation of the chemical reactor. Therefore, it is essential to distinguish the physics 

behind these complex flows and measurements of phase volumetric distributions are 

important for understanding the behaviour of gas-particle flows encountered in risers 

[31].  

Generally, it is important to be aware of the bubble diameter, phase volume fractions 

and the mass transfer rates [8, 15 and 32-34] when examining the performance of  

mass exchangers, absorption processes and chemical reactors such as distillation 

columns, liquid-liquid-solid fluidized beds and sieve plate reactor towers.   

1.4 Research aim and objectives 

The general aim of the research presented in this thesis is the development of 

techniques for measuring the local properties of the dispersed phase in bubbly 

multiphase flows.  

The objectives necessary to attain this aim are: 

(i) To design a miniature four-sensor local conductance needle probe and associated 

electronics to measure the local gas velocity vector with minimal error on each 

orthogonal velocity component (i.e. radial, axial and azimuthal velocity), in bubbly 

multiphase flow.  

(ii) To carry out a sensitivity analysis to determine the influence of errors in time 

delay measurement and probe dimensional measurement on the measured droplet 

velocity vector.  
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(iii) To design and construct a test facility to provide reference measurement of the 

bubble velocity vector in terms of a polar angle α , an azimuthal angle β  and a 

velocity magnitude v  using two high speed cameras and appropriate image 

processing. This facility will also be used to quantify the deformation of bubbles 

caused by impact with the needle probe. 

(iv) To quantitatively compare the results of a rotary index dual-sensor needle probe 

and a four-sensor needle probe with results obtained from the high speed camera 

reference measurement system.  

Techniques for measuring the local properties of multiphase flows enable the 

characterisation of such multiphase flows for comparison with and validation of 

numerical models of multiphase flow. 

Such techniques can also be used for validating dual plane electrical resistance 

tomography (ERT) systems [8-9], which are reported to be able to measure the local 

dispersed phase velocity vector and the local dispersed volume fraction in multiphase 

flow, but with an unknown level of accuracy. 

For the above reasons, an independent method of measuring the local dispersed 

velocity vector and the local dispersed phase volume fraction with a high degree of 

accuracy in bubbly gas-liquid flow is very important. 

1.5 Format of the thesis 

It is useful at this stage to describe the format of the thesis which is laid out to present 

the research in a logical and sequential order. Each chapter is intended to be a 
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reasonably self-contained description of one area of the research. However, it will 

occasionally be necessary to refer back to earlier sections of the work.  

Chapter 2  Reports the results of background studies carried out for the present 

investigation. These involve the selection of the measurement principle 

of the instrument and further detailed research into areas of this 

measurement principle.  

Chapter 3 Reports the design and optimization of the measurement device. This 

includes the mechanical design and construction of the instrument. 

Chapter 4 Discusses the sensitivity of the probe to measure errors in the probe 

dimensions and errors in the measurement of the relevant time 

intervals.  

Chapter 5  Reports the design and construction of all of the electronic 

measurement hardware. It also presents the design and construction of 

the ancillary mechanical and electrical components. 

Chapter 6  Presents the software developed for this project, including data 

acquisition and signal processing. 

Chapter 7  Presents the theory used for obtaining reference measurements of the 

velocity vector. It also presents the theory of image processing and the 

process of reconstructing the bubble images and camera calibration. 

Chapter 8  Describes the experimental set up of the water tank into which air is 

injected. It also explains the co-ordinate transformations necessary to 
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define the bubble velocity vector measured by the probe in terms of the 

tank coordinate system. 

Chapter 9 This chapter provides the results of experiments carried out on the 4-

sensor probe in the air-water tank. 

Chapter 10  This chapter describes an air-water multiphase flow loop. 

Chapter 11 All experimental results obtained in the air-water flow loop with and 

without the swirl are presented. The results obtained are compared with 

the reference measurements obtained from a high speed camera.   

Chapter 12 Conclusions. 

Chapter 13 Recommendations for further work. 
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CHAPTER 2 

Literature review 

Since the beginning of the study of multiphase flow, there have been significant 

developments in measurement techniques, and various types of measuring devices 

have been developed. Even though all the equipment/devices have different ways of 

measuring the properties of the flow, they can all be simply categorised into two 

groups: non-intrusive (techniques in which the properties of the flow are measured 

without disturbing the flow) and intrusive (techniques in which the flow is disturbed 

while the properties of the flow are measured). Both intrusive and non-intrusive 

techniques can be sub-divided into global and local techniques, listed below. 

2.1 Non-Intrusive Methods 

Non-intrusive methods can be divided into global and local measuring techniques [1-

110]. As this project is based on local, intrusive methods of measurementthe detailed 

information on non intrusive measurement techniques is presented in Appendix A.  

2.2 Intrusive methods 

Although non-intrusive techniques can give the required information that is needed 

for a process, there are limitations that make them unsuitable for a number of 

applications. In these situations, intrusive methods are preferred. One of the reasons 

that intrusive methods are used is that non-intrusive techniques may not give 

satisfactory results on highly turbulent systems (Christophe et al. [15]); also, in some 

industrial operating conditions, non-intrusive techniques become ineffective because 
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of the walls (which need to be transparent in the case of image analysis techniques) 

and bubble number density (in the case of LDA and PIV); finally, non-intrusive 

methods are not often easy to apply and install, and they can be very expensive [15]. 

A further major limitation of non-intrusive methods is their inaccuracy; for example, 

the poor accuracy of the velocity and volume fraction measurement in multiphase 

flow using ERT (Lucas et al. [3], Christophe et al. [15]). 

As a result of these limitations of non-intrusive systems, intrusive techniques have 

been developed which are discussed in detail below:  

2.2.1 Heat transfer probe 

Heat transfer probes are also known as hot film anemometers and in multiphase flow 

can be used for the measurement of local gas volume fraction and liquid volume 

fractions. They can also be used for measurement of velocity of the continuous phase 

liquid in liquid continuous phase, and turbulent flow quantities [111-119]. 

 

Figure 2.1 Hot film anemometry probes: one sensor, dual-sensor and three 

sensors respectively from left to right. 

The sensors of these hot film probes are very small, usually 0.1 µm, and are made up 

of platinum or nickel films. These films are deposited on thermally insulating 

substrate, usually quartz. The films are deposited on cathode sputtering to ensure a 

uniform thickness of the sensing element. A thick layer of conducting material is 
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connected by sputtering to the ends of the film to supply the electrical heating current. 

The film is usually coated with a 1–2 µm thick deposited layer of insulating material 

(quartz). This coating protects the film material from abrasive particles and provides 

electrical insulation for hot film probes used in liquids. Two or three films can be used 

for a multi-dimensional flow, as shown in Figure 2.1. 

The process of measurement is generally based on the principle of the exchange of 

heat from the electrically heated probe to the surrounding environment. Thus, the heat 

transfer coefficient between the probe and the surrounding dispersed phase is given in 

Equation 2.1 as a Nusselt number uN  (ratio of convective to conductive heat transfer) 

and depends on the characteristic Reynolds number Re  [117, 119]  

5.0Re−⋅+= BANu            Equation 2.1 

The electric current through the probe is controlled by a Wheatstone bridge interfaced 

with a regulation amplifier and a high-pass filter [67,119]. 

The calibration relationship between the voltage E  from the Wheatstone bridge 

(which the current from the probe is passed through) and the liquid velocity is given 

by King's law [15]:  

n
euBAE ⋅+=2             Equation 2.2 

where, A, B and n are coefficients identified by calibration, E is the output voltage 

from the bridge; ue is the apparent fluid velocity (whereas the actual velocity is u
r

, a 

vector), sensed by the probe. In the case of a non-uniform flow, eu  is the normal 

component of u  with regard to the probe. For the calibration procedure, a Pitot tube is 
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usually used as a reference measuring technique. Also, due to the fact that the sensor’s 

characteristics can change rapidly, it is recommended that the probe should be 

calibrated regularly. 

The coefficients A, B and n of King's law are dependent not only upon the physical 

properties (density, viscosity, thermal conductivity) of the fluid near the probe, but 

also on the geometric characteristics of the sensor. These parameters may also vary 

with the difference in temperature between the hot film and the fluid [117,119]. 

Due to their fragile nature, hot film probes are not used in multiphase flows that have 

solids with high momentum. Also, it is desirable for the temperature in the flow to be 

uniform. However, care must be taken when they are used, due to the fact that errors 

in measurements may arise from several factors: flow disturbance due to the probe, 

calibration curve uncertainty, signal treatment, signal amplification, signal 

interpretation in turbulent flow, and non-uniform temperature [111,117,119]. 

Toral et al. [116] used hot wire anemometers in multiphase flow in order to measure 

the volume fraction of the dispersed phase (air in this case) which was introduced in a 

tube filled with ethanol. The measurement principle was based on monitoring the 

different rates of heat dissipation from the probe in vapour and liquid phase. The 

reference gas volume fraction was determined by using the pressure drop between two 

pressure tap points (see Chapter 10). 

Rensen et al. [120] in 2005 also used a hot wire probe in order to study the bubble-

probe interaction, residence time, bubble size (compared with the image captured 

from high speed cameras) and the arrival and departure bubble velocity. Figure 2.2 

shows the schematic diagram of the experimental set up used by Rensen et al. [120]. 
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Figure 2.2 Schematic diagram experiment set-up (a) water channel with 

circulatory flow (b) Enlargement of the test section (c)  optical path for 

stereoscopic imaging (top view), Rensen et al. [120] 

Rensen et al. [120] describe three types of probe-bubble interaction as follows:-  

• Penetrating bubble: - The bubble and probe meet each other and merge. The 

sensitive part of the probe is then inside the bubble, until the back end of the 

bubble has passed the probe (see Figure 2.3). 

• Bouncing bubble: - The bubble is pulled back under the probe and the bubble 

leaves the probe on one side (see Figure 2.3). 

• Splitting bubble: - The notch that originates from the folding of the bubble 

becomes deeper, until the back end of the bubble hits the probe. As a 

consequence, the two bulges break up into two separate bubbles (see Figure 

2.3). 
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Figure 2.3 Image sequence of penetrating, bouncing and splitting a bubble as 

described by Rensen et al. [120] 

Bruun et al. [119], in 1995, describe various types of hot wire probe: S N film probe, 

X hot film probe and split-film probe. Bruun et al. [119] also describe problems 

associated with the hot film anemometer such as: electrolysis, cracking of the quartz 

coating, bubble formation on the probe, temperature drift and probe contamination. 

2.2.2 Ultrasound probe 

Ultrasonic probes were originally developed to be used in the single phase liquid 

flows (Murakawa et al. [121,122]), in which the pulse echography of ultrasonic beams 

from an ultrasonic transducer are used to measure the instantaneous velocity profile of 

the liquid along its measuring line. The advantage of using ultrasonic probes is that 

they can be used in opaque liquids such as liquid metal and in the presence of 

magnetic fields.  In recent years, these probes have also been used in multiphase 
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bubbly flow [121,122], in which the ultrasonic pulses are reflected both from the 

seeding as well as the bubbles in the liquid, so that it is possible to measure the 

velocity of the bubbles as well as the liquid. 

 

Figure 2.4 Cross-section of an ultrasound Doppler probe [123]. 

In general, the structure of an ultrasound probe consists of a piezo-ceramic disk linked 

to a damping device included in a metal tube. These probes are able to be used even in 

aggressive environments; they can resist temperature up to 140°C and pressure to 

20MPa. Figure 2.4 shows a diagram of an ultrasound probe [15, 123-124]. 

The principle of its operation is that acoustic pressure waves are generated from a 

transducer within the piezo-ceramic disk, causing vibrations. The disk transforms 

these waves into a voltage signal which, in turn, can be acquired by a computer 

through a data acquisition card. The frequencies that are used range between 0.2 and 5 

MHz. Also, the focal distance of these probes is about 0.2 to 0.3 m; therefore, no 

disturbance of the flow occurs [15].  

There are two types of technique that are used with ultrasound probes. The first uses 

transmitted wave characteristics such as attenuation in order to make a measurement. 

In this technique, transmittance T is evaluated through the voltages A (when a bubble 

is present) and A0 (when bubbles are absent) measured at the receiver probe. 
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Transmittance T depends on the distance L between the two probes, bubble sauter 

mean diameter SMd , sound dispersion coefficient S  and wave characteristics such as 

frequency f, and celerity c in the liquid medium. Once all these parameters are 

measured, it is possible to calculate the local interfacial area A  or the gas volume 

fractions λ  using Equation 2.3 as described in [125]. 
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Figure 2.5 Experimental set up used [ 121,122] 
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The second method uses the Doppler technique which is a pulse echo method. In other 

words, in the case of probes that use the Doppler technique, the transmitter and 

receiver are the same probe (Christophe et al. [15], Murakawa et al. [121] [122]). Due 

to the fact that gas-liquid interfaces are very good reflectors (acoustic impedance is 

different in gas and liquid), pulsed signals are emitted into the fluid and their echo is 

received. Wave characteristics have been altered and these changes correspond to the 

velocity of the multiphase flow. The frequency of the pulse emission is around 10 

kHz. Also, the shorter the pulse, the weaker the echo distortion will be [126].  

Murakawa et al. [121, 122] used a similar technique in a multiphase bubbly flow; 

Figure 2.5 shows the experimental set up they used. In the experiment by Murakawa 

et al. [121,122], the ultrasonic Doppler method was applied to the bubbly multiphase 

flow with added seeded particles, with the result that the ultrasonic waves are 

reflected from both the seeding particles as well as the bubbles. These reflections, 

captured by the ultrasonic velocity profiler monitor, contain information on the 

velocities of both phase disperse (bubble in this case) as well as the continuous phase 

(water). Thus, Murakawa et al. [121] were able to find the velocity of both phases 

using the phase separation technique. 

Later, Murakawa et al. [122] used two different sizes of ultrasonic transducers in 

order to study the effect of the liquid velocity on the rising velocity of the bubbles. 

Figure 2.6 shows the velocity probability density function using 2 MHz and 8 MHz 

ultrasonic transducers. It was found that, with the 8 MHz ultrasonic transducers, it 

was only possible to measure the velocity of the liquid, while with 2 MHz ultrasonic 

transducers, it was possible to measure the velocity of the bubble.  
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Figure 2.6 Comparison of the probability density function measured with 2MHz 

and 8MHz ultrasonic transducers. Murakawa et al. [122] 

Similarly, Wang et al. [127] used a commercially available ultrasonic system, Doppler 

US2000, in order to measure the gas volume fraction, liquid velocity, bubble size, and 

bubble rise velocity in a bubble column, as shown in Figure 2.7.  

 

Figure 2.7 Experimental set up for Wang et al. [127] 

Placing the probe as shown in Figure 2.7 has an advantage: 1) it overcomes the 

complexity of the ultrasound reflection at the bubble interface which makes the signal 

difficult to deal with and 2) it also avoids the difficulty of determining the Doppler 



Chapter 2                                                                                                       Background 

Suman Pradhan 61

angle as the measured velocity, as the DP2000 is directly projected towards the flow 

direction. 

 

Figure 2.8 Flow pattern achieved by Wang et al. [127] 

Figure 2.8 shows the sequence profile of the evolution of the bubble signal, as it rises 

towards the probe, decreasing the distance between the bubble and the probe as the 

time increases. Thus, Wang et al. [127] recommend a way of calculating the rise 

velocity of the bubble by dividing the bubble displacement between two sequential 

profiles by the relevant time interval and then averaging the results. 
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Using this approach, Wang et al. [127] found good agreement between results in 

which they found the bubble velocity bU , of 0.32 m/s and the liquid velocity (seeding 

particles) lU  of 0.12m/s. The bubble slip velocity, given by bU - lU , is 0.20 m/s, in 

accordance with the single bubble rise velocity in water.  

2.2.3 Needle probes 

The main characteristic of these probes is that they are thin and they are sharp ended. 

They are positioned so they face the direction of the flow. Depending on their design, 

they are able to measure the local dispersed phase volume fraction lλ  and local 

velocity in gas-liquid and liquid-liquid (e.g. oil in water) flows, in the bubbly flow 

regime. There are two types of needle probes: optical fibre probes and conductive 

probes. In the literature, the number of tips or the number of needles they use is 

predominantly one or two [129-140]. With one needle they are able to measure only 

the local dispersed phase volume fraction; with two needles it is possible to also 

measure the local dispersed phase velocity. Recently, four and five needle probes 

have been fabricated [141-156], which also measure vector velocities and bubble 

shape respectively.  

2.2.3.1 Optical needle probe 

In recent years, optical probes have been frequently used to study the bubbly 

multiphase flow [129-134]. In these studies, authors used single, dual and four-sensor 

probes in order to determine the velocity of the dispersed phase, bubble shape and the 

volume fraction of the dispersed phase. 
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The principle of optical fibre probes is based on the fact that the critical angle for 

reflection/refraction changes considerably in the different phases, and is much larger 

for a water and glass interface than for an air and glass interface. Light is sent through 

the fibre and, if the tip of the probe is immersed in water, light will leave the fibre, 

whilst if air or oil is present at the tip of the fibre, the light will be reflected.  

Hamad et al. [129-130], in 1997, used a single sensor optical probe in kerosene-water 

flow to measure the volume fraction of kerosene and compared the results with those 

acquired from a hot-wire anemometer.  Subsequently, in 2002, Hamad et al. [129-

130] report implementing a dual-sensor optical probe in kerosene-water flow to 

measure the local volume fraction, local dispersed phase (kerosene) velocity and the 

bubble size. 

Hamad et al. [129-130] used a five meter long optical probe cable with a 100 µm core 

diameter and 140 µm cladding diameter. This cladding provides a constant step 

change in refractive index at the core-cladding interface, which guides the light inside 

the fibre.  In this paper, the author measured the volume fraction of the dispersed 

phase (kerosene) with an optical probe, using Equation 2.4:  
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where T is total measurement time, ∑ GT  is the total time the dispersed phase is 

present at the selected measuring point and λ  is the dispersed phase volume fraction. 

When comparing the results from the optical probe with those from a sampling tube, 

the author found good agreement between the results. 
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Hamad et al. [129-130] also reported that the drop size distribution is apparently 

similar when the volumetric quantity (ratio between the volume of water and the total 

volume present in the system) is constant and the water flow rate is changed, whereas 

if the water flow rate is kept constant and the volumetric quantity is increased, results 

shows that there is a substantial increase in the number of small drops. 

S. Guet et al. [130] made a four-sensor probe using fibres with a  quartz glass core of 

200 µm diameter, having a refractive index of 1.45, a silicon cladding of 380 µm 

diameter and a protective layer of Teflon of 600 µm diameter. The cladding and 

Teflon layers were removed from the tip of each sensor. Light was emitted into each 

fibre by an LED (wavelength of 680 nm) via standard glass fibre connectors and a 

photodiode was used to detect the reflected light. The collected light was then 

converted into a voltage output. Figure 2.9 shows the schematic of the four sensor 

optical probe used by Guet et al. [130].  

 

Figure 2.9 Schematic of four sensor optical probe. Guet et al. [130] 

The author used the optical probe in bubbly gas-water flow to study the bubble shape, 

the volume fraction profile and the orientation of the bubbles during probe-bubble 

interaction. In the paper, the author reported that bubbles smaller than 5mm in 
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diameter accumulate near wall regions to form a wall peaking radial volume fraction 

profile. As the bubble size increased, the volume fraction profile changed from wall 

peaking to a centre line peaking volume fraction profile. The author also stated that 

the orientation angle (angle between the z- axis of the pipe and the velocity vector of 

the bubble) of the dispersed phase is greater than 0° if the diameter of the bubble is 

smaller then 5mm, whereas the orientation angle is less then 0° if the bubble is larger 

than 5mm in diameter. 

Julia et al. [131] also used an optical dual-sensor probe to measure the local volume 

fraction and the trajectory of the dispersed phase in bubbly air-water multiphase flow. 

The drawback of this study is that the probe was placed just 3.5 cm above the gas 

injection nozzle. Due to this small degree of separation, bubbles will still be under the 

influence of the air (gas) pump pressure, thus the chances of receiving the wrong 

information on velocity are very high. It is also possible, in the case of this small 

nozzle-probe separation, that the trajectory of the bubble will always be vertically 

upward as the bubble hits the probe. The author mentions three types of effects that 

can occur during bubble-probe interaction which can cause an error in measurements. 

The described effects are: -  

 Blinding effect: - since the probe detects a disturbed interface position, the local 

interface deformation during probe impact contributes to the error on the velocity 

measurement. This leads to the existence of a blind zone or, equivalently, to an 

effective shape detected by the probe. 

Crawling effect: - the whole bubble is decelerated and /or deformed during the 

interaction. 
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Drifting effect: - the trajectory of the bubble is altered, leading to either the detection 

of a smaller chord or to no detection at all. 

Although the optical probes described above are capable of measuring the properties 

of the dispersed phase, they have significant drawbacks, as described below:- 

• Probe tips of optical probe are very sensitive to dust. 

• The probe must be shaped very precisely, which is very difficult due to the 

size of the probe and, hence, requires special machining, increasing the overall 

cost. 

• Using a typical optical probe, the reflected light signal is very weak; thus, in 

order to enhance the signal, a very expensive photo receiver is required. 

However, for better reflection, a co-axial receiver can be used, but it needs to 

be finely machined, which is again very expensive. 

2.2.3.2 Conductance needle probe 

Given the drawbacks associated with the optical probes described above, in the 

present investigation it was decided to use a needle conductance probe. Conductance 

needle probes use metal needles as the sensors. The diameter of the needles is usually 

smaller than 200µm. They are covered with a non-conductive waterproof layer, except 

at the tip of the sensor needles. The exposed tips are the actual sensors. The electronic 

circuit that supports these probes measures the conductance between the tip of the 

needle and the body of the probe, which is metal. For air-in-water bubbly flow, when 

the tip is surrounded by water, the measured conductance is 0.05S/m. When a bubble 

strikes the probe, the tip is surrounded by gas and the measured conductance is very 

0.8 × 10-14S/m. Hence, measurements can be acquired using the times at which the 
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bubble surface contacts each sensor. As in the case of optical probes, a one needle 

probe measures the local dispersed phase volume fraction and a two needle probe 

measures the local dispersed phase velocity, as well as local dispersed phase volume 

fractions. In the last few years, four-sensor probes have also been designed and used 

to measure the local dispersed phase velocity vector. More information regarding 

conductance probes can be found in [135-140] and in the rest of the thesis, as they are 

the main subject of the research that is presented here. 

It may be helpful to briefly mention some of the problems that occur when needle 

probes are used. These problems are related to the measurement errors that may occur 

(see Chapter 3 section 3.2 and Chapter 4). Sources of these errors include: bubble-

probe interaction (piercing hydrodynamics), probe orientation in the flow, bubble 

shape, turbulence, statistical bias (large bubbles are likely to hit the probe more often 

than small ones), and the signal (and data) processing scheme that is used.  

In the current thesis, dual and four-sensor probes have been designed, fabricated and 

used in a number of experiments. An extensive and detailed description regarding 

their characteristics will be presented. Also, new designs and signal processing 

schemes are discussed.  

2.3 Conductance probe  

As discussed in Chapter 1, two phase flows occur in many applications in the 

chemical, mechanical, gas and petroleum and nuclear industries. The relationships 

between the phases in gas-liquid flows are very complex and result in different flow 

patterns, as described in earlier sections. These flow patterns are highly dependent on 

the flow rates and mean phase volume fractions of the flowing components. 
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Author Sensor material used 
Sensor diameter 

(mm) 

Serizawa et al. 1975                            stainless steel 0.2 

Hills 1974                                           tungsten 0.5 

Neal and Bankoff 1963                      stainless steel 0.75 

Kocamustafaogullari et al. 1991          stainless steel 0.25 

Wu et al. 2000                             stainless steel 0.089 

Hogsett  et al.1997                              platinum 0.127 

Sanaullah et al. 1998                           stainless steel 0.112 

Kim et al. 2000                                    gold acupuncture needles 0.13 

Herringe and Davis 1976                   stainless steel 0.08 

Panagiotopoulos et al.  2007              stainless steel 0.3 

Park et al. 1976                                      kovar 1 

Rigby et al. 1970                                 chromel-alumael 0.5 

Lewis et al. 1983                                stainless steel 0.315 

Yasunishi et al. 1986                           platinum 0.25 

Table 2.1 Summary of probe configurations used by previous researchers 

Within the University of Huddersfield and elsewhere [1-14,135-156], conductance 

probes have been used to determine the local velocity vector, the local volume 

fraction and bubble size distribution in gas-liquid flow. A comprehensive list of 

previous research into conductance probes is given in Table 2.1. However, the probe 

listed in Table 2.1 was only used to measure the velocity and the volume fraction 

profile of the bubble with exception to Panagiotopoulos et al.  2007. Panagiotopoulos 

et al.  2007 used rotary index dual-sensor probe to measure the velocity vector of the 

bubble (see Chapter 2.6). 

These conductance probes detect the passage of interfaces at the tip of each sensor, 

and use the time delays associated with the passage of these bubble-liquid interfaces 
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to measure the relevant local dispersed phase properties. These probes are relatively 

simple to use and have a wide range of application. It is particularly important for 

them to accurately measure the properties of the dispersed phase because moderate 

measurement error results in intolerable uncertainty in the estimation of both local gas 

volume fraction and the local gas axial velocity in gas-liquid flow. 

At the beginning of the development of these conductance probes, only one needle 

(sensor) was used, giving a different signal depending whether the probe was in 

contact with water or air/gas [144-146].  

Bankoff et al. [144] was one of the first to develop the idea of using the conductance 

probe for the measurement of volumetric gas fraction, bubble frequencies, and local 

bubble size. The probe that Bankoff used consisted of a 1.25” long 0.033” diameter 

steel sewing needle welded to the end of a 3” length of 0.033” steel wire. The steel 

wire was electrically insulated, except at the tip, with a resin varnish as shown in 

Figure 2.10. A 1/4” S.S tube was used as common ground and the plastic insulation 

was used to separate needles from the tube, as well as to prevent the water from 

passing into the tube.  

 

Figure 2.10 Schematic of probe used by Bankoff et al. [144] 
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The author found that, with regard to the smaller bubbles, more bubbles were found at 

the centre of the tube than the walls near the entrance to the test section. After the 

flow became fully developed, bubbles were fairly uniformly distributed across the 

tube cross section. The author also stated that the bubble frequency varies radially and 

axially in the entrance region, but becomes essentially constant when the flow is fully 

developed [144]. 

 

Figure 2.11 Schematic of Serizawa et al.’s probe [142] 

Later, in 1974, Serizawa et al. [142] developed this idea by introducing an electrical 

resistance probe consisting of two identical needle sensors, with the needle tips axially 

separated by 5mm, as shown in Figure 2.11. Each needle sensor was made up of 

stainless steel wire of 0.2mm diameter, and was insulated electrically except at the 

tips. The author denoted the upstream sensor as the start sensor and the downstream 

sensor as the stop sensor. The probe was used to measure local volume fraction (see 

section 2.4), bubble impact rate, bubble velocity (see section 2.4) and its distribution 

in a bubbly air-water flow. 
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Cross-correlation was used to calculate the average time lag of the bubble between the 

upstream sensor and the downstream sensor. Serizawa et al. [142] stated that the 

average velocity of the bubbles measured by the cross-correlation technique is about 

5% smaller in bubbly flow than that measured by a multichannel technique (technique 

in which the time to pulse converter was used in order to achieve the time lag from 

each bubble) due to the shape of the bubble velocity spectrum and bubble – probe 

interaction effects.  

Later, Kocamustafagullari and Wang [145] recommended a 2.5 mm axial sensor 

separation for the accurate measurement of bubble size and bubble velocity.  

Wu et al. [146-148] used a double-sensor probe made up of stainless steel wire of 89 

µm diameter, insulated with 5 µm thick insulation resin, so as to make only the tips of 

both sensors electrically conductive. The axial sensor separation between front and 

rear sensor was 2.65mm, as shown in Figure 2.12.  

 

Figure 2.12 Double sensor conductance probe. Wu et al. [146-148] 
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Wu et al. [146] used the probe to investigate the effects of the axial sensor separation 

on velocity measurement with spherical and elliptical bubbles in air-water flow. They 

stated that “The measurable velocity may approach infinity if the ratio of the sensor 

separation to the diameter of the measured bubbles is smaller then the maximum 

relative fluctuation of the bubble velocity.” They therefore suggested using a sensor 

separation greater than one half of the bubble diameter for effective elimination of the 

singularity problem. Wu et al. [146-148] also stated that, if the sensor spacing is 0.5 to 

2 times the bubble diameter, the calibration factor (ratio of true mean bubble velocity 

to the mean measurable value) is almost independent of the sensor spacing. This 

conclusion conflicts with the results found by Kataoka et al. [149], who stated that if 

the sensor separation was smaller than 0.2 of the measured bubble diameter, there is 

little effect on the calibration factor. 

Wu et al. [146] also proposed a sampling rate greater then 2000 KHz for the spherical 

shaped bubble. 

  

Figure 2.13 Sanaullah et al.’s dual-sensor probes 
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Sanaullah et al. [150] used a two-needle inclined sensor (at θ = 90°, 110° and 145°), 

made of Teflon coated stainless steel wire with a 5 mm tip distance (S in Figure 2.13), 

for the validation and comparison of the results that they previously acquired using a 

vertical sensor probe (θ = 90°). Sanaullah et al. [150] also studied the effect of probe 

inclination θ on the measured bubble size, bubble frequency and local void fraction. 

They found that the calculated parameter was much closer to the reference values at θ 

= 110° than at θ = 90° or 145°.  

2.4. Theory of the dual-sensor conductance probe 

The basic purpose of a dual-sensor conductance probe is to measure the local volume 

fraction and the local velocity of the dispersed phase at a point in the cross section of 

a bubbly two-phase flow. Many researchers, including Serizawa et al. [142], Herringe 

et al. [152] and Wu et al. [146-147], have successfully used dual-sensor probes to 

measure variations in the local electrical impedance of the multiphase mixture and, 

hence, to determine the local volume fraction and local velocity distribution of the 

dispersed phase in the cross section (as described below). 

The volume fraction of the dispersed phase can be measured by one sensor, but for the 

measurement of the velocity of the dispersed phase it is necessary to use a dual-sensor 

probe. The operation of the dual-sensor conductance probe is based on changes of the 

electrical conductance in a multiphase flow. When the tip of each sensor is exposed to 

a mixture of two phases, the conductance between the probe tip and the common 

ground (sensor body) is measured. Due to the large difference in conductance between 

the water and the air, the conductance signal falls sharply when a bubble passes over 

the sensor. 
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Assume that a dual-sensor probe is positioned vertically and faces the direction of a 

vertical bubbly air-water flow (see Figure 2.14), and the surface of an air bubble 

makes contact with the front sensor for the first time at time ft1  and the last time at 

ft2 . Before proceeding, it is important to note that, in [2], Mishra et al. showed that in 

multiphase flows the bubbles of the dispersed phase (gas-liquid) have an oblate 

spheroid shape as they move in the liquid, and that the plane of symmetry is normal to 

the direction of motion. Furthermore, it is also assumed that the bubble surface makes 

first contact with the rear sensor at time 
r

t1  and last contact at time rt2 . Figure 2.14 

shows the bubble striking the sensors at the contact times described above. 

 

Figure 2.14 Bubble strikes dual-sensor probe at different time intervals. 
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Figure 2.15 Ideal signal obtained from a bubble striking a dual-sensor probe. 
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Based on the above, when the bubble strikes the front sensor, the measured 

conductance will fall sharply as the tip of the sensor is immersed in air (which is a 

very low conductivity material) instead of water (which has high conductivity). As 

long as the tip of the sensor stays in the bubble’s interior, the measured conductance 

stays low. When the bubble leaves the front sensor, the measured conductance will 

sharply rise, since water will surround the sensor’s tip. The same events happen with 

the rear sensor. Figure 2.15 shows the conductance changes for both sensors and the 

times of the occurrences. 

Suppose N bubbles hit both the front and the rear sensors during a sampling period T. 

For the ith bubble, two time intervals it ,1δ  and it ,2δ may be defined as follows: 

ifiri ttt ,1,1,1 −=δ             Equation 2.5 

and 

ifiri ttt ,2,2,2 −=δ            Equation 2.6 

The mean local axial bubble velocity v  at the position of the probe is then given by: 

( )∑
= +

=
N

i ii ttN

s
v

1 ,2,1

12

δδ
           Equation 2.7 

where s is the axial distance between the tips of the sensors. If the bubbles have a 

plane of symmetry normal to their direction of motion, then use of Equation 2.7 

minimises the errors in the calculated value of v  due to the effects of the curvature of 

any bubbles that hit the probe ‘off centre’, as demonstrated by Steinemann and 

Buchholz [137]. This is made clearer in Figure 2.16, which shows the typical 
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arrangement for a probe – bubble interaction. Figure 2.16 shows that when both (front 

and rear) probes hit the upper surface, the front sensor hits first and then the rear 

sensor after 1tδ  seconds; which is given by Equation 2.8 

11 * ttt ∆+= δδ         Equation 2.8 

similarly, when hitting the bottom surface of the bubble, the rear sensor hits first and 

then the front sensor after 2tδ  seconds, as shown in Equation 2.9.  

22 * ttt ∆−= δδ         Equation 2.9 

where  
v

s
t =*δ  , and if 21 tt ∆=∆  

*
2

21 t
tt

δ
δδ

=
+

        Equation 2.10 

Thus, using Equation 2.10 compensates for the time intervals in hitting the probe. 

2δ

1δ

21 δδ =∴

 

Figure 2.16 Typical bubble-probe interaction 
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The local volume fraction lλ  of the bubbles at the position of the probe can be 

estimated from the conductance signal from either the front or the rear sensor. In the 

case whereby the front sensor’s signal is considered, then lλ  can be calculated by 

[146]: 

( )∑
=

−=
N

i
ififl tt

T 1
,1,2

1
λ            Equation 2.11 

 

Figure 2.17 Typical bubble-probe interactions with lateral velocity component 

showing singularity problem 

It is important to mention that in real, as opposed to ideal, vertical upward air-water 

flows, the velocities of the air bubbles are not purely axial; they also have small 

lateral components. In [146] it is shown that these lateral velocity components can 

cause the surface of the bubble to strike both sensors at almost the same time, which 

Wu et al. [146] described as a singularity problem, as shown in Figure 2.17. This will 

make the values of ii tandt ,2,1 δδ  very small. Since ii tandt ,2,1 δδ are in the 

denominator of Equation 2.7, the outcome will be a very large value for v , which will 

not correspond to reality. Therefore, Wu et al. [146] stated that one way of minimising 

the effect of this problem in typical vertical bubbly multiphase flows is to make the 
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axial sensor separation s in the range between 0.5d and 2d, where d is the diameter of 

the bubble. As stated earlier, Wu said that, if 0.5d ≤ s ≤ 2d, the measured bubble 

velocity fluctuation will be independent of the axial sensor separation. 

2.5. Theory of the four-sensor probe 

This section describes previous work on the four sensor conductance probe, including 

the associated mathematical model. As described in section 2.4, the local dual-sensor 

conductance probe has been widely used to obtain distributions of local gas velocity 

and gas volume fraction in multiphase flow. However, a dual-sensor probe is 

restricted to measuring the axial bubble velocity. Thus, a four-sensor probe was 

introduced to enable measurements of the vector velocity (magnitude and direction) of 

the dispersed bubbles in bubbly flow. 

Prior to describing the model and the analysis of the four-sensor probe, it is proper to 

present the assumptions and conditions that should be taken into account before the 

model is applied.  

 

 

Figure 2.18 (A): Bubble with vector velocity moving across the four-sensor 

probe. (B): motion of bubble between front sensor 0 and rear sensor 1. 
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The four-sensor probe and the corresponding model are applicable to bubbly 

multiphase flows, where the continuous phase is a conducting liquid and the dispersed 

phase is a non-conductive gas or liquid. In the current research, the probe and its 

model were relevant to air-water bubbly flows.  

The assumptions that were made for the development of the model are as follows: 

1. Each bubble has a plane of symmetry normal to its direction of motion. Such 

bubble shapes include spheres and oblate spheroids. [NB:- As reported in [1-

2], gas bubbles of the dispersed phase are flattened in their direction of motion 

due to their velocity relative to the continuous phase. Experimental 

observations reported in [1-2] showed that bubbles with small diameters 

(about 4mm) had spherical shapes, while bubbles with bigger diameters (about 

8mm) tended to have oblate spheroid shapes.]  

2. Each gas bubble strikes the front sensor ‘0’ first and then the rear sensors, as 

shown in Figure 2.18. 

3. The surface of each gas bubble hits all four sensors twice. The first time is 

when the gas bubble initially contacts a sensor. The second time is when the 

gas bubble leaves the sensor. 

4. The sensors do not alter the gas bubble’s properties or characteristics (shape 

and vector velocity).  

5. When a gas bubble strikes the probe, the sensor output signals resemble the 

ideal signals shown in Figure 2.19 [note that the bubble hits the first sensor 0 

first]. 
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Figure 2.19 Ideal signals from the four-sensor probe 

α

β

 

Figure 2.20 Velocity vector representations 

The velocity vector V of a bubble can be represented mathematically by Equation 

2.12 using the coordinate system shown in Figure 2.16.  

( )kjiV αβαβα coscossinsinsin ++= v         Equation 2.12 
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or  

vnv ˆ⋅=V              Equation 2.13 

where α  is the polar angle between the z-axis and the vector V, β  is the azimuthal 

angle between the y-axis and the projection of vector V onto the x-y plane, v is the 

magnitude of the vector V, vn̂  is the unit vector in the direction of V, and i, j, k are 

unit vectors in the direction of the x, y, and z axes respectively. So, in order to find the 

velocity vector of a bubble, it is necessary to find the three parameters that define it. 

These are the polar angle (α ), the azimuthal angle ( β ), and the velocity magnitude 

(v).  

2.5.1  A model for determining the bubble velocity vector from seven time 

delays  

This section is based on work by Lucas et al. [1] and Mishra et al. [2]. Let us assume 

that a bubble moves with a velocity vector V (which can be described by Equations 

2.20 and 2.21) relative to the coordinate system shown in Figure 2.20 and strikes the 

four-sensor probe. Also, let us take the case where the bubble strikes the front sensor 

(which has 0 as an index) and then strikes one of the rear sensors (with 1 as an index) 

as shown in Figure 2.18B.  

When the bubble strikes front sensor 0 for the first time, a position vector r can be 

defined between the geometrical centre of the bubble and the point that contacts the 

sensor (see Figure 2.18 b). This position vector can be expressed as inr ˆ=r , where in̂  

is a unit vector. After some time, 1tδ  the bubble strikes rear sensor 1, which is located 
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at 111 ,, zyx with respect to the front sensor. The position vector 1r  of this point of 

contact with sensor 1 relative to the centre of the gas bubbles can be given by: 

( )1111 tzyx δVkjirr1 −+++=           Equation 2.14 

Equation 2.14 can be expanded to derive the following expression for 
2

1r , where 1r  

the magnitude of is 1r : 

( ) ( ) 2
111111111 rtzyxtzyx =−+++−+++ δδ VkjirVkjir ....   Equation 2.15 

Expanding the bracket in Equation 2.15, and writing vnv ˆ=V  and inr ˆ=r gives: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) 2
1

2
1

2
11

1111111
2
1

111
2
1111

2
1

11111
2

ˆ

ˆˆˆˆˆ

ˆˆˆˆ

ˆˆˆˆˆˆ

rtvntvz

ntvyntxvnntvrntvzz

nzrntvyynryntvxx

nxrnntvrnzrnyrnxrr

v

vvivv

iviv

iviiii

=+−

−−−−+

+−++−+

+−+++

δδ

δδδδ

δδ

δ

k

jik

kjji

ikji

    ....

................

................

....................

  

Equation 2.16 

Equation 2.16 can be rearranged into following quadratic equation 

( ) ( ) ( ) ( ){ }

( ) ( ) ( ){ } 0ˆ2ˆ2ˆ2

ˆ2ˆ2ˆ2ˆˆ2

2
1

2
111

2
1

2
1

2
1

1111
2
1

2

=−++++++

++++−

rrnzrnyrnxrzyx

nznynxnnrtvtv

iii

vvvvi

kji

kji

............

................δδ
 Equation 2.17 

The solution for the above quadratic equation can be written as: 

a

acbb
t

2

42

1

−±−
=δ       Equation 2.18 

where 

2
va =             Equation 2.19 
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( ) ( ) ( ) ( )( )kji ................ vvvvi nznynxxnnrvb ˆ2ˆ2ˆ22ˆˆ2 1111 +++−=       Equation 2.20 

and 

( ) ( ) ( )( )2
1

2
111

2
1

2
1

2
1 ˆ2ˆ2ˆ2 rrnzrnyrnxrzyxc iii −++++++= kji ............   Equation 2.21 

Equation 2.18 has two solutions for time delays which are given as  

a

acbb
t a

2

42

1

−−−
=δ            Equation 2.22 

a

acbb
t b

2

42

1

−+−
=δ            Equation 2.23 

The first solution at1δ  is the time interval between the first contact of the bubble with 

front sensor 0 and the first contact of the bubble with rear sensor 1. The second 

solution bt1δ  is the time interval between the first contact of the bubble with front 

sensor 0 and the last contact of the bubble with rear sensor 1. Based on the assumption 

that the bubbles have a plane of symmetry normal to their direction of motion (see 

Figure 2.18), it is valid to conclude that 1r  is the same for the first and last contacts of 

the gas bubble with the rear sensor. Therefore, with reference to Figure 2.18, the 

terms ba,  and c  have the same values for the first and last contacts and Equations 

2.30 and 2.31 can be combined into: 

a

b
tt ba −=+ 11 δδ             Equation 2.24 

Applying Equations 2.28 and 2.29 to Equation 2.24, the result is: 
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( ) ( ) ( ) ( )( )
v

nznynxnnr
tt vvvvi

ba

kji ................ ˆ2ˆ2ˆ2ˆˆ2 111
11

+++
=+ δδ      Equation 2.25 

Using the same procedure for the other two rear sensors, the corresponding equations 

are: 

( ) ( ) ( ) ( )( )
v

nznynxnnr
tt vvvvi

ba

kji ................ ˆ2ˆ2ˆ2ˆˆ2 222
22

+++
=+ δδ        Equation 2.26 

( ) ( ) ( ) ( )( )
v

nznynxnnr
tt vvvvi

ba

kji ................ ˆ2ˆ2ˆ2ˆˆ2 333
33

+++
=+ δδ       Equation 2.27 

Looking at Equations 2.33-2.35, it can be observed that there are three equations with 

four unknowns, which are vi nnvr ˆ,ˆ,, . This problem can be overcome by considering 

the time interval bt0δ , which is the time between the first and last contact of the 

bubble with the front sensor only. Therefore, applying the same concept that was used 

for deriving Equations 2.33-2.35 to the front sensor, another equation is produced, 

which is: 

( ) ( ) ( ) ( )( )
v

nznynxnnr
tt vvvvi

ba

kji ................ ˆ2ˆ2ˆ2ˆˆ2 000
00

+++
=+ δδ      Equation 2.28 

But 0000 === zyx  (since the origin of the coordinate system is the tip of the front 

sensor). So, Equation 2.28 can be written as: 

( )
v

nnr
tt vi

ba

ˆˆ2
00

....

=+ δδ            Equation 2.29 

However, since timing starts when the bubble hits the front sensor for the first time, 

we may write that 00 =atδ .  
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Substituting Equation 2.29 for Equations 2.25, 2.26 and 2.27 gives 

( ) ( ) ( )( )
v

nznynx
t vvv kji ............ ˆ2ˆ2ˆ2 111
11

++
=δ     Equation 2.30 

( ) ( ) ( )( )
v

nznynx
t vvv kji ............ ˆ2ˆ2ˆ2 222

22

++
=δ     Equation 2.31 

( ) ( ) ( )( )
v

nznynx
t vvv kji ............ ˆ2ˆ2ˆ2 333
33

++
=δ     Equation 2.32 

Where,  bba tttt 01111 δδδδ −+=          Equation 2.33 

bba tttt 02222 δδδδ −+=          Equation 2.34 

bba tttt 03333 δδδδ −+=          Equation 2.35 

With reference to Figure 2.18, vn̂  can be written as 

 ( )kji αβαβα coscossinsinsinˆ ++=vn . From Equations 2.34 - 2.35 the final 

equations that describe the vector velocity of a bubble that hits a four-sensor probe are 

derived: 

2
coscossinsinsin 11

111

tv
zyx

δ
αβαβα =++         Equation 2.36 

2
coscossinsinsin 22

222

tv
zyx

δ
αβαβα =++         Equation 2.37 

2
coscossinsinsin 33

333

tv
zyx

δ
αβαβα =++         Equation 2.38 
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This results in three Equations 2.44-2.46, with three unknown variables. Solving these 

three equations gives the polar angle α , the azimuthal angle β , and the magnitude v  

of the velocity of the bubble. 
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   Equation 2.40 

From the measured sensor co-ordinates iii zyx  , ,  and the measured time intervals iit δ  

for the bubble, the azimuthal angle β  for a particular bubble is calculated using 

Equation 2.30 and polar angle α  is calculated using Equation 2.40. Once the value of 

β  and α is calculated, v  is calculated using any one of Equations 2.44-2.46. 

However the procedure to calculate β  and α  is somewhat complicated, for any value 

of tan β , there are two possible values of β   which can either be positive or negative 

that lie between 0 o  and 360 o . Lets assume 1β  as a positive value for the value of 

tan β  [i.e. 1β  will lie between 0 o  and 90 o  (first quadrant) and between 180 o  and 

270 o  (third quadrant)] and 2β  as a negative value for the value of tan β  [ i.e. 2β  will 

lie between 90 o  and 180 o  (second quadrant) and between 270 o  and 360 o  (fourth 

quadrant)]. 
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 If 1β  is substituted into Equation 2.40 then we get two possible values forα , as 1α  

and 2α . Similarly, when 2β  is substituted into Equation 2.40 then we get two further 

possible values for α  denoted as 3α  and 4α . These four values of α  thus calculated 

will all lie in different quadrants. From the definition of α  shown in Figure 2.18 (in 

which α  can only lie between 0 o  and 180 o ) the values of α  that lie in quadrants 

three and four can therefore be rejected. For the experiments described in this thesis, 

the bubble velocity vector V  always makes an acute angle with the increasing z-axis 

of the probe co-ordinate system; hence the value of α  arising from Equation 2.40 that 

lies in the second quadrant (90 o  to 180 o ) can also be rejected. The remaining value 

of α , which lies in the first quadrant (0 o to 90 o ) is chosen as the ‘correct’ polar angle 

measα , as measured by the four-sensor probe. The value of β  which gives 

correct measα  is selected as the ‘correct’ azimuthal angle measβ  as measured by the 

four-sensor probe.  

2.5.2 Comments on the model 

From Equations 2.44-2.48, it is obvious that, in order to calculate the bubble vector 

velocity V  in the probe coordinate system, the dimensions of the probe must be 

measured and so must the time delays iitδ  (see Equations 2.41 - 2.43). Note that the 

dimensions of the probe are the ii yx , and iz , distances of the tips of the rear sensors 

from the tip of the front sensor in the probe coordinate systems (see Figure 2.18).  
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θV

rV

zV

θ θ

 

Figure 2.21 Cylindrical coordinate system for pipe. The large black dot 

represents the position of the four-sensor probe. 

