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Abstract 

The major obstacles to the widespread adoption of 3D measurement systems are 

accuracy, speed of process and the cost. At present, high accuracy for measuring 3D 

position has been achieved, and there have been real advances in reducing   measurement 

time, but the cost of such systems remains high.   

A high-accuracy and high-resolution ultrasonic distance measurement system has been 

achieved in this project by creating multi-frequency continuous wave frequency 

modulation (MFCWFM) system. The low-cost system measures dynamic distance 

(displacements of an ultrasound transmitter) and fixed distance (distances between 

receivers). The instantaneous distance between the transmitter and each receiver can be 

precisely determined. 

New geometric algorithms for transmitter 3D position and receiver positing have also 

been developed in the current research to improve the measurement system‟s 

practicability. These algorithms allow the ultrasound receivers to be arbitrarily placed and 

located by self-calibration following a simple procedure. 

After the development and testing of the new 3D measurement system, further studies 

have also been carried out on the system, considering the two major external 

disturbances: air temperature drifting and ultrasound echo interference. Novel methods 

have been successfully developed and tested to minimize measurement errors and 

evaluation of speed of sound.  

All the enabling research described in the thesis means that it is now possible to build and 

implement a measurement system at reasonable cost for industrial exploitation. This will 

have the necessary performance to provide ultrasonic 3D position measurements in real 

time for monitoring position. 
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Chapter 1  Introduction 

1.1 Preamble 

The accuracy of machined components is one of the most critical considerations for many 

manufacturers. Great importance is laid on the consistency of the machine tool and its 

ability to accurately position the tool. Factors like cutting tools and machining conditions, 

resolution of the machine tool, the type of work-piece etc. all play an important role 

within the machine. Some errors occur when building machines or over time due to 

changes in environmental conditions (e.g. temperature within the workspace) or 

variations in cutting forces. Error due to the latter depends on the type of tool, work piece 

and the cutting conditions adopted. 

Improving machine accuracy is a long-standing problem in the manufacturing industry 

and 3D measurement techniques for machine tool calibration have received considerable 

attention due to the unavailability of low cost and high accuracy measurement systems.    

Measurement accuracy and environmental parameters are fundamental to the successful 

application of 3D measurement systems. In an integrated 3D system (Figure 1.1), the 

specifier provides the specific space location of the job. The trajectory planner is then 

activated, providing the time-history of the motion required to accomplish the specified 

task. The parameters of motion produced by the planner, namely the transmitter position, 

velocities and accelerations required, are then fed to the motion controller, producing the 

actuating values of torque (or forces) for each of the position spindles that will provide 

the planned movement of the 3D position. However, due to possible change in the 

surrounding environment and or uncertainties in the dynamic model of the spindle 

position used by the controller, some deviations in the position motion are expected. 
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Figure ‎1-1 CNC for 3D Milling 

Due to manufacturing tolerance, the position parameters of the dynamic model, including 

the reference position, distance between actual position and reference etc, of each 3D 

measurement device is slightly different from one to another. Also, changes to the 

surrounding environment, such as the external forces applied to the device, the parameter 

change of the dynamic model and, therefore, introduce error into the controller. Thus, to 

improve the accuracy of device control, a proper model for the system should be able to 

measure all the characteristics (position, velocity, and distance) accurately, and so 

determine the parameters of the kinematics and dynamic models of the system. With 

these measurements, it is possible to either calibrate the parameters off-line or configure 

the on-line closed-loop 3D system control, improving device accuracy. 

Research into 3D measurement systems has been active since the beginning of 1900s. 

Hitherto, a number of 3D measurement systems have been successfully developed, 

among them laser tracking systems have already reached an accuracy of ±0.05mm [1, 2], 

or even better. Such systems can fulfil requirements for 3D measurement system 

parameter calibrations, but their price is normally high, and some may be even more 

expensive than the machine itself. In the case of off-line calibration, costs might not be an 

important issue, as the manufacturer can always use one standard 3D measurement 

system to calibrate a number of 3D machines. However, in the case where the 3D 

Spindle 

Position 
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measurement system is required as a part of the machine to form part of the on-line 

closed loop control system, or for condition monitoring the price of the measurement 

system becomes very important.  

Ultrasonics, as a very economical technique, has been extensively developed for 3D 

measurement systems [3, 4, 5, 6, 7]. Previous ultrasonic 3D measurement systems have 

limitations on resolution, accuracy, flexibility and adaptability so the current project 

seeks to develop a new ultrasonic 3D measurement system for Cartesian and non-

Cartesian machine calibration, which will demonstrate great improvements in the 

following aspects: 

 High accuracy: Using TOF (time-of-flight) measurement, the accuracy of the 

previous ultrasonic 3D measurement systems was only between ±2.54mm [4] and 

1mm [6], which is usually insufficient for machine calibration. In the proposed 

ultrasonic 3D measurement system for Cartesian and non-Cartesian machine 

calibration, the use of a multiple-frequency continuous wave frequency 

modulation (MFCWFM) technique, has achieved significant improvement in 

accuracy in the laboratory environment. 

 High resolution: High measurement resolution is essential for capturing detailed 

position coordinates, which provide users with more information on accuracy, 

repeatability and other dynamic behaviour, thus validating calibrations of the 

dynamic model.  

 Calibration of Cartesian-based and non-Cartesian machines: Procedures will be 

devised to calculate the geometric elements from 3D measurement data. This will 

solve calibration problems for many machine configurations. 

 Good flexibility: Triangulation used in previous 3D measurement systems for 

positioning coordinates requires the receivers to be positioned orthogonally. This 

reduces the flexibility of the system and becomes impractical when more 
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receivers are used. Thus, in this project algorithms have been developed that 

allow three receivers to be arbitrarily located.  

 Easier set-up procedures: This project allows receivers to be easily positioned, 

without using external equipment. This method will significantly simplify the set-

up procedure of the tracking system, and hence will improve the system„s 

flexibility, adaptability and speed of process, and minimise time required to 

collect data.  

 Robustness against environmental disturbances: Ultrasonic speed drifting and 

echo interference are the major environmental disturbances to the ultrasonic 

tracking system. In this project, the problem of ultrasonic speed drifts has been 

solved by a novel method, which employs optimisation algorithms to estimate the 

best value of the ultrasonic speed, by multi frequency continuous wave frequency 

modulation techniques.  

The system can then be used for online feedback in a condition monitoring system with 

automatic measurement of a machine tool and integration into a modern CNC controller.  

1.2 Aim and objectives of the research 

1.2.1 Aim   

The aim of the research to design and produces an efficient, accurate, low-cost 3D 

measurement device based upon ultrasonic principles, which is suitable for calibration 

and monitoring of Cartesian and non-Cartesian machine tools. 
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1.2.2 Objectives 

The distinct objectives in details:  

1- To design a low cost technique for accurately measuring distances using an 

ultrasonic signal. 

2- To investigate techniques for allowing for changing environmental effects (in 

particular temperature and humidity) in the workspace on the propagation of 

ultrasonic waves with reference to distance measurement. 

3- To investigate techniques for compensating for ultrasound echoes in the 

workspace on ultrasonic distance measurement. 

4- To design and produce a prototype ultrasonic multi-sensor 3D positional 

measurement significantly more accurate than current systems. 

5- To produce measurement strategies for the efficient calibration of a 3-axis 

machine tool utilising the proposal 3D measurement device. 

1.3 The Structure of the thesis 

This thesis contains nine chapters that describe the research work performed in this 

project, leading to the improvements outlined above. It starts with a review of the 

previous research in the field of 3D measurement systems. In chapter 2, most of the past 

3D measurement systems, based on different techniques are described. This includes the 

three cable tracking system, laser tracking system, and so on. Amongst them, laser 

tracking has the highest accuracy, but also the highest price. Therefore, in order to find an 

alternative solution for 3D measurement system with a lower price, a number of different 

3D measurement systems have been developed, and each of them has its own relative 

advantages. The characteristics of these systems (cost, accuracy, portability, workspace 

volume and resolution, etc) are compared with each other at the end of the chapter, and 

summarised. 
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Chapter 3 provides a brief introduction on the relevant ultrasonic fundamentals. The 

contents of this chapter cover ultrasonic characteristics, ultrasonic transducers, 

transmitted ultrasonic signals and modern applications of ultrasound. 

Previous work on ultrasonic 3D measurement system is then introduced and analysed in 

Chapter 4. First, the working principles of previous ultrasonic 3D measurement systems 

are introduced in terms of their coordinate positioning algorithm and the techniques used 

for distance measurement.  The drawbacks of previous techniques for ultrasonic distance 

measurement systems are then considered, including the limitations of its measurement 

accuracy and resolution, and also its serious lack of flexibility and unsuitability for 

industrial implementation due to the complex set-up procedure that it requires. 

The limitations of the previous ultrasonic 3D ultrasound system provided the motivation 

for the research described in this thesis, with the aim of improving the accuracy, 

resolution, flexibility and adaptability of the system. One prominent innovation has been 

the adoption of MFCWFM system measurement principles. The development of a 

MFCWFM 3D measurement system is described in detail in Chapter 5. A number of 

difficulties had to be overcome in this development, including evaluated temperature and 

humidity and receiver positioning. Data Flow Diagrams (DFD) are introduced in the 

chapter, as efficient means for modelling the measurement system functionality, 

regardless of the implementation issues.  

With the new techniques and algorithms introduced in Chapter 5, a prototype of the new 

3D measurement system has been developed. The hardware implementations of this 

prototype involved the design and development of the transmitter and dual functional 

receivers. The principal circuit diagrams of these hardware items are given in Chapter 6 

accompanied by detailed descriptions. Following the hardware implementations, issues 

concerned with software developments of the prototype are also presented. The software 

(LABVIEW) provides a simple GUI (graphic user interface) with the functions of data 

collecting, processing, displaying and storage.  
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In a complex industrial environment factors such as the air temperature, humidity and 

ultrasound echoes can seriously affect the accuracy of the system. Therefore, in Chapter 7 

the new frequency measurement technique was shown to have good resistance to echo 

interference. Also in Chapter 7 the experiments show that the evaluation of temperature 

and humidity in the workspace area was successful by reducing variation and increasing 

the accuracy of the measured distance.  

The testing of the new 3D measurement system in a series of experiments is described in 

Chapter 8. First the MFCWFM system was tested on Zeiss CMM and then on Geiss 

machine. Then, a number of measurements were made at varying distance at difference 

times on three axis (x, y, z) and compare the results with XL-80, eTALON and DTIs 

systems. Finally, the new 3D measurement system was tested experimentally, when the 

position of the moving transmitter was measured in different position at workspace area, 

and high accuracy obtained. During the experiments, the procedure for receiver 

positioning was demonstrated in detail.   

Finally, Chapter 9 describes contributions to knowledge made by this research, 

particularly the innovations which have achieved significant improvements in the overall 

performance of ultrasound 3D measurement systems. Suggestions for future research are 

then made for further improvements in ultrasound distance measurements. 
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Chapter 2 Review of 3D measurement 

2.1 Introduction  

The purpose of this chapter is to introduce the past research work on 3D measurement 

systems and provide a critical overviews of this research area. The general function of 3D 

measurement systems is to monitor the actual position of a specified coordinate, and feed 

the information back to a system controller to achieve a more accurate and higher 

performance. 

