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Abstract 

The ditopic ligand, L1, contains both a bipyridine domain and a tetra-azacrown binding 
domain.  Introduction of one equivalent of Cu2+ ions results in co-ordination of the ion by all 
four of the available N-donor atoms in the azacrown unit.  However, introduction of further 
Cu2+ ions results in the formation of a variety of species depending on the ratio of Cu2+ ions 
to ditopic ligands available.  The bipyridine site is capable of behaving as a bidentate 
chelator as co-ordination at the bipyridine unit by a further Cu2+ ion allosterically alters the 
behavior of the azacrown domain.   The co-ordination of a Cu2+ ion at the bipyridine unit 
causes the unit to adopt a planar conformation, preventing all four available N-donor atoms 
in the tetra-azacrown from co-ordinating an encapsulated copper ion.  Therefore co-
ordination of the bipyridine domain changes the tetra-azacrown unit from a tetradentate to a 
tridentate N-donor unit. 

A diamino-functionalised cryptate, L2, was synthesized, which is capable of reacting 
irreversibly with butanal in aqueous media, when in the presence of an excess of metal ions.  
Co-ordination of the cryptate unit is required in order for the cyclisation to occur, excess 
metal ions act as Lewis acids in order to promote the reaction, and also co-ordinate the 
cryptate ion.  Co-ordination of the cryptate ion forces the bipyridine unit into a more planar 
position, allowing the amine groups to move into closer proximity to each other.  Subsequent 
reaction with butanal induces the ligand to form a cyclised bis-aminal complex, as the amino 
groups react readily with the aldehyde to form a seven-membered bis-aminal species.  The 
cyclised ligand was found to display metal dependent luminescent properties, with zinc ions 
producing the most intense increase in emissive properties by a significant margin as well as 
increasing the luminescent lifetime.   

A potentially hexadentate ligand, L3, was synthesized, which upon co-ordination with 
dicationic metal ions forms dinuclear double stranded helicate species.  The ligand partitions 
into two separate tridentate binding domains, consisting of two N-donor atoms from a 
pyridyl-triazole unit and an O-donor atom from a carbonyl oxygen group on the coumarin 
unit. The ligand contains two coumarin fluorophores, and the luminescent properties of the 
dinuclear helicate complexes were investigated.  It was found that upon co-ordination of Zn2+ 
the emissive properties were enhanced in comparison with the parent ligand, however 
introduction of Co2+, Cu2+, Cd2+ and Hg2+ ions induced fluorescent quenching of varying 
degrees. 
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1: Introduction 

1.1 Supramolecular Chemistry 

Supramolecular chemistry is a broad subject and involves investigation of new molecular 

systems, the predominant feature of which is the method with which the structures are held 

together.  These components are held together by reversible intermolecular forces, not by 

covalent bonds as is often the case.  The structures synthesized within supramolecular 

chemistry are often designed for a purpose, careful planning of functional groups can allow 

researchers to design a ligand for a specific application.  Therefore, one of the main 

applications of supramolecular chemistry is the development of sensors and probes. 1, 2 

Supramolecular chemistry in its current definition was established in the late 1960’s, 

however, the principles and concepts on which it is based go back much further.  

Supramolecular chemistry is an area that spans many disciplines of chemical science; it 

encompasses aspects of physical, organic, inorganic and biochemistry.  The nature of the 

research has fostered collaborations between a variety of specialists in a range of fields, 

such as crystallographers, computational chemists and biologists, in order to fully investigate 

the properties and utilities of a target ligand.  For this reason it has been an area which is 

difficult to define, one description that appears to be most apt is that of Jean-Marie Lehn, 

which is “chemistry beyond the molecule”. 3  This refers to the bonding within 

supramolecular systems, rather than ionic or covalent bonding, supramolecular systems 

often form interactions and assemblies by non-covalent bonding, such as ion-dipole 

interactions, dipole-dipole interactions or hydrogen bonding. These associations often occur 

between two or more chemical species, causing organizations of ligands held together by 

reversible intermolecular forces. 3   

1.1.1 Principal research in Supramolecular Chemistry 

The first modern supramolecular advance was in the field of macrocyclic ligands and was 

reported by the key groups of Curtis, Pederson, Jäger and Busch, with Lehn contributing 

later on. 4-8  Jean-Marie Lehn prepared cryptates and went on to win the Nobel Prize for his 

contributions to chemistry; much of his research continues to influence supramolecular 

structures today. 
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Figure 1 – Early macrocyclic ligands produced in supramolecular chemistry; 1. Curtis 1962 9, 

2. Busch 1964 7 and 3. Pedersen 1967 10 

 
For example it was Lehn who first published the cryptate macrobicyclic ligand, in his paper 

entitled “Les Cryptates”, published in 1969. 8  In this paper he describes the discovery of a 

new type of ligand, which he terms a cryptate, from the Greek meaning hidden. 

1.2 Interactions in Supramolecular Chemistry 

Interactions between different components within supramolecular systems mainly occur by 

reversible intermolecular forces, as opposed to covalent bonds.  The non-covalent 

interactions could be a variety of different bonds or forces and are strongest (or form the 

most stable complex) when the shape of the guest is complementary to the internal cavity of 

the host.  These interactions may include; electrostatic forces, hydrophobic interactions, co-

ordinate bonding, hydrogen bonding, ion-dipole bonding and dipole-dipole bonding. 

1.2.1 Ion-ion interactions 

Ionic bonding, although fairly uncommon, is possible in supramolecular interactions.  The 

strength of the bond is similar in strength to covalent bonding, and is formed between two 

atoms of opposite charge, through electrostatic attraction.  The most commonly cited 

example of ionic bonding is that of sodium chloride, where the sodium loses an electron, 

forming a cation, and the chlorine atom gains an electron to form an anion.  The atoms are 

then attracted to each other by electrostatic attraction forming an ionic bond. 
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Figure 2 – Example of an ion-ion interaction. 

1.2.2 Ion-dipole interactions 

Ion dipole interactions are common in supramolecular chemistry where a crown ether 

metal ion are involved.  The polar oxygen lone pairs present in the crown ether receptor

attracted to the positive charge on the alkali metal cation forming an ion-dipole interact

Often a crown ether will form multiple interactions with a metal ion, depending on the cha

of the metal cation, allowing stable complexes to be formed. 
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Figure 3 – Ion-dipole interaction between a metal cation and oxygen lone pairs in crown eth

unit. 

1.2.3 Dipole-dipole interactions 

These interactions are formed when one dipole aligns with another dipole resulting in str

attractive interactions between a pair of poles on adjacent molecules, this behavio

commonly displayed in organic carbonyl compounds. 
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Figure 4 – Dipole-dipole interaction between two organic carbonyl compou

1.2.4. Hydrogen Bonding 

Hydrogen bonding is a specific type of dipole-dipole interaction, in which a hyd

directly attached to an electronegative atom is attracted to a dipole on an adjace

or functional group.  Hydrogen bonding can be important within supramolecula

due to its strength and the high directional ability of the bond.  Hydrogen bonds 

a variety of lengths and are extremely important in nature; they are responsible f

of many proteins, and for the double helix structure of DNA. 

OHO

O H O

R1R1

 

Figure 5 – Example of hydrogen bonding. 

1.3 Host and guest chemistry 

The simplest form of supramolecular chemistry, and arguably the most important

guest chemistry.  The host can be categorized into one of two distinct classes; ca

clathrands.  Cavitands possess intermolecular cavities into which the guest move

ordinated inside the molecule, they usually have a large cavity capable of

enclosing the guest, examples of these are found within solution and solid state.

possess extra-molecular cavities and the guest is co-ordinated outside of th

usually in a cavity created between two or more host molecules, examples of th

found within the crystalline or solid state.   

δ+ 
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Figure 6 – Diagram illustrating the co-ordination within the intermolecular cavity in cavitands 

and co-ordination in the extra-molecular cavity in clathrands.  

The guest can be co-ordinated within the host in a variety of spatial arrangements, such as 

capsular, nested, perched or wrapping.  Wrapping of the host around the guest is most 

commonly associated with podand structures, where co-ordination sites are dotted along a 

chain in a similar way to pearls on a necklace.   
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Figure 7 – Diagrams showing spatial arrangements between hosts and guests. 2 

The most common type of co-ordination within crown ether structures is capsular host and 

guest binding.  The stability of the complex and likelihood of co-ordination is greatly 

enhanced when the guest is complementary in shape to the host cavity.  The concept of 

complementarity is borne from systems biological in nature, such as enzymes, these co-

ordinate selectively with a guest based on their complementarity with the host’s active site.  

The size and shape of the substrate (guest) determines whether it can co-ordinate with the 

host’s active site, Emil Fisher described this as the “Lock and Key Principle” of enzyme 

reactivity. 11  This principle explained the importance of geometric complementarity between 

a host and guest, and is the basis of molecular recognition.  Combining the recognition 

process with reactive functions in supramolecular chemistry allows substrate or guest 

recognition by the host, and subsequently transformation into a product or response. 12 

 Therefore the shape and size of the host’s cavity plays a key role in the selectivity and 

specificity of the host, the guest is complexed within the host by non-covalent forces, these 

could be ion-ion, ion dipole, dipole-dipole or hydrogen bonding interactions.  Due to the 

relatively weak force of non-covalent bonding, several binding sites are often required to 

form a complex between the host and the guest. 

1.4 Binding domains 

Binding domains are important to the concept of host-guest supramolecular chemistry, 

different binding sites are attractive to different types of molecules and ions, and a ligand can 
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be tailored to a specific application by utilizing binding domains specific to an analyte of 

interest.  Binding domains can have multiple donor atoms available for co-ordination, a 

simple domain such as a bipyridine unit has just two nitrogen atoms available for co-

ordination, this is termed a bidentate domain.  However, a large host, possessing a cavity, 

such as a cryptate domain may have nine available co-ordination sites.  The versatility of the 

type of donor atom, and the number of donor atoms available, enables stable complexes to 

be formed, and increases the selectivity and specificity of a ligand. 

1.4.1 Crown Ethers 

Crown ethers are amongst the most simple macrocycles used in supramolecular chemistry, 

but are among the most useful domains due to their ability to act as hosts for cations and 

neutral molecules.  Charles Pederson accidently discovered crown ethers in 1967, while 

trying to synthesise a specific target ligand.  Unfortunately, or fortunately due to their now 

widespread use, his starting material was contaminated and although it produced the 

desired product a small amount of unwanted by-product was present. 5  The unknown 

product was found to be sparingly soluble in methanol, and when a UV spectrum was 

obtained the absorption curve was characteristic of a phenolic compound.    When he added 

sodium hydroxide to the solution to alter the pH he discovered the crystals were freely 

soluble in methanol when in the presence of sodium ions.  The elemental analysis 

corresponded to the structure of 2,3-benzo-1,4,7-trioxacyclonon-2-ene, but this offered no 

explanation for the behavior exhibited when in the presence of sodium ions. 

O

O

O

 

Figure 8 – Structure of 2,3-benzo-1,4,7-trioxacyclonon-2-ene. 

Molecular weight analysis revealed the ligand to have a weight of exactly twice that of 2,3-

benzo-1,4,7-trioxacyclonon-2-ene, which enabled Pedersen to realize the ligand structure 

was actually a 18-membered ring.  The ring was characterized as dibenzo[18]crown-6, and 

was the first aromatic crown compound.   
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Figure 9 – Structure of dibenzo[18]crown-6. 

Once the structure of the product had been characterized, Pedersen quickly interpreted that 

the sodium ion had moved into the centre of the donut shaped ligand.  Other alkali metals 

and ammonium ions added to the compound also behaved in an analogous way to the 

sodium ions.  The crown formed stable complexes with a variety of metal ions, including 

sodium and potassium, a feat previously unheard of.  Pedersen named his new macrocyclic 

structures crown ethers, due to their crown like puckered shaped when free in solution, and 

when co-ordinated to a metal ion. 10     
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Figure 10 – Structure of the Crown Ethers. 

The crown ethers consist of differing numbers of ether oxygen atoms connected by organic 

spacers to produce macrocyclic structures of varying sizes.  The presence of multiple 

oxygen atoms, and therefore multiple polar oxygen lone pairs, allows crown ethers to bind 

selectively to alkali metal ions.  The relationship between cavity size, cationic radius and 

stability of the resulting complex has been well established 5, 13-15, and further supports the 

idea of complementarity.  A stronger complex is formed when there is a good match 

between the ionic size of the guest and the internal cavity volume of the host. 
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Crown ether Na+ K+ Rb+ Cs+ Ca2+ NH4
+ 

[12]crown-4 1.70 1.30 - - - - 

[15]crown-5 3.24 3.43 - 2.18 2.36 3.03 

[18]crown-6 4.35 6.08 5.32 4.70 3.90 4.14 

[21]crown-7 2.52 2.35 - 5.02 2.80 3.27 

Benzo[18]crown-6 4.30 5.30 4.62 3.66 3.50 - 

     

Table 1.1 – Binding constants obtained for various cations and a selection of crown ethers (log 

K, methanol, 20 oC).16 

Crown ether receptors have been utilized in many supramolecular arrays, and their diversity 

is apparent by their range of applications.  In 1980, Rebek investigated whether ion transport 

selectivity could be controlled by allosteric effects. 17  

O
ON

N O
O

O

 

Figure 11 – Macrocyclic polyether investigated for ion transport selectivity. 17 

He found that when the bipyridine unit was co-ordinated with an ion, the benzylic oxygen 

atoms were forced into a confirmation where only one of the oxygen atoms was able to 

participate in co-ordinating an ion within the crown ether domain, which resulted in a 

preference for transporting smaller ions.  However, when the bipyridine unit was not co-

ordinated the ligand showed no preference.  

The James research group has also utilized crown ethers in their design for a ditopic 

fluorescent sensor for potassium fluoride.  The paper describes a boron based receptor, 

which is known to co-ordinate the fluoride anion strongly, connected to a crown ether domain 

which co-ordinates the potassium ion, an attached pyrene fluorophore is capable of 

fluorescent emission. 18, 19  
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Figure 12 – Structure of the various fluorescent emission ligands investigated. 19 

The binding of potassium fluoride enhanced the fluorescent emission in ligands 1 and 2, co-

ordination at both the boronic acid and the crown ether receptor occurred.  The boronic acid 

strongly binds to the fluoride anion, causing a strong interaction.  For comparison, ligands 4 

and 5 were also examined for changes in fluorescent emission.  However, no change in 

fluorescence resulted, this is due to the absence of the boronic acid chelator.  A third ligand 

not containing a crown ether receptor was also examined, and although some fluorescent 

enhancement was observed it was very modest in comparison to ligands 1 and 2.  

Introduction of potassium chloride and potassium bromide resulted in no change in 

fluorescence intensity, indicating the fluoride group is required to strongly interact with the 

boronic acid moiety.   

Further experiments were conducted where the potassium fluoride was introduced to the 

ligand with the addition of a cryptand species.  The cryptand species had a higher binding 
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affinity to the potassium ion than the crown ether.  Therefore the fluoride group would be 

available for co-ordination with the boronic acid, but the potassium ion would be 

encapsulated and be unable to co-ordinate with the crown ether domain.  The results 

showed there was no enhancement in luminescence when the potassium ion was co-

ordinated within the cryptate, however upon introduction of excess potassium chloride the 

fluorescence was restored.  These results indicate that both the potassium and the fluoride 

group are required to switch on the fluorescent emission, and the sensor behaves like an 

AND logic gate. 

1.4.2 Aza Crowns 

Aza crowns are cyclic ligands similar in structure to the crown ethers, however they have 

nitrogen groups, as opposed to the oxygen donor atoms in the crown ethers.  This change in 

donor atoms alters the co-ordination of guest ions.  The crown ethers, due to their oxygen 

donor atoms, have a high affinity to s-block metal ions, while the aza crowns, with their 

nitrogen donor atoms, have a high affinity to transition metal ions.  This difference in affinity 

allows researchers to specify ligand design, based on the specific requirements of the 

ligand.  The development of the aza crowns has had a significant impact in the range of 

cryptate species available, allowing formation of cryptates with very specific binding 

properties.  Varying the number of ethyl groups between the nitrogen donor atoms changes 

the properties of the aza crown; two ethyl groups between each nitrogen atom denotes a 

cyclen, however a crown which possesses one or more chains with 3 ethyl groups between 

nitrogen atoms is termed a cylam. 
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Figure 13 – Examples of cyclens of varying sizes. 
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Figure 14 – Examples of cyclams of varying sizes. 

Much of the primary research conducted on aza crown macrocycles was carried out by 

Busch and Curtis during the 1960’s and 1970’s.  Curtis published several papers 

investigating the metal ion complexes of tetra-aza-cyclotridecane derivatives, examining the 

configurational isomers formed. 4, 20-25  Meanwhile Busch investigated the effect of saturation 

on ligand field strength in tetradentate macrocyclic cylam and cyclen ligands, and studied the 

electrochemical behavior of the metal complexes. 26  Both Curtis and Busch increased the 

understanding of the versatility of the aza crown macrocycles and enabled their adaptability 

as a binding domain to be recognized. Similarly to crown ethers, aza crown macrocycles 

have been utilized in supramolecular chemistry due to their ability to form complexes with 

high thermodynamic and kinetic stability with transition metal ions.   

The Ghachtouli group published Nickel(II) complexes of cyclen and cyclam groups with 

attached pyridine groups.  The aim of the research was to investigate the electrochemical 

behavior of the nickel complexes, and to demonstrate that upon application of a redox 

stimulus reversible rearrangements of the geometries of the complex can occur, when in 

solution. 27  The nickel complexes were synthesized and the corresponding nickel complexes 

were produced by introduction of stoichiometric amounts of the ligand and metal salts in 

methanol.   
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Figure 15 – General structure of the cyclen and cyclam ligands with attached pyridine groups. 
27 
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The research reveals that the presence of the pyridine pendant arm on the cyclam cavity 

allowed isolation of two configurational isomers for the nickel complexes.  X-ray crystal 

structures confirmed that the nickel ion adopted an octahedral orientation within the 

complex, with the pyridine group folding over the aza crown receptor, with an acetonitrile 

molecule occupying the sixth position.    Electrochemical experiments established that 

isomerisation mechanisms existed between two configurations of the complex, and that 

application of a stimulus could induce a change in confirmation.  The results demonstrated 

the importance of electron transfer in inducing geometric reorganisations. 

Bencini et al. have reported synthesis of a variety of aza-crown macrocycles for a range of 

applications such as a receptor for ATP binding and hydrolysis 28, ATP recognition and 

sensing 29, cobalt and cadmium complexation in water 30, co-ordination of Cu(II), Zn(II), 

Cd(II), Pb(II) and Hg(II) in aqueous media 31, encapsulation of metal cations and anions 32, 33 

and selective binding and subsequent fluorescent signaling of uridine and uridine-containing 

ribodinecleotides 34, to name just a few.   
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Figure 16 – Some examples of macrocyclic ligands synthesized by the Bencini group. 28-31 

The scope of their research highlights the versatility of these macrocyclic domains, and the 

diverse and specific uses to which they can be applied with careful planning of 

functionalisation.  This calculated designing of ligands is the very essence of supramolecular 

chemistry, and is responsible for the growth of the subject area. 

1.4.3 Cryptates 

Cryptates, sometimes called cryptands, are 3-dimensional macrobicyclic ligands which are 

capable of spherically surrounding a guest ion. Their 3-dimensional structure is similar to a 

cage and it is this property that earns the name cryptate.  The name cryptate comes from the 

Greek “Kruptos” meaning hidden, this is due to the internment of the guest within the 

cryptate.  The cryptates were named and discovered by Jean-Marie Lehn, who found them 

to form very stable complexes, and have some degree of selectivity based on size exclusion. 
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3, 35  In his initial publication on the species, he described them as possibly having numerous 

uses, such as utilizing them in the study of anion processes, or the transport of cations.  

Lehn went on to win the Nobel prize for his work on Cryptates in 1987, his award was shared 

with Charles Pedersen and Donald Cram, and was awarded for their development and use 

of molecules with structure-specific interactions of high selectivity. 5, 8, 13, 35, 36    
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Figure 17 – Typical structure of a cryptate species. 

The cryptate possesses multiple O-donor and N-donor domains, which spherically surround 

a guest ion forming an extremely stable complex, the ability to form such a stable complex is 

as a result of co-ordination occuring around the entire ion, a property called spherical 

recognition.  Spherical recognition is the ability of the cryptate to show selectivity based on 

the size complementarity between the cation and the intramolecular cavity. 37  The metal 

guest ion is often co-ordinately saturated, which prevents solvating effects leading to a 

positive entropy effect.  The complex formed is so stable that cryptates are capable of co-

ordinating metal ions within aqueous media, a feature that makes them very attractive in the 

design of supramolecular biological metal ion sensors. 