Also, since the velocity magnitude, the polar angle α , and the azimuthal angle β  are 

known, the velocity components of the bubble in the coordinate systems of a circular 

pipe can be computed using Equations 2.49 - 2.51 (see Figure 2.21 and Chapter 7.2 

for details). Equations 2.49 - 2.51 assume that the z-axis of the probe coordinate 

system is parallel to the z-axis of the pipe coordinate systems and the y-axis of the 

probe coordinate system is parallel to a pipe radius. 

βαθ sinsinvV =             Equation 2.41 

βα cossinvVr =             Equation 2.42 

αcosvVz =             Equation 2.43 

In Equations 2.41 - 2.43, θV  is azimuthal velocity, rV  is the radial velocity, and zV  is 

the axial velocity. Based on these definitions, it is obvious that a positive axial 

velocity means that the bubbles go upwards (if the probe faces the bubble’s direction), 

a positive radial velocity means that the bubbles move away from the centre of the 
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pipe, and a positive azimuthal velocity means that the bubbles have a clockwise 

motion (when viewed facing the oncoming flow). The bubble velocity vector 

measured by the probe can also be transformed into the coordinate systems of the 

rectangular cross sectional tank, even when the probe is tilted or rotated to the relative 

tank coordinate systems. A more detailed analysis can be found in Chapter 7. 

It is important to mention that the mean local volume fraction of the dispersed phase 

lλ  can be calculated by: 

( )∑
=

=
N

n
nbl t

T 1

0

1
δλ             Equation 2.44 

Where T is the total time of the sampling process, and N is the number of bubbles that 

strike the front sensor. 

2.6 The rotary index dual-sensor probe 

Panagiotopoulos et al. [11] used a rotary index dual-sensor probe in order to simulate 

a four-sensor probe by rotating the rear sensor with respect to the front sensor. Using 

this formation, it is obvious that the frontal area is much smaller than that of the 

traditional four-sensor probe, thus it causes fewer disturbances to the flow. Hence, the 

main objective of using this type of probe was to investigate the retarding effect of the 

probe on the bubble. These rotary index dual-sensor probes are also much easier to 

fabricate than a four-sensor probe. The main disadvantage of the rotary index dual-

sensor probe is that these probes can only be used in steady flow where the air 

bubbles all have the same trajectory, size and shape and the same velocity vector and 

orientation when they strike the probe [11]. 
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Figure 2.22 The rotary index dual-sensor probe (not to scale). Panagiotopoulos et 

al. [11] 

The rotary index dual-sensor probe described by Panagiotopoulos et al. [11] (see 

Figure 2.22) consisted of an upper part and a lower part which were connected using a 

waterproof ball bearing. The upper part of the probe was clamped onto a platform, 

whereas the lower part of the probe contains two acupuncture needles coated with 

insulating film. The insulating film was removed from the tips of the needles so as to 

make them conductive to allow them to work as sensors in bubbly air-water two-

phase flow.  

For the simulated four-sensor probe, as described by Panagiotopoulos et al. [11], with 

an axial sensor separation of 1.1765mm between the upstream and downstream 

sensors, the effective x, y and z coordinates, in the probe coordinate system, of the 

three simulated rear sensor are give in Table 2.2 below. 
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 x (mm) y(mm) z(mm) 

Sensor 1 0 0.7326 1.1765 

Sensor 2 0.6344 -0.3663 1.1765 

Sensor 3 -0.6344 -0.3663 1.1765 

Table 2.2 Probe dimensions measured by Panagiotopoulos et al. [11] 

These probe dimensions can be compared with the probe dimensions of the 

conventional four-sensor probe given by Lucas et al. [1], as shown in Table 2.3. From 

the dimensions given in Table 2.2, the effective cross-sectional area of this rotary 

index dual-sensor probe is much smaller, at 1.67mm2, as compared to the dimension 

in Table 2.2 which is 6.60mm2; this reduction lessens the retarding effect of the probe 

on the bubble.  Also, while simulating a rotary index dual-sensor as a four-sensor 

probe, the bubble does not see the full area of the rotary index dual-sensor probe. The 

bubble only sees two sensors at a time which means the retarding effect of the probe 

on the bubble is even smaller.  

 x (mm) y(mm) z(mm) 

Sensor 1 -0.702 0.999 1.084 

Sensor 2 0.254 1.486 1.067 

Sensor 3 0.81 1.081 1.153 

Table 2.3 Probe dimensions measured by Lucas et al. [1] 

From Table 2.2 it is also clear that the front (upstream) sensor of the rotary index 

dual-sensor lies in between the three simulated rear sensors, ensuring that the bubble 

always hits the front sensor. From Table 2.3, it is clear that, in the case of the 

conventional four-sensor probe described by Lucas et al.[1], the front sensor does not 

lie in between the three rear sensors, meaning it is likely that the bubble does not 

necessarily always hit the front sensor first. The effect is described in Chapter 3.  
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Lucas et al. [1] also introduced a calibration factor K to compensate for the retarding 

effect of the probe on the bubble as follows: 

refgprobeg uuK .. =        Equation 2.45 

Where  probegu .  is the mean axial gas velocity, obtained by probe and  refgu .  is the 

mean axial gas reference velocity. 

For the conventional four-sensor probe, Lucas et al. [1] found a calibration factor K of 

1.2 with a variation of up to ±20%, whereas from the rotary index dual-sensor probe it 

was found that the calibration factor is approximately 0.94. This result shows that the 

frontal area of the probe plays a significant role in reducing the velocity of the bubble 

when the probe interacts with the bubble. However, only disadvantage of this method 

is it requires three sets of reading for each experiment.  
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CHAPTER 3 

Probe Fabrication 

3.1 Fabrication manufacturing and steps of manufacturing the 

probes 

A dual-sensor probe can measure gas volume fraction, axial bubble velocity and local 

bubble frequencies in a bubbly gas-liquid flow, but it cannot measure the local 

velocity vector of the dispersed bubble in such flows. To measure the local velocity 

vector of the dispersed bubbles, a four-sensor probe is needed, as described earlier in 

Chapter 2. 

For accurate measurement of the local bubble velocity vector, it is important that the 

frontal area of the fabricated four-sensor probe is as small as possible (see Chapter 

2.6). Since the bubble strikes each sensor twice, it is important that the probe has a 

minimal effect on the bubble shape and velocity vector. Due to certain physical 

circumstances, listed below, the manufacture of the four-sensor probe is not 

straightforward. 

1. As the probe is fabricated by hand, the accuracy of the positioning of the 

needles is limited by human factors especially associated with the eye and 

with hand movement.  It is difficult both to place the needles in the correct 

position and also to measure the position of the needle tops with great 

accuracy (see section 3.4 and Chapter 4 for measurement and the sensitivity of 

the dimension).  
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2. The smaller the dimensions of the probe, the higher the sampling rate 

(maximum sampling frequency was made 50 KHz to limit the size of data to 

be able to process in considerable amount of time) is needed in order to 

acquire a reliable and representative signal from each sensor.  

1tδ

t∆

 

Figure 3.1 (A) Typical signal from a dual-sensor probe where “a” is time taken 

at sampling frequency 40 KHz and “b” is time taken at sampling frequency 20 

KHz (B) Dual-sensor probe 

For example, if the data are sampled at the frequency ( fs  ) with a dual-sensor probe, 

Figure 3.1 shows the ideal output from the dual-sensor probe. The time taken ( t∆ ) to 

sample single data is given by Equation 3.1.  

fs
t

1
=∆          Equation 3.1 

Equation 3.2 gives the actual local gas velocity truev, .  

1
,

t

s
v true

δ
=          Equation 3.2 

Measured time delay = 1tδ  
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Measured time delay can be in the range of 1tδ  to 
fs

t
1

1 +δ  

Hence measured local gas velocity measv,  can be in the range from Equation 3.3 to 

3.4. 

1
,

t

s
v meas

δ
=          Equation 3.3 

fs
t

s
v meas 1

1

,

+

=

δ

        Equation 3.4 

Therefore, as the sampling frequency increases, the difference between truev,  and 

measv,  tends towards zero. 

3.1.1 Fabrication of a new design four-sensor probe (PN1) 

The process in this section describes the fabrication technique for the early version of 

the four-sensor probe (denoted by PN1 in this thesis) used during this research. The 

purpose of fabricating a new design of the four-sensor probe PN1 was to overcome 

the existing problems with the four-sensor probe (denoted by PN0) used by Lucas et 

al. [1], i.e. to bring the calibration factor K closer to unity, which was 1.2 with a 

possible error of ±20%, as previously suggested by Lucas et al. [1]. The reason behind 

this higher value of K factor was believed to be due to the frontal cross-section area of 

the probe itself, which causes the deformation of the bubble during probe-bubble 

interaction. Therefore, the fabrication of the new four-sensor probe concentrated on 

reducing the frontal cross-sectional area of the probe. In order to achieve this goal, a 

new ceramic guide, available on the market, was used (see Figure 3.2).  
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Figure 3.2 New ceramic guide used for PN1 

The new ceramic guide has an outer diameter of 2 mm and contains four holes of 0.3 

mm in diameter which are 0.5mm apart from each other (see Figure 3.2).  

The components and materials chosen for fabricating the four-sensor probes PN1 

were as follows: 

� Stainless steel acupuncture needles as sensing electrodes (50mm x 

0.3mm). 

� Stainless steel tubing as the support and the common electrode (5 mm 

O/D, 2.1mm I/D). 

� Resin based two component glue for bonding the parts. 

� Waterproof paint and insulating silicon paint for needles. 

� 30 AWG silver-plated copper wire for connecting needles to the 

measurement system. 

� Silver loaded conducting paint for connecting wire to the needles. 

� 4 hole ceramic guide (see Figure 3.2.) 

The reason for using acupuncture needles was that they have a very small diameter 

(0.3mm), they are rigid, and have a straight, uniform shape. The small needle 
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diameter is an advantage due to the fact that it minimises the interaction between the 

sensor and the bubble, affecting the bubble’s characteristics and dynamics as little as 

possible. The rigidity and the uniform shape of the needles give the advantage of 

assembling a sensor with uniform characteristics.  

The stainless steel tube of 5mm diameter was used to hold the sensors and also act as 

the common electrode. The tube was bent at an angle of 900 (see Figure 3.3) in order 

to make it easy to mount in the pipe, and also for the probe measurement (see Chapter 

3.3). Finally, the tube was connected with the traverse mechanism, a device that will 

be described in Chapter 10.  

 

Figure 3.3 Schematic of four-sensor probe PN1 

Initially two types of coatings were used to insulate the needles, except at their tips: a 

waterproof paint, and an insulating varnish. The waterproof paint electrically isolates 

the needles from the water. The insulating varnish creates an additional insulating 

layer. Due to the fact that the varnish coating was difficult and time consuming to 

apply to the sensors, this technique was abandoned and silicon coating was applied 

instead. This method was easier and less time consuming, but concentration was 
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needed in order to make the paint thickness uniform along the needles. The 

performance of the probe was not changed because of this alteration.  

3.1.1.1 Steps of fabrication of a four-sensor probe 

Step 1: Cut stainless steel tube, needles and wire to length; use different colour wire. 

Step 2: To achieve close lateral needle spacing, bend the blunt end of three needles 

(see Figure 3.4) so as to allow sufficient space for the wire to be connected to the 

needles. 

 

Figure 3.4 Bent acupuncture needles used for four-sensor probe PN1 

Step 3: Clean needles of dust and grease and remove the first few millimetres of wire 

insulation and twist around the blunt end of the needles. 

wireneedle

 

Figure 3.5 Two out of four needles showing the conductive wire twisted around 

the blunt ends. 

Step 4: Apply conducting paint to glue together the wire-needle connections; thus, the 

wire connects firmly with the needles.  

Step 5: Clean needles and apply a thin layer of silicon paint on all conducting areas 

(needle and conducting paint); while painting silicon, it is important to ensure that the 



Chapter 3                                                                                             Probe Fabrication 

Suman Pradhan 99

paint is as smooth as possible to avoid any deformation of the bubble passing over the 

sensor. 

Step 6: Remove insulation from tips of needles with fine sandpaper to make it 

electrically conductive. 

 

Figure 3.6 Sandpaper used to remove insulation from the tips of the sensor. 

Step 7: The prepared needles were then glued onto a ceramic guide. While applying 

glue to the needles, it was ensured that one out of the four needles was placed forward 

of the others, as shown in Figure 3.7. The distance between the tip of the front sensor 

and the tips of all the rear sensors was made approximately equal to 1-2 mm i.e. z1 = 

z2 = z3 = 1-2 mm. The tip of this upstream needle was defined as the front sensor 

(marked as ‘0’ in Figure 3.2). The origin of the coordinate system was made 

coincident with the position of the front sensor, whilst the z-axis of the probe 

coordinate system was parallel to the axis of the probe (this axis was vertical for 

vertically mounted probes such as those described in [1]). The x and y axes are chosen 

arbitrarily, but are orthogonal to each other and to the z-axis. 

Step 8: Insert needle assembly into stainless steel tube of 5mm diameter, used as a 

common electrode, and bond them with two component glue. Also glue far end of the 

Insulated needle 

sand paper 
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tube where the wires come out for strain relief of the needles (see Figure 3.7). Finally 

the tube was bent to 90° (see Figure 3.3).  

 

Figure 3.7 Cross section schematic of a four-sensor probe PN1.  

Step 9: Measure probe dimensions (see Chapter 4). 

The spatial locations of rear sensors 1, 2 and 3 can be defined using this probe 

coordinate system. Suppose that an approaching bubble has velocity vector V  relative 

to the probe coordinate system, as shown in Figure 2.18 (further details are in Chapter 

7.2). 
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A digital microscope was used to measure the probe (see later section 3.3 for details). 

The measurements were carried out with reference to Figure 2.18 (see Chapter 7.2 for 

further details of the probe coordinate system). 

 x  (mm) y  (mm) z  (mm) 

Sensor 1 -0.702 0.999 1.084 

Sensor 2 0.254 1.486 1.067 

Sensor 3 0.810 1.081 1.153 

Table 3.1 Measured dimensions of a typical probe (PN1) with a new type of 

ceramic guide. 

 

Figure 3.8 Sketch of the frontal view of the probe PN1 based on the dimensions 

in Table 3.1 with sensor 0 being at coordinate (0, 0, 0) 

Table 3.1 shows the dimensions of one of the many newly built probes (PN1) using 

the new type of ceramic guide. Figure 3.8 shows a sketch of the frontal view of the 

probe based on the dimensions provided in Table 3.1 with the front sensor ‘0’ as the 

coordinate (0, 0, 0). These dimensions show the frontal area of the probe is 

approximately 1.10 mm2. The newly made probe PN1 (described above) was 

compared with the probe (PN0) used by Lucas et al. [1]. 
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 x  (mm) y  (mm) z  (mm) 

Sensor 1 1.384 -0.988 1.200 

Sensor 2 0.263 -1.713 0.640 

Sensor 3 -0.988 -1.318 1.800 

Table 3.2 Probe dimensions of the PN0 probe  

 

Figure 3.9 Sketch of the frontal view of the PN0 probe based on the dimensions 

in Table 3.2 with sensor 0 being at coordinate (0, 0, 0) 

Table 3.2 shows the probe dimensions used by Lucas et al. [1] and Figure 3.9 shows 

the frontal view of the previous probe (PN0) drawn from the probe dimensions 

provided in Table 3.2.  From the dimensions given in Table 3.2, the frontal area of the 

previous probe PN0 was found to be approximately 2.08mm2. Thus the overall frontal 

area of the new probe PN1 was reduced by about 50% compared with the previous 

probe PN0 using the new ceramic guide. Thus the new probe can be expected to 

reduce the retarding effect caused by the bubble probe interaction. Although the 

frontal area of the newly fabricated probe was significantly reduced, initial 

investigations suggested that there was no improvement in calibration factor K, which 

was believed to be due to the applied paint on the acupuncture needles. Therefore, it 
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was decided to design another new probe (described as PN2 in this thesis) with an 

even smaller frontal area, as well as using thinner needles, so as to minimise the effect 

on the bubble during bubble-probe interaction, which is described in section 3.2. 

3.2 Miniature four-sensor probe (PN2) 

The previous results (Chapter 2), from the four-sensor probe used by Lucas et al. [1] 

and the rotating index dual sensor probe developed by Panagiotopoulos et al. [11], and 

the above discussion suggest that the rotating dual sensor probe has a much smaller 

retarding effect on the bubbles than an equivalent conventional four-sensor probe, 

which implies that, when designing a four-sensor probe, the issue of probe 

intrusiveness must be addressed. Thus, new ideas for fabricating the four-sensor probe 

were considered, including the following two options:-  

Option one: - The first option is to sputter coat gold onto a substrate and then remove 

the track from the sensor using a method such as lithography, etching, laser beam 

machining or electrical discharge machining.  

Option two: - Another possible method is to use Teflon (PTFE) coated needles with a 

diameter of 0.15mm in conjunction with a centred hole ceramic guide, as shown in 

Figure 3.10. This ceramic guide contains six holes of 0.3mm diameter with one hole 

in the centre (see Figure 3.10). From the five outer holes, three outer holes are chosen 

(with an additional hole in the centre) in such a way that the three outer holes form an 

isosceles triangle. 
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Figure 3.10 Ceramic guides with a hole in the centre used for PN2 probe  

From the above two options, option two was chosen for this research, as although the 

proposed first method might be feasible, the process was found to be very 

complicated and expensive.  

3.2.1 Advantages of a miniature new probe PN2 

This section describes the advantages of the newer version of probe PN2 made with 

Teflon coated needles over the older probe PN1 made with acupuncture needles. 

1. There is a smoother insulating layer on the needles: the Teflon coating was 

already applied by the factory using non conductive Teflon; hence, it was 

not necessary to paint the needles again. Since the non conductive Teflon 

was applied in the factory, the surface of the needles is much smoother 

than the hand painted probe PN1. 

2. Fewer ‘obstacles’ on the probe’s surface: due to the smoother layer on 

probe PN2 there are less obstacles during bubble–probe interaction as 

compared with PN1.  

3. Smaller overall frontal area: compare the new probe PN2 with probe PN1 

made from conventional acupuncture needles and the new type of ceramic 
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guide (centred hole ceramic) as shown in Figure 3.10. This ceramic guide 

contains six holes of 0.3mm diameter with one hole in the centre (see 

Figure 3.10). From the five outer holes, three outer holes are chosen (with 

an additional hole in the centre) in such a way that the three outer holes 

form an isosceles triangle.   

 

Figure 3.11 Cross-sectional view of miniaturised four-sensor probe PN2 

with a new ceramic guide (hole in the centre of Figure 3.10) and Teflon 

coated needles. 

The centre hole was used for the front (upstream) sensor, sensor’0’, and the 

other three holes were used for the rear (downstream) sensors ‘1’,’2’ and ‘3’, 

as shown in Figure 3.11. The rear sensors were placed approximately 1mm 

behind the front sensors, which is the axial sensor separation making z1 ≈ z2 ≈ 

z3 ≈1-1.5 mm. The four-sensor probes PN2 fabricated from the above method 

have two important advantages: 
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A. Using this technique to place the sensors, there is a higher 

possibility that the bubble will always hit the front sensor first 

followed by the rear sensor (see advantage number 5 for details) 

which allows the data to be collected during a shorter period of 

time (sampling time), thus making the data file smaller which 

means it can be processed faster. 

B. Another advantage of using this technique is the reduction of the 

frontal area of the probe itself. Table 3.3 shows the typical 

dimensions of the rear probe with respect to the front probe. 

 x  (mm) y  (mm) z  (mm) 

sensor 1 0.0233 0.7471 0.7965 

sensor 2 0.4128 -0.6322 0.9535 

sensor 3 -0.4767 -0.6149 0.8605 

 

Table 3.3 Measured dimensions of the PN2 probe  

 

Figure 3.12 Sketch of the frontal view of PN2 probe based on the dimensions in 

Table 3.3 and sensor 0 being at coordinate (0, 0, 0) 

From the above table it can be seen that the frontal area of probe PN2 

is approximately equal to 0.61mm2, which is half of the area of probe 
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PN1 and four times smaller than PN0 described in the previous section 

(see Figures 3.8 and 3.9); this can also be verified by Figure 3.12, 

which is a sketch of the frontal view of the rear sensor based on the 

coordinates given in Table 3.3, with the front sensor, sensor’0’, placed 

as coordinate (0, 0, 0). 

4. Less deformation of bubbles due to interaction with the probe: due to 

probe PN2 possessing a smaller frontal area and smoother needles, there is 

less deformation of the bubble during bubble-probe interaction. 

5. More bubbles hit the front sensor first: the new layout of probe PN2 

ensures that the probes are arranged in an isosceles triangle, where the 

three rear sensors are placed on the three corners of the triangle with the 

front sensor in the middle of the triangle, as shown in Figure 3.13.  

 

Figure 3.13 Layout of probe PN2 



Chapter 3                                                                                             Probe Fabrication 

Suman Pradhan 108

Therefore, it is more likely that the bubble will hit the front sensor before 

hitting any other sensors, which is the basic assumption of the 

mathematical model, no matter which direction the bubble is flowing. 

Whereas in the older designs [1, 2], namely probes PN0 and PN1, there is 

a high possibility of the bubble hitting the rear sensor before hitting the 

front sensor if it is flowing in a different direction (see Figure 3.14). This 

situation results in lots of bubbles being ignored during signal processing 

because they don’t hit the front sensor first, thus causing a longer sampling 

time and increasing the amount of data to be processed (see Chapter 6 for 

details).  

 

Figure 3.14 Showing the general idea of hitting the probe using conventional 

(left) and new probe designs (right) 

3.2.2 Steps for manufacturing probe PN2  

• Cut the Teflon coated needles, stainless tube and wire to length; use different 

colour wires. 
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Figure 3.15 Teflon coated needles cut to different lengths 

• To prevent the wires from touching each other, cut the Teflon coated needles 

to a different length. 

• Scratch the Teflon from the tip of the needles so as to make them conductive 

in order to connect the wire. 

 

Figure 3.16 Scratched Teflon coating in order to make needles conductive 

• Apply the conductive paint to glue together the wire-needles connections; 

thus, the wire connects firmly with the needles. 

Wire twisted of the Teflon needles and

painted with the conductive paint

Insulated wire
 

Figure 3.17 Wire twisted and glued on the scratched needle 

• Place and glue the needles in the four holes of the ceramic guide, denoted by 

‘0’, ‘1’, ‘2’ and ‘3’, as shown in Figure 3.10.  

• Insert the needle assembly into the stainless steel tube and bond them with 

two-component glue. Also glue the far end of the tube where the wires come 
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out in order to relieve the strain on the needles. Ensure the needle at the centre 

of ceramic ‘0’ is approximately 1- 2 mm longer than the remaining three 

needles; this is the front sensor of the four-sensor probe. 

• Bend the stainless steel tube at 90° facing away from front sensor ‘0’, as 

shown in Figure 3.18. 

The probe constructed by following the above procedure was measured again with a 

digital microscope using the probe coordinate scheme referred to in Figure 2.18. The 

positions ( ) ( ) ( )333222111 ,,,,,,,, zyxzyxzyx  of sensors 1, 2 and 3 with respect to 

sensor 0 are shown in Table 3.3.  Figure 3.19 shows the probe under the microscope, 

ready to be measured, which has a magnification of 40 times that of the true probe 

(see Chapter 3.3 for the detailed procedure for measuring probes).  

 

Figure 3.18 Miniature four-sensor probe PN2 with the probe holder 
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Figure 3.19 Measurement of a probe PN2 under a digital microscope 

3.3 Measurement of a probe  

In Chapter 2, Equations 2.44 - 2.48 suggest that the calculation of the velocity vector 

of the bubble is highly dependent on two variables i.e. the time intervals iitδ  and the 

probe dimensions iii zandyx , (where i = 1, 2 and 3).  

x

y
z

 

Figure 3.20 Schematic of a four-sensor probe PN0 

Thus, this section describes the method used to measure the dimension of the probe. 

Within the University of Huddersfield, in earlier days, the sensors in four-sensor PN0 
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probes were placed in a rectangular position (see section 3.1.1), where the front sensor 

was normally placed 2.5 mm upstream of the rear sensors. The probe body (5mm 

stainless tube) was bent 90° away from the front sensor perpendicular to the front 

sensor ‘0’, which was marked as the y  axis of the probe, as shown in Figure 3.20. 

Further details on the probe axis definition are provided in Chapter 7.  These PN0 

probes were measured using a shadowgraph.  

In the present study, the probes were measured using a commercially available digital 

stereo microscope shown in Figure 3.21, MOTIC DM-143B. The microscope has a 

magnification range of up to 40X, and the viewing head can be rotated to 360° and 

consists of a two mega pixel CMOS digital camera. 

 

Figure 3.21 Digital stereo microscope MOTIC DM-143B used to measure the 

probe dimensions 
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In order to measure the probe dimensions it is important to align the axes of the 

microscope Xc, Yc and Zc with the axes of the probe zandyx, . In order to align these 

axes, a holder for the probe was designed, as shown in Figure 3.22. 

 

Figure 3.22 Probe holder 

The holder was made from a metal block 200 mm long, 90 mm wide and 25 mm thick 

and in the centre a groove of 5mm was made where the probe can be placed, as shown 

in Figure 3.22. In order to keep the probe fixed during the measurement process, the 

holder was covered and fixed with another block of metal.  

Figure 3.23 shows the schematic of the probe holder in place under the microscope, 

where it defines the axis of the probe and the camera. zandyx,  denote the axes of 

the probe, whereas Xc, Yc and Zc denote the axes of the microscope. The x  axis of the 

probe co-ordinate system is defined as being parallel to section BB of the probe 

holder. The z  axis of the probe co-ordinate system is defined as being parallel to 

section AA of the probe holder and orthogonal to y axis. The origin of the probe 

coordinate system is the tip of the front sensor ‘0’. The x  axis of the probe coordinate 

system is orthogonal to both the y  and z  axes. Similarly, Zc is defined as the vertical 

pillar of the digital microscope and is intended to be parallel to z  axis and Yc, as the 
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base of microscope is intended to be parallel to y  axis.  The axis Xc of the 

microscope coordinate system is orthogonal to both Zc and Yc axes.  

x

y

z

 

Figure 3.23 Schematic of the probe with the probe holder in place under the 

microscope 

3.3.1 Measurement of probe PN1 

In order to measure the probe, it is important to ensure that the probe axes zandyx,  

are respectively parallel to the microscope axes Xc, Yc and Zc. To carry out this 

process, the microscope was placed on a smooth table and levelled both vertically and 

horizontally with the help of spirit levels. Then, the probe that was mounted in the 

probe holder, which was placed in front of the microscope as shown in Figure 3.18. 

The spirit levels were used again to ensure that the probe was parallel and level. 
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Figure 3.24  Probe PN1 under the microscope (left) positioned to measure  

( )ii yx ,  (right) 40X magnified image captured by the microscope  

Once the probe was positioned, the microscope was focused in between the front and 

rear sensor and the image was captured with a magnification of 40X the original 

probe, as shown in Figure 3.24 (right). The captured image was then measured using 

inbuilt measuring software. The software makes it possible to draw line; the X and Y 

axis was drawn over front sensor ‘0’ and the point of intersection was regarded as 

coordinate (0, 0). The distance between each rear sensor and the front sensor was 

measured to obtain the distance ( )ii yx ,  dimensions of each sensor with respect to the 

front sensor.  

For the measurement of the Z dimensions, the probe was placed under the microscope 

in a horizontal position parallel to Xc, as shown in Figure 3.25. The above procedure 

was repeated again to find the dimension iz  of the probe, only this time the reference 
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line was drawn perpendicular to the front sensor ‘0’, making it parallel to y axis and 

Yc.  

 

Figure 3.25 Positioning of PN1 probe under the microscope (left) probe under 

the microscope magnified 40X to measure iz  

The method described above to measure the dimension of the local probes was not 

necessarily always accurate, as the captured image was focussed neither on the front 

nor on the rear sensor; thus, it was necessary to make an assumption as to where the 

centre of the tip of the sensor was placed.  

3.3.2 Measurement of the new miniaturised probe PN2 

To overcome the uncertainty of allocating the tips of the front and rear sensors, a new 

approach was introduced. In this new technique, two images were captured; the first 

image was captured with the focus on the front sensor and the next image was 

captured with the focus on the rear sensor, as shown in Figure 3.26. Figure 3.26 (left) 

is the captured image that was focused on the front sensor, whereas Figure 3.26 (right) 
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is the captured image that was focused on the rear sensor. Before capturing the 

images, the probe was mounted in the same way as described in section 3.3.1. 

 

Figure 3.26 Microscopes capturing the image of front (left) and rear (right) 

sensors of the PN2 probe 

 

Figure 3.27 Image of the combined front and rear sensors in Figure 3.26 

Next, the captured images were combined using the commercially available software 

MOTIC PLUS, making the entire sensor visible and clear. The software allows 

similar pictures to be combined, as it detects the edge of both provided pictures and 

overlaps them on top of one another.  Figure 3.27 shows the front and rear sensors 
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combined. When comparing Figure 3.27 to Figure 3.24 (right), it is clear that the 

method of taking the images with a combined front and rear sensor gives a much 

clearer image of all four sensors. 

 
Figure 3.28 Measuring xi and yi of the combined image of the PN2 probe  

Due to the clarity of the image of all four sensors it was possible to measure probe 

dimensions with greater accuracy. Figure 3.28 shows the measurement of the captured 

image. In the figure, the blue lines denote X and Y axes parallel to the axes of 

microscope Xc and Yc. The intersection of these two lines was on the tip of the front 

sensor, ‘0’, which was in the centre in this case and was described as coordinate (0, 

0). Once the line was plotted, the measurement of the distance between all the three 

rear sensors and the X and Y axes was carried out, as shown in Figure 3.28, which is 

( )ii yx , of probe PN2.  

To measure the zi of probe PN2, the probe was placed in the horizontal position, 

making the probe x  axis parallel to the X axis of the microscope Xc. Once the image 

was captured, the reference line was plotted perpendicular to the front sensor, ‘0’, as 

shown in Figure 3.29, making the line parallel to Yc as well as y  axis. Once the line 

 

X 

Y 
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was plotted, the distance between all the rear sensors to the line was measured to 

achieve the iz of each rear sensor with respect to the front sensor. 

 

Figure 3.29 Probe PN2 under the microscope to measure iz  

The measurement process was carried out twice for each probe, once before capturing 

data and once after data capture, to ensure that the dimension of the probe hadn’t been 

affected by the bubble-probe interaction.  
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CHAPTER 4 

Sensitivity Analysis 

It can be seen from Equations 2.47 and 2.48 in Chapter 2 that the calculation of the 

polar angle α  and the azimuthal angle β  are highly dependent on  the measured 

probe dimensions iii zandyx ,  and the measured time delays iitδ  (where i = 1, 2 and 

3). Thus, in this chapter an effort is made to analyse the sensitivity of the calculated 

polar angle cα  and the calculated azimuthal angle cβ  to errors in the measured probe 

dimensions measimeasimeasi zandyx ,,, ,  and to the measured time intervals measiit ,δ   

during the bubble-probe interaction. For comparison purposes, an analysis was carried 

out using two different reference polar angles with tα  = 0° and tα  = 30°, keeping the 

reference azimuthal angle tβ  constant at 0° in both cases (N.B. when tα  = 0° tβ  does 

not have any physical meaning).   

4.1 Effect on polar angle α  and azimuthal angle β   due to the errors 

in the measured probe dimensions 

It can be seen from Equations 2.44 - 2.46 that, when polar angle α  is equal to zero, 

the terms βα sinsinix   and  βα cossiniy  ( )32,1 andi =  are both equal to zero, 

making the polar angle α  and the azimuthal angle β  only dependent on iz  and iitδ . 

Therefore, a series of MATLAB simulations were carried out with various values of 

iz  and iitδ  (±10% of error was introduced in real values of iz  and iitδ ). In order to 

proceed with the analysis, probe dimensions were chosen as shown in Table 4.1.  
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 i  1 2 3 

tix ,  0 0.4 -0.4 

tiy ,  0.5 -0.3 -0.3 

tiz ,  1 1 1 

Table 4.1 Assumed probe dimensions in mm  

4.1.1 Effect on the calculated polar angle cα  and azimuthal angle cβ   due to the 

error in measz ,1  

1. Select the probe dimensions titi yx ,, , and tiz ,  from Table 4.1. 

2. Calculate tiit ,δ ( )32,1 andi =  using Equations 2.44 – 2.46, assuming reference 

polar angle tα  equals 0° or 30°, azimuthal angle tβ  equals 0° and the velocity 

of the bubble tv  equals 0.5 ms-1.  

3. Using the value of tiit ,δ  calculated in step 2 and the correct values of tix ,  and 

tiy ,  and for tz ,2  and tz ,3 , measz ,1  is varied from  0.9 mm to  1.1 mm  in steps 

of 0.01 mm in order to calculate new values for cα  and cβ . 

4. The intention is to show the effect on the calculated values of cα  and cβ  of 

the measurement errors from -10% to +10% in the value of measz ,1 . 

Figure 4.1 shows the effect on the calculated polar angle cα  and azimuthal angle cβ   

due to the measurement error in 
meas

z
,1 . It can be seen that the calculated polar angle 

cα  increases as the assumed value of measz ,1  decreases below its true value of 1mm. 

It also shows that if the assumed value of measz ,1 increases, the calculated polar angle 

cα  also increases. The error in cα  reaches 7.2° when the error in the measured value 

of  
meas

z
,1  is both ±10% . 
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Figure 4.1 Variation of calculated polar angle cα  with the error in measz ,1  using 

reference polar angle tα  = 0° and tβ  = 0° 

 

Figure 4.2 Variation of calculated polar angle cα  and azimuthal angle cβ  with 

the error in measz ,1  using reference polar angle tα  = 30° and tβ = 0° 

Similarly, Figure 4.2 shows the effect on the calculated polar angle cα  and azimuthal 

angle cβ  when the measurement error in 
meas

z
,1   is ±10% for the reference polar angle 
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tα  = 30° and azimuthal angle tβ  = 0°. The figure suggests that, as the assumed value 

of 
meas

z
,1  decreases below its true value of 1mm, cα  increases gradually to 34.2°; 

whereas, if the assumed value of 
meas

z
,1  increases, cα  decreases to 25.2°. Figure 4.2 

also shows that there is very little variation (0.008 – 0.012) in cβ  for the variation -

10% to +10% in the value of 
meas

z
,1 . 

4.1.2 Effect on the calculated polar angle cα  and azimuthal angle cβ   due to 

the error in measz ,2  

1) Select the probe dimensions titi yx ,, , and tiz ,  from Table 4.1. 

2) Calculate tiit ,δ using Equations 2.44 – 2.46, assuming reference polar angle 

tα  equals 0° or 30°, azimuthal angle tβ  equals 0° and velocity of the bubble 

tv  equals 0.5 ms-1.  

3) Using the value of tiit ,δ  calculated in step 2 and the correct values of tix ,  and 

tiy ,  and for tz ,1  and tz ,3 , measz ,2  is now varied from  0.9 mm to  1.1 mm in 

steps of 0.01 mm in order to calculate new values for cα  and cβ . 

4) The intention is to show the effect on the calculated values of cα  and cβ  due 

to the measurement error from -10% to +10% in the value of measz ,2 . 

Figure 4.3 shows the effect on the calculated polar angle cα  of the error in measz ,2 . 

The figure shows that, as measz ,2  decreases below its true value of 1mm, the calculated 

polar angle cα  increases. Similarly, if measz ,2  increases, polar angle cα  increases 
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again. The error in cα  reaches up to 8° when the error in the measured value of 

measz ,2  is both -10% and +10%. 

 

Figure 4.3 Variation of calculated polar angle cα  with the error in measz ,2  using 

reference polar angle tα  = 0 and tβ  = 0° 

 

Figure 4.4 Variation of calculated polar angle cα  and azimuthal angle cβ  with 

the error in measz ,2  using reference polar angle tα  = 30 and tβ  = 0° 
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Similarly, Figure 4.4 above shows the effect on the calculated polar angle cα  and 

azimuthal angle cβ  when the measurement error in measz ,2  is ±10% for the reference 

polar angle tα  = 30° and azimuthal angle tβ  = 0°. The figure suggests that, as the 

assumed value of  measz ,2  decreases below its true value of 1mm, cα  decreases 

gradually to 27°; whereas, if measz ,2  increases cα  also increases to 34° . Figure 4.4 

also shows that there is very little variation in cβ  for the variation -10% ( cβ  increases 

slightly up to 10°); however, cβ  reaches 350° when measz ,2  increases above its true 

value of 1mm. 

4.1.3 Effect on the calculated polar angle cα  and azimuthal angle cβ   due to the 

error in measz ,3  

1) Select the probe dimensions titi yx ,, , and tiz ,  from Table 4.1. 

2) Calculate tiit ,δ using Equations 2.44 – 2.46, assuming polar angle tα  equals 

0° or 30°, azimuthal angle tβ  equals 0° and velocity of the bubble tv  equals 

0.5 ms-1.  

3) Using the value of tiit ,δ  calculated in step 2 and the correct values of tix ,  and 

tiy ,  and for tz ,1  and tz ,2 , measz ,3  is now varied from  0.9 mm to 1.1 mm in 

steps of 0.01 mm in order to calculate new  values for cα  and cβ  . 

4) The intention is to show the effect on the calculated values of cα  and cβ  due 

to the measurement error from -10% to +10% in the value of measz ,3 . 
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Figure 4.5 Variation of calculated polar angle cα  with the error in measz ,3  using 

reference polar angle tα  = 0 and tβ  = 0° 

Figure 4.5 above shows the effect on calculated polar angle cα  due to the error in 

measz ,3 . The figure shows that, as measz ,3   decreases below its true value of 1mm, polar 

angle cα  increases. Similarly, if measz ,3   increases, polar angle cα  increases again. 

The increment of polar angle cα  reaches 8° when the error in the measured value of  

measz ,3   is -10% and +10% of  measz ,3 . 

Similarly, Figure 4.6 shows the effect on polar angle cα  and azimuthal angle cβ  when 

the measurement error in measz ,3  is  ±10% for the reference polar angle tα  = 30° and 

azimuthal angle tβ  = 0°.  The figure suggests that, as measz ,3  decreases below its true 

value of 1mm,  cα  also decreases gradually to 27°, whereas if the assumed value of 

measz ,3  increases, cα  also increases to 34°. Figure 4.6 also shows that cβ  reaches 

300° for a variation of -10%; however, cβ  changes only slightly ( cβ  increases up to 

10°) when measz ,3  is increased by +10%. 
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Figure 4.6 Variation of calculated polar angle cα  and azimuthal angle cβ  with 

the error in measz ,3  using reference polar angle tα  = 30 and tβ  = 0° 

4.1.4 Effect on the calculated polar angle cα  and azimuthal angle cβ   due to the 

error in measz ,2  (increasing) and measz ,3  (increasing) 

1. Select the probe dimensions titi yx ,, , and tiz ,  from Table 4.1. 

2. Calculate tiit ,δ  using Equations 2.44 – 2.46, assuming polar angle tα  equals 

0° or 30°, azimuthal angle tβ  equals 0° and velocity of the bubble tv  equals 

0.5 ms-1.  

3. Using the value of tiit ,δ  calculated in step 2 and the correct values of tix ,  and 

tiy ,  for tz ,1 , measz ,2  is varied from  1 mm to 1.1 mm and measz ,3  from 1 mm 

to 1.1 mm in steps of 0.01 mm in order to calculate new values for cα  and cβ .  



Chapter 4                                                                                          Sensitivity Analysis 

Suman Pradhan 128 

4. measz ,2  and measz ,3  are altered in such a way that, when measz ,2  is changed by 

1%, measz ,3  is changed from 1% to 10% again, measz ,2  is changed by 2% and 

measz ,3  is changed from 1% to 10%; the process continues until measz ,2  

changes to 10%, making a total of 100 data points. 

5. The intention is to show the effect on the calculated values of cα  and cβ  due 

to the measurement error in the value of measz ,2  and measz ,3 . 

 

Figure 4.7 Effect on polar angle cα  and azimuthal angle cβ   due to the error in 

measz ,2  (increasing) and measz ,3  (increasing), polar angle tα =30° (left) polar angle 

tα =0° (right) tβ  = 0° 

Figure 4.7 shows the effect on the calculated polar angle when the reference polar 

angle tα  is 30° (top left) or when the reference polar angle tα  is 0° (top right) and 
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azimuthal angle when tα  is 30° (bottom left) or when tα  is 0° (bottom right)  due to 

the error discussed above. The figure on the top left shows the variation in the 

calculated polar angle cα  when the reference polar angle tα  = 30°, where the 

calculated polar angle cα  increases when increments were made in measz ,2  and measz ,3  

and this rise in the value of  cα  reaches 35° when the measurement error in both 

measz ,2   and measz ,3   is 10% of  their true value of 1mm. 

Similarly, the bottom left figure shows the variation of azimuthal angle cβ  when the 

reference polar angle is 30°, which shows that azimuthal angle cβ  is always close to 

the reference azimuthal angle tβ  which is 0° (taking 360° equivalent to 0°).  When 

calculated, azimuthal angle cβ  was found to be a maximum of 10° when measz ,2  is 

increased by 10% of its true value and measz ,3  is increased by 1% of its true value.  

Similarly, Figure 4.7 on the right shows the variation in polar angle cα  and azimuthal 

angle cβ  (top and bottom respectively), while reference polar angle tα  and azimuthal 

angle tβ  are both 0°. The results shows that the calculated polar angle cα  reaches a 

maximum of 7° when the measurement error in both, measz ,2  and measz ,3 , is increased 

by 10% of their true value of 1mm. As mentioned earlier, the model used suggests 

that azimuthal angle cβ  is not relevant in terms of t,α =0°. 

4.1.5 Effect on the calculated polar angle cα  and azimuthal angle cβ  due to the 

error in measz ,2  (increasing) and measz ,3  (decreasing) 

1. Select the probe dimensions titi yx ,, , and tiz ,  from Table 4.1. 
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2. Calculate tiit ,δ  using Equations 2.44 – 2.46, assuming polar angle tα  equals 

0° or 30°, azimuthal angle tβ  equals 0° and velocity of the bubble tv  equals 

0.5 ms-1.  

3. Using the value of tiit ,δ  calculated in step 2 and the correct values of tix , , and 

tiy ,  and tz ,1 , measz ,2  is varied from  1mm to 1.1mm and measz ,3  from 0.9 mm 

to 1mm in steps of 0.01mm in order to calculate new values for cα  and cβ .  

4. tz ,2  and measz ,3  are altered in such a way that, when measz ,2  is changed by 1%, 

measz ,3  is changed from -1% to -10% again, measz ,2  is changed by 2% and 

measz ,3  is changed from -1% to -10%; the process continues until measz ,2  

changes to 10%, making a total of 100 data points. 

5. The intention is to show the effect on the calculated values of cα  and cβ   due 

to the measurement error from +1% to +10% in the value of measz ,2  and -1% 

to -10% in the value of measz ,3 . 

Figure 4.8 shows the effect on the calculated polar angle when the reference polar 

angle tα  is 30° (top left) or when the reference polar angle tα  is 0° (top right) and 

azimuthal angle when tα  is 30° (bottom left) or when tα  is 0° (bottom right)  due to 

the error discussed above. The figure on the top left shows the variation in polar angle 

cα  when the reference polar angle tα  = 30°, where the calculated polar angle cα  

increases with the increments made in measz ,2  and measz ,3  and this rise in the value of  

cα  increases to 34° when measz ,2  is increased by 10% and measz ,3  is reduced by 10% 

of its true value of 1mm. 
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Figure 4.8 Effect on the calculated polar angle cα  and azimuthal angle cβ   due 

to the error in measz ,2  (increasing) and measz ,3  (decreasing), polar angle tα =30° 

(left) polar angle tα =0° (right) tβ  = 0° 

Similarly, the bottom left figure shows the calculated value of azimuthal angle cβ  

when tα  is 30°, which shows that azimuthal angle cβ  is always close to tβ  which is 

0° (taking 360° equivalent to 0°).  When calculated, azimuthal angle cβ  was found to 

be at a minimum of 340° when measz ,2   is increased by 9% and measz ,3   is decreased 

by -10% of its true value of 1mm. Similarly, Figure 4.8 on the right shows the 

variation in the calculated polar angle cα  and azimuthal angle cβ  (top and bottom 

respectively), while reference polar angle tα  and azimuthal angle tβ  are both 0°. 

Results show that the cα  reaches up to 14° when both measz ,2  and measz ,3  are at their 

most extreme. 
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4.1.6 Effect on the calculated polar angle cα  and azimuthal angle cβ  due to the 

error in measz ,2  (decreasing) and measz ,3  (increasing) 

1. Select the probe dimensions titi yx ,, , and tiz ,  from Table 4.1. 

2. Calculate tiit ,δ using Equations 2.44 – 2.46, assuming polar angle tα  = 0° or 

30°, azimuthal angle tβ  = 0° and velocity of the bubble tv  = 0.5ms-1.  

3. Using the value of tiit ,δ  calculated in step 2 and the correct values of tix ,  and 

tiy ,  for tz ,1 , measz ,2  is varied from  0.9 mm to 1 mm and measz ,3  from 1 mm 

to 1.1 mm in steps of 0.01 mm in order to calculate new values for cα  and cβ . 

4. measz ,2  and measz ,3  are altered in such a way that when measz ,2  is changed by 

1%, measz ,3  is changed from -1% to -10% again, measz ,2  is changed by 2% and 

measz ,3  is changed from 1% to 10%; the process continues until measz ,2  

changes to 10%, making a total of 100 data points. 

5. The intention is to show the effect on the calculated values of cα  and cβ    due 

to the measurement error from -1% to -10% in the value of measz ,2  and +1% to 

+10% measz ,3 . 

Figure 4.9 shows the effect on the calculated polar angle when the reference polar 

angle tα  is 30° (top left) or when the reference polar angle tα  is 0° (top right) and 

azimuthal angle when tα  is 30° (bottom left) or when tα  is 0° (bottom right)  due 

to the error discussed above.. The figure on the top left shows the variation in the 

calculated polar angle cα  when the reference polar angle tα  = 30°, where polar 
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angle cα  gradually decreases until cα  reaches 27° when 
measz ,2  is decreased by 

1% and measz ,3   is increased by 10% from its true value of 1mm. 

 

Figure 4.9 Effect on the calculated polar angle cα  and azimuthal angle cβ   due 

to the error in measz ,2  (decreasing) and measz ,3  (increasing), polar angle tα =30° 

(left) polar angle tα =0° (right) tβ  = 0° 

Similarly, the bottom left figure shows the variation of calculated azimuthal angle cβ  

when tα  = 30°, which shows that the calculated azimuthal angle cβ  is always close 

to the reference azimuthal angle tβ  which is 0°.  Calculated azimuthal angle cβ  was 

found to be at a maximum of 24° when the measurement error in measz ,2   is decreased 

by 10% and measz ,3  is increased by 10%. Figure 4.9 on the right shows the variation in 

calculated polar angle cα  and azimuthal angle cβ  (top and bottom respectively) while 

reference polar angle tα  and azimuthal angle tβ  are both 0°. Results show that the 
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polar angle reaches 14° when the measurement error in measz ,2  is decreased by 10% 

and measz ,3  is increased by 10%. 