The coordinates of a position can be determined as either the absolute position or 

orientation in a certain coordinate system [1, 8, 9, 10, 11, 6, 12, 13, 14, 15, 16] or the 

relative position according to the  movement of an object [3, 4 , 5 , 7, 17, 18, 19]. This 

information can be fed back to the system controller either in real-time to perform closed 

loop control, which provides a higher reliability and accuracy, or it can be used to realise 

the off-line calibration of the system.  

The accuracy of most industrial robots and machine tools (the ability to attain a specified 

position in space) is usually much worse than their repeatability (the ability to return 

repeatedly to a given position). In theory, it is possible to improve the accuracy so that it 

is as good as the repeatability. The inaccuracy comes from manufacturing tolerances in 

the production of each part of the system. Accordingly, a production machine must be 

calibrated by the manufacturer and periodically re-calibrated by the user to maintain its 

accuracy. 

The methods for 3D position measurement are divided into two basic categories. The first 

uses non-contact systems, including all optical and ultrasonic systems. The second 

includes all cable-driven systems. Due to the varied practical requirements, different 

equipment, tools and methods are employed to solve 3D measurement system problems. 

These techniques are classified as: 
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Contact 3D measurement systems: 

 Fohanno‟s method 

 Three-cable techniques 

Non-contact 3D measurement systems: 

 Optical measurement systems 

 Ultrasonic measurement systems 

In the following sections, each of these techniques will be introduced and discussed with 

their applications. 

2.2  Contact 3D measurement systems 

In this case, the coordinate of the position is measured by the instrument in a contact 

manner, i.e. during the measurement there must be some physical contact between the 

position and the instrument. This leads to the limitation that these techniques can only be 

applied for off-line calibration of the machine. The main drawback of this kind of system 

is that the force exerted on the position  through the physical contact can bring significant 

error to the measurement. However, due to their portability and low cost, they are still 

attractive in some applications. 

In this section, two contact measurement systems (methods) are introduced; three-cable 

tracking system and Fohannos method. 

2.2.1  Fohanno’s‎ method 

Fohanno‟s method for coordinate position determination is described only briefly [20]. 

As shown in Figure 2.1(a), six sensors are located on three orthogonal plates mounted to 

the machine, and the readings from sensors are taken and used to calculate position and 

orientation with respect to an arbitrarily placed cube. The array of sensors is then 
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positioned to have all three plates parallel to faces of the cube. The sensors provide an 

output proportional to the distance between the sensor itself and the cube face. Figure 

2.1(b), shows one aspect of this measurement. 

The orthonormal reference of the sensor array is represented as (o, i, j, k) and that of the 

cube as (o‟, i‟, j‟, k‟). The measurements taken by the sensors are X1, X2, Y1, Y2, Z1, 

and Z2 

 

Figure ‎2-1 Fohanno‟s sensor system  

For small angles, the orientation of the sensor array with respect to the cube is given as:   

 

D

XX 12   
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‎2-3                                                          
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Where D is the distance between sensors in the same plane as shown in Figure 2.1(b), and 

the angles, ψ, θ and φ are given in radians.   

These equations hold only for very small angles, so that α ≈ tanα ≈ sinα. 

Fohanno also expressed the displacement from o to o‟. 

)()(' 111 ZLYLXX    

‎2-4 

)()(' 111 XLZLYY    

‎2-5 

)()(' 111 YLXLZZ    

‎2-6 

2.2.2 Three-cable tracking system  

Fohanno also introduced a 3-cable triangulation technique for solving the assessment 

problem of the system manipulator [20]. The three-cable triangulation technique relies 

upon measurement of three distances from the position to three datum points, followed by 

simple triangulation calculation yielding x, y and z. 

 The measurement is achieved by using a spring-return drum, around which the wire is 

wound, the rotation of which is measured by a potentiometer or an encoder. There are 

three drums, one for each of the x, y and z coordinates. By measurement of the angle 

through which a drum has rotated, the length of cable paid out may be determined and, 

hence, the distance is measured. The wires are maintained under constant tensile force of 

the drum spring to about 1Kg, the main drawback of this technique is that variable forces 

are applied to the position, producing artificial dynamic results. 
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Figure  2-2 Three-cable tracking system 

Figure 2.2, shows how the system manipulator may be tested by this method. The three 

drums are located around the manipulator work area at know relative spacings. 

 

Figure ‎2-3 Three-cable technique coordinates 

It is common to arrange the three sensors orthogonally, so that the „corner‟ sensor can be 

considered the origin of measurement‟s frame of reference. The situation is then as 

shown in Figure 2.3, where a, b and c represent measured distances, and d and e represent 

the fixed distances between the sensors and x, y and z are the coordinate values of the 
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position. The sensors are denoted by S1, S2 and S3, with point P, representing the position 

to be determined. The three coordinates are given by the following equations: 
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Knowing, a, b c, d and e, the 3D coordinates position of P(x, y, z) can be determined. 

The disadvantage of a three-cable measurement system is that variable forces applied on 

the position result in errors in the measurement. Importantly, it is not capable of dynamic 

measurement. To achieve high performance dynamic measurements, a non-contact 

measurement system is necessary. 

The system described by Legnani [21] uses cheaper equipment but a rather complicated 

procedure for orientation and position measurement. Because of its configuration, the 

system is only capable of off-line use, in this case measuring the orientation calibration.  

2.3 Non-contact 3D measurement systems 

With a non-contact measurement system, the 3D position is measured without any 

physical contact, using electromagnetic or acoustic waves, such as laser, light, or 

ultrasound. These offer advantages of higher flexibility and adaptability to many different 

applications. Also, high performance dynamic measurement is possible without direct 

contact with the position and, importantly, they can perform online measurement without 

disturbing the normal operation of the 3D position. They can be integrated into the 3D 

measurement control system as a part of the control loop. 

According to the different measurement intermediates used, non-contact 3D measurement 

systems can be divided into two categories: optical and ultrasonic measurement systems.  
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2.3.1 Optical measurement system 

Laser tracking  

The extremely high accuracy of laser measurement offers the opportunity for the most 

successful tracking system yet developed. In the past decade, a number of researchers 

have focused on laser tracking and its applications [22, 23, 24, 25] and significant 

improvements have been achieved. The specification of the Optotrac dual-beam laser 

measurement system is shown in Table 2.1 [9].  

Table ‎2-1 Optotrac specifications 

           Measurement volume            Up to 3×3×3m 

           Repeatability            0.0005% of measurement field 
           Accuracy            0.025% of measurement field 

           Sampling rate            Selectable up to 1KHz 

           Control            User interface on PC Digital I/O lines 

Certainly, this system provides a very high performance in 3D measurement. But the 

price of this tracking system is extremely high, up to £100,000.  

Vince developed a similar laser tracking system that used one laser beam instead of two 

for 3D position measurement [24]. In this way, with less equipment, the system cost is 

reduced, but remains high. The working principle of this system is based on a polar 

configuration, as shown in Figure 2.4. 
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Figure ‎2-4 Functional principle of the laser tracking system 

The beam of a high-speed HeNe laser-interferometer is deflected by a plane mirror fixed 

to a high-precision universal joint and hits the retro-reflector that is mounted on the 

system‟s position. The retro-reflector or comer cube consists of three mutually 

perpendicular plane mirrors that reflect the beam back on a path parallel to that of the 

incident beam. The reflected beam is again deflected by the plane mirror and directed via 

beam splitters to a position sensitive Diode (PSD) and a CCD (Charge Coupled Device) 

camera.  

Ideally, the laser beam hits the centre point of the retro-reflector, causing no parallel 

displacement between the emitted and the reflected beams. When the system starts 

moving, the laser beam no longer hits the centre point of the retro-reflector, which results 

in a displacement of the reflected beam. This displacement is measured by the PSD and 

constitutes the tracking error. The tracking controller minimises the tracking error by 

turning the axes of the Universal joint, which allows the laser beam to follow arbitrary 

movements of the retro-reflector. 
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The position of the system is defined to be the focal point of the retro-reflector. The 

orientation of the plane mirror can be calculated from the beam length, and the beam 

displacement ascertained. The interferometer is used to measure the beam length between 

the plane mirror and the retro-reflector, based on the heterodyne principle. Two laser 

rotary encoders, one at each of the Universal joints, determine the angles of rotation of 

the plane mirror in the x, y and z planes. The PSD provides a measure of the 

displacement of the reflected laser beam from the middle position. These two signals 

provide both position measurements and also feedback to the measurement controller, 

where the position can be determined. 

To measure the orientation of the position (see Figure 2.5), a plane mirror is attached to it 

and it is driven along a straight path parallel to the laser beam and the mirror. The beam 

is directed toward the mirror by means of a beam splitter and the reflected beam passes 

through the beam splitter and shines onto a screen. Any error in the orientation of the 

position (and hence the mirror) will deflect the beam away from a “zero” spot on the 

screen by a certain distance, which will be an indication of the amount of the orientation 

error. 

 

Figure  2-5 Scheme for the measuring system of the angular error of position 

On the other hand, for displacement error measurement, the system is reconfigured as 

shown in Figure 2.6, where a lens is used as the target instead of the plane mirror. In this 
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way, the laser beam passes through the lens and reaches the screen as a more or less 

diffused spot, which is deflected if there are positional errors. A CCD (charge-coupled 

device) video camera can accurately measure the shift of the laser spot on the screen 

using suitable image analysis software and hence determine the displacement error of the 

position.  

 

Figure  2-6 Scheme for the system of the position displacement measurement 

Unlike other laser 3D measurement systems introduced so far, the laser tracking system 

introduced by Yuan and Fu [26] uses an optical sensor attached to the position instead of 

a reflector, while the laser scanners cast light planes to trace the sensor‟s movement. 

As shown in Figure 2.7, the optical sensor (an exaggerated rectangular plate) is attached 

to the position of a planar system and shares the same coordinates as the TCF (Tool 

Coordinate Frame). Two laser scanners cast light stripes toward the system workspace to 

form a pair of cross hairs. Each scanner aims at one of N possible angles and results in 

N2 possible nodes in the Base Coordinate Frame (BCF). During measuring, while the 

pair of crossing hairs project onto the sensor, by knowing the stripes‟ coordinates in both 

TCF and BCF, the transform relating the two coordinate frames can be derived and, thus, 

the orientation and position can be determined.  
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Figure ‎2-7 Two-DOF measurement setup 

In this section, several different methods for 3D measurement using lasers have been 

presented. All of these systems provide very high accuracy in measuring the position. 

Due to the distinct advantages of dynamic measuring and on-line calibration, people have 

more interest in the first two laser measuring systems [24, 9]. With similar techniques, 

similar measuring systems with one, two, three or four laser beams have been developed, 

and some research has been carried out to enhance the performance of such systems.  

The work on the last laser measuring system introduced above was found in a publication 

by Yuan and Fu [26]. It was an innovative configuration, where, instead of a reflector (as 

in the other laser measurement systems introduced) an optical sensor is attached to the 

position. This results in a simpler and hence cheaper method for dynamic laser 

measurement system. However, the prototype of such a system was only tested for two-

DOF measurement and no 3D dynamic measurement has been demonstrated.  

eTALON - NPL Laser tracer system  

The UK National Physical Laboratory in partnership with eTALON has launched a new 

high accuracy measurement system for calibration of CNC machine tools, as shown in 

Figure 2.8. The NPL claims that the system will bring laboratory accuracy to the shop 

floor [27] . 
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Figure ‎2-8  National Physical Laboratory laser tracer  

This system uses a laser to track a reflector mounted on a CMM or machine tool, and an 

associated software package, to provide an innovative system which claims to have 

reduced horizontal and vertical guidance errors to less than 0.2μm, and achieved a centre 

of rotation stability to less than 0.3μm. Mounted inside the laser to form a tracer system is 

a high precision reflecting sphere with a claimed radial deviation of less than 50nm. This 

reflector is decoupled from the tracking mechanism, resulting in sub-micron stability 

during movement of the interferometer and gives a maximum range of 6m. However, the 

system requires highly trained personnel to set up and is expensive. 