1.4.3.1. Functionalised Cryptates 

Cryptands can be derivatized in order to attach functional groups and increase the specifity 

of the ligand.  The Sadhu group has recently published data on a fluorophore derivatised 

cryptand which has been used in the study of fluorescence resonance energy transfer 

(FRET). 38  The ligand was sequentially derivatised with three different fluorophores and the 

emission intensity examined upon introduction of different transition metal ions.  The system 

was compared with other derivatives (1-3) in order to investigate the two step FRET process. 
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Figure 18 – Structure of the aza-oxa cryptand ligand, L, and modification of the ligand having 

differing fluorophores, 1-3. 38 

When a transition metal was introduced to the cryptand it occupied the lower end of the 

cryptate domain, and was co-ordinated by the amine groups. As multi-step FRET 

mechanisms depend on distance between fluorophores, co-ordination of a metal ion helps 

signal transduction between fluorophores.  Therefore, the introduction of a metal ion was 

shown to induce fluorescent enhancement, excess of metal ions did not quench the 

fluorescence.  The FRET signal was found to be most significant in the presence of Cu2+ 

ions, with similar behavior being observed with Zn2+ and Ag+, although to a lesser extent.   

Another example of a functionalised cryptate was reported by Rice et al. in 2006, the article 

described a cryptate species connected by a bipyridine unit to a crown ether domain. 39  

Neodymium is capable of near infra-red emission, which enables its characteristic 

luminesence to be distinguished from biological auto-fluoresence, making it extremely useful 

in the design of biological sensors.  For this reason neodymium and ytterbium, which are 

both capable of NIR emission, are becoming popular in the development of lanthanide based 

probes. 40   
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Figure 19  – Structure of the neodymium cryptate complex. 39 

The functionalised cryptate reported is capable of an allosteric effect, the neodymium ion is 

co-ordinately saturated within the cryptate domain, preventing quenching from solvent 
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molecules, and the event of a s-block metal ion co-ordinating within the crown ether domain 

induces a modulation in the NIR emission exhibited by the Nd(III) ion.   

Various s-block metal ions, (NaI, KI, CaII and BaII) were introduced to the ligand, and the 

emission responses recorded.  The largest change in the absorption spectrum was caused 

by introduction of BaII, which significantly reduced the NdIII emission intensity, introduction of 

NaI, KI and CaII did not cause any significant decrease in emission.  The large decrease in 

emission intensity exhibited upon introduction of the BaII ion is due to its large ionic size, the 

BaII co-ordinates within the crown ether domain with all six of the available oxygen donor 

atoms.  Therefore, the two oxygen atoms directly bonded to the bipyridine unit are co-

ordinated, in order for these two oxygen atoms to successfully bond to the barium ion the 

NCCN bond of the bipyridine unit must twist away from planarity.  This increased torsional 

angle affects the binding capabilities of the cryptate domain, meaning only one of the two 

bipyridine nitrogen groups is available to co-ordinate the neodymium ion, this allows a 

solvent ion to co-ordinate the neodymium ion, and quenching of the NIR emission occurs.  

Thus, the event of co-ordination of the barium ion within the crown ether domain is signalled 

by the change in NIR emission.     

1.4.4 Ditopic ligands 

A ditopic ligand has two guest binding sites, there are examples of ligands with further 

multiple binding sites, these are called polytopic receptors.  Ditopic receptors can be used to 

co-ordinate one specific guest which itself has two co-ordination sites, or to co-ordinate two 

separate guests, when two guests are co-ordinated this is often part of an allosteric effect.  

In the case of the ligand co-ordinating one guest with two co-ordination sites, the placement, 

particularly in relation to each other, of binding sites can greatly enhance the selectivity of 

the ligand for a specific guest.  Spacer groups are often utilized in order to improve the 

selectivity of the ligand, these can be used to mimic the size and shape of a guest to 

increase the selectivity of the ligand.   

In the case of co-ordinating two separate guests the likelihood of co-ordination is often 

increased by the first co-ordination event.  The first recognition event increases the affinity of 

the ligand to a secondary co-ordination, compared with a monotopic ligand.41  A ditopic 

ligand can co-ordinate two nuclei simultaneously, or a secondary co-ordination can be made 

possible by the first co-ordination.  Two such examples of this are the work by Kobuke et al. 

and Nabeshima et al. who both describe positive co-operation. 42, 43 

The Kobuke group have designed and synthesized podand structures with β-diketone 

groups at both terminals of a polyethylene glycol. 42, 44  When Zn(II) sulfate was introduced a 



Page 26 of 131 
 

zinc complex was isolated, with the zinc ion co-ordinated by the two β-diketones.  Similarly, 

upon addition of Cu(II) ions to a similar complex a copper complex was isolated, with the 

copper ions co-ordinated in an analogous fashion.  These two complexes of Zn(II) and Cu(II) 

were capable of effectively extracting Na+ and K+ picrates into an organic phase, with the 

Zn(II) complex showing preference for the Na+ ions, and the Cu(II) complex preference for 

the K+ ions.   
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Figure 20 – Structure of unco-ordinated and co-ordinated ligand.42 

The co-ordination of the metal ion by the β-diketones causes direct formation of a pseudo-

crown ether domain, which allows co-ordination of a second metal ion.  The pseudo-crown 

ether exhibits selectivity for metal ions based on ionic diameter and cavity size typical of the 

crown ether family.  The high affinity to alkali metal ions is not purely due to the formation of 

the pseudo-crown ether.  However, co-ordination of the anionic diketone ligands afford 

reduced electrostatic repulsion to the Na+ and K+ ions 

Thus, the length of the polyethylene chain between the two β-diketone groups allows 

selectivity to be tailored based on ionic radius of the target metal ion.  Comparison with the 

free unco-ordinated ligand revealed this was unable to extract the Na+ and K+ picrates into 

an aqueous solution, as would be expected.   Complexes formed with this type of metal 

assisted organization are interesting, as the organization occurs after synthesis, meaning the 

ligand could be reversible organized depending upon the specific requirements. 

The Nabeshima group reported a novel ditopic ligand in 2002, which upon co-ordination of 

Fe(II) formed a pseudocryptand capable of co-ordinating s-block metal ions.43  The ligand, 

which is initially helical in nature, forms a cavity upon co-ordination of a Fe2+ ion by three 

terminal bipyridine units.  The Fe2+ ion is co-ordinated in an octahedral co-ordination 
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geometry by the three bidentate bipyridyl domains, thus creating a pseudocryptand cavity 

above with nine O-donor domains available for co-ordination.   

 

Figure 21 – Structure of the novel helical pseudocryptand. 43 

Significant changes in the 1H NMR spectra were observed upon introduction of Cs+ and Rb+, 

indicating co-ordination within the cryptate domain.  The pseudocryptate exhibited 

complementarity behavior towards guest species, a large shift was observed in the 1H NMR 

signals with the larger Cs+ and Rb+ ions, indicating formation of a stable complex.  However, 

little or no change in chemical shift was observed with the smaller Na+ and K+ ions, 

indicating the radius of the ions was too small to form a stable complex, as the co-ordinated 

Fe2+ ion prevents spherical contraction.  A solid state structure of the [LFeCs]+ complex 

demonstrates the helical arms twist and lengthen to a more rigid state in order to 

accommodate the Cs+ ion. 

The co-ordination of the FeII ion allows metal-assisted cyclisation and effectively allows 

control of the guest affinity of the pseudocryptand.  In this case the FeII ion is utilized as an 

effector, co-ordination of which allows encapsulation of a second metal ion. 

1.4.5 Allosteric effects 

Allosteric interactions involve a link between two or more co-ordination sites, a ligand is 

termed allosteric if the event of a interaction at one co-ordination site affects the binding or 

physical properties of a second connected site.  This type of interaction is extremely useful in 

the development of sensors, as the co-ordination of a guest is signalled at the secondary 

connected site.  Sensors often consist of a selective co-ordination site, connected by a 

communication bridge to a secondary site which is capable of a physical response.   
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Figure 22 – Schematic diagram representing a luminescent sensor system. 

Allosteric regulation is a well known mechanism in nature, direct control of protein function is 

achieved when effectors bind to regulatory sites which are distinct from the active site of an 

enzyme or protein.  The binding of the effector often induces a conformational change that 

can profoundly influence the activity of the protein.  The allosteric effectors are usually 

different in size and shape to the enzyme’s substrate, and this helps to explain why products 

of metabolism can sometimes exert feedback control at the beginning of a metabolic 

pathway, as is often the case in the biosynthetic pathways of bacteria. 45   

Intrasteric regulation is another form of allosteric control and has been observed in protein 

kinases and phosphatases, however it has also been observed in diverse enzyme classes 

and receptors.  Kobe and Kemp reported in 1999 on the combination of intrasteric inhibition 

with allosteric control; knowing that intrasteric regulation inhibited the protein function, they 

investigated how the autoinhibition was reversed.  It was found that the mechanism which 

turned the protein back on (and reversed the protein inhibition) was allosteric in nature.  The 

combination of the intrasteric and allosteric control was found to be a powerful, flexible 

mechanism which controls some of the most complex cellular processes. 46  

Some of the most important initial work carried out in Supramolecular chemistry utilizing 

allosteric effect was performed by Rebek, who became interested in utilizing these effects 

after studying enzymes. 47-49  In enzyme behavior the activity of the enzyme is regulated by 

conformational changes which occur upon binding, these were termed template effects. 50 
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He identified the minimum requirements for an allosteric effect to occur, namely; an active 

site, an allosteric site, and a mechanism which connects them.  In his paper published in 

1979 he outlines a macrocyclic polyether, possessing two binding sites, a crown ether to co-

ordinate alkali metal ions, and a 2,2’-bipyridine unit to chelate other metal ions. 49  
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Figure 23 – Structure of the macrocycle polyether. 49 

Connection of the two sites allows an allosteric effect, chelation of metal ions at the 

bipyridine site forces the aromatic groups towards co-planarity restricting the conformation of 

the crown ether receptor.  As crown ether receptors co-ordinate selectively based on size, 

co-ordination of the bipyridine unit dramatically effects the reactivity of the crown ether 

receptor.  The results demonstrated that the extent of binding was largely affected by the 

number of oxygen donor atoms available in the crown ether domain, and that the macrocycle 

showed little selectivity between different ions, however an allosteric effect was achieved. 

1.5 Metal ion sensors 

Over recent years many types of chemical sensors have been developed. A chemical sensor 

is a device which responds to a specific analyte of interest by a chemical reaction, many are 

also capable of quantifying the amount of analyte present.  There are two main parts to a 

chemical sensor; the receptor, where the reaction occurs, and the transducer, which reports 

the reaction.  There are many different ways a transducer can report a reaction, and they 

depend upon the type of sensor being utilized.  Common methods of signalling include; a 

change in colour, increased or decreased luminescent output, change in electrical potential 

or the production of heat.   

Most chemical sensors can be catergorised into groups according to their signalling method, 

the main groups are: electrochemical sensors, optical sensors, heat sensitive sensors and 

mass sensitive sensors.51, 52  The ability of supramolecular arrays to reversibly co-ordinate 

ions and to be designed for specific applications mean metal ion sensors are a large area of 

research within supramolecular chemistry.  A sensor should ideally be selective and specific 
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for a particular guest, reporting the presence in a clear physical way when the ion is detected 

from a variety of competitive ions.  The most common type of sensor utilized in the field of 

supramolecular chemistry is the optical sensor, more specifically, the fluorescent sensor, 

which typically combines a binding domain with a fluorescent unit, termed a fluorophore.  

1.5.1 Fluorescent sensors 

An optical sensor is a sensor that reports the presence of a guest by a physical means in a 

visible way, such as a colour change or in the form of visible light.  The most common type 

of optical sensor is a fluorescent sensor as it gives an easily interpretable physical output in 

the form of light.  The benefit of the signal being visible light is that light is easily measurable 

even at very low concentration and the amount of light produced can indicate the quantity of 

guest which has co-ordinated within the host sensor.  This allows physical sensors to be 

very sensitive and therefore suitable for use in biological systems where the concentration of 

the analyte of interest is often low. 1 

Numerous fluorescent sensors have been produced for monitoring metal ions important in 

biological function.  The Lippard group have produced several fluorescent sensors for the 

detection of Zn2+ ions, Smith and Pope have also produced sensors for zinc ions in recent 

years. 53-57  Gunnlaugsson produced the first example of a bis-macrocyclic lanthanide based 

luminescent sensor which signalled the presence of sodium and potassium ions in water, 

and the Taki group in Japan have produced sensors for both Zn2+ and Cd2+. 58-60  The 

research is fuelled by a demand for greater understanding of biological functions and to 

understand the pathology of disease within the human body.    

1.5.2 Use of Chemical Sensors for Biology 

The direction and drive of the current health care system has created a demand for rapid 

and accurate analysis of samples within the clinical environment, this extends to require 

analysis at the point of care, often in clinics, wards or even patient’s homes.  With this in 

mind supramolecular sensors are becoming an interesting area of biological sensors, host 

and guest chemistry is ideally suited to this area, in particularly the area of optical and 

luminescent sensors.  

An excellent example of a metal ion sensor is that devised by the research group of Qian, 

Zhang and Zhang, who have successfully synthesised a fluorescent sensor for Zn2+.  Zinc is 

a vital component in many cellular processes, and is the second most abundant transition 

metal found in the human body, 90 % of zinc found in the body is bound within proteins or 

playing catalytic roles in enzymes.  However, pools of free zinc ions have been imaged in 

cells, it is these pools of zinc that scientists are currently most interested in, as they are 
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thought to be involved in neurophysiological and neuropathological processes. 55, 61-63  These 

zinc pools have been implicated in aging, and age related disorders, such as Alzheimer’s 

and Parkinson’s disease. 61,64  

Imaging of zinc ions has been previously achieved in living cells using diversified zinc 

sensors, however imaging of intact cells has not been achieved, and is in high demand due 

to its use in understanding the role of zinc ions within living cells. 55, 65-67  The paper reports a 

novel visible light excitable Zn2+ fluorescent sensor based on a 4-amino-7-nitro-2,1,3-

benzoxadiazole (ANBD) fluorophore. 68  ANBD was utilised due to its biocompatibility, large 

Stoke’s shift and visible absorption band. 
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Figure 24 – Structure of the ANDB based fluorescent zinc sensor. 68 

Introduction of Zn2+ demonstrated amplified fluorescence and induced a minor emission 

shift, which can be attributed to the combined effect of the Zn2+ ion co-ordinating the outer 

amine moiety and the inner amine group simultaneously.  Both Zn2+ and Cd2+ induced an 

emission enhancement; all other metal cations tested did not induce any notable emission 

change.  Cd2+ induced a less dramatic emission enhancement than the Zn2+ ions, but is not 

expected to demonstrate any competitive interference due to its relative scarcity in living 

cells.  Introduction of common transition metals abundant in living cells (K+, Na+, Mg2+ and 

Ca2+) had no effect on the Zn2+ response, indicating the sensor would be selective within a 

competitive biological media. 

 Intact in-vivo imaging of zebrafish larvae allowed observation of Zn2+ distribution, revealing 

storage areas of Zn2+ around the zebrafish ventricle, which could be related to development, 

high concentration of Zn2+ were also found in other areas related to development and 

growth.  A reliable and effective Zn2+ sensor could become invaluable in revealing the role of 

zinc within biological systems.  
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The demand for a zinc sensor for intracellular imaging is high, therefore many research 

groups are currently working in this area, another example of a fluorescent sensor was 

published in 2003 by Taki, Wolford and O’Halloran.  The paper reports the synthesis of a 

protein based emission ratiometric probe for imaging intracellular zinc ions, the probe is cell 

permeable, meaning it can access the cell without the need for microinjection. 59   

Zinbo-5

OCH3H3CO

N
H

N
N

O OH
Zinbo-5

OCH3H3CO

N
H

N
N

O OH

 

Figure 25 – Structure of Zinbo-5. 59 

The probe’s structure is based around a highly luminescent benzoxazole core which is 

substituted by various zinc chelating species, the probe was named Zinbo-5.  The selectivity 

of the probe was examined in comparison with other heavy metal ions and revealed that only 

Zn2+ and Cd2+ induced an emission shift.  Further analysis revealed that addition of excess 

metal ions to the probe did not affect the Zn2+ based fluorescence, suggesting the probe 

would be useful within a competitive biological based media.  Emission ratio imaging 

experiments reveal Zinbo-5 to readily reveal changes in intercellular zinc availability, which 

may be useful in understanding many processes within the body.    

1.6 Metallosupramolecular Chemistry and Transition Metal Helicates 

1.6.1 Introduction to Metallosupramolecular Systems 

Metallosupramolecular chemistry is a term which was introduced in 1994 by Edwin 

Constable to describe supramolecular assemblies that exploit the use of metal ion centres in 

order to self assemble structures. 69, 70  Self organization processes are used to direct the 

assembly by information stored in the covalent framework, and organization occurs through 

specific interaction or recognition patterns. 71  This means the assembly is spontaneous, but 

directed by pre-programming and careful design.  Self assembled synthetic complexes may 

exhibit unexpected properties due to the binding abilities of receptor frameworks, or the 

physical properties of the metal ions, allowing interesting variations to be discovered. 72  

Metal to ligand dative bonds are thermodynamically strong, but can have varying degrees of 
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lability, meaning a range of kinetic stabilities are available.  Transition metals also have very 

specific geometric requirements, which can be used to form structures in specific 

arrangements. 1  The ligands bridge one or more metal centers and construct architectures 

that can be one, two or three dimensional.  Metal directed assembly results in formation of a 

wide variety of different supramolecular structures, the nature of supramolecular chemistry 

allows researchers to tailor and mould ligands to suit particular applications and to form 

specific structures.  The rigidity of the ligand and the co-ordination geometry of the metal ion 

can dramatically affect the type of structure formed.  For example, a ligand with a flexible 

structure and rotation around connecting bonds between rings is most likely to form a 

helicate structure, however a rigid structure with limited flexibility is more likely to form a 

ladder or grid structure. 

 

Figure 26 – Schematic representation of a rack, ladder and grid assembly. 

1.6.2 Racks and Ladders 

Racks and ladders are similar in structure, the number of binding domains available is the 

main distinguishing factor between formation of one or the other.  An example of this is a 

tris-bipyridine strand, when mixed with three equivalents of phenanthroline and Cu+, a rack 

structure is formed, with a phenanthroline co-ordinating a Cu+ ion at each of the bipyridine 

sites. 
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Figure 27 – Schematic diagram showing rack formation of a tris-bipyridine strand with three 

equivalents of phenanthroline and Cu+. 

If the same tris-bipyridine strand is then mixed with six equivalents of Cu+ and three 

equivalents of a bis-pyrimidine unit, then a ladder structure is formed, with a Cu+ ion co-

ordinated at each of the bipyridine sites.  Each bis-pyrimidine unit co-ordinates a Cu+ ion at 

either side, using all available N donor domains. 



Page 35 of 131 
 

Cu+

N

N

N

N

N

N

N

N

N

N

N

N

NN

NN

Cu+

N

N

Cu+

N

N

Cu+

N

NN

Cu+

N

N

N

N

Cu+

N N

N N

N

N

Cu+

N N

N N

N N

N

 

Figure 28 – Schematic diagram of ladder formation between two tris-bipyridine strands and six 

equivalents of Cu+ and three equivalents of a bis-pyrimidine unit. 

Remya et al. recently reported formation of 1-dimensional molecular ladders of terbium-4-

sebacoylbis(1-phenyl-3-methyl-5-pyrazolonate) and sodium dibenzo -18-crown-6. 73  Three 

new lanthanide complexes based on a novel heterocyclic β-diketone 4-sebacoylbis(1-

phenyl-3-methyl-5-pyrazolone) were synthesised and the structure characterized by single 

crystal X-ray diffraction.  The solid state structure revealed formation of a 1-dimensional 

strand, with the terbium ion co-ordinated between two of the tetradentate bispyrazolone 

ligands, with each ligand donating four oxygen donor atoms.   

The co-ordination geometry of the Tb3+ ion is a distorted square antiprismatic arrangement.  

The diaza-18-crown-6 species co-ordinates the sodium ion within its central cavity and 

behaves as a cationic species to the terbium complex.  Therefore two ligand strands co-

ordinate the terbium ion, and the diaza-18-crown-6 co-ordinates two [L2Tb]3+ complexes to 

each other, forming a chain of the order; ligand-Tb3+-ligand-diazacrown-ligand-Tb3+-ligand 

etc. 

Hydrogen bonding interactions occur between two separate ligand strands, and combine to 

form an interesting ladder, the alternate arrangement of the [L2Tb]3+ and sodium co-

ordinated diaza-crown form the strands, and the intermolecular hydrogen bonding connects 
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these two strands together, forming the steps of the ladder.  This is an interesting case, 

demonstrating how supramolecular chains can be co-ordinated by hydrogen bonds to form a 

ladder complex. 