4.1.7 Effect on the calculated polar angle cα  and azimuthal angle cβ   due to the 

error in measz ,2  (decreasing) and measz ,3  (decreasing) 

1. Select the probe dimensions titi yx ,, , and tiz , from Table 4.1. 

2. Calculate tiit ,δ using Equations 2.44 – 2.46, assuming polar angle tα  = 0° or 

30°, azimuthal angle tβ  = 0° and velocity of the bubble tv  = 0.5 ms-1. .  

3. Using the value of tiit ,δ  calculated in step 2 and the correct values of tix , , 

and tiy ,  and tz ,1 , measz ,2  is varied from  0.9 mm to 1 mm and measz ,3  from 0.9 

mm to 1 mm in steps of 0.01 mm to calculate new values for cα  and cβ .  

4. measz ,2  and measz ,3   are altered in such a way that, when measz ,2  is changed by -

1%, measz ,3  is changed from -1% to -10% again, measz ,2  is changed by -2% and 

measz ,3  is changed from -1% to -10%; the process continues until measz ,2  

changes to -10%, making a total of 100 data points. 

5. The intention is to show the effect on the calculated values of cα  and cβ   due 

to the measurement error in the value of measz ,2  and measz ,3 . 

Figure 4.10 shows the effect on the calculated polar angle when the reference 

polar angle tα  is 30° (top left) or when the reference polar angle tα  is 0° (top 

right) and azimuthal angle when tα  is 30° (bottom left) or when tα  is 0° (bottom 

right)  due to the error discussed above due to the error discussed above. The 

figure on the top right shows the variation in the polar angle cα  when the 
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reference polar angle tα  = 30°, where the calculated polar angle cα  gradually 

decreases as increments are made in measz ,2  and measz ,3  and the decrease continues 

until cα  reaches 22°, when both measz ,2  and measz ,3  are decreased by 10% from 

their true value of 1mm. 

 

Figure 4.10 Effect on the calculated polar angle cα  and azimuthal angle cβ   due 

to the error in measz ,2  (decreasing) and measz ,3  (decreasing), polar angle tα =30° 

(left) polar angle tα =0° (right) t,β  = 0° 

Similarly, the bottom left figure shows a variation of the calculated azimuthal angle 

cβ  when the reference polar angle tα  is 30°, which shows that the calculated 

azimuthal angle cβ  is always close to the reference azimuthal angle tβ  which is 0° 

(taking 360° as equivalent to 0°).  Calculated azimuthal angle cβ  was found to be at a 

maximum of 347° when measz ,2  is decreased by 10% and measz ,3  is reduced by 1% of 

its true value.  
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Similarly, Figure 4.10 on the right shows a variation in the calculated polar angle cα  

and azimuthal angle cβ  (top and bottom respectively), while the reference polar angle 

tα  and the azimuthal angle tβ  are both 0°. Results shows that the calculated polar 

angle cα  reaches up to 7° when both measz ,2  and measz ,3  are decreased by 10%. 

4.2 Effect on the calculated polar angle cα  and azimuthal angle cβ   

due to the errors in the measured time intervals measiit ,δ  (where i = 1, 

2 and 3) 

This section will focus on how the calculated polar angle cα  and azimuthal angles cβ  

are affected by the error in measurement of measiit ,δ  (where i = 1, 2 and 3). As 

discussed in the previous section, this section will also introduce an error of ± 10% in 

the true value of tiit ,δ , where tiit ,δ  is calculated with dimensions titi yx ,, , and tiz ,  

given in Table 4.1 and reference parameters given below:  

Velocity magnitude tv  = 0.5ms-1 

 Azimuthal angle tβ  = 0°  

Polar angle tα = 0° or 30° 

The analysis was carried out with the error introduced in the individual measiit ,δ , as 

well as the error in multiple measiit ,δ  (see section 4.2.4). 

4.2.1 Effect on the calculated polar angle cα  and azimuthal angle cβ   due to the 

error in time intervals meast ,11δ  
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1. Select the probe dimensions titi yx ,, , and tiz ,  from Table 4.1. 

2. Calculate tiit ,δ using Equations 2.44 – 2.46, assuming tα  equals 0° or 30°, 

azimuthal angle tβ  equals 0° and velocity of the bubble tv  equals 0.5 ms-1.  

3. Using the true values of tix , , tiy , , tiz ,  and the value of tt ,33δ  and tt ,22δ  

calculated in step 2,  meast ,11δ  is varied from  0.9 mm to  1.1 mm in steps of 

0.01 mm and a new cα  and cβ   are calculated. 

4. The intention is to show the effect on the calculated values of cα  and cβ  due 

to the measurement error from -10% to +10% in the true value of meast ,11δ . 

 

Figure 4.11 Variation of the calculated polar angle cα  with the error in meast ,11δ  

using reference polar angle tα  = 0° and tβ  = 0° 

Figure 4.11 shows the effect on the calculated polar angle cα  (α =0°) due to the error 

in meast ,11δ . The figure shows that, as meast ,11δ  decreases from its true value, the 

calculated polar angle cα  increases. Similarly, if meast ,11δ  increases, the calculated 

polar angle cα  increases again. The increment of the calculated polar angle cα                

reaches 7.2° (supposed to be 0°) for either side of ±10% of true value of meast ,11δ .  

Similarly, Figure 4.12 below shows the effect on the calculated polar angle cα  and 

azimuthal angle cβ  when the error in meast ,11δ  is ±10% for the reference polar angle 
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tα  = 30° and azimuthal angle tβ  = 0°. The figure suggests that, as meast ,11δ  decreases 

from its true value, cα  decreases gradually to 24°, whereas if meast ,11δ  is increased, 

cα  increases to 35°. Figure 4.12 also shows that there is very little variation (0.008° – 

0.012°) in cβ  for the variation -10%  to +10% in the value of meast ,11δ . 

 

Figure 4.12 Variation of the calculated polar angle cα  and azimuthal angle cβ  

with the error in meast ,11δ  using reference polar angle tα = 30° and tβ  = 0° 

4.2.2 Effect on the calculated polar angle cα  and azimuthal angle cβ   due to the 

error in time intervals meast ,22δ  

1. Select the probe dimensions titi yx ,, , and tiz ,  from Table 4.1. 

2. Calculate tiit ,δ  using Equations 2.44 – 2.46, assuming polar angle tα  = 0° or 

30°, azimuthal angle tβ  = 0° and velocity of the bubble tv  = 0.5 ms-1.  
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3. Using the true values of tix , , tiy , , tiz ,   and the value of tt ,33δ  and tt ,11δ  

calculated in step 2,  meast ,22δ  is varied from  0.9 mm to  1.1 mm in steps of 

0.01 mm and a new cα  and cβ  is calculated. 

4. The intention is to show the effect on the calculated values of cα  and cβ  due 

to the measurement error from -10% to +10% in the true value of meast ,22δ . 

 

Figure 4.13 Variation of the calculated polar angle cα  with the error in meast ,22δ  

using reference tα = 0° and tβ =0° 

Figure 4.13 shows the effect on the calculated polar angle cα  and the azimuthal angle 

cβ   due to the error in meast ,22δ . Figure 4.13 shows that, as meast ,22δ  decreases from 

its true value, the calculated polar angle cα  increases. Similarly, if meast ,22δ  is 

increased, the calculated polar angle cα  increases again. The increment of cα  reaches 

8° (supposed to be 0°) when the error is ±10% of true value of meast ,22δ .  

Figure 4.14 shows the effect on the calculated polar angle cα  and azimuthal angle cβ  

when the measurement error in meast ,22δ  is ±10%. The figure suggests that, as the 

meast ,22δ  decreases from its true value, cα  increases gradually to 33°, whereas if 
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meast ,22δ  increases from its true value, cα  decreases gradually to 27.5°. Figure 4.14 

also shows that there is very little variation in cβ  resulting from the variation when 

the error in meast ,22δ   is decreased by 10% from its true value ( cβ  increases slightly 

up to 10°).  However, cβ  reaches almost 350° (10° offset while 360° = 0°) when the 

error in meast ,22δ  is increased by 10%.  

 

Figure 4.14 Variation of the calculated polar angle cα  and azimuthal angle cβ  

with the error in meast ,22δ  using reference tα = 30° and tβ =0° 

4.2.3 Effect on the calculated polar angle cα  and azimuthal angle cβ  due to the 

error in time intervals meast ,33δ  

1. Select the probe dimensions titi yx ,, , and tiz ,  from Table 4.1. 
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2. Calculate tiit ,δ  using Equations 2.44 – 2.46, assuming polar angle tα  equals 

0° or 30°, azimuthal angle tβ  equals 0° and velocity of the bubble tv  equals 

0.5 ms-1.  

3. Using the true values of tix , , tiy , , tiz , and the value of tt ,11δ  and tt ,22δ  

calculated in step 2,  meast ,33δ  is varied from  0.9 mm to  1.1 mm in steps of 

0.01 mm and a new cα  and cβ  are calculated. 

4. The intention is to show the effect on the calculated values of cα  and cβ  due 

to the measurement error from -10% to +10% in the true value of meast ,33δ . 

 

Figure 4.15 Variation of the calculated polar angle cα  with the error in meast ,33δ  

using reference tα = 0° and tβ =0° 

Figure 4.15 shows the effect on the calculated polar angle cα  due to the error in 

meast ,33δ . The figure shows that, as meast ,33δ  decreases from its true value, the 

calculated polar angle cα  increases. Similarly, if meast ,33δ  is increased from its true 

value, polar angle cα  increases again. The increment of polar angle cα  reaches 8° 

(supposed to be 0°) when the error is ±10% of true value of meast ,33δ .  
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Figure 4.16 Variation of the calculated polar angle cα  and azimuthal angle cβ  

with the error in meast ,33δ  using reference tα = 30° and tβ =0° 

Similarly, Figure 4.16 shows the effect on the calculated polar angle cα  and 

azimuthal angle cβ  when the measurement error in meast ,33δ  is ±10% from its true 

value for the reference polar angle tα = 30° and azimuthal angle tβ = 0°. The figure 

suggests that, as meast ,33δ  decreases from its true value cα  increases gradually to 33°, 

whereas if meast ,33δ  is increased from its true value, cα  decreases gradually to 27.5° 

for the 10% error in meast ,33δ . Figure 4.16 also shows that cβ  reaches 350° when the 

error is increased by 10% in meast ,33δ .  However, cβ  shows only a small change 

(increases slightly up to 10°) when the error in meast ,33δ   is increased by 10% of its 

true value. 
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4.2.4 Effect on the calculated polar angle cα  and azimuthal angle cβ   due to the 

error in multiple time intervals measiit ,δ  

In this section, the effect on the calculated polar angle cα  and azimuthal angle cβ  due 

to the error in the multiple time intervals measiit ,δ  was investigated. Firstly, tiit ,δ  is 

calculated from the dimensions given in Table 4.1 with the reference velocity of 

0.5ms-1, azimuthal angle 0° and polar angle 0° and 30°. Once all the time intervals 

tiit ,δ  are calculated, an error of ± 10% is introduced in two time intervals out of three, 

keeping one constant. For example, keeping tt ,11δ  constant, meast ,22δ  and meast ,33δ  

are changed to ± 10%. For simplicity, four conditions are introduced.  

Condition 1: both the time intervals are increased by 10%, for example if tt ,11δ  is 

constant, meast ,22δ  increases by 1% and meast ,33δ  increases from 1% to 10%, again 

meast ,22δ  increases by 2% and meast ,33δ  increases from 1% to 10%. The process 

continues until meast ,22δ  reaches 10%.  

Condition 2:  keeping the first time interval constant, the second time interval is 

increased by 1% to 10%, while the third time interval is decreased by 1% to 10% 

(taking tt ,11δ , tt ,22δ  and tt ,33δ  as the first, second and third time intervals 

respectively).  For example, if tt ,11δ  is constant, meast ,22δ  increases by 1% and 

meast ,33δ  decreases from 1% to 10%, again meast ,22δ  increases by 2% and meast ,33δ  

decreases from 1% to 10%. The process continues until meast ,22δ  reaches 10%. 

Condition 3:  keeping the first time interval constant, the second time intervals are 

decreased by 1% to 10%, while the third time interval is increased by 1% to 10% 
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(taking tt ,11δ , tt ,22δ  and tt ,33δ  as the first, second and third time intervals 

respectively).  For example, if tt ,11δ  is constant, meast ,22δ  decreases by 1% and 

meast ,33δ  increases from 1% to 10%, again meast ,22δ  decreases by 2% and meast ,33δ  

increases from 1% to 10%. The process continues until meast ,22δ   reaches -10%. 

Condition 4:  both the time intervals are decreased by 1% to 10%, for example if 

tt ,11δ  is constant, meast ,22δ  decreases by 1% and meast ,33δ  decreases from 1% to 10%, 

again meast ,22δ  decreases by 2% and meast ,33δ  decreases from 1% to 10%. The 

process continues until meast ,22δ  reaches -10%.  

4.2.4.1 Effect on the calculated polar angle cα  and azimuthal angle cβ   using 

Condition 1 

Figure 4.17 shows the effect on the calculated polar angle cα  and azimuthal angle cβ   

due to the error in the measured time intervals measiit ,δ  as shown in Condition 1 

(described above). The variation in red denotes constant meast ,11δ , with errors in 

meast ,22δ  and meast ,33δ . The data in black is the constant meast ,22δ  and errors in 

meast ,33δ  and meast ,11δ .  The data in blue is constant meast ,33δ  with the errors in 

meast ,11δ  and meast ,22δ .   

In Figure 4.17, the top half (the left is the calculated polar angle cα  and the right is 

the azimuthal angle cβ ) of the figure is the effect on the polar angle and azimuthal 

angle calculated with reference to the polar angle tα = 0°, whereas the bottom half 
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(the left is the calculated polar angle cα  and the right is the azimuthal angle cβ ) is 

calculated with reference to the polar angle tα = 30°.   

 

Figure 4.17 Variation of the calculated polar angle cα  and azimuthal angle cβ  

due to the errors described in Condition 1 

Figure 4.17 suggests that the calculated polar angle cα , in the case of tα = 0°, rises to 

7° with all constant time intervals. Figure 4.17 also shows that when reference polar 

angle tα = 30° and when meast ,11δ  is equal to tt ,11δ , as the error increases, the 

calculated polar angle cα  decreases gradually until it reaches 24°; whereas, when 

meast ,22δ  and meast ,33δ  are constant, the calculated polar angle cα  increases gradually 

to 33° as the error increases. Calculated azimuthal angle cβ  in each case shows very 

small variation, as it is either close to 0° or 360° 
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4.2.4.2 Effect on the calculated polar angle cα  and azimuthal angle cβ  using 

Condition 2 

Figure 4.18 shows the effect on the calculated polar angle cα  and azimuthal angle cβ  

due to the error in time intervals measiit ,δ  as per Condition 2 (as described above). The 

variation in red denotes constant meast ,11δ , with errors in meast ,22δ  and meast ,33δ . The 

data in black is the constant meast ,22δ  and errors in meast ,33δ  and meast ,11δ .  The data 

in blue is constant meast ,33δ  with the errors in meast ,11δ  and meast ,22δ .   

 

Figure 4.18 Variation of the calculated polar angle cα  and azimuthal angle cβ  

due to the error described in Condition 2 

In Figure 4.18, the top half (the left is the calculated polar angle cα  and the right is 

the azimuthal angle cβ ) of the figure shows the effect on the calculated polar angle 

and azimuthal angle calculated with reference to polar angle tα = 0°, whereas the 
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bottom half (the left is the calculated polar angle cα  and the right is the azimuthal 

angle cβ ) is calculated with reference to the polar angle tα = 30°.  Figure 4.18 

suggests the calculated polar angle cα , in the case of tα = 0°, rises to 10° with all 

constant time intervals. The figure also shows that, when polar angle tα = 30° and 

when meast ,11δ  is constant, as the error increases the calculated polar angle cα  slightly 

increases until it reaches 33°; whereas when meast ,22δ  and meast ,33δ  are constant, the 

calculated polar angle cα  increases gradually to 36° as the error increases. Calculated 

azimuthal angle cβ  in each case shows a very small variation, as it is either close to 

0° when meast ,11δ  and meast ,22δ  are constant or 360° when meast ,33δ  is constant. 

4.2.4.3 Effect on the calculated polar angle cα  and azimuthal angle cβ   using 

Condition 3 

Figure 4.19 shows the effect on the calculated polar angle cα  and azimuthal angle cβ   

due to the error in time intervals measiit ,δ  as shown in Condition 3 (described above). 

The variation in red denotes constant meast ,11δ , with errors in meast ,22δ and meast ,33δ . 

The data in black is the constant meast ,22δ  and errors in meast ,33δ  and meast ,11δ .  The 

data in blue is constant meast ,33δ  with the errors in meast ,11δ  and meast ,22δ . In Figure 

4.19, (the left is the calculated polar angle cα  and the right is the azimuthal angle cβ ) 

of the figure is the effect on the polar angle and azimuthal angle calculated with 

reference to the polar angle tα = 0°, whereas the bottom half (the left is the calculated 

polar angle cα  and the right is the azimuthal angle cβ ) is calculated with reference to 

the polar angle tα = 30°.  The figure suggests that the calculated polar angle cα , in 
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case of tα = 0°, rises up to 6° with all constant time intervals. Figure 4.19 also shows 

that, when reference polar angle tα = 30° and when meast ,11δ  is constant, as the error 

increases the calculated polar angle cα  increases gradually until it reaches 34°, 

whereas when meast ,22δ  and meast ,33δ  are constant, the calculated polar angle cα  

decreases gradually to 27° as the error increases. Calculated azimuthal angle cβ  in 

each case shows a very small variation, as it is either close to 0° when meast ,33δ  is 

constant or 360° when meast ,11δ  and meast ,22δ  are constant. 

 

Figure 4.19 Variation of the calculated polar angle cα  and azimuthal angle cβ  

due to the error described in Condition 3 
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4.2.4.4 Effect on the calculated polar angle cα  and azimuthal angle cβ   using 

Condition 4 

Figure 4.20 shows the effect on the calculated polar angle cα  and azimuthal angle cβ   

due to the error in the measured time intervals measiit ,δ , as shown in Condition 4 (as 

described above). The variation in red denotes constant meast ,11δ , with errors in 

meast ,22δ  and meast ,33δ . The data in black is the constant meast ,22δ  and errors in 

meast ,33δ  and meast ,11δ .  The data in blue is constant meast ,33δ  with the errors in 

meast ,11δ  and meast ,22δ .  

 

Figure 4.20 Variation of the calculated polar angle cα  and azimuthal angle cβ  

due to the error described in Condition 4 
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In Figure 4.20, the top half (the left is the calculated polar angle cα  and the right is 

the azimuthal angle cβ ) of the figure is the effect on the polar angle and azimuthal 

angle calculated with reference to the polar angle tα = 0°, whereas the bottom half 

(the left is the calculated polar angle cα  and the right is the azimuthal angle cβ ) is 

calculated with reference to the polar angle tα = 30°.   

Figure 4.20 suggests the calculated polar angle cα  , in case of tα = 0°, rises up to 7° 

with all constant time intervals. Figure 4.20 also shows that, when reference polar 

angle tα = 30° and when meast ,11δ  is constant, as the error increases the calculated 

polar angle cα  slightly increases until it reaches 33°, whereas when meast ,22δ  and 

meast ,33δ  are constant, the calculated polar angle cα  decreases gradually to 27° as the 

error increases. Calculated azimuthal angle cβ  in each case shows a very small 

variation, as it is either close to 0° when meast ,11δ  and meast ,22δ  are constant or 360° 

when meast ,33δ  is constant. 

4.3 Conclusion 

In this chapter, the sensitivity of the ‘z’ dimensions of the four-sensor probe and the 

time intervals were analysed. The analysis was carried out with the introduced error of 

± 10% in the single variable, as well as the multiple variable. In order to check the 

effect of the error, the results were analysed in reference polar angle 0° and 30°.  The 

results show that even a small error in the measurement of probe and time intervals 

for the calculation showed a big difference in the polar angle when the reference polar 

angle is 0°.  
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However, when the reference polar angle is 30° (or when the probe is tilted by 30°), 

the calculation shows a great difference in the reference and the measured values, due 

to the error in the ‘z’ dimensions as well as in time intervals iitδ . These results show 

good agreement with the results presented by Sanaullah et al. [150], where the author 

states that the probe has less effect on the bubble when it is tilted by 20° (polar angle). 

The author also states that the effect of the probe rises as the probe’s inclination 

becomes closer to 55° (polar angle). 
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CHAPTER 5 

Measurement Electronics 

5.1 DC circuitry 

Figure 5.1 shows the basic circuit design that is required for the four-sensor probe to 

measure the conductance of air or water. The complete circuit is based on a non-

inverting amplifier and a regulated DC voltage source. 

 In Figure 5.1, SR1 is the resistance between the relevant sensor tip and the probe 

body (common electrode). The output voltage ampV  from the operational amplifier in 

the circuit is given by: 









+=
1

1
1

SR

RF
VV inamp        Equation 5.1 

The working principle of the circuit is that when the tip of the given sensor is 

immersed in water, the value of SR1 is very small compared to the feedback resistor 

RF1 (which is typically > 1.5 MΩ).  Thus, ampV  saturates at the positive supply 

voltage of the operational amplifier (+15 V).  When the tip of the sensor is immersed 

in a bubble, the circuit becomes open loop, making the value of SR1 higher than RF1 

and making the quantity 
1

1

SR

RF
 close to zero so that ampV   approaches inV , which is 

typically +5 volts. Thus, as each of the four sensors is immersed successively in water 

and air, output signals similar to those shown in Figure 5.2 are obtained. Note that the 

variable resistor OR1 was used to fine tune the output voltage Vout, to cover the full 

range of analogue to digital converters of the data acquisition system that was used. 
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Figure 5.1 D C circuit  

outV
outV

rest

 

Figure 5.2 (A) Typical output from four-sensor probe DC circuit.  

(B) Output from four-sensor probe. 

Four separate circuits were made for the four-sensor probe, as described above. Figure 

5.2 (A) shows the ideal output signal from the four sensors of a four-sensor probe, and 

Figure 5.2 (B) is the experimental output from the probe when a gas bubble (in water) 

passes over it. In Figure 5.2 (B), the red coloured signal is from the front sensor while 

the other coloured signals are from the three rear sensors. The time lag between the 

front and the rear sensors (time interval between the drop in signal level between the 
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front and rear sensors) depends on the axial separation between the front and the rear 

three sensors. The time interval from when the signal from a given sensor drops and 

rises again (e.g. from point ‘a’ to point ‘b’ in Figure 5.2 B) depends on the size of the 

bubble (diameter ‘d’ of the bubble) and the bubble velocity. This residence time rest of 

the bubble on the sensor can be approximated by 
v

d
tres =  for the bubble travelling 

with velocity v  parallel to the probe axis which strikes the given sensor centrally. 

When using the DC excitation circuit, the disadvantage of electrolysis caused by the 

DC source should not be forgotten. Electrolysis is a process whereby a DC current is 

applied across two electrodes, one of which is a negative electrode and the other is a 

positive electrode. The negative terminal is referred to as the cathode, and the positive 

terminal is referred to as the anode. Negatively charged electrons flow through the 

wiring of the circuit from cathode to anode, which results in corrosion of the anode; 

thus, solid corrosive residue forms on its surface.  

     

Figure 5.3 Sensor tip – before electrolysis (left), after electrolysis (middle), and 

after cleaning (right). Images are from a shadow-graph. 

Due to this electrolysis process (in the present study the probe holder and the sensor 

tip work as the electrodes for electrolysis), the performance of the sensors can be 

degraded because particles from the insulation may become loose as a result of the 

corrosion. Also, the tiny particles that exist in the flow will attract to the tips of the 

sensors because they are electrically charged. This will result in the sensor tips 

becoming partially or completely covered by a non-conducting film of dirt and the 
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acquired signal’s characteristics will be altered, creating errors in the signal 

processing scheme. The solution to this problem is to clean the tips of the probe 

whenever it is observed that the probe’s performance starts to deteriorate. The sensor 

tip can be cleaned using very fine emery paper. Figure 5.3 shows stages of the tip of a 

sensor affected by the electrolysis and the improved sensor tip after the cleaning 

procedure is applied.   

5.2 AC circuitry 

Another way to measure the conductance of air or water without causing the 

electrolysis process is to use AC excitation instead of DC. The working principle of 

this type of circuit is similar to that of the DC circuit, where the conductance value 

increases and decreases as the sensor tip is immersed in water or air respectively. The 

only difference is that this circuit uses an AC source instead of DC, as shown in 

Figure 5.4. 

aV
bV

1VR

2VR

 

Figure 5.4 Basic AC circuit 

An investigation was carried out with AC excitation as a possible alternative to DC 

excitation. The complete circuit was based on inverting an amplifier and regulated 
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voltage source, as shown in Figure 5.4.  A 10 kHz AC 5V peak-to-peak signal was 

applied as an excitation signal, as shown in Figure 5.5 (simulated signal). Four 

identical circuits (as shown in Figure 5.4) were made for a four-sensor probe. For 

each circuit VR2 was replaced with the relevant sensor. The circuit was also designed 

and simulated in the software “Proteus” for comparison purposes.  

 

Figure 5.5 Simulated input signal  

 

Figure 5.6 Output signal 

Figure 5.6 shows the simulated output signal from the circuit as the sensor is 

immersed in air and water. The increased amplitude denotes that the sensor was in 

contact with the water, making the resistance value of the sensor (VR2) smaller than 
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VR1. The output of circuit bV  (output of inverting amplifier) is given by Equation 5.2 

so when the sensor is immersed in water, the value of  bV
 
is greater than aV .

 
 

( )









+
−=

12

1

RVR

VR
VV ab        Equation 5.2 

However, when the tip of the sensor is immersed in a bubble, the circuit becomes 

open loop, making the value of VR2 higher than VR1 and making the quantity 

( )12

1

RVR

VR

+
 close to zero so that bV   approaches aV , as shown in Figure 5.6. The 

amplified output bV   is then passed through the rectifier in conjunction with an active 

low pass filter (Figure 5.7) to convert the output from AC to DC for easy signal 

processing.  The cut-off frequency cf  for the low-pass filter is calculated as Equation 

5.3. 
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Figure 5.7 Low-pass filter 

Figure 5.8 (A) shows the “Proteus” generated simulated output signal from the low-

pass filter, and (B) shows the output signal from a built circuit. Both of the signals 

show similar characteristics, with noise on the rising level and slow decay on the 
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falling edge of the signal. 

Figure 5.8 Output signal after low – pass filter is: A) simulated B) experimental  

From the signals obtained using the DC circuit (Figure 5.2) or the AC circuit (Figure 

5.8), it is necessary to measure the time intervals iitδ
 
(i = 1, 2 and 3). From the 

calculated values of iitδ  and the measured probe dimensions (see Chapter 3.3), it is 

possible to calculate the polar angle α , azimuthal angle β  and the velocity 

magnitude v  of a bubble using Equations 2.48, 2.47 and 2.46 respectively, as 

described in Chapter 2. 

 

Figure 5.9 Various levels of threshold  
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Although it is possible to calculate the velocity vector from the signal obtained using 

an AC source, it is extremely likely that the calculated velocity vector might not be 

very accurate. The presence of the rectifier and the low-pass filter in the circuit causes 

a high level of noise (see Figure 5.8) in the signal and, as a result, it will force the use 

of a lower value of threshold, as shown in Figure 5.9.  

In Figure 5.9, three different threshold levels are presented; in an ideal situation, the 

threshold level is placed where it just contacts the rising or falling edge of the signal. 

“Threshold level A” shows there is only contact with the rising edge of the signal, 

resulting in the data processing software ignoring this type of signal (see Chapter 6).  

“Threshold level B” shows that, although it contacts both the rising and the falling 

edge of the signal, the threshold level touches the rising and the falling edge very 

often and the measured time interval between the rising and the falling edges is likely 

to be ambiguous; again, the software will avoid this bubble (see Chapter 6).  

“Threshold level C”, however, fulfils the required criteria as it touches the falling 

edge and the rising edge of the bubble at approximately the correct times, but this 

level itself is very low for the threshold value and the measured times at which the 

bubble’s surface contacts the sensor are likely to be incorrect. Hence, by using this 

lower value of threshold, it is more likely that the wrong times for the falling edge and 

rising edge will be chosen, giving incorrect values for iitδ , and ultimately an incorrect 

bubble velocity vector.  

Despite the possibility of electrolysis, it was decided to carry out experiments with 

DC source circuits. To overcome the problem of electrolysis, it was decided to replace 

the probe when any of the original sensors stopped working.  
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5.3 Trigger circuitry 

0,SVout

1, SVout

3,SVout

2,SVout

outTrigger

 

Figure 5.10 Trigger circuit for four-sensor probe 

A trigger signal was used in the bench test experiments to stop high speed cameras 

(see Chapter 7) from capturing the images. The trigger circuit was also used to stop 

the data acquisition card (see Chapter 6) from collecting the data. The trigger signal 

was used as a mid-trigger for the high speed cameras (see Chapter 7). The velocity 
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vector calculated from the high speed camera was used as a reference with which to 

compare the velocity vector calculated from the four-sensor probe. Therefore, it was 

important to ensure that the velocity vector measured from the probe is from the same 

bubble that was captured and measured by the high speed camera. Hence, it is 

important that the trigger signal was generated by a bubble that strikes all four sensors 

of the probe. 

In order to fulfil the above criteria, the signal obtained from each sensor (Vout) from 

the DC source circuit, as described in Chapter 5.1, was passed on from a comparator  

(C1) in conjunction with an  inverter (I1) and AND gates, as shown in Figure 5.10. A 

trigger circuit was made such that the trigger is only received if a bubble strikes all 

four sensors. Figure 5.10 shows the trigger circuit for the four–sensor probe, where 

three different AND gates were used.  

The outputs from the two individual sensors ( 0SVout, and 1SVout, ) from the DC 

source circuit were passed through AND gate 1.  The output from AND gate 1 will 

become high (+5v) only if a bubble touches sensor ‘0’ (S0) as well as sensor ‘1’ (S1); 

however, if a bubble touches only one sensor or touches none then the output from 

AND gate 1 stays low (0v). Similarly, the outputs from the remaining two sensors 

( 2SVout, and 3SVout, ) were passed through AND gate 2.  

The output from AND gate 2 will become high (+5v) only if a bubble touches sensor 

‘2’ (S2) as well as sensor ‘3’ (S3); however, if a bubble touches only one sensor or 

touches none then the output from AND gate 2 stays low (0v). The outputs from the 

above two AND gates were again passed through AND gate 3. When either one or 

both outputs from AND gate 1 and AND gate 2 is low, the output from AND gate 3 

will also be low. The output from AND gate 3 only becomes high when both the 
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outputs from AND gate 1 and AND gate 2 are high. This output from AND gate 3 is 

used as the trigger signal.  Figure 5.11 shows the output trigger signal generated by a 

four-sensor probe. 

 

Figure 5.11 Trigger output 
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CHAPTER 6 

Software Developments 

6.1 Data acquisition 

This chapter will discuss the software that has been developed in order to be used in 

this project. This software includes programs used to collect the data and also to 

process the collected data. In order to acquire the data from the circuits (see Chapter 

5) which were connected to the four-sensor probe, a data acquisition card (DAQ 2006 

purchased from ADLINK technology) was used. The DAQ 2006 can sample 250ks/s 

(kilo sample / second) simultaneously with four analogue input channels. The DAQ 

2006 also contains analogue and digital trigger inputs, which were required to trigger 

the DAQ 2006 to prevent it from collecting data.  

In order to communicate between the computer and the DAQ 2006, C++ and Visual 

Basic software was used (for detailed software listings see Appendix B).  In this 

project, the data was collected by two different methods. In the first method, the data 

was collected continuously for a certain period of time, allowing numerous bubbles to 

hit all four-sensors. This was named the Continuous Data Collection. 

In another method the data was collected from only one bubble that hit all four 

sensors and was named the Single Bubble Data Collection. Both these methods are 

described in detail later in this chapter. 

6.1.1 Continuous Data Collection  

In this process, data was collected for a certain period of time (max 180 seconds). For 
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this purpose, Visual Basic code was used to communicate with the DAQ2006 from 

the computer.  The basic code format is shown below and Figure 6.1 shows the block 

diagram for data collection (for further details see Appendix B).  A program named 

“asynchronous double buffer mode and scan channels to file” was used to collect the 

data; the program allows the collected data to be recorded straight to a designated file.   

card = D2K_Register_Card(DAQ_2006, card_number);  //( resister DAQ2006) 

• Register the DAQ card once the card is detected by the software. 

D2K_AI_AsyncDblBufferMode (card, 1); // (Analogue input Asynchronous 

double buffer (buffer fills one at a time) mode) 

• Once the card is detected, call the function Analogue input 

Asynchronous double buffer mode; this function allows the analogue 

data to be input with a double buffer, which allows two samples of data 

to be scanned or read at a time. 

D2K_AI_ContBufferSetup (card, ai_buf, data_size, &BufId);  

• Set up the first buffer. 

D2K_AI_ContBufferSetup (card, ai_buf2, data_size, &BufId); //(DAQ2006 

Analogue input continuous buffer2 setup) 

• Set up the second buffer. 

D2K_AI_ContScanChannelsToFile (card, channel, BufId, 

data_size/(channel+1), ScanIntrv, SampIntrv, ASYNCH_OP);  
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• Call function D2K_AI_ContScanChannelsToFile, which allows all four 

channels to be scanned continuously, and store the scanned data to the 

specific file in the directory.  

do {  

D2K_AI_AsyncDblBufferHalfReady(card, &HalfReady, &fstop);  

• Call the function DAQ2006 Analogue input Asynchronous double 

buffer half ready; half ready is always either 0 or 1 

} while (!HalfReady);  

• Function helps to scan the second data when the first data is halfway 

through being scanned by the first buffer. The remaining half of the 

first data is scanned by the second buffer. 

D2K_AI_AsyncClear(card, &startPos, &count); // (DAQ2006 Analogue input 

Asynchronous clear card) 

• Once the data are stored in the file, this function clears the data from 

the card and the card is ready to collect another set of data. 

D2K_Release_Card (card); 

• Function helps to release DAQ2006. 
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Figure 6.1 Block diagram for continuous data collection 
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Figure 6.2 EXE windows for continuous data collection 

Figure 6.2 above shows the execution window for collecting the data, where it is 

possible to: 

1. Input channels: the number of sensors to be scanned; in this case it is either 

two or four (i.e. software can be used with dual-sensor or four-sensor probes).   

2. Sampling frequency: this is the parameter which decides how fast it is 

necessary to read the signal. The maximum sampling frequency is 250 kHz 

(for four channels simultaneously). Sampling frequency is chosen depending 

on the frequency at which the bubbles collide with the probe and the sensor 

separation. The faster the bubble frequency, the higher the sampling frequency. 

Also, the smaller the sensor separation, the higher the sampling frequency 

needed, as described earlier in Chapter 3.  

3. Sampling time period: this is the parameter which governs for how long 

samples are collected. The maximum sampling time period which can be 
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chosen is 180 seconds; the lower the bubble frequency, the higher the sampling 

time period needed. The sampling time period is chosen to ensure that at least 

30 or more bubbles touch all four sensors of the probe within that period of 

time.  

4. Voltage range: the range of the voltage can be chosen up to ±10 V. There is no 

particular rule to decide what voltage should be chosen, except that the chosen 

voltage range must be greater than that of the output voltage from the circuit. 

5. Data file name: specifies the directory and path to which the collected data can 

be saved. 

6.1.2 Single Bubble Data Collection 

This data collection process is similar to that described above in section 6.1.1. The 

only difference in this method is that there is no sampling time period; instead, a 

trigger signal was used which was generated by a bubble that hits all four sensors of 

the probe (see Chapter 5). The trigger signal was used as a mid-trigger on the DAQ 

2006 so that it is possible to see the output from the four sensors resulting from this 

bubble. The mid-trigger signal was also used on the cameras so that the cameras could 

be used to obtain a reference velocity vector for the same bubble. This process is 

carried out in order to find the local velocity vector of a single bubble. Thus, the 

results can be compared with the results obtained from the Continuous Data 

Collection and can also be used to compare the bubble velocity vector measured by 

the probe with the velocity vector obtained from high speed cameras (see Chapter 9). 

Visual C++ was used as a programming language. The basic code format is detailed 

below and Figure 6.3 shows the block diagram for data collection (for further details 

see Appendix B): 
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[Example Code Fragment]  

card = D2K_Register_Card(DAQ_2006, card_number);  

D2K_AI_CH_Config (card, channel, range )  

D2K_AI_Config (card, 0, DAQ2K_AI_TRGMOD_PRE| 

DAQ2K_AI_TRGSRC_ExtD| DAQ2K_AI_TrgPositive, 0, 0, 0, 1);  

D2K_AI_AsyncDblBufferMode (card, 0); //non-double-buffered AI  

D2K_AI_ContBufferSetup (card, ai_buf, data_size, &BufId);  

D2K_AI_ContScanChannels (card, channel, BufId, data_size/(channel+1), 

ScanIntrv, SampIntrv, ASYNCH_OP); or  

D2K_AI_ContReadChannel(card, channel, BufId, data_size, ScanIntrv, 

SampIntrv, ASYNCH_OP)  

do { D2K_AI_AsyncCheck(card, &bStopped, &count);  

} while (!bStopped);  

D2K_AI_AsyncClear(card, &startPos, &count);  

D2K_Release_Card(card);  

The code described here is similar to that described in section 6.1.1 (see section 6.1.1 

for a detailed explanation of the code), except in this case the function that allows the 

external positive trigger signal to be introduced is called “D2K_AI_Config (card, 0, 

DAQ2K_ AI_TRGMOD_PRE| DAQ2K_AI_TRGSRC_ExtD| DAQ2K_AI_Trg 

Positive, 0, 0, 0, 1)”.  
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Figure 6.3 Block diagram for single bubble data collection 
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6.2 Signal processing for analysis of the collected data 

 

Figure 6.4 (Left) raw signals from the four-sensor probe over 120 seconds time, 

(right) raw signal from the individual sensors. 

New signal processing software was written in ‘MATLAB’ in order to analyse the 

collected data. Figure 6.4 (left) shows the raw signal from the four sensors during a 

specific period (0 - 120s) of time and Figure 6.4 (right) shows the extracted raw 

signals for each sensor. Figure 6.5 show the sensor signals, extracted (40 - 40.1s) from 

Figure 6.4, for a particular bubble. In order to calculate the bubble velocity vector, it 

is important that the bubble touches all four sensors on the probe twice without any 

deformation of the bubble being caused. From Figure 6.5 it can be seen that the 

signals are different from the ideal signals (Figure 2.29). Using the mathematical 

model, the time intervals (see Chapter 2) must be calculated from these probe signals.  

In some cases it is possible that the bubble only touches some of the sensors. In other 

cases two different bubbles might hit the probe at approximately the same time. In 

both these cases it will not be possible to calculate the correct bubble velocity vector. 

Therefore, in order to minimize these errors, various signal processing methods were 
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implemented to extract the required information from the raw signals, as discussed 

below. 

 

Figure 6.5 Raw signals from an individual bubble 

6.2.1 Evolution of signal processing 

Data are collected by the probe with a sampling frequency of 20 - 40 KHz. These data 

are used to find the relevant time intervals of sensor signals iat δ  and ibt δ  (where i = 

1, 2 and 3, see Equation 2.22 and 2.23 in Chapter 2). For accurate measurement of the 

velocity vector of the bubble, it is important that the signals (four signals from four 

sensors) are generated by the same bubble. Therefore, the most important factors for 

the software to pick up are the falling and rising edges of the sensor signals caused by 

the same bubble.  It is also a requirement that each bubble touches sensor 0 first 

followed by the three rear sensors. The following signal processing conditions were 

used to ensure that a group of sensor signals, from which iat δ and ibt δ  (i =1, 2 and 3) 
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were determined, were all produced by the same bubble.  

6.2.1.1 Voltage threshold 

( )Vδ

 

Figure 6.6 Baseline and voltage threshold for the front sensor signal 

Voltage threshold is a small value of voltage below the baseline (see Figure 6.6) at 

which the corresponding bubble surface touches the sensor. From the raw signals 

(Figure 6.5), it can be seen that the rising and falling edges of the signals obtained 

from each sensor are not purely vertical, as they would be in the case of the ideal 

signal (see Figure 2.29). Additionally, for each sensor signal, the times at which the 

signal leaves or rejoins the baseline may not actually represent the contact times 

between the sensor and the bubble surface. This may be due to a small reduction in 

the sensor’s conductance just before the bubble actually touches the sensor, due to the 

bubble partially blocking the flow of electrical current through the water from the 

sensor tip to the earthed probe body. For a similar reason, the sensor conductance may 

not return to its baseline value until a short time after the bubble has ceased to be in 

contact with the sensor. In [2], the transient response of a four-sensor probe has been 
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analysed and it has been shown that the time intervals iat δ  and ibt δ  (i =1, 2 and 3) 

are relatively insensitive to the choice of the threshold voltage values. 

In order to find the effect of the threshold voltage values on the velocity vector of the 

bubble, a small experiment was carried out using the camera to film the Tz  axis of the 

tank (see Chapter 7).  Two lines separated by a distance of 23mm (in the Z direction) 

were drawn on the wall of the tank and a high speed camera was used to record the 

time interval for a given bubble to pass from the first to the second mark. The time 

interval between successive frames from the camera is equal to 0.004s. Using video 

processing software, it was possible to count the number of frames it took for a given 

bubble to pass between the two lines.  The mean reference velocity refzv ,  in ms-1of the 

bubbles (approximately 5mm in diameter) in the ‘Z’ direction is then given by 

004.0

1023 3

,
×

×
=

−

f

refz
N

v                                      Equation 6.1 

Where fN  is the mean number of frames that the bubble takes to pass between the 

two lines.  The mean value of the bubble velocity in the Z direction was 0.24m/s. 

Different threshold voltage values were used to measure the velocity component of 

the bubble in the Z direction using the probe signals and the mathematical model in 

Chapter 2 (N.B. this is straightforward when the z axis of the probe coordinate system 

is in the Z direction, but requires the use of mathematical transformations when the z  

axis of the probe is inclined with respect to the Tz  axis of the tank [4, 11]). The 

threshold voltage value Vδ  was varied from 0.2V to 2.0V for each sensor signal from 

the respective baseline of each signal. The increment was made in an order of 0.1V. 

Figure 6.7 shows the velocity of the bubble in the Z direction, as measured by the 
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probe.  

 

Figure 6.7 The velocity of the bubble in the Z direction using the different 

threshold voltage values 

It can be seen from Figure 6.7 that, for the different threshold voltage values, the 

velocities of the bubbles in the ‘Z’ direction measured by the probe are very close to 

the reference value 0.24m/s. In fact, the mean value in Figure 6.7 is 0.248m/s and the 

standard deviation is 0.00128m/s. Varying the threshold voltage value from 0.2V to 

1.5V makes very little difference to the calculated probe velocity in the Z direction. 

[N.B. another possible method for choosing the threshold voltage is based on a 

comparison of the mean local volume fraction measured by the probe with the local 

volume fraction measured using an alternative technique (such as a differential 

pressure measurement [1])]. From the results shown above, it is believed that the 

relative insensitivity of the velocity measured by the probe in the Z direction to the 

choice of threshold voltage is a major advantage of the probing technique described in 

this project. The voltage threshold value used in this research is 0.3V from the 

baseline of each signal for all four sensor signals.  



Chapter 6                                                                                            Software developments 

Suman Pradhan 176 

6.2.1.2 Ignoring signals with small time intervals and small voltage changes by 

introducing a time threshold ( threst ) and voltage level threshold ( threslV , ) 

respectively 

Most of the probes touch the bubble at its centre and it is important that the bubble 

touches all four sensors twice. There can, however, be some circumstances when one 

or two sensors touch only the edge of the bubble, causing confusion during the signal 

processing. It is more likely that, when the a sensor hits the edge of the bubble, the 

time interval between the falling and the rising edge for that sensor will be very small 

as compared to when the sensor hits the centre of the bubble. Such small time 

intervals will result in a higher velocity, ultimately resulting in an incorrect bubble 

velocity vector. This effect can be clearly been seen in the signal in the form of a 

small time interval, as shown in Figure 6.8. Figure 6.8 shows two different signals 

where the bubble hits all four sensors. The signal on the left shows that one of the 

sensors hits the edge of the bubble, whereas the signal on the right shows that two 

sensors hit the edge of the bubble, causing the time interval between the falling edge 

and rising edge to be very small as compared to the other signal in which the sensors 

hit the bubble at the centre. Thus, in order to achieve correct results, it is important to 

delete (ignore) this type of signal which has a small time interval. Therefore, a time 

threshold ( threst ) is introduced, which is 0.1 times the average residence time ( rest ) of 

each signal, within the software to ignore all the signals with a time interval which is 

less than the time threshold.  

N

t
t

res

thres

∑
= 1.0         Equation 6.1 

where N is the total number of bubbles hitting all four sensors. 
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threst

rest

threslV , threslV ,

 

Figure 6.8 (Left) one sensor hitting the edge of the bubble, (right) two sensors 

hitting the edge of the bubble. 

In some cases, as shown in Figure 6.8, the voltage drop from the signal associated 

with a particular sensor is much smaller than for the other three sensors, suggesting 

that the bubble is only grazing the probe’s surface. In order to ignore this type of 

situation, another voltage level threshold ( threslV , ) is applied which is normally half of 

the average voltage level i.e. baseline to the rising edge, as shown in Figure 6.8. The 

two situations discussed above often happen together. 

6.2.1.3 Ignoring bubbles which do not strike all four sensors  

It is only possible to measure the bubble velocity vector when the bubble hits all four 

sensors. It is also important that the bubble hits the first sensor ‘0’ first and only then 

hits the rear three sensors, but sometimes a signal from only three or less sensors 

rather than four sensors is achieved, as shown in Figure 6.9 (left). Therefore, in order 

to ignore such signals, a new dummy time threshold ( dummyt ) is introduced. A dummy 

time threshold is the average time between the falling edge and the rising edge of the 

front sensor ‘0’. Software is used to check if all the falling edges from the three rear 
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sensors are within dummyt , as well as the number of falling edges. If the number of 

falling edges within dummyt  is less or more than three, the signals are ignored.  

Time (s)78.8 79
 

Figure 6.9 (Left) signal from four-sensor probe with one signal missing (right) 

image of bubble at three different positions in its trajectory. 

In previous work, Mishra et al. [1] mentioned that if a bubble touches the front sensor 

of the four-sensor probe first it is more likely that bubble’s surface will touch all four 

sensors twice. However, this depends upon the relative sizes of the frontal area of the 

probe and the bubble. Consequently, under some circumstances, the bubble’s surface 

will not touch all of the four sensors twice. For example, Figure 6.9 (right) shows the 

same bubble at three different positions in its trajectory captured by a high speed 

camera.  