Renishaw XL-80 laser measurement system 

The Renishaw XL-80 laser measurement system, as shown in Figure 2.9, offers high 

performance calibration for motion systems, including CMMs and machine tools. The 

XC-80 contains a device which accurately measures local air temperature, air pressure 

and relative humidity, and changes in these conditions are automatically compensated for 

in any measurement readings taken. The resulting linear measurement accuracy is 

claimed to be better than ±0.5μm with a maximum linear measurement speed of 4m/s. 
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Figure ‎2-9  Renishaw XL-80 laser measurement system 

The compensator readings can be taken at up to 50kHz, and a linear resolution of 1nm is 

claimed. The disadvantage of this system is its high cost and that it is limited to 

measurement along a single line [28], therefore 3D measurement requires synthesis of 

several measured error. 

Due to the high expense of the laser measurement systems, they are not usually integrated 

into the 3D measurement system in practice to perform close-loop control or no-machine 

monitoring. (The tracking system itself may be even more expensive than the machine 

being measured). Additionally, measurement in such systems can suffer from obstacles 

involved in the workspace. These problems can be solved by using the visual or 

ultrasonic measurement systems, which are introduced next. The paper by Zhuang and 

Roth [22] addresses error modelling issue for laser measuring coordinate systems, which 

is crucial in the accuracy enhancement of such systems. 

Visual measurement system  

Vision-Guided 3D systems have been a topic of continued interest for the past three 

decades. Distinct enhancements have been achieved during this time, and vision 

techniques have been applied in 3D measurement systems more and more widely. In 



30 

 

Vision-Guided 3D measurement systems, the vision systems are normally used to 

recognise or track the work pieces, landmarks or the environment, and feed back useful 

information to the controller to perform efficient and reliable control after proper image 

processing. Visual measurement is one of the applications of Vision-Guided 3D 

measurement systems. 

This section introduces two alternative vision systems calibration, both of which 

demonstrate good performance with relatively low cost.  However, they are both 

designed for off-line system calibration and are thus incapable of online dynamic 

measurement.              

Compared to laser measurement systems, the visual measurement system offers 

advantages of higher adaptability and flexibility and lower price. In this section, some 

applications of 3D measurement, using a vision technique are introduced. Figure 2.10, 

shows a vision system presented by Preising and HSIA [10] for 3D calibration, involving 

a single camera and a calibration plate which is used as a target.  

 

 

Figure ‎2-10 3D computer vision and system set-up 
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Camera calibration for 3D-computer vision requires the internal camera geometric and 

optical characteristics (intrinsic parameters) to be determined, as well as the position of 

the camera frame relative to a certain world coordinate system (extrinsic parameters). 

Once calibrated, position information of the calibration plate (CP) coordinates or world 

coordinate system with respect to the camera‟s coordinate (CB) system can be obtained 

from the camera image. 

 

Figure ‎2-11 Schematic diagram of the Two-Stage Camera calibration process 

The camera‟s intrinsic parameters are determined, using a least squares fit algorithm with 

a reference plate representing a known world coordinate system, as shown in Figure 2.11. 

After camera calibration, this same plate is used for convenience as a target for the 

camera system to measure. Uning a commercially available computer controlled Deadal 

XYZ positioning table [Deadal Incorporated] and a Zeiss (Nr 134240) rotary table, 

measurement of the position of the calibration plate is achieved. This method provided 

very high performance measurement, and was employed to calibrate the repeatability and 

accuracy of the 3D measurement system. In both cases, the manipulator was pre-

programmed to reach one or more specific positions. As presented in Preising and HSIA 

paper [11] , 500 repetitions of one position were measured for repeatability assessment 

and 100 different positions were tested to estimate the system accuracy. 
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The „Eye in Head‟ system is a very popular application of vision guided 3D systems. In 

such a system, instead of fixing the camera stationary at some specific place independent 

of the system, the camera is mounted on the position to build a hand-eye coordinate for 

the system. Albada and etal [29] presented a novel method to calibrate the system using 

its onboard “eye” and an external reference plate. The prototype performed the 

measurement of the system position in a volume of 1m. The system had high accuracy of 

0.20mm. The measurement procedure began with the selection of the model parameters 

of the system that needs to be pre-determined. Using this set of model parameters, the 

position generation program could generate a set of measurable positions that allow 

computation of the desired parameters. 

Using these positions, a system program is generated which directs the system along a 

path containing these positions. At each measuring position, the system stops, and one or 

more images of the reference plate are obtained. The actual parameters at the measuring 

position must be recorded. Next, the images obtained are processed off-line, to obtain the 

position of the camera relative to the reference plate, plus the parameter of the camera. 

This “photogrammetric procedure” can be made self-calibrating when a collection of 

sufficiently different images is available. The positions are obtained by iterating two 

tasks: the image-processing procedure and the image-reconstruction procedure. The 

former tries to recognise and identify the markers on the reference plate and to determine 

their positions in the image, the latter fits a model that can predict the position of the 

markers in every image by the computation of the camera position for each image and the 

camera parameters. The predictions are fed back to the identification part of the image-

processing procedure. Using the calibration procedure developed at IPK Berlin, the 

unknown system parameters, plus the position of the reference plate relative to the system 

base, can be derived from these measurements. 

2.3.2 Ultrasonic measurement system 

In 3D measurement systems ultrasonic signals may be applied for range finding in a 

mobile measurement system [30, 4, 5, 6, 7]. Because the acoustic properties of air vary 
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with temperature, humidity, presence of dust, etc., airborne ultrasonics has rarely been 

used in applications where high accuracy is required. However, in view of the simplicity 

and low cost of ultrasonic systems, research on an ultrasonic 3D measurement system 

was started in the middle of the 1980s [31]. This aimed to develop a cheap 3D 

measurement system that could be integrated into the robot system as a part of its servo-

control loop. The details of previous and current research on particular ultrasonic 3D 

measurement systems will be presented throughout the rest of this thesis. First, in the next 

section, another ultrasonic system that is capable of 3D positioning is introduced. 

Ultrasonic spatial locating system 

This system presents a measurement technique which can locate points within a 500mm 

cube to an accuracy of approximately 1mm, it has the advantage of being practically 

unrestrained and can provide spatial position information in real time [32]. The technique 

involves measuring transit times of high-frequency sound between the point of interest 

and a coordinate system. The system includes a microcomputer-based processor and 

controller, which performs the necessary calculations and is capable of self-calibration 

and error checking.  

The basic measurement principle uses the fact that an electrical spark discharge radiates a 

high frequency ultrasonic wave, which travels spherically outward at the speed of sound. 

If the transmission time of that wave can be measured, then the distance travelled can be 

computed by knowing the local speed of sound. Figure 2.12, shows a functional diagram 

of the measurement system.   
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Figure ‎2-12 Functional block diagram of the ultrasonic spatial locating system 

In order to calculate the coordinates of the spark, the equations shown in Figure 2.13 are 

used. 

 

       Figure ‎2-13 Coordinate system formed by the linear microphones and the equations 

                         used to compute coordinates from the transit time intervals 

In the usual mode of operation, a series of 8 sparks are fired sequentially and the transit 

time for each stored in the computer memory. Following the eighth spark, the 8 transit 
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times are averaged and a standard deviation calculated. The standard deviation is checked 

to verify that no spurious signals have been received. The calculation of the spatial 

location of the spark is then completed by applying the equations shown in Figure 2.13 to 

the computed average transit-time intervals. The calculation time for determining the 

coordinates of the spark is approximately 150ms. 

Since the position locating system is intended to be used in ordinary room environments, 

no special precautions were taken initially to control the environmental conditions so the 

results include errors due to small atmospheric changes, as well as system errors.  

3D measurement systems with economical ultrasonic transducers 

This ultrasonic 3D measurement systems were developed to estimate the location of a 

wave source in real-time, using a simple triangulation technique that has also been used 

for the three-cable tracking system [3, 4, 5, 7]. But in this case, the three distances to the 

surrounding receivers were measured using the ultrasonic TOF technique with the 

ultrasonic transmitter mounted on the position. While accuracy of between ±2.54mm [4] 

(and 1mm [6] ) has been achieved, and there is good potential for further development, 

such a measuring system has limits on its accuracy, resolution and practicability, which 

seriously restricted its implementation in real industrial applications. As these ultrasonic 

3D measuring systems were used as the starting point for current work developing an 

enhanced system, the full details of these systems will be presented later in Chapter 4. 
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2.4  Summary 

In order to perform both static and dynamic calibration, close-loop feedback control and 

off-line programming of the 3D measurement system, a reliable 3D measuring system for 

position determination is required. In the past three decades, a number of researchers 

have been in this area, and different 3D measuring systems employing different 

technologies for different applications have been developed. In this chapter, an overview 

of these 3D measuring systems was provided by classifying them into contact and non-

contact 3D measuring systems. For both groups, a few representative 3D measuring 

systems are introduced. Here, the advantages and disadvantages of these systems are 

summarized: 

Contact 3D measurement systems   

Two contact techniques were introduced in this Chapter, they are Fohanno‟s and a three-

cable method. 3D measurement systems employing these techniques are cheap, portable 

and easy to set-up. However, the drawback is that variable forces applied on the position 

cause errors in the measurement, and such systems are not suitable for dynamic 

measurement, especially when the position is moving fast or performing complicated 

movements. Perhaps more importantly, the system cannot be left „in situ‟ for condition 

monitoring.  

Non-contact 3D measurement systems  

With non-contact 3D measurement systems, there is no physical contact between the 

measurement instruments and the position. Therefore, it is possible to validate high 

performance of dynamic 3D measurement. Normally, such systems perform a very 

accurate and reliable measurement of the position. The non-contact 3D measurement 

systems were divided in two categories, optical and ultrasonic measurement systems, and 

the optical measurement systems were subdivided into laser and visual measurement 

systems. 
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The laser measurement system is the most accurate measurement system that has been 

developed. It provides a very high performance, but such systems are relatively 

expensive, which limits the application of such systems in industry. 

Compared to laser measurement systems, visual measurement systems are cheaper and 

give acceptable accuracy in static calibration of the position. However, due to today‟s 

limited image processing techniques, the measurement requires the presence of specially 

designed marks, which restrict its application for on-line calibration, and normally the 

calibration volume is very limited. 

The ultrasonic 3D measurement systems allow a simpler and cheaper measurement of the 

position. Since the measurement is based on “time-of-flight”, the method can be easily 

affected by temperature, humidity and air etc. The accuracy of ultrasonic 3D 

measurement systems is relatively low compared to the others. 