1.6.3 Grids 

Grid structures are formed as a result of self assembly, with rigid multidentate bridging 

ligands forming a grid like structure upon co-ordination with metal ions.    Grid structures 

occur when there are multiple co-ordination sites set along a rigid chain, the chains 

assemble around the metal ion and form multiple co-ordinations to other ligand chains, 

forming a large grid.  Much research has been carried out on 2 x 2 grid systems, forming 

tetranuclear complexes with metal ions. 74-79 

The Brooker group are interested in forming grid systems with metal ions which are readily 

available to adopt geometries which are distorted from the ideal, and in the subtle effects of 

secondary interactions such as steric factors.  They recently reported synthesis of 

pyridazine-bridged Cu+ complexes which formed 2 x 2 grid systems. 80  The bis-bidentate 

ligands produced could easily be extended in order to form larger grids, however this initial 

research was carried out with bidentate ligands, forming 2 x 2 tetranuclear grids.  The 

ligands were produced by reactions of 3,6-diformylpyridazine and various anilines and upon 

successful synthesis and characterization, complexation with Cu+ ions was performed.   

The ligands were complexed with tetrakis(acetonitrile)copper(I)hexafluorophosphate in a 1:1 

ratio, this led to the almost exclusive formation of tetranuclear grid complexes.  In all of the 

grid complexes the Cu+ centres were co-ordinated in a significantly flattened tetrahedral 

geometry due to the positions of the ligand strands within the 2-dimensional system.  Further 

to this, they found that addition of electron withdrawing substituents onto the phenyl rings of 

the bis-bidentate ligand decreased the stability of the resulting metal complexes.  This is due 

to the decreased donating ability of the imine nitrogen atoms, preventing the formation of 

thermodynamically strong bonds.   

Li et al. reported preparation of several mixed-valence CuICuII-terpyridyl compounds in 2005, 

which formed rectangular grid systems upon self assembly. 81  The compounds were based 

on a 4’-(4-pyridyl)-2,2’-6’,2’’-terpyridine ligand with halogen and pseudohalogen (Cl, Br, I, 

SCN) linkers.  The ligand and pseudohalogen (X) link two CuI and CuII ions resulting in the 

formation of a rectangular grid building block.  The size of the building block can be easily 

influenced by modulating the length of the X linker.  The mixed valence arises during the 

preparation, as the terpyridyl ligands partly reduce the CuII ions, however, some reduction by 

the halogen or pseudohalogen may also occur.   



Page 37 of 131 
 

The ligands formed M4L4 or M6L6 grid complexes, in which the Cu2+ ions were co-ordinated 

in a distorted tetrahedral geometry, and the Cu+ ion in a square planar geometry.  The 

ligands formed pseudorectangluar arrangements, with the metal ions co-ordinated in each of 

the corners, rather than the typical 2 x 2 grid usually associated with M4L4 complexes.   

     

Figure 29 – Schematic cartoon demonstrating formation of the rectangular M4L4 grid. 

The building block grid complexes can be further connected by the halogen or X linkers to 

create 1-dimensional chains, or 2-dimensional bilayer structures with an arrangement 

analogous to a brick wall.  The size of the individual grid bricks can be fine-tuned by the size 

and length of the linker units, the number of units within a chain, or bilayer structure can be 

modified by the number of linkers attached. 

1.6.4 Cages 

Cage structures are formed by spontaneous metal directed assembly of several ligand 

strands to form a 3-dimensional cage structure with an internal cavity.  Cages are highly 

symmetrical and their structure can be carefully controlled by using metal ions with specific 

geometric co-ordinations and rigid ligands.  The cage can be designed by specific location of 

binding domains on a ligand chain, and the size and shape of the central cavity can be 

modified by this specific design.  The central cavity within a cage structure is often large in 

size and can be used to co-ordinate multiple atoms within.  The size and shape of the cages 

and cavities can be modified by functionalizing the ligands and using specific metal ions. 82 

Fujita et al. produced a tridentate 1,3,5,-tris(4-pyridylmethyl)benzene ligand, which when 

treated with (en)Pd(NO3)2 and sodium 4-methoxyphenylacetate formed a single component 

in high yield. 83  Elucidation of this complex revealed a cage-like complex, the 1H NMR 

spectra revealed a high symmetry, and that the sodium 4-methoxyphenylacetate was co-

ordinated within the cavity in the centre of the cage.   

Upon complexation of the sodium ion within the cage the 1H NMR spectra show dramatic 

upfield shift of the signals associated with the sodium 4-methoxyphenylacetate, due to the 
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co-ordination within the cage.  It was also noted that formation of the host in high yield was 

only obtained in the presence of the guest species.  In the absence of a guest, co-ordination 

of the tridentate 1,3,5,-tris(4-pyridylmethyl)benzene ligand and (en)Pd(NO3)2  results in the 

formation of oligomeric products.  However, upon addition of the sodium species these 

products disappear with the assembly of the cage species occurring over several hours.  

This research demonstrated the spontaneous metal directed assembly of a three 

dimensional cage complex, one which could only be directed by specific guest complexes.       

Ward et al. have published numerous examples of co-ordination cages in recent years, 

however the first significant result reported in this field by the group was published in 1999. 
84-88  The publication describes synthesis of a hexadentate podand ligand of tris[3-(2-

pyridyl)pyrazol-1-yl]hydroborate (L), which forms a mononuclear complex with CoII and a 

tetrahedral cluster with MnII and ZnII. 89  Reaction of the ligand with CoII gives rise to 

formation of a 1:1 metal to ligand complex of [CoL][PF6], with the CoII ion co-ordinated in a 

trigonal prismatic geometry with the ligand relatively undistorted.   
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Figure 30 – Structure of the hexadentate podand ligand, L. 

However, reaction of ligand with MnII or ZnII initially suggested a 1:1 metal to ligand complex, 

but further analysis revealed a tetranuclear species of [M4L4(PF6)]
3+.  The crystal structure of 

the complex confirmed the formation of the tetranuclear complex, and revealed that the two 

complexes had very similar structures.  Each individual ligand within the complex spreads in 

order to co-ordinate each of its three bidentate arms to a separate metal ion.  In order for it 

to achieve this the tris(pyrazolyl)borate adopts an inverted geometry so the apical hydrogen 
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is directed inwards.  This conformation is necessary in order for the pyrazolyl donors to co-

ordinate each of the separate ions, rather than co-ordinating one atom. 

The group realized in hindsight that the formation of the tetrahedral cluster was the only way 

in which the ligand could co-ordinate the metal ion in its preferred octahedral geometry, as it 

is impossible for the three arms of an individual ligand to present an octahedral donor set to 

a single bound metal ion.  It is therefore necessary to utilize three separate bidentate 

domains from each of the three ligands to offer an octahedral geometry to the encapsulated 

ion.    

1.6.5 Helicates 

As previously stated, transition metals can be used to direct the formation of molecular 

assemblies.  This is beneficial as transition metals due to their varying charges have very 

specific geometric configurations, this allows us to program and direct the co-ordination 

arrangement of a complex based on different metal ions used to template the assembly.  

The bonds formed between metal and ligand species are dative, and are thermodynamically 

strong, this coupled with the varying lability of the transition metals allows us to choose our 

interactions specifically from a range of kinetic stabilities.  These two important aspects allow 

chemists to design, program and direct interactions between the ligand and the metal ion, by 

carefully choosing which metal ion will template the reaction.  For this reason helicate 

ligands are one of the most fascinating areas of supramolecular chemistry, and one directly 

inspired by nature, in the form of the DNA double helicate.  Helicates can occur with a 

variety of ligand strands co-ordinated to two or more metal centres, however the most 

common helicate species are double and triple-stranded helicates. 90    
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Figure 31 – Schematic representation of double helicate formation. 91 
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1.6.5.1 Directional Helicates 

A single helix may or may not be symmetrical, depending on the design.  In the case of 

unsymmetrical helices, the concept of directional helicates is raised.  One terminus of the 

helicate is termed the head, and the opposite terminus the tail, when self assembly occurs in 

the presence of a metal ion it is possible, depending upon the structure, to form different 

arrangements of helices.  For example, a double helicate structure could form a head to 

head structure, or a head to tail structure, within a tri-helicate structure it is possible to form 

head to head to tail, or head to head to head structures.  Interestingly the conformation of 

the helicate structure formed can be metal ion led, where certain metal ions form only the 

head to head species, with others preferring the head to tail conformer.   

An excellent example of this was published in 2004 by Rice et al. which demonstrated a 

amide-substituted unsymmetrical ligand which formed a dinuclear triple helicate with Co2+ 

ions, which exists as an head-to-head-to-head and a head-to-head-to-tail isomer in solution. 
92  The 1H NMR spectra confirmed the presence of both the HHH and HHT isomers upon 

introduction of [Co2(L
1)3](ClO4)4 to the ligand, with a ratio of 1:3 of HHH:HHT respectively.  A 

total of 36 aromatic signals were observed, a clear indication that a mixture of products was 

present.  The predominance of the HHT species is due to the reduced steric interactions in 

this conformer.   

 

 

Figure 32 – Structure of the unsymmetrical ligand L1. 
92  

Addition of two equivalents of Bu4NNO3 to the complexes in solution greatly simplified the 1H 

NMR spectrum, which showed only nine major signals.  This reduction in the number of 

signals corresponds to exclusive formation of the symmetric HHH isomer.  The main 

difference in between the structure of the two isomers is the formation of a cavity in the HHH 

isomer, the cavity contains three amide groups, which are capable of forming hydrogen 
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bonds to an anion.  The cavity is not formed during the assembly of the HHT geometric 

isomer.   

In the presence of the perchlorate anion the formation of such a cavity is not favoured, 

therefore addition of perchlorate results in the mixed isomers of HHT and HHH.  However, 

the nitrate anion has a much stronger affinity for the amide cavity, making the formation of 

the HHH isomer more favourable.  This type of preorganisation caused by a ion is termed 

the template effect, as the ion templates the formation of a specific arrangement.  The ligand 

thus forms a dinuclear triple helicate in the presence of Co2+ ions, however the formation of 

isomers can be controlled by nitrate anions. 

1.6.5.2 Programmed Helicates 

Double helicates often contain multiple co-ordination sites, and are able to self assemble 

around metal ions.  Depending on the size and preferred geometry of the metal ion, double 

helicates can often be programmed to form monotopic or ditopic species.  This 

reprogrammable nature has attracted much interest and led to extensive research in this 

field.  Triple helicate structures are also common, where three strands of ligand assemble 

around a metal ion templating species, these again can be reprogrammed depending on the 

geometric preferences of the co-ordinated metal ion. 

The co-ordination sites within a single helicating ligand are often formed from O-donor or N-

donor domains.  When second, or third, ligand approaches in the presence of a metal ion 

they wrap themselves around the ion to form a 3-dimensional structure around the metal ion, 

with each ligand co-ordinating with the metal ion, to form a stable helicate structure.  In order 

to allow multiple co-ordination sites, and to allow ditopic or even tritopic co-ordination the co-

ordination sites are often spaced accordingly with spacer units, such as a bipyridine unit, to 

prevent steric hindrance preventing multiple co-ordination.   

Some of the early research into double helicate structures was performed at Cambridge 

University, in a paper published in 1988 the authors present a pentadentate ligand 

containing quinquepy which forms complexes with transition metal complexes to give a 

double helicate arrangement. 93  The ligand formed a double helicate with Cu2+ and Ni2+ and 

crystal structures were obtained, each of the two ligands involved in the helicate partition 

and present a pseudo terpyridyl donor set to the co-ordinated metal ion.   
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Figure 33 – Structure of the quinquepy ligand, L. 93 

The first Cu2+ ion is bonded by three nitrogen groups from each ligand, and the second Cu2+ 

ion is co-ordinated by the remaining two nitrogen groups present on the ligand.  Therefore, 

the first copper ion is co-ordinated in a distorted octahedral manner, the second copper is 

co-ordinated by a weaker interaction, which reflects in its unsymmetrical arrangement and 

distortion of the axial interactions.  The second Cu2+ ion is five co-ordinate, bonded by four of 

the remaining nitrogen groups in the ligand and the remaining site occupied by the oxygen 

atom of an acetate group.  The ligand partitioning is responsible for the twisted arrangement 

which allows the double helicate structure to form.  

Tsang and Yeung have recently published a new chiral pyridyl-thiazole ligand which forms a 

dinuclear double helicate with CuI ions. 94  Pyridylthiazole ligands have previously been 

utilized in ligand reprogramming when binding metal ions by Rice. et al. and are a versatile 

type of helicate structure. 95-98  The ligand was synthesized from a chiral halogen 

functionalized pyridine group, which was cyanated and reacted with H2S to form the 

thioamide.  Reaction of the thioamide with 1,4-dibromo-2,3-butanedione in methanol yielded 

the final ligand, which was successfully characterized by 1H NMR and ESI-MS. 
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Figure 34 – Structure of the tetradentate pyridylthiazole ligand, L. 94. 
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Reaction of the ligand with CuII ions in methanol led to the formation of a dinuclear double 

helicate, however the 1H NMR spectra showed that two species were present in solution, the 

diastereoismers present were found to be in a ratio of 81:19.  Isolation and recrystallisation 

of the major diastereoisomer allowed analysis which revealed it to be that of the P-

configured helicate.  Further evidence was provided by obtaining a single crystal X-ray 

structure of the major diastereoisomer, which clearly shows P chirality.  In the complex both 

of the CuI metal centres have adopted a tetrahedral co-ordination geometry and are both co-

ordinated by two pyridylthiazolyl bidentate units, one from each of the separate ligand 

strands.  The ligand strands partitions around the centre providing two separate binding 

domains and enabling each ligand to present a bidentate binding domain to each metal ion.  

To prevent steric hinderance the strand is twisted around the central carbon to carbon bond 

allowing the formation of the double helicate structure.  The torsion angle between these two 

central thiazole rings is 59.95o, with additional smaller twists present between the pyridine 

ring and the thiazole ring.  
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Figure 35 – Structure of the quaterpyridine equivalent of the ligand. 

Comparison of the ligand with the quaterpyridine equivalent revealed that addition of CuI to 

quaterpyridine favoured the M-helicate, which was the sole diastereoisomer produced upon 

co-ordination.  The reason for this was thought to be caused by the change in the central two 

rings from thiazole to pyridine, which altered the distance of the pinene group from the 

central bridging methylene group.  This indicates that the change from five-membered to six-

membered rings alters significantly affects the chiralty of the product during formation of 

helicates, and can reverse the chiralty of a copper helicate. 

1.6.5.3 Reprogrammable Ligands 

The first reprogrammable ligand was reported by Rice et al. in 2004, and described a ligand 

which could be allosterically and electrostatically reprogrammed. 95  A ditopic ligand was 

produced which contained a thiazole-pyridyl-pyridyl-thiazole chain, which could form a 

ditopic double helicate structure, with a crown ether domain connected to the central 
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bipyridine unit.  Introduction of Hg(ClO4)2
.3H2O to the ligand in acetonitrile resulted in the 

exclusive formation of a dinuclear helicate, which was confirmed by 1H NMR and ESI-MS.   

Introduction of NaClO4 in excess to the [Hg2(L1)2]
4+ complex afforded a complex of 

[Hg2(L1)2Na2](ClO4)6
.4MeCN, the structure of which was characterised by single crystal x-ray 

structure.  The solid state structure demonstrates that the ligand splits into two bis-bidentate 

binding domains and each of the two Hg+ ions is co-ordinated by two bridging ligands in a 

double helicate arrangement.  The Hg+ is co-ordinated in a distorted tetrahedral geometric 

arrangement formed of two thiazole-pyridine bidentate N donor units, one from each of the 

two ligands involved.  The sodium ions are co-ordinated within the crown ether domains, one 

is co-ordinated by five of the available O donor atoms, and the other co-ordinated by only 

four of the six available O donor atoms.  In both cases the Na+ does not co-ordinate both of 

the benzylic oxygen atoms, connected directly to the bipyridine domain.  The small radial 

size of the Sodium ion means that a crown-6 type crown ether is too large to optimally co-

ordinate the cation.   
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Figure 36 – Structure of the ditopic ligand L1. 
95 

The reaction of [Hg2(L1)2]
4+ with Ba(ClO4)2 results in the formation of a mononuclear complex 

of [{Hg(L1)Ba}(ClO4)3]
+, this was confirmed by ESI-MS, 1H NMR and single crystal X-ray 

diffraction.  The solid state structure reveals the Hg+ is co-ordinated in a distorted octahedral 

environment with the ligand acting as a near planar tetradentate ligand and two perchlorate 

anions behaving as monodentate axial ligands.  The Ba2+ ion is co-ordinated within the 

crown ether domain by all six of the available oxygen donor atoms, this reflects the size 
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complementarity between the cavity volume and the ionic radius of the Ba2+ ion.  In the 

mononuclear [Hg(L1)Ba]4+ species the Ba2+ is co-ordinated by both the benzylic oxygen 

atoms, this restricts the mobility of the ligand, preventing it from partitioning into two binding 

domains as in the [Hg2(L1)2Na2]
6+ complex.  This means the ligand can only act as a 

tetradentate donor, therefore only formation of the mononuclear species can be achieved.   

The system therefore demonstrates how a ligand can be programmed by the Hg+ ion to form 

a dinuclear double helicate species, but upon introduction of Ba2+ ions the ligand is 

reprogrammed and becomes a mononuclear ligand co-ordinating the Hg+ by a tetradentate 

domain, and the Ba2+ within the crown ether.   

There have been many publications concerning dinuclear helicate formation, however 

significantly less trinuclear helicates have been reported.  An example of a trinuclear helicate 

was published in 2007 by Rice et al., and describes an allosteric deprogramming ligand 

capable of trinuclear helicate formation with Cu(I) and Zn(II) ions. 99   

Two multidentate ligands L1 and L2 were successfully synthesised by a convergent route, L2 

differs from L1 by containing an additional bridging thiazole unit after the central bipyridine 

domain.  Upon reaction with Zn(CF3SO3)2 and [Cu(NCMe)4]PF6 in acetonitrile, L1 formed a 

heterometallic trinuclear double helicate of [Zn2Cu(L1)2]
5+, confirmation of the structure was 

obtained by ESI-MS and single crystal X-ray crystallography.  The crystal structure clearly 

demonstrates that the ligand partitions into three binding domains, each domain separated 

by a bridging –CH2OCH2- linker unit.  The two zinc ions are co-ordinated by the terminal 

thiazole-pyridine units, and the copper ion is co-ordinated by the bipyridine domains in the 

centre of the ligand.  The Zn2+ ion adopts a pseudo-octahedral co-ordination geometry, and 

the Cu+ ion has a distorted tetrahedral co-ordination geometry.  The distorted geometry of 

the central copper ion is caused by steric interactions in the bridging ether linking units, 

these prevent the bipyridine unit from becoming a planar bidentate chelating group.   
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Figure 37 – Structure of ligands L1 and L2. 
99 

Reaction of L2 with Zn(CF3SO3)2 and [Cu(NCMe)4]PF6 in acetonitrile formed a heterometallic 

tetranuclear double helicate species of [Zn2Cu2(L2)2]
6+, confirmed by ESI-MS and single 

crystal X-ray crystallography.  In the solid state the ligand is seen to partition into four 

binding domains, which co-ordinate two Zn(II) and two Cu(I) ions between two ligand 

strands.  The Zn2+ ions are again co-ordinated by the terminal thiazole-pyridine units in a 

pseudo-octahedral co-ordination geometry, as seen in L1.  However, the two Cu2+ ions are 

co-ordinated by the two central thiazole-pyridine units, which although it could act as a 

tetradentate domain, partitions along the centre, splitting into two bidentate domains.  These 

two bidentate domains are again a consequence of the two oxygen atoms present in the 

ether linking units, whose unfavourable steric interactions prevent the central bipyridine unit 

from adopting a planar position.  Instead the potentially tetradentate thiazole-bipyridine-

thiazole unit separates along the central core in order to minimise steric interaction. 
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Although these results were very interesting in their own right, both the L1 and L2 ligands 

possess crown ether domains, therefore reaction of the complexes of [Zn2Cu(L1)2]
5+ and 

[Zn2Cu2(L2)2]
6+ with Ba2+ and Na+ was attempted.  As barium and sodium are both s-block 

metal ions, they should move into the crown ether domain, which is both selective and 

specific for s-block metal ions.  Addition of an excess of Ba2+ to [Zn2Cu(L1)2]
5+ resulted in a 

large number of additional peaks appearing in the 1H NMR spectra of the sample, this 

indicates a variety of different complexes have formed.  It has been previously demonstrated 

that upon co-ordination of barium within a crown ether directly attached to a bipyridine unit 

the bipyridine unit must become twisted in order to facilitate better overlap of the crown aryl 

oxygen atoms and the barium ion. 95, 100  Therefore it can be assumed that upon addition of a 

large excess of barium ions the ligand L1 will co-ordinate Ba2+ within the crown ether domain.  