In some cases, it is also possible that the first bubble touches front sensor ‘0’ and one 

or two of the other rear sensors and a second bubble touches the remaining rear 

sensor. However, if the axial sensor separation between the front sensor ‘0’ and the 

other three rear sensors is small (normally between 1 to 1.5mm for the probes used in 

this investigation), it is extremely unlikely that any of the probe’s sensors will miss 
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the bubble. 

6.2.2 Calculations of polar angle α and azimuthal angle β  and velocity 

magnitude ν  

After the signal processing and extraction of the valid signals from the invalid ones, 

iitδ  for the individual bubbles are calculated. With the collected iitδ  values and the 

measured probe dimensions iii zyx  , ,  (where iii zyx  , ,  are the probe coordinates of 

the rear sensors with respect to the front sensor, which are measured using a digital 

microscope, see Chapter 4.2) it is possible to calculate the azimuthal angle β  by 

using Equation 2.39, polar angle α  by using Equation 2.40 and, once α  and β  are 

found, it is possible to find the velocity magnitude ν  by using any of these three 

Equations 2.36-2.38. However, this procedure is somewhat complicated and the 

process of calculating  α  and β  is described in detail in section 2.5.1. 

Before calculating α  and β  the following steps are carried out:-  

Step 1:- Call the stored data collected by DAQ2006. 

Step 2: - Check if the data contains all four signals or not (visual check) 

Step 3:- Introduce voltage threshold (section 6.2.1.1) 

Step 4: - Calculate iitδ   

Step 5: - Check if the signals are for the same bubbles or not, i.e. falling edge of the 

rear three sensors should be in between the falling and rising edge of the signal from 

front sensor ‘0’,  by introducing dummy time threshold dummyt   (section 6.2.1.3). 
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Step 6: - Ignore the signals which contain signals from different bubbles and those 

missing signals from the bubble (section 6.2.1.3). 

Step 7: - Ignore the signals with a small time interval by introducing time threshold 

threst   (section 6.2.1.2). 

Step 8: - Ignore the signals with a small voltage by introducing voltage level threshold 

thresV   (section 6.2.1.2). 

Step 9: - Check if any signals remain. 

Step 10:- Calculate α  and β  

Figure 6.10 shows the steps and the signal process used in this research, in the block 

diagram. From the figure, it can be seen that polar angleα  and azimuthal angle β  are 

calculated in two ways, which are described below.  

6.2.2.1 Averaging individual α  and β  

In this process, α  and β  of the individual bubbles are calculated as described in 

section 2.5.1 and the average is calculated as a mean α  and β  . 

6.2.2.2 Calculation of α  and β  by Average of iitδ  

In this process, first the collected iitδ  are averaged and from the averaged iitδ  α  

and β  are calculated as in section 2.5.1 using Equations 2.48 and 2.47.  

The results of both the above conditions are described in detail in Chapter 10. The 

block diagram below shows the signal processing scheme, as discussed above. 



Chapter 6                                                                                            Software developments 

Suman Pradhan 181 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHECK IF ANY SIGNALS 

REMAIN 

DATA 

THRESHOLD (section 6.2.1.1) 

CHECK IF THERE ARE 4 

SIGNALS (section 6.2.1.3) 

CHECK IF THE SIGNALS ARE 

FROM SAME BUBBLE (section 6.2.1.3) 

IGNORE SIGNALS FROM DIFFERENT 

BUBBLES (section 6.2.1.2) 

CALCULATE iitδ  

YES 

YES 

YES 

NO 

NO 

NO 



Chapter 6                                                                                            Software developments 

Suman Pradhan 182 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

betn 0°-90° 

DELETE THE BUBBLE SIGNAL 

WITH A SMALL TIME PERIOD 

BETWEEN RISE AND FALL OF THE 

SIGNAL (section 6.2.1.2) 

DELETE SMALLER VOLTAGE DROP 

DURING THE PROBE – BUBBLE 

INTERACTION (section 6.2.1.2) 

AVERAGE iitδ  

CALCULATE BETA (β) 

+ ve β 

Calculate alpha (α ) 

betn 90°-180° 
 

betn 180°-270° 
 

betn 270°-360° 
 

- ve β 
 

CALCULATE BETA (β) 

+ ve β 

Calculate alpha (α ) 

betn 0°-90° betn 90°-180° 
 

betn 180°-270° 
 

betn 270°-360° 
 

- ve β 
 

Choose alpha 
which is in 
acute angle 

with z-axis 

CHECK IF ANY SIGNALS 

REMAIN 

NO 

YES 

Calculate iitδ  



Chapter 6                                                                                            Software developments 

Suman Pradhan 183 

 

 

 

 

 

 

 

 

 

Figure 6.10 Block diagram for signal processing and calculating α  and β  from 

the collected data 

Choose alpha 
which is in 
acute angle 

with z-axis 

Choose 
corresponding 

beta 

Choose 
corresponding 

beta 

Average alpha, 

beta and velocity 

magnitude  

Calculate 

velocity 

magnitude  

Calculate 
velocity 

magnitude  



Chapter 7                                                                                                      Image Processing 

Suman Pradhan 184 

CHAPTER 7 

Image Processing 

7.1 Introduction 

In this chapter, a model is described which enables the reference velocity vector of an 

individual bubble, relative to the coordinate system ( TTT zyx ,, ) of the tank, to be 

determined from images taken by two orthogonal high speed cameras, as shown in 

Figure 7.1.  The images were captured by both the cameras simultaneously at a speed 

of 250 frames per second. 

Figure 7.1 Experimental set up for the tank experiments 

The aim of using high speed cameras was to compare the velocity vector calculated 

by the probe with the velocity vector calculated by the cameras. Therefore, it is 

important that the data collected by DAQ 2006 was from the same bubble as that 

captured by the cameras. 
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 In order to ensure the cameras capture the same bubble that hits all four sensors of the 

probe, the trigger system described in Chapter 5 was used to capture images from the 

cameras as well as capturing data from the probe via DAQ 2006. The mid-trigger 

system was used to trigger both the cameras and DAQ 2006. The mid- trigger stops 

the cameras recording shortly after receiving the trigger and allows 20 frames of 

captured images to be saved before and after receiving the trigger (21 frames with the 

trigger signal i.e. 10 frames before and after the trigger signal is received by each 

camera). The same trigger was also used to stop the DAQ 2006 collecting data.  

7.2 Synchronizing the cameras 

 

Figure 7.2 Camera set up with the oscilloscope 

During the processing of the captured images, it was found that the cameras have a 

delay in their trigger time i.e. the trigger signal received by the first camera was at the 

10th frame and the second camera received the same trigger at the 11th frame, out of 

21 saved frames. To avoid errors in calculating the velocity vector when using the 

cameras, it is important to know which frame from each camera captures a picture of 

the bubble at the same instance in time. Any differences in the timing of the images 
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from each camera will cause errors in the calculated reference bubble velocity vector 

obtained from the cameras.  

Thus, to avoid any miscalculation, a pair of analogue oscilloscopes was placed in 

front of each camera, as shown in Figure 7.2. Both the cameras were synchronized by 

the inbuilt function ‘master’ and ‘slave’, so that both could be controlled by the 

master camera. All the cameras and the scopes were given the trigger signal, which 

stops the cameras, and in the meantime the scopes indicate the trigger signal voltage 

level. 

 

Figure 7.3 Two consecutive frames from ‘slave’ (left) and ‘master’ (right) 

cameras with trigger signal from the scope in the background. The two white 

dots are the trigger signal on the oscilloscope; the lower positioned dot means the 

trigger signal has not yet been received. The higher dot means the trigger signal 

has been received. 
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With regard to the above system, when capturing the images, the cameras will depict 

the bubble that strikes all four sensors of the probe. Since the trigger signal is 

generated by a bubble which hits all four sensors and is connected to both the 

cameras, as well as to the scopes, the cameras will also capture the trigger signal 

displayed on the scopes, as shown in Figure 7.3. On the left hand side of Figure 7.3, 

two consecutive frames from the ‘slave’ camera are shown, where the two white dots 

are the trigger signal on the oscilloscope. It can be seen that the trigger level stays low 

until the bubble hits all four sensors. A similar situation can be seen in the figure on 

the right hand side (from the ‘master’ camera). Therefore, from these displayed 

trigger level signals, the correct frame corresponding to the moment at which the 

bubble hits all four sensors can be obtained from both cameras. Any time delay 

between the two cameras can be eliminated by counting from the frame where the 

trigger signal first rises, as seen by each camera.  

In order to process these images, ten frames from either side of the trigger signal were 

saved from both of the cameras. Thus, the captured images are processed according to 

the model described below. 

The model described below enables mathematical expressions to be obtained for the 

shape of a given bubble. Although the model is able to provide a reference velocity 

for any part of the bubble (e.g. the geometric centre of the upper or lower surface and 

the centre of gravity), it was subsequently found that, due to oscillations of the 

bubble’s surface, the most reliable reference velocity was that of the centre of gravity 

(COG) of the bubble. 

The analysis presented in this section is applied to images taken by the ‘master’ 

camera, which is orthogonal to the TT zx ,  plane of the tank coordinate system, and by 
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the ‘slave’ camera which is orthogonal to the TT zy ,  plane of the tank coordinate 

system (see Figures 7.1 and 7.2).  

The camera images were pre-processed using MATLAB software, as described step 

by step below: 

1 Extract the individual frame from the saved images. 

2 Extract the first frame. 

3 Convert the frame to ‘grayscale’ from ‘RGB’ image (combined Red, Green 

and Blue). 

4 Introduce the edge detection function for the clear visualization of the bubble 

(see Figure 7.4). 

5 Identify the coordinate of every black dot at the border of the bubble. These 

points are defined as the edge of the bubble. 

6 From the above identified coordinate points, the major axis of the bubble is 

calculated, which is the longest distance between any two points in the border. 

This calculation was performed automatically in MATLAB, where the 

distance between every pair of points on the border was calculated and the 

coordinates of the points with the longest distance between them is picked. 

These points are identified as ),( 11 zx  and ),( 22 zx  in the TT zx −  plane 

(master camera) as the major axis of the particular bubble, as shown in Figure 

7.4.  

7 The centre of gravity (COG) of the bubble is defined as the centre of the major 

axis, which is defined as ),( cc zx , as shown in Figure 7.4. 

A similar process for the other frames of the same bubble is carried out. The above 
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mentioned process is also conducted for the images captured by the camera placed in 

the TT zy −  plane (slave camera). In the next section, an analysis of a bubble image 

from the master camera is described in detail. A similar analysis of the bubble image 

from the slave camera was undertaken. 

 

Figure 7.4 Frames from TT zx −  plane on the left and TT zy −  plane on the right 

from the cameras after image processing 

7.3 Theory behind image processing 

It is assumed that the bubble image from the master camera (orthogonal to the TT zx ,  

plane) is in the shape of two semi-ellipses with a common major axis of length Ta  

(see Figure 7.5). The bubble centre of gravity (COG) is at the centre of this major 

axis, which is assumed to be the longest possible chord between any two boundary 

points of the bubble. Assume that points ),( 11 zx  and ),( 22 zx  represent the end points 

of the major axis. The bubble centre of gravity then has coordinates ),( cc zx  where 

2

)(
,

2

)(
),( 1212 zzxx

zx cc

−−
=                    Equation 7.1  

The slope 1m  of the major axis is given by  
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( )
( )12

12
1

xx

zz
m

−

−
=                   Equation 7.2  

The slope 2m  of the minor axis of the semi-ellipse that forms the top half of the 

bubble is obtained from the relationship 121 −=mm . From this calculated value of 

2m , it is now possible to initially assume that the semi-ellipse defining the top half of 

the bubble passes through point µ  where the coordinates of µ  are the intersection of 

the line of slope 2m  (which passes through the centre of the major axis) and the upper 

boundary of the bubble image. From the coordinates of µ  it is now possible to make 

an initial guess of the length Tb  of the minor axis for the semi-ellipse defining the top 

of the bubble.  

 

Figure 7.5 Coordinate systems and notations used in processing the bubble 

images for the cameras. 

At this stage, it is helpful to define a new coordinate system )~,~( zx  such that 

cxxx −=~  and czzz −=~  (see Figure 7.5). Suppose that the major axis of the ellipse 

makes an angle φ  with the increasing x~  axis, as shown in Figure 7.5 [NB: φ  is 

measured anticlockwise relative to the increasing x~  axis). Another new coordinate 
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system )ˆ,ˆ( zx  may be defined such that φφ sin~cos~ˆ zxx +=  and 

φφ cos~sin~ˆ zxz +−= . In the )ˆ,ˆ( zx  coordinate system, the equation for the initial 

guess of the semi-ellipse forming the top half of the bubble is (for positive ẑ  only) 

1
ˆˆ

2

2

2

2

=+
TT b

z

a

x
                                                                                      Equation 7.3 

The curve of the semi-ellipse created from Equation 7.3 is not necessarily the best fit 

for the boundary points for the top half of the bubble image obtained from the master 

camera,  so it is necessary to use least squares curve-fitting to minimize the distance 

of the boundary points in the bubble image from the calculated bubble boundary. This 

curve-fitting is carried out in the zx ˆ,ˆ  coordinate system, where the origin is at the 

COG of the bubble, where the x̂  axis coincides with the bubble major axis and where 

the ẑ  axis coincides with the minor axis of the top part of the bubble. Let us define a 

point iω  with coordinates )ˆ,ˆ( ii zx  which lie on the boundary of the upper part of the 

image of the bubble (Figure 7.5). A line may also be defined with gradient im̂  from 

the COG of the ellipse to iω . This line intersects the boundary of the calculated ellipse 

at point iλ  with coordinates )'ˆ,'ˆ( ii zx  (Figure 7.5).  ix'ˆ and iz 'ˆ may be calculated as 

follows. Equation 7.4 gives  

1
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
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
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
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a

x
        Equation 7.4 

But there is also the relationship that iii xmz 'ˆˆ'ˆ =  which gives  
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and    

)ˆ(
'ˆ

222

22

TiT

TT
ii

amb

ba
mz

+
=       Equation 7.5 

The distance from the COG to iλ  is is  and the distance from the COG to iω  is ir  

where ( ) 22
)ˆ(ˆ

iii zxr +=     and    22 )'ˆ()'ˆ( iii zxs +=   Equation 7.6 

An error term iε  may be defined such that ( )2
iii rs −=ε    Equation 7.7 

A total error term ε  can now be defined such that  ∑
=

=
N

i

i

1

εε   Equation 7.8 

where N  is the number of individual points (pixels) on the upper part of the bubble 

boundary in the image from the master camera.  Equation 7.8 is used to calculate ε  

for different values of Tb . By minimising ε , the best value for Tb  can be found, 

which is the length of the minor axis of the semi-ellipse, which defines the upper part 

of the bubble boundary in the image from the master camera. A similar procedure is 

followed to find the best value for Bb , the length of the minor axis of the semi-ellipse 

for the bottom part of the bubble image from the master camera. The whole procedure 

is then repeated for the image from the slave camera. Once optimum values for the 

major and minor axes of all of the relevant semi-ellipses have been found, the 

appropriate ellipse equations are transformed back into the ( TTT zyx ,, ) coordinate 

system. 

For successive images of the bubble from the master camera, separated by a time 

interval tδ , it is possible to calculate bubble velocity components 
Txv  and 1,zTv  
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where 

t

x
v T

xT
δ

δ
=             Equation 7.9 

and     

t

z
v T

zT
δ

δ 1
1, =          Equation 7.10 

where Txδ  and 1Tzδ  are the displacements of the bubble COG in the Tx  and Tz  

directions respectively, as viewed by the master camera. Similarly, for the slave 

camera, it is possible to define bubble velocity components yTv  and 2,zTv  where 

t

y
v T

yT
δ

δ
=             Equation 7.11 

and    

 
t

z
v T

zT
δ

δ 2
2, =         Equation 7.12 

A reference bubble velocity vector btV  obtained using both the master camera and 

slave camera can now be defined relative to the tank where  

 TzTTyTTxT vvv kjiVbt ++=       Equation 7.13 

and where 
2

)( 2,1, zTzT

zT

vv
v

+
=      Equation 7.14 

and TT j,i and Tk  are unit vectors parallel to the TT yx ,  and Tz  direction 
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respectively. 

The reference bubble velocity vector btV  (measured using cameras 1 and 2) enables a 

comparison with the bubble velocity vector relative to the tank, as measured by the 

four-sensor probe btpV , as described in the next chapter. To compare the velocity 

vector measured by the four-sensor probe, the reference bubble velocity vector btV  of 

the bubble crossing the probe was calculated for each experiment presented in 

Chapter 9. 

7.4 Calibration of cameras 

AC motor 1400 rpm

Pulley

Side view

Enlarged front view with

the coloured paper glued
on the pulley

Motor

Pulley with coloured paper

 

Figure 7.6 Disc for calibrating the cameras  

Even though the factory specification stated that the frame rate of the camera is 250 

frames per second, to maximise the precision of the calculation of the velocity vector 

of the bubble, it was decided that the cameras should be calibrated to determine the 

actual frame rates of the cameras. The calibration was carried out using a coloured 

circle attached to a pulley and the pulley itself was directly coupled onto the shaft of 

an AC motor rated 1400 rpm, as shown in Figure 7.6.  

The image of the coloured paper was captured by both the cameras with the motor 

rotating at its full speed. The rotational speed of the disk was measured by a 
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tachometer, and found to be 1400 rpm, i.e. 70 revolutions in three seconds (three 

seconds was chosen for simplicity, as one second makes 23.3 revolutions and the 

decimal place adds an unnecessary complication). The images captured from both 

cameras were extracted with software called ‘Virtual Dub’. The software also allows 

the extracted images to be counted frame by frame. Thus, numbers of frames were 

counted while the coloured disc made 70 full rotations. The number of frames was 

found to be 738. These counted frames give the actual frame rate for the camera. 

Therefore, the calibrated frame rate of the camera is 246 per second for both the 

cameras (738 is the frame rate for three seconds).  Hence, the actual time interval for 

each frame is 0.0041 seconds. 
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CHAPTER 8 

Bench Test Rig Experimental Set Up  

8.1 Relationship between the probe and tank coordinates 

8.1.1 Positioning the probe to vary the velocity vector of the bubbles relative to 

the probe for a purely vertical bubble air-water flow. 

The origin of the probe coordinate system (see Figure 2.18) defined by Lucas et al.[1] 

for the four-sensor probe corresponds with the position of the lead sensor, with the z -

axis parallel to the axis of the probe where this is vertically mounted. The x  and y  

axes are orthogonal to each other and to the z -axis, and are parallel with the top of 

the probe holder. 

The spatial locations of rear sensors 1, 2 and 3 can be defined using this probe 

coordinate system. Suppose that an approaching bubble has velocity vector V , 

relative to the probe coordinate system, as shown in Figure 2.18. V  makes a polar 

angle α  with respect to the z -axis. Furthermore, the projection of V onto the x-y 

plane gives rise to a line that makes an azimuthal angle β  to the y -axis (in the 

direction shown in Figure 2.18). According to the theory outlined in section 2.5 and 

Lucas et al. [1], in order to determine the effectiveness of the four-sensor probe in 

measuring the velocity vector V  of a bubble, it is necessary to subject the probe to 

bubbles approaching with a wide range of values of V . Since it is not practical to 

change the direction of the air bubbles, it becomes necessary that the position of a 

probe can be rotated or tilted. One way to change the probe’s position is to mount it 
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horizontally at the top of the column on a hinged platform, as shown in Figure 8.1. 

The hinged platform is able to tilt and rotate the probe, making it possible to change 

the direction of V  relative to the probe coordinate system, as described below.  

*α

*β

 

Figure 8.1 Schematic of how the probe is moved in order to the change the vector 

velocity of bubbles relative to the probe. 

According to the theory outlined by Pradhan et al. [13], the y -axis of the probe 

coordinate system is parallel with the centreline a-a1 of the hinged platform, with the 

increasing y -axis in the direction from a to a1, when using a four-sensor probe 

mounted horizontally on a hinged platform at the top of the column. As the hinged 

platform is rotated through angle *α  (in the direction shown in Figure 8.1),  the 

velocity vector V  of the approaching bubbles will now make a polar angle α  relative 

to the z -axis of the probe where *αα = . If the y -axis of the probe coordinate 

system is now rotated counter clockwise (as viewed from above) through an angle *β  

relative to the line a-a1, the projection of the velocity vector V  (of the bubbles 

approaching the probe) onto the x-y plane will make an azimuthal angle β  relative to 

the y -axis where *ββ = .  By varying the angles *α  and *β , the direction of  V  

relative to the probe coordinate system can be varied for the purposes of testing or 
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calibrating a four-sensor probe. The magnitude v  of the bubble velocity vector cannot 

easily be changed, since this is a function of the rise velocity of air bubbles through 

stationary water; however, small variations in v  could be achieved by varying the size 

of the air bubbles via manipulation of the air injection system. 

In the present investigation, reference measurement of the inclination angle *α  of the 

hinged platform was made using an inclinometer. Reference measurement of angle 

*β  was made using a simple protractor system. 

8.1.2 Transformation of the Bubble Velocity Vector measured by the probe into 

the Tank Coordinate System for the bubble where the rise velocity is not purely 

vertical. 

In order to investigate the accuracy of the four-sensor probe (described in section 2.5) 

which can measure the bubble velocity vector, a series of experiments were carried 

out in which the probe coordinate system is orientated at different angles relative to an 

approaching stream of bubbles and, hence, makes different angles relative to the tank 

coordinate system [11]. Initially assume that the zyx ,,  axes of the probe coordinate 

system are respectively parallel to the TTT zyx ,,  axes of the tank coordinate system. 

Let the probe be rotated through an angle *α  about the x -axis and *β  about the z -

axis, as described in section 8.1.1.   

Therefore, a new direction of the probe x -axis in the tank coordinate system is given 

by *cos βTi  in Tx  direction, ** cossin αβTj  in Ty  direction and ** sinsin αβTk  in 

Tz  direction. 
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Similarly, the new direction of the probe in y -axis in the tank coordinate system is 

given by *sin βTi−  in Tx  direction, ** coscos αβTj  in Ty  direction and 

** sincos αβTk  in Tz  direction. 

Also, the new direction of the probe in z -axis in the tank coordinate system is given 

by 0 in Tx  direction, *sinαTj−  in Ty  direction and *cosαTk  in Tz  direction.  

Where TTT kji ,,  are the unit vectors in the directions of the TTT zyx ,,  axes of the 

tank coordinate system, let kji ,,  be the unit vectors in the new directions of the 

zyx ,,  axes of the probe (which has undergone rotations *α  and *β  as described 

above). kji ,, can now be given by the following expressions 

TTT kjii ***** sinsincossincos αβαββ ++=    Equation 8.1 

TTT kjij ***** sincoscoscossin αβαββ ++−=    Equation 8.2 

TT kjk ** cossin αα +−=       Equation 8.3 

Suppose a bubble which strikes the probe is measured by the probe to have a polar 

angle α  and an azimuthal angle β  relative to the probe coordinate system and a 

velocity magnitude v . Then, the velocity vector V  of the bubble relative to the probe 

coordinate system is given by 

)coscossinsin(sin k j i  V αβαβα ++= v     Equation 8.4 

Substituting for kji ,,  from Equations 8.1, 8.2 and 8.3 in Equation 8.4  

( ) ( )TTTv kji  V ***** sinsincossincossinsin αβαβββα ++=  
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( )TTT kji ***** sincoscoscossincossin αβαβββα ++−+  

( )TT kj ** cossincos ααα +−+      Equation 8.5 

( )  kjiV TTTv ***** sinsinsinsincossinsinsincossinsin αββααββαββα ++=  

TTT kji ***** sincoscossincoscoscossinsincossin αββααββαββα ++−  

TT kj ** coscossincos αααα +−      Equation 8.6 

( )  iiV TTv ** sincossincossinsin ββαββα −=     Equation 8.7 

TTT jjj ***** sincoscossinsinsincoscoscossin αααββααββα −++   

TTT kkk ***** sinsinsinsinsincoscossincoscos αββααββααα +++     

It may now be written that the bubble velocity vector btpV  relative to the tank 

coordinate system, as measured by the probe, is given by Equation 8.8. 

)( btpbtp ηV v=        Equation 8.8 

where btpη  is a unit vector given by  

Tiηbtp )sincossincossin(sin ** ββαββα −=  

Tj)sincoscoscoscossincossinsin(sin ***** αααββααββα −++  

Tk)coscossincoscossinsinsinsin(sin ***** αααββααββα +++   Equation 8.9 
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As described in Chapter 7.4, the calculation of btpV  from Equation 8.8 can be 

compared with the reference bubble velocity vector btV  measured by camera 1 and 

camera 2, as described in Chapter 7.3 and defined in Equation 7.13. 

8.2 Experimental apparatus and setup for the bench test rig 

In order to carry out the measurements on the dispersed bubbles in the multi-phase 

air-water flow using the four-sensor probes, experiments were carried out on a bench 

test rig as well as in an air-water flow loop. Both of these test rigs, as well as the flow 

loop, consist of various types of reference measurement device and control systems. 

In the bench test rig, high speed cameras were used for the reference measurement of 

the bubble velocity vector (see Chapter 7). This chapter is therefore intended to 

describe in detail the above-mentioned items in the bench test rig. 

8.2.1 Bench Test Rig 

For the purpose of the experiments, a 750mm high water tank of square cross section 

was designed and built from Perspex sheets of 6mm thickness. The tank’s overall 

dimensions were 100mm x 100mm x 750mm high. For the injection of bubbles of 

different sizes (1mm - 5mm diameter), a series of removable injectors were made and 

placed at the base of the tank, as shown in Figure 8.2 left. Each injector was made up 

of stainless steel tube, as shown in Figure 8.3, which was connected to the tank using 

pressure tap screws in order to prevent leakage of water from the joints. In this current 

experiment, two injectors with 6mm external diameters and internal diameters of 3.5 

mm and 5mm respectively were used. 
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Figure 8.2 Bench test rig with the bubble injector set up (left). High speed 

camera to obtain a 3-D image (right). 

 

Figure 8.3 Assembly diagram of the air inlet for the bench test rig 

Initially, a small air pump was used as the source of the air-bubbles, but due to its 

poor performance, pressurized air from the university compressor was used. This air 

supply was controlled by using a manual valve regulator and a solenoid valve. The 

solenoid valve was controlled by software via a data acquisition and control card for 

the precision flow of the bubbles. Software was written in MATLAB and developed 

in such a way that the opening and closing time of the valve could be altered as 

necessary, to give the appropriate bubble size and structure. During the experiments 
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described in Chapter 9, it was observed that the bubble size varied with the opening 

time of the solenoid valve; the longer the opening time, the bigger the bubbles. The 

assumption was made that the above situation had occurred due to the diameter of the 

solenoid valve itself, which is 1/2 inch. Thus, to overcome the issue, a small manual 

pipe valve was used to control the air that passed from the solenoid valve, allowing 

the bubble diameter to be approximately 5mm.  

In order to vary the velocity vector V of the bubbles relative to the probe coordinate 

system, a new probe holder platform was designed, as shown in Figure 8.1. The 

platform consists of a metal base with a slotted hole in the middle for the probe to go 

through. It was then fixed to two rotating holders, one of which was used for varying 

*β  and the other for varying *α . The detailed description of the transformation of the 

bubble velocity vector measured by the probe into the tank coordinate system for the 

bubble is described earlier in section 8.1.1. In this particular experiment, the data was 

collected using the values of *α of 0°,10°,20° and 30° and values of  *β  of 0°, 90°, 

180° and 270°. Since the bubble rise velocity was expected to be close to vertical, 

these values of *α  and *β  were expected to approximate values of α  and β  that 

the bubble velocity vector makes relative to the probe coordinate system. 

Two high speed cameras (model trouble shooter 250), with a capability of 250 frames 

per second, were also placed orthogonal to each other, as shown in Figure 8.2). The 

cameras were interlinked with each other as master and slave, so that both the cameras 

could be controlled by the master camera (see Chapter 7). These cameras enabled the 

determination of the reference velocity vector btV of each individual bubble, relative 

to tank coordinate system ( TTT zyx ,, ), as explained in Chapter 7.3.   
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CHAPTER 9 

Tank Experimental Results 

This section presents the results of the experimental testing carried out using the local 

four-sensor probe. The results presented below are from the experiments conducted 

using the bench test rig. This section also describes the reference measurements 

carried out with the high speed orthogonal cameras which include measurements of 

the bubble shape, the trajectories of single bubbles and the bubble velocity magnitude.  

9.1 Image processing  

Image processing involved the use of two high speed cameras placed orthogonally, as 

described in Chapter 7. These camera images were used in order to obtain the 

reference bubble velocities for the bench test experiments. The images were further 

used to obtain the bubble shape, size, and the trajectory of a single bubble as they 

passed over the local four-sensor probe. 

9.1.1 Reference velocity measurement 

For the calculation of the reference bubble velocity, the images were first captured as 

described in Chapter 7. Ten frames from the captured images were saved before and 

after the trigger points. In order to establish a reference dimension, a mark 15mm 

wide was placed on the body of the probe using insulation tape, as shown in Figure 

7.3 and 9.1.   

Captured images were extracted using ‘MATLAB’ software to find the longest 

possible chord corresponding to the major axis of the bubble. The centre of the major 
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axis was calculated and assumed to be the centre of gravity (COG) of the particular 

bubble at a particular frame.  

1,refTz

2,refTz

11Tz

12Tz

1Tzδ

 

Figure 9.1 Calculation of the distance travelled by a bubble between two frames 

in ( )TT zx ,  plane using the reference distance of 15mm marked by using 

insulation tape 

From the extracted COG the distance travelled between two different frames was 

calculated. This distance was calculated by comparing the coordinate of the z -axis 
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with the coordinate of the mark placed on the probe body, as shown in Figure 9.1. Let 

12Tz  and 11Tz  be the coordinate of the COG of a bubble in frames 2 and 1 

respectively as measured by the camera in the TT zx ,  plane of the tank coordinate 

system. Let 2,refTz and 1,refTz  be the top and the bottom coordinates of the 15 mm 

insulation tape. Therefore, the distance travelled by a bubble between two frames is 

1Tzδ , as given by Equation 9.1. 

 ( )11121 TTT zzz −=δ      Equation 9.1 

With the known coordinates and the reference length of the insulation tape used, the 

actual distance 1
ˆ

Tzδ  travelled by a bubble between the two successive frames is given 

by Equation 9.2. 

1
1,2,

1

015.0ˆ
T

refTrefT

T z
zz

z δδ














−
=      Equation 9.2 

Chapter 7 details the calibration of the cameras, which established a frame rate of 246 

frames per second; therefore, one frame corresponds to an elapsed time of 4.06ms. As 

the time taken for each frame and the distance travelled by the bubble in each frame 

has been established, it is possible to calculate the reference bubble velocity of the 

bubble in the tank coordinate system. The results presented in Table 9.1 are only from 

the COG of the bubble.  

Table 9.1 shows the velocity magnitude for a free rising single bubble measured for 

21 frames using high speed cameras.  Three set of identical experiments were carried 

out to observe the difference between the velocity of a single bubble and a stream of 

bubbles. Each experiment shows the calculated velocity between the successive 21 
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frames captured by the camera. The average test results of the 21 frames shows that 

the velocity of the bubble is 0.24m/s, which is very close to the axial rising velocity, 

as shown by Sam et al. [159]. 

Frame No 
Velocity (m/s) 

Set 1 Set  2 Set  3 

1-2 0.33 0.19 0.31 

2-3 0.25 0.30 0.13 

3-4 0.30 0.20 0.33 

4-5 0.16 0.13 0.21 

5-6 0.20 0.30 0.43 

6-7 0.28 0.32 0.21 

7-8 0.24 0.22 0.15 

8-9 0.25 0.32 0.34 

9-10 0.24 0.18 0.16 

10-11 0.38 0.37 0.24 

11-12 0.12 0.10 0.18 

12-13 0.24 0.34 0.29 

13-14 0.25 0.21 0.25 

14-15 0.27 0.24 0.26 

15-16 0.15 0.11 0.26 

16-17 0.20 0.29 0.17 

17-18 0.21 0.26 0.40 

18-19 0.29 0.25 0.16 

19-20 0.19 0.26 0.18 

20-21 0.19 0.29 0.21 

average 0.24 0.24 0.24 

Table 9.1 Velocity magnitude of the individual bubble from the camera 

Table 9.2 shows the average bubble velocity of 21 frames of a bubble when rising as a 

stream of rising bubbles. The high speed cameras were used to calculate the velocity 

of bubbles when the probe was tilted at various polar angles *α .  These calculated 

bubble velocities were used as reference velocities in later experiments for calculating 

velocity vector using the four-sensor probe.  The velocity was calculated between 

each subsequent frame from the images that were captured just before collecting the 

data using the four–sensor probe, when the probe was tilted at a certain polar angle 

*α  and the calculated velocity was used as a reference velocity for the particular *α  
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as presented in section 9.2. *α and *β  are defined as follows. The z  axis of the probe 

is initially parallel to the Tz  of the tank and the y  axis of the probe is initially parallel 

to the Ty  axis of the tank.  The bubble is allowed to be purely in Tz  direction. The 

probe is then tilted by *α  and rotated by *β  (as described in Chapter 8.2). The 

bubble velocity vector now makes a polar angle *α and azimuthal angle *β  relative to 

the probe coordinate system (see Figure 2.18). 

 

Tests carried for various polar angle *α   

(by tilting the probe by angle *α  ) 
*α   0° 5° 10° 20° 

 Average bubble velocity of 21 frames 0.38 0.34 0.41 0.35 

Table 9.2 Velocity magnitude for an individual bubble picked from the stream of 

bubbles when the probe is tilted at various polar angles 

From Table 9.2 it can be seen that the velocity is different for various *α . Although, 

the velocity of the bubble is unaffected by the position of the probe, the variation of 

the bubble velocity is due to the fact that the experiments were carried out on various 

days and at various times and also the fact that the frequency of the bubble was 

controlled manually; thus, it was impossible to maintain an equal frequency of the 

bubble. 

Thus, calculated velocities were used as a reference velocity for each polar angle *α .  

These results show the velocity as being somewhat different from the ideal shown in 

Table 9.1. The reason behind this could be due to the stream of bubbles from the 

injector causing a wake effect. The effect is also verified by the study of Celata et al. 

2004 [60] and Tsuge et al. [161], who suggest that the larger the bubble diameter, the 

greater the wake effect. Celata et al [60] also suggests the increase of velocity with 
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frequency is inversely related to bubble size, until it becomes negligible for a bubble 

diameter smaller then 1.2mm.  Therefore, based on those previous research papers, 

the existence of a reasonable amount of wake effect in these experiments can also be 

expected. 

9.1.2 Bubble trajectory  

In Figure 9.2, a diagram shows the trajectory of the centre of gravity of a bubble 

injected into the base of a water tank in which the four-sensor probe was mounted (the 

injector was 500mm below the probe). The diagram shows the bubble trajectory in a 

plane parallel to the TT zx ,  plane of the water tank, as measured by camera 1, and 

parallel to the TT zy ,  plane, as measured by camera 2. Also shown in Figure 9.4 are 

the outline shapes of the bubbles, as viewed in the TT zx ,  and TT zy ,  planes for each 

of the bubble positions [note that in Figure 9.2, the linear scale used for the bubble 

shapes is different from that used for the bubble trajectories, where the vertical scale 

was expanded to match the scale of each bubble]. From results such as those shown in 

Figure 9.2, the initial simplifying assumption was made that the velocity vector btV  

of each bubble relative to the tank was purely in the vertical direction. Given this 

simplifying assumption, the angles *α  and *β  by which the probe is rotated relative 

to the tank coordinate system (see Chapter 3 and [11]) now represent ‘reference 

values’ for the polar and azimuthal angles of the bubble velocity vector bpV  relative 

to the probe coordinate system. Thus *αα =ref  and *ββ =ref . 
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Figure 9.2 The path of a single bubble as measured by camera 1 ( TT zx , ) and 

camera 2 ( TT zy , ). Also shown are the corresponding bubble shapes at each point 

on the two trajectories. All dimensions are in mm. The scale shown for the lower 

left bubble applies to all bubbles.  The other scale applies to both trajectories and 

also to the probe. Line cc is the position of the upper surface of a bubble when 

the lower surface leaves the probe 
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Figure 9.3 Image of single bubble at different stages passing through the local 

four-sensor probe (left) and a reconstruction of a single bubble (right) 

9.2 Bench test rig 

The experiments on the bench test rig were carried out using the tank with the set-up 

shown in Figure 8.2, as discussed earlier in Chapter 8. In order to measure the 

conductance from the probe, the dc-circuit, as described in Chapter 5, was used. The 

DAQ-2006, as described in Chapter 6, was used to collect the data. The data were 

collected with a probe made up of Teflon coated needles. Teflon-coated needles with 

a diameter of 0.15mm and 0.25mm were used to investigate the best size of needles 

for future use, in terms of deformation and the rigidity of the needles themselves. The 

experiments were also carried out with two different sizes of bubble and two different 
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dimensions of iz  ( i =1,2 and 3, iz  is the distance between the tip of front sensor and 

the rear sensor)  categorized as longer iz  with  dimensions between 1.5 – 2.5 mm, and 

short iz , with dimensions between 1- 1.5 mm. In this section, various sets of 

processed results are presented from the Teflon-coated probe, collected from different 

sets of experiments, as listed below.  

For each experiment, calibration factor K was also calculated which was introduced 

by Lucas et al. [1]  after finding measν  is always less than refν  with measν  being 

typically 80% of the refν , which led the author to make an assumption that the cause 

was due to the retarding effect of the probe-bubble interaction. Thus, the author 

introduced calibration factor K, which is given by:  

refmeas vvK =          Equation 9.3 

The initial experiment results, gathered from the painted 0.3mm diameter acupuncture 

needles, indicate that the velocity vector measured shows a big error. This could be 

due to the probe size, as well as the roughness of the sensors due to the painting. It 

could also have been due to the effect of the overall area of the probe. Hence, in this 

section, only the results from the Teflon coated probes are presented. The data were 

collected using two different diameters of Teflon coated needles, 0.15mm and 

0.25mm. These results are presented and discussed below in detail. 

9.2.1 Experiment 1 

The experiment was carried out using Teflon coated needles of 0.25mm diameter, 

with a bubble size of 10mm and probe dimensions as shown in Table 9.3, where 1x  =  

-0.26 mm , 1y  = 0.68 mm , 1z = 1.70 mm , 2x  = 0.63 mm, 2y  = -0.66 mm,  2z  = 1.76 
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mm, 3x  = -0.24 mm, 3y  = -0.65 mm , 3z  = 1.59 mm. The tests were carried out using 

two reference polar angles refα  0° and 10° in a stream of rising bubbles. For 

comparison purposes, two data sets were collected for refα  = 0° and for refα  = 10° 

the data were collected at various reference azimuthal angles refβ . All the data were 

collected at a sampling frequency of 10 KHz for 120 seconds.  

 1 2 3 

x  -0.26 mm 0.63 mm -0.24 mm 

y  
0.68 mm -0.66 mm -0.65 mm 

z  1.70 mm 1.76 mm 1.59 mm 

Table 9.3 Probe dimensions for Experiment 1 

 refα  refβ  refν  measα  measβ  measν  11tδ  22tδ  33tδ  

NOB 
Test (deg) (deg) (ms-1) (deg) (deg) (ms-1) (s) (s) (s) 

1 0 N/A 0.38 18.97 - 0.24 0.011482 0.016046 0.012991 14 

2 0 N/A 0.38 24.04 - 0.24 0.011983 0.015875 0.011642 6 

3 10 0 0.41 11.91 119.17 0.27 0.011303 0.013861 0.011531 9 

4 10 90 0.41 31.87 101.91 0.24 0.010497 0.016040 0.011041 17 

5 10 270 0.41 38.44 242.14 0.25 0.010136 0.009709 0.012425 19 

Table 9.4 Results with reference polar angle 0°,and 13° at various azimuthal 

angles 

Test αε ,abs (deg) βε ,abs (deg) νε (%) K  

1 18.97 NA -36.84 1.58 

2 24.04 NA -36.84 1.58 

3 1.91 119.17 -34.15 1.52 

4 21.87 11.91 -41.46 1.71 

5 28.44 -27.86 -39.02 1.64 

 αε ,abs  βε ,abs  νε  Average 

 19.05 34.41 -37.66 1.61 

 9.11 50.97 2.45  

 aabs,σ  βσ ,abs  νσ   

Table 9.5 Errors in the values of polar angle, azimuthal angle and velocity 

magnitude of the results presented in Table 9.4 
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Table 9.4 shows results of measured polar angle measα , azimuthal angle measβ  and 

velocity magnitude measν  for the reference polar angle refα  = 0º and 10 º calculated 

with various reference azimuthal angles refβ . However when refα = 0º, the value of 

measβ   is meaningless. The reference velocity refν  = 0.38 m/s when refα  = 0º and 

refν  = 0.41 m/s when refα  = 10º. Table 9.4 also shows the average time interval iitδ  

(i=1, 2 and 3) and the total number of bubbles (NOB) that hit all four sensors. 

Table 9.5 shows the error analysis of the results tabulated in Table 9.4. Table 9.5 

shows the mean absolute error αε ,abs  of the measured polar angle measα   and mean 

absolute error βε ,abs  of the measured azimuthal angle measβ . The table also presents 

the percentage error in  νε  in  measν  which is defined as  

100
ref

refmeas

v

vv −
=νε         Equation 9.4 

Table 9.5 shows that the mean value αε ,abs  of the absolute error in αε ,abs  is equal to 

19.05º and the standard deviation aabs,σ  of αε ,abs  is equal to 9.11º. The mean value 

βε ,abs  of the absolute error in βε ,abs  is equal to 34.41º and the standard deviation 

βσ ,abs  of  βε ,abs  is 50.97º. The mean value νε  of the percentage error in the bubble 

velocity magnitude is -37.66%. The standard deviation νσ  of νε  is 2.45%.  Table 9.5 

also shows that calibration factor K  is 1.61. The results show that, although the 

miniature four-sensor probe can be used to calculate the polar angle α  and azimuthal 

angle β  of the bubble velocity vector, this may lead to a large error for the following 

reasons.  
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• Sensor diameter:- The bigger the diameter of the sensor needles, the higher the 

possibility of deformation of the bubble during probe-bubble interaction, 

leading it to calculate incorrect time intervals. This, in turn, gives us an 

incorrect velocity vector. 

• Dimensions of iz :- The longer the separation between the front and rear 

sensors, the longer it takes for the bubble to hit the rear sensor, allowing 

enough time for the bubble to deform and thus provide incorrect time 

intervals. This, in turn, gives us an incorrect velocity vector. Wu et al. [146-

148] recommended the probe spacing is 0.5 to 2 times the size of the bubble 

diameter. 

• Bubble size: - The bigger the size of the bubble, the greater the possibility of 

deformation of the bubble during probe-bubble interaction, leading to 

incorrectly calculated time intervals. This, in turn, gives us an incorrect 

velocity vector. 

• Sampling frequency: - The smaller the dimensions of the probe, the higher the 

sampling rate that is needed in order to acquire a reliable and representative 

signal from each sensor (see section 3.1).  

Hence, in the later tests, the above parameters will be carefully examined one by one 

in order to achieve the best possible results from the defined parameters. 

9.2.2 Experiment 2 

The second experiment was carried out using Teflon coated needles of 0.25mm 

diameter, with a bubble size of 10 mm and the probe dimensions shown in Table 9.6 

where 1x  =  -0.10 mm , 1y  = 0.51 mm , 1z = 0.99 mm , 2x  = 0.27 mm, 2y  = -0.64 mm,  

2z  = 1.18 mm, 3x  = -0.24 mm, 3y  = -0.78 mm , 3z  = 1.11 mm with a smaller iz  as 
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compared to Experiment 1. The tests were again carried out on two reference polar 

angles refα  0° and 10°. For comparison purposes, two sets of data were collected for 

both refα  = 0° and for refα  = 10° the data were collected at various reference 

azimuthal angles refβ  at a sampling frequency of 10 KHz for 120 seconds in a stream 

of rising bubbles. 

  1 2 3 

x  -0.10 0.27 -0.24 

y  
0.51 -0.64 -0.78 

z  0.99 1.18 1.11 

Table 9.6 Probe dimensions for Experiment 2 

 refα  refβ  refν  measα  measβ  measν  11tδ  22tδ  33tδ  
NOB 

Test (deg) (deg) (ms-1) (deg) (deg) (ms-1) (s) (s) (s) 

1 0 N/A 0.38 10.01 N/A 0.37 0.00691 0.00969 0.00875 20 

2 0 N/A 0.38 2.90 N/A 0.38 0.00661 0.00822 0.00799 18 

3 10 0 0.41 15.13 310.22 0.30 0.00676 0.00641 0.00667 19 

4 10 0 0.41 14.51 5.48 0.29 0.00732 0.00667 0.00601 9 

5 10 180 0.41 16.64 210.42 0.29 0.00575 0.00858 0.00893 28 

6 10 180 0.41 21.92 171.16 0.28 0.00510 0.00945 0.00922 15 

7 10 270 0.41 15.31 256.7 0.28 0.00679 0.00792 0.00849 4 

8 10 270 0.41 14.23 257.79 0.29 0.00663 0.00770 0.00818 5 

Table 9.7 Results for reference polar angle 0° and 13° at various azimuthal 

angles 

Table 9.7 shows results of measured polar angle measα , azimuthal angle measβ  and 

velocity magnitude measν  for the reference polar angle refα  = 0º and 10 º calculated 

with various reference azimuthal angles refβ . Table 9.7 also shows the average time 

interval iitδ  ( i =1,2 and 3) and the total number of bubbles (NOB) that hit all four 

sensors. 
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Test αε ,abs (deg) βε ,abs (deg) νε (%) K  

1 10.01 NA -2.63 1.03 

2 2.90 NA 0.00 1.00 

3 5.13 49.78 -26.83 1.37 

4 4.51 5.48 -29.27 1.41 

5 6.64 30.42 -29.27 1.41 

6 11.92 -8.84 -31.71 1.46 

7 5.31 -13.30 -31.71 1.46 

8 4.23 -12.21 -29.27 1.41 

 αε ,abs  βε ,abs  νε  Average 

 6.33 8.55 -22.59 1.32 

 2.89 20.94 12.38  

 aabs,σ  βσ ,abs  νσ   

Table 9.8 Errors in the values of polar angle, azimuthal angle and velocity 

magnitude of the results presented in Table 9.7 

Table 9.8 shows that the mean value αε ,abs  of the absolute error in αε ,abs  is equal to 

6.33º and the standard deviation aabs,σ  of αε ,abs  is equal to 2.89º. The mean value 

βε ,abs  of the absolute error in βε ,abs   is equal to 8.55º and the standard deviation 

βσ ,abs  of  βε ,abs  is 20.94º. The mean value νε  of the percentage error in the bubble 

velocity magnitude is -22.59%. The standard deviation νσ  of νε  is 12.38%.  Table 

9.8 also shows that calibration factor K  is 1.32. 