Table 2.2 compares the characteristics of different 3D measurement systems. It is hoped 

that the table will be helpful for the reader when reviewing past researches in the 

particular area of 3D measurement system.   
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Table ‎2-2 Characteristics comparison of the different 3D measurement systems 

 Contact measurement 

systems 

Non-contact measurement systems 

 

Fohanno’s‎

method(3) 

 

Three-

Cable(1) 

 

Laser 

Vision  

Ultrasound(4) Camera Eye-in-

Hand 

 
Accuracy 

 
N/A 

 
<1mm 

±0.2μm 0.5mm 
0.2degree 

0.2mm 
0.2minute 

of arc 

between 
±2.25 to 1 

mm 

 
Repeatability 

 
N/A 

 
<0.5mm 

1μm 0.2mm 
0.03 

degree 

 
N/A 

 
N/A 

Measuring  
Volume 

 
N/A 

 
2×2×2m 
(local) 

 
6m 

 
N/A 

1×1×1m 
(local) 

2×2×2m 
(global) 

Expense N/A Low £130000 Medium Low Low 

Portability Good Good medium Medium Very 
good (2) 

Poor 

 

(1) This item is also called as dynamic resolution, it is only available with the 3D      

measurement systems able to perform dynamic measurement. 

(2) Calibration with the eye-in-hand system, the portability is very good only for the 

3D measurement system on which the eye-in-hand system has already been 

assembled. 

(3) Fohanno‟s method is only a suggestion for 3D system calibration, no 

experimental work was performed on this particular method. 

(4) The parameters are according to the ultrasonic 3D measurement systems 

developed by Mahajan, Ray, Jimenez and Martin [4, 5, 6, 7]. These particular 

systems aren‟t mentioned in this chapter, but it will be described in detail in later 

chapters. 
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Chapter 3 Overview of ultrasonics 

3.1 Introduction  

Sound waves which have frequencies higher than those to which the human ear can 

respond (about 20 kHz/s) are known as ultrasonic. Unlike light waves which are 

electromagnetic, ultrasonic waves are mechanical, often generated by the vibration of a 

body (though other sources such as electrical discharges and whistles can be used) and 

propagate as the vibration of the elementary particles in a compressible medium through 

which the longitudinal waves are passing. In the ultrasonic 3D measurement systems that 

will be described in the following chapters, airborne ultrasound is used as the medium for 

distance measurements. However, due to the relatively unstable characteristics of the air 

through which the wave is passing, high accuracy distance measurement is hard to 

achieve, when compared with e.g. the optical techniques introduced in the last chapter. 

This chapter briefly introduces the fundamentals of airborne ultrasound, and some 

modern applications of ultrasonics.  

Firstly, the essential characteristics (i.e. velocity, reflection, refraction and attenuation) of 

airborne ultrasound are introduced, and how they are related to environmental factors. 

Next, airborne ultrasound transducers are introduced and the mathematical models of the 

generated ultrasound are also given. At the end of the chapter, some modern applications 

of ultrasonics are briefly summarised.  

3.2 Characteristics of airborne ultrasound 

As airborne ultrasound is used for distance measurement in the ultrasonic 3D 

measurement system, a good understanding of its characteristics is essential for accurate 

3D measurement. Thus, before starting on the details of the measurement systems, 

relevant aspects of airborne ultrasound are reviewed. 
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3.2.1 Velocity 

The propagation velocity of airborne ultrasound is an important parameter used in 

ultrasonic distance measurements as either a constant or a predetermined known value. 

Thus, a good determination of the ultrasound velocity is essential for high accuracy 

distance measurements, shown in the following equation 



E
c 

     

‎3-1 

Where, E refers to elasticity or pressure and ρ is the local density of the air.  Strictly the 

equation refers to adiabatic transmission, but ultrasound is a good approximation. In the 

case of air, the ambient pressure remains almost constant, but when the temperature 

increases, the expansion of the air causes its density to decrease. From equation (3-1) we 

see that the ultrasound velocity will also increase. The relationship between the 

ultrasound velocity and air temperature, T, can be approximated linearly with a rate of 

0.61m/s/   C, as shown in the following equations: 

Tc .61.04.331       ‎3-2 

Where T is the air temperature in degrees centigrade and the constant 331.4 is the 

ultrasound velocity at 0   C, in meter per second. 

With equation (3-2) the ultrasound velocity can be accurately estimated from the air 

temperature. However, in many engineering tasks, including ultrasonic 3D measurement 

system, a more accurate value of the ultrasound velocity is required, thus some specific 

instrument or techniques are needed. Yang and Yuan [33, 34] applied techniques for high 

accuracy ultrasound velocity measurement. In Chapter 5 of this thesis, MFCWFM 

developed specifically for this project [35] to improve the accuracy of ultrasonic velocity 

measurement is presented. 
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3.2.2 Reflection and refraction  
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          Figure ‎3-1 Reflection and refraction of an ultrasound beam incident to a plane 

                            boundary separating two mediums 

Figure 3.1 shows a beam of ultrasound, XY, incident on a plane boundary separating 

medium 1 and 2, Y being the point of incidence on the boundary. YW and YZ are the 

respective reflected and refracted sound waves. θ1 and θ2 represent incidence angle and 

refraction angle respectively. The reflection angle is the same as the incidence angle θ1, 

and the refraction angle θ2 can be evaluated with the following equation: 

2

2

1

1
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‎3-3 
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Where, C1 and C2 represent the ultrasound velocities in medium 1 and 2, respectively. 

Equation (3-3) is only applicable, when the incident angle θ1 is smaller than the critical 

angle θc, which totally depends on the two mediums, as in the following equation: 

12

2

1 C               
sin

C
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C c
c 




   

‎3-4 

If the incident angle is bigger than the critical angle, then there will be no refraction wave 

at all. For example, if medium 1 and medium 2 are air and steel respectively, the critical 

angle is calculated as 015.3 . This analysis pre-supposes that the solid has an ideally 

smooth and flat surface. 

At the boundary, the ratio of the acoustic intensity of the reflected wave to that of the 

incident wave defines the reflection coefficient, αrefl, and the ratio of the intensity of the 

refracted wave to that of the incident wave is called the refraction coefficient, αrefr. These 

coefficients can be evaluated with the following equations:  

2

2112

2112

coscos

coscos



















RR

RR
refl

    

‎3-5 

 

2

2112

2121

)coscos(

coscos4






RR

RR
refr




     

‎3-6 

Where, R1 and R2 are the characteristic acoustic impedances of medium 1 and 2 

respectively. The characteristic impedance of some commonly used materials are shown 

in Table 3.1 and, by applying equation (3-5) and equation (3-6), the reflection and 

refraction coefficients can be easily calculated. For example, assuming that medium1 and 

medium 2 in figure 3.1 are air and steel respectively, and the incident angle θ1 equals θ0, 

which indicates that the incident ultrasound beam is orthogonal to the boundary, then by 

applying equation (3-5) the reflection coefficient refl  can be determined as 0.99998. 
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Table ‎3-1 Characteristic impedance for some commonly used materials. 

 

Material 

Velocity of  

ultrasound wave 

in material 

(m/sec) 

Density 

(g/cm)3 

Characteristic impedance 

(kg/m2. sec) 

Aluminium 6,400 2.7 1.7×107 

Steel 6,000 7.8 4.7×107 

 Water 1,500 1.0 1.5×106 

Air 331 0.0013 430 

Hydrogen 1,300 0.00090 110 

Oxygen 320 0.0014 450 

 

3.2.3 Angle of the ultrasound beam 

The flat surface of an ultrasonic crystal driven by a continuous sinusoidal electrical signal 

will vibrate this vibration propogates through the air, generating longitudinal waves. The 

sound pressure in front of the crystal surface in fraunhofer region for a circular piston is 

obtained from: 


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
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Where: 

P = pressure at distance r 

P’= pressure at face of the piston 

ω = angular frequency 

k = wave number 

a = crystal radius 

θ = angle 

J1 = Bessel function of the first kind  
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 Figure 3.2 shows the polar diagram of a crystal with radius a = 7.5mm at various 

frequencies obtained from the Equation above. This figure shows that as frequency 

increases the angular divergence of the beam decreases and become more directional, but 

small side lobes appear. 

 

 

   

 

Figure  3-2 Polar diagrams for the radiation from a circular disk at various frequencies 

 

                         

                          f=10kHz                                                    f=20kHz 

                         

                            f=40kHz                                                     f=60kHz 
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3.2.4 Attenuation of airborne ultrasound 

 

Figure ‎3-3 Propagation of airborne ultrasound 

When an ultrasound wave propagates through air, its intensity reduces as the distance 

from the source increases. As shown in figure 3.3, as the wave front moves radially 

outwards from the source, the sound energy spreads over a larger and larger area, which 

may be considered the surface area of a sphere. As the surface area of the sphere becomes 

progressively larger the intensity per square metre, I, of the wave reduces according to 

the inverse square law, which can be expressed as: 

2)(
i

r
ri

d

d
II 
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Where Ii is the intensity at the distance of interest, di, from the source, and Ir is the 

intensity at a reference distance dr from the source (usually 1 m). Note that for every 

doubling of distance from the source the intensity falls by a factor of 4, the intensity 

decreases by 6dB. 

In addition to the distance factor, attenuation of the airborne ultrasound will also be 

caused by a number of other factors of which the following are the most important: 
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 reflection, refraction and diffraction caused by the water vapour and dust, and 

 absorption, in which acoustic energy is converted into heat by internal friction of 

the air. 

Assuming that there are no reflecting surfaces present a semi-empiric equation is often 

used to combine the above two factors into an attenuation coefficient,  , which is 

defined by the following equation: 

121212 r           ))(2exp( rrrII rr      ‎3-8 

Where, Ir2 the ultrasonic intensity at a distance r2 from the source, and Ir1 the ultrasonic 

intensity at a distance r1 from the source. To express the attenuation coefficient in Nepers 

(Np), the following equation is given as: 

Np
p

p
r

r

o )log(

     

‎3-9 

From the table of attenuation coefficients given in [36], the attenuation coefficient of air, 

α, is (1.85×10-11)v2 Np.m-1.s2, where v denotes the ultrasound frequency. For instance, 

assuming v = 40 kHz, the corresponding attenuation coefficient α is 2.96×10-2Np.m-1, 

equivalent to 0.257 dB m-1.  

Thus, in the above conditions, a wave travelling from 1m to 2m away from a source will 

experience a 6dB drop in intensity but only a 0.257dB due to attenuation in the air. A 

wave travelling from 100m to 101m will experience a drop of 0.086dB due to spherical 

spread and 0.257dB due to air attenuation.  

This section has described the two major reasons why the intensity of an acoustic wave 

decreases with distance from the source; spherical spread of the wave front and energy 

dissipation due to viscous and other losses during propagation. Equations (3-7) and (3-9) 

allow evaluation of the attenuation. 
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3.3 Ultrasound transducers 

Many different ultrasound transducers exist, including piezoelectric, magnetostrictive, 

mechanical, thermal and optical. Today, piezoelectric transducers are the most widely 

transducers for the generation of airborne ultrasound generation and detection [37,38, 

39,40,41]. The active element at the heart of the transducer is a slice of polarized material 

that can convert electrical energy to acoustic energy. Electrodes are attached to two of its 

opposite faces and, when an alternating voltage is applied across the material, polarized 

molecules within the material align themselves with the electric field causing the material 

to change dimensions. The surface thus acts as an acoustic piston generating an ultrasonic 

acoustic wave at the same frequency as the applied electric voltage. The transducer can 

also act as an ultrasound receiver. A permanently polarized material such as quartz will 

produce an electric field when the material changes dimensions as a result of an incident 

acoustic wave, which can be picked up by the attached electrodes.  