The co-ordination of the Ba2+ ion within the crown ether domain will result in a significant 

increase in the torsion angle of the bipyridine unit, preventing the unit from acting as a 

bidentate binding domain to the Cu+ ion.  Therefore, upon addition of Ba2+ to [Zn2Cu(L1)2]
5+, 

the ligand is reprogrammed and is no longer capable of co-ordinating a Cu2+ by the central 

bipyridine units.  The terminal thiazole-pyridine units are unaffected, and can continue to co-

ordinate the Zn2+ ions.  This theory is further supported by reaction of [Zn2Cu(L1)2]
5+ with an 

excess of Na+ ions, which results in a slight shift in the peaks present in the 1H NMR spectra, 

indicating the sodium ion has moved into the crown ether domain.  However, sodium has a 

small ionic radius, and sodium ions do not co-ordinate all the available donor units within a 

crown ether domain, therefore the sodium ion does not co-ordinate the oxygen donor atoms 

directly connected to the bipyridine unit.  As the torsion angle of the bipyridine unit is 

unaffected by the co-ordination of the Na+ ion the bipyridine unit is still capable of acting as a 

bidentate domain and chelating a Cu+ ion. 99   
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Figure 38 – Structure of ligand L3. 
99 

A third ligand L3 was synthesised, the structure of which is identical to that of L1, with the 

exception of the absence of crown ether domain.  Reaction of this ligand with Cu+ and Zn2+ 

ions resulted in the expected heterometallic trinuclear double helicate of 
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[{Zn2Cu(L3)2}(ClO4)
4+], addition of an excess of barium ions to the complex resulted in no 

change in the 1H NMR spectra, demonstrating the crown ether unit is instrumental in the 

changes observed in the L1 complex. 

Finally, excess barium ions were added to [Zn2Cu2(L2)2]
6+ and showed little change in the 1H 

NMR spectra, this result is due to the partitioning of the central tetradentate domain.  The co-

ordination of the crown ether domain has little effect on the overall structure of the complex 

as the central bipyridine unit already possesses a large torsional twist.  The large torsional 

twist is present in order to partition the potentially tetradentate domain into two bidentate 

thiazole-pyridine units.  Therefore, the helicate species is still capable of co-ordinating the 

two copper ions, meaning no deprogramming of the ligand occurs. 
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2: Aza crown ligands 

Described in this chapter is the synthesis and characterization of an aza crown ditopic 

ligand.  The aza crown ligand possesses both a bipyridine domain and a tetra-aza crown 

domain, and is capable of co-ordinating a Cu2+ ion in either or both domains, dependent 

upon the stochiometry. At a ratio of 1:2 Cu2+ to ligand, two ligands co-ordinate one copper 

ion via the bipyridine domains, whereas at a ratio of 1:1 the copper is bound by the aza-

crown unit. Increasing the Cu2+ ratio results in co-ordination of both the aza-crown and 

bipyridine domains. There is also evidence at high Cu2+ ratios that a trinuclear species 

results, [Cu3L2]
6+, where one copper ion is co-ordinated by two ligands via the bipyridine unit 

and the aza-crown in each ligand is also co-ordinated.  At a ratio of 1:1 the ligand co-

ordinates Cu2+ ions preferentially in the aza-crown domain; which interacts with the metal ion 

via all four of the N-donor atoms.  Further co-ordination of Cu2+ via the bipyridine unit results 

in an interesting allosteric effect.  This is a negative co-operative binding as co-ordination of 

the second Cu2+ ion changes the binding capability of the aza-crown domain.  As a result the 

tetra aza-crown is only able to co-ordinate the Cu2+ ion by three of its four N-donors due to a 

change in torsion angle of the bipyridine unit.    
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2.1 Ligand Synthesis 

2.1.1 Synthesis of L1 

The aim of this chapter was to synthesise a aza crown macrocyclic ligand with two specific 

and separate binding domains.  The first binding domain consists of a bipyridine unit, the 

second an aza crown.  Both domains are capable of co-ordinating a Cu2+ ion, and the event 

of co-ordination at one site should enable an allosteric effect in the second connect site. 

The aza crowns are similar in structure to crown ethers, possessing nitrogen groups instead 

of the oxygen groups present in crown ethers.  They are capable of co-ordinating metal ions 

selectively as are crown ethers, making them an interesting and selective domain to utilize in 

supramolecular systems. 

The synthesis of the ligand was non-trivial and was performed using a 3 step linear 

synthesis, once the starting materials had been produced.  The 3,3-diamino-2,2’-bipyridine is 

a common starting material for systems containing bipyridine units, and was synthesized 

using a 3 step process in reasonable yield.  Surprisingly, even though there is literature 

precedent, the tetra-tosylate unit (6) was fairly difficult to synthesize. A number of previously 

reported procedures were attempted but this led to very low yields, eventually modification 

allowed decent yields to be achieved. 

NH

NHNHN

N NH

 

Figure 2.1 – Structure of the aza crown ligand L1 

 

 

 

 

 



Page 51 of 131 
 

1 2

3

4

5

6

L1 7

(i) (ii)

(iii)

(iv)

(v)

(vi)

N
N

OH

H

H

OH

N

NH2

Cl

NH

N Cl

O O

NH

N
N

NH

O

NH2

N
N

NH2

N
NTsO

Ts

Ts

OTs

N N N

NNN
H

H Ts

Ts

H

NN

N N

H

N

N
H

H

+

1 2

3

4

5

6

L1 7

(i) (ii)

(iii)

(iv)

(v)

(vi)

N
N

OH

H

H

OH

N

NH2

Cl

NH

N Cl

O O

NH

N
N

NH

O

NH2

N
N

NH2

N
NTsO

Ts

Ts

OTs

N N N

NNN
H

H Ts

Ts

H

NN

N N

H

N

N
H

H

+

 

Scheme 1 – synthesis of L1 from 3,3-diamino-2,2’-bipyridine (1) and tetra-tosylate (6). 

Reagents and conditions; (i) acetic anhydride, RT, 12 hrs, (ii) Cu bronze, DMF, 80˚C, 12 hrs, 

(iii) 1.0 M HCl, reflux, 2 hrs, (iv) TosCl, pyridine (solvent), 0˚C → RT, (v) 2.2 equivs BuLi, 

THF, 80oC, (II) Conc H2SO4, 100oC 48 hrs. 
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Numerous techniques to react the 3,3’-diamino-2,2’-bipyridine with the tetratosylate chain (6) 

to create an aza-crown species were attempted. However, it was found that the most 

successful method was the simplest i.e. reaction of 3,3’-diamino-2,2’-bipyridine with BuLi to 

form the dianion and subsequent reaction with the tetra-tosylate. This gave the ditosylated 

bipyridine aza-crown species, although the yields were small (<10%). To remove the tosyl 

units, the tosylated species, 7, was treated with concentrated H2SO4 at 100˚C for 48 hrs, 

less forcing conditions (lower pH, temperature and reaction time) resulted in a mixture of the 

di- and monotosylated species. Regardless, yields for this step were tolerable (~ 50%). 

2.1.2 Structural elucidation 

Crystals of the ligand L1 were formed from slow evaporation of toluene and analysis of the 

single crystal X-ray crystallographic data confirmed the formation of the bipyridine aza-crown 

ligand L1.  

 

Figure 2.2 - Single crystal X-ray structure of L1. 

 

The crystal structure, apart from conformation of the gross molecular structure is 

unremarkable. However, it is noted that the two bipyridine rings are twisted, with a NCCN 

torsion angle of 110(1)o. Steric restraints within the aza-macrocycle prevent the rings 

adopting a coplanar transoid geometry which is favoured by bipyridine systems with 

hydrogen bond donors in the 3,3’-position. 
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Bond distances (Å) 
 

N1-C4 1.377(2) C7-C8 1.519(3) 

N1-C5 1.462(2) C16-C15 1.381(2) 

N4-C11 1.337(2) C6-C5 1.523(2) 

N4-C1 1.341(2) C3-C4 1.403(2) 

N6-C14 1.371(2) C12-C13 1.525(2) 

N6-C13 1.461(2) C15-C14 1.408(2) 

C9-C16 1.387(3) C4-C11 1.421(2) 

C2-C3 1.381(2) C10-C14 1.422(2) 

C2-C1 1.388(3) C10-C11 1.500(2) 

    

Bond angles (o) 

C10-N3-C9 118.7(2) N5-C12-C13 109.3(1) 

C6-N2-C7 115.7(1) N6-C13-C12 112.8(1) 

C12-N5-C8 114.1(1) C16-C15-C14 120.0(2) 

C4-N1-C5 121.3(1) N1-C4-C3 122.2(2) 

C11-N4-C1 118.5(1) N1-C4-C11 121.3(2) 

C14-N6-C13 122.4(1) C3-C4-C11 116.5(2) 

N3-C9-C16 122.3(1) N3-C10-C14 123.3(2) 

C3-C2-C1 119.2(2) N3-C10-C11 114.2(1) 

N2-C7-C8 108.5(1) C14-C10-C11 122.5(1) 

N5-C8-C7 108.6(1) N4-C11-C4 123.3(2) 

N4-C1-C2 122.5(2) N4-C11-C10 116.2(1) 

C15-C16-C9 119.4(2) C4-C11-C10 120.4(2) 

N2-C6-C5 110.2(1) N6-C14-C15 122.4(2) 

N1-C5-C6 113.5(1) N6-C14-C10 121.4(2) 

C2-C3-C4 119.9(2) C15-C14-C10 116.2(2) 

    

Figure 2.3 – Selected bond lengths for L1 free ligand 
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2.2 Results and Discussion  

2.2.1. Reactivity with Cu2+ ions 

Upon reaction of Cu2+ ions with the ligand L1 a number of different complexes are formed, 

depending on the ratio of Cu2+ ions to L1.  Spectrophotometric titrations of CuCl2
.2H2O in a 

solution of the ligand ([L1]tot = 10-4 M, MeCN) caused complex variations in the UV-Vis 

spectra.  The UV-Vis spectra were successfully modeled by six absorbing species; these 

were Cu2+, L1, and four complexes in equilibria.  UV-Vis titrations have revealed four species 

can be formed upon introduction of Cu2+ ions to L1, these are; [Cu(L1)2]
2+, [Cu(L1)]

2+, 

[Cu2(L1)]
4+ and [Cu3(L1)2]

6+. 

Cu2+ + 2L1  [Cu(L1)2]
2+ log β

1,2

Cu,L1
 = 16.8(4) 

Cu2+ + L1  [Cu(L1)]
2+  log β

1,1

Cu,L1
 = 11.0(4) 

3Cu2+ + 2L1  [Cu3(L1)2]
6+ log β

3,2

Cu,L1
 = 31.6(6) 

2Cu2+ + L1  [Cu2(L1)]
4+ log β

2,1

Cu,L1
 = 16.0(4) 

Chloride adducts for all the species were observed in the gas phase during analogous ESI-

MS titrations.  The observation of the four different complexes was at first surprising; 

however, in hindsight it is not unexpected given the diverse co-ordination modes the ligand 

L1 is capable of, and the co-ordinating ability of the MeCN solvent and Cl- counter ion. 
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Figure 2.4 – Calculated speciation diagram for complexes of L

 

2.2.1.1 Reaction of CuCl2·2H2O with two equivalents of L1 

The complexes formed between CuCl2·2H2O and the ligand L1 
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complete the co-ordination sphere of the Cu2+ bound within the aza-crown giving the ion a 

five-co-ordinate distorted square pyramydal geometry.  The Cu-Naza bond lengths range from 

2.008(2)-2.083(2) Å and the Cu-Clax distance is 2.4026(6) Å.  Interestingly, the bipyridine 

NCCN torsion angle decreases from 110(1)o in the free ligand to 62(1)o upon co-ordination of 

the aza-crown domain.  The reduction occurs in order to align the amine substituents on the 

3,3’-positions for optimal binding of the complexed metal ion. 

 

 

Figure 2.5 - Solid state structure of [CuL1Cl]+  
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Bond distances (Å) 
 

Cu1-N2 2.009(2) Cu1-N1 2.083(2) 

Cu1-N3 2.009(2) Cu1-Cl3 2.4026(6) 

Cu1-N4 2.049(2)   

    

Bond angles (o) 

N2-Cu1-N3 84.9(9) C10-N3-Cu1 107.9(2) 

N2-Cu1-N4 149.9(9) C16-N3-Cu1 110.1(2) 

N3-Cu1-N4 85.2(8) N2-Cu1-Cl3 104.9(7) 

N2-Cu1-N1 87.6(8) N3-Cu1-Cl3 97.0(6) 

N3-Cu1-N1 164.2(8) N4-Cu1-Cl3 104.5(6) 

N4-Cu1-N1 94.7(7) N1-Cu1-Cl3 97.9(6) 

C1-N1-Cu1 116.2(2) C11-N4-Cu1 112.2(1) 

C15-N1-Cu1 102.2(1) C4-N4-Cu1 106.1(2) 

C6-N2-Cu1 104.9(2) C3-N2-Cu1 106.8(2) 

    

Figure 2.6 – Selected bond lengths for [CuL1Cl]+ ligand. 

 

2.2.1.3 Reaction of two equivalents of CuCl2·2H2O with L1 

Reaction of the [CuL1Cl]Cl complex with a further equivalent of CuCl2
.2H2O in MeOH 

resulted in, upon slow evaporation, a green crystalline solid. ESI-MS studies show an ion at 

m/z 531 corresponding to the formation of the dicopper species {[Cu2Cl3(L1)]
+}. Analysis of 

these crystals by single crystal X-ray diffraction revealed the dicopper complex of [Cu2L1Cl4]2 

(figure 2.7).  In the solid state one Cu2+ ion is co-ordinated within the aza-crown domain, and 

a second Cu2+ ion is co-ordinated by the two imine nitrogens of the bipyridine unit. The 

remaining co-ordination sites on the Cu2+ ion are occupied by chloride ions, one of which is a 

bridging chloride to another [Cu2L1Cl4] molecule, giving rise to a chloro-bridged dimer in the 

solid state.  This structure also supports the proposed structure of [Cu(L1)2]
2+, where instead 

of having a [Cu2Cl4] unit co-ordinating the two bipyridine ligands a single Cu2+ would be co-

ordinated by these ligand units. 
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Figure 2.7 - Single crystal X ray structure of [Cu2L1Cl4]2  

 

 
 
 

Bond distances (Å) 
 

Cu1-N2 2.050(9) Cu2-N5 2.093(9) 
Cu1-N1 2.059(9) Cu2-Cl4 2.286(3) 
Cu1-Cl1 2.299(3) Cu2-Cl3 2.357(3) 
Cu1-Cl2 2.312(3) Cu2-N3 2.477(8) 
Cu1-Cl2 2.747(3) Cu2-N4 2.036(9) 

    
    

Bond angles (o) 
N2-Cu1-N1 81.0(3) N5-Cu2-Cl3 150.2(2) 
N2-Cu1-Cl1 94.1(3) Cl4-Cu2-Cl3 94.5(1) 
N1-Cu1-Cl1 149.9(3) N4-Cu2-N3 80.7(3) 
N2-Cu1-Cl2 173.0(3) N5-Cu2-N3 108.4(3) 
N1-Cu1-Cl2 94.9(3) Cl4-Cu2-N3 97.2(2) 
Cl1-Cu1-Cl2 92.3(1) Cl3-Cu2-N3 98.6(2) 
N2-Cu1-Cl2 87.8(2) Cu1-Cl2-Cu1 91.6(1) 
N1-Cu1-Cl2 110.6(3) C10-N2-Cu1 124.2(7) 
Cl1-Cu1-Cl2 98.8(1) C6-N2-Cu1 113.4(6) 
Cl2-Cu1-Cl2 88.4(1) C4-N3-Cu2 112.0(6) 
C1-N1-Cu1 124.8(7) C11-N3-Cu2 94.3(6) 
C5-N1-Cu1 113.4(7) C13-N4-Cu2 106.7(7) 
N4-Cu2-N5 84.6(4) C12-N4-Cu2 112.2(7) 
N4-Cu2-Cl4 177.3(3) C14-N5-Cu2 108.1(7) 
N5-Cu2-Cl4 94.4(3) C15-N5-Cu2 123.0(7) 
N4-Cu2-Cl3 87.6(3)   

Figure 2.8 – Selected bond lengths for [Cu2L1Cl4]2 ligand.  

 

The structure of [Cu2L1Cl5]
- with the second molecule removed is shown in figure 2.9,  

enabling us to see clearly the allosteric effect demonstrated by the ligand L1.  
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Figure 2.9 - Solid state structure of [Cu2L1Cl5]
- 

 

2.2.1.4 Higher ratios of Cu2+ 

From the spectrophotometric titrations at higher ratios of Cu2+ another species is present and 

this was successfully modeled as [Cu3(L1)3]
6+. It is suspected that the complex is structurally 

related to the [Cu2L1Cl5]
+ complex, with two [CuL1Cl]+ complexes held together with a 

bridging Cu2+ ion.  It is presumed the copper ion is bond to the aza-crown via three nitrogen 

atoms (as the bipyridine unit is also bound). The remaining copper ion is co-ordinated by the 

bipyridine unit from two ligands giving the complex {Cu(L1)Cu(L1)Cu} and is four-co-ordinate 

(perhaps five co-ordinate as a chloride ligand interacts with the central copper ion). The 

formation of this trimetallic species is further supported by ESI-MS with a peak at m/z 964 is 

observed corresponding to [Cu3(L1)2Cl5]
+.   

2.3 Allosteric effects 

In the solid state the aza-crown no longer co-ordinates via all four nitrogen atoms but only 

three, when the bipyridine unit is also co-ordinated. The two aza nitrogen atoms furthest 

from the bipyridine unit and two chloride ions lie roughly within the equatorial plane (Cu-Naza: 

2.021(3) and 2.88(3) Å; Cu-Cleq: 2.281(1) and  2.359(1) Å).  One of the “inner” aza nitrogen 

atoms lies in the elongated axial position (Cu-Naza: 2.464(3) Å), whilst, at 3.355(3) Å, the 

remaining inner nitrogen is too distant to bond to the Cu2+ centre.    The bipyridine torsion 

angle is also greatly reduced from that observed in both the free ligand and the mononuclear 

species [Cu(L1)Cl]+, and is now just 31(1)o.  The reduction in the torsion angle is a direct 

result of the co-planarity required for the bipyridine unit to complex the Cu2+ ion within the 

bipyridine unit. This reduction in torsion angle results in a change in the co-ordination ability 

of the two amine units directly bonded to the bipyridine unit.  At least one of the inner 

nitrogen groups is forced into a position where the hydrogen group is pointing towards the 
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metal ion, preventing any interaction between the nitrogen group and the copper ion. As a 

result co-ordination of the bipyridine unit changes, by an allosteric interaction, the denticity of 

the aza-crown from a tetradentate donor (when the bipyridine unit is unco-ordinated) to a tri-

dentate donor when the bipyridine unit is bound to a metal ion.  

 

 

 

Figure 2.10 – Schematic diagram showing the ligand L1, with the aza crown domain behaving 

as a tetradentate donor (left) and as a tridentate donor when the bipyridine unit is also co-

ordinated (right).  In the upper structure the hydrogen atoms have been omitted for clarity, and 

the structure is 2-dimensional, the lower structures include the hydrogen atoms and are 3-

dimensional in order to demonstrate the change in torsional angle of the bipyridine unit. 

 

This can be described as a negative allosteric system as the co-ordination behaviour of the 

aza crown changes from a tetradentate donor to a tridentate donor upon co-ordination of the 

bipyridine unit. Ideally to fully ascertain the allosteric behavior, binding constants of the aza-

crown in the ligand L1 and the complex of L1 bound to a metal ion via the bipyridine unit 

would be obtained and compared. However, formation of a complex where only the 
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bipyridine unit was co-ordinated proved fruitless, as reaction with metal ions such as 

ReCl(CO)5 and (MeCN)2PdCl2 gave rise to a number of species which could not be isolated. 

It is thought that reaction of these metal ions with L1 results in co-ordination of either the 

bipyridine and/or two nitrogen atoms from the aza-crown domain. 
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3: Diamino-functionalised Cryptate Species 

Described in this chapter is the synthesis and characterization of a diamino-functionalised 

cryptate L2, (figure 3.1).  The ligand contains a bipyridine unit functionalized by two amino 

groups and a cryptate binding domain with multiple co-ordination sites capable of co-

ordinating a metal ion.  Due to the number of donor atoms within the cryptate unit, and due 

to the 3-dimensional shape, cryptates bind metal ions very strongly.  This allows co-

ordination in competitive media such as water, the ability of cryptates to co-ordinate ions 

within aqueous media has enabled them to be extremely useful as a component of biological 

sensors.  The luminescent properties displayed when the ligand is reacted with an aldehyde 

in the presence of an excess of a variety of metal ions is reported.   

N
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Figure 3.1 – Structure of L2 
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3.1 Ligand Synthesis 

3.1.1. Synthesis of L2 

The aim of the synthesis was to produce a ligand which possessed amine groups and a 

cryptate domian.  The cryptate domain is capable of co-ordinating a metal ion within, and the 

amine groups are available to react with an aldehyde.  It is envisaged that co-ordination of 

both domain will elicit a modulation in luminescent response. 