9.2.3 Experiment 3 

In order to conduct the next experiment, the Teflon coated 0.15 mm diameter needles 

(a smaller sensor needle diameter than the ones used in the previous two experiments) 

were used as sensors to avoid the errors that exist in the above two experiments. This 

experiment was conducted again with a larger bubble (10 mm) and longer iz .  The 

data were collected for 60 seconds at a sampling rate of 10 KHz and Table 9.9 shows 

the dimensions of the probe used to collect the data where 1x  = -0.30 mm, 1y  = 0.43 
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mm, 1z = 2.61 mm, 2x  = 0.15 mm, 2y  = -0.30 mm,  2z  = 2.57 mm, 3x  = -0.20 mm, 

3y  = -0.50 mm, 3z  = 2.58 mm  

 1 2 3 

x  -0.30 0.15 -0.20 

y  0.43 -0.30 -0.50 

z  2.61 2.57 2.58 

Table 9.9 Probe dimensions Experiment 3 

 refα  refβ  refν  measα  measβ  measν  11tδ  22tδ  33tδ  
NOB 

Test (deg) (deg) (ms-1) (deg) (deg) (ms-1) (s) (s) (s) 

1 5 0 0.34 11.99 351.11 0.34 0.015540 0.014385 0.014219 57 

2 5 0 0.34 21.48 279.34 0.34 0.015162 0.013825 0.014558 21 

3 5 90 0.34 9.85 211.80 0.37 0.013741 0.013977 0.014270 40 

4 5 90 0.34 11.10 200.53 0.31 0.015910 0.016416 0.016741 19 

5 5 90 0.34 8.37 227.20 0.33 0.015349 0.015356 0.015668 17 

6 5 180 0.34 16.74 213.91 0.31 0.015938 0.016494 0.017128 38 

7 5 180 0.34 18.28 218.04 0.32 0.015142 0.015627 0.016320 33 

8 5 270 0.34 21.91 268.95 0.32 0.015803 0.014676 0.015549 31 

9 5 270 0.34 18.48 257.22 0.33 0.015100 0.014471 0.015220 45 

10 10 0 0.41 10.43 307.76 0.33 0.016257 0.015199 0.015385 16 

11 10 0 0.41 16.96 353.65 0.35 0.015034 0.013545 0.013302 29 

12 10 90 0.41 12.34 176.83 0.34 0.014500 0.015318 0.015473 13 

13 10 90 0.41 12.36 164.00 0.34 0.014257 0.015147 0.015187 24 

14 10 180 0.41 29.43 212.13 0.31 0.013960 0.015113 0.016186 25 

15 10 270 0.41 32.68 265.01 0.28 0.016423 0.014889 0.016373 30 

Table 9.10 Results for reference polar angle 5° and 10° at various azimuthal 

angles  

Table 9.10 shows results of measured polar angle measα , azimuthal angle measβ  and 

velocity magnitude measν  for the reference polar angle refα  = 5º and 10 º calculated 

with various reference azimuthal angles refβ . The reference velocity refν  = 0.34 m/s 

when refα  = 5º and refν  = 0.41 m/s when refα  = 10º. Table 9.10 also shows the 

average time interval iitδ  ( i =1,2 and 3) and NOB that hit all four sensors. 
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Test αε ,abs (deg) βε ,abs (deg) νε (%) K  

1 6.99 -8.89 0.00 1.00 

2 16.48 -80.66 0.00 1.00 

3 4.85 121.80 8.82 0.92 

4 6.10 110.53 -8.82 1.10 

5 3.37 137.20 -2.94 1.03 

6 11.74 33.91 -8.82 1.10 

7 13.28 38.04 -5.88 1.06 

8 16.91 -1.05 -5.88 1.06 

9 13.48 -12.78 -2.94 1.03 

10 0.43 -52.24 -19.51 1.24 

11 6.96 -6.35 -14.63 1.17 

12 2.34 86.83 -17.07 1.21 

13 2.36 74.00 -17.07 1.21 

14 19.43 32.13 -24.39 1.32 

15 22.68 -4.99 -31.71 1.46 

 αε ,abs  βε ,abs  νε  Average 

 9.83 31.17 -10.06 1.13 

 6.72 61.91 10.27  

 aabs,σ  βσ ,abs  νσ   

Table 9.11 Errors in the values of polar angle, azimuthal angle and velocity 

magnitude of the results presented in Table 9.10 

Table 9.11 shows that the mean value αε ,abs  of the absolute error in αε ,abs  is equal to 

9.83º and the standard deviation aabs,σ  of αε ,abs  is equal to 6.72º. The mean value 

βε ,abs  of the absolute error in βε ,abs  is equal to 31.17º and the standard deviation 

βσ ,abs  of  βε ,abs  is 61.91º. The mean value νε  of the percentage error in the bubble 

velocity magnitude is -10.06%. The standard deviation νσ  of νε  is 10.27%.  Table 

9.11 also shows that calibration factor K  is 1.13. 

9.2.4 Experiment 4 

The next experiment was carried out with a smaller iz . The probe was made up with 

0.15 mm diameter Teflon coated needles. Table 9.12 shows the probe dimensions 

used to collect the data where 1x  = -0.19 mm, 1y  = 0.39 mm, 1z = 1.05 mm, 2x  = 
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0.40 mm, 2y  = -0.27 mm,  2z  = 1.05 mm, 3x  = 0.06 mm, 3y  = -0.50 mm, 3z  = 1.09 

mm. The data were collected at a sampling rate of 40 KHz for 80 seconds using a 10 

mm bubble size, and the data were collected for the refα   0° and 10°, at various refβ , 

as shown in Table 9.13.  

 1 2 3 

x  -0.19 0.40 0.06 

y  0.39 -0.27 -0.50 

z  1.05 1.05 1.09 

Table 9.12 Probe dimensions for Experiment 4 

 refα  refβ  refν  measα  measβ  measν  11tδ  22tδ  33tδ  
NOB 

Test (deg) (deg) (ms-1) (deg) (deg) (ms-1) (s) (s) (s) 

1 0 0 0.38 12.61 - 0.34 0.005858 0.006053 0.006765 30 

2 0 0 0.38 12.85 - 0.38 0.004916 0.005978 0.006024 33 

3 0 0 0.38 2.31 - 0.35 0.006018 0.006006 0.006299 24 

4 10 0 0.41 14.23 14.04 0.34 0.006430 0.005750 0.005508 23 

5 10 0 0.41 16.19 34.17 0.34 0.006229 0.005918 0.005490 31 

6 10 90 0.41 26.90 99.35 0.31 0.005267 0.007320 0.006638 19 

7 10 180 0.41 24.96 156.01 0.34 0.004517 0.006642 0.006993 15 

8 10 180 0.41 24.10 152.12 0.34 0.004621 0.006734 0.007017 19 

9 10 270 0.41 7.39 187.88 0.33 0.005954 0.006428 0.006842 23 

10 10 270 0.41 22.23 228.22 0.31 0.005979 0.006000 0.007199 20 

Table 9.13 Results for reference polar angle 0° at 10° at various azimuthal angles 

Table 9.13 shows the results of measured polar angle measα , azimuthal angle measβ  

and velocity magnitude measν  for the reference polar angle refα  = 0º and 10 º 

calculated with various reference azimuthal angles refβ . The reference velocity refν  = 

0.38 m/s when refα  = 0º and refν  = 0.41 m/s when refα  = 10º. Table 9.13 also shows 

the average time interval iitδ  ( i =1, 2 and 3) and the total number of bubbles (NOB) 

that hit all four sensors. 
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Test αε ,abs (deg) βε ,abs (deg) νε (%) K  

1 12.61 NA -10.53 1.12 

2 12.85 NA 0.00 1.00 

3 2.31 NA -7.89 1.09 

4 4.23 14.04 -17.07 1.21 

5 6.19 34.17 -17.07 1.21 

6 16.90 9.35 -24.39 1.32 

7 14.96 -23.99 -17.07 1.21 

8 14.10 -27.88 -17.07 1.21 

9 -2.61 -82.12 -19.51 1.24 

10 12.23 -41.78 -24.39 1.32 

 αε ,abs  βε ,abs  νε  Average  

 9.38 -16.89 -15.50 1.19 

 6.09 31.46 7.12  

 aabs,σ  βσ ,abs  νσ   

Table 9.14 Errors in the values of polar angle, azimuthal angle and velocity 

magnitude of the results presented in Table 9.13 

Table 9.14 shows that the mean value αε ,abs  of the absolute error in αε ,abs  is equal to 

9.38º and the standard deviation aabs,σ  of αε ,abs  is equal to 6.09º. The mean value 

βε ,abs  of the absolute error in βε ,abs  is equal to -16.89º and the standard deviation 

βσ ,abs  of  βε ,abs  is 31.46º. The mean value νε  of the percentage error in the bubble 

velocity magnitude is -15.50%. The standard deviation νσ  of νε  is 7.12%.  Table 

9.14 also shows that calibration factor K  is 1.19. 

9.2.5 Experiment 5 

The experiments were carried out with a smaller bubble size of 5 mm.  The data were 

collected for 80 seconds at a sampling rate of 40 KHz in a stream of rising bubbles. 

Table 9.15 shows the probe dimensions where 1x  = -0.19 mm, 1y  = 0.39 mm, 1z = 

1.05 mm, 2x  = 0.40 mm, 2y  = -0.27 mm,  2z  = 1.05 mm, 3x  = 0.06 mm, 3y  = -0.50 

mm, 3z  = 1.09 mm.  Teflon-coated needles of 0.15mm diameter were used as a sensor 

to collect the data. 
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 1 2 3 

x  -0.19 0.40 0.06 

y  0.39 -0.27 -0.50 

z  1.05 1.05 1.09 

Table 9.15 Probe dimensions for Experiment 5 

 refα  refβ  refν  measα  measβ  measν  11tδ  22tδ  33tδ  

NOB 
Test (deg) (deg) (ms-1) (deg) (deg) (ms-1) (s) (s) (s) 

1 0 - 0.38 4.44 - 0.37 0.005514 0.005779 0.006081 34 

2 0 - 0.38 7.5 - 0.38 0.00544 0.005347 0.005808 27 

3 0 - 0.38 2.73 - 0.41 0.005051 0.005284 0.005425 51 

4 10 0 0.41 9.01 337.66 0.39 0.005666 0.005150 0.005289 58 

5 10 90 0.41 9.98 82.04 0.44 0.004632 0.005054 0.004914 65 

6 10 180 0.41 6.13 177.65 0.42 0.004815 0.005194 0.005468 54 

7 20 0 0.35 22.41 7.27 0.36 0.006263 0.005052 0.004733 50 

8 20 0 0.35 20.49 16.44 0.36 0.006228 0.005329 0.004938 31 

9 20 180 0.35 19.17 188.31 0.33 0.005288 0.006780 0.007402 14 

Table 9.16 Results for reference polar angle 0°, 10° and 20° at various azimuthal 

angles 

Table 9.16 shows results of measured polar angle measα , azimuthal angle measβ  and 

velocity magnitude measν  for the reference polar angle refα  = 0º , 10º and 20º 

calculated with various reference azimuthal angles refβ . The reference velocity refν  = 

0.38 m/s when refα  = 0º, refν  = 0.41 m/s when refα  = 10º and refν  = 0.35 m/s when 

refα  = 20º. Table 9.16 also shows the average time interval iitδ  (i =1, 2 and 3) and 

the total number of bubbles (NOB) that hit all four sensors. 
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Test αε ,abs (deg) βε ,abs (deg) νε (%) K  

1 4.44 - -2.63 1.03 

2 7.5 - 0.00 1.00 

3 2.73 - 7.89 0.93 

4 -0.99 -22.34 -4.88 1.05 

5 -0.02 -7.96 7.32 0.93 

6 -3.87 -2.35 2.44 0.98 

7 2.41 7.27 2.34 0.98 

8 0.49 16.44 1.75 0.98 

9 -0.83 8.31 -6.73 1.07 

 αε ,abs  βε ,abs  νε  Average 

 1.32 -0.10 0.83 0.99 

 3.17 10.33 4.72  

 aabs,σ  βσ ,abs  νσ   

Table 9.17 Errors in the values of polar angle, azimuthal angle and velocity 

magnitude of the results presented in Table 9.16 

In Table 9.17, the absolute errors αε ,abs  and βε ,abs  in degrees, for the values of  measα  

and measβ  respectively, are presented. From the data, the mean value αε ,abs  of the 

absolute error in αε ,abs  is equal to 1.32º and the standard deviation aabs,σ  of  αε ,abs  is 

3.17º. The mean value βε ,abs  of the absolute error in βε ,abs  is equal to -0.10º and the 

standard deviation βσ ,abs  of  βε ,abs  is 10.33º. The relatively low values of   αε ,abs  and 

βε ,abs  indicate that these miniature probes can be used to give a reasonably accurate 

estimate of the polar angle α  and azimuthal angle β  of the bubble velocity vector. 

The values for the standard deviation aabs,σ  and βσ ,abs  do, however, indicate that, for 

some of the individual tests carried out, the errors in measα  and  measβ  were somewhat 

greater that would be suggested by inspection of αε ,abs  and βε ,abs . 

The mean value νε  of the percentage error in the bubble velocity magnitude is 0.80%. 

The standard deviation νσ  of νε  is 4.75%. The observed value of νε  is somewhat 

surprising because, as stated in [1,11], a previously used conventional four-sensor 
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probe had a retarding effect of up to 20% and in that particular paper it was 6%  on 

the bubble velocity magnitude. It should be noted that in Table 9.16 the values of 

measα , measβ  and measv   for a given test are averaged values obtained from (typically) 

30 bubbles. It should also be noted that when o
ref 0=α  then both refβ  and measβ  are 

meaningless. Table 9.17 also shows that calibration factor K  is 0.99. 

9.3 Discussion 

In the above sections, the tests were conducted for two different sizes of bubble: 5mm 

(smaller) and 10 mm (larger), two sensor diameters (0.15mm and 0.25 mm) and the 

probe dimensions. The results show that bigger bubbles tend to deform more rapidly 

than smaller ones as they move upwards. The experiment also shows that when using 

a probe with 0.25mm diameter needles there is a greater possibility of affecting the 

shape and the trajectory of the bubble before the bubble comes into contact with the 

rear sensor after leaving the front sensor. A similar situation occurred during the 

experiment with the various lengths of the iz  dimension. If the length of iz  is longer 

(>1.5mm), it will provide enough time for the bubble to change its shape before 

hitting the rear sensor (note: a rising bubble continuously changes its shape and a 

bubble bigger than 5mm deforms/changes its shape rapidly as it flows upwards). 

Hence, to avoid these situations, it was suggested that the dimension of iz  should be 

approximately 1mm and the bubble size no more than 5mm. In the meantime, as the 

dimension of iz  becomes smaller, the data are to be collected with a higher sampling 

frequency (see Chapter 3 for detail). All the above mentioned experiments were 

carried out with a stream of bubbles. From the experiments, it was also found that, for 

good accuracy of results, it is important that the number of bubbles that hit all four 
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sensors must be approximately more than 30. Thus, to ensure the required number of 

bubbles hit the sensors, it is important to sample the data for more than one minute. 

From the above discussion, for an accurate measurement of measα  and measβ , it is 

recommended the following criteria should be met: 

• Bubble Size:    5mm 

• Sensor type:    0.15mm Teflon coated needles 

• Dimension of iz :    1-1.5m 

• Sampling frequency:   40K Hz 

• Sampling time:   >1 minute 

• Number of bubbles:   > 30  

• Stream of bubbles.  

The four-sensor probe described in Chapter 3 for measuring the velocity vectors of 

individual gas bubbles in gas-liquid flows was used to measure the vandβα ,  in a 

stream of gas bubbles. The probe was tilted by *α  and rotated by *β , as described 

in Chapter 7, to change velocity vector with respect to the probe. Gas bubbles were 

assumed to rise vertically relative to the tank. The reference velocity magnitude was 

calculated by using two high speed cameras arranged orthogonally to the tank. Since 

the gas bubbles were assumed to rise vertically relative to the tank, reference polar 

angle refα  and azimuthal angle refβ  were equal to *α  and *β   (for further details 

see Chapter 7.2). The results from Experiment 5 show that there is good agreement 

between the reference data and the measured data. It can also be noticed that, for the 

smaller polar angle α , the error is somewhat larger than that of the larger polar 

angleα , which is still less then ±10%, whereas for the larger polar angles, the errors 



Chapter 9                                                                                        Tank Experiment Results   

Suman Pradhan 226 

were found to be less than ±1%.  However, the results still show a few errors, which 

could be due to the effects described by Juila et al. [131]. These results may 

recommend the new technique of mounting the probes (see further works). The results 

also suggest improvements in calibration factor K, which is now around 0.99, whereas 

in previous experiments the value of K was shown to be 1.2, although that varies ± 

20% [1, 11]. The improved calibration factor K indicates there is less retarding effect 

during probe-bubble interaction. 

The above results also show that the greater the polar angle, the lesser the errors, 

which shows good agreement with the results presented by Sanaullah et al. [150], 

where the author states that the probe has less effect on the bubble when it is tilted by 

20° (polar angle) . The author also states that the effect of the probe rises as the probe 

inclination becomes closer to 55° (polar angle). 

The results from the high speed cameras allowed an initial simplifying assumption to 

be made that the velocity vector btV  of each bubble relative to the tank was purely in 

the vertical direction. Given this simplifying assumption, angles *α  and *β  by which 

the probe is rotated relative to the tank coordinate system are respectively equal to 

refα  and refβ . Bubble velocities relative to the water tank (as the bubble moves over 

a vertical probe), the COG result for *α  is interesting in its own right because visual 

observation of a rising bubble stream suggests a zigzag motion which would lead the 

observer to think that *α  was significantly greater than the actual measured value as 

the bubble moves over the probe.  It also shows that, as bubbles move across the 

probe, they move in the direction of BUOYANCY force on COG (later motion 

appears to be suppressed).  This result could not be determined without high speed 

cameras.  
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CHAPTER 10 

Flow Loop Experimental Set Up  

10.1 The multiphase flow loop for air-water experiments 

Figures 10.1A and 10.1B show photographic and schematic layouts of the flow loop 

which was used to carry out testing of the probes in multiphase flow. The facility was 

capable of producing the necessary flow conditions relevant to the present 

investigation. Different flow conditions used in the experiment investigation 

described in Chapter 11 required a variety of air flow rates, water flow rates, and gas 

volume fractions.  

It was necessary to be able to position the working section (i.e. that part of the 

multiphase loop where the measurements take place) perpendicular to the ground. 

Some of the experiments were carried out in swirling flow in which a swirler was 

used to generate swirl in the working section. The volumetric flow rate of the water 

wQ  in the working section was measured using a turbine flow meter; while the gas 

flow rate, gQ  was measured using a thermal mass flow meter, a temperature sensor 

and a pressure sensor. These were installed in the system as shown in Figure 10.1 B. 

A differential pressure (DP) cell was used for the measurement of the mean gas 

volume fractions λ  in the flow loop working section. The principles of the operations 

of these instruments are described later in this chapter.  

The flow loop that was used was capable of producing a single stream of bubbles for a 

single bubble flow experiment. The flow loop is also able to produce a swarm of 

bubbles for the experiment, with or without the presence of swirl. 
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Figure 10.1 (A) Photographic image of the flow loop which can also be used for 

solid-water flow and (B) Schematic diagram of air-water multiphase loop used 

for the current experiments. 
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10.2 Reference measurement devices 

The reference measurement devices that are described below were used in the air-

water flow loop to measure volumetric flow rate of the water wQ , volumetric gas flow 

rate gQ  and mean gas volume fractions λ .  

10.2.1 Thermal mass flow meter 

With respect to Figure 10.1, pressurised air from the laboratory compressed air supply 

was passed through a regulator and a thermal mass flow meter, in order to measure 

the gas mass flow rate gM . Measurements of the absolute pressure absP  and absolute 

temperature absT , in the working section, enabled the mean gas volumetric flow rate 

gQ  to be determined from the measured gM  as shown in Equation 10.1.  

( )m

absatm

abs
gg

PP

T
MQ ρ81.9

+
=       Equation 10.1 

where atmP  denotes atmospheric pressure and mρ  mercury density. The air superficial 

velocity gsU  was then calculated using the following formula: 

 
A

Q
U

g

gs =               Equation 10.2 

where A  represents the cross-sectional area of the working section. 

10.2.2 Turbine meter 

Turbine meters were installed in the liquid lines of the flow loop; they were used to 

measure the water volumetric flow rate delivered by the relevant pumps. The principle 

of the turbine meter operation is that the number of rotations per second of the turbine 
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rotor is a function of the flow rate of the liquid. Therefore, by counting the frequency 

of the rotations of the turbine rotor, it is possible to determine the measurement of the 

water flow rate. A turbine meter is designed to have a linear relationship between the 

flow rate and the frequency of the rotation over a range of flow rates. The relationship 

can be expressed by the following formula: 

KfQw =              Equation 10.3 

where wQ  is the volumetric flow rate of water; f  is the frequency of the rotation and 

K is the meter factor for the device, which can vary as the meter begins to wear. For 

the turbine meter, the meter factor K for the liquid line of the air-water loop was given 

by the manufacturer as 0.0462m3h-1Hz-1 over a design range of 3.41m3h-1 to 

40.88m3h-1. 

 10.2.3 Gas volume fraction measurement using a differential pressure sensor 

A Honeywell ST-3000 differential pressure sensor was installed in the working 

section of the flow loop. This instrument was used to measure the differential pressure 

across a one metre length of the working section. A flushing system was installed in 

the DP cell in order to ensure that no air could get trapped in either the sensor or the 

fluid filled measurement lines which connected the sensor to the pressure tapping of 

the working section (see Figure 10.1A). The differential pressure sensor was used to 

calculate the volume fraction of the air, as demonstrated below.  

The method of calculating the volume fraction of the dispersed phase is adopted as 

described by Panagiotopoulos et al. [12]. Assuming that the pressure tappings, which 

are in the working section, are separated by distance h and that the pipe is inclined by 
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ψ degrees from the vertical, which is zero in these experiments, then the mean volume 

fraction λ  of the dispersed phase can be calculated as: 

( ) ( ) hg

Fp

hg

Fp

dwdw ⋅⋅−

+∆
=

⋅⋅⋅−

+∆
=

ρρψρρ
λ

cos
        Equation 10.4 

where g  depicts the acceleration due to gravity; p∆  is  measured by differential 

pressure; wρ  and dρ  are the densities of water and the dispersed phase (gas) 

respectively; ψcos  is equal to one; and F is the frictional pressure loss. The frictional 

pressure with reference to [12] can be calculated as follows: 

M
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⋅⋅⋅
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2ρ
           Equation 10.5 

where f is the single-phase friction factor given by Equation 10.6 and M is the 

hydraulic radius of the working section flow loop and calculated as shown in Equation 

10.6 : 

22 ww vh

pD
f

ρ

∆
=         Equation 10.6 

where D  represents  the diameter of the pipe; p∆ is the pressure difference; wρ  is 

the density of the water and wv  is the velocity of the water. 

RM =              Equation 10.7 

where R  denotes the internal radius of the working section and hU   the homogeneous 

velocity, which is the sum of the water and gas (air) superficial velocities wsU and 

gsU  respectively.  In detail: 
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gswsh UUU +=             Equation 10.8 

where 
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          Equation 10.10 

and wQ  and gQ  are the volumetric flow rates of water and gas respectively. 

 10.3 Experiment with a single stream of bubbles 

The experiment was carried out in the stream of bubbles. The purpose of the 

experiment was to measure the velocity vector of a bubble using a four-sensor probe. 

To vary the reference velocity vector V of the bubble relative to the probe in the flow 

loop, it was not practical to use the method described in Chapter 8 to position the 

probe.  

refαχ −= 180

A

'A

 

Figure 10.2 (A) Four-sensor probe for the flow loop. (B) Probe holder with 

various angles 

Therefore, a new method of supporting the probe was introduced, which necessitated 
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making the probe in two sections. The first section (part A) of the probe contained the 

four sensors, as described in Chapter 3.14 (see Figure 10.2, left).  The overall length 

of the probe was designed to be no longer than 20mm, so that the final support and 

mechanism would fit into the working section of the flow loop. The second section of 

the probe (part B in Figure 10.2), was made using a specific angle to represent the 

reference polar angle as shown in Figure 10.2 (B). Assuming that bubbles rise purely 

vertically, the velocity vector V of the approaching bubbles will make a reference 

polar angle refα  relative to the z -axis of the probe. 

refα

'A

A

x

z

 

Figure 10.3 Part A and Part B of the four-sensor probe connected with pressure 

tight bolts and mounted in the flow loop using a traverse mechanism. 

The probe was measured, as described in Chapter 3.3, before the probe and the holder 

were connected together using a pressure tight bolt (to ensure that there was no 
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leakage), as shown in Figures 10.3 and 10.4. When placing the probe and the probe 

holder together, it was ensured that the y - axis of the four-sensor probe was aligned 

with the 'AA  of the probe holder, as shown in Figure 10.2 B and 10.3. 

Part B was connected to Part A so that both part A and part B lay within the same 

vertical plane when the probe was mounted in the pipe; this ensured that both z  and 

y  axis of the probe coordinate system also lay in the same vertical plane. This 

alignment ensured that the reference azimuthal angle refβ  of the bubble relative to the 

probe coordinate system  was always 0°, provided that gas bubbles rise purely 

vertically, which is generally the case when water is flowing[13],. 

 

 

Figure 10.4 Probe for the flow loop with 34° polar angle α  

Probes set at various angles χ  giving values of refα  equal to 5°, 14°, 21° and 34° 

were manufactured, as shown in Figure 10.3. 

10.4. Experiment with a swirler in a swarm of bubbles 

The experiment was carried out in a swarm of bubbles with the presence of a swirler. 

The purpose of the swirler was to create a necessary azimuthal and vertical motion of 

the flow in which the air bubble was moving. A four-sensor probe designed with 
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Teflon coated needles, described in Chapter 3.2 (see Figure 3.11), was used to 

measure the mean gas volume fraction, azimuthal velocity, axial velocity and the 

radial velocity across the cross section of the pipe. A traverse mechanism was used to 

move the probe across the cross section of the pipe. 

10.4.1 Swirler device 

 

Figure 10.5 Working section of air-water flow loop with swirler 

The swirler consisted of six brass vanes which were welded to a central brass hub 

measuring 10mm in diameter.  For this experiment, the swirl angle was set at 20° and 

the design of the vanes was based on the criteria suggested by Mathur et al. [162]. In 

order to accommodate the swirler in the working section of the pipe, the outer 

diameter of the swirler measured 80mm; this, in turn, was housed in a flanged clear 

pipe section with an internal diameter measuring 80mm. The swirler was placed in the 

working section upstream of the probe, as shown in Figure 10.5. Figure 10.6 shows a 

picture of the swirler that was used in the experiments. 
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Figure 10.6 The swirler device in the air-water flow loop. 

10.4.2 Traverse mechanism 

A traverse mechanism was used to reposition the probe in the cross section of the 

pipe. In this device, two separate stepper motors were utilised to achieve the linear 

and the angular movements required of the probe. Both the stepper motors were 

powered by a programmable stepper motor driver, which supplied the chain of the 

pulse to each stepper motor. This, in turn, provided the necessary signal to move the 

probe in the correct direction. 

A)  Linear Traverse Mechanism  

 

Figure 10.7 The linear traverse mechanism  
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The linear traverse mechanism, shown in Figure 10.7, consisted of a linear stepper 

motor, a guide rail, a traversing yoke, a supporting clamp and a junction box. The 

traverse mechanism was mounted on the side wall of the pipe which contained a small 

hole; this hole was used to insert the probe into the pipe. The supporting clamp was 

used to hold the linear traverse system inline with the pipe, which also provided the 

support for the traverse mechanism. In order to prevent leakage of water from the 

hole, an “O” ring was used as a seal. The body of the probe was clamped onto the 

traversing yoke in order to ensure rigidity. The traversing yoke itself was fixed at the 

guide rail, thereby enabling it to move forwards and backwards freely; it was also 

attached to the screwed shaft of the stepper motor. Hence, when the motor was 

rotated, the shaft also screwed and unscrewed, thereby additionally simultaneously 

moving the yoke forwards and backwards. 

This resulted in the probe, attached with the traversing yoke, moving forwards and 

backwards, which helped to achieve the desired radial position of the probe. The 

linear traverse could make the probe move in increments of 0.025mm in a straight 

line. A junction box was used to connect the wires from the probe, which was 

connected to the electronic circuitry described in Chapter 5. 

A)  Rotary Traverse Mechanism  

A rotary traverse mechanism was used for the angular movement of the probe within 

the working section of the pipe. It consisted of a stepper motor, a geared ring and a 

mechanical support to hold them together. The shaft of the stepper motor was 

connected to the geared ring, thereby allowing for the rotation of the geared ring when 

the stepper motor was rotated. This, in turn, rotated the pipe attached to the geared 

ring. When this pipe was rotated, the probe also rotated simultaneously. This rotary 

traverse was capable of moving the probe in angular steps of 0.015°. In order to avoid 
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any leakage from the traverse mechanism; it was connected to the section of the pipe 

with sealed stainless steel bearings mounted into flanges. Figure 10.8 shows the whole 

traverse mechanism used in the current experiments. 

 

Figure 10.8 The traverse mechanism in air-water loop [7]  
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CHAPTER 11 

Flow Loop Experimental Results 

A series of experiments were carried out in a flow loop with and without the presence 

of swirl in a single stream of bubbles as well as a swarm of bubbles. 

11.1 Flow loop experiments 

This section presents the results from the experiment carried out in a single stream of 

bubbles, making the volume fraction of the dispersed phase negligible. The 

experiments were conducted without the presence of swirl. A turbine meter was used 

in order to measure the volumetric flow rate wQ  of water, which in turn was used to 

calculate the superficial velocity of the water using Equation 11.1. At the beginning of 

the experiments, the velocity magnitude of the bubbles was measured using a single 

high speed camera at various water flow rates. The assumption was made that the 

measured velocity magnitude remained the same throughout the experiments at a 

given water flow rate, although there might have been a slight variation in the velocity 

magnitude of the bubble at a given flow rate due to the variation of the bubble 

frequency and resultant wake effects. However, an effort was made to maintain the 

constant bubble frequency at a given water flow rate.  

Table 11.1 shows the reference velocity magnitude refv  of a bubble of 5 mm 

diameter, obtained by using the high speed camera at various water superficial 

velocities wsU , given by Equation 11.1. 
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where wQ  is the volumetric flow rate of water obtained from Equation 11.2, R is the 

internal diameter of the working section. 
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where f is the frequency in Hz from the turbine flow meter installed in the flow loop. 

wsU (m/s) 0.00 0.14 0.18 0.27 0.30 

refν (m/s)
 

0.25 0.34 0.39 0.49 0.52 

Table 11.1 Reference bubble velocity for given turbine meter readings 

The flow loop experiments in a single stream of bubbles were carried out for various 

values of water superficial velocity wsU  with different reference polar angles refα  at 

5°, 14°, 21° and 34° at reference azimuthal angle refβ = 0°. From the results of the 

tank experiments, it was observed that the best probe to use was a Teflon coated probe 

with sensor needles with an outer diameter of 0.15mm. Hence, in these flow loop 

experiments, Teflon-coated probes were used, but due to the presence of flowing 

water velocity, 0.2mm diameter sensor needles were used instead of 0.15 mm in order 

to provide more rigidity. DC circuits, which were described in Chapter 5, were used to 

measure the conductance at the tip of each probe sensor. Data was collected for a 

period of 90 seconds (sampling period) for the twenty different experimental 

conditions described above (four values of refα and five values of refv ), to ensure that 

as many bubbles as possible hit the probe during the sampling period. The number of 

bubbles (NOB) that hit the probe ranged from 21 to 74 for the different flow 
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conditions investigated. The signals from the probe were treated in a number of 

different ways, as described below, to determine the mean velocity vectors measured 

by the probe at each flow condition. 

A) The collected data was analysed twice, first without signal processing (referred to 

as BS or “before signal processing” later in this chapter), where the data were 

processed without ignoring any bubbles, as described in section 6.2. The second 

analysis was conducted with signal processing (referred to as AS or “after signal 

processing” later in this chapter), where the same data was processed again, only this 

time the condition to ignore the bubbles was introduced, as described in section 6.2. 

B) For each flow condition investigated, the probe that was used to collect the data 

was measured twice, once before collecting the data and again after collecting the 

data. The velocity vector of bubbles was calculated with both probe dimensions.  

Results calculated using the probe dimensions measured before data collection are 

referred to as ‘PMB’ (Probe Measured Before) whilst results calculated using the 

probe dimensions measured after data collection are referred to as ‘PMA’. The 

purpose of this part of the investigation was to determine whether small changes in 

the probe dimensions, brought about by the flowing air-water mixture, would 

significantly affect the bubble velocity vectors measured by the probe.  

C) The values of polar angle pmmeas ,,α  , azimuthal angle pmmeas ,,β  and the velocity 

magnitude pmmeas ,,ν  measured by the probe for the th
m

 flow condition and the thp  

value of refα  were calculated in two different ways, as described below. 
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I) “Average iitδ ”:  In this method, for the th
m  flow condition and the thp  value of 

refα  the time interval npmiit ,,,δ  ( 3,2,1=i ) for each of N number of useful bubbles were 

calculated according to Equation 2.33 and then average values for pmiit ,,δ  ( 3,2,1=i ) 

were calculated using Equation 11.3. These calculated average values for pmiit ,,δ  

were then used in conjunction with the relevant measured probe dimensions to 

calculate pmmeas ,,α , pmmeas ,,β  and pmmeasv ,, ,  as described in section 2.5.1. 

N

t

t

Nn

n

npmii

pmii

∑
=

== 1

,,,

,,

δ

δ       Equation 11.3 

where m refers to mth  flow condition and n refers to nth  useful bubble thp  value of 

refα . 

 II) “Average individual bubble”: In this method, for the th
m  flow condition and the 

thp  value of refα , values of npmmeas ,,,α , npmmeas ,,,β  and npmmeasv ,,,  for each  of the N 

individual useful bubbles were calculated, as described in section 2.5.1, from the 

measured values of npmiit ,,,δ  ( 32,1 andi = ) and the measured probe dimensions . From 

the calculated values of npmmeas ,,,α , npmmeas ,,,β  and npmmeasv ,,,  average values 

pmmeas ,,α , pmmeas ,,β  and pmmeasv ,,  of the measured polar and azimuthal angles and the 

bubble velocity magnitude were obtained using Equations 11.4, 11.5 and 11.6., 

N

Nn

n
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∑
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,,,

,,

α

α       Equation 11.4 
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N
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n
npmmeas

pmmeas

∑
=

== 1
,,,

,,

β

β       Equation 11.5 

N

v

v

Nn

n
npmmeas

pmmeas

∑
=

== 1
,,,

,,       Equation 11.6 

From (A), (B) and (C) above it is clear that, for the th
m  flow condition and the thp  

value of refα , there are eight different ways of calculating pmmeas ,,α , pmmeas ,,β  and 

pmmeasv ,, . It should be noted that the range of possible values for pmmeas ,,β  was 

converted to oo 180180 ,, ≤≤− pmmeasβ  using Equation 11.7 if o180,, >pmmeasβ  

o360,,,, −= pmmeaspmmeas ββ       Equation 11.7 

For the m
th flow condition and the thp  value of refα , an absolute error pmabs ,,,αε , 

pmabs ,,,βε  and pmvabs ,,,ε  in the calculated value of pmmeas ,,α , pmmeas ,,β  and 

pmmeasv ,, was calculated. Magnitudes of the absolute error in the calculated values of 

pmmeas ,,α , pmmeas ,,β  and pmmeasv ,,  for mth flow condition were calculated, as shown in 

Equations 11.8, 11.9 and 11.10 respectively. 

|| ,,,,, refpmmeaspmabs ααε α −=        Equation 11.8 

|| ,,,,, refpmmeaspmabs ββε β −=       Equation 11.9 
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From the above calculated absolute errors for the measured values of pmmeas ,,α , 

pmmeas ,,β  and pmmeasv ,, , the mean error and the standard deviation of the error for all 

the flow conditions investigated at the thp  value of refα were also calculated, as 

shown in Equations 11.11 – 11.16, where M is the total number of different flow 

conditions investigated for each value of refα  (i.e M = 5 in present study).  

M

M

pmabs

pabs

∑
= 1

,,,

,,

α

α

ε

ε        Equation 11.11 

M

M

pmabs

pabs

∑
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,,,

,,

β

β

ε

ε        Equation 11.12 

M

M
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,,

ε

ε         Equation 11.13 
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σ      Equation 11.14 
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σ      Equation 11.15 
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∑ −

= 1

2
,,,,,,

,,

εε

σ      Equation 11.16 

ε  and σ  are respectively the mean error and the standard deviation of the errorε  in a 

given property for a given set of flow conditions. From the arguments above, it is 

clear that there are eight possible ways in which pabs ,,αε , pabs ,,βε , pvabs ,,ε , 
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pabs ,,ασ pabs ,,βσ and pvabs ,,σ can be calculated. These eight possible ways are 

summarised in Flow chart 11.1 below. 
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Flow chart 11.1 Calculation of pabs ,,αε , pabs ,,βε , pvabs ,,ε , pabs ,,ασ pabs ,,βσ and 

pvabs ,,σ  for the flow conditions investigated at the thp  value of refα   

11.1.1 Calculation of mmeas,α , mmeas,β  and mmeas,ν  for refα  of 5°, 14°, 21° and 34° 

and for reference azimuthal angle refβ  of 0° at various values of refν  

This experiment was carried out in the flow loop for reference polar angles refα  of 5°,  
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14°, 21° and 34° and for reference azimuthal angle refβ  of 0°, with a bubble diameter 

of 5mm for various wsU  and refν , as tabulated in Table 11.1. The four-sensor probe, 

designed as described earlier in Chapters 3 and 10, with the sensors made up of 0.2 

mm diameter Teflon coated needles, was used for all the experiments. As mentioned 

earlier, the probe was measured twice; once before collecting data and once after 

collecting data for different values of refα .  

Figures 11.1 – 11.4 show the magnitude of the percentage difference in ii yandx (i = 

1, 2 and 3) of the probe dimensions measured before and after collecting data for refα  

5°, 14°, 21° and 34° respectively (see Appendix C for the table of the probe 

dimensions measured before and after collecting data). From the measurements it was 

found that the change in measured probe dimensions in iz  (i = 1, 2 and 3) is 

negligible for the vertical flow, thus it is not presented in this chapter.  

 

Figure 11.1 Magnitude of percentage error in x and y probe dimensions 

measured before and after collecting data for refα  5° 
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Figure 11.2 Magnitude of percentage error in x and y probe dimensions 

measured before and after collecting data for refα  14° 

 

Figure 11.3 Magnitude of percentage error in x and y probe dimensions 

measured before and after collecting data for refα  21° 

 

Figure 11.4 Magnitude of percentage error in x and y probe dimensions 

measured before and after collecting data for refα  34° 
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Table 11.2 shows the magnitudes of the differences between the probe dimensions 

ii yandx (i = 1, 2 and 3) measured before collecting data (PMB) and the probe 

dimensions measured after collecting data (PMA) for the experiments undertaken at 

refα = 5°, 14°, 21° and 34°. The above results show that the dimensions of the probe 

change randomly during the experiments. Since iz  (i = 1, 2 and 3) is negligible for the 

vertical flow, dimensions for  iz  (i = 1, 2 and 3) are not presented in this chapter. 

 refα = 5° refα =14° refα =21° refα =34° 

 x y x y x y x y 

1 18.82% 12.16% 6.24% 4.74% 18.82% 0.11% 0% 0.82% 

2 6.59% 8.99% 2.63% 2.25% 5.27% 3.36% 2.24% 5.61% 

3 4.75% 16.96% 1.19% 1.71% 0% 5.10% 4.77% 10.17% 

Table 11.2 Percentage difference between the probe dimensions measured before 

and after collecting data 

It was evident the difference between the dimensions of the probe measured before 

and after collecting the data. Also the magnitude of the dimension error depends on 

the number of tests carried out between the measurements of the probe. Results show 

that when the number of the tests carried out between the measurements was fewer, 

the difference in the measured probe dimensions was less. It should also be noted that 

the possibility of making an error during the process of measuring the probe cannot be 

ignored, as the dimensions are measured to a resolution of millimetres and the errors 

within the measurements are in microns. 

11.1.1.1 Discussion of pabs ,,αε  

Figure 11.5 shows the comparisons between the magnitude of the results of the mean 

error in polar angle pabs ,,αε   calculated using “average iitδ ” and “average individual 



Chapter 11                                                                         Flow Loop Experimental Results  

Suman Pradhan 249 

bubbles” methods for refα = 5°, 10°, 21°and 34° and refβ =0° and various values of 

refv  (see Table 11.1). Both the methods were calculated with and without signal 

processing, with the probe dimensions measured before and after collecting data. 
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Figure 11.5 Comparisons between the results of absolute mean error in polar angle 

pabs ,,αε  with and without signal processing, calculated using “average iitδ ” and 

“average individual bubbles” methods for refα = 5°, 10°, 21°and 34° and refβ =0° and 

various values of refv  

From Figure 11.5 it can be seen that mean error pabs ,,αε  in pmabs ,,,αε  calculated using 

the “average iitδ ” method is lower than when it was calculated using the “average 

individual bubbles” method. Figure 11.5 also indicates that, as refα  was increased  

pabs ,,αε  in pmabs ,,,αε  decreases when calculated using the “average individual 

bubbles” but pabs ,,αε  in pmabs ,,,αε  only shows a slight improvement when calculated 

using the “average iitδ ” method. 

Figure 11.5 also shows that pabs ,,αε  in pmabs ,,,αε  calculated after signal processing is 

much closer to the refα  as compared to pabs ,,αε  in pmabs ,,,αε  measured before signal 
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processing. The probe dimensions measured before (PMB) and after (PMA) show 

very little effect in mean value pabs ,,αε  of the absolute error in pmabs ,,,αε .  

11.1.1.2 Discussion of pabs ,,ασ  
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Figure 11.6 Comparisons between the results of standard deviation pabs ,,ασ  of error in 

polar angle  with and without signal processing, calculated using “average iitδ ” and 

“average individual bubbles” methods for refα = 5°, 10°, 21°and 34° and refβ =0° and 

various values of refv  

Figure 11.6 shows the comparisons between the results of standard deviation pabs ,,ασ  

of error in the polar angle pmabs ,,,αε  with and without signal processing, calculated 

using the “average iitδ ” and “average individual bubbles” methods for refα = 5°, 10°, 

21° and 34° and refβ =0° and various values of refv  (see Table 11.1). The standard 

deviation of the calculated individual errors is described earlier in Equations 11.14-

11.16. 
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Figure 11.6 indicates that, for some of the individual tests carried out using the 

“average iitδ ” method, pabs ,,ασ  of pmabs ,,,αε  were somewhat greater than with the 

“average individual bubble” method. However, Figure 11.6 also suggests that the 

error is significantly reduced when pmabs ,,,αε  was calculated after signal processing.  

Figure 11.6 also shows that, with the “average iitδ ”  method, as refα  was increased 

pabs ,,ασ  of pmabs ,,,αε  increases when pmabs ,,,αε  was calculated before signal 

processing, which indicates that, for some of the individual tests carried out, pmabs ,,,αε  

was somewhat greater. However, after signal processing ασ ,abs  of mabs ,,αε  tended to 

decrease as refα  increased, indicating that, for some of the individual tests carried out, 

the errors in pmabs ,,,αε  were reduced compared with pmabs ,,,αε  when calculated before 

signal processing.   

On the other hand when pmabs ,,,αε  was calculated using the “average individual 

bubble” method, pabs ,,ασ  of pmabs ,,,αε  tended to decrease as refα  was increased when 

pmabs ,,,αε  was calculated before signal processing, as well as after signal processing.   

11.1.1.3 Discussion of pabs ,,βε  

Figure 11.7 shows the comparisons between the results of the magnitude of the mean 

error in the azimuthal angle pabs ,,βε  with and without signal processing, calculated 

using the “average iitδ ” and “average individual bubbles” methods for refα = 5°, 10°, 

21° and 34° and refβ = 0° and various values of refv  (see Table 11.1). 
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Figure 11.7 Comparisons between the results of the absolute mean error in azimuthal  

angle pabs ,,βε  with and without signal processing, calculated using “average iitδ ” and 

“average individual bubbles” methods for refα = 5°, 10°, 21° and 34° and refβ =0° and 

various values of refv   

Figure 11.7 indicates that, when azimuthal angle pmmeas ,,β  was calculated using the 

“average iitδ ” method, the mean azimuthal angle error pabs ,,βε  in pmabs ,,,βε  shows 

larger errors for smaller refα  than pabs ,,βε  in pmabs ,,,βε  when calculated using the 

“average individual bubble” method. However the mean error pabs ,,βε  in pmabs ,,,βε  

tended to decrease as refα  was increased when calculated using the “average iitδ ”  

method, but shows less effect when calculated using the “average individual bubble” 

method. 

Figure 11.7 also indicated that pabs ,,βε  in pmabs ,,,βε  tended to show a greater reduction 

after signal processing than before signal processing using the “average iitδ ” as well 

as the “average individual bubble” method. 
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Figure 11.7 also indicates that pabs ,,βε  calculated with the probe dimensions measured 

before and after collecting data shows very little improvement in measured pmmeas ,,β . 

11.1.1.4 Discussion of pabs ,,βσ  

Figure 11.8 shows the comparisons between the results for the standard deviation of 

the mean error in the azimuthal angle pabs ,,βσ with and without signal processing, 

calculated using the “average iitδ ” and the “average individual bubbles” methods for 

refα = 5°, 10°, 21° and 34° and refβ =0° and various values of refv  (see Table 11.1). 

The standard deviation of the calculated individual errors is described earlier in 

Equations 11.14-11.16. 
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Figure 11.8 Comparisons between the results of standard deviation of mean error in 

azimuthal angle pabs ,,βσ  with and without signal processing, calculated using “average 

iitδ ” and “average individual bubbles” methods for refα = 5°, 10°, 21° and 34° 

and refβ =0° and various values of refv  
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The calculation of standard deviation pabs ,,βσ  of pmabs ,,,βε  in Figure 11.8 indicates 

that for some of the individual bubbles the error was greater when calculated using the 

“average iitδ ” method than with the “average individual bubble” method.  

It can also be seen from Figure 11.8 pabs ,,βσ  of pmabs ,,,βε  decreased after signal 

processing compared with  pabs ,,βσ  of pmabs ,,,βε  calculated before signal processing, 

indicating the reduction of error in individual bubbles.  

Figure 11.8 also indicates that pabs ,,βσ of pmabs ,,,βε  increased as refα  increased, 

indicating an increase of errors in individual bubbles. 

11.1.1.5 Discussion of pvabs ,,ε  

Figure 11.9 shows the comparison between the magnitude of the mean errors in 

velocity magnitude pvabs ,,ε  with and without signal processing, calculated using the 

“average iitδ ” and the “average individual bubbles” methods for refα = 5°, 10°, 21° 

and 34° and refβ =0° and various values of refv  (see Table 11.1). 

Figure 11.9 indicates that the mean error pvabs ,,ε  of the percentage error of the 

velocity magnitude pmvabs ,,,ε  is larger when calculated using the “average iitδ ” 

method than when calculated using the “average individual bubbles” methods. 