In the ultrasonic applications, using pulse-echo techniques, piezoelectric ultrasound 

transducers transmit short ultrasound bursts that have the waveform shown in Figure 3.4. 

 

Figure ‎3-4 Waveform of ultrasound burst 

The waveform of the ultrasound burst can be divided into two periods. In the first, Tforced, 

the ultrasound wave is generated by forced vibrations of the piezoelectric plate, and it has 

the same frequency as the driving signal. The amplitude of the wave in this period is due 



48 

 

to the inertia of the piezoelectric plate. In the second period denoted as Tfree. The 

waveform is due to the free vibrations of the piezoelectric plate after the driving signal 

has disappeared. Here the frequency (ffree) of the vibration is determined by the mass (M) 

of the vibrating object and its compliance, (Cm), the displacement per unit restoring force 

of the vibrating system, according to the following expression: 

2

1
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1 

 mfree MCf
      

‎3-10 

ffree is the resonant frequency of the vibrating system. In practice, frictional effects cause 

the motion to be damped, and provided that this damping is below critical, oscillation still 

occurs but the amplitude decreases with time (see Figure 3.4). The mathematical 

expression for this free vibration is: 

tftxx free 2cos)'exp(0 
    

‎3-11 

Where MRm 2/' , and Rm  is the mechanical resistance. Here, x is the amplitude of the 

vibration and x0 is the initial amplitude.  

The free and forced vibrations of the transducer do not necessarily have the same 

frequency. However, to drive the transducer more efficiently, the driving signal is 

normally at the resonant frequency of the transducer. Thus, the following expression can 

be used to model the ultrasound burst shown in Figure 3.4 [42]: 

)2cos()'exp()( 0   tfttxtx free

llL

   
‎3-12 

Where, the coefficient m ranges from 1 to 3 for a good approximation and   is a phase 

shift. 

3.4 Transmitted ultrasonic signals 

Generally used ultrasonic signals are categorized as pulse or continuous type wave. A 

pulse is a short-duration signal and emitted discontinuously. It is often called a gated-
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wave. A gated-wave can be very beneficial for a transceiver which acts as both a 

transmitter and receiver. In contrast, a continuous wave is transmitted without any 

interruption. Thus, the receiver can only be used to acquire the signal. This characteristic 

is very useful in phase detection which compares the phase difference between outgoing 

and incoming signals. 

3.4.1 Pulses 

Pulse-echo ranging systems are widely used because only one sensor is required to 

transmit and receive the signal. The pulse is a frequency broadband signal. The shorter 

the duration, the broader the bandwidth. Although a shorter duration can produce a wider 

bandwidth, it often suffers from a reduced energy, which impedes TOF estimation. A 

compromise is to emit several periods of a sinusoidal wave to provide enough signal 

strength. Figure 3.5, shows one-cycle and four-cycle pulses and the corresponding 

spectra. The four-cycle pulse yields narrower frequency band but a higher level of power. 

In contrast, the one-cycle pulse results in broader frequency band but a lower level of 

power [43].  
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Figure ‎3-5 The gated sine waves and the associated spectra 

                                     (a) A one-cycle sinusoidal pulse in the time domain 

                                     (b) The spectrum of the one-cycle pulse  

                                     (c) A multiple-cycle sinusoidal pulse in the time domain 

                                     (d) The spectrum of the multiple-cycle pulse 

3.4.2 Modulated signals 

Many modulation methods are available for ultrasonic ranging such a frequency 

modulation, amplitude modulation, and phase shift keying [33]. The major advantage of 

the modulated signal is to reduce the noise effect during the propagation. Thus, these 

methods are often applied in the communication systems for recovery of noisy signals. In 
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addition to improving the signal to noise ratio, the modulation process usually broadens 

the signal bandwidth and shifts the major signal spectrum to close to the carrier 

frequency. The broader bandwidth can be advantageous for certain detection algorithms 

that require wide-band signals; whereas, the frequency shift is often used to match the 

signal with the sensor's effective bandwidth. This yields the most efficient transmission 

sensitivity and minimizes the distortion. A special category of the modulated signal that 

contains a linearly varied frequency is known as a chirp, or FM sweep (Figure 3.6). A 

typical linear chirp signal can be written as  
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Where f0 and f1 are the start and stop frequencies, respectively, and ts is the sweep 

duration. Equation (3-13) describes a sinusoidal signal with frequency varying from f0 to 

f1 during ts. After ts, the signal repeats itself. Because of its broadband characteristic, one 

can utilize a deconvolution technique, or the estimation of the impulse response function, 

to determine the time of flight. Alternatively, a cross correlation function can be used to 

determine the TOF [11, 61].  

 

Figure ‎3-6 A linear frequency sweep chirp and its spectrum 

                                (a) The signal in the time domain  

                                (b) The power spectrum of the chirp 
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3.4.3 Pseudorandom code 

Pseudorandom code (PN code) is a special sequence which acts like noise. Its 

autocorrelation function demonstrates a similar property to white noise, which has no 

correlation to itself except at τ=0. Figure 3.7 shows a typical l5-bit PN sequence and its 

auto-correlation function. The peak in the autocorrelation function occurs at τ=0 and its 

value is equal to one; while sidelobes are equal to -1/N. The width of peak is equal to one 

bit length in time. Thus, the shorter the chip duration, the narrower the peak.  

 

Figure ‎3-7 An example of a PN code 

                                                       (a) A 15-bit PN code in the time domain  

                                                       (b) The autocorrelation of the PN code  

                                                       (c) The power spectrum of the PN code 

Because of its noise-like characteristic, PN code has a broad spectrum. Its bandwidth is 

decided by the bit rate (number of bits transmitted per second).  For example, a 15-bit 

sequence transmitted in 1.5 sec results in a 20 Hz mainlobe bandwidth (null to null), 
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(Figure 3.7c). Note that a simple PN code is a base-band signal that starts to spread its 

spectrum from zero Hz [43].  

3.5  Modern applications of ultrasonics 

Since the first application of ultrasonics in 1883, when Galton devised a high frequency 

whistle to measure the upper frequency limit of response of the human ear, ultrasonics 

has been widely applied in industry, research and medical practice, etc. In this section, 

some applications of ultrasonics will be introduced briefly. 

3.5.1 Ultrasound flaw detection 

The Pulse-Echo method can be applied for flaw detection. Assuming that a longitudinal 

wave probe is mounted on one of the two parallel surfaces of a specimen, it transmits an 

ultrasound burst through the specimen and receivers an echo that is reflected by the other 

surface, named as the bottom echo. If there is a flaw in the specimen, an extra echo will 

be received before the bottom echo, thus indicating the presence of the flaw. Here, the 

time delay of the extra echo determines the depth of the flaw, and the amplitude indicates 

the extent of the defect. Improvements on this method were made by employing variable-

angle transducers that do not necessarily have to be parallel to the surface to detect flaws. 

3.5.2 The ultrasonic flowmeter 

The ultrasonic flowmeter operates on the Doppler principle. Two reversible transducers 

are placed in the liquid along the line of flow, one acting as transmitter and the other as 

receiver of ultrasonic pulses. At short regular intervals, they are switched over so that the 

transmitter becomes a receiver and the receiver acts as a transmitter. The acoustic 

velocities are c + u along the direction of flow and c – u in the receiver direction, where c 

represents the local velocity of sound without flow, and u the velocity of the streamline 

flow of liquid. Peaks, corresponding to these velocities appear on the screen of an 

oscilloscope and, because the frequency of switching over the transducers is high, the two 
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peaks are observed almost simultaneously. The distance between the peaks gives a direct 

indication of the velocity of flow of the liquid. 

3.5.3  Underwater application 

Marine applications of ultrasonics date back to the first World War, 1914-18, when they 

were used for locating submarines. Considerable advances have been made since in this 

field and pulsed ultrasonic waves are now commonly used for sounding ocean beds. With 

an ultrasonic pen recorder, one can chart the ocean bed using the reflected pulses. It is 

also possible to locate shoals of fish by this method, and it has been claimed that a given 

fish species can be indentified from the characteristics of the recorded traces. Because of 

the long path lengths in seawater, frequencies in the lower kilocycle range must be used 

to avoid too high an attenuation. Signalling is another underwater application of 

ultrasonics. With ultrasonic waves as a carrier, modulation devices enable the 

transmission of speech between ships. 

3.5.4 Medical applications 

The techniques used for flaw detection have been extended with a considerable degree of 

success to medical diagnosis. The characteristic impedance and absorption coefficients of 

different parts of the human body, such as fat layers, muscle, bone, etc., are sufficiently 

different to render these methods highly successful. It has also been found that the 

acoustic properties of healthy and malignant tissue differ to such an extent that an early 

diagnosis of cancer is sometimes possible. The uses of miniature transducers have made 

possible ophthalmic and dental examinations by ultrasonics. Care must be taken to ensure 

that the acoustic powers used are not so high as to cause damage to the body either by 

heating or by cavitation. 

Frequencies in the lower megacycle range are commonly used, and coupling is normally 

achieved by the immersion technique. One method is to use water contained in a vessel 
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having a rubber bottom, which can be placed in contact with the skin. Scanning is 

achieved by moving the transducer inside the vessel. 

One of the most important modern applications of ultrasonics for medical diagnoses is 

the „B-scan‟ technique of flaw detection, for which the position of the transducer is 

indicated on a vertical axis and the echo distance on the horizontal axis. The intensity of 

the sound reflected from a discontinuity modulates the intensity of the scanning electron 

beam and a „picture‟ of the examined part of the body is thus obtained. The results 

obtained during the whole period of the scan can be automatically recorded and stored on 

a laptop. This technique has been applied successfully for the location of brain tumours 

and for the foetal examination of expectant mothers.  

Examinations of the heart have been conducted by means of a Doppler technique. 

Ultrasonic waves are directed towards the heart and reflected back again. The velocity of 

the walls of the heart is determined by the observed change in frequency. Any 

irregularities from normal functioning can readily be detected. The ultrasonic flowmeter 

discussed earlier has also been used successfully for the measurement of the rate of flow 

of blood through the human body. 

3.5.5 Applications of airborne ultrasonics 

At present, there are not many applications of airborne ultrasonics, and these applications 

are restricted to the lower kilocycle range, where attenuation is not too great. One 

successful commercial application of airborne ultrasound is an intruder alarm system for 

the detection of burglars and fire in enclosed premises. A magnetostrictive transducer is 

placed at some point in a room and the pulses are propagated in all directions. These are 

reflected by the walls and furniture and eventually picked up by a receiver, from which a 

constant indication is obtained. Any variation in the sound field, caused by an intruder or 

increase in temperature, gives rise to a change in this indication, which sets off an alarm. 
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Another application of airborne ultrasonics is a system for the guidance of blind people. 

A small portable device contains two electrostatic dielectric transducers. One, acting as 

transmitter. is excited by a periodic modulated frequency, sweeping from 30 kHz to 60 

kHz. Ultrasonic waves produced in this way are reflected from obstacles, detected by the 

other transducer, and then converted to audible signals. Such a device, the Palmsonar 

PS231, is available from the Royal National for the Blind and can be used to detect an 

obstacle up to 4m away.  