The ligand L2 was synthesised using a non-trivial eight step linear process.  Structural 

elucidation was performed at each step of the synthesis using 1H NMR and mass 

spectrometry.  The linear nature of the process caused initial difficulty in obtaining high 

yields of the target ligand, however modification of several keys steps allowed a workable 

amount to be achieved. 
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Scheme 1.  Synthesis of L2 from 5-amino-6-chloro-2-picoline (1).  Reagents and conditions: (i) acetic 

anhydride, RT (ii) Et4NI, zinc dust, and [NiCl2(PPh3)2], anhydrous DMF, N2, 80oC, (iii) mCPBA, DCM, 

RT, (iv) acetic anhydride, 120oC, (v) Na2CO3, MeOH, RT, (vi) Na2CO3, SOCl2, DCM, reflux, (vii) diaza-

18-crown-6, NaI, Na2HCO3, (at reflux in MeCN), (viii) 3M HCl, RT. 
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The starting precursor for this synthesis is 5-amino-6-chloro-2-picoline which is acetylated in 

order to protect the amine groups, this was achieved by reaction with acetic anhydride at 

room temperature; the excess solvent was removed leaving a pale brown crystalline solid 

(2).   

The acetylated amine was then coupled using tetraethyl ammonium iodide, [NiCl2(PPh3)2] 

and zinc dust in absolute DMF at 80oC, the solution was evaporated and the product 

extracted into DCM.  The highly luminescent crystalline solid (3) was recrystallised in toluene 

from the dried residues.    The 1H NMR spectrum is shown in figure 3.3, the structure of the 

ligand is symmetrical; therefore there are only 5 different hydrogen environments.  The 

spectrum reveals two doublet aromatic signals at ∂ 9.0 and 7.2 respectively, these peaks 

represent the single hydrogens in position 4,4’ and 5,5’ on the bipyridine ring, as shown in 

figure 3.2.  

N
N CH3CH3

N
H

N
H

CH3O

CH3 O

1

1'

2'
2

4

4'

5

5'

 

Figure 3.2 - Expected structure of product 3 showing hydrogen positioning. 
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Figure 3.3 – Aromatic region of the 1H NMR (CDCl3) spectra of 3. 

 

In the 1H NMR spectrum a peak is present at >12ppm and this is attributed to the amide 

hydrogen.  This downfield shift is in part due to the hydrogen bond formed between the –NH 

and the pyridyl hydrogen as shown in figure 3.4. 

CH3CH3

N

N

CH3O

CH3 O

N
N

H

H

 

Figure 3.4 – Structure of 2,2’-Bipy-3,3’-diol showing hydrogen bonding. 

This is typical of a 2,2’-bipyridine bearing acidic protons in the 3,3’ position and gives rise to 

the highly luminescent behavior.  A typical example of this is 2,2’-bipyridine-3,3’-diol which 

bears -OH groups in the 3,3’- position and is a highly luminescent compound.  
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The coupled acetylated diamine was then allowed to stand in DCM with an excess of 

mCPBA for several days to allow N-oxidation of the bipyridine rings.  Once bis-N-oxidation 

had occurred the product was purified by column chromatography to give a fine white 

powder (4).   

Structural elucidation was performed using 1H NMR and the spectrum in figure 3.5 shows 

two aromatic doublets with coupling constants consistent with adjacent aromatic hydrogen 

atoms, these have shifted considerably due to the presence of the N-oxidised nitrogen and 

can now be seen at ∂ 7.9 and 7.4 , in contrast to the previous product at ∂ 9.0 and 7.2 (figure 

3.3).  The spectrum also display two singlet peaks in the aliphatic region corresponding to 

the two methyl groups present in the product. 

7.407.457.507.557.607.657.707.757.807.857.907.95 ppm 

Figure 3.5 – Aromatic region of the 1H NMR (CDCl3) spectrum of 4. 

 

The bis-N,N’-oxide was then acetylated by heating in acetic anhydride at 120oC, the reaction 

was monitored by TLC and purified by column chromatography, once the solvent had been 

removed, to afford a moderate yield of (5).  The reaction allowed the acetylation of the 

methyl groups situated in positions 6,6’ of the bipyridine ring forming Py-CH2OCOMe. 
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Figure 3.6 - Expected structure of product 5 showing hydrogen positioning. 

 

1H NMR showed 5 peaks due to the symmetry of the ligand, with two doublets present in the 

aromatic region.  The spectrum is shown below in figure 3.7.   

7.27.37.47.57.67.77.87.98.08.18.28.38.48.58.68.78.88.99.09.19.29.39.4 ppm

11
.8

1

8.
49

 

Figure 3.7 – Aromatic region of the 1H NMR (CDCl3) spectra of 5. 

The peaks in the aromatic regions are attributed to the aromatic hydrogen atoms in positions 

4,4’ and 5,5’ of the bipyridine ring. These signals have again shifted downfield due to the 

presence of the acetylated methyl group.  The spectrum obtained for this product contains 

some impurities; this is due to hydrolysis which occurs readily within this particular product, 

making purification difficult.  A peak at ∂ 5.3 is present and this corresponds to the 

methylene group labeled 1 in the figure 3.6 and signifies that the expected structure has 
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been obtained. This is further supported by the intergration which shows this signal 

corresponds to 4 hydrogens.  There are two signals in the aliphatic region, these represent 

the two methyl groups labeled 1 and 2 in figure 3.6, one signal represents the amide and the 

other the ester, the amide peak has shifted in comparison to the previous product.            

The acetylated methyl group was hydrolysed using Na2CO3 at room temperature in MeOH, 

the product formed a creamy white precipitate which was filtered off at the pump to give (6). 

The 1H NMR spectra shows only four signals as one of the methyl groups has been 

removed.  The two signals in the aromatic region again correspond to the two aromatic 

hydrogens and a small shift has occurred in comparison with the previous spectra.  A peak is 

visible at ∂ 5.7, this triplet represents the OH group now present adjacent to the methylene 

group.  The methylene group attached to the alcohol has formed a doublet which is visible at 

∂ 4.7, this has shifted up field due to the change in the environment which it is situated in.  

The most conclusive structural information to confirm the reaction has proceeded as 

expected is the absence of the methyl group at ∂ 2.3, this has now been hydrolysed to an 

alcohol.  The remaining methyl signal represents the acetylated amine functional group.   

5.05.56.06.57.07.58.08.59.0 ppm 

Figure 3.8 – Aromatic region of the 1H NMR (DMSO) spectra of 6. 
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Figure 3.9 – Aliphatic region of the 1H NMR (DMSO) spectra of 6. 

 

Chlorination of the alcohol groups gave (7), and was achieved using thionyl chloride in DCM.  

Initially the dimethanol derivative was chlorinated by reaction with thionyl chloride in refluxing 

DCM.  However, despite the TLC indicating that all the starting material had been 

consumed, very little product was isolated.  It is possible that as the reaction produces HCl 

the amide functional groups are hydrolysed and the resulting amines react with thionyl 

chloride.  Addition of NaHCO3 to the chlorination reaction improves matters and as a result 

the chlorinated product could be isolated in fairly reasonable yield.  The product was 

extracted into DCM with aqueous sodium hydrogen carbonate and the solvent removed.   

The 1H NMR shows little change compared with the spectrum of product 6, this is mainly 

because the chlorination of the alcohol group has produced little change within the 

environments of the hydrogen signals observed.  There is a slight shift of both the methyl 

and ethyl group, but otherwise the spectrum (shown in figures 3.10 and 3.11) are very 

similar, however, this is expected as little change has occurred within the structure. 
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7.57.67.77.87.98.08.18.28.38.48.58.68.78.88.99.09.19.2 ppm 

Figure 3.10 – Aromatic region of the 1H NMR (CDCl3) spectra of 7. 
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Figure 3.11 – Aliphatic region of the 1H NMR (CDCl3) spectra of 7. 

 

Formation of the cryptate was achieved by reaction of the dichloro derivative (7) with diaza-

18-crown-6 in refluxing MeCN with NaHCO3 and NaI.  The sodium ion is required to 
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template the addition reaction as is common in cryptate synthesis.  Furthermore, iodide is 

also required as without the addition of this anion no reaction is observed.  This is due to the 

relatively unreactive nature of the -CH2Cl units which will not be displaced by the R2NH of 

the aza-crown.  However, the nucleophillic iodide reacts with the chloromethane unit giving -

CH2I which is much more reactive than the chloro derivative and reacts cleanly with the aza-

crown. 

The 1H NMR spectrum shown in figure 3.12 shows a large shift in the aromatic hydrogen 

signals.  A number of highly coupled signals are present from ∂ 4.0 to 2.1 which represent 

the 24 aliphatic hydrogens within the cryptate, interpretation and assignment of the individual 

peaks is impossible due to overlap of signals, but this type of multiplet is characteristic of a 

cryptate domain and would be expected.    

 

7.27.47.67.88.08.28.48.68.89.09.29.4 ppm

6.
22
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Figure 3.12 – Aromatic region of the 1H NMR (CD3CN) spectrum of 8. 

 

The protecting acetylate groups were removed from (8) to give the final ligand L2 using 3M 

HCl solution.  The acid hydrolysis occurred at room temperature over several days, upon 

completion the solution was neutralized with concentrated ammonia solution and 

immediately extracted into DCM.  An analytically pure solid of L2 was recrystallised from 

chloroform.        
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7.007.057.107.157.207.257.307.357.40 ppm 

Figure 3.13 – Aromatic region of the 1H NMR (CDCl3) spectrum of L2. 

2.12.22.32.42.52.62.72.82.93.03.13.23.33.43.53.63.73.83.94.04.14.2 ppm 

Figure 3.14 – Aliphatic region of the 1H NMR (CDCl3) spectrum of L2. 

The 1H NMR spectra shown in figures 3.13 and 3.14 shows little difference from that of the 

previous product, however this is expected due to the relatively small change in the 

environments of the hydrogen atoms within the ligand.  Within the large multiplet present at ∂ 

4.0 to 2.1 we can see two doublets, one at 3.95, and one at 3.55, these represent the 

diastereotopic methylene groups bonded directly to the bipyridine unit.   
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Figure 3.15 – 1H COSY NMR (CDCl3) spectra of L2 
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3.23.43.63.84.04.2

Figure 3.16 – Aliphatic region of the 1H C

Further structural elucidation was carried out by

figures 3.15 and 3.16. The relationships between 

structure has been assigned.  Mass spectrometr

structure, the relative molecular mass of the l

suggested.   

 

 

 

 

Py-CH2- 
↓ 
Py-CH2- 
↓ 
 131 

ppm

2.02.22.42.62.83.0 ppm

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

 

OSY NMR (CDCl3) spectra of L2. 

 1H COSY NMR, which can be seen in 

the peaks clearly demonstrates the correct 

y was also performed to further clarify the 

igand was concordant with the structure 
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3.2 Results and discussion 

3.2.1 – Solid State Structure of the Ammonium Iodide salt of L2 

Single crystals of the diamino cryptate species L2 were obtained by slow evaporation of a 

solution of CHCl3 and these were analyzed by single crystal X-Ray diffraction studies. The 

solid state structure can be seen in figures 3.17, 3.18 and 3.19, and selected bond lengths 

are shown in figure 3.20.  The crystal structure clearly demonstrates the expected 3-

dimensional structure has been successfully synthesized.  Interestingly, there is an 

ammonium ion bound within the cryptate, this is present within the cryptate from the 

neutralization process in the penultimate stage of the synthesis.  The hydrogen atoms of the 

ammonium ion are hydrogen bonded to both of the pyridine nitrogen atoms of the cryptate 

unit (3.031 and 2.947 Å) and four of the oxygen atoms in the cryptate domain (range 2.947 – 

2.837 Å, average length 2.903 Å).   

Surprisingly, the salt is that of the iodide (V), even though the anion was used in the 

penultimate step (HCl was used in the final step).  However, the solubility of the iodide salt in 

DCM must be much greater than that of the chloride and as a result that anion is carried 

through to the final step.  The iodide ion is hydrogen bonded to the molecules of CHCl3 that 

are present within the solid state structure, and also with one of the amine groups on the 

bipyridine unit of the L2 ligand.  These bonds coupled with the solubility of the iodide salt in 

the DCM have allowed the iodide ion to persist through to the final step.  The bipyridine unit 

of the ligand L2 shows a large torsional twist (NCCN -57.28˚), which can be clearly seen in 

figure 3.18, this is due to the steric hinderance of the two amine groups which move as far 

away from each other as possible due to steric repulsion.   
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Figure 3.17 – Single Crystal X-ray structure of L2 ammonium iodide salt. 

 

Figure 3.18 – Single Crystal X-ray structure of L2 ammonium iodide salt, showing large 

torsional twist in the bipyridine unit. 
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Figure 3.19 – Single Crystal X-ray space-fill structure of L2 ammonium iodide salt. 

 

 

 

 

Bond distances (Å) 
 

N1G-H1G 0.908(9) O103-C104 1.435(4) 

N1G-H2G 0.905(9) C104-C105 1.493(5) 

N1G-H3G 0.906(9) C105-O106 1.425(4) 

N1G-H4G 0.906(9) O106-C107 1.422(4) 

N11-C16 1.341(4) C107-C108 1.507(5) 

C16-C18 1.519(5) C108-N109 1.484(4) 

C18-N100 1.483(5) N109-C110 1.480(4) 

N21-C26 1.340(4) C110-C111 1.522(5) 

C26-C28 1.506(4) C111-O112 1.425(5) 

C28-N109 1.488(4) O112-C113 1.430(4) 

N100-C101 1.474(5) C113-C114 1.492(6) 

N100-C117 1.480(4) C114-O115 1.436(5) 

C101-C102 1.508(5) O115-C116 1.429(5) 

C102-O103 1.429(4) C116-C117 1.501(6) 

 Bond angles (o)  

    
H1G-N1G-H2G 109.7(13) O106-C105-C104 108.8(3) 

H1G-N1G-N3G 109.2(13) C107-O106-C105 111.8(3) 

H2G-N1G-H3G 109.7(13) O106-C107-C108 109.8(3) 

H1G-N1G-H4G 109.3(13) N109-C108-C107 113.7(3) 
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H2G-N1G-H4G 109.6(13) C110-N109-C108 111.0(3) 

H3G-N1G-H4G 109.3(13) C110-N109-C28 109.3(3) 

N11-C16-C18 116.8(3) C108-N109-C28 108.6(3) 

N100-C18-C16 114.7(3) N109-C110-C111 114.9(3) 

N21-C26-C28 116.9(3) O112-C111-C110 110.1(3) 

C101-N100-C18 109.5(3) C111-O112-C113 111.6(3) 

C117-N100-C18 108.9(3) O112-C113-C114 109.7(3) 

N100-C101-C102 114.4(3) O115-C114-C113 109.8(3) 

C102-O103-C104 110.8(3) C116-O115-C114 112.2(3) 

O103-C104-C105 109.7(3) O115-C116-C117 109.9(3) 

  N100-C117-C116 114.2(3) 

 

Figure 3.20 – Selected bond lengths for L2 free ligand 

 

3.2.2 – Reactivity of cryptate with metal ions 

Upon successful synthesis of the diamino cryptate the ability of this species to co-ordinate 

metal ions within the potentially octadentate cryptate domain was investigated by both 1H 

NMR and ESI-MS.  A 1H NMR spectrum of the ammonium iodide salt of L2 was obtained in 

CD3CN which showed not only the expected aromatic and aliphatic signals but also present 

was a triplet at 7.53 ppm corresponding to the NH4
+ cation. The difference in the chemical 

shift between the ammonium present within the cryptate species and that of “free” 

ammonium (NH4Cl, 6.1 ppm, CD3CN) clearly shows that the cation is bound within the 

cryptate domain both in the solution and solid state. 

Metal ions were introduced to the ligand to establish the reactivity of the cryptate domain, the 

single crystal X-ray structure clearly shows an ammonium ion co-ordinated within the 

cryptate domain.  Several 1H NMR experiments were performed to investigate whether the 

ammonium ion could be displaced from within the cryptate and replaced with a metal ion.  

The spectrum obtained from the 1H NMR experiments are shown in figure 3.21. 

 

 

 

 

 

 



Page 80 of 131 
 

N

N

N

O

O

N

O

O

NH2

NH2

NH4+

N

N

N

O

O

N

O

O

NH2

NH2

Zn2+

N

N

N

O

O

N

O

O

NH2

NH2

Ba2+

 

5.65.75.85.96.06.16.26.36.46.56.66.76.86.97.07.17.27.37.47.57.67.7 ppm 

5.75.85.96.06.16.26.36.46.56.66.76.86.97.07.17.27.37.47.57.67.77.8 ppm

3.
54

4.
31

0.
77

 

5.65.86.06.26.46.66.87.07.27.47.67.8 ppm

0.
93

1.
22

0.
86

0.
95

0.
65

 

Figure 3.21 – 1H NMR spectra obtained upon introduction of Ba2+ and Zn2+ to the ligand L2 in 

acetonitrile with a H+ acid catalyst. 
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The first spectrum shows the aromatic region of the ligand with an ammonium ion co-

ordinated within the cryptate.  The second and third spectra show the response when a 

metal ion is introduced into the ligand, Ba2+ in the second and Zn2+ in the third, respectively.   

It is clearly demonstrated that upon addition of Ba2+ there is a shift in the aromatic signals, 

indicating that Ba2+ is incorporated within the cryptate domain.  The Ba2+ ion has moved into 

the cryptate domain and displaced the ammonium situated within, the ammonia is now free 

in solution and a broad signal characteristic of –NH is observed at ∂ 6.0. Further evidence for 

incorporation of this metal cation is obtained by ESI-MS which shows an ion at m/z 736 

{[L2Ba]ClO4}
+. 

The third spectrum shows the change in signals which occurs upon introduction of zinc to 

the ligand, again there is a significant shift in the aromatic signals, the initial clue to indicate 

a change in structure has occurred.  A broad signal characteristic of –NH is observed at ∂ 

6.0 indicating the Zn2+ has displaced the ammonium ion from within the cryptate.   Again an 

ion is observed with the ESI-MS at m/z 685 which corresponds to the zinc complex 

{[L2Zn]CF3SO3}
+ 

These 1H NMR experiments demonstrate the ability of the cryptate domain to co-ordinate 

metal ions, it is believed that the selectivity of the cryptate domain will be based on ionic size 

as is the case with crown ether domains and this has been demonstrated previously by Rice 

et al. 39  The selectivity of the domain for metal ions over cations is demonstrated by the 

rapid exchange of the ammonium ion for a metal ion.  This is due to the number of donor 

atoms within the cryptate unit and the 3-dimensional shape which allows strong binding of 

metal ions.  

3.2.3 – Cyclisation of Amino Groups 

It has been previously observed in similar systems that amino groups react readily with 

aldehydes and this results in the formation of a seven-membered cyclic aminal species. 98   It 

is thought that this reaction occurs via formation of a Schiff base with one of the amine units. 

This then undergoes an intramolecular reaction with the other amine resulting in the 

formation of a 7-membered aza-heterocycle. 

To investigate the formation of this cyclic species the ammonium iodide salt of L2 was 

reacted with a 10-fold excess of butanal in CDCl3 and the 1H NMR spectrum recorded, 

unfortunately no reaction was observed even with prolonged reaction times or at elevated 

temperatures. However, upon addition of barium ions to the same reaction a colour change 

occurred instantaneously and the 1H NMR showed that the cyclisation had occurred 

(Scheme 2) as both a shift in the aromatic region was observed, disappearance of the amino 
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protons and a new signal at 4.15 ppm corresponding to the –CHCH2CH2CH3 proton. Further 

conformation was given by ESI-MS which gave an ion at m/z 736 corresponding to the 

barium-containing cyclised species {[L2Ba]ClO4}
+. 

 

Scheme 2 – Cyclization of L2 upon introduction of M2+ and butanal. 
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Figure 3.22 – Comparison of the theoretical (above) and obtained (below) isotope distributions 

from ESI-MS of the Ba2+ (left) and Zn2+ (right) cyclised complexes. 

 

Single crystals of this cyclised species were grown by reaction of [L2Ba](ClO4)2 with butanal 

in water which slowly deposited dark yellow crystals after 24 hrs. In the crystal structure the 

formation of the aminal species is confirmed with the barium ion co-ordinated by four oxygen 

atoms (2.808(5) – 2.887(5) Å) and four nitrogen atoms (2.836(5) – 2.911(5) Å) from the 

cryptate moiety, along with two oxygen atoms from the perchlorate counter ions (2.887(5) – 

3.007(6) Å, omitted for clarity). 
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Figure 3.23 – Single Crystal X-ray structure of L2-Ba2+ cyclised ligand.  