However, the improvement on pvabs ,,ε  of the percentage error of the velocity 

magnitude pmvabs ,,,ε  can be noticed when calculated after signal processing using the 

“average iitδ ” method. Figure 11.9 also suggests that pvabs ,,ε  of pmvabs ,,,ε  is almost 

the same when calculated before and after signal processing using the “average 
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individual bubbles” methods. Figure 11.9 also indicates that pvabs ,,ε  of pmvabs ,,,ε  

tended to reduce when the reference polar angle refα  was increased. 
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Figure 11.9 Comparisons between the results of absolute mean error in velocity 

magnitude pvabs ,,ε  with and without signal processing, calculated using “average iitδ ” 

and “average individual bubbles” methods for refα = 5°, 10°, 21° and 34° and refβ =0° 

and various values of refv  

11.1.1.6 Discussion of pvabs ,,σ  

Figure 11.10 shows the comparisons between the results for the standard deviation 

pvabs ,,σ of  the mean error in velocity magnitude pmvabs ,,,ε  with and without signal 

processing, calculated using the “average iitδ ” and the “average individual bubbles” 

methods for refα = 5°, 10°, 21° and 34° and refβ =0° and various values of refv  (see 

Table 11.1). The standard deviation of the calculated individual errors is described 

earlier in Equations 11.14-11.16. 
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Figure 11.10 Comparisons between the results of standard deviation pvabs ,,σ of 

pmvabs ,,,ε  with and without signal processing, calculated using “average iitδ ” and 

“average individual bubbles” methods for refα = 5°, 10°, 21° and 34° and refβ =0° and 

various values of refv  

As shown in Figure 11.10, the calculation of pvabs ,,σ  of pmvabs ,,,ε  indicates that, for 

some of the individual tests, the error is larger when calculated using the “average 

iitδ ”  method as compared to pvabs ,,σ  of pmvabs ,,,ε  when calculated using the 

“average individual bubbles” method. It can also be noticed that, for both calculation 

methods, pvabs ,,σ  of pmvabs ,,,ε  tends to increase when refα  increases, suggesting an 

increase in the error in some of the individual tests. 

However, Figure 11.10 indicates that, for the larger value of refα , pvabs ,,σ  of 

pmvabs ,,,ε  tended to decrease when calculated after signal processing as compared 

with pvabs ,,σ  of pmvabs ,,,ε  calculated before signal processing, which indicates that 

errors in the individual bubbles reduce after signal processing 



Chapter 11                                                                         Flow Loop Experimental Results  

Suman Pradhan 257 

11.2 Swirling flow measurement  
 

Swirling flow measurement was carried out with a swirler device (see Chapter 10.4.1) 

placed in the working section of the flow loop. A traverse mechanism (see Chapter 

10.4.2) was used to position the probe. A turbine meter was used to measure the 

volumetric flow rate of the water. Similarly, a pressure-drop mechanism was used to 

measure the reference gas volumetric flow rate [1] and the reference mean gas volume 

fraction (see section 10.2). 

 

Figure 11.11 Data collecting point using swirler  

The experiments were carried out in different flow conditions, as shown in Table 

11.3, with a probe made up of 0.20 mm diameter Teflon coated needles. For each flow 

condition, data were collected at six radial locations on each given pipe radius.  The 

pipe section containing the probe was rotated 30° anti-clockwise to take data along to 

the next radius. The same process was repeated for twelve different radii to collect the 

data at a total of 61 different locations, as shown in Figure 11.11. The collected data 
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were processed with the probe dimensions measured before collecting data and the 

results presented in this section are calculated after signal processing described in 

section 6.2. 

11.2.1 Swirling flow experiment  

θv

rv

zv

θ

 

Figure 11.12 The coordinate system of the pipe and probe, which enables the 

velocity vector of the bubble to be calculated 

Experiments were carried out with the superficial velocity of water wsU  in the range 

0.576 m/s to 0.763 m/s and the superficial gas velocity gsU  in the range 0.018 m/s to 

0.041m/s. The mean gas volume fraction was set to always be less than 0.1 for the 

experiment carried out in this section. At each flow condition, the four-sensor probe 

was used to measure the local axial velocity zv , positive in the vertical upward 

direction, radial velocity rv , positive in the direction pointing away from the pipe 

centre and azimuthal gas velocity θv  (positive in the clockwise direction when the 

observer faces towards the oncoming flow; see Figure 11.12 for a definition of axial 

velocity zv , radial velocity rv  and azimuthal velocity θv  for the given position of the 

probe). The mean gas volume fraction λ  was also measured at each point, as 
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described in section 10.2.3. All the flows investigated were found to be axisymmetric 

and the results presented in this section show the variation of mean local properties 

across a single pipe diameter at a given set of flow conditions. For each flow 

condition, mean axial gas velocity probegu ,  was calculated, as shown in Equation 

11.16.  
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      Equation 11.16 

In Equation 11.16 liλ  and izv  are the measured local gas volume fraction and the 

measured local axial gas velocity at the ith  distinct probe position respectively. iA∆  is 

one of 61 discrete areas into which the flow cross-section is divided.  

For the given experiments, the reference gas velocity refgu ,   was calculated as shown 

in Equation 11.17.  
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==,        Equation 11.17 

where gQ  is the volumetric flow rate of the dispersed phase, gsU  is the superficial 

velocity of the gas (air). The reference mean air volume fraction refλ  was measured 

using a DP transducer, (see section 10.2.3). The DP transducer was placed in the flow 

loop as shown in Figure 11.13. The high speed camera (see Figure 11.13) was also 

used to calculate the reference gas velocity cameragu , . From the calculated values of 

refgu ,  and cameragu , , calibration factor K was calculated as described below. 
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Figure 11.13 Positioning of probe  and DP transducer in the working section with 

swirler for the measurement of  probegu ,  and refgu ,  

Lucas et al. [1] found in their results that probegu ,   is always less than refgu ,  with 

probegu ,  being typically 80% of the refgu , , consequently the author made an 

assumption that the cause was due to the retarding effect of the probe-bubble 

interaction. Thus, the author introduced calibration factor K, which is given by:  

refgprobeg uuK ,, =  or  cameragprobeg uuK ,, =     Equation 11.18 

Table 11.3 shows the value of calibration factor K calculated using refgu ,  and 

cameragu , . Calibration factor K was calculated for the different flow conditions. The 

results of the experiments tabulated in Table 11.3 show that, as the gas superficial 

velocity gsU  increased, the reference gas velocity refgu ,  increased compared to that 

of the gas velocity measured by the probe probegu , . Resulting in a low value of gsU , 

the calculated value of refgu ,  was found to be less than probegu , , but as gsU  was 

increased, the calculated value of  refgu ,  was found to be higher than  probegu , . 
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However, Table 11.3 shows that the average value of refgu ,  was found to be 97% of 

probegu , .  

 

Flow conditions 

K 

refgu ,  cameragu ,  

wsU  = 0.567m/s; gsU  = 0.018m/s  

probegu ,  = 0.847m/s; cameragu ,  = 0.820m/s ; refgu , = 0.715m/s 

 

0.85 

 

0.94 

wsU  = 0.567m/s; gsU  = 0.027m/s  

probegu ,  = 0.851m/s; cameragu ,  = 0.830 m/s ; refgu , = 0.825m/s 

 

0.97 

 

0.97 

wsU  = 0.567m/s; gsU  = 0.040m/s  

probegu ,  = 0.866 m/s ; cameragu ,  = 0.830m/s; refgu , = 0.871m/s 

 

1.01 

 

0.95 

wsU  = 0.763m/s; gsU  = 0.041m/s  

probegu ,  = 1.082 m/s ; cameragu ,  = 1.035 m/s; refgu , = 1.116m/s 

 

1.03 

 

0.95 

Average 0.97 0.95 

Table 11.3 Calculation of calibration factor refgu ,  and  cameragu ,  Vs  probegu ,  

Lucas et al. [1] also stated that the calibration factor in their experiment was found to 

be 1.2 with a variation of ±20%, whereas Table 11.3 suggests that the average 

calibration factor is closer to 0.97 calculated with refgu ,  and 0.95 when calculated 

using cameragu , , suggesting that there is a much smaller retarding effect.  

Although experiments were carried out for various flow conditions, the results are 

presented only for the flow condition tabulated in Table 11.4. 
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Test condition 
refλ  gsU  wsU   

1 0.025 0.018 0.567 

2 0.038 0.041 0.763 

Table 11.4 Flow conditions used for experiments with and without swirler 

r/D θv  rv  zv  λ  

-0.44 -0.1189 -0.0740 0.5804 0.0028 

-0.35 -0.1289 -0.0267 0.8370 0.0133 

-0.26 -0.0982 -0.0652 0.8939 0.0250 

-0.18 -0.0767 -0.0773 0.9222 0.0355 

-0.09 -0.0711 -0.0098 0.9362 0.0399 

0.00 -0.0577 0.0115 0.9628 0.0425 

0.09 -0.0711 -0.0098 0.9362 0.0399 

0.18 -0.0767 -0.0773 0.9222 0.0355 

0.26 -0.0982 -0.0652 0.8939 0.0250 

0.35 -0.1289 -0.0267 0.8370 0.0133 

0.44 -0.1189 -0.0740 0.5804 0.0028 

Table 11.5 Test results for refλ = 0.025, gsU = 0.018 ms
-1

 and wsU  = 0.567ms
-1

 without 

swirler 

r/D θv
 rv  zv  λ  

-0.44 -0.2018 0.0051 0.7245 0.0014 

-0.35 -0.1252 -0.0015 0.8112 0.0084 

-0.26 -0.1296 -0.0524 0.8720 0.0204 

-0.18 -0.0902 -0.0413 0.9003 0.0337 

-0.09 -0.0422 -0.0229 0.9128 0.0415 

0.00 0.0340 -0.0190 0.9193 0.0516 

0.09 -0.0422 -0.0229 0.9128 0.0415 

0.18 -0.0902 -0.0413 0.9003 0.0337 

0.26 -0.1296 -0.0524 0.8720 0.0204 

0.35 -0.1252 -0.0015 0.8112 0.0084 

0.44 -0.2018 0.0051 0.7245 0.0014 

Table 11.6 Test results for refλ = 0.025, gsU = 0.018 ms
-1

 and wsU  = 0.567ms
-1

 with 

swirler 

Tables 11.5 and 11.6 show the results for local axial velocity zv , radial velocity rv  

and azimuthal gas velocity θv  and the mean gas volume fraction λ  without swirler 
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and with swirler respectively for the reference flow condition refλ = 0.025, gsU = 

0.018 ms-1 and wsU  = 0.567ms-1.  

Tables 11.7 and 11.8 show the results for zv , rv , θv  and λ  without swirler and with 

swirler respectively for the reference flow condition refλ = 0.038, gsU = 0.041ms-1 and 

wsU  = 0.763ms-1.       

r/D θv
 rv  zv  λ  

-0.44 -0.0837 0.0323 0.7864 0.0021 

-0.35 -0.0742 -0.0207 1.0991 0.0171 

-0.26 -0.0301 -0.0317 1.1834 0.0365 

-0.18 -0.0407 0.0274 1.2116 0.0652 

-0.09 0.1022 0.0090 1.2148 0.0829 

0.00 0.0157 -0.0278 1.2646 0.0892 

0.09 0.1022 0.0090 1.2148 0.0829 

0.18 -0.0407 0.0274 1.2116 0.0652 

0.26 -0.0301 -0.0317 1.1834 0.0365 

0.35 -0.0742 -0.0207 1.0991 0.0171 

0.44 -0.0837 0.0323 0.7864 0.0021 

Table 11.7 Test results for refλ = 0.038, gsU = 0.041ms
-1

 and wsU  = 0.763ms
-1

 without 

swirler 

r/D θv
 rv  zv  λ  

-0.44 -0.2190 0.0641 0.7280 0.0060 

-0.35 -0.1845 0.0862 0.9916 0.0243 

-0.26 -0.2676 0.0590 1.0656 0.0380 

-0.18 -0.1721 0.1365 1.1115 0.0544 

-0.09 -0.1183 0.0210 1.1808 0.0650 

0 0.0861 0.0329 1.1906 0.0714 

0.09 -0.1183 0.0210 1.1808 0.0650 

0.18 -0.1721 0.1365 1.1115 0.0544 

0.26 -0.2676 0.0590 1.0656 0.0380 

0.35 -0.1845 0.0862 0.9916 0.0243 

0.44 -0.2190 0.0641 0.7280 0.0060 

Table 11.8 Test results for refλ = 0.038, gsU = 0.041ms
-1

 and wsU  = 0.763ms
-1

 with 

swirler 
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Figure 11.14 Gas volume fraction versus non-dimensional radial position for 

refλ = 0.025, gsU = 0.018 ms
-1

 and wsU  = 0.567ms
-1

 with and without swirler 
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Figure 11.15 Gas volume fraction versus non-dimensional radial position for 

refλ = 0.038, gsU = 0.041ms
-1

 and wsU  = 0. 76297ms
-1

 with and without swirler 
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Figures 11.14 and 11.15 show the variation of mean gas volume fraction λ  with r/D, 

both with and without swirler, for the test conditions refλ  = 0.025, gsU = 0.018 ms-1 

and wsU  = 0.567ms-1 and refλ  = 0.038, gsU  = 0.041ms-1 and wsU  = 0.763ms-1 

respectively. It is clear that when wsU  is equal to 0.5670 m/s, the presence of the 

swirler has a very small effect on the distribution of the local gas volume fraction.  

However, when wsU  is equal to 0.763 m /s, the presence of the swirler shows a larger 

effect on the gas volume distribution. As Lucas et al. state in [1], at the higher value 

of  wsU  and with the presence of the swirler, there is a centrifugal effect which causes 

the low density gas to preferentially accumulate at the centre of the pipe. At the same 

gas and liquid flow rate without the presence of the swirler, the gas distribution is 

more uniform.   
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Figure 11.16 Axial velocity (m/s) versus non-dimensional radial position for 

refλ = 0.025, gsU = 0.018 ms
-1

 and wsU  = 0.567ms
-1

 with and without swirler. 
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Figure 11.17 Axial velocity (m/s) versus non-dimensional radial position for 

refλ = 0.038, gsU = 0.041ms
-1

 and wsU  = 0.763ms
-1

 with and without swirler. 

Figures 11.16 and 11.17 show the variation of axial velocity with r/D both with and 

without swirler for test conditions refλ  = 0.025, gsU  = 0.018 ms-1 and wsU  = 

0.567ms-1 and refλ  = 0.038, gsU  = 0.041ms-1 and wsU  = 0.763ms-1 respectively. It is 

readily evident that the presence of the swirler has very little effect (but is noticeable) 

on the shape of the axial velocity profile for the tested values of air and water 

superficial velocities. Figures 11.16 and 11.17 indicate that the axial velocity is much 

lower at the wall of the pipe at lower flow conditions.  Figures 11.16 and 11.17 also 

indicate that, without the presence of the swirl, the axial velocity is much lower 

towards the wall of the pipe, suggesting that swirl forces the bubbles to accumulate at 

the centre of the pipe. 
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Figure 11.18 Radial velocity (m/s) versus non-dimensional radial position for 

refλ = 0.025, gsU = 0.018 ms
-1

 and wsU  = 0.567ms
-1

 with and without swirler. 
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Figure 11.19 Radial velocity (m/s) versus non-dimensional radial position for 

refλ = 0.038, gsU = 0.041ms
-1

 and wsU  = 0.763ms
-1

 with and without swirler. 
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Figure 11.18 shows the variation of radial velocity rv  with non dimensional radial 

position  r/D, both with and without swirler, for test conditions refλ  = 0.025, gsU  = 

0.018 ms-1 and wsU  = 0.567ms-. The variation of radial velocity rv  with non 

dimensional radial position r/D for the test condition refλ  = 0.038, gsU = 0.041ms-1 

and wsU  = 0.763ms-1 with and without the swirler is shown in Figure 11.19. Both 

figures indicate that the radial velocity rv  is always comparatively small with or 

without the swirler. 
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Figure 11.20 Azimuthal velocity (m/s) versus non-dimensional radial position for 

refλ = 0.025, gsU = 0.018 ms
-1

 and wsU  = 0.567ms
-1

 with and without swirler. 

Figures 11.20 and 11.21 show the variation of azimuthal velocity θv  with r/D both 

with and without swirler for test conditions refλ  = 0.025, gsU  = 0.018 ms-1 and wsU  = 

0.567ms-1 and refλ  = 0.038, gsU = 0.041ms-1 and wsU  = 0.763ms-1 respectively. 
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Figure 11.21 Azimuthal velocity (m/s) versus non-dimensional radial position for 

refλ = 0.038, gsU = 0.041ms
-1

 and wsU  = 0.763ms
-1

 with and without swirler. 

Following Lucas et al. in [1], a convention was adopted whereby the local azimuthal 

velocity is positive for clockwise swirl and negative for anticlockwise swirl (when the 

flow is moving upward along the pipe towards the observer). The swirler used in this 

experiment created anticlockwise swirl. It is clear from the above Figures 11.20 and 

11.21 that, without the swirler, the azimuthal velocity θv  is relatively close to zero at 

all positions in the flow cross section. However, in the presence of the swirler, it is 

also apparent from Figures 11.20 and 11.21 that there is a marked change in the 

distribution of θv  across the pipe diameter. For both test conditions refλ  = 0.025, gsU  

= 0.018 ms-1, wsU  = 0.567ms-1 and refλ  = 0.038, gsU  = 0.041ms-1, wsU  = 0.763ms-1 

it was found that the presence of the swirler causes the azimuthal velocity θv  to be 

strongly negative close to the pipe walls. Figure 11.21 also indicates that the 

magnitude of the azimuthal velocity θv  decreases towards the pipe centre.  
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Table 11.9 shows the calculated swirl angle of the flow, given by Equation 11.19, 

where swirlψ  is the swirl angle of multiphase flow, for both the flow conditions. 

swirlψ = 





−

zv
vθ1tan        Equation 11.19 

refλ = 0.025, gsU = 0.018 ms-1 and 

wsU  = 0.567ms-1 

refλ = 0.038, gsU = 0.041ms-1 and 

wsU  = 0.763ms-1 

r/D 






−

zv
vθ1tan  






−

zv
vθ1tan  

-0.44 15.57° 16.75° 

-0.35 8.78° 10.55° 

-0.26 8.46° 14.10° 

-0.18 5.72° 8.81° 

-0.09 2.65° 5.72° 

0 2.12° 4.14 

0.09 2.65° 5.72° 

0.18 5.72° 8.81° 

0.26 8.46° 14.10° 

0.35 8.78° 10.55° 

0.44 15.57° 16.75° 

Table 11.9 Calculated swirl angle for the flow 

Table 11.9 shows that for wsU  =  0.567ms-1
 the swirl angle at the wall was found to 

be 15.57° and for wsU  = 0.763ms-1 the swirl angle was 16.75° in the anticlockwise 

direction. For both cases, the calculated angle is less than the angle of the swirler itself 

which is 20°. This could be due to the distance between the probe and swirler, which 

is 320 mm upstream; at this position, the swirl in the multiphase flow was already 

beginning to decay by the time the swirl reached the probe, as described by Lucas et 

al. [1]. However an improvement in the measured swirl angle was made with the 

improved miniaturized probe design, where previously the swirl angle was found to 

be 13° by Lucas et al. [1]. 
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Figure 11.22 shows in 2D and 3D the variation of average velocity vector of the gas 

bubbles for the flow conditions refλ  = 0.025, gsU  = 0.018 ms-1, wsU  = 0.567ms-1 

(top) and refλ = 0.038, gsU = 0.041ms-1, wsU  = 0.763ms-1 (bottom) with the swirler 

obtained from the results presented in Tables 11.6 and 11.8. It is clear that in the 

presence of swirl at wsU =0.567 m /s, the radial velocity component is negligible 

compared to the azimuthal velocity. At wsU = 0.763m/s, the radial component appears 

to be more significant, although these results may be due to errors in the measurement 

of rv .  
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Figure 11.22 2D and 3D variation of average velocity vector for refλ = 0.025, 

gsU = 0.018 ms
-1

 and wsU  = 0.567ms
-1

 with swirler, top left and right respectively, 

and for refλ = 0.038, gsU = 0.041ms
-1

 and wsU  = 0.763ms
-1

 bottom left and right 

respectively 
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11.3 Conclusion 

Experiment 11.1.1 was conducted in a flow loop with a stream of bubbles. A newly 

developed miniature four-sensor probe was used to measure velocity vector of a 

bubble. Teflon coated needles with a diameter of 0.2mm were used as sensors for the 

four-sensor probe. The tests were carried out with a bubble diameter of 5mm at 

various refα  (5º, 14º, 21º and 34º) with refβ  = 0 º and at various reference velocities 

refv  and water superficial velocities wsU . pmmeas ,,α , pmmeas ,,β  and pmmeasv ,,   were 

calculated for all the above experiments with both the “average iitδ ” method and 

“average individual bubble” method, with the probe dimensions measured before and 

after collecting data. Each calculation was carried out with and without signal 

processing.  

The results show that there was a remarkable improvement in the results of pmmeas ,,α , 

pmmeas ,,β  and pmmeasv ,,  due to the signal processing. As expected, the signal 

processing reduces the number of bubbles (NOB) that touch all four sensors by 

deleting the invalid signals, as described in sections 5.2.1.2 and 5.2.1.3. 

With regard to the results from all the above experiments, the relatively low values of   

pabs ,,ασ pabs ,,βσ and pvabs ,,σ  indicate that the miniature four-sensor probe can be 

used to give a reasonably accurate estimate of polar angle pmmeas ,,α  and azimuthal 

angle pmmeas ,,β  of the bubble velocity vector in the flow loop for the various flow 

rates. Experiments also indicate that the measured velocity vector for the larger refα  

gives less errors when pmmeas ,,α , pmmeas ,,β  and pmmeasv ,,  are measured, either with 

“average iitδ ” or with an “average individual bubble” method.  
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 As discussed earlier, the probe dimensions were measured before and after collecting 

the data. The measurements do show there is an effect on the probe dimensions while 

data is being collected, but in general the probe dimensions measured before 

collecting data gave fewer errors for the data collected initially, whereas the same data 

processed with the probe measured after collecting data gave a larger error. Similarly, 

the data collected just before re-measuring the probe dimensions gave fewer errors 

when the probe dimensions were measured after collecting the data, but gave larger 

errors when the probe dimensions were measured before collecting the data. This 

situation also depends on the number of data collected before re-measuring the probe. 

The flow condition presented in these experiments shows that the probe needs to be 

re-measured after collecting every four sets of data. Due to the fragile nature of the 

probe needles, it cannot handle a high flow rate of water.  

  
Figure 11.23 Probe displaced due to the presence of flow   
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It is also possible that, due to the flow of the water, the sensor might expand and 

contract in the process of collecting data, as shown in Figure 11.23; however, the 

hypothesis was not examined in this project. 

The tables presented in Appendix C (Tables B.5- B.12) show the difference in the 

number of bubbles (NOB) when the data were processed with and without signal 

processing. The results suggest that, due to the presence of the signal processing 

procedure, signals with missing bubbles, small time intervals and small voltage levels 

were ignored, as discussed in section 5.2.1, thus resulting in fewer bubbles being 

recorded as only those that hit all four sensors of the probe were valid. 

Experiments 11.2.1 were carried out in vertical upward bubbly air-water flow with 

and without the presence of a 20° swirler. The experiments were conducted using a 

miniature four-sensor probe to investigate the local axial velocity zv , radial velocity 

rv  and azimuthal gas velocity θv  and the mean gas volume fraction λ   of the 

dispersed phase in bubbly gas-water flow at various water and gas flow rates. Tests 

were carried out to investigate the distribution of mean local axial, radial and 

azimuthal bubble velocity. The distributions of the local gas volume fraction in such 

flows were also investigated.  

Results from calibration factor K (see Table 11.2) show that the average value of K is 

equal to 0.97 when calculated with refgu ,  and is 0.95 when calculated with cameragu , . 

Results also indicate that when the value of K was calculated with refgu , , the value of 

K  increased as wsU  and gsU  increased, which indicates that probegu ,  is higher than 

refgu ,  at low wsU  and gsU  and probegu ,  is lower than refgu ,  at high wsU  and gsU . 

This difference in refgu ,  and probegu ,  at various flow rates of gas and water led us to 
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assume that at gsU  upstream and downstream the swirl varies due to the presence of 

the swirl itself. 

Results also indicate that there is very little difference in the calculated cameragu ,  and 

probegu ,  at various wsU and gsU .  

The above result indicates that the miniaturized probe investigated showed a 

significant improvement in calibration factor K , which is found to be close to 1, 

unlike that indicated by previous research [1]. This result further indicates that the 

retarding effect on the bubble due to the miniaturized probe-bubble interaction was 

significantly reduced. 

Results (Figure 11.16 and 11.17) show that there is a relatively small effect on the 

local axial bubble velocity due to the presence of the swirler for the flow condition 

used in the above experiments. Figures 11.18 and 11.19 show that the measured radial 

velocity rv  is always close to zero, both with and without a swirler, for the flow 

condition investigated.  

The results presented in Figures 11.20 and 11.21 show that, without the presence of 

the swirler, θv  is relatively close to zero at all positions along the pipe diameter and is 

slightly positive, suggesting the presence of a low level clockwise swirl. However, in 

the presence of the swirler, for the flow condition investigated, θv  was found to be 

strongly negative towards the pipe wall and the magnitude of θv  decreases towards 

the pipe centre, suggesting that part of the multiphase mixture is rotating with an 

approximately constant angular velocity ω  (because ωθ rv = ).   
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Results of the gas volume fraction presented in Figures 11.14 and 11.15, with the low 

flow rate of gsU  and wsU , show that there is a small difference between the local gas 

volume fraction profiles with and without the swirler.  Results show that the gas 

volume fraction profile is peakier at the pipe centre with the swirler as compared to 

the gas volume fraction profile without the swirler. However, with a higher flow rate 

of gsU  and wsU , the presence of the swirler shows that the more gas bubbles tend to 

accumulate at the centre of the pipe with the swirler, but without the swirler very few 

bubbles migrate to the centre of the pipe.   

 

Figure 11.24 Length of vertical arrows represents axial water velocity at 

different positions in the pipe. In (a), movement of gas bubble ‘g’, and resultant 

movement of water ‘w’, causes a reduction in the system energy. In (b) energy 

input would be required. Lucas et al. [14]. 

This proves the theory presented by Lucas et al. [14], whereby the author explains the 

kinetic energy within the flow, in which the author considers a vertical upward water 

flow in a pipe with maximum water flow at the centre of the pipe and considerably 

less at the pipe walls. Let it be assumed a gas bubble is located away from the pipe 

centre (see Figure 11.24A). If turbulence in the flow causes the gas bubbles to move 

slightly toward the pipe centre, this will in turn require the equivalent volume of water 

to move slightly towards the pipe wall. Since water has a higher density than gas, the 
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overall kinetic energy of the system is now reduced and the system is in a lower 

energy state. 

However, if a gas bubble at the pipe centre (see Figure 11.24B) was to move away 

from the centre of the pipe, it will then require an input of energy to the system. There 

is thus a natural tendency for the system to move towards a lower energy state, 

resulting in gas bubbles moving towards the pipe centre and once they are at the pipe 

centre they tend to remain at the pipe centre.  
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CHAPTER 12 

Conclusions 

12.1 Summary of main achievements of the work documented in this 

thesis  

1. A new four-sensor probe has been designed and constructed for measuring the 

bubble velocity vector of air bubble in a bubbly air-water flow. The probe, 

denoted the PN2 probe, is constructed from Teflon coated needles and has a 

frontal area of 0.61mm2. An ideal four-sensor probe has a calibration factor of 

unity. It was found that for the experiments in stationary water carried out in a 

tank the calibration factor K of the PN2 probe was 0.99. For the test in a flow 

loop the probe calibration factor K was 0.95. These values were compared with a 

calibration factor of 1.2 for the previous four-sensor probe described in the 

literature. 

2. Results carried out in stationary water showed that if the PN2 probe was used in 

air bubbles of diameter less than or equal to 5mm, and if the axial distance 

between the front and the rear sensor was in the range of 1-1.5 mm the mean 

absolute error in the measured bubble polar angle αε ,abs  was 1.32º, the mean 

absolute error in the measured azimuthal angle βε ,abs  was -0.1º and the mean 

percentage error in the measured bubble velocity magnitude was 0.83%. 

3. Another novel feature of the work in this thesis was the use of high speed 

cameras to provide reference measurements of the bubble velocity vector in the 

tank coordinate system. A mathematical model was derived to enable the bubble 
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velocity vector (measured by the probe) to be transformed into the tank 

coordinate system (irrespective of the probe orientation in the tank). This enabled 

the bubble velocity vector measured by the probe to be readily compared with the 

reference velocity vector measured using the high speed cameras. 

12.2 Detailed explanation of conclusions 

A miniaturised four-sensor probe was designed and built with Teflon-coated needles. 

These sensors were capable of measuring the velocity vector of the dispersed phase 

(air bubble) in a bubbly two-phase flow. The probe was made up of Teflon-coated 

needles with an outer diameter of 0.15 and 0.2 mm, and the results were compared 

with previous results acquired by Mishra et al. [1] and Panagiotopoulos et al.  [11]. 

These previous results were achieved using varnish-coated acupuncture needles with a 

diameter of 0.3mm to construct a four-sensor and rotating dual-sensor probe 

respectively. 

The primary intention of this research was to miniaturize the four-sensor probe used 

to measure the velocity vector of the multiphase flow. The overall cross-section of the 

probe was reduced by introducing new Teflon coated needles of 0.15mm and 0.2mm 

in diameter, whereas previously 0.3mm diameter acupuncture needles was used as 

sensor needles. These acupuncture needles were then painted to make them 

electrically insulated, which in turn made these sensors thicker in diameter. A new 

design of ceramic guide (see Figure 3.10) was also introduced in this research, in an 

attempt to reduce the overall cross-section of the probe. The new ceramic guide helps 

to place the four sensors of the four-sensor probe in the form of an isosceles triangle 

(see Figure 3.12), whereas the previously used ceramic guide (See Figure 3.2) placed 
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the holes in a rectangular form. As a result, the difference between using the previous 

type of PN0 (varnish coated acupuncture needles) and the Teflon coated PN2 probes 

can be observed in the overall cross-sectional area of the probe, which is found to be 

2.08mm2 and 0.61mm2 respectively. 

This difference makes a big impact on calibration factor K  of the probe. The 

calibration factor of the conventional acupuncture probe was typically 1.2, although 

this value varied by about ±20% for the different flow conditions, as described in 

Mishra et al. [1 and 11].  On the other hand, the Teflon-coated probe shows the 

average value of K  to be between 0.95 (for the flow-loop experiments) and 0.99 (for 

the bench test experiments) which is much closer to unity for the four-sensor probe. 

This reduction in the value of K  indicates a significant reduction in the probe-bubble 

interaction effect. 

As mentioned earlier in the process of designing this four-sensor probe, a new type of 

guide (see Figure 3.10) was introduced. This ceramic guide uses the centre hole for 

sensor ‘0’ rather than using the conventional four holes aligned in a square (see Figure 

3.2). The advantage of using this type of guide is that the bubble flowing from any 

direction always hits the front sensor before hitting the rear sensors, unlike the 

conventional orientation where the bubble has to flow in a particular direction (see 

Figure 3.14). For the mathematical model presented in section 2.5, it is important that 

the bubbles always hit the front sensor first. If the bubble doesn’t hit the front sensor 

first, then time interval iitδ (i =1, 2 and 3) given by Equations 2.41 – 2.43 will be 

negative, resulting in a larger number of bubbles to be ignored. Thus, the new 

orientation of the sensors helps to reduce the sampling time, as most of the bubbles hit 

the front sensor first, unlike the previous design. Reduced sampling time requires less 
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volume of data to be processed, thus increasing the speed of the signal processing 

procedure. 

The signal processing method was made much easier and simpler when it was 

automated by introducing a few new parameters which detect and ignore signals from 

a bubble that doesn’t hit the front sensor, or a bubble signal with a smaller voltage 

drop or with a smaller time interval caused by ambiguous bubble-probe interactions, 

depending on the manner in which the bubble hits the probe. This is discussed in more 

detail by Juila et al. [131], in which the author also introduces three main effects as:  

[1] Blinding effect: since the probe detects the disturbed interface position, the 

local interface deformation during probe impact contributes to the error. This 

leads to the existence of a blind zone or, equivalently, to an effective shape 

detected by the probe. 

[2] Crawling effect: the whole bubble is decelerated and/or deformed during the 

interaction. 

[3] Drifting effect: the trajectory of the bubble is altered, leading to either the 

detection of a smaller chord or to no detection at all.  

Signal processing helps to eliminate the invalid signals generated by the above 

situations. The signal processing scheme was also automated in order to calculate the 

polar angle α  and the azimuthal angle beta β , as described in section 2.5.1. 

A sensitivity analysis on the effect of errors in the measured probe dimensions was 

carried out, indicating that errors in the measurement of the probe have a huge 

influence on the calculated velocity vector of the bubble. These errors are found to be 

greater for the small polar angle than the larger polar angle. The error results show 
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when  refα  is close to 0°, a  ±10% error in the value iz  causes the calculated α  to 

vary by 7° from the reference value. However, when refα  reaches 30°, a ±10% error 

on the iz  causes the calculated value of α  to vary from a maximum of 34° to a 

minimum of 28°. The result would lead the observer to decide to use the tilted probe 

only at a certain angle, as it shows a lesser effect in terms of measurement error. 

High speed cameras, which capture 250 frames per second, were used in order to 

measure the reference velocity of the bubble for the tank experimental results. The 

velocity was calculated using the centre of gravity (COG) of the bubble for each 

frame; the mean value is used as the reference velocity. The trajectory of single 

bubbles before and after hitting the probe was calculated from images captured by the 

camera, which shows bubble velocities relative to the water tank (as a bubble moves 

over a vertical probe). The trajectory of bubbles is interesting in its own right because 

visual observation of a rising bubble stream suggests a zigzag motion which would 

lead the observer to think that the polar angle was significantly greater than the actual 

measured value as the bubble moves over the probe. 

The captured images also show that the bubble moves across the probe in the 

direction of the BUOYANCY force on the COG (lateral motion appears to be 

suppressed).  This result could not be known without the use of high speed cameras.  

The images were also used for the reconstruction of the bubble using an image 

processing scheme, which involves curve-fitting and the least square method of 

finding the error for particular images. From these images, the bubbles were found to 

have a diameter of 5-6 mm (the major axis of the bubble was taken as the bubble 

diameter itself) for the small bubble and 10-12 mm for the larger bubble. 
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To achieve a good accuracy measurement of measα  and measβ  it is recommended that 

the following criteria should be met: 

• Bubble size:    5mm 

• Sensor type:     0.15mm Teflon coated needles 

• Dimension of iz :    1-1.5m 

• Sampling frequency:   40K Hz 

• Sampling time:   >1 minute 

• Number of bubble:   > 30  

• Stream of bubbles   

The experiment was also carried out in the flow loop with and without the swirler. 

The bubbly flow in the swirler shows that, in the presence of water velocity, a bubble 

tends to flow in a linear direction and experience a minimum amount of deformation 

compared to a bubble flowing in steady water.  

As with the bench tests, various experiments were carried out in the flow loop in a 

stream of bubbles with different sizes of Teflon-coated needles, at various values of 

reference polar angles refα . The probes were measured before and after recording 

each data, which showed that there was very little variation in the probe dimensions, 

but due to the probe’s flexibility it is unknown whether or not changes in its 

dimensions occurred when recording the data. These data are also calculated with or 

without the signal processing. The velocity vector of the bubble was calculated using 

the “average individual bubble”, as well as the “average iitδ ” method (see Chapter 

11.1). As expected, the results after the signal processing were found to contain fewer 

errors than without the signal processing. It was also found that, in some cases, re-
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measurement of the probe makes very little difference to the results, making the 

author believe that the deformation or the change in the probe dimensions is a long 

drawn out process which does not change after every data reading. For example, if the 

probe is measured before and after recording ten data readings, the probe dimensions 

measured prior to collecting the data result in fewer errors for the data collected at the 

beginning.  Similarly, the dimensions measured after collecting the data give fewer 

errors for the data collected at the end, but as mentioned before, it is still unknown 

whether contraction and expansion of the probe causes any effect due to the velocity 

of the water.  

The flow loop experimental results showed the difference in the number of bubbles 

(NOB) when the data were processed with and without signal processing.  The results 

suggest that, due to the presence of the signal processing procedure, the signals which 

comprised missing bubbles, small time intervals and small voltage levels (as 

discussed in section 5.2.1) were ignored, which is about 10% of the total number of 

bubbles. This resulted in a fewer number of bubbles being processed in the data, as it 

only encompassed those that hit all four sensors of the probe. 

Flow loop experiments also indicate that mmeas,α  calculated with the “average iitδ ” 

method shows fewer errors than when it is calculated with the “average individual 

bubbles” method. The calculated value of mmeas,α   with the signal processing (AS) 

gave a result much closer to refα  as compared to mmeas,α  measured without signal 

processing (BS). Results also indicate that, as the value of refα  increases, the errors 

reduce. Results from  aabs,σ  also show mmeas,α  was close to refα  when it was 
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calculated using the “average iitδ ” method with the probe dimensions measured after 

collecting data (PMA), with the signal processing (AS). 

A flow loop experiment for the azimuthal angle shows that mmeas,β , calculated using 

the “average individual bubble” method with signal processing, gives βε ,abs  of around 

30°. The values were calculated with the probe dimension measured before collecting 

the data (PMB). Unlike mmeas,α , when refα  is increased, the error in mmeas,β  is larger 

as it is calculated with the “average iitδ ” method, but the result was found to be the 

reverse when calculated using the “average individual bubble” method.  The standard 

deviation of mmeas,β  suggests that when refβ  = 34°, the calculated value of mmeas,β  is 

much more scattered than when   refβ  = 0°. 

Flow loop results of the velocity magnitude show that when mmeasv ,  is calculated 

using “average iitδ ” with signal processing, mmeasv ,  gives a close comparison with a 

reference value of refv  for refv  = 30°. However, when refv  = 5°,  mmeasv ,  was found to 

be close to refv  when calculated using the “average individual bubble” method with 

signal processing. 

However, the values of standard deviation aabs,σ and βσ ,abs  indicate the errors in 

individual measurements of mmeas,α , and mmeas,β  were still somewhat greater than 

would be suggested by the values of αε ,abs  and βε ,abs . The results also indicate that, 

with the presence of water, velocity bubbles flow in a straight path with reduced 

deformation of the bubble, unlike in steady water where the bubbles flow in a 

rectilinear/zigzag or rectilinear/spiral [163].  
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The flow loop test was also carried out in bubbly flow in the presence of the swirler, 

which is then compared with the results achieved without the swirler. The tests were 

conducted at various superficial velocities of water wsU and superficial gas velocities 

gsU . The results show that, for the lesser wsU , the presence of the swirler has much 

less effect on local gas volume fraction distribution, whereas for larger wsU  the 

presence of the swirler shows a centrifugal effect, which causes the low density gas to 

preferentially accumulate at the centre of the pipe. At the same gas and liquid flow 

rate without the presence of the swirler, the gas distribution is much more uniform. 

The results also show that there is very little effect on the shape of the axial velocity 

profile for the tested values of air and water superficial velocities, whereas the radial 

velocity rv  is always comparatively small. It also shows that, without the presence of  

the swirler, azimuthal velocity θv  is very close to or around zero at all positions, 

whereas in the presence of the swirler, the distribution of θv  was found to be more 

negative across the pipe diameter. For both test conditions, it was found that the 

presence of the swirler causes the azimuthal velocity θv  to be strongly negative close 

to the pipe walls. It also indicates that the magnitude of azimuthal velocity θv  

decreases at the probe’s centre. 
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CHAPTER 13 

Further Work 

13.1 Local probe optimization 

 

Figure 13.1 New orientation for the miniaturized four-sensor probe 

It can be seen from the results that with the smaller cross-section of the probe there is 

less deformation in the bubbles during probe-bubble interaction, resulting in the 

measured velocity vector being close to the reference velocity vector. This can be 

further improved by minimizing the probe’s cross-sectional area and ensuring the 

formation of the probe is an equilateral triangle with the sensor ‘0’ in the centre, as 

shown in Figure 13.1. Currently, work is being undertaken to design a guide (as 

shown in Figure 13.1) where the holes are made as small as possible, so as to just fit 

the Teflon needle inside. The further advantage of this is that there might not be a 
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need to measure ix  and iy  of the probe dimensions. As the guides are machine-made 

and are very tight to the needle diameter, it is believed that ix  and iy  dimensions 

would always be constant. 

The experimental results from the tank experiment and flow loop show that the 

improved accuracy with which the bubble velocity vector can be measured when the 

polar angle α  between the bubble velocity vector and the z  axis of the probe 

coordinate system is large and when the azimuthal angle β  is close to zero arises due 

to the relative positions of the four sensors (i.e. the tips of the needles) ‘seen’ by the 

bubble. In most bubbly pipe flows of practical interest, including the swirling bubbly 

air-water pipe flows described in Chapter 11, the bubble velocity vector is 

predominantly in the axial direction of the pipe. In such flows it would be possible to 

achieve improved relative positioning of the four sensors, potentially enabling more 

accurate bubble velocity vector measurement, by tilting a PN2 probe relative to the 

pipe axis as shown in Figure 10.3 (see Chapter 10). Unfortunately, by tilting the probe 

in the manner shown in Figure 10.3, the large angle between the bubble velocity 

vector and the axis of each needle means that the resistance of the needles to the 

motion of the bubble is increased. The challenge is therefore to design a probe for 

which (i) the relative positions of the sensors as ‘seen’ by a bubble moving 

predominantly parallel to the pipe axis are the same as those ‘seen’ by a bubble 

approaching a PN2 probe with a polar angle α  of o30 and an azimuthal angle β  of 

o0  relative to the probe coordinate system; but for which (ii) the axes of the needles 

are parallel to the pipe axis, thereby presenting minimum resistance to the motion of 

the bubble as shown in Figure 13.2. 
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*α V

*α V

 

Figure 13.2 Probe layout for *α  

Consider a PN2 probe for which the coordinates of the th
i  rear sensor relative to the 

lead sensor in the ppp zyx ˆ,ˆ,ˆ  probe coordinate system are ipipip zyx ,,, ˆ,ˆ,ˆ  ( 3,2,1=i ). 

Let us now define a new coordinate system zyx ,,  which initially coincides precisely 

with the ppp zyx ˆ,ˆ,ˆ  probe coordinate system but which remains fixed in space whilst 

the ppp zyx ˆ,ˆ,ˆ  coordinate system is rotated in space as shown in Figure 13.3.  

p
ŷ

*α

pk̂ p
ĵ

pî

Figure 13.3 Vector representation for new probe coordinates with respect to *α  

Therefore, the new coordinate of th
i rear sensor is given by:  
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pipipi zyx kji ˆˆˆ ++        Equation 13.1 

where ppp kji ˆ,ˆ,ˆ  are unit vector in direction of ppp zyx ˆ,ˆ,ˆ . 

With reference to a Chapter 8, suppose the PN2 probe is rotated by an angle *α  about 

the px̂  axis (in the anticlockwise direction when viewed along the positive px̂  axis in 

the direction of the origin) and by an angle *β  about the pẑ  axis (in the 

anticlockwise direction when viewed along the positive pẑ  axis in the direction of the 

origin). The new position of the th
i  rear sensor in the fixed ( zyx ,, ) coordinate system 

is given by: 

*

,

*
,, sinˆcosˆ ββ

ipipinew yxx −=      Equation 13.2 

*
,

**

,

**
,, sinˆcoscosˆcossinˆ ααβαβ ipipipinew zyxy −+=    Equation 13.3 

*
,

**

,

**
,, cosˆsincosˆsinsinˆ ααβαβ ipipipinew zyxz ++=    Equation 13.4 

If we now let *α  equal o30  and *β  equal o0  the new coordinates of the th
i  rear 

sensor in the zyx ,,  coordinate system are 

ipinew xx ,, ˆ=         Equation 13.5 

ipipinew zyy ,,, ˆ5.0ˆ866.0 −=
      Equation 13.6 

ipipinew zyz ,,, ˆ866.0ˆ5.0 +=       Equation 13.7 
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The coordinates inewx , , inewy ,  and inewz ,  ( 3,2,1=i ) represent the positions of the three 

rear sensors relative to the lead sensor for a new probe, denoted the P30 probe. The 

coordinate system for this P30 probe is the zyx ,,  coordinate system referred to 

above, the origin of which is at the lead sensor. The z  axis is parallel to the axes of 

the needles and also parallel to the axis of the pipe, the y  axis is parallel to the arm of 

the probe holder (refer to Figure 3.18) and the x  axis is at ninety degrees to the y  

axis in the clockwise sense when the coordinate system is viewed along the increasing 

z  axis in the direction of the origin. The relative positions of the sensors in the P30 

probe seen by a bubble moving parallel to the pipe axis are the same as those that 

would be seen by a bubble moving with a polar angle α  of o30 and an azimuthal 

angle β  of o0  relative to the coordinate system of a PN2 probe. 

13.2 Experimental use of the local probe system 

Further experimental work can also be carried on the oil-water flow. Since the 

viscosity of the oil is higher than that of the water, it is believed that it would be a 

straightforward experiment without causing the deformation problems as experienced 

in air-water flow. The experiments can be carried out in both vertical and inclined oil-

water flow. The necessary modification of an existing oil flow rig is already 

underway.  

Probes could be extended to the array of probes shown in Figure 13.4 to measure the 

flow properties across the pipe diameter simultaneously. This array of probes could be 

used in unsteady air-water and oil-water flow to see how the velocity vector varies 

over a short period of time.  
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Figure 13.4 Schematic of a dual-sensor array probe in an inclined pipe 

 

Figure 13.5 Local oil volume fraction distributions for different inclination 

angles to the vertical (15°, 30°, 45° and 60°) ( wQ
= 3.5 m3/h; oQ

 = 1.0 m3/h) 
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Figure 13.5 shows results from the initial experiment carried out in the inclined oil-

water flow for different pipe inclinations at the same water and oil flow rates ( wQ = 

3.5 m3/h; oQ  = 1.0 m3/h). It can be clearly seen from Figure 13.5 that the oil volume 

fraction is more concentrated at the upper side of the pipe for inclination angles of 45 

degrees and 60 degrees than is the case for inclination angles of 15 degrees and 30 

degrees. Results suggest that the array of probes can be used for further investigations.  

13.3 Reference measurement devices 

The high speed cameras used in this research can be used extensively to calculate the 

residence time of the probe in a bubble. Using these cameras, detailed investigation 

can be carried out on the effect of the probe on the bubble and the trajectory of the 

bubble after striking the probe. Cameras can also be used to observe effects on the 

probe due to the velocity of the water, which in this particular research is assumed to 

be zero  
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Appendix A 

Non-intrusive Methods 

The detailed information on global measuring techniques can be found in the 

references [1-66].  