Applications of airborne ultrasonics are also found in industry. Mahajan [44] Presented 

an ultrasonic seam tracking system developed for robotic welding which tracks a seam 

that curves freely on a two-dimensional surface. The seam is detected by scanning the 

area ahead of the torch and monitoring the amplitude of the waves received after 

reflection from the work piece surface. This seam tracking system is capable of detecting 

seams less than 0.5mm wide and 0.5mm deep.  
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3.5 Summary  

Ultrasonics is the study and application of sound waves having frequencies higher than 

those to which the human ear can respond (about 20kHz), and therefore it covers all the 

works that has been done in this project. In this chapter some related topics of ultrasonics 

have been briefly introduced.               

This chapter has introduced some basic considerations of ultrasound, including velocity, 

reflection, refraction and attenuation. The information given here will be used in Chapter 

5, where ultrasound models are developed. The working principles of the piezoelectric 

transducers that are used in the ultrasonic 3D measurement system and transmitted 

ultrasonic signals have been briefly introduced. At the end of this chapter, some of the 

countless ultrasonic applications are mentioned, to provide a general view of the 

developments in modern ultrasonics. 

In the next chapter, previous work on the ultrasonic 3D measurement systems is 

presented in detail. 
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Chapter 4 Previous work on ultrasonic 3D measurement systems  

4.1  Introduction 

As mentioned in the last chapter, the characteristics of ultrasound, such as the velocity 

and attenuation, are determined by the medium through which ultrasound propagates. 

Therefore, airborne ultrasonics, with its unstable medium of air, is rarely used for high 

accuracy measurement.  

In the previous ultrasonic 3D measurement systems, TOF (Time-of-Flight) technique was 

applied to determine the distances between the position and the surrounding receivers [4, 

6]. The results were then used to evaluate the 3D coordinates of the position. These 

systems have been tested on different applications.  

In this chapter, the working principle of the previous ultrasonic 3D measurement systems 

will be introduced in detail, followed by a discussion on the 3D measurement systems 

limitations. First, in the following section, the algorithm used for position coordinate in 

the previous 3D measurement systems will be introduced. 

4.2  Configuration of the previous ultrasonic 3D measurement systems 

The development of the previous ultrasonic 3D measurement system started in the middle 

of the 1980s by Dickinson [31]. During the development period, in 2002, Mahajan [5] 

helped in building the hardware of the 3D measurement system.  

Figure 4.1, shows that the system is composed of a transmitter and six receivers located 

around the area of interest. The transmitter is located at an unknown position (u, v, w). 

The receivers are located at known positions: R1(x1, y1, z1), R2(x2, y2, z2), R3(x3, y3, z3), 

R4(x4, y4, z4), R5(x5, y5, z5), R6(x6, y6, z6) The TOF between the transmitter and any 

receiver is unknown, but the difference between times when the receivers sense the 

signals can be measured. This system is using spark transmitter which is transmit the 

signal in difference directions [53]. 
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Figure ‎4-1 Geometric setup of the measurement system 

In other words, if the transmitters send a signal at time T=0, the receivers will sense the 

signals at the unknown times T1, T2, T3, T4, T5 and T6. The difference between the TOFs is 

electronically measured as follows: 

1212 TTT   , 1313 TTT   , 1414 TTT   

                                      1515 TTT   , 1616 TTT 
     

‎4-1 

This yields various known time differences that can be used in conjunction with the 

receiver locations to determine the point of signal origin (u, v, w). Other ΔT values, such 

as ΔT23, could be found, and may be used to give a redundant system, i.e., more number 

of equations than variables. In this case, a least squares estimate may be used to estimate 

the values of the unknowns. 

One receiver is always the first to sense the signal and this receiver (R1) is considered to 

be at a distance d from the transmitter. Another receiver will be the second one to sense 
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the signal and this receiver is at a distance d + c ΔT12, where c is the velocity of sound. 

The third, fourth, fifth and sixth receivers are then at distances d + c ΔT13, d + c ΔT14, d + 

c ΔT15, and d + c ΔT16, respect-timely, from the transmitter. Since sound travels in 

circular waves form the point source (transmitter), six concentric circles can be drawn 

around the transmitter. The formulation for 3D position at transmitter is: 
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This is final formulation for estimating the 3D position of the transmitter using the 

differences in the measured TOFs as estimating the speed of sound at every ranging 

operation. 

This system was tested in a workspace of 1000 × 1000 mm, the absolute error 2mm for 

distance less than 700 mm.   

In 2002, Martin [6] builds the hardware of another 3D measurement system. The 

performance of this system was demonstrated experimentally on a robot.   
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Figure ‎4-2 Geometric setup of the measurement system 

As shown in the above figure, eight receivers are arranged at the corners of a virtual cube, 

facing towards the centre of the cube. This ensures that, in any situation, at least three 

receivers can work properly, and therefore enable the tracking system to continuously 

provide information on the transmitter position.  

Once the distance between the transmitter and the receivers are measured, the data from 

each receiver is sent to the computer to calculate the 3D position of the transmitter. 

Among these 8 receivers, any combination of three adjacent receivers composes a 

coordinate frame, in which the 3D coordinate position of the transmitter can be 

calculated.  

As mentioned above, the determination of the position of the transmitter is based on the 

measurements of distance between the transmitter and the receivers. Therefore, the 



62 

 

accuracy and the resolution of the whole tracking system depend on the accuracy and the 

resolution of the individual measurements of distance by each of the receivers.  

In this 3D measurement system, the TOF (Time-Of-Flight) is selected for distance 

measurement, which is achieved by recording the travelling time, t of the ultrasound 

flying from the transmitter to the receiver. The following equation shows how the 

distance is calculated from the recorded time of flight. 

tcd .       ‎4-3 

Here, d denotes the distance between the transmitter and the receiver, and c is the speed 

of the ultrasound, which is normally regarded as a predetermined constant. The distances 

between transmitter and each receiver determined as this equation: 
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‎4-4 

The performance of this system has been verified experimentally by building a prototype 

consisting of a set of eight ultrasonic receivers placed in a metallic frame, while the 

moving element (a spark transmitter) is mounted on top of a robotic arm. The prototype 

showed a maximum error of 1 mm within a work area of 3×3×3m.  

The previous ultrasonic 3D measurement systems have same problem as other TOF 

systems‟ poor accuracy. Therefore, to achieve a high-resolution distance measurement, a 

new technique other then the TOF is needed. One suitable alternative technique is the 

multiple-frequency continuous wave frequency modulation system [45, 46, 47] 

developed in this project, which will be introduced in the following chapter. In spite of 

the low resolution, the previously developed ultrasonic 3D measurement system also has 

other limitations, such as the insufficient accuracy and flexibility [7]. Therefore, in order 

to overcome these drawbacks and construct a better and more practical 3D measurement 

system, new techniques and algorithms were introduced in the development of the new 
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3D measurement system, which will be detailed in the following chapters. Next in this 

chapter, the limitations of the previous 3D measurement systems will be studied in more 

detail. 

4.3  Limitations of the previous ultrasonic 3D systems 

4.3.1 Limitations on the arrangement of the receivers 

As mentioned in section 4.2, in order to overcome the obstacle problems, 6 receivers are 

arranged in figure 4.1 and 8 receivers are arranged in figure 4.2. However, in practice, it 

is very difficult or even impossible to place the receivers at the desired position precisely 

and therefore errors in the placement of the receivers introduced significant errors into 

the position calculations. Furthermore, it takes a long time to set up a system, even if it is 

possible to actually place the receivers at the right positions. This arrangement still has 

problem of poor adaptability and flexibility. In industry, the working environment is 

rather complicated, and there may be no room for the receivers to be placed in such a 

way. Even if there is available space for the receivers, large obstacles in the workspace 

may totally block the transmission path. In addition, due to changes of the working 

environment, it may be necessary to change the arrangement of the receivers from time to 

time. Therefore, a new geometric algorithm, with which the receivers can be placed at 

any convenient places, is required for 3D positioning. Such a new algorithm has been 

developed and will be discussed in detail in the next chapter. Moreover, another 

algorithm was also developed to locate the receivers, so the set-up procedure of the new 

3D system is much simplified. These two new algorithms together improved the 

flexibility and adaptability of the system considerably.    

4.3.2 Limitation in the measurement accuracy 

As shown in section 4.2, the accuracy of the previous 3D measurement systems is 

between ± 2.5mm to ± 1mm, which is far from the required accuracy of ±100µm. the 
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errors may be caused by either errors in the predetermined ultrasonic speed or inaccurate 

detections of the ultrasound bursts, or both. 

The low amplitude and poor S/N ratio of the first few cycles of the received ultrasound 

burst makes the starting point difficult to detect with good accuracy. Therefore, with TOF 

method used in previous 3D measurement system, a random time delay is normally added 

to the measured time of flight and high sensitivity to changing in temperature and 

humidity caused to increase the error in time delay. Overcoming this drawback, the new 

methods avoided the detection of the starting point with some digital processing 

techniques. Though these new techniques demonstrated considerable improvements in 

their accuracy, one should notice that they are aimed for static distance measurement with 

a stationary transmitter/ target, which is obviously not the case in 3D measurement 

system. Therefore, in the new ultrasonic 3D measurement system, both multi-frequency 

continuous wave (MFCW) and frequency modulation (FM) are employed for static and 

dynamic distance measurement, and result in sub-micrometer accuracy. 

The estimation of the ultrasound speed is another difficult task in ultrasonic distance 

measurement. As introduced in Chapter 3, the velocity of ultrasound is determined by the 

characteristics of the medium, mainly the temperature in the case of airborne ultrasound. 

As the air temperature changes frequently and randomly, even a well-calibrated 

ultrasound velocity is not sufficient for accurate measurement. Therefore, during the 

development of the new 3D measurement system, a novel algorithm was developed to 

adapt the ultrasound speed drifting, while measuring the position. This technique will be 

introduced in chapter 5 for ultrasound speed evaluation. 
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4.4 Summary  

This chapter has reviewed previous work on ultrasonic 3D measurement systems, whose 

working principles were introduced in terms of the systems configuration and the TOF 

technique used for distance measurement. The limitations of these measurement systems 

were also addressed in the preceding section.  

In order to simplify the algorithm and speed up the calculation for position coordinate, 

the measuring system restricts the receivers to be orthogonally placed. This brings about 

considerable practical difficulties in receiver positioning, especially when more (8) 

receivers are used. The systems also employed TOF technique for distance measurement, 

which lacks in measurement accuracy. Though the research improves the accuracy of 

TOF distance measurement significantly, their resolution limitation is inherent and 

cannot be overcome with TOF. Thus, another technique, in this case the (MFCWFM) 

technique is introduced to the new 3D measurement system and will be discussed later.  

In the coming chapters, the new ultrasonic 3D measurement system developed in this 

project will be introduced in terms of its working principles, hardware/software 

implementations and experimental results.  
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Chapter 5 Enhanced 3D measurement system 

5.1 Introduction 

In order to overcome the drawbacks and limitations of previous ultrasonic 3D 

measurement systems, new techniques and algorithms were developed and introduced 

into a new 3D measurement system to achieve improvements in measurement accuracy 

and system adaptability. 

In this chapter, the working principle of this enhanced ultrasonic 3D measurement system 

is introduced, using the Data Flow Diagram (DFD), to model the details of the system in 

term of its functionality.  
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Figure ‎5-1 Top level DFD of the new ultrasonic 3D measurement system 
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Figure 5.1 above shows the top level DFD of the new ultrasonic 3D measurement system. 