 

 

Figure 3.24 – Single Crystal X-ray spacefill structure of L2-Ba2+ cyclised ligand  
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Bond distances (Å) 
 

 N1-Ba1 2.911(5)  
 N2-Ba1 2.836(5)  
 N3-Ba1 2.910(6)  
 N4-Ba1 2.908(6)  
 O1-Ba1 2.887(5)  
 O2-Ba1 2.885(5)  
 O3-Ba1 2.824(5)  
 O4-Ba1 2.808(5)  
 O5-Ba1 2.887(5)  
 O9-Ba1 3.007(6)  

Bond angles (°°°°) 
 

N1-Ba1-N2 61.5 (2) O5-Ba1-N1 81.6(1) 
N1-Ba1-N3 115.7(2) O5-Ba1-N2 74.8(2) 
N1-Ba1-N4 177.8(2) O5-Ba1-N3 87.9(2) 
N2-Ba1-N3 54.6(2) O5-Ba1-N4 97.9(2) 
N2-Ba1-N4 116.4(2) O9-Ba1-N1 88.5(2) 
N3-Ba1-N4 62.1(2) O9-Ba1-N2 139.1(2) 
O1-Ba1-N1 59.1(1) O9-Ba1-N3 138.3(2) 
O1-Ba1-N2 69.9(2) O9-Ba1-N4 93.5(2) 
O1-Ba1-N3  91.7(2) O1-Ba1-O2 58.9(1) 
O1-Ba1-N4 119.9(2) O1-Ba1-O3 142.3(2) 
O2-Ba1-N1 118.4(1) O1-Ba1-O4 104.5(1) 
O2-Ba1-N2 101.7(2) O1-Ba1-O5 136.6(1) 
O2-Ba1-N3 71.5(1) O1-Ba1-O9 71.0(2) 
O2-Ba1-N4 61.6(1) O2-Ba1-O3 105.1(1) 
O3-Ba1-N1 119.5(2) O2-Ba1-O4 132.8(1) 
O3-Ba1-N2 146.6(2) O2-Ba1-O5 155.8(1) 
O3-Ba1-N3 116.7(2) O2-Ba1-O9 67.0(2) 
O3-Ba1-N4 62.2(2) O3-Ba1-O4 59.2(1) 
O4-Ba1-N1 60.4(2) O3-Ba1-O5 72.5(2) 
O4-Ba1-N2 113.6(2) O3-Ba1-O9 71.3(2) 
O4-Ba1-N3 155.4(2) O4-Ba1-O5 67.7(1) 
O4-Ba1-N4 121.4(2) O4-Ba1-O9 65.7(2) 

  O5-Ba1-O9 130.9(2) 
    

Figure 3.25 – Selected bond lengths and bong angles for L2-Ba2+ cyclised ligand. 

 

The reaction of the amino groups with aldehydes occurs with any uni- or divalent metal ions 

but does not occur if these are not present. There are two possible explanations for this 

behavior; firstly an allosteric effect, as it has been previously shown that proximity of amine 

groups plays an important role in the cyclisation reaction to form the bis-aminal species. If 

the two amino groups are too distant then the cyclisation step cannot occur as the 

nucleophilic nitrogen atom cannot react with the Schiff base.  Therefore, upon co-ordination 

of the cryptate domain with a zinc or barium ion, co-ordination of the nitrogen groups 

attached directly to the bipyridine unit would force the bipyridine unit planar.  This forced 

planarity moves the two amine groups into closer proximity to each other facilitating the 

cyclisation with an aldehyde.  Therefore, in this case the addition of a barium or zinc ion to 

ligand L2 in an excess of butanal would facilitate cyclisation via an allosteric effect. Secondly, 

the metal ions could act as a simple Lewis acid catalyst simply activating the aldehyde and 

promoting the formation of the Schiff base. 
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It is difficult to ascertain which of these effects is predominantly responsible for the catalysis. 

For example, if sodium was employed as the catalyst then this may slow the reaction but this 

can be attributed to both an allosteric effect as sodium is smaller than Ba2+ or Zn2+ and may 

not result in a planar bipyridine unit (the Na+ would be coordinated via the 4 oxygen and 2 

nitrogen atoms of the cryptate). Retardation of the rate could also be as a result of the 

monovalent ion which would not be as an effective Lewis acid catalyst compared with the 

divalent metal ion. However, it is highly probable that the metal ion has a synergistic effect 

and promotes the reaction via both allosteric effects and Lewis acid catalysis. 

3.2.4 – Fixing of the Cryptate Domain 

The ability of the cyclisation of the two amino functional groups to affect the co-ordination 

properties was investigated. It was hoped that cyclisation of the amino groups would 

significantly affect the ability of the cryptate domain to fix a metal cation inside. This “locking” 

would arise from an allosteric effect as the diamino unit present on the bipyridine prevents it 

from adopting a planar conformation and as a result the bipyridine cannot easily act as a 

bidentate unit. Cyclisation of the amino units with an aldehyde would result in reducing the 

torsion angle allowing bidentate co-ordination. It was envisaged that the metal ions of certain 

complexes of the uncyclised species could be easily exchanged with other metal ions e.g. 

addition of excess Ba2+ ions to the potassium complex would result in displacement of the K+ 

ions with Ba2+. However, cyclisation would lock the metal ion with the cryptate unit. 

To investigate this behavior a series of 1H NMR experiments were performed. In the first 

experiment the 1H NMR (CD3CN) of the potassium-containing complex [L2K]ClO4 was 

obtained and to this was added a three-fold excess of Ba(ClO4)2 and the spectrum re-

recorded. This clearly showed a difference in the 1H NMR indicating that the barium had 

displaced the potassium ion, furthermore the chemical shift was identical to that of the 

isolated barium complex [L2Ba](ClO4)2. A second experiment was then conducted but this 

time the cyclised species was used, a 1H NMR spectrum of the cyclised potassium-

containing complex [L2K]ClO4 was obtained in CD3CN and then a 3-fold excess of barium 

perchlorate was added and the spectrum re-recorded. Comparison of the 1H NMR spectra 

obtained show the potassium ion is easily displaced from the cyclised cryptate in an 

analogous manner to the uncyclised species.  

In retrospect it is somewhat obvious that the cryptate species cannot be “locked” as careful 

examination of the solid state structure reveals that the distance between the two –

OCH2CH2O- arms of the cryptate unit is quite large and these “windows” will allow 

displacement of ions, regardless of whether the bipyridine unit is cyclised or not. 



 

3.2.5 – Luminescence Studies 

The unique reactivity of L2 allows tunable optical and emissive properties.  In the free ligand 

form the probe is shown to absorb with a λmax = 317nm and is weakly emissive at ca. 440nm 

in aerated aqueous solution.  A variety of metal cations (5 x 10-4 M as perchlorate salts) 

were introduced to a 1 x 10-4 M solution of L2 and resulted in minor emission wavelength 

shifts together with general enhancements in emission intensity.  The trivalent state of iron is 

the most common metal ion found within the human body.  Comparison of Fe3+ and Zn2+ was 

particularly notable as these two species produced the most significant blue (Fe3+ λem = 

428nm) and red shifts (Zn2+ λem = 452nm) respectively, therefore allowing differentiation 

between the ions on the basis of wavelength.   

Further evidence for the binding properties of L2 was observed in the absorption spectra 

where the lowest energy intraligand band was red shifted in comparison to the L2Zn2+ 

complex.  In the case of the L2-Zn2+ complex the absorption is λem = 365nm, however, 

titration of a micromolar concentrations of Zn2+ to a 1 x 10-4 M solution of L2 induced 

approximately a 10-fold increase in the emission intensity.  The emission intensity with 

increasing concentrations of Zn2+ is shown in figure 3.26, the dramatic increase in intensity 

can be seen following the increase in concentration of Zn2+ present.  
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 Luminescence titration of Zn(ClO4)2 with L2 (1 x 10-4M in water) 



 

The addition of excess butanal to the solution of L2 resulted in the formation of the cyclised 

bis-aminal species, this further optimized the optical properties of the ligand.  The 

derivatisation resulted in formation of a yellow solution as a consequence of the red shift in 

the lowest energy absorption band. 

A further example of this was shown in the electronic spectrum of cyclised zinc complex 

(cyclised L2Zn2+) with  λmax = 439 and 282 nm, demonstrating a dramatic low energy shift 

upon cyclisation, and thereby facilitating visible sensitisation, this is shown in figure 3.27.  It 

should be noted that in contrast to the cyclised species neither the uncyclised free L2 ligand 

or the L2Zn2+ uncyclised species are strongly absorbing above 420 nm.  This indicates that 

excitation wavelengths at or above 420 nm are selective for the cyclised L2Zn2+ ligand. 

 

Figure 3.27
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 – Electronic absorption spectra obtained in aqueous solutions at a concentration 

of 7 x 10-5 M 

 

hysical properties of the cyclised L2 ligand were even more varied in response to 

plexes than the uncyclised L2 ligand.  The data associated with the wavelength 

cent lifetime responses of the ligand with various metal ions are shown in table 

raphical form in figures 3.28 and 3.29.   Table 3.1 and figure 3.29 also display 

intensity compared to the zinc complex.  The cyclised ligand produced the most 

ssion when co-ordinated with zinc by a significant margin.   



 

Table 3.1 Luminescent properties of L2a (uncyclised L2 ligand) and L2b (cyclised L2 ligand) + 

metal ions (Mn+). 

Mn+ [L2a + M]/nma [L2b + M]/nmb Relative 
intensity (I/I0)

c 
[2-M]3/nsd 

Li+ 442 559 0.03 1.3 
Na+ 442 563 0.03 1.3 
K+ 441 560 0.03 1.2 
Mg2+ 440 560 0.03 1.3 
Ca2+ 444 562 0.03 1.3 
Ba2+ 437 543 0.23 9.0 
Fe3+ 428 568 0.16 1.0 
Co2+ 440 556 0.07 1.5 
Ni2+ 440 566 0.05 1.4 
Cu2+ Weak Weak - - 
Zn2+ 452 533 1 5.9 
Cd2+ 442 528 0.29 5.3 
Hg2+ 441 520 Weak 0.01 - 
a λex = 350 nm;b λex = 425 nm;c where I = L2a + Mn+, Io = L2b + Zn2+; dλex = 372 or 459nm.  
Measurements obtained using 1 x 10-4 M of 1 and 5 x 10-4 M Mn+.  All solutions were 
allowed to equilibrate for 10 min and the pH remained between 6.5 and 7.5 in all cases.  For 
[2-M]+/2+, samples were re-recorded after 24 h demonstrating no further changes.  
Measurement were taken at a fixed excitation wavelength, therefore changes in emission 
intensity may not necessarily reflect changes in quantum yield.  
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Figure 3.28 - Comparison of emission spectra of L2M
+ in water following exposure to an excess 

of butanal.  

It can be clearly seen that the zinc and cadmium complex of cyclised L2 ligands emit at a 

slightly shorter wavelength than the other metal ions, they both emit at below 535nm, the 

other ions emit in the 550 to 585 nm range, with the majority emitting at approximately 

575nm.  This may allow a degree of wavelength selectivity based on metal ions co-ordinated 

and their emission wavelengths. 
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Figure 3.29 – Graphical summary of the luminescence responses of the cyclised L2M
+ species 

in water. 

Generally it was found that the emission maxima from the cyclised bisaminal species lay 

between 515 and 570 nm for the various metal complexes, following excitation at 425 nm, 

this indicated a significant Stokes shift which is commonly associated with emissive 

transition metal complexes, the Stokes shift for the cyclised L2Zn2+ ligand is shown in figure 

3.30.  A large Stokes shift is preferable for luminescent sensors as there is a large difference 

between the wavelength in which excitation occurs and the wavelength at which emission 

occurs, this means there is no confusion between the two signals.   
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Figure 3.30 – Example of excitation (left) and emission spectra of the cyclised L2Zn2+ ligand 

obtained in aerated water. 

 

The ligand L2 showed a dramatic increase in luminescence intensity when co-ordinated to 

zinc ions when compared to other metal cations, the reasons for this can be ascribed to a 

number of factors.  Zn2+ has a higher affinity for the bipyridine unit than the group 1 and 2 

cations, and is therefore more likely to co-ordinate the nitrogen atoms present in the 

bipyridine unit forcing the bipyridine unit planar.  Increased planarity and rigidification allow 

greater luminescence intensity due to the reduced vibrational activity of the ligand.  Zn2+ also 

possesses a closed shell d10 configuration, whereas paramagnetic metal ions (such as Ni2+, 

Co2+ and Cu2+) are known to be efficient luminescence quenchers.  Comparison of the L2 

Zn2+ complex with other metal complexes from Group 10 reveal a gradual decrease in 

luminescent intensity as we move down the group, this is due to quenching via the heavy 

atom effect. 

The fluorescence lifetimes of the L2Zn2+ complex were found to be far longer than those 

species which emitted at approximately 560nm, (such as Ca2+, Ni2+, Mg2+, K+, Na+, Li+, Co2+ 

and Fe3+), these are all analytes of biological interest, and this lifetime dependence allows 

screening for zinc in an ionically competitive buffered HEPES aqueous medium at pH 7.4.  

The HEPES buffered aqueous solution consists of 4mM ZnCl2 in 140mM NaCl, 4mM KCl, 

1.2 mM MgCl2 and 2.3mM CaCl2.   
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Figure 3.31 – Comparison luminescent lifetime decay profiles of cyclised L2M
n+ where M = K(I), 

Zn (II), Fe(III), Ca(II) and Li(I). Inset- wavelength dependent lifetime decays of cyclised L2Zn2+ in an 

ionic mixture. 

The response is shown in figure 3.31, and it can be seen that the profiles for K(I), Fe(III), Ca(II) 

and Li(I) begin to decay after approximately 6 nano seconds.  However Zn2+ has a much 

longer lifetime and less dramatic decay profile.  The inset shows the lifetime decay profile for 

an ionic mixture at different wavelengths.  At longer wavelengths (550nm) the shorter lifetime 

contributions of Na+, K+, Mg2+ and Ca2+ are notable, however the long lifetime of the Zn2+ is 

also clearly demonstrated.  At lower wavelengths, (550nm), the long lived emission of Zn2+ is 

dominant, this supports the emission wavelength data shown in figure 3.28, where the zinc 

emits at a shorter wavelength than the majority of the other ions tested.  Thus, for the 

cyclised L2Zn2+ species the luminescence lifetime measurement can be used as a 

discriminatory technique for the detection of zinc, even in a competitive ionic medium.  
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4: Luminescent Transition Metal Helicates 

The chapter describes the synthesis of a potentially hexadentate ligand L3, which contains 

two coumarin fluorophores.  The ligand is potentially capable of forming a dinuclear double 

helicate when in the presence of dicationic metal ions.   

The ability of polydentate ligands to form helicate assemblies with transition metals has and 

continues to receive a large amount of interest within chemical research.  Luminescent 

helicates are a specific area of interest and most commonly involve the incorporation of 

luminescent lanthanide ions.  The lanthanide ions are capable of participating in f-f 

transitions and can produce interesting and useful properties.  However, the frequency of 

helicates containing organic lumophores is considerably less common, and although some 

examples have been reported, these generally form mononuclear complexes with divalent 

metal ions, or helicates with monovalent metal ions. 101 
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4.1 Ligand synthesis 

4.1.1 Synthesis of ligand L3 

The aim of the chapter was to synthesise a hexadentate ligand which possessed two 

coumarin fluorophores.  It is envisaged that co-ordination of the ligand with certain metal 

ions will result in a dinuclear double helicate.  The coumarin fluorophores may enable a 

modulation of luminescence emission upon co-ordination of the ligand with metal ions.  

The ligand L3 incorporates a well known fluorophore in the form of coumarin, which is 

attached to the thiazole moiety in the final step of the synthesis.  The ligand was prepared 

from the starting pre-cursor 3,3’-dimethoxy-2,2’-bipyridine via a 4 step linear reaction.  The 

luminescence and co-ordination properties of the ligand were subsequently investigated. 
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Figure 4.1 – Structure of helicate ligand L3. 
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Scheme 3 – Synthesis of L3 from 3,3’-dimethoxy-2,2’-bipyridine (1).  Reagents and 

conditions; (i) mCPBA, RT, (ii) trimethylsilylcyanide, Et3N, CH2Cl2, reflux, (iii) H2S, (iv) 3-

bromoacetylcoumarin, EtOH, reflux, aqueous NH3. 
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The ligand L3 was prepared from the initial starting material 3,3’-dimethoxy-2,2’-bipyridine via 

bis-N-oxidation and cyanation, reaction with hydrogen sulphide yielded the 6,6’-dithioamide.  

The final ligand L3 was prepared by reaction of the 6,6’-dithioamide (4) with 3-

bromoacetylcoumarin in ethanol at reflux.  The ligand L3 formed an insoluble precipitate 

which was isolated and washed. Once thoroughly dried any impurities were removed by 

suspension in ammonia solution, and once filtered and dried, analytically pure L3 was 

obtained. 
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Figure 4.2 – Aromatic region of the 1H NMR (DMSO) spectrum of L3. 

Due to the poor solubility of the L3 ligand, it was difficult to obtain a 1 H NMR spectrum in 

most solvents; eventually a 1H NMR spectrum was obtained in DMSO at 50˚C, and is shown 

above in figure 4.2.  The symmetrical nature of the ligand means that 8 aromatic signals are 

observed in the aromatic region, as is expected from the proposed structure, and a methyl 

group is clearly observed at ∂ 3.4, representing the methoxy group present. 
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4.2 Discussion and results 

4.2.1 Solid State analysis 

Reaction of the ligand with one equivalent of Cu(ClO4)2
.6H2O in MeCN yielded a dark red 

solution, from which a red crystalline material was produced by slow diffusion of which with 

diethyl ether.  ESI-MS indicated a dinuclear double stranded helicate had been formed with 

peaks at m/z 1767 {[Cu2(L
3)2](ClO4)3}

+ and m/z 832 {[Cu2(L
3)2](ClO4)2}

2+.   

The single crystal X-ray crystal structure confirmed the presence of the helicate species. The 

ligand can be seen to partition into two tridentate domains comprising of two N-donor atoms 

from the pyridyl and thiazole units and one O-donor atom from the carbonyl oxygen atom of 

the coumarin moiety.  The copper ion is co-ordinated by two of these tridentate units, one 

from each of the two ligands forming the helicate structure.   

 

 

Figure 4.3 – Single crystal X-ray structure of [Cu2(L
3)2]

4+ 
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Bond distances (Å) 
 

Cu1 N81  1.955(3) 
Cu1 N21  1.983(3) 
Cu1 O71  2.091(3) 
Cu1 N91  2.133(3) 
Cu1 O11  2.203(3) 
Cu1 N31  2.272(3) 
Cu2 N51  1.947(3) 
Cu2 N111  1.980(3)  
Cu2 O61  2.083(3) 
Cu2 N41  2.146(3) 

Cu2 O121  2.239(3) 
Cu2 N101  2.311(3) 

 

Bond Angles (o) 
 

N81-Cu1-N21  167.3(1)   N51-Cu2-N111 169.1(1)   
N81-Cu1-O71  86.7(1)   N51-Cu2-O61 85.9(1)   
N21-Cu1-O71  88.7(1)   N111-Cu2-O61 91.5(1)   
N81-Cu1-N91  80.6(1)   N51-Cu2-N41 80.9(1)   
N21-Cu1-N91 103.1(1) N111-Cu2-N41 102.1(1)   
O71-Cu1-N91  166.9(1)   O61-Cu2-N41 166.4(1) 
N81-Cu1-O11 83.8(1)   N51-Cu2-O121 85.3(1) 
N21-Cu1-O11  84.4(1)    N111-Cu2-O121 84.5(1)   
O71-Cu1-O11 90.7(1)   O61-Cu2-O121 96.4(1)   
N91-Cu1-O11  85.2(1)   N41-Cu2-O121 85.8(1)   
N81-Cu1-N31  112.4(1) N51-Cu2-N101 112.5(1) 
N21-Cu1-N31  78.5(1)   N111-Cu2-N101 77.2(1)   
O71-Cu1-N31  81.0(1)   O61-Cu2-N101 79.0(1)   
N91-Cu1-N31  106.4(1)   N41-Cu2-N101 103.1(1)   
O11-Cu1-N31 161.0(1) O121-Cu2-N101 161.0(1) 

 

Figure 4.4 – Selected bond lengths for L3 free ligand 

 

The solid state structure demonstrates that each of the Cu2+ centres has a distorted pseudo-

octahedral co-ordination geometry with Cu-N and Cu-O distances ranging from 1.980(3)-

2.311(3)Å and 1.980(3)-2.311(3)Å respectively.  Surprisingly the Cu2+ centres appear to 

interact directly with the carbonyl O-donors of the coumarin fluorophores, which was 

unexpected as ester groups are generally considered to be poor donor units.  The most 

probable explanation for this is unfavourable steric interaction between the two methoxy 

groups present in the 3,3’-position of the central bipyridine unit which prevent the ligand from 

adopting the coplanar geometry, required for all four of the N-donors to co-ordinate a 

common Cu2+ centre.  Removal of these methoxy groups would almost certainly result in the 
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preferential formation of a single stranded mononuclear complex, observation of which has 

previously occurred in the study of Cu2+ complexes of related ligands based on a similar N-

donor array. 102, 103  In the ligand L3 however, the partitioning of the ligand by the 3,3’-

substituents allows the carbonyl oxygen groups to stabilize the Cu2+ centres within the 

dinuclear double-stranded complex. 

ESI-MS studies have demonstrated that the latter 1st row d-block metal ions (M = Ni2+, Zn2+, 

Cu2+ and Co2+) form the dinuclear double helicate species [(L3)2M2]
4+, as do the 2nd and 3rd 

row d10 metal ions, giving [Cd2(L
3)2]

4+ and [Hg2(L
3)2]

4+ respectively.  For the zinc complex a 
1H NMR spectrum (CD3CN) was obtained and reveals eight signals in the aromatic region, 

which is consistent with the formation of the expected symmetrical helicate.   
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Figure 4.5 - Aromatic region of the 1H NMR (CD3CN) spectra of [(L3)2Zn2]
4+. 