1. Local techniques 

1.1. Visualisation techniques 

Visualisation techniques yield the bubble shape and size and velocity vector. These 

can be further divided into photographic techniques and radiographic techniques; 

Particle Image Velocimetry and Nuclear Magnetic Resonance (NMR). 

1.1.1 Photographic techniques 

This method involves taking pictures of the flow in order to quantify several 

properties of the multiphase flow, as shown by Camarasa et al. [52], Lage et al. [67], 

Bendjaballah et al. [68], Lin et al. [69] and Peterson et al. [70].   

Even though bubbles are not necessarily spherical and their shapes can vary widely, 

Bendjaballah et al. [68] and Camarasa et al. [52] show that quantitative image 

processing allows determination of the size, shape and velocity vector of the bubble. 

Peterson et al. [70] used photographic techniques to determine the shape and size of 

the bubbles in a three-phase fluidised bed by using refractive index matching of the 

solid and the liquid phase. 
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The main drawback or limitation of this technique is that it can only capture regions 

in close proximity to the wall; furthermore, a transparent pipe wall, as well as a 

transparent continuous phase, is required.  In the case of high pressure columns, a 

special window such the quartz windows used by Lin et al. [69] that can withstand 

pressures up to 20MPa is required.  

1.1.2 Radiographic techniques 

 

Figure A.1 Experimental set up for a radiographic technique used by Heindel et 

al. [71]. 

Radiation techniques such as flash x-ray radiography (FXR) can be used to visualise 

flow structures in opaque multiphase systems using stop-motion x-rays [74, 80, 81]. 

Here, an intense burst of x-ray radiation is produced for a fraction of a second to 



Appendix 

Suman Pradhan 313

record dynamic events on film that cannot be captured by conventional photography 

[72]. Figure A.1 shows a schematic diagram of the equipment used by Heindel et al. 

[71, 73, 74] to observe gas flow patterns and determine the evolution of bubble shape, 

size and position. Heindel et al. [76] also used this method to investigate cellulose 

fibre suspensions with fibre concentrations of up to 1.5% by mass. 

Radiation techniques can also be used to measure average gas volume fraction, as 

shown by Hewitt [77], Lindsay et al. [78] and Kumar et al. [79] and to visualise gas 

flows in multiphase systems, as illustrated by Bennett et al. [80], Hewitt and Roberts 

[81] and Heindel et al. [74]. 

1.1.3 Particle image velocimetry 

Previously the Particle Image Velocimetry (PIV) technique was only used in single 

phase flow in order to determine its velocity field. In this technology, a laser sheet is 

used in order to illuminate a well defined slice of the liquid containing seeding 

particles and two or more images are captured in a very short interval of time. Thus, 

the distance between the positions of the seeding particles yields the instantaneous 

velocity field of the liquid [15]. 

In recent years, this PIV technique has also been applied to dispersed multiphase 

flows. The major advantage of this technique is that it doesn’t make contact with the 

flow; hence, it doesn’t disturb the structure of the flow. The spatial interaction 

between the dispersed phase and the continuous phase is obtained in a short time 

interval. In 1996, Sato et al. [82] adopted this technique for studying dispersed solid 

liquid flow and in 2000 Murai et al. [83] introduced this technique for studying gas-
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liquid multiphase flow in order to verify the inverse turbulence energy cascade. Figure 

A.2 shows the general schematic for the PIV technique [84]. 

 

Figure A.2 Schematic for PIV technique.  Fujiwara et al. [84] 

Delonij et al. [85] also used PIV in order to measure the velocity of both the dispersed 

phase and the continuous phase in bubbly gas–liquid multiphase flow. In order to 

implement this process, Delonij et al. [85] used a single camera PIV technique in gas-

water multiphase flow. The liquid was seeded with small tracer particles and a laser 

was used to illuminate the cross section of the flow. With the ability to distinguish 

between the tracer particles and the bubbles, it was possible to calculate the local 

velocity of both the gas and the liquid phases from the displacement of the bubbles 

and the tracer particles between the successive exposures. 

There are certain limitations when using the PIV technique in gas-liquid multiphase 

flow such as: (i) it can be difficult to differentiate between the bubbles and tracer 

particles, (ii) problems can be caused by the scattering of light from the bubbles, (iii) 
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difficulties in measuring the local liquid velocity in the vicinity of the bubbles due to 

the presence of strong shear flow. 

1.1.4. Nuclear Magnetic Resonance (NMR) 

Nuclear Magnetic Resonance (NMR) is a spectroscopic technique based on a 

resonance phenomenon. The application of a large static magnetic field B0 to the 

sample of interest removes the degeneracy of the nuclear spin states of any nucleus of 

non-zero nuclear spin. To induce transitions between the non-degenerate spin states, a 

sinusoidal radio frequency (r.f) current is applied which is of appropriate frequency to 

enable transitions between the spin states of the particular nucleus to be studied 

(Gladden [86]). The frequency of the radiation ω0 which must be applied to satisfy 

this resonance condition is related to the static magnetic field and the so-called gyro-

magnetic ratio γ  of the nucleus of interest by the expression: 

00 Bγω =         Equation A.1 

Gladden et al. [86, 87] also stated that, in order to observe the magnetic resonance 

phenomena of nuclei as a function of their position in real space (i.e. to perform an 

imaging experiment), a small magnetic field gradient is applied in addition to the 

uniform polarizing field B0 such that the resultant field B varies according to: 

zG
z

B
=

∂

∂
= constant        Equation A.2 

For the case when the field gradient is applied along the z-direction. Under such 

conditions, the angular frequency of spins as a function of position in the z-direction 

is given by: 
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( )zGB zz += 0γω        Equation A.3 

From which it is clear that the resonance frequency (often called the Larmor 

frequency) now varies linearly with position. If the magnetic field is homogeneous, 

the NMR spectrum consists of one resonance line. If a magnetic field gradient is 

applied along the direction of the magnetic field, the NMR spectrum will consist of 

two lines, the separation of which is dependent on the magnitude of the gradient 

(Gladden et al. [87, 88]). In general, the spatial distribution of the Larmor frequency is 

given as: 

( ) rGBr γγω += 0         Equation A.4 

where r is the position vector of the spin if the influence of relaxation is neglected, the 

signal dS acquired from an element of volume dV at position r with spin density 

( )rρ  is given by Gladden et al. [87]: 

( ) ( ) ( )[ ]tGrBidVrtGdS γγρ += 0exp,      Equation A.5 

The application of linear field gradients forms the foundation of all NMR diffusion 

and imaging experiments. In order to recover the spin density function, ( )rρ from an 

imaging experiment, a data set must be acquired for a range of values of the field 

gradient G. Once such a dataset has been obtained, ( )rρ  is recovered using Equation 

A.5. 

In order to image a 3D volume, linear gradients are applied and varied in each of the 

x, y and z directions. NMR is also a particularly useful tool for measuring flow 

phenomena; the easiest method used for flow visualisation also follows directly from 



Appendix 

Suman Pradhan 317

Equation A.5. The nuclei within a specific image slice are selectively excited and 

magnetically ‘tagged’ using an RF pulse sequence. At a time t later, the 3D 

distribution of these ‘tagged’ spins is recorded, from which the velocity distribution of 

those spins is obtained. Thus, 3D images of both velocity profiles and concentration 

distributions can be acquired and it is possible to probe flow velocities in the range 

10−2 cms-1 to 102 cms-1 using NMR techniques.  

 

Figure A.3 (a) A block diagram of a typical pulsed NMR experiment; the 

gradient coils are used for diffusion, flow and imaging experiments. Gladden et 

al. [87]. 

A recent development in flow imaging is the dynamic NMR microscopy technique 

which is able to achieve a velocity resolution of a few tens of microns per second and 

a spatial resolution of a few tens of microns (Gladden et al. [86 – 88]). 
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According to Gladden et al. [88] and Chaouki et al. [89], the major limitation of NMR 

techniques is their inability to study ferromagnetic materials and samples containing 

significant amounts of paramagnetic species, making this equipment very expensive. 

1.2 The laser Doppler anemometry technique 

 

Figure A.4 Schematic diagram of LDA technique  

In multiphase flow, the laser Doppler anemometer (LDA) is widely used to measure 

the velocity of the dispersed phase, as well as the continuous phase with added 

seeding particles. Figure A.4 shows a schematic of the LDA technique where the laser 

is the wave source and the seeding particles or the bubbles are the wave receivers; if 

there is a relative motion between the wave source and the seeding particles or the 

bubbles, there will be a shift in the wave frequency, caused by the Doppler effect. 

Hence, by measuring this shift in the frequency, it is possible to measure the velocity 

of the dispersed phase in a multiphase flow system (Brenn et al. [90]). 

Mudde et al. [91] used alumina-coated spherical polyethylene particles of 4µm 

diameter (density 2.6 x 103 kg/m3) as seeding particles. This resulted in a maximum 

(average) data rate of some 1000Hz. Mudde et al. [91] also used a 2D LDA system, 

which makes it possible to measure the axial and azimuthal velocity components 

simultaneously. 
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Figure A.5 LDA velocity signal in a bubbly flow. Mudde et al. [92] 

Figure A.5 shows the velocity signal obtained by Mudde et al. [92] as a function of 

time in a bubble column. In this figure, one of the problems of the technique  

becomes apparent: during a period of the measuring time, the laser beams do not 

reach the place where the liquid  velocity is supposed to be measured, because 

bubbles interrupt the beams’ path. In Figure A.6, the RMS of the axial liquid velocity 

in a bubble column, as measured by Vial et al. [93], is presented. The results 

correspond to two different gas injectors. 

 

Figure A.6 RMS of the LDA measured axial velocity in a bubble column. Vial et 

al. [93] 



Appendix 

Suman Pradhan 320

Müdde et al [91] state that, with coalescing liquids, it is possible to make reliable 

measurements of gas volume fractions of up to 10% at a distance of 0.1 m from the 

wall. At higher gas velocities (25cm/s), it is possible that the smaller bubbles may 

not be distinguished from the seeding particles. 

1.3 Polarographic technique 

Polarography can be used to measure local wall shear stress. This method is based on 

the fast electrochemical reduction of reagent dissolved in the moving medium. 

Electrode potential is adjusted so that the reagent concentration on the electrodes is 

zero. In these conditions, the mass transfer on each probe depends only on local 

hydrodynamic parameters. In a simple model, Reiss et al. [94] express local wall 

shear stress wτ  versus delivered current I  as: 

3
CIw =τ         Equation A.6 

In bubbly flows, the polarography technique  is still valid. As shown by Souhar et al. 

[95], a liquid  film of 20 µm thickness exists near the wall, which enables mass 

boundary layer development. It has been used in bubble columns by Magaud et al. 

[96] and at the wall of trickle beds by a number of authors (Rode et al. [97]).  

The advantages of this technique are: it is a non-intrusive technique  yielding 

information on the flow behaviour in the immediate vicinity of the wall; it can be 

miniaturised (microelectrodes) and also give information on velocity fluctuations near 

the wall. The disadvantage of this method is that a conducting liquid is required and, 

with the presence of the support electrolyte, it can change the coalescence behaviour 

of the liquid (Christophe et al. [15]).  
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1.4 Radioactive tracking of particles 

This method uses neutrally buoyant spheres that contain radionucleides that emit γ-

rays. A number of detectors around the column receive the transmitted rays; 

determination of the position of the particles in the flow is then possible. The final 

result is that trajectories of the particles can be measured. Usually this type of method 

is used to validate CFD calculations, to determine axial dispersion coefficients of the 

solids, and to yield global circulation patterns. The only disadvantage of this 

technique is the long and complicated calibration procedure that is needed [98-99]. 

1.5 Tomographic techniques 

1.5.1 Tomography by photon attenuation measurement 

This tomography method is based on the attenuation measurement of photon rays 

such as γ- or X-ray. This attenuation is directly proportional to the material density for 

a given photon energy. The resulting image gives the density at each pixel and, hence, 

the phase fraction map. The reconstruction algorithms are based on the inversion of 

the 2D Fast Fourier Transform, since all the measured attenuations are linear 

functions of density. The main algorithm is a filtered back-projection algorithm 

(Shepp et al. [100] and Kak et al. [101]). If f (x, y) is the distribution function of a 

phase fraction inside the column, the measured attenuation corresponding to a 

projection of attenuation is expressed for a given angular position θ and a given 

distance s from column axis (Figure A.7), by the following relationship:  

∫=







=

θ
θ

,
0

),(ln),(
Ls

dlyxf
I

I
Ksp      Equation A.7 
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where I0 and I are the photon fluxes, measured at cylindrical coordinates s and θ, 

when the column is respectively filled with one phase (liquid or gas) and when it is 

filled with a two-phase flow. K is a constant, taking into account the relationship 

between phase fraction and physical attenuation.  

 

Figure A.7 Co-ordinates describing a measured projection. Christopher et al. [15] 

X-ray tomographic systems have been applied to differently packed beds (Christophe 

et al. [15]). As the photon fluxes are very high with X-ray tubes, the detector sensing 

area is reduced and the spatial resolution can be as small as 1×1 mm2. However, such 

photon rays generally have a rather low energy level (less than 100 keV) and their use 

is limited to low attenuating material or to a small column diameter. With γ-rays, the 

photons are more penetrating since their energy can be as high as 1 MeV. Several γ-

ray tomographic systems have been devoted to the investigation of packed beds or 

bubble columns by Kumar et al. [102] and Froystein [103]. In these types of 

tomographic systems, the spatial resolution is around 1×1 cm2. 

1.5.2 Ultrasonic tomography 
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Figure A.8 Schematic diagrams for ultrasonic tomography technology. Warsito 

et al. [104] 

Ultrasonic transducers can be used to obtain tomographic images through a cross-

section of a pipe using ultrasonic waves. The wave propagation depends on both the 

phase fraction and the phase configuration (flow regime, size of dispersed particles). 

Research has been previously carried out to combine the measurement of ultrasonic 

wave attenuation and propagation velocity to detect the solid and gas-phase fractions 

inside a slurry bubble column (Boyer et al. [34] and Warsito et al. [104]). An array of 

ultrasonic emitters and receivers deployed in a parallel configuration at the column 

wall is rotated all around the column, as shown in Figure A.8. As shown by the above 

authors, at high frequencies the wave propagation velocity does not depend on gas 

fraction. The solid fraction is therefore determined from the ultrasonic propagation 

velocity and the gas fraction is obtained by interpreting the measurement of ultrasonic 

wave attenuation. The above authors obtained cross-sectional images of phase 

fractions using a reconstruction procedure performed with a filtered back projection 

algorithm. The results are quite interesting, but it should be noted that this application 

is limited to volume fractions of dispersed phases (solid and gas) below 20%, since 



Appendix 

Suman Pradhan 324

multiple wave reflections on gas and solid interfaces rapidly generate a strong 

attenuation.  

1.5.3 Electrical Resistance Tomography (ERT) 

Dual-plane Electrical Resistance Tomography (ERT) systems can be used to measure 

the local dispersed phase axial velocity and volume fraction distributions in two phase 

flows in which the continuous phase is electrically conducting and where there is a 

conductivity contrast between the dispersed and continuous phases (Lucas et al. [7,8 

and 3]). ERT can be applied in flows in which distributions are highly non-uniform. A 

point-by-point correlation technique is used to measure the velocity of the dispersed 

phase, and is based on the assumption that the flow trajectories are parallel to each 

other and perpendicular to the sensor plane (Wang et al. [9]). 

The dispersed phase volumetric flow rate dQ can be obtained by integrating the 

product of the local axial velocity du  and the local volume fraction lλ  in the flow 

cross section, as shown in Equation A.8, where A  represents the cross sectional area 

of the pipe [8]. 

∫=
A

dld dAuQ λ        Equation  2.8 

Investigations have been carried out in the laboratory at identical flow conditions 

using intrusive, miniature dual-sensor conductance probes (Lucas et al. [8 and 3]) to 

validate the volume fractions and velocity distributions obtained using ERT. As 

described in [3], Lucas et al. used both a dual-sensor conductance probe and an ERT 

system in bubbly-air water flow to compare the measured local gas volume fraction 

and axial gas velocity profiles. The experiments were carried out at various water 
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superficial velocities wsU  within the range of 1ms1.0 −  to 1ms15.1 − . The appropriate 

values of the gas superficial velocity gsU  were used in order to ensure that the flow 

was always in the bubbly regime.  

  

 
 

  

Figure A.9 Volume fraction distribution profile obtained from dual-sensor probe 

(left) and ERT system (right). Lucas et al. [3] 
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Figure A.10 Local axial velocity distribution profile obtained from dual-sensor 

probe (left) and ERT system (right). Lucas et al. [3] 

Figure A.9 shows the results of the local gas volume fraction distribution lλ  from the 

dual-sensor probe (left) and ERT system (right) at constant water superficial velocity 

wsU  of 1ms64.0 −  with the gas superficial velocity gsU  taking values of 1ms017.0 − (a, 
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A), 1ms035.0 − (b, B) and 1ms073.0 − (c, C). The mean gas volume fraction λ  from the 

dual-sensor probe was found to be 0.013, 0.033 and 0.062 respectively.  

The dual-sensor results shows that  as λ  increases as a result of gsU  being increased, 

the local gas volume fraction distribution changes from a ‘peaky’ profile where the 

gas is relatively highly concentrated at the pipe centre to a smoother profile, where the 

gas is more uniformly distributed in the flow cross section.  

Results from the ERT system (Figure A.9 A, B, C at identical flow conditions that 

were used in the dual-sensor probe) show that the gas volume fraction profiles are 

qualitatively similar to the local probe profiles, apart from some ‘noise’ at the 

boundary. Also, the mean value of the gas volume fraction measured using the ERT 

system was always very close to lλ  for all of the flow conditions. 

Lucas et al. [3] also undertook a comparison of the local bubble axial velocity 

distribution obtained using a local dual-sensor probe and a dual-plane ERT system at 

the same flow conditions. Figure A.10 shows the results obtained from local dual-

sensor probe (left) and ERT system (right) with flow conditions where the water 

superficial velocity wsU  was held constant at 1ms38.0 −  and the gas superficial 

velocity gsU  took values of 1ms017.0 − (a, A), 1ms032.0 −  (b, B) and 1ms072.0 − (c, C). 

The measured velocity profile distribution is flatter than the local volume fraction 

distribution in Figure A.9. 

Figure A.10 also shows that the ERT velocity profiles show large ‘flat’ regions, 

suggesting the measured velocity is essentially constant; a result which was not 

observed for the profiles obtained from the local dual-sensor probe. However, the 
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mean value of the gas velocity measured using the ERT system was generally very 

close to a reference measurement of the mean gas velocity, for the flow conditions 

that Lucas et al. [3] investigated. 

 Recent developments using dual-plane ERT have shown that it is possible to obtain 

the distribution of the vector velocity of the dispersed phase, enabling more accurate 

flow rate measurements and also suggesting the possibility of using ERT instruments 

as diagnostic tools and as a means of validating computational models of complex 

multiphase flows. Electrical tomographic systems have been used in bubble columns 

(Schmitz et al. [5]) and in three-phase monoliths and trickle beds (Reinecke et al. [6]). 

Advances in technologies allowed several scientists to optimise the method and the 

reconstruction algorithms (Wang et al. [107]). It is important to mention that ERT 

systems are limited to flows where the continuous phase is electrically conductive [3, 

7, 105 -110]. 

ERT systems are now commercially available, one of which is the ITS p2000 

electrical resistance tomography system. These ERT systems can be used in 

solid/liquid and liquid/gas mixing applications, hydrocyclones, packed columns, 

flotation columns, precipitation processes, liquid-liquid extraction and hydraulic 

conveying. 
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Appendix B 

Software programmes 

1)  Continuous Data Collection 

Dim Voltage_range As Integer, Card_number As Integer 
Dim result As Integer, temp_channel As Integer, Number_of_channels As 

Integer 
Dim Sampling_frequency As Long, Sampling_period As Long 
Dim Data_pathway As String, Total_number_samples As Long 
Dim Total_number_of_bytes As Long, Scan_interval As Long 
Dim Buffer1() As Integer, Buffer2() As Integer 
Dim Buffer_index As Integer, Buffer_size As Long 
Dim Samples_per_buffer As Long, Stop_async As Byte 
Dim Access_count As Long, Channels() As Integer, temp_time As Double 
Dim T1 As Double, T2 As Double, DT As Double 
Dim tempstring As String, box As Integer, tempint As Integer 
Dim Voltage_array() As Double, Stop_async1 As Byte 
Dim Read_scans As Long, Half_ready As Byte, DT_temp As Double 
Dim dig_out As Long, cw As Boolean, number_of_turns As Integer 

  

   
Private Sub Acquire_Data_Command_Click() 
    Exit_Command.Enabled = False 
    Acquire_Data_Command.Enabled = False 
    Deactivate_DAQ2006_Command.Enabled = False 
    Activate_DAQ2006_Command.Enabled = False 
    ROTATE_Command.Enabled = False 
    RTM_Command.Enabled = False 

             
    Info_Label.Caption = "Data are being acquired." 

      
    Buffer_size = Number_of_channels * 16 '* Sampling_frequency 
    ReDim Buffer1(Buffer_size) 
    ReDim Buffer2(Buffer_size) 
    result = D2K_AI_AsyncDblBufferMode(Card_number, 1) 
    If (result < 0) Then 
        Info_Label.Caption = "Error setting the buffer mode!" 
    Else 
        result = D2K_AI_ContBufferSetup(Card_number, Buffer1(0), 

Buffer_size, Buffer_index) 
        result = D2K_AI_ContBufferSetup(Card_number, Buffer2(0), 

Buffer_size, Buffer_index) 
        If (result < 0) Then 
            Info_Label.Caption = "Error setting up the buffers!" 
        Else 
            temp_time = Sampling_period - 1 
            DT_temp = 0 
            Read_scans = Buffer_size / Number_of_channels 
            result = D2K_AI_ContScanChannelsToFile(Card_number, 

(Number_of_channels - 1), Buffer_index, Data_pathway, Read_scans, 

Scan_interval, Scan_interval, ASYNCH_OP) 
            While (temp_time >= 0) 
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                T1 = Timer 
                DT = 0 
                Stop_async1 = 0 
                Half_ready = 0 
                While (Half_ready = 0) 'And (Stop_async1 = 0) 
                    result = 

D2K_AI_AsyncDblBufferHalfReady(Card_number, Half_ready, Stop_async1) 
                    If result < 0 Then 
                        box = MsgBox("ERROR", vbYesNo) 
                    End If 
                Wend 
                result = D2K_AI_AsyncDblBufferToFile(Card_number) 
                    'While (Stop_async1 = 0) 
                    '    result = D2K_AI_AsyncCheck(Card_number, 

Stop_async1, Access_count) 
                    'Wend 
                    'result = D2K_AI_AsyncClear(Card_number, 0, 

Access_count) 
                    T2 = Timer 
                    DT = T2 - T1 
                    temp_time = temp_time - DT 
                    DT_temp = DT_temp + DT 
                    If DT_temp >= 1 Then 
                        DT_temp = 0 
                        Info_Label.Caption = "Remained time: " + 

Str$(temp_time) + " sec." 
                    End If 
            Wend 
            result = D2K_AI_ContBufferReset(Card_number) 
            result = D2K_AI_AsyncClear(Card_number, 0, Access_count) 
            If (result < 0) Then 
                Info_Label.Caption = "Error clearing 'asyncclear' the 

buffer!" 
            Else 
                Info_Label.Caption = "Data have been successfully 

acquired." 
                Exit_Command.Enabled = True 
                Deactivate_DAQ2006_Command.Enabled = True 
                Activate_DAQ2006_Command.Enabled = False 
                Acquire_Data_Command.Enabled = True 
                ROTATE_Command.Enabled = True 
                RTM_Command.Enabled = True 
            End If 
        End If 
    End If 
End Sub 

  
Private Sub Activate_DAQ2006_Command_Click() 
    If (Card_number < 0) Then 
        Info_Label.Caption = "Error registering the card!" 
    Else 
        tempstring = Voltage_Range_Combo.Text 
        If (tempstring = "+-10Volts") Then 
            Voltage_range = AD_B_10_V 
        ElseIf (tempstring = "+-5Volts") Then 
            Voltage_range = AD_B_5_V 
        ElseIf (tempstring = "+-1.25Volts") Then 
            Voltage_range = AD_B_1_25_V 
        ElseIf (tempstring = "+5Volts") Then 
            Voltage_range = AD_U_5_V 
        ElseIf (tempstring = "+10Volts") Then 
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            Voltage_range = AD_U_10_V 
        ElseIf (tempstring = "+2.5Volts") Then 
            Voltage_range = AD_U_2_5_V 
        ElseIf (tempstring = "+1.25Volts") Then 
            Voltage_range = AD_U_1_25_V 
        Else 
            Voltage_range = AD_B_10_V 
        End If 
        Number_of_channels = Number_of_channels_Text.Text 
        For tempint = 0 To (Number_of_channels - 1) 
            result = D2K_AI_CH_Config(ByVal Card_number, ByVal 

tempint, ByVal Voltage_range) 
        Next tempint 
        If (result < 0) Then 
            Info_Label.Caption = "Error configuring the channels!" 
        Else 
            'result = D2K_AI_Config(Card_number, 

DAQ2K_AI_ADCONVSRC_Int, DAK2K_AI_TRGMOD_POST Or DAQ2K_AI_TrgPositive 

Or DAQ2K_AI_TRGSRC, 0, 0, 0, 1) 
            result = D2K_AI_Config(Card_number, 0, 0 Or 0 Or 0, 0, 0, 

0, 1) 
            If (result < 0) Then 
                Info_Label.Caption = "Error in AI configuration!" 
            Else 
                Sampling_frequency = Sampling_frequency_Text.Text * 

1000 
                Sampling_period = Sampling_Period_Text.Text 
                Data_pathway = Data_Filename_Text.Text 
                Scan_interval = 40000000 / Sampling_frequency 
                Total_number_samples = Sampling_frequency * 

Sampling_time * Number_of_channels 
                Total_number_bytes = Total_number_of_samples * 2 
                'Samples_per_buffer = Sampling_frequency * 

Number_of_channels 
                result = D2K_DIO_PortConfig(Card_number, Channel_P1A, 

OUTPUT_PORT) 
                dig_out = 32 'set angle to 0 degrees 
                cw = True 
                number_of_turns = 0 
                result = D2K_DO_WritePort(Card_number, Channel_P1A, 

dig_out) 
                Info_Label.Caption = "DAQ2006 has been successfully 

activated. The digital outputs of port A are all in Zero." 
                Activate_DAQ2006_Command.Enabled = False 
                Deactivate_DAQ2006_Command.Enabled = True 
                Acquire_Data_Command.Enabled = True 
            End If 
        End If 
    End If 

     
End Sub 

  
Private Sub Calculation_Command_Click() 
Dim RetVal As Double 

  
    'RetVal = 

Shell("D:\Nick\PhD\SW\DAQ2006_SIMPLE_ROT\read_DAQ2006_datafile.EXE", 

1) 
    RetVal = 

Shell("D:\Nick\PhD\SW\DAQ2006_SIMPLE_ROT\read_DAQ2006_datafile1.EXE", 

1) 
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End Sub 

  
Private Sub Deactivate_DAQ2006_Command_Click() 
    dig_out = 16 
    result = D2K_DO_WritePort(Card_number, Channel_P1A, dig_out) 
    result = D2K_Release_Card(ByVal Card_number) 
    If (result < 0) Then 
        tempstring = Str$(result) 
        Info_Label.Caption = "Error releasing DAQ2006!" 
    Else 
        Info_Label.Caption = "DAQ2006 has been released." 
        Acquire_Data_Command.Enabled = False 
        Activate_DAQ2006_Command.Enabled = True 
        Exit_Command.Enabled = True 
    End If 
End Sub 

  
Private Sub Exit_Command_Click() 
    End 
End Sub 
Private Sub Form_Load() 
    Card_number = D2K_Register_Card(DAQ_2006, 0) 
    dig_out = 16 
    result = D2K_DO_WritePort(Card_number, Channel_P1A, dig_out) 
    Acquire_Data_Command.Enabled = False 
    Deactivate_DAQ2006_Command.Enabled = False 
End Sub 

  
Private Sub ROTATE_Command_Click() 
    Exit_Command.Enabled = False 
    Acquire_Data_Command.Enabled = False 
    Deactivate_DAQ2006_Command.Enabled = False 
    Activate_DAQ2006_Command.Enabled = False 
    ROTATE_Command.Enabled = False 

     
If number_of_turns = 0 Then 
    dig_out = 128 + 64 '0 angle cw (1 1 0) 
    number_of_turns = number_of_turns + 1 
ElseIf number_of_turns = 1 Then 
    dig_out = 64 '90 angle cw (0 1 0) 
    number_of_turns = number_of_turns + 1 
ElseIf number_of_turns = 2 Then 
    dig_out = 0 '180 angle cw (0 0 0) 
    number_of_turns = number_of_turns + 1 
Else 
    dig_out = 128  '270 angle cw (1 0 0) 
    number_of_turns = 0 
End If 
    result = D2K_DO_WritePort(Card_number, Channel_P1A, dig_out) 

         
    'result = D2K_DIO_PortConfig(Card_number, Channel_P1A, 

OUTPUT_PORT) 
    'Timer1.Enabled = True 
    'T1 = Timer 
    'DT = 10 
    'T2 = Timer 
    'While (T2 <= T1 + DT) 
    '    T2 = Timer 
    'Wend 
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    'Timer1.Enabled = False 
    Exit_Command.Enabled = True 
    Acquire_Data_Command.Enabled = True 
    Deactivate_DAQ2006_Command.Enabled = True 
    Activate_DAQ2006_Command.Enabled = True 
    ROTATE_Command.Enabled = True 
End Sub 

  

  
Private Sub RTM_Command_Click() 

     
    Exit_Command.Enabled = False 
    Acquire_Data_Command.Enabled = False 
    Deactivate_DAQ2006_Command.Enabled = False 
    Activate_DAQ2006_Command.Enabled = False 
    ROTATE_Command.Enabled = False 
    RTM_Command.Enabled = False 

             
    Info_Label.Caption = "Data are being acquired." 

     
    Buffer_size = Number_of_channels * 16 '* Sampling_frequency 
    ReDim Buffer1(Buffer_size) 
    ReDim Buffer2(Buffer_size) 
    result = D2K_AI_AsyncDblBufferMode(Card_number, 1) 
    If (result < 0) Then 
        Info_Label.Caption = "Error setting the buffer mode!" 
    Else 
        result = D2K_AI_ContBufferSetup(Card_number, Buffer1(0), 

Buffer_size, Buffer_index) 
        result = D2K_AI_ContBufferSetup(Card_number, Buffer2(0), 

Buffer_size, Buffer_index) 
        If (result < 0) Then 
            Info_Label.Caption = "Error setting up the buffers!" 
        Else 
            temp_time = Sampling_period - 1 
            DT_temp = 0 
            Read_scans = Buffer_size / Number_of_channels 
            result = D2K_AI_ContScanChannelsToFile(Card_number, 

(Number_of_channels - 1), Buffer_index, Data_pathway, Read_scans, 

Scan_interval, Scan_interval, ASYNCH_OP) 
            While (temp_time >= 0) 
                T1 = Timer 
                DT = 0 
                Stop_async1 = 0 
                Half_ready = 0 
                While (Half_ready = 0) 'And (Stop_async1 = 0) 
                    result = 

D2K_AI_AsyncDblBufferHalfReady(Card_number, Half_ready, Stop_async1) 
                    If result < 0 Then 
                        box = MsgBox("ERROR", vbYesNo) 
                    End If 
                Wend 
                result = D2K_AI_AsyncDblBufferToFile(Card_number) 
                    'While (Stop_async1 = 0) 
                    '    result = D2K_AI_AsyncCheck(Card_number, 

Stop_async1, Access_count) 
                    'Wend 
                    'result = D2K_AI_AsyncClear(Card_number, 0, 

Access_count) 
                    T2 = Timer 



Appendix 

Suman Pradhan 334

                    DT = T2 - T1 
                    temp_time = temp_time - DT 
                    DT_temp = DT_temp + DT 
                    If DT_temp >= 1 Then 
                        DT_temp = 0 
                        Info_Label.Caption = "Remained time: " + 

Str$(temp_time) + " sec." 
                    End If 
            Wend 
            result = D2K_AI_ContBufferReset(Card_number) 
            result = D2K_AI_AsyncClear(Card_number, 0, Access_count) 
            If (result < 0) Then 
                Info_Label.Caption = "Error clearing 'asyncclear' the 

buffer!" 
            Else 
                Info_Label.Caption = "Data have been successfully 

acquired." 
                Exit_Command.Enabled = True 
                Deactivate_DAQ2006_Command.Enabled = True 
                Activate_DAQ2006_Command.Enabled = False 
                Acquire_Data_Command.Enabled = True 
                ROTATE_Command.Enabled = True 
                RTM_Command.Enabled = True 
            End If 
        End If 
    End If 
End Sub 

  

  
Private Sub Timer1_Timer() 
'If cw = True Then 
If number_of_turns = 0 Then 
    dig_out = 96 '0 angle cw (64+32) 
    number_of_turns = number_of_turns + 1 
ElseIf number_of_turns = 1 Then 
    dig_out = 160 '90 angle cw (128+32) 
    number_of_turns = number_of_turns + 1 
ElseIf number_of_turns = 2 Then 
    dig_out = 144 '180 angle cw (128+16) 
    number_of_turns = number_of_turns + 1 
Else 
    dig_out = 80 '270 angle cw (64+16) 
    number_of_turns = 0 
End If 
    result = D2K_DO_WritePort(Card_number, Channel_P1A, dig_out) 

     
'End If 
End Sub 
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2) Single Data Collection 

#include <windows.h> 
#include <stdio.h> 
#include <conio.h> 
#include "d2kdask.h" 

  
#define ADCONVERTSRC  DAQ2K_AI_ADCONVSRC_Int 
#define ADTRIGSRC     DAQ2K_AI_TRGSRC_ExtD 
#define ADTRIGMODE    DAQ2K_AI_TRGMOD_MIDL 
#define ADTRIGPOL     DAQ2K_AI_TrgPositive 
#define MCENABLE      DAQ2K_AI_MCounterEn    
#define BUFAUTORESET  1 
#define SCAN_INTERVAL 4000//4000 
#define POSTCOUNT 1000 

  

  
U16 channel=3;  //4 channels 
U16 range=AD_B_10_V; 
char *file_name="2005d"; 
U32 read_count=4000;//4000; 
U32 samp_intrv = 400;//40000; // makes up the sampling frequency  
unsigned short ai_buf[4000];//4000]; 
unsigned short ai_buf2[4000];//4000]; 
char cardStr[2][8] = {"DAQ2005", "DAQ2006"}; 

  
main() 
{ 
    I16 card, err, card_num, Id, card_type=DAQ_2005; 
    BOOLEAN halfReady, fStop; 
    U32  count=0,count1,startPos=0;//  

  
    printf("This program inputs data from CH-0 to CH-%d of DAQ-

2005/2006 in %d Hz by\ndouble-buffer mode, and store data to file 

'%s.dat'. The size of circular\nbuffer is %d. It will not stop until 

you press a key.\n\nPress any key to start the operation.\n", 
           channel, 1000, file_name, read_count); 
    printf("Card Type: (0) DAQ_2005 or (1) DAQ2006 ? "); 
    scanf(" %d", &card_type); 
    printf("Please input a card number: "); 
    scanf(" %d", &card_num); 
    if(card_type) card_type = DAQ_2006; 
    else card_type = DAQ_2005; 
    if((card = D2K_Register_Card(card_type, card_num))<0) { 
        printf("Register_Card error=%d\n", card); 
        exit(1); 
    } 
    //default setting : the following two functions are removed 
    /*D2K_AI_CH_Config (card, -1, range); 
    err = D2K_AI_Config (card, 0, 

DAQ2K_AI_ADCONVSRC_Int|DAQ2K_AI_TRGMOD_MIDL|DAQ2K_AI_TrgPositive, 18, 

0, 0,1);*/ 
    err = D2K_AI_Config (card, ADCONVERTSRC, 

ADTRIGSRC|ADTRIGMODE|MCENABLE|ADTRIGPOL, POSTCOUNT,3000, 0, 

BUFAUTORESET); 
    //err = D2K_AI_MiddleTrig_Config (card, ADCONVERTSRC, 

ADTRIGSRC|ADTRIGPOL, POSTCOUNT,1,3000, BUFAUTORESET); 
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    if (err!=0) { 
       printf("D2K_AI_Config error=%d", err); 
       exit(1); 
    } 
    err = D2K_AI_AsyncDblBufferMode (card, 1); 
    if (err!=0) { 
       printf("DAQ2K_AI_DblBufferMode error=%d", err); 
       exit(1); 
    } 
    err = D2K_AI_ContBufferSetup (card, ai_buf, read_count, &Id); 
    if (err!=0) { 
       printf("D2K_AI_ContBufferSetup error=%d for the 1st buffer", 

err); 
       exit(1); 
    } 
    D2K_AI_ContBufferSetup (card, ai_buf2, read_count, &Id); 
    if (err!=0) { 
       printf("D2K_AI_ContBufferSetup error=%d for the 2nd buffer", 

err); 
       exit(1); 
    } 
    err = D2K_AI_ContScanChannelsToFile (card, channel, Id, 

file_name, read_count/(channel+1), samp_intrv, samp_intrv, 

ASYNCH_OP); 
    if (err!=0) { 
       printf("D2K_AI_ContScanChannels error=%d", err); 
       exit(1); 
    } 
    printf("\n\nPress any key to stop input operation."); 
    printf("\n\nData count : \n"); 
    do { 
        do { 
             D2K_AI_AsyncDblBufferHalfReady(card, &halfReady, 

&fStop); 
        } while (!halfReady && !fStop); 
        D2K_AI_AsyncDblBufferToFile(card); 
        count += (read_count); 
        printf("%d\r", count); 
    }while( !fStop); 
    // while (!kbhit()); 
    D2K_AI_AsyncClear(card, &startPos, &count1); 
    count += (count1); 
    D2K_Release_Card(card); 
    printf("\n\n%d input data are stored in file '%s.dat'.\n", count, 

file_name); 
    printf("\nPress ENTER to exit the program. "); getch(); 
} 
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3) Signal Processing 

 
%%'data detected' for four sensor probes 

close all; 

clear all; 

clc; 

%********************************************************************

* 

Fs = 20000; 

T = 1/Fs; 

%Load data file and devide the data to four data from Data_1 to 

Data_4 

cd('G:\PhD\matlab_sw\9th_4_08\02_teflon_probe');    

Data =load('data1_20k_100s_66hz_A34_B0.txt');  

%f = 10000; 

%T = 1/f;  

Data_1_o = Data(:,1); 

Data_2_o = Data(:,2); 

Data_3_o = Data(:,3); 

Data_4_o = Data(:,4); 

figure(1); 

plot(Data_1_o,'r--'); 

hold on; 

plot(Data_2_o,'k'); 

hold on; 

plot(Data_3_o,'g') 

hold on; 

plot(Data_4_o,'b') 

%*********************************************** 

%find the thresh voltage 

MAX_DATA1= max(Data_1_o); 

MAX_DATA2= max(Data_2_o); 

MAX_DATA3 = max(Data_3_o); 

MAX_DATA4 = max(Data_4_o); 

%MAX_ARRAY = [MAX_DATA1,MAX_DATA2,MAX_DATA3,MAX_DATA4]; 

%MIN_DATA1_DATA4 = min(MAX_ARRAY); 

THRESH1= MAX_DATA1-0.4; 

THRESH2= MAX_DATA2-0.4; 

THRESH3= MAX_DATA3-0.4; 

THRESH4= MAX_DATA4-0.4; 

%a = min(Data_2); 

Data_1 = Data_1_o-THRESH1; 

Data_2 = Data_2_o-THRESH2; 

Data_3 = Data_3_o-THRESH3; 

Data_4 = Data_4_o-THRESH4; 

%[Data_2_check,num] = min(Data_2) 

%*********************************************** 

%Find the points that touch the signals 

touch_1=0; 

touch_2=0; 

touch_3=0; 

touch_4=0; 

touch_1_right = 0; 

touch_2_right = 0; 

touch_3_right = 0; 

touch_4_right = 0; 

j = 1; 

for i=1:(length(Data_1)-1) 

    if Data_1(i)>0&Data_1(i+1)<=0 

            touch_1(j)=i; 

             j= j+1; 
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    end 

    if Data_1(i)<0&Data_1(i+1)>=0 

           

           touch_1(j)=i+1; 

           j= j+1; 

    end 

end 

j = 1; 

for i=1:(length(Data_2)-1) 

    if Data_2(i)>0&Data_2(i+1)<=0 

            touch_2(j)=i; 

            j= j+1; 

    end 

    if Data_2(i)<0&Data_2(i+1)>=0 

            

           touch_2(j)=i+1; 

           j= j+1; 

    end 

end 

j = 1; 

for i=1:(length(Data_3)-1) 

    if Data_3(i)>0&Data_3(i+1)<=0 

            touch_3(j)=i;  

            j= j+1; 

    end 

    if Data_3(i)<0&Data_3(i+1)>=0          

           touch_3(j)=i+1; 

           j= j+1; 

    end 

end 

j = 1; 

for i=1:(length(Data_4)-1) 

    if Data_4(i)>0&Data_4(i+1)<=0 

            touch_4(j)=i; 

            j= j+1; 

    end 

    if Data_4(i)<0&Data_4(i+1)>=0 

            

           touch_4(j)=i+1; 

           j= j+1; 

    end 

end 

%********************************************************************

***88 

 m =1; 

min_touch = 

[length(touch_1),length(touch_2),length(touch_3),length(touch_4)]; 

times_touch = min(min_touch); 

%fs = 10000; 

%T = 1/fs; 

maybe_right_touch = 0; 

%short_num = 20; 

judge_T = 0.04/T; 

 i = 1; 

 j = 1; 

 while j < times_touch 

    if touch_1(i)< touch_2(i) 

       if touch_1(i)<touch_3(i) 

           if touch_1(i)<touch_4(i) 

                 max_judge = 

[touch_1(i+1),touch_2(i+1),touch_3(i+1),touch_4(i+1)]; 



Appendix 

Suman Pradhan 339

                 min_judge = [(touch_1(i+1)-

touch_1(i)),(touch_2(i+1)-touch_2(i)),(touch_3(i+1)-

touch_3(i)),(touch_4(i+1)-touch_4(i))]; 

                 interval_begin_end = max(max_judge)-touch_1(i); 

                 short_time = min(min_judge); 

                     if interval_begin_end<=judge_T&short_time>=40 

                        maybe_right_touch(m) = touch_1(i); 

                        maybe_right_touch(m+2) = touch_2(i); 

                        maybe_right_touch(m+4) = touch_3(i); 

                        maybe_right_touch(m+6) = touch_4(i); 

                        maybe_right_touch(m+1) = touch_1(i+1); 

                        maybe_right_touch(m+3) = touch_2(i+1); 

                        maybe_right_touch(m+5) = touch_3(i+1); 

                        maybe_right_touch(m+7) = touch_4(i+1); 

                        m= m+8;                        

                        touch_1 = touch_1(i+2:length(touch_1)); 

                        touch_2 = touch_2(i+2:length(touch_2)); 

                        touch_3 = touch_3(i+2:length(touch_3)); 

                        touch_4 = touch_4(i+2:length(touch_4)); 

                        i = 1;  

                        j = j+2; 

                        min_touch_temp = 

[length(touch_1),length(touch_2),length(touch_3),length(touch_4)]; 

                        if min(min_touch_temp)==0 

                            j = times_touch+1; 

                        end 

                     else 

                        touch_1 = touch_1(i+2:length(touch_1)); 

                        i = 1;  

                        if length(touch_1)==0 

                           j = times_touch+1; 

                        end                       

                     end 

            else  

                touch_4 = touch_4(i+2:length(touch_4)); 

                i = 1;  

                 if length(touch_4)==0 

                    j = times_touch+1; 

                 end  

            end 

        else 

             touch_3 = touch_3(i+2:length(touch_3)); 

             i = 1;  

              if length(touch_3)==0 

                 j = times_touch+1; 

              end 

       end 

   else 

     touch_2 = touch_2(i+2:length(touch_2)); 

     i = 1; 

     if length(touch_2)==0 

        j = times_touch+1; 

     end  

    end  

 end 

maybe_right_touch; 

num_bubble = length(maybe_right_touch)/8; 

right_touch = rand(num_bubble,8); 

for i = 1:num_bubble 

    for j = 1:8 

    right_touch(i,j) = maybe_right_touch(j); 
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    end 

    k = 9; 

    maybe_right_touch = 

maybe_right_touch(k:length(maybe_right_touch)); 

end 

right_touch; 

num_bubble; 

%*******************use gary's idea that vdt method********* 

t =1; 

stop_num_b = num_bubble; 

while t<= stop_num_b 

    e1_1 = right_touch(t,1); 

    e1_2 = right_touch(t,2); 

    e2_1 = right_touch(t,3); 

    e2_2 = right_touch(t,4); 

    e3_1 = right_touch(t,5); 

    e3_2 = right_touch(t,6);  

    e4_1 = right_touch(t,7); 

    e4_2 = right_touch(t,8); 

    start_end_edge = [e1_1,e1_2,e2_1,e2_2,e3_1,e3_2,e4_1,e4_2]; 

    start_edge = min(start_end_edge); 

    end_edge = max(start_end_edge); 

    min_p1 = min(Data_1_o(e1_1:e1_2)); 

    min_p2 = min(Data_2_o(e2_1:e2_2)); 

    min_p3 = min(Data_3_o(e3_1:e3_2)); 

    min_p4 = min(Data_4_o(e4_1:e4_2)); 

    max_p1 = min(Data_1_o(e1_2:end_edge+1)); 

    max_p2 = min(Data_2_o(e2_2:end_edge+1)); 

    max_p3 = min(Data_3_o(e3_2:end_edge+1)); 

    max_p4 = min(Data_4_o(e4_2:end_edge+1)); 

    judge_vdt_1 = MAX_DATA1-min_p1; 

    judge_vdt_2 = MAX_DATA2-min_p2; 

    judge_vdt_3 = MAX_DATA3-min_p3; 

    judge_vdt_4 = MAX_DATA4-min_p4; 

    judge_vupdt_1 = max_p1-THRESH1; 

    judge_vupdt_2 = max_p2-THRESH2; 

    judge_vupdt_3 = max_p3-THRESH3; 

    judge_vupdt_4 = max_p4-THRESH4; 

    judge_vupdt_temp = 

[judge_vupdt_1,judge_vupdt_2,judge_vupdt_3,judge_vupdt_4]; 

    min_judge_vupdt = min(judge_vupdt_temp); 

    judge_vdt_temp = 

[judge_vdt_1,judge_vdt_2,judge_vdt_3,judge_vdt_4]; 

    min_judge_vdt = min(judge_vdt_temp); 

    if min_judge_vdt<=0|min_judge_vupdt<=0 

        right_touch(t,:)=[]; 

        stop_num_b = stop_num_b-1; 

    else 

        right_touch(t,:) =right_touch(t,:); 

        t= t+1; 

    end 

    

end 

right_touch; 

num_bubble = stop_num_b; 