It contains four data transformations (circles), one control process (dashed circle) and two 

data stores (two parallel lines). The ultrasound signal is received at transformation 1, 

‘Measure the distance’, where the distances are measured by the MFCWFM technique 

(see Section 5.2) in the system setup stagte, controlled by the control process, ‘Console’. 

The static distances between the transmitter and the receivers are measured sequentially, 

one by one, by combined MFCW and FM (see Section 5.2.1) and sent to transformation 

2, ‘Position the receiver’, to determine the receiver‟s position. During the measuring, the 

3D positions coordinate of the transmitter are determined at transformation 3, ‘Position 

coordinate’, with the dynamic distances measured at transformation 1 and receiver 

position from ‘Receiver position’. The positions and the transmitter data is stored at the 

data stores, ‘Receiver position’ and ‘Transmitter position’ respectively, and can be 

viewed, on request, by the ‘Operator’ though the transformation 4 ‘Display data’. 

In this chapter, the working principles of the new 3D measurement system will be 

detailed in terms of the data transformations: ‘Measure the distance’, ‘Position the 

receivers’ and ‘Position coordinates’.  

5.2 Distance measurement 

Just as in previous ultrasonic 3D measurement systems, establishing position coordinates 

requires knowledge of the distances between the transmitter and a minimum of three 

receivers, so at least three data transformations will be contained in transformation 1 in 

order to measure the distances to each receiver, as shown by the DFD in Figure 5.2. 

In the figure, the transformations are selected by the control signal 'mode select' for either 

static distance measurement or dynamic distance measurement. The former is used to 

determine the position of the receivers for system setup at transformation 2, ‘Position the 

receivers’, and the latter is sent to transformation 3, 'Position coordinate', for transmitter 
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positioning. To improve the accuracy, the newly developed MFCWFM system replaced 

the previous TOF system for distance measurement.  

Measure

distance at
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distance at
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Ultrasound wave
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distance (static)

distance (dynamic)
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Figure ‎5-2 DFD of transformation 1 „Measure the distance‟ 

Figure 5.3 shows the DFD of the new system containing the MFCWFM system for both 

1D static and dynamic distance measurement. During system setup, transformation 1.1.2 

'Measure static distance’ is enabled by the control process to measure the static distances 

to determine the position of the receiver. 
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Figure ‎5-3  DFD of transformation 1.1 „Measure distance at receiver 1‟ 
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Initially, in the measurement procedure, the distance between the transmitter and the 

receiver is measured at transformation 1.1.2 and saved in the data store, „Initial distance’. 

Then transformation 1.1.3 ‘Measure dynamic distance’ is implemented to measure 

transmitter displacement. Then, knowing the initial distances, absolute distances between 

the transmitter and the receivers are determined and sent to the next stage for coordinate 

determination. A prototype of this system has been developed and has greatly improved 

the accuracy of distance measurement. The working principles of the MFCWFM system 

are introduced in the following sections.     

5.2.1 MFCWFM distance measurement  

In this section, a simple yet accurate MFCWFM system developed by the author is 

introduced [45, 47]. Its principles and use in the 3D measurement system for both static 

and dynamic distance measurement are illustrated by the DFD in Figure 5.4. 
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Figure ‎5-4 DFD of transformations 1.1.2 and 1.1.3 „Measure distance with MFCWFM‟ 

The above diagram provides a view of the MFCWFM system from receiving the signal, 

with the corresponding software implementations and experimental results introduced 

later. As seen in Figure 5.4, the input signal is first filtered to eliminate the DC offset, 
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then transformation 1.1.2.2, ‘Demodulation of the signal’, demodulates and separates the 

frequencies. The output of the transformation 1.1.2.3, ‘Phase difference’, is the phase 

difference between the transmitted and received signals. Finally, this phase difference is 

used by transformation 1.1.2.4, ‘Calculate the distance’, to calculate the distance between 

transmitter and receiver. 

Working principles 

The distance between transmitter and receiver is determined from the measurement of the 

phase difference between the received and transmitted signals. If the transmitter is 

energized with a continuous sinusoidal signal, the signal at the receiver can be written as: 

)sin()(   tAtV
    

‎5-1 

Here A is the peak value of the received signal, ω is the angular frequency of the wave 

form and φ is the phase shift with respect to the wave at the transmitter and its value is 

proportional to the separation between source and receiver. The ranging distance d can be 

uniquely determined by the phase shift φ if the maximum ranging distance does not 

exceed the half wavelength of the lowest frequency used, otherwise a phase ambiguity 

will occur. The maximum achievable range with transducers transmitting a pure tone of 

25 kHz (this is a frequency commonly used in air ranging applications) is about 7mm 

which is usually far too small for most 3D ranging requirements. Here several low 

frequencies are used to modulate the 25 kHz resonant frequency which then acts as the 

carrier, and it is the phase and phase shift of the envelop of the received signal which is 

measured to calculate the distance [48]. In this case two modulating frequencies are used, 

1 kHz and 100 Hz, and a maximum detectable range of about 1.2m is achieved which 

meets most requirements for 3D measurement. Here the carrier signal and both 

modulation signals are considered sinusoidal with no phase shift as they are emitted by 

the transmitter, see Figure 5.5.  
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Figure ‎5-5 The motion distances are measured with three difference frequencies 

It is assumed in Figure 5.5 that the phase change corresponding to the target range 

(source-receiver separation) does not exceed π for the 100 Hz signal. The phase shift φ1 at 

the frequency f1 = 100 Hz, which has the longest wavelength 1 , as shown in Figure 5.5, 

gives the first estimate of the moving distance as: 
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A modulating signal with a higher frequency, f2 = 1 kHz, is then used to measure the 

same range with a finer resolution. This is achieved because a small change in the source-

receiver separation, the measured range, creates a greater phase shift between the 

transmitted and received signals than occurred with frequency f1. For example, a phase 

shift   of π for the 100 Hz signal corresponds to a distance of about 1.7 m, and at 1 kHz a 

distance of about 170 mm. Thus a more accurate approximation to the measured range is 

obtained from  

2
2

2
2
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
d

     
‎5-3 

The integer number, N2, of the wavelength of 2  between transmitter and receiver can be 

obtained from  
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Equation (5-2) may be rewritten as: 
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‎5-5 

Similarly, the measured range d3 corresponding to the phase shift φ3 at frequency f3 = 

25kHz is given by:  
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The integer number N3  of  the wavelength 3 can be calculated from:  
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‎5-7 
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d = N3 x λ3 + 3
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The estimation of the measured displacement distance using three frequencies can be 

expressed by the following equation:  
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Where:  
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The final equation derived from the above is: 
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Where c is the local value of the speed of sound which is a function of temperature and 

humidity. To reduce any error in c these quantities should be evaluated for the 

workspace. In fact, during this research a MFCWFM technique was used to produce a 

new highly accurate system for humidity and temperature measurement in air [35]. 

5.2.2 Evaluation of temperature 

The theoretical expression for the speed of sound c in an ideal gas is 



P
c 

      

‎5-10                                                            

Where P is the ambient air pressure, ρ the local density of the gas, and µ the ratio of 

major specific heats of gas and will depend upon the number of degrees of freedom of the 

gas molecules:   
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µ = 1.67    for monatomic molecules 

µ = 1.40    for diatomic molecules 

µ = 1.33    for triatomic molecules. 

Since air is composed primarily of diatomic molecules, the speed of sound in air is  



P
c

4.1
  

Assuming the equation of state for air is that of an ideal gas (PV = RT) and expressing the 

density ρ as mass per unit volume, the equation may be rewritten as: 

                                          M

RT
c

4.1


               
 5-11 

Where R is the universal gas constant (R= 8.315410 J.mol-1.K-1), T the absolute 

temperature in degrees Kelvin (T = t +273.14), and M is the mean molecular weight of 

gas. Equation (5-11) may be rewritten as: 
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‎5-12 

Where t is the temperature in degrees Celsius. Thus, the speed of sound can be found if 

the temperature t is known. Also, the equation (5-8) can be rewritten as:          
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The above equation can be used either to assist the measurement of distance or to 

measure temperature if the distance between transmitter and receiver is known.   



75 

 

 

Figure ‎5-6 The effect of changing temperature on phase difference of the received signal 

The effect of change in temperature on measured phase difference between transmitted 

and received signals is shown on Figure 5.6. The sensitivities of φ1 and φ2 to changes in 

temprature are very small, but the sensitivity of φ3 is very much larger. In fact, the phase 

change will be proportional to the frequency of the acoustic wave. For example, for the 

25 kHz wave, a change temperature from 200C to 20.050C produced a measured change 

in phase of 1.80. This system can measure a phase shift of 0.50, which is equivalent to a 

temperature change of 0.020C.  
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Figure ‎5-7 Evaluation of the temperature in a work space 

Figure 5.7 is a schematic diagram showing the essentials necessary to evaluate 

temperature in a rectangular work space. The measurement system consists of two 

separate ultrasound systems [35].  The output of the first system (Receiver1 and 

Transmitter1) is temperature t1 and the output of system 2 (Receiver2, Transmitter2) is t2. 

Since the system is symmetrical, the temperature in the work space may be taken to be 

the simple average: 
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‎5-14  

t1 and t2 are obtained from Equation (5.13).                        

The measurement of temperature can be made an integral part of the measurement system 

so that it is continually monitored and the error produced by changes in temperature is 

largely eliminated. In practice, the new design has improved the accuracy in the 

experiment to ±20µm in a range of 1100 mm.  

5.2.3 Evaluation of humidity  

Equation (5-11) does not include the effects of the actual specific heat ratio of the 

different types of molecules in the air nor the moisture in the air on the speed of sound. 
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The specific heat ratio µ can be expressed more exactly by letting df equal the number of 

excited degrees of freedom for the air molecules. For dry air this gives [49]: 

ff dd /)2( 
     

 5-15 

Because the composition of dry air is mostly diatomic molecules, df =5 and μ = 1.4. 

However, air usually contains a proportion of water vapour, with dfw = 6, so the presence 

of water causes the average number of degrees of freedom per molecule to increase.  If h 

is the fraction of air molecules that are water, the average number of degrees of freedom 

per molecule changes and Equation (5-15) must be rewritten to include the effects of 

moisture in the air: 
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Thus, if the water vapour comprised 1% of the air, μ would still be 1.4 to an accuracy of 

0.05%, and if water vapour comprised 10% air the value of μ would be 1.399.  

The average molecular weight of air decreases with added moisture. To see this, M is 

calculated first for dry air. Dry air composition is  

78% nitrogen with molecular weight = 28.     

21% oxygen with molecular weight = 32, and 

1% argon with molecular weight = 40. 

Thus the molecular weight for the mixture is equal to 

(0.78) (28) + (0.21) (32) + (0.01) (40) = 29 
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The presence of water with a molecular weight of 18 decreases the average molecular 

weight to (29(1 – h) + 18h), or 

hM w 1129
     

‎5-17 

Equations (5-16) and (5-17) modify the terms, 1.4 and M, in Equation (5-11) since both 

are a function of the water molecule fraction h.  