A single crystal X-ray crystal structure has been obtained for the zinc complex [Zn2(L
3)2]

4+, 

however the data achieved for this structure is poor and show extensive disorder.  The 

structure clearly demonstrates the structure is very similar to that obtained for the Cu(II) 

complex, however there is little further information available apart from the structure and the 

data do not merit detailed discussion. 

1H NMR studies of the larger Group 12 metal ions are more complex and two sets of 8 

signals are observed, thus indicating the formation of two different species.  Titration of an 
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excess metal ion results in the disappearance of one set of signals leaving a single species 

present.   
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Figure 4.6 - Aromatic region of the 1H NMR (CD3CN) spectra of ligand L3 and one equivalent of 

Cd2+. 

 

6.87.07.27.47.67.88.08.28.48.68.89.0 ppm  

Figure 4.7 - Aromatic region of the 1H NMR (CD3CN) spectra of ligand L3 and excess Cd2+. 
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6.57.07.58.08.59.0 ppm 

Figure 4.8 - Aromatic region of the 1H NMR (CD3CN) spectra of ligand L3 and one equivalent of 

Hg2+. 

6.57.07.58.08.59.0 ppm 

Figure 4.9 - Aromatic region of the 1H NMR (CD3CN) spectra of ligand L3 and excess Hg2+. 

It is possible that with Cd2+ and Hg2+ that complexes of the complex [M(L3)2]
2+ are present 

and the metal is co-ordinated by 8 N-donor atoms, four from each ligand, giving rise to an 8-
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co-ordinate metal centre. However, Cd2+ and Hg2+ are both capable of displaying co-

ordination numbers of greater than six and are less oxophilic than Zn2+, which would 

facilitate the formation of the diligand containing species [M(L3)2]
2+.  Formation of the 

mononuclear species would be unfavourable upon addition of the excess metal ion as this 

would give preference to the formation of [M2(L
3)2]

4+.  This theory is supported by the ESI-

MS as ions which correspond to [M(L3)2]
2+ are observed at m/z 1553 for Cd2+ and m/z 1641 

for Hg2+.  In contrast to this addition of excess metal salt to the zinc complex [Zn2(L
3)2]

4+ 

yields no changes. 

 

4.2.2 Luminescence Studies 

The emissive properties of the complexes of [M2(L
3)2]

4+ were examined in MeCN solution 

([complex]tot ~10-3 M) of samples prepared in situ by combining stoichiometric amounts of 

the ligand and metal ion in question.  The studies revealed the zinc complex to be the most 

emissive by a considerable margin, whilst the addition of all the other metal ions caused 

quenching of the coumarin based fluorescence by varying degrees.  Paramagnetic metal 

ions (such as Co2+ and Cu2+) are commonly known to demonstrate efficient quenching of 

ligand centred excited states, as are the heavier 2nd and 3rd row d10 metal ions, the results 

corresponded with this showing emission intensities decreasing dramatically in the order 

Zn2+>>Cd2+>Hg2+.   

Mn+ Λem (nm)a I/I(lig) x 100 (%) 

- 437 100 
Co2+ 435 8 
Cu2+ 435 0.3 
Zn2+ 453 120 
Cd2+ 448 31 
Hg2+ 442 0.5 

aλex = 390 nm.   

 

Table 4.1 – Solution state luminescence properties of the ligand L3 and corresponding 

dimetallic helicates. 

 

The 2nd and and 3rd row d10 metal ions induce heavy atom mediated intersystem crossing to 

ligand centred triplet states, with Hg2+ being extremely sensitive to quenching via triplet 

oxygen.  However, the greatest quenching effect was observed in the presence of Cu2+, 

which resulted in extremely weak ligand fluorescence 



 

Recently theoretical studies on a related picolyl-functionalised coumarin species have 

revealed that nonradiative quenching by Cu2+ may be caused by a combination of energy 

transfer and charge transfer (Lcoum MCuCT). 104  Measurements at 77 K on an ethanolic glass 

of L and excess Cu2+ resulted in the restoration of the fluorescence signal.  Energy transfer 

via Dexter electron exchange should be independent of solvent reorganisation, therefore it is 

probable that fluorescence quenching by Cu2+ at room temperature is due to solvent-

mediated photoinduced electron transfer, though an additional Förster contribution cannot be 

ruled out on the basis of spectral overlap, ({[Cu2(L
3)2](ClO4)4} is red).  

The ligand L3 was fairly insoluble in MeCN at mM concentration, and deposition of 

precipitate often resulted in turbid solutions.  This causes difficulties in ascertaining any 

changes in the free ligand emission intensity upon co-ordination of the coumarin unit; the 

relative emission intensities of the resultant complexes however, could be examined.  

Therefore in order to monitor any modulation in the luminescence of the free ligand the 

emission spectrum of a saturated solution of L3 in MeCN (filtered to remove any undissolved 

L3) was obtained and an excess of metal ion added to it, results are shown in figure 4.10.   
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Figure 4.10 - Emission spectra for [(L3)2M2]
4+ complex with a variety of metal ions. 
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Studies utilising both 1H NMR and ESI-MS demonstrated that when in the presence of 

excess metal ion the sole species present was the dinuclear helicate.  The resulting 

emission data are therefore representative of the latter complexes and not other higher 

nuclearity species.  The spectral changes observed follow the same general trend as was 

previously observed for the stoichiometric addition of metal ions to L3, but highlight the 

enhancement of the ligand emission intensity following the addition of zinc ions. 

The Zn2+ helicate has been shown to be more emissive (i.e. increased integrated intensity) 

than the unco-ordinated L3 ligand, whereas all other transition metal complexes show 

varying degrees of luminescent quenching of the coumarin based emission.  There is very 

little difference displayed in emission wavelength upon the co-ordination of the transition 

metal ions (Cu2+, Co2+), the group 12 metal ions however, do induce subtle shifts relative to 

the free ligand.   

 

 

Figure 4.11 - Relative intensity of emission compared to unco-ordinated ligand L3. 

The ligand L3 which contains luminescent coumarin units has been shown to form helicates 

with divalent metal ions.  The carbonyl oxygen atoms participate in co-ordination with metal 

ions due to steric constraints and due to this interaction results in a large change in the 

luminescent properties of the coumarin-based fluorophores present in the complexes.  

Solution state speciation studies utilising 1H NMR and ESI-MS confirm that the dinuclear 

helicates form exclusively in solution, with addition of zinc ions causing an increase in 
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emission intensity, addition of paramagnetic (Co2+ and Cu2+) and heavier ions however, 

induce varying amounts of fluorescent quenching.   
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5: Conclusions 

In conclusion three novel and specific ligands were successfully synthesized, an aza crown 

macrocycle, a ligand containing a cryptate domain and a helicate ligand.  The ligands were 

characterised using 1H NMR spectroscopy, mass spectrometry and in some cases COSY 

NMR and single crystal X-ray diffraction. 

The aza crown macrocycle described in chapter 1 contained both a bipyridine domain and 

an aza crown domain.  The ligand was able to co-ordinate a Cu2+ ion within either domain, 

and formed a variety of different complexes depending on the ratio of Cu2+ ions to ligand 

present.  The aza crown domain was able to co-ordinate a Cu2+ ion within the crown by all 

four of the available nitrogen groups, acting as a tetradentate donor.  However, upon co-

ordination of a second Cu2+ ion by the bipyridine unit, torsional changes meant the aza 

crown domain was no longer able to behave as a tetradentate donor.  The aza crown co-

ordinated the Cu2+ ion by just three of the available nitrogen ions when a second Cu2+ was 

co-ordinated by the bipyridine unit.  The ligand was reprogrammed by the second Cu2+ ion, 

meaning the aza crown was changed from a tetradentate unit to a tridentate unit when both 

the aza crown and bipyridine domains were co-ordinated to a Cu2+ ion.  This type of behavior 

is termed a negative allosteric effect, as the denticity of the aza crown is adversely affected 

by the co-ordination of a second Cu2+ ion at the bipyridine unit.   

Further research could be performed by modulation of the size of the aza crown unit, aza 

crown domains are similar to crown ether units as they demonstrate selectivity based on 

ionic radius.  Therefore, further ligands could be synthesized with differently sized aza crown 

domains in order to investigate whether larger or smaller crown unit can be reprogrammed in 

a similar way.    

The second chapter described the synthesis and characterisation of a ditopic cryptate ligand, 

which possessed a cryptate domain and a pair of amine groups.  The ligand reacted 

irreversibly with butanal when in the presence of various metal ions.  The metal ion is able to 

co-ordinate within the cryptate domain, which enforces a smaller torsional angle within the 

bipyridine unit.  The decreased torsional angle enabled the amine groups attached to the 

bipyridine unit to move into closer proximity to each other, which allowed cyclisation with 

butanal to occur.  The cyclisation resulted in a seven membered bis-aminal species, which 

was found to display luminescent properties. 

A variety of metal ions were introduced to the cryptate domain and cyclisation of the amine 

groups was performed, general enhancements of luminescence resulted.  However the most 

intense increase in luminescence resulted when the ligand was complexed with Zn2+ ions.  
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The complex of the cyclised ligand with Zn2+ ions was observed to emit at a shorter 

wavelength when compared to the other metal ion complexes, allowing a degree of 

wavelength selectivity.  The luminescent lifetime of the Zn2+ was found to be far longer than 

those associated with other metal ion complexes of the ligand, allowing discrimination from 

other ions within a competitive media. 

The ligand was demonstrated to be selective for the detection of zinc ions in a competitive 

biological media by both wavelength selectivity and luminescent lifetime.  The detection of 

Zn2+ ions is particularly interesting as Zn2+ ions have been implicated in a variety of diseases 

and in particular age related disorders.  The role of Zn2+ ions within the body is not fully 

understood, consequently accurate measurement of concentration and distribution of Zn2+ 

ions within the body would be a useful diagnostic tool.  

The third chapter described a ligand which was hexadentate in nature, and was able to co-

ordinate dicationic metal ions to form a dinuclear double stranded helicate species.  The 

symmetrical ligand consisted of a central thiazole-pyridyl-pyridyl-thiazole unit, with a 

coumarin unit on each terminus.  Upon co-ordination of a Cu2+ ion the ligand partitions into 

two separate binding domains.  These domains consist of a pyridyl-thiazole unit and an O-

donor from a carbonyl oxygen group on the coumarin unit.  It was found that the two 

methoxy groups prevented the ligand from adopting a coplanar unit due to unfavourable 

steric interactions.  Therefore the O-donor from the carbonyl group is required to stabilize the 

Cu2+ centre forming a distorted octahedral geometry.     

Coumarin is a well known fluorophore, luminescence studies revealed complexes of the 

ligand with various metal ions gave varying degrees of luminescent emission.  The zinc 

complex of the ligand was found to be the most emissive by a considerable margin, while 

paramagnetic metal ions and heavier 2nd and 3rd row d10 metal ions demonstrated efficient 

quenching of the emission intensities.   

Research concerning helicates containing organic lumophores has been relatively 

uncommon, therefore further ligands could be investigated based on a similar design.  The 

addition of further binding units within the helicate ligand may allow modification of the metal 

centres, and therefore the emission intensity.  The pyridyl-thiazole ligands are a versatile 

type of helicate structure, and have been utilized in reprogramming helicate ligands 

previously. 95-98  The addition of organic lumophores to the terminal ends of these ligands 

may allow modification of the luminescence upon reprogramming of the ligand. 
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6: Experimental 

General details 

All starting materials and solvents were purchased from Lancaster or Aldrich and used as 

received (unless otherwise stated).  Anhydrous solvents (DMF, THF) were purchased from 

Aldrich and used as supplied.  The following instruments were used for routine spectroscopic 

analyses: Bruker DPX400 (1H NMR) and VG Quattro II mass spectrometer with Z-spray 

source (ESI). 
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6.1 - Preparation of Aza Crown L1 

6.1.1. Synthesis of Acetylated-amino-chloropyridine 

N

NH2

Cl N

N
H

Cl
O

 

3-amino-2-chloropyridine (5 g, 0.039 mol) was dissolved in acetic anhydride under stirring, 

this was allowed to stir for 12 hours.  The solvent was reduced by rotary evaporation, 

toluene added and the solvent removed again.  The product was recrystallised from toluene 

giving a fine white crystalline powder (6.46 g, yield = 97 %).  A 1H NMR was obtained and 

was identical to literature values. 105 

 

6.1.2. Synthesis of 3,3’-Diacetylamino-2,2’-bipyridine 

N

N
H

Cl
O

N

N
H

N

N
H

O

O

 

Activation of copper bronze. Copper powder (15 g, 0.24 mol) and iodine bead (3 g, 0.012 

mol) were combined in acetone (150 ml) and stirred and sonicated until a grey/pink colour 

appeared, indicating the formation of CuI.  This was filtered through a sintered glass funnel, 

washed with a 1:1 solution of acetone and concentrated hydrochloric acid (150ml), then 

washed with acetone (400 ml) and allowed to dry. The activated metal was then used 

immediately. 

The acetylated amide (6.46 g, 0.038 mol) and copper bronze (7.0 g, 0.11 mol) were added to 

the two necked flask and anhydrous DMF (60 ml) was added.  The solution was heated at 

100 oC for 4 hours and after this time poured over water (400 ml) to give a very fine yellow 

brown precipitate.  The precipitate was filtered off through a celite filter medium and then 

washed with concentrated ammonia solution (2 x 200 ml).  The precipitate was allowed to 

dry on the celite medium for several days in a fume cupboard. One completely dry the celite 
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was broken up and the product extracted into DCM (5 x 100 ml), the solvent was then 

filtered and the solution treated with magnesium sulphate powder.  Evaporation gave 3,3’-

diacetylamino-2,2’-bipyridine as a pale yellow powder (4.10 g, yield = 78 %). 1H NMR [500 

MHz, CDCl3], (δ); 13.1 (s, 2H, -NH), 9.1 (dd, J = 1.4, 8.5 Hz, 2H, -py), 8.3 (dd, J = 1.6, 4.5 

Hz, 2H, -py), 7.4 (dd, J = 4.5, 8.5 Hz, 2H, -py), 2.2 (s, 6H, -CH3). 

 

6.1.3. Synthesis of 3,3’-Diamino-2,2’-bipyridine 

N
N

NH

O

NH

O

N

NH2

N

NH2

 

3,3’-Diacetylamino-2,2’-bipyridine (5.36 g, 0.0198 mmol) was suspended in concentrated 

hydrochloric acid (20 ml) and refluxed for 1 hour.  Once the solution had cooled it was 

neutralised with concentrated ammonia solution, and the product extracted into DCM (4 x 

100 ml).  The solvent was removed at reduced pressure giving an iridescent yellow powder 

(1.85 g, yield = 50 %). 1H NMR [500 MHz, CDCl3] (δ); 8.0 (dd, J = 1.9, 3.9 Hz, 2H, -py), 7.0 

(m, 4H, overlapping -py) 6.2 (s, 4H, -NH2).  

 

 

 

Ts

Ts

OTs
TsO

SO2Cl

N
N

N
H

N
H

OHOH

CH3

+

 

A solution of p-toluenesulfonylchloride (7.7 g, 0.04 mol) suspended in pyridine (20 ml) was 

added drop wise, over 2 hours to a vigorously stirred solution of N,N’-bis(2-hydroxy-ethyl) 

ethylene diamine (1.48 g, 0.01 mol) in pyridine (20 ml) at 0 oC.  The solution was then stirred 
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for 4 hours while the solution returned to room temperature.  This was poured over ice (50 

ml) and concentrated hydrochloric acid (50 ml) and chilled for 12 hours.  The solution was 

decanted off leaving an oily yellow brown residue.  The product was recrystallised from 

methanol giving the product as a yellow powder which was isolated by filtration (5.67 g, yield 

= 74 %). 1H NMR [400 MHz, CDCl3], (δ); 7.8 (d, J = 8.3 Hz, 4H, -ph), 7.7 (d, J = 8.3 Hz, 8H, -

ph), 7.4 (d, J = 8.16 Hz, 8H, -ph), 4.2 (t, J = 5.3 Hz, 4H, -NCH2CH2-), 3.4 (t, J = 4.6 Hz, 4H, -

NCH2CH2O-), 3.3(s, 4H, -NCH2CH2N-), 2.5 (s, 12H, CH3).  

 

N
NOTs

Ts

Ts

OTsN
N

NH2

NH2

N

N N
H

N

NN
H

Ts

Ts

+

 

To a solution of 3,3’-diamino-2,2’-diamine (0.5 g, 2.69 mmol) in dry THF (30 ml), at -78˚C, n-

butyl lithium (7.4 ml, 1.0 M solution in hexanes) was added slowly. Upon addition, a yellow 

precipitate formed which was replaced by a red precipitate after more than half of the base 

was added. The reaction was the allowed to warm to room temperature, after which the 

tetra-tosylate (2.06 g, 2.69 mmol) in THF (10 ml) was added and the resulting solution 

refluxed for 3 hours. The reaction was evaporated to dryness and purified by column 

chromatography (SiO2, 5% MeOH in DCM) giving the tosylated aza-crown as a yellow solid 

(0.14 g, yield = 8 %). 1H NMR [400 MHz, CDCl3], (δ); 8.21 (2H, d, J = 4.5; pyridyl H), 7.62 

(4H, d, J = 8.3; tsH), 7.33 (4H, d, J = 8.1; tsH), 7.25 (2H, dd, J = 7.3, 4.4; pyridyl H), 7.10 

(2H, d, J = 7.4; pyridyl H), 4.76 (2H, t, J = 4.7; pyridyl-NH), 3.8 – 2.8 (12H, m (overlapping); -

CH2-), 2.47 (6H, s; -CH3). ESI-MS m/z 607 M + H+. 

N

N N
H

N

NN
H

Ts

Ts
N N

H
N
H

N
H

N
H

N

 

The ditosylated aza crown (0.14 g, 0.23 mmol) was suspended in concentrated H2SO4 and 

heated at 100oC for 48 hours, in a sealed vessel under an atmosphere of dinitrogen.  The 

acidic solution was poured over ice and adjusted to pH 14 with NaOH. Extraction into DCM 
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(4 x 100ml), followed by evaporation gave the bipyridine aza-crown as a pale yellow solid 

(0.031 g, yield = 45 %).  1H NMR [400 MHz, CDCl3], (δ); 8.00 (2H, t, J = 3; pyridyl H), 7.09 

(4H, d, J = 3; pyridyl H), 4.78  (2H, t, J = 4.3; pyridyl-NH), 3.40 (2H, m; -CH2-), 3.10 (2H, m; -

CH2-), 2.70 (2H, m; -CH2-), 2.60 (2H, d, J = 9.4; -CH2-), 2.5 (m, 2H; -CH2-), 2.3 (2H, d, J = 

9.4 Hz; -CH2-), terminal NH too broad to be observed. ESI-MS m/z 299 M + H+. 
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6.2 – Preparation of Diamino-Cryptate, L2 

6.2.1. Synthesis of 5-Acetylamino-6-chloro-2-picoline 

N Cl

NH2

CH3 N

N
H

O
ClCH3

 

5-amino-6-chloro-2-picoline (1.0 g, 7.02 mmol) and acetic anhydride (20 ml) were placed in a 

50ml round bottom flask and allowed to stand for 12 hours.  The solvent was removed at 

reduced pressure, toluene added and the solvent removed again.  The product was 

recrystallised from toluene to give a fine brown crystalline powder (0.90 g, yield = 69 %).  