%************************************************** 

%9th_april_2008_020toflon_short_zx 

x1 = 0.0233/1000; 

x2 = .4128/1000; 

x3 = -.4767/1000; 

y1 = .7471/1000; 
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y2 = -.6322/1000; 

y3 = -.6149/1000; 

z1 = 0.7965/1000; 

z2 = 0.9535/1000; 

z3 = 0.8605/1000; 

%************************************************** 

%calculate the seven time intervals 

dt_numb = zeros(num_bubble+1,3); 

%dt_0b_1a = zeros(num_bubble+1,2) 

m=1; 

%k=1; 

while m <= num_bubble 

dt0b = (right_touch(m,2)-right_touch(m,1))*T; 

dt1b = (right_touch(m,4)-right_touch(m,1))*T; 

dt2b = (right_touch(m,6)-right_touch(m,1))*T; 

dt3b = (right_touch(m,8)-right_touch(m,1))*T; 

dt1a = (right_touch(m,3)-right_touch(m,1))*T; 

dt2a = (right_touch(m,5)-right_touch(m,1))*T; 

dt3a = (right_touch(m,7)-right_touch(m,1))*T; 

%dt_0b_1a(m,1) = dt0b; 

%dt_0b_1a(m,2) = dt1a; 

dt11 = dt1a+dt1b-dt0b; 

dt22 = dt2a+dt2b-dt0b; 

dt33 = dt3a+dt3b-dt0b; 

if dt11>0&dt22>0&dt33>0 

    dt_numb(m,1) = dt11; 

    dt_numb(m,2) = dt22; 

    dt_numb(m,3) = dt33; 

    m = m+1; 

    %k = k+1; 

else 

    right_touch(m,:) = []; 

    num_bubble = num_bubble-1; 

end 

end 

    dt_numb(num_bubble+1,1) = mean(dt_numb(1:num_bubble,1)); 

    dt_numb(num_bubble+1,2) = mean(dt_numb(1:num_bubble,2)); 

    dt_numb(num_bubble+1,3) = mean(dt_numb(1:num_bubble,3)); 

    %dt_0b_1a(num_bubble+1,1)= mean(dt_0b_1a(1:num_bubble,1)); 

    %dt_0b_1a(num_bubble+1,2)= mean(dt_0b_1a(1:num_bubble,2)); 

    result_bubble_v = zeros(num_bubble+3,6); 

for n = 1:num_bubble+1 

    dt11 =  dt_numb(n,1); 

    dt22 =  dt_numb(n,2); 

    dt33 =  dt_numb(n,3); 

temp_beta_up = (z1/dt11-z2/dt22)*(y1/dt11-y3/dt33)-(z1/dt11-

z3/dt33)*(y1/dt11-y2/dt22); 

temp_beta_down = (z1/dt11-z3/dt33)*(x1/dt11-x2/dt22)-(z1/dt11-

z2/dt22)*(x1/dt11-x3/dt33); 

%********************************************************************

* 

if (temp_beta_up ==0.0) & (temp_beta_down~=0.0) 

         if (temp_beta_down<0.0) 

             beta=270;                    

         else 

             beta=90;                      

         end 

         elseif (temp_beta_up~=0.0) & (temp_beta_down==0.0) 

         if (temp_beta_up<0.0) 

             beta=180;                        

         else 
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             beta=0;                   

         end 

         elseif (temp_beta_up==0.0) & (temp_beta_down==0.0) 

         beta=0;              

  else 

             beta_temp =atand((temp_beta_up)/(temp_beta_down)); 

             if (beta_temp<0)&(temp_beta_up>0) 

                 beta1 = 180+beta_temp;                  

                 alafa1 = atand((z2/dt22-z1/dt11)/((x1/dt11-

x2/dt22)*sind(beta1)+(y1/dt11-y2/dt22)*cosd(beta1))); 

                 if alafa1>0&((z2/dt22-z1/dt11)>0) 

                     beta = beta1; 

                     alafa = alafa1; 

                 elseif alafa1>0&((z2/dt22-z1/dt11)<0) 

                     beta = beta1; 

                     alafa = 180+alafa1; 

                 end 

                 if alafa1<0&((z2/dt22-z1/dt11)>0) 

                     beta = beta1; 

                     alafa = 180+alafa1; 

                 elseif alafa1<0&((z2/dt22-z1/dt11)<0) 

                     beta = beta1; 

                     alafa = 360+alafa1;    

                 end 

             elseif (beta_temp<0)&(temp_beta_up<0) 

                 beta2 = 360+beta_temp; 

                 alafa2 = atand((z2/dt22-z1/dt11)/((x1/dt11-

x2/dt22)*sind(beta2)+(y1/dt11-y2/dt22)*cosd(beta2))); 

                 if alafa2>0&((z2/dt22-z1/dt11)>0) 

                     beta = beta2; 

                     alafa = alafa2; 

                 elseif alafa2>0&((z2/dt22-z1/dt11)<0) 

                     beta = beta2; 

                     alafa = 180+alafa2; 

                 end 

                 if alafa2<0&((z2/dt22-z1/dt11)>0) 

                     beta = beta2; 

                     alafa = 180+alafa2; 

                 elseif alafa2<0&((z2/dt22-z1/dt11)<0) 

                     beta = beta2; 

                     alafa = 360+alafa2; 

                 end 

             end                 

             if (beta_temp>0)&(temp_beta_up>0) 

                 beta3 = beta_temp;                  

                 alafa3 = atand((z2/dt22-z1/dt11)/((x1/dt11-

x2/dt22)*sind(beta3)+(y1/dt11-y2/dt22)*cosd(beta3))); 

                 if alafa3>0&((z2/dt22-z1/dt11)>0) 

                     beta = beta3; 

                     alafa = alafa3; 

                 elseif alafa3>0&((z2/dt22-z1/dt11)<0) 

                     beta = beta3; 

                     alafa = 180+alafa3; 

                 end 

                 if alafa3<0&((z2/dt22-z1/dt11)>0) 

                     beta = beta3; 

                     alafa = 180+alafa3; 

                 elseif alafa3<0&((z2/dt22-z1/dt11)<0) 

                     beta = beta3; 

                     alafa = 360+alafa3; 

                 end 
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             elseif (beta_temp>0)&(temp_beta_up<0)  

                 beta4 = 180+beta_temp; 

                 alafa4 = atand((z2/dt22-z1/dt11)/((x1/dt11-

x2/dt22)*sind(beta4)+(y1/dt11-y2/dt22)*cosd(beta4))); 

                 if alafa4>0&((z2/dt22-z1/dt11)>0) 

                     beta = beta4; 

                     alafa = alafa4; 

                 elseif alafa4>0&((z2/dt22-z1/dt11)<0) 

                     beta = beta4; 

                     alafa = 180+alafa4; 

                 end 

                 if alafa4<0&((z2/dt22-z1/dt11)>0) 

                     beta = beta4; 

                     alafa = 180+alafa4; 

                 elseif alafa4<0&((z2/dt22-z1/dt11)<0) 

                     beta = beta4; 

                     alafa = 360+alafa4; 

                 end          

             end                

end  

if alafa>90&alafa<180 

    alafa = alafa-90; 

elseif alafa>180&alafa<270 

    alafa = alafa-180; 

elseif alafa>270&alafa<360 

    alafa = alafa-270; 

elseif alafa>0&alafa<90 

    alafa = alafa; 

end 

mag_v = 

2*(x1*sind(alafa)*sind(beta)+y1*sind(alafa)*cosd(beta)+z1*cosd(alafa)

)/dt11; 

mag_v2 = 

2*(x2*sind(alafa)*sind(beta)+y2*sind(alafa)*cosd(beta)+z2*cosd(alafa)

)/dt22; 

mag_v3 = 

2*(x3*sind(alafa)*sind(beta)+y3*sind(alafa)*cosd(beta)+z3*cosd(alafa)

)/dt33; 

Vx = mag_v*sind(alafa)*sind(beta); 

Vy = mag_v*sind(alafa)*cosd(beta); 

Vz = mag_v*cosd(alafa); 

result_bubble_v(n,1) = alafa; 

result_bubble_v(n,2) = beta; 

result_bubble_v(n,3) = mag_v; 

result_bubble_v(n,4) = Vx; 

result_bubble_v(n,5) = Vy; 

result_bubble_v(n,6) = Vz; 

end 

    result_bubble_v(num_bubble+3,1) = 

(1/(num_bubble))*sum(result_bubble_v(1:num_bubble,1)); 

    result_bubble_v(num_bubble+3,2) = 

(1/(num_bubble))*sum(result_bubble_v(1:num_bubble,2)); 

    result_bubble_v(num_bubble+3,3) = 

(1/(num_bubble))*sum(result_bubble_v(1:num_bubble,3)); 

    result_bubble_v(num_bubble+3,4) = 

(1/(num_bubble))*sum(result_bubble_v(1:num_bubble,4)); 

    result_bubble_v(num_bubble+3,5) = 

(1/(num_bubble))*sum(result_bubble_v(1:num_bubble,5)); 

    result_bubble_v(num_bubble+3,6) = 

(1/(num_bubble))*sum(result_bubble_v(1:num_bubble,6)); 

    disp('    alafa      beta      mag_v      Vx       Vy       Vz') 
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    disp(result_bubble_v) 

    result_bubble_v;    

hold on 

kk=result_bubble_v((1:num_bubble),2); 

for i= 1:length(kk) 

    if kk(i,:)>180 

        kk(i,:)=360-kk(i,:); 

    

    else 

   kk(i,:)=kk(i,:); 

end 

kk(i,1)=kk(i,:); 

end 

errorindval_bubble = sum(kk)/num_bubble; 

errorindval_bubble 
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4) Image Processing 

 
Image Processing for Bubbles for the first frame 

%includes the intersection poit for the first frame rather then  

%just mean  

clear all; 

close all; 

clc; 

my_movie_info = aviinfo('ma_P3_50k.avi') % movie na,e  

Frames=zeros(my_movie_info.Height, 

my_movie_info.Width,my_movie_info.NumFrames); 

for j=1:my_movie_info.NumFrames 

    I(j,1) = aviread('ma_P3_50k.avi',j); %movie name 

    Frames(:,:,j) = getfield(I(j,1),'cdata'); 

end 

  

movie(I); 

%process for frame 1 

frame01= Frames(:,:,1); 

imshow(frame01); 

[frame_01,Map] = frame2im(I(1)); %extract frame 1  

figure(1)  

a2=image(frame_01); 

title ('Frame1') 

  

    saveas(gcf, 'a2', 'jpg') % save the image  

    j2 = imread('a2.jpg'); 

    x2=imresize(j2,.5); 

    imagesize2 = size(x2); 

    screensize2 = get (0,'screensize'); 

    iptsetpref ('imshowborder','tight'); 

     

% change to gray style 

    z2 = rgb2gray(x2); 

    imshow(z2) 

    BW_2 = edge(z2,'canny',.16); 

    bw_3=(BW_2(:,:)==0); 

    figure(5),imshow(bw_3) 

    hold on; 

    %xx= 

    %yy= 

    [r2 c2]= find(bw_3(300:320,340:370)==0); % first on range of y-

axis second one is range of x-axis 

    bw_4= [r2 c2]; 

    k2=300:320; for N2=k2, I2 = find(bw_3(N2,340:370)==0);, 

RR2_(:,N2) = [I2 zeros(1,50-length(I2))];, end 

  

G2=find(max(RR2_~=0)); 

B2=G2'; 

COL2=mean(B2) 

RR_2 = RR2_(:,B2)'; 

  

    %%%%%%%%%%%%calculates the distance of all coordinates and gives 

the 

    %%%%%%%%%%%%longest distance 

gg=[339]+(bw_4(:,2)); % 1 less to x-axis 

gg1=[299]+(bw_4(:,1));%1 less to y axis 

gg=[gg gg1] 

co=zeros(2,2); 

d=zeros(28,28);% length of gg 

for cnt=1:28 
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    for cntt=(cnt+1):29 

    d(cnt,cntt-1)=sqrt(((gg(cnt ,1)-gg(cntt ,1)).^2) + ((gg(cnt ,2)-

gg(cntt ,2)).^2)); 

    end 

end 

  

f=(max(max(d))); 

[a b]=find(d==f); 

co(1,:)=gg(a,:); 

co(2,:)=gg(b+1,:); 

co 

  

u= ((co(1,1)+co(2,1))/2.000001); 

v= ((co(1,2)+co(2,2))/2.000001); 

[u v] % centreeee 

  

slope = (co(2,2)-co(1,2))/(co(2,1)-co(1,1)) 

m2=-(1/slope) 

m5=atan(slope);     

t2 =((0+pi)):(pi/60):(2*pi); 

t3 =((0):(pi/60):(pi)); 

  

ad=atan(-m2) 

dg=ad-(pi/2) 

  

dots_top=find((gg(:,2)<305)&(gg(:,1)>351)) 

dots_top=gg(dots_top,:) 

  

dots_bot=find((gg(:,2)>305)&(gg(:,1)>351)) 

dots_bot=gg(dots_bot,:) 

  

%% slope of top dots with respect to center [u v]  

for cnt=1:length(dots_top) 

      slope_top(cnt,:)=((dots_top(cnt ,2)-v)/(dots_top(cnt ,1)-u)); 

end 

slope_top; 

%% slope of bottom dots with respect to center [u v] 

for cnt=1:length(dots_bot) 

      slope_bot(cnt,:)=((dots_bot(cnt ,2)-v)/(dots_bot(cnt ,1)-u)); 

end 

slope_bot; 

  

% calculation of min error on slope to make 90 deg on top half 

diff_slope_top=slope_top-m2; 

diff_slope_top = sqrt(diff_slope_top.^2); 

min_slope_top=min(min(diff_slope_top)); 

[x_top y_top]=find(diff_slope_top==min_slope_top); 

coord_top(1,:)=dots_top(x_top(1),:) 

  

%%%% calculation of min error on slope to make 90 deg on bottom half 

diff_slope_bot=slope_bot-m2; 

diff_slope_bot = sqrt(diff_slope_bot.^2); 

min_slope_bot=min(min(diff_slope_bot)); 

[x_bot y_bot]=find(diff_slope_bot==min_slope_bot); 

coord_bot(1,:)=dots_bot(x_bot(1),:) 

  

  

ad2=atan(min_slope_bot) 

dg2=ad2-(pi/2) 

%% calculation  minor axis of top and bottom  
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minor_top= (v-coord_top(1,2)) 

minor_bot= (coord_bot(1,2)-v) 

major_ax = (co(2,1)-co(1,1))/2 

slope_top =((pi/2)-slope):(pi/60):((3*pi/2)-slope); 

slope_bot =((0+(3*(pi/2)))-slope):(pi/60):((2*pi)+(pi/2)-slope); 

t = 0:pi/40:(2*pi); 

  

  

x5 = (((coord_top(1,1)-u) * cos(dg)) + ((coord_top(1,2)-v)* -

sin(dg))+u); 

y6 = (((u-coord_top(1,1))* sin(dg)) + ((v-coord_top(1,2)) * 

cos(dg))+v); 

  

%%%work for bottom minor axis 

%%% substract the centre first and add them at the end after moving 

axis 

  

x9 = (((coord_bot(1,1)-u) * cos(dg2)) + ((coord_bot(1,2)-v)* -

sin(dg2))+u); 

y9 = (((coord_bot(1,1)-u)* sin(dg2)) + ((coord_bot(1,2)-v) * 

cos(dg2))+v); 

  

  

figure(59),imshow(bw_3) 

hold on; 

plot([co(1,1) co(2,1)],[co(1,2) co(2,2)] ,'-') 

plot([x5 u],[y6 v] ,'-') 

plot([x9 u],[y9 v] ,'-') 

new_re_top_m=v-y6 

new_re_bot_m=v-y9 

x7= (round(major_ax))*cos(t2);%************************************** 

y7= new_re_top_m*sin(t2); 

x8 = ((x7 * cos(m5)) + (y7* -sin(m5))+u); 

y8 = ((x7* sin(m5)) + (y7 * cos(m5))+v); 

%plot([coord_bot(1,1) u],[coord_bot(1,2) v] ,'-') 

x10= (round(major_ax))*cos(t2);%************************************* 

y10= new_re_bot_m*sin(t2); 

x11 = ((x10 * cos(m5)) + (y10* -sin(m5))+u); 

y11 = ((x10* sin(m5)) + (y10 * cos(m5))+v); 

plot(x8,y8) 

plot(x11,y11) 

hold off 

     

  

for cnt=1:length(dots_top) 

    for cnt=1:length(dots_top) 

          m_dots_top(cnt,:)=((dots_top(cnt ,2)-v)/(dots_top(cnt ,1)-

u)); 

          for cnt=1:length(m_dots_top) 

             

dist_2_new_ell_top(cnt,:)=((((((major_ax.^2)*(new_re_top_m.^2))*((m_d

ots_top(cnt,1).^2)+1)/((new_re_top_m.^2)+(m_dots_top(cnt,1).^2)*(majo

r_ax.^2)))))); 

             dist_top_dots(cnt,:)=sqrt(((dots_top(cnt ,1)-u).^2) + 

((dots_top(cnt ,2)-v).^2)); 

          end     

    end 

end 

m_dots_top 

new_top_minor=sqrt((dist_2_new_ell_top)) 

dist_top_dots 
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er_minor_top=sqrt((sum(dist_top_dots-new_top_minor)/14).^2) 

new_minor_top=round(er_minor_top+new_re_top_m) 

    

for cnt=1:length(dots_bot) 

     for cnt=1:length(dots_bot) 

          m_dots_bot(cnt,:)=((dots_bot(cnt ,2)-v)/(dots_bot(cnt ,1)-

u)); 

          for cnt=1:length(m_dots_bot)  

             

dist_2_new_ell_bot(cnt,:)=((((((major_ax.^2)*(new_re_bot_m.^2))*((m_d

ots_bot(cnt,1).^2)+1)/((new_re_bot_m.^2)+(m_dots_bot(cnt,1).^2)*(majo

r_ax.^2)))))); 

             dist_bot_dots(cnt,:)=sqrt(((dots_bot(cnt ,1)-u).^2) + 

((dots_bot(cnt ,2)-v).^2)); 

          end 

     end 

end 

m_dots_bot 

new_bot_minor=sqrt((dist_2_new_ell_bot)) 

dist_bot_dots 

er_minor_bot=sqrt((sum(dist_bot_dots-new_bot_minor)/15).^2) 

new_minor_bot=round(new_re_bot_m-er_minor_bot) 

    

figure(60),imshow(bw_3) 

hold on; 

plot([co(1,1) co(2,1)],[co(1,2) co(2,2)] ,'-') 

plot([x5 u],[y6 v] ,'-') 

plot([x9 u],[y9 v] ,'-') 

  

x12= 

(round(major_ax))*cos(t2);%************************************** 

y12= new_minor_top*sin(t2); 

x13 = ((x12 * cos(m5)) + (y12* -sin(m5))+u); 

y13 = ((x12* sin(m5)) + (y12 * cos(m5))+v); 

x14= (round(major_ax))*cos(t2);%************************************* 

y14= new_minor_bot*sin(t2); 

x15 = ((x14 * cos(m5)) + (y14* -sin(m5))+u); 

y15 = ((x14* sin(m5)) + (y14 * cos(m5))+v); 

plot(x13,y13) 

plot(x15,y15) 

hold off 
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Appendix C 

Measured data  

Probe measured before collecting data  

 1 2 3 

x  -0.0930 0.4419 -0.4884 

y  0.6200 -0.5115 -0.3391 

z  1.5116 1.4884 1.5291 

Probe measured after collecting data 

x  -0.1105 0.4128 -0.5116 

y  0.6954 -0.4655 -0.2816 

z  1.5116 1.4884 1.5291 

Table B.1 Probe dimensions before and after collecting data for reference polar angle refα  5° 

Probe measured before collecting data 

 1 2 3 

x  -0.0930 0.4419 -0.4884 

y  0.6200 -0.5115 -0.3391 

z  1.5116 1.4884 1.5291 

Probe measured after collecting data 

x  -0.0872 0.4535 -0.4826 

y  0.6494 -0.5000 -0.3333 

z  1.5116 1.4884 1.5291 

Table B.2 Probe dimensions before and after collecting data for reference polar angle refα  14° 

Probe measured before collecting data  

 1 2 3 

x  -0.0930 0.4419 -0.4884 

y  0.6200 -0.5115 -0.3391 

z  1.5116 1.4884 1.5291 

Probe measured after collecting data 

x  -0.1105 0.4186 -0.4884 

y  0.6207 -0.4943 -0.3218 

z  1.5116 1.4884 1.5291 

Table B.3 Probe dimensions before and after collecting data for reference polar angle refα  21° 

Probe Measured before collecting data 

 1 2 3 

x  -0.0930 0.4419 -0.4884 

y  0.6200 -0.5115 -0.3391 

z  1.5116 1.4884 1.5291 

Probe Measured after collecting data 

x  -0.0930 0.4320 -0.4651 

y  0.6149 -0.4828 -0.3046 

z  1.5116 1.4884 1.5291 
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Table B.4 Probe dimensions before and after collecting data for reference polar angle refα  34° 

  Average iitδ  Average individual  bubble  Average   

Test refv  pmmeas ,,α  
pmmeas ,,β  pmmeas ,,ν  

pmmeas ,,α  
pmmeas ,,β  

pmmeas ,,ν  
11tδ  22tδ  33tδ  NOB 

 

Probe measured before collecting data 

 

without signal processing 

 

1 0.34 8.93 218.41 0.43 24.71 322.97 0.39 0.006636 0.006930 0.007437 24 

2 0.39 11.64 274.07 0.43 25.58 320.54 0.40 0.007015 0.006333 0.007401 71 

3 0.49 9.48 195.85 0.48 25.98 319.82 0.44 0.005822 0.005778 0.006422 59 

4 0.52 10.57 231.40 0.59 23.37 328.86 0.54 0.004842 0.004944 0.005464 22 

5 0.25 14.76 233.60 0.29 25.08 325.52 0.28 0.009565 0.009835 0.011242 42 

Average 11.08 230.67  24.94 323.54  

 

with signal processing 

 

1 0.34 9.20 210.85 0.42 23.27 329.25 0.39 0.006736 0.007158 0.007600 21 

2 0.39 11.64 262.84 0.44 23.71 324.65 0.40 0.006774 0.006283 0.007290 63 

3 0.49 9.63 241.43 0.50 24.89 322.75 0.45 0.005815 0.005776 0.006426 51 

4 0.52 8.81 218.88 0.57 20.92 336.28 0.54 0.005014 0.005227 0.005609 16 

5 0.25 7.49 239.21 0.29 28.43 333.23 0.26 0.010122 0.010071 0.010989 34 

Average 9.35 234.64  24.24 329.23  

 

Probe measured after collecting data 

 

without signal processing 

 

1 0.34 8.80 219.64 0.43 24.46 323.57 0.39 0.00662 0.006908 0.00741 24 

2 0.34 11.74 274.44 0.43 25.52 320.98 0.40 0.006974 0.006296 0.007357 71 

3 0.49 9.23 196.63 0.48 25.74 320.39 0.44 0.005780 0.006327 0.006553 59 

4 0.52 10.48 232.60 0.59 23.17 329.24 0.54 0.004872 0.004974 0.005498 22 

5 0.25 14.65 234.74 0.29 24.82 325.93 0.27 0.009543 0.009812 0.011215 42 

Average 9.55 232.72  25.43 325.57  

 

with signal processing 

 

1 0.34 9.02 211.97 0.42 22.98 329.81 0.39 0.006712 0.007132 0.007572 21 

2 0.34 11.73 263.47 0.44 23.66 325.06 0.40 0.006755 0.006294 0.007305 63 

3 0.49 9.61 242.51 0.50 24.69 323.29 0.45 0.005813 0.005769 0.006420 51 

4 0.52 8.67 219.98 0.57 20.71 336.73 0.54 0.004999 0.005211 0.005592 16 

5 0.25 7.47 240.30 0.29 28.27 333.68 0.26 0.010012 0.010063 0.010980 34 

Average 9.30 235.65  24.06 329.72  

Table B.5 Calculation of  pmeas,α  , pmeas,β  and pmeas,ν  before and after signal processing 

calculated using the probe dimension measured before and after collecting data with refα = 5° 

and refβ =0° and for various values of refv  
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Tests 

 

Average iitδ  Average individual bubble 

pmabs ,,,αε (deg) pmabs ,,,βε (deg) pm,,νε (%) pmabs ,,,αε (deg) pmabs ,,,βε (deg) pm,,νε (%) 

 Probe measured before collecting data 

Error calculation without signal processing 

1 3.93 141.59 26.87 19.71 37.03 15.13 

2 6.64 85.93 10.90 20.58 39.46 1.88 

3 4.48 164.15 1.35 20.98 40.18 9.64 

4 5.57 128.60 12.77 18.37 31.14 3.76 

5 9.76 126.40 16.10 20.08 34.48 10.02 

 
pabs ,,αε  pabs ,,βε  p,νε  pabs ,,αε  pabs ,,βε  p,νε  

6.08 129.33 13.60 19.94 36.46 8.08 

paabs ,,σ  pabs ,,βσ  p,νσ  paabs ,,σ  pabs ,,βσ  p,νσ  

2.06 25.52 8.25 0.90 3.33 4.75 

Error calculation with signal processing 

1 4.20 149.15 23.55 18.27 30.75 14.42 

2 6.64 97.16 11.58 18.71 35.35 3.28 

3 4.63 118.57 1.25 19.89 37.25 7.73 

4 3.81 141.12 9.60 15.92 23.72 3.39 

5 2.49 120.79 17.28 23.43 26.77 5.46 

 
pabs ,,αε  pabs ,,βε  p,νε  pabs ,,αε  pabs ,,βε  p,νε  

4.35 125.36 12.65 19.24 30.77 6.86 

paabs ,,σ  pabs ,,βσ  p,νσ  paabs ,,σ  pabs ,,βσ  p,νσ  

1.35 18.31 7.49 2.46 5.07 4.12 

Probe measured after collecting data 

Error calculation without signal processing 

1 3.80 140.36 26.49 19.46 36.43 15.09 

2 6.74 85.56 27.65 20.52 39.02 17.11 

3 4.23 163.37 1.83 20.74 39.61 9.54 

4 5.48 127.40 12.53 18.17 30.76 3.79 

5 2.47 119.70 15.82 23.27 26.32 9.90 

 
pabs ,,αε  pabs ,,βε  p,νε  pabs ,,αε  pabs ,,βε  p,νε  

4.55 127.28 16.86 20.43 34.43 11.08 

paabs ,,σ  pabs ,,βσ  p,νσ  paabs ,,σ  pabs ,,βσ  p,νσ  

1.46 25.58 9.54 1.69 5.12 4.68 

 Error calculation with signal processing 

1 4.02 148.03 23.09 17.98 30.19 14.23 

2 6.73 96.53 28.23 18.66 34.94 18.75 

3 4.61 117.49 1.17 19.69 36.71 7.61 

4 3.67 140.02 9.28 15.71 23.27 3.20 

5 2.47 119.70 17.18 23.27 26.32 5.41 

 
pabs ,,αε  pabs ,,βε  p,νε  pabs ,,αε  pabs ,,βε  p,νε  

4.30 124.35 15.79 19.06 30.28 9.84 

paabs ,,σ  pabs ,,βσ  p,νσ  paabs ,,σ  pabs ,,βσ  p,νσ  

1.40 18.16 9.66 2.48 5.06 5.79 

Table B.6 Errors in the values of polar angle, azimuthal angle and velocity magnitude measured 

by the probe with refα = 5° and refβ =0° and for various values of refv  
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  Average iitδ  Average individual  bubble     

Test refv  pmmeas ,,α  
pmmeas ,,β  pmmeas ,,ν  

pmmeas ,,α  
pmmeas ,,β  

pmmeas ,,ν  
11tδ  22tδ  33tδ  NOB 

 

Probe measured before collecting data 

 
Before signal processing 

 

1 0.34 11.06 316.68 0.44 26.01 326.46 0.40 0.007192 0.006051 0.006898 45 

2 0.39 17.26 305.40 0.44 27.98 339.62 0.41 0.007148 0.005575 0.006910 98 

3 0.49 15.97 337.03 0.45 28.84 319.06 0.43 0.007201 0.005573 0.006385 36 

4 0.52 15.87 323.95 0.48 28.68 335.93 0.52 0.006698 0.005198 0.006144 55 

5 0.25 9.52 325.23 0.31 29.21 331.62 0.27 0.010218 0.008753 0.009729 33 

Average 13.94 308.06  28.14 330.54  

 

After signal processing 

 

1 0.34 13.58 305.43 0.43 24.91 325.96 0.40 0.007309 0.006012 0.007133 35 

2 0.39 15.13 330.13 0.45 26.62 343.93 0.41 0.007163 0.005616 0.006502 74 

3 0.49 18.83 315.70 0.48 28.40 330.54 0.44 0.006645 0.004962 0.006163 30 

4 0.52 15.93 322.44 0.59 26.95 346.79 0.54 0.005437 0.004224 0.005011 39 

5 0.25 15.36 300.12 0.30 24.40 315.73 0.28 0.010409 0.008440 0.010275 21 

Average 15.76 314.76  26.26 332.59  

 

Probe measured after collecting data 

 

Before signal processing 

 

1 0.34 11.82 294.71 0.43 26.25 324.06 0.40 0.007216 0.006184 0.007246 42 

2 0.34 17.15 304.72 0.44 27.75 339.21 0.42 0.007157 0.005583 0.006919 98 

3 0.49 15.78 336.20 0.45 28.64 318.66 0.43 0.007226 0.005592 0.006407 36 

4 0.52 15.72 323.11 0.48 28.46 335.51 0.52 0.006708 0.005211 0.006159 55 

5 0.25 6.40 204.98 0.30 26.27 319.36 0.27 0.009605 0.010055 0.010506 33 

Average 13.38 292.74  27.48 327.36  

 

After signal processing 

 

1 0.34 14.07 303.9 0.41 25.21 325 0.4 0.007668 0.006266 0.007490 33.5 

2 0.34 14.97 329.25 0.45 26.40 343.52 0.42 0.007182 0.005631 0.006520 74 

3 0.49 18.69 314.93 0.48 28.22 330.13 0.44 0.006661 0.004975 0.006172 29 

4 0.52 15.78 321.63 0.59 26.74 346.35 0.54 0.005450 0.004234 0.005023 39 

5 0.25 14.42 283.08 0.26 22.92 300.95 0.28 0.011706 0.010026 0.012148 23 

Average 15.59 310.56  25.90 329.19  

Table B.7 Calculation of  pmeas,α  , pmeas,β  and pmeas,ν  before and after signal processing 

calculated using the probe dimension measured before and after (table 11.5) collecting data with 

refα = 14° and refβ =0° at different refv  
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Tests  
average iitδ  average individual bubble 

pmabs ,,,αε (deg) pmabs ,,,βε (deg) pm,,νε (%) pmabs ,,,αε (deg) pmabs ,,,βε (deg) pm,,νε (%) 

 Probe measured before collecting data 

Error calculation before signal processing 

1 2.94 43.32 30.69 12.01 33.54 17.38 

2 3.26 54.60 13.45 13.98 20.38 6.32 

3 1.97 22.97 7.68 14.84 40.94 11.82 

4 1.87 36.05 7.21 14.68 24.07 0.79 

5 4.48 34.77 23.70 15.21 28.38 6.95 

 
pabs ,,αε  pabs ,,βε  p,νε  pabs ,,αε  pabs ,,βε  p,νε  

2.90 38.34 16.55 14.14 29.46 8.65 

paabs ,,σ  pabs ,,βσ  p,νσ  paabs ,,σ  pabs ,,βσ  p,νσ  

0.95 10.43 9.23 1.14 7.23 5.59 

Error calculation after signal processing 

1 0.42 54.57 26.72 10.91 34.04 17.14 

2 1.13 29.87 14.77 12.62 16.07 6.38 

3 4.83 44.30 1.89 14.40 29.46 10.78 

4 1.93 37.56 13.20 12.95 13.21 4.14 

5 1.36 59.88 18.04 10.40 44.27 11.26 

 
pabs ,,αε  pabs ,,βε  p,νε  pabs ,,αε  pabs ,,βε  p,νε  

1.93 45.24 14.92 12.26 27.41 9.94 

paabs ,,σ  pabs ,,βσ  p,νσ  paabs ,,σ  pabs ,,βσ  p,νσ  

1.53 10.93 8.02 1.45 11.51 4.48 

Probe measured after collecting data 

Error calculation before signal processing 

1 2.18 65.30 27.05 12.25 35.94 16.67 

2 3.15 55.28 30.31 13.75 20.79 22.50 

3 1.78 23.80 7.37 14.64 41.34 11.53 

4 1.72 36.89 6.98 14.46 24.49 0.43 

5 7.60 155.02 19.56 12.27 40.64 6.89 

 
pabs ,,αε  pabs ,,βε  p,νε  pabs ,,αε  pabs ,,βε  p,νε  

3.28 67.26 18.25 13.48 32.64 11.61 

paabs ,,σ  pabs ,,βσ  p,νσ  paabs ,,σ  pabs ,,βσ  p,νσ  

2.22 46.17 9.69 1.04 8.46 7.64 

Error calculation after signal processing 

1 0.07 56.10 20.59 11.21 35.00 17.60 

2 0.97 30.75 32.01 12.40 16.48 22.60 

3 4.69 45.07 1.66 14.22 29.87 10.40 

4 1.78 38.37 13.47 12.74 13.65 4.55 

5 0.42 76.92 4.00 8.92 59.05 11.87 

 
pabs ,,αε  pabs ,,βε  p,νε  pabs ,,αε  pabs ,,βε  p,νε  

1.59 49.44 14.34 11.90 30.81 13.40 

paabs ,,σ  pabs ,,βσ  p,νσ  paabs ,,σ  pabs ,,βσ  p,νσ  

1.66 16.07 11.13 1.77 16.22 6.20 

Table B.8 Errors in the values of polar angle, azimuthal angle and velocity magnitude measured 

by the probe for table 11.6 for refα = 14° and refβ =0° at different refv  
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  Average iitδ  Average  individual  bubble     

Test refν  pmmeas ,,α  
pmmeas ,,β  pmmeas ,,ν  

pmmeas ,,α  
pmmeas ,,β  

pmmeas ,,ν  
dt11 dt22 dt33 NOB 

 

Probe measured before collecting data  

Before signal processing 

 

1 0.34 22.15 333.92 0.43 27.02 340.25 0.40 0.00756 0.00527 0.00643 45 

2 0.39 19.13 310.20 0.39 27.51 332.18 0.39 0.00812 0.00609 0.00767 58 

3 0.49 31.58 282.23 0.44 31.74 323.84 0.45 0.00634 0.00448 0.00689 58 

4 0.52 30.33 25.41 0.45 29.86 342.49 0.52 0.00697 0.00510 0.00471 53 

5 0.25 19.03 351.28 0.33 29.97 345.55 0.30 0.00990 0.00740 0.00824 30 

Average 24.44 321.17  29.22 336.86  

 

After Signal Process 

 

1 0.34 21.72 332.80 0.42 26.41 339.43 0.40 0.007734 0.005427 0.006626 40 

2 0.39 21.60 322.24 0.43 26.99 338.86 0.41 0.007474 0.005281 0.006666 45 

3 0.49 19.86 320.86 0.49 28.32 327.95 0.45 0.006551 0.004777 0.005933 39 

4 0.52 26.30 346.73 0.56 30.11 343.14 0.53 0.005828 0.003817 0.004551 40 

5 0.25 17.73 357.70 0.34 27.51 347.72 0.30 0.009586 0.007392 0.007996 24 

Average 21.44 336.07  27.87 339.42  

 

Probe measured after collecting data 

Before signal processing 
 

1 0.34 13.79 296.22 0.41 31.62 337.42 0.39 0.007595 0.006361 0.007588 58 

2 0.39 19.52 309.69 0.39 28.03 332.00 0.39 0.008131 0.006101 0.007683 58 

3 0.49 18.90 339.06 0.38 25.98 344.14 0.40 0.008583 0.006369 0.007399 52 

4 0.52 32.39 281.70 0.44 32.33 323.63 0.45 0.006372 0.004471 0.006875 58 

5 0.25 19.34 351.34 0.33 30.47 345.45 0.30 0.009909 0.007404 0.008245 30 

Average 20.79 320.85  29.68 336.53  

 

After Signal Process 

 

1 0.34 23.73 332.58 0.42 29.14 337.18 0.40 0.007743 0.005278 0.006549 50 

2 0.39 22.00 321.87 0.43 27.51 338.66 0.40 0.007488 0.005291 0.006679 45 

3 0.49 20.26 339.48 0.43 26.28 336.10 0.41 0.007594 0.005513 0.006462 42 

4 0.52 20.23 320.48 0.49 28.88 327.75 0.45 0.006564 0.004783 0.005945 39 

5 0.25 18.03 357.82 0.34 27.99 347.61 0.30 0.009592 0.007397 0.008001 24 

Average 20.85 334.45  27.96 337.46  

Table B.9 Calculation of  pmeas,α  , pmeas,β  and pmeas,ν  before and after signal processing 

calculated using the probe dimension measured before and after (table 11.8) collecting data with 

refα = 21° and refβ =0° at different refv  
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tests 
Average iitδ  Average individual bubble 

pmabs ,,,αε (deg) pmabs ,,,βε (deg) pm,,νε (%) pmabs ,,,αε (deg) pmabs ,,,βε (deg) pm,,νε (%) 

 Probe measured before collecting data 

Error calculation before signal processing 

1 1.15 26.08 25.65 6.02 19.75 18.76 

2 1.88 49.80 0.29 6.51 27.82 1.23 

3 10.58 77.77 9.56 10.74 36.16 8.39 

4 9.33 25.41 12.61 8.86 17.51 0.26 

5 1.97 8.72 31.28 8.97 14.45 21.51 

 
pabs ,,αε  pabs ,,βε  p,νε  pabs ,,αε  pabs ,,βε  p,νε  

4.98 37.56 15.88 8.22 23.14 10.03 

paabs ,,σ  pabs ,,βσ  p,νσ  paabs ,,σ  pabs ,,βσ  p,νσ  

4.09 23.99 11.19 1.74 7.88 8.76 

Error calculation after signal processing 

1 0.72 27.20 24.07 5.41 20.57 17.25 

2 0.60 37.76 9.47 5.99 21.14 3.87 

3 1.14 39.14 0.07 7.32 32.05 7.74 

4 5.30 13.27 7.50 9.11 16.86 1.82 

5 3.27 2.30 34.44 6.51 12.28 21.76 

 
pabs ,,αε  pabs ,,βε  p,νε  pabs ,,αε  pabs ,,βε  p,νε  

2.21 23.93 15.11 6.87 20.58 10.49 

paabs ,,σ  pabs ,,βσ  p,νσ  paabs ,,σ  pabs ,,βσ  p,νσ  

1.86 15.77 12.65 2.82 9.72 8.07 

Probe measured after collecting data 

Error calculation before signal processing 

1 7.21 63.78 21.21 10.62 22.58 14.40 

2 1.48 50.31 0.11 7.03 28.00 1.09 

3 2.10 20.94 21.71 4.98 15.86 17.75 

4 11.39 78.30 14.92 11.33 36.37 13.94 

5 1.66 8.66 31.42 9.47 14.55 20.97 

 
pabs ,,αε  pabs ,,βε  p,νε  pabs ,,αε  pabs ,,βε  p,νε  

4.77 44.40 17.87 8.68 23.47 13.63 

paabs ,,σ  pabs ,,βσ  p,νσ  paabs ,,σ  pabs ,,βσ  p,νσ  

3.94 26.03 10.33 2.36 8.07 6.77 

Error calculation after signal processing 

1 2.73 27.42 23.07 8.14 22.82 16.43 

2 1.00 38.13 9.69 6.51 21.34 3.75 

3 0.74 20.52 12.07 5.28 23.90 15.89 

4 0.77 39.52 5.52 7.88 32.25 13.28 

5 2.97 2.18 34.53 6.99 12.39 21.31 

 
pabs ,,αε  pabs ,,βε  p,νε  pabs ,,αε  pabs ,,βε  p,νε  

1.64 25.55 16.97 6.96 22.54 14.13 

paabs ,,σ  pabs ,,βσ  p,νσ  paabs ,,σ  pabs ,,βσ  p,νσ  

0.99 13.63 10.52 1.03 6.34 5.80 

Table B.10 Errors in the values of polar angle, azimuthal angle and velocity magnitude measured 

by the probe for refα = 21° and refβ =0° at different refv  
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  Average iitδ  Average individual  bubble Average (Avg) 

NOB Test refv  pmmeas ,,α  
pmmeas ,,β  pmmeas ,,ν  

pmmeas ,,α  
pmmeas ,,β  

pmmeas ,,ν  

11tδ  22tδ  33tδ  

 

Probe measured before collecting data 

Before Signal processing 

 

1 0.34 16.89 275.33 0.39 36.92 327.10 0.37 0.007350 0.006828 0.008324 35 

2 0.39 28.79 337.14 0.41 34.22 328.60 0.39 0.007889 0.004853 0.006249 15 

3 0.49 32.59 327.65 0.50 37.61 325.00 0.46 0.006330 0.003576 0.005099 46 

4 0.52 23.45 257.98 0.47 37.31 251.35 0.52 0.005837 0.005259 0.006898 48 

5 0.25 34.28 323.71 0.30 32.22 342.61 0.28 0.010410 0.005669 0.008482 16 

Avg 0.40 27.20 304.36 0.41 35.65 314.93 0.40 0.007350 0.006828 0.008324 32 

 

After Signal processing 

 

1 0.34 31.32 334.36 0.41 35.33 336.65 0.39 0.007819 0.004548 0.006133 30 

2 0.39 30.15 340.11 0.39 33.13 333.77 0.38 0.008286 0.004974 0.006387 13 

3 0.49 34.82 323.64 0.48 37.52 324.44 0.45 0.006490 0.003488 0.005270 34 

4 0.52 31.94 340.53 0.60 35.31 345.37 0.56 0.005361 0.003100 0.004049 35 

5 0.25 35.87 272.91 0.25 37.21 289.65 0.24 0.010382 0.007459 0.012119 5 

Avg 0.40 32.82 322.31 0.42 35.70 325.98 0.40 0.007819 0.004548 0.006133 23 

 

Probe measured after collecting data 

Before Signal processing 

 

1 0.34 17.51 274.84 0.39 37.88 43.05 0.37 0.007616 0.006552 0.008154 35 

2 0.39 29.64 337.65 0.40 35.26 328.98 0.39 0.008063 0.004958 0.006386 15 

3 0.49 33.47 327.96 0.49 38.61 325.93 0.45 0.006431 0.003631 0.005181 46 

4 0.52 24.36 257.59 0.47 38.24 341.75 0.51 0.005787 0.005211 0.006840 48 

5 0.25 35.17 323.93 0.30 32.92 342.67 0.27 0.010357 0.005636 0.008439 16 

Avg 0.40 28.03 304.39 0.41 36.58 276.48 0.40 0.007616 0.006552 0.008154 32 

 

After Signal processing 

 

1 0.34 32.21 334.81 0.35 36.33 36.03 0.38 0.009124 0.005306 0.007156 29 

2 0.39 31.05 340.65 0.38 34.13 334.15 0.38 0.008475 0.005086 0.006533 13 

3 0.49 35.71 323.87 0.47 38.50 324.64 0.45 0.006593 0.003542 0.005354 34 

4 0.52 32.89 341.05 0.60 36.27 345.78 0.55 0.005338 0.003086 0.004032 35 

5 0.25 36.93 272.42 0.25 38.16 289.45 0.24 0.010238 0.007346 0.011950 5 

Avg 0.40 33.76 322.56 0.41 36.68 266.01 0.40 0.009124 0.005306 0.007156 23 

Table B.11 Calculation of  pmeas,α  , pmeas,β  and pmeas,ν  before and after signal processing 

calculated using the probe dimension measured before and after (table 11.11) collecting data with 

refα = 34° and refβ =0° at different refv  
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 Average iitδ  Average individual bubble 

tests pmabs ,,,αε (deg) pmabs ,,,βε (deg) pm,,νε (%) pmabs ,,,αε (deg) pmabs ,,,βε (deg) pm,,νε (%) 

Probe measured before data collection 

Error calculation before signal processing 

1 17.11 84.67 14.19 2.92 32.90 8.27 

2 5.22 22.86 3.98 0.22 31.40 0.90 

3 1.41 32.35 1.28 3.61 35.00 6.54 

4 10.55 102.02 9.49 3.31 108.65 0.38 

5 0.28 36.29 20.46 1.78 17.39 10.71 

 pabs ,,αε  pabs ,,βε  p,νε  pabs ,,αε  pabs ,,βε  p,νε  

 4.08 56.89 10.41 2.90 53.68 5.88 

 paabs ,,σ  pabs ,,βσ  p,νσ  paabs ,,σ  pabs ,,βσ  p,νσ  

 4.60 31.95 7.86 0.80 39.53 4.24 

Error calculation after signal processing 

1 2.68 25.64 20.13 1.33 23.35 13.24 

2 3.85 19.89 0.97 0.87 26.23 2.03 

3 0.81 36.36 2.85 3.52 35.56 7.66 

4 2.06 19.47 14.95 1.31 14.63 6.93 

5 1.87 87.09 0.65 3.21 70.35 3.72 

 pabs ,,αε  pabs ,,βε  p,νε  pabs ,,αε  pabs ,,βε  p,νε  

 1.58 47.64 6.15 2.68 40.18 6.10 

 paabs ,,σ  pabs ,,βσ  p,νσ  paabs ,,σ  pabs ,,βσ  p,νσ  

 0.55 28.73 6.29 0.98 22.98 1.71 

Probe measured after data collection 

Error calculation before signal processing 

1 16.50 85.16 13.81 3.88 43.05 7.36 

2 4.36 22.35 3.67 1.26 31.02 0.02 

3 0.53 32.04 0.83 4.61 34.07 7.45 

4 9.64 102.41 10.26 4.24 18.25 1.27 

5 1.17 36.07 19.84 1.08 17.33 9.90 

 pabs ,,αε  pabs ,,βε  p,νε  pabs ,,αε  pabs ,,βε  p,νε  

 6.44 55.61 9.68 3.01 28.74 5.20 

 paabs ,,σ  pabs ,,βσ  p,νσ  paabs ,,σ  pabs ,,βσ  p,νσ  

 5.97 31.96 6.86 1.53 9.78 3.85 

Error calculation after signal processing 

1 1.79 25.19 2.94 2.33 36.03 12.31 

2 2.95 19.35 1.31 0.13 25.85 2.74 

3 1.71 36.13 3.37 4.50 35.36 8.48 

4 1.11 18.95 14.47 2.27 14.22 6.00 

5 2.93 87.58 0.74 4.16 70.55 5.28 

 pabs ,,αε  pabs ,,βε  p,νε  pabs ,,αε  pabs ,,βε  p,νε  

 2.10 37.44 4.57 2.68 36.40 6.96 

 paabs ,,σ  pabs ,,βσ  p,νσ  paabs ,,σ  pabs ,,βσ  p,νσ  

 0.73 25.83 5.05 1.57 18.82 3.24 

Table B.12 Errors in the values of polar angle, azimuthal angle and velocity magnitude measured 

by the probe for table 11.1 for refα = 34° and refβ =0° at different refv  