Structural elucidation was not performed on this product. A 1H NMR was obtained and was 

identical to literature values. 104 

 

6.2.2. Synthesis of 3,3’-Diacetylamino-6,6’-dimethyl-2,2’-bipyridine 

 
 

NCH
3

Cl

N
H

O
NCH

3

N

N
H

O

CH3

N
H

O

 

A two necked round bottom flask was charged with one equivalent of tetraethylammonium 

iodide (1.3 g, 3.5 mmol), 1 equivalent of [(Ph3P)2NiCl2] (3.5 g, 5.3 mmol) and 2 equivalents of 

zinc dust (0.5 g, 7.6 mmol) and was purged with nitrogen while being heated at 80 oC for 15 

minutes.   Absolute DMF (20 ml) was added to the flask and the solution stirred for 30 

minutes until the blue colour turned to dark red. In a separate round bottom flask 2-chloro-3-

acetylamino-6-methylpyridine (0.90 g, 5.3 mmol) was purged with dinitrogen for 15 minutes 

and absolute DMF (10 ml) added. The solution of the amide was then transferred to the two 

neck flask and the resulting solution was heated at 100 oC for 24 hours. Upon cooling the 

solvent was removed and concentrated ammonia solution was added to the residue and the 
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resulting suspension stirred for 1 hour.  The product was extracted into DCM (3 x 150 ml), 

dried with magnesium sulphate powder, filtered and the solvent removed by rotary 

evapouration.  The product was recrystallised from toluene to give beige colour crystals 

(0.293 g, yield = 37 %). 1H NMR [400 MHz, CDCl3] (δ); 9.0 (d, J = 8.6, 2H, py), 7.2 (d, J = 

8.6 Hz, 2H, py), 2.6 (s, 6H, -CH3), 2.3 (s, 6H, -CH3). 

 

6.2.3. Synthesis of 3,3’-Diacetylamino-6,6’-dimethyl-2,2’-bipyridine-N,N’-dioxide 

NCH3

N

N
H

O

CH
3

N
H

O

NCH3

O

N

N
H

O

CH
3

O
N
H

O

 

The acetylated diamine (0.293 g, 0.98 mmol) and 3 equivalents mCPBA (70%, 0.725 g, 2.94 

mmol) were suspended in DCM (20 ml) and allowed to stand for 8 days.  The resulting 

solution was passed through a pad of alumina and washed with 10% MeOH : DCM.  The 

eluent was filtered and the solvent removed at reduced pressure.  The residue was washed 

with hexane to give 3,3’-diacetylamino-6,6’-dimethyl-2,2’-bipyridine-N,N’-dioxide as a white 

solid (0.26 g, yield = 79 %). 1H NMR [400 MHz, CDCl3] (δ); 9.6 (s, -NH), 8.3 (d, J = 8.9, 2H, -

py), 7.6 (d, J = 8.6 Hz, 2H, -py), 2.5 (s, 6H, -CH3), 2.1 (s, 6H, -CH3) 
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6.2.4 Synthesis of 3,3’-Diacetylamino -2,2’-bipyridine-6,6’-diacetate 

 

NCH3

O

N

N
H

O

CH3

O
N
H

O

N

N
H

O

N
O

O

N
H

O

O

O

 

Acetic anhydride (20 ml) was added to the bis-N-oxide (0.260 g, 0.78 mmol) and the solution 

heated for 12 hours at 80 oC.  Once the solution has cooled the solvent was removed and 

the product purified by column chromatography (Al2O3, 2% MeOH:DCM).  The product was 

collected and the solvent removed by rotary evaporation (0.133 g, yield = 41 %). 1H NMR 

[400 MHz, CDCl3] (δ); 13.0 (s, -NH), 9.1 (d, J = 8.6, 2H, -py), 7.5 (d, J = 9.0 Hz, 2H, -py), 5.3 

(s, 4H, -CH2), 2.3 (s, 6H, -CH3), 2.2 (s, 6H, -CH3) 

 

6.2.5 Synthesis of 3,3’-Diacetylamino-2,2’-bipyridine-6,6’-dimethanol 

N
OH N

N
H

O

OH

N
H

O

N

N
H

O

N
O

O

N
H

O

O

O

 

The diacetate (0.041 g, 0.1 mmol) was dissolved in MeOH (10 ml) with 3 equivalents of 

NaOH (0.012 g, 0.3 mmol) and stirred at room temperature for 10 hours.  The resulting 

creamy white precipitate was filtered off at the pump (0.024 g, yield = 73 %). 1H NMR [500 

MHz, DMSO] (δ); 13.0 (s, -NH), 8.9 (d, J = 8.6, 2H, -py), 7.5 (d, J = 8.6, 2H, -py), 5.6 (t, br, -

OH), 4.6 (d, J = 5.0 Hz, 4H, -CH2), 2.2 (s, 6H, -2.6, -CH3). 
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6.2.6 Synthesis of 3,3’-Diacetylamino -2,2’-bipyridine-6,6’-dimethylenechloride 

N
OH N

N
H

O

OH

N
H

O

N
Cl N

N
H

O

Cl

N
H

O

 

The dimethanol (0.024 g, 0.0726 mmol) was suspended in DCM with K2CO3 (0.10 g, 0.7 

mmol) and thionyl chloride (1 ml) and the solution was refluxed until the precipitate 

dissolved. After cooling the solution was poured over water and extracted into DCM (3 x 

150ml), the extracts were treated with magnesium sulphate, filtered and the solvent 

removed.  The product was purified by column chromatography (Al2O3, 1% MeOH:DCM) to 

give dimethylene chloride as a pale yellow powder (0.019 g, yield = 72 %). 1H NMR [500 

MHz, CDCl3] (δ); 12.4 (s, -NH), 9.1 (d, J = 8.6, 2H, -py), 7.4 (d, J = 8.6, 2H, -py), 4.6 (s, J = 

3.9 Hz, 4H, -CH2), 2.2 (s, 6H, -CH3) 

 

6.2.7 Synthesis of Diacetyl-functionalised cryptate 

N
Cl N

N
H

O

Cl

N
H

O

N

N N
H

O
N

O

O

N

O

O

N
H

O

 

The dichloro derivative (0.055 g, 0.15 mmol), 1 equivalent of diaza-18-crown-6 (0.311 g, 

0.118 mmol), a catalytic amount of NaI and Na2CO3 were dissolved in acetonitrile (20 ml) 

and refluxed for 3 days.  Once cooled the solvent was removed and the product was purified 

using column chromatography (Al2O3, 5% MeOH:DCM), giving the product was a orange oily 

solid (0.022 g, yield = 26 %). 1H NMR [500 MHz, CD3CN] (δ); 10.0 (s, -NH), 8.1 (d, J = 8.2, 

2H, -py), 7.3 (d, J = 8.3 Hz, 2H, -py), 4.0-2.1 (m, 24H, -CH2) 
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6.2.8 Synthesis of Diamino-functionalised cryptate 

N

N N
H

O
N

O

O

N

O

O

N
H

O

N

N NH2

N

O

O

N

O

O

NH2

 

The acetylated cryptate (0.02 g, 0.05 mmol) was suspended in HCl (3M, 10 ml) and allowed 

to stand for 3 days.  After this time the solution was neutralised with concentrated ammonia 

solution and extracted immediately with DCM (3 x 100ml) and the solution dried and the 

solvent removed by rotary evaporation. Recrystallisation from CHCl3 gave the cryptate (as 

the ammonium iodide salt) as a pale orange crystalline solid (0.016 g, yield = 62 %). 1H NMR 

[500 MHz, CD3CN] (δ); 7.50, (t, J = 51.5, 4H, NH4
+), 7.16, (d, J = 8.2, 2H, py), 7.12, (d, J = 

8.2, 2H, py), 4.46, (s, 4H, -NH2), 3.96, (d, 2H, J = 12.6 Hz), 3.82, (t, 2H), 3.70, (m, 2H); 3.58 

– 3.37, (d, m, m overlapping, 12H), 3.16, (t, 2H), 2.86, (m, 4H), 2.16, (m, 4H). ESI-MS 473 M 

+ H+. 

 

6.2.9 Formation of Barium complex [LBa](ClO4)2  

In a typical experiment the ammonium cryptate [L2NH4]I (5 mg, 8.1 x 10-3 mmol) in MeCN (1 

ml) was added to an excess of Ba(ClO4)2·6H2O (15 mg, 4.0 x 10-2 mmol), diethyl ether was 

then slowly diffused over 24 hrs. After which time, yellow crystals were deposited, which 

were collected by filtration (1.2 mg, 48%). 1H NMR [500 MHz, CD3CN] (δ); 7.39, (d, J = 8.3, 

2H, py), 7.32, (d, J = 8.3 Hz, 2H, py), 4.69, (s, 4H, -NH2; 3.92 – 3.53, m overlapping, 18H) 

3.42, (m, 2H) 3.10, (m, 2H) 2.90, (m, 2H), 2.82, (m, 2H) 2.60, (m, 2H). ESI-MS 305 [L2Ba]2+ 

6.2.10 Formation of Barium cyclised complex [L2Ba](ClO4)2 

In a typical experiment the ammonium cryptate [L2NH4]I (5 mg, 8.1 x 10-3 mmol) in MeCN (1 

ml) was added to an excess of Ba(ClO4)2·6H2O (15 mg, 4.0 x 10-2 mmol) and one drop of 

butyaldehyde, diethyl ether was then slowly diffused over 24 hrs. After which time, yellow 

crystals were deposited, which were collected by filtration (3.2 mg, 53%). 1H NMR [500 MHz, 

CD3CN] (δ); 7.30 (d, J = 8.2, 2H, py), 7.14 (d, J = 8.2, 2H, py), 5.50 (d, J = 3.6, 2H, -NH) 

4.33 (m, 1H, CH3CH2CH2CH-) 4.16 (d, J = 13.6, 2H), 3.78 – 3.57 (m, overlapping, 14H), 3.28 

(m, 2H, 3.10 (m, 2H), 2.94 (m, 2H), 2.78 (m, 2H), 2.65 (m, 2H), 2.53 (m, 2H), 1.77 (m, 2H, 

CH3CH2CH2CH-), 1.52 (m, 2H, CH3CH2CH2CH-), 0.95 (t, J = 7.3 Hz, 3H, CH3CH2CH2CH-). 
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ESI-MS 736 {[2Ba]ClO4}
+ HR ESI-MS found 736.178126 C28H42BaClN6O8 requires 

763.179957 (error 2.4 ppm). 

6.2.11 Formation of Zinc complex [L2Zn](CF3SO3)2 

In a typical experiment the ammonium cryptate [L2NH4]I (5 mg, 8.1 x 10-3 mmol) in MeCN (1 

ml) was added to an excess of Zn(ClO4)2·6H2O (15 mg, 4.0 x 10-2 mmol), diethyl ether was 

then slowly diffused in over 24 hrs. After which time orange crystals were deposited, which 

were collected by filtration (2.8 mg, 50%). 1H NMR [500 MHz, CD3CN] (δ); 7.55 (d, J = 8.4 

Hz, 2H, py), 7.39 (d, J = 8.4, 2H, py), 5.17 (s, 4H, -NH2), 4.00 (s, 4H), 3.69 (m, 4H), 3.60 – 

3.50 (m overlapping, 8H), 3.36 – 3.26 (m overlapping, 8H), 2.86 (m, 4H). ESI-MS 685 

{[1Zn]CF3SO3}
+ HR ESI-MS found 685.160315 C25H36F3N6O7SZn requires 685.160426 (error 

0.16 ppm) 

6.2.12 Formation of Zinc cyclised complex [L2Zn](ClO4)2  

In a typical experiment the ammonium cryptate [L2NH4]I (5 mg, 8.1 x 10-3 mmol) in MeCN (1 

ml) was added an excess of Zn(ClO4)2·6H2O (15 mg, 4.0 x 10-2 mmol) and one drop of 

butyaldehyde, diethyl ether was then slowly diffused in over 24 hrs. After which time orange 

crystals were deposited, which were collected by filtration (3 mg, 47 %). 1H NMR [500 MHz, 

CD3CN] (δ); 7.48 (d, J = 8.4, 2H), 7.22 (d, J = 8.4, 2H), 5.91 (s, 2H), 4.15 (m, 1H, 

CH3CH2CH2CH-), 4.01 (m, 4H), 3.74 – 3.32 (m overlapping, 18H), 3.15 (m, 2H) 2.87 (m, 4H), 

1.86 (m, 2H, CH3CH2CH2CH-), 1.56 (m, 2H, CH3CH2CH2CH-), 0.97 (t, J = 7.3 Hz, 3H, 

CH3CH2CH2CH-). ESI-MS 689 {[2Zn]ClO4}
+ HR ESI-MS found 689.201874 C28H42ClN6O8Zn 

requires 689.203863 (error 2.89 ppm). 
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6.3 – Preparation of Luminescent Transtition Metal Helicate, L3 

6.3.1 Synthesis of Coumarin-containing helicate, L3 

1. EtOH, reflux
2. Conc. NH4

N

S

NH2 N

O

S

NH2

O

O

O

Br

O

N
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N
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O

N
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O

O
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1. EtOH, reflux
2. Conc. NH4

N

S

NH2 N

O

S
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O

O

O
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O

N

S

N

O

O

N

O

S

N

O

O

O

+

 

A suspension of 3,3’-dimethoxy-2,2’-bipyridine-6,6’-dithioamide 106 (0.57 g, 2.13 mmol) and 

3-bromoacetylcoumarin (1.57 g, 4.69 mmol) in ethanol (50 ml) was refluxed for 8 hours and 

subsequently stirred for 12 hours.  The resulting solid was isolated by filtration and washed 

with ethanol (4 ml) and then ether (4 ml).   The free ligand was isolated from the HBr 

complex by suspension in aqueous ammonia solution overnight.  The solid precipitate was 

filtered and washed with water (4 ml), ethanol (4 ml) and ether (4 ml), and then dried (0.8 g, 

56%) . 1H NMR [400MHz, DMSO], (δ); 9.05 (s, 2H, tz), 8.47 (s, 2H, Ar), 8.46 (d, J = 7.2 Hz, 

2H, py), 8.00 (d, J = 7.2 Hz, 2H, py), 7.87 (d, J = 8.7 Hz, 2H, Ar), 7.69 (t, J = 7.4 Hz, 2H, Ar), 

7.51 (d, J = 8.5 Hz, 2H, Ar), 7.46 (t, J = 7.5 Hz, 2H, Ar), 3.91 (s, 6H, -OMe). ESI-MS 671 [M 

+ H+]. 

 

6.3.2 Formation of the helicate complexes [M2(L3)2](ClO4)4 (M = Zn
2+, Cd2+, Hg2+ and 

Cu2+) 

In a typical procedure: Zn(ClO4)2
.6H2O (0.003 g, 7.45 µmol) was added to a suspension of L3 

(0.005 g, 7.45 µmol) in MeCN (2 ml) and the solution stirred until dissolved.  The solution 

was filtered and slow vapour diffusion with ethyl acetate yielded colourless crystals (8.2 mg, 

59 %); Cu2+ (7.1 mg, 51 %); Cd2+ ( 6.3 mg, 43 %); Hg2+ (8.4 mg, 53 %). For 1H NMR see 

text. 
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Appendix 1: Crystal Data Tables 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page 125 of 131 
 

Table 1 – Aza crown ligand crystallographic data a 

Compound L1 

Formula C16H22N6 

M (g mol-1) 298.39 

System, space group Monoclinic, P21 

a/Å 9.0171(8) 

b/Å 10.4120(9) 

c/Å 16.4432(15) 

α/o 90 

β/o 92.592(2) 

γ/o 90 

V/Å3 1542.2(2) 

Z 4 

µ/mm-1 0.082 

Reflections collected: 

Total, independent, Rint 

15305, 3806, 0.0284 

Final R1, wR2
b,c 0.0986, 0.0384 

a Bruker APEX-II-CCD area detector diffractometer using Mo-Kα1 radiation;  temperature of data 

collection 100 K. 

b Structure was refined on Fo
2 using all data; the value of R1 is given for comparison with older 

refinements based on Fo with a typical threshold of F ≥ 4σ(F). 

c wR2 = [Σ[w(Fo
2-Fc

2)2]/ Σ w(Fo
2)2]1/2 where w-1 =  σ2(Fo

2)  + (aP)2 + (bP) and P = [max(Fo
2, 0) +  

2Fc
2]/3 
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Table 2 – [Cu(L1)]
2+ Crystallographic data  

Compound [Cu(L1)Cl][Cl].MeCN.0.5MeCO2Et 

Formula C18H26Cl2CuN6O 

M (g mol-1) 476.89 

System, space group Monoclinic C2/c 

a/Å 18.9791(5) 

b/Å 15.7030(4) 

c/Å 16.1009(5) 

α/o 90 

β/o 103.9230(10) 

γ/o 90 

V/Å3 4657.6(2) 

Z 8 

µ/mm-1 3.595 

Reflections collected: 

Total, independent, Rint 

17740, 4348, 0.0456 

Final R1, wR2
b,c 0.1052, 0.0399 

a Bruker rotating anode Proteum-CCD area detector diffractometer using Cu-Kα1 radiation; 

temperature of data collection 100 K. 

b Structure was refined on Fo
2 using all data; the value of R1 is given for comparison with older 

refinements based on Fo with a typical threshold of F ≥ 4σ(F). 

c wR2 = [Σ[w(Fo
2-Fc

2)2]/ Σ w(Fo
2)2]1/2 where w-1 =  σ2(Fo

2)  + (aP)2 + (bP) and P = [max(Fo
2, 0) +  

2Fc
2]/3 

 

 

 



Page 127 of 131 
 

Table 3 – [Cu2(L1)]
4+ Crystallographic data 

Compound {[Cu2(L1)Cl4]
.1.5MeOH.0.5H2O} 

Formula C35H58Cl8Cu4N12O4 

M (g mol-1) 1246.68 

System, space group Monoclinic C2/c 

a/Å 33.163(4) 

b/Å 11.0684(16) 

c/Å 14.2704(18) 

α/o 90 

β/o 102.902(6) 

γ/o 90 

V/Å3 5105.9(12) 

Z 4 

µ/mm-1 2.111 

Reflections collected: 

Total, independent, Rint 

20143, 20143 

Final R1, wR2
b,c 0.1538, 0.0600 

a Bruker rotating anode Proteum-CCD area detector diffractometer using Mo-Kα1 radiation; 

temperature of data collection 100 K. 

b Structure was refined on Fo
2 using all data; the value of R1 is given for comparison with older 

refinements based on Fo with a typical threshold of F ≥ 4σ(F). 

c wR2 = [Σ[w(Fo
2-Fc

2)2]/ Σ w(Fo
2)2]1/2 where w-1 =  σ2(Fo

2)  + (aP)2 + (bP) and P = [max(Fo
2, 0) +  

2Fc
2]/3 
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Table 4 – Diamino-functionalised cryptate crystallographic data a 

Compound [L2NH4]I·4CHCl4 

Formula C28H44Cl12IN7O4 

M (g mol-1) 1095.00 

System, space group Monoclinic C2/c 

a/Å 21.472(2) 

b/Å 19.1956(19) 

c/Å 24.047(3) 

α/o 90 

β/o 114.006(2) 

γ/o 90 

V/Å3 9053.9(18) 

Z 8 

µ/mm-1 1.456 

Reflections collected: 

Total, independent, Rint 

60788, 7675, 0.0363 

Final R1, wR2
b,c 0.0479, 0.0883 

a Bruker Apex II Duo-CCD area detector using Mo-Kα1 radiation; temperature of data collection 100 K. 

b Structure was refined on Fo
2 using all data; the value of R1 is given for comparison with older 

refinements based on Fo with a typical threshold of F ≥ 4σ(F). 

c wR2 = [Σ[w(Fo
2-Fc

2)2]/ Σ w(Fo
2)2]1/2 where w-1 =  σ2(Fo

2)  + (aP)2 + (bP) and P = [max(Fo
2, 0) +  

2Fc
2]/3 
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Table 5 – Diamino-functionalised Barium cyclised cryptate crystallographic data a 

Compound [L2Ba][ClO4]2 

Formula C28H42BaCl2N6O12 

M (g mol-1) 1095.00 

System, space group Triclinic P1 

a/Å 11.9010(4) 

b/Å 12.8430(5) 

c/Å 14.1790(5) 

α/o 112.394(2) 

β/o 94.887(2) 

γ/o 113.231(2) 

V/Å3 1769.16 

Z 2 

µ/mm-1 1.341 

Reflections collected: 

Total, independent, Rint 

7946, 5561, 1.039 

Final R1, wR2
b,c 0.1152, 0.1998 

a Nonius Kappa-CCD area detector diffractometer using Mo-Kα1 radiation; temperature of data 

collection 150 K. 

b Structure was refined on Fo
2 using all data; the value of R1 is given for comparison with older 

refinements based on Fo with a typical threshold of F ≥ 4σ(F). 

c wR2 = [Σ[w(Fo
2-Fc

2)2]/ Σ w(Fo
2)2]1/2 where w-1 =  σ2(Fo

2)  + (aP)2 + (bP) and P = [max(Fo
2, 0) +  

2Fc
2]/3 
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Table 6 – Helicate crystallographic data a 

Compound [Cu2L
3
2](ClO4)4

.4MeNO2 

Formula C76H66Cl4Cu2N12O36S4 

M (g mol-1) 2128.46 

System, space group Monoclinic P21/n 

a/Å 16.5727(8) 

b/Å 26.2699(12) 

c/Å 19.3291(9) 

α/o 90 

β/o 97.4190(10) 

γ/o 90 

V/Å3 8344.7(7) 

Z 4 

µ/mm-1 0.71073 

Reflections collected: 

Total, independent, Rint 

43033, 10512, 0.0381 

Final R1, wR2
b,c 0.1148, 0.0445 

a Bruker Apex II Duo-CCD area detector diffractometer using Mo-Kα1 radiation;  temperature of data 

collection 100 K. 

b Structure was refined on Fo
2 using all data; the value of R1 is given for comparison with older 

refinements based on Fo with a typical threshold of F ≥ 4σ(F). 

c wR2 = [Σ[w(Fo
2-Fc

2)2]/ Σ w(Fo
2)2]1/2 where w-1 =  σ2(Fo

2)  + (aP)2 + (bP) and P = [max(Fo
2, 0) +  

2Fc
2]/3 
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