 

h can be expressed in terms of the Relative humidity (RH, expressed as a percentage) as: 
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Where p is ambient pressure (1.013 × 105Pa at 1 standard atmosphere) and e(t) is the 

vapor pressure of water at temperature t. For temperature in degrees Celsius. 
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Equation (5-8) may now be rewritten as: 
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By knowing the temperature and distance between transmitter and receiver, the relative 

humidity can be determined. The method for evaluating temperature in the work volume 

(Figure 5.7) can also be used to evaluate the humidity in the work space. The effect of 

changing humidity on measured phase difference between transmitted and received 

signals is shown on Figure 5.8. The sensitivity of low frequency acoustic waves to 

changes in humidity is not strong, so the changes in φ1 and φ2 due to changes in humidity 

are very small. However, as the frequency increases into the kHz region the sensity 

rapidly increases. Thus the sensitivity of φ3 to changes in humidity is much larger and, for 
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example, a change humidity from 75% to 78% produced a measured change in phase of 

1.820, equivalent to a temperature change of 0.05o. 

 

Figure ‎5-8  The effect of changing humidity on phase difference 

More details of the evaluation of temperature and humidity will be given in the 

experimental chapters. 

5.3 3D position calculation 

So far in this section, the techniques used in the new ultrasound distance measurement 

have been introduced. Now, the working principles of the transformation 2, ‘Position the 

receivers’, and transformation 3, ‘Position the transmitter’, are introduced to show how 

the measured distances are used to locate the receivers and position the transmitter in 3D 

space.  
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After the distances between the transmitter and the receivers are measured at 

transformation 1, 'Measure the distances', the transmitter 3D positions are determined at 

transformation 3, 'Position coordinates', using the pre-measured position of the receivers. 

In earlier work as introduced in the previous chapter, the triangulation method used for 

position tracking requires the receivers to be located orthogonally. In practice, it is very 

difficult to satisfy this requirement, especially in later versions where up to eight 

receivers (see Figures 4.1 and 4.3) have to be precisely located at the corners of a cube. 

To improve the system flexibility, a new algorithm for position coordinate was developed 

to allow the receivers to be located arbitrarily at convenient positions [50]. 

First consider the following case, where 3 receivers, R1, R2 and R3 are employed: 

d1

d
2

d3

R2 (x2, y2, z2) 

R3 (x3, y3, z3) 
R1 (x1, y1, z1) 

P(x, y, z)

 

Figure ‎5-9 Locations of the transmitter position and three receivers 

The coordinate of the position ),,( zyxp  can be evaluated by solving the following 

system of equations [44]: 
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Where, xn, yn and zn are the coordinates of nth receiver and dn is the measured distance 

between the transmitter and   corresponding receiver. The Newton iteration method 

shown in the following equation is used to solve the system of equations: 
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Estimation of the solution to these equation can be determined to any level of accuracy 

desired, but at the expense of considerable computational time, since the Jacobian matrix 

F(Xn) and the vector ƒ(Xn) are calculated and multiplied together at every iteration.  

In order to simplify the computation, a new approach is introduced to evaluate the 

solutions of Equation (5-21). First, it establishes a new coordinate system, so that the 

receivers have the coordinates )0,0,0(1R , )0,0,( '

22 xR  and )0,,( '

3

'

33 yxR . This depends on 

the simple Euclidian observation that a single plane can always be drawn through any 

three points in space. This new coordinate system can be obtained by rotation and 

translation of the original coordinate system, and the positions of the receivers can be 

established using the following equations: 
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Where, i is the index of the receivers, Tran(x, y, z) and Rot (axis, angle) are the 

translation and rotation matrices: 
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The rotation angles α, β and θ on the corresponding axis can be determined as follows: 
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After the coordinates of the receiver are determined using Equation (5-22), and 

substituting them into Equation (5-21) yields: 
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Where the solution, coordinates of the position in new coordinate system ),,( '''' zyxp can 

be found directly with the following equations: 
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' yxdz   

As the rotation angles α, β and θ have already been determined earlier, the position in the 

original coordinate system can be simply obtained by multiplying the above solutions 

with an inverse transformation matrix, which is derived as follows: 
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Where
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This algorithm has a much higher computational efficiency than the Newton iteration 

introduced earlier, and can be seen clearly in the data flow diagram DFD shown in Figure 

5.10. The transformation 3.1, „Calculate the receivers’ coordinates in new coordinate 

system’ and transformation 3.2, „Calculate inverse transformation matrix‟, are activated 

during the system initialization to transfer the coordinates of the receivers into the new 

coordinate system and calculate the inverse transformation matrix. 
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Figure ‎5-10 DFD- Transformation three receivers 

The results are stored in the corresponding data store. Transformation 3.3, „Position in 

new coordinate system‟, and transformation 3.4, „Transfer back to the original coordinate 

system‟, are activated. First, calculated position is directly determined with equation (5-

23) at transformation 3.3, then the result is transferred back to the original coordinate 

system by multiplying it with the pre-calculated inverse transformation matrix. 

Obviously, this algorithm requires much less computational time during each position 

change. 

As shown in Equation (5-23), the accuracy of the position depends on the distance 

measurement errors denoted Δd1, Δd2 and Δd3.  
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Assuming that the errors are small compared to the distance being measured, so that 

errors in the calculated coordinates ''' ,, zyx   can be determined by partial differential:  
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Then, substituting Equation (5-23) into Equation (5-25), yields: 
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Where, the b, e and ƒ are derived using the MATLAB symbolic toolbox: 
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5.4 Positioning of the receivers 

Precise determination of the transmitter position requires accurate estimation of the 

receivers‟ position. However, in the previous work by Mahajan [4] and Martin [6], no 

comment was made on where to position the receivers. In this section the procedure and 

algorithms used by the new 3D measurement system for positioning the transceivers will 

be introduced and details given. 

First, establish the transceivers‟ positions (R1, R2 and R3) in an xyz coordinate system R, 

as shown in figure 5.11. 

a

x

c

b

yz

α

R2(x2, 0, 0)   

R3(x3, y3, 0)   

R1(0, 0, 0) 

d
2  

d3 

d1 

P(x, y, z)                               

 

Figure ‎5-11 Positions of the transceivers‟ in coordinate system R 

Transceiver 1 is assumed to be at the origin so its position will be R1(0, 0, 0). The 

coordinate system is such that transceiver 2 is on the x-axis, and its position is R2(x2, 0, 

0). Thus the distance between transceiver R1 and R2 is x2, which can be measured quite 

simply with multiple-frequency continuous wave frequency modulation (MFCWFM) if 

transceiver 2 is used as a transmitter. The distances between the transceivers, R1R2, R1R3, 

and R2R3 are a, b and c respectively, as shown in Figure 5.11. 
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                                              ax 2    5-27                                                         

Here the z-axis is orthogonal with the plane ,321 RRR which is determined by the three 

transceivers, and is positioned such that transceiver 3 has the coordinate R3(x3, y3, 0) 

with: 

cos.3 bx   

Then, substituting, 
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This yields: 
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‎5-28 

Where b, c are also measured using the MFCWFM system with transceiver 3 as a 

transmitter. Once 3x  is determined, 3y  can then be calculated: 
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‎5-29 

Accurate determination of the receivers‟ coordinates depends totally on the precision of 

the measurements of the distances between the receivers. Thus the errors in the distance 

measurement, Δd1, Δd2 and Δd3 will have direct consequences for the calculated errors in 

the position coordinates ba  , and c . If it is assumed that the errors in distance 

measurements are very small compared to the distances between the transceivers, then:  
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Substituting Equations (5-27), (5-28) and (5-29) into the above equation, yields: 
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Where,  222 cbas   

After the receiver positions are determined in the coordinate system R, the next step is to 

transfer the receivers‟ coordinates to the machine coordinate. Equation 5.24 is used to 

transfer data to machine coordinates. 
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5.5 Summary  

This chapter has introduced the working principle of the enhanced ultrasonic 3D 

measurement system, with the aspects of its functionality explained using Data Flow 

Diagrams (DFDs). The detailed hardware and software implementations will be 

introduced in Chapter 6.  

This new 3D measurement system employs new techniques and algorithms for distance 

measurement and transmitter/receiver positioning. Compared with the previous 

measurement system, these new techniques improved the overall performance of the new 

system in the following aspects:  

1. Higher accuracy and resolution: The concept of MFCWFM introduced in Section 

5.2.1 allows the distance to be measured continuously by monitoring the phase 

difference between transmitted and received ultrasonic signals. In practice, the 

prototype MFCWFM system demonstrated high linear measurement accuracy 

of.019mm over the axis stroke. This will be discussed in Chapter 8. 

2. Better adaptability and flexibility: This is achieved with the new algorithms and 

procedures for receiver and transmitter positioning. Unlike the previous 3D 

measurement system, where the receivers have to be located orthogonally, these 

new algorithms allow the receivers to be placed at arbitrary positions to adapt to 

different industrial environments. Moreover, the better flexibility is achieved with 

the relatively simple procedure introduced in Section 5.4 for receiver positioning, 

allows receivers to be easily relocated according to changes in the environment.   
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Chapter 6 Prototype measurement system and experimental tests 

6.1 Introduction 

The last chapter introduced new techniques and algorithms for high accuracy distance 

measurement, precise receiver/transmitter positioning and to improve the accuracy and 

system flexibility of previous ultrasonic 3D measurement systems. Based on those 

techniques, a prototype 3D measurement system was developed and this chapter gives a 

detailed description of the implementation of the hardware and software. Figure 6.1 

shows a block diagram of the prototype‟s hardware. 

Receiver

Receiver

Receiver

AI CH0

AI CH1

AI CH2

AO CH0

Anti

Aliasing

filter

PCI-DAQ 5MS/s/ch

AI CH0

AI CH1

AO CH1

Anti

Aliasing

filter

AO CH0

Receiver

Receiver

PCI-DAQ 5MS/s/ch

 

Figure ‎6-1 Block diagram of the new 3D measurement system hardware 
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Effectively the system is in two parts. In the first, ultrasound is transmitted to the three 

receivers located around the workspace area to measure the 3D position of the 

transmitter. The second part is used to evaluate the temperature and humidity within the 

workspace. Ultrasound is radiated from each of two transmitters to two corresponding 

receivers, see Figure 6.1. The signals are then sent to Data Acquisition card (PCI-6110). 

The computer runs a LABVIEW application to generate and modulate the ultrasound 

signals and to collect process and display the measured data. 

6.2 Transmitters and transceivers 

Piezoceramic ultrasonic transducers, see Figure 6.2 [54], are used as both transmitters 

and receivers. The frequency responses are shown in Figure 6.3(a) [54], the red colour 

recording to transmitter response and blue one recording to receiver response. The 

directionality of the transducers for a 25kHz signal is shown in Figure 6.3(b).  

 

Figure ‎6-2 Dimensions of the ultrasonic transducer in mm 

As the new 3D measurement system uses MFCWFM technique for distance 

measurement, the transmitter is selected to emit continuous ultrasound signal directly 

from the DAQ output. 
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Figure ‎6-3  (a) Sensitivity of the ultrasonic transducer 

                                                (b) Directionality of the transducer  

The ultrasound waves are picked up by the transducers acting as receivers and amplified 

by three stages as shown in Figure 6.4. The output of this „limiting amplifier‟ circuit was 

constant amplitude for a wide range of input amplitudes, the output then went to the DAQ 

input. 

(a) 

(b) 
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Figure ‎6-4 Circuit of the receiver amplifier 

6.3 DAQ card interface (PCI-6110)  

The PCI-6110 was produced by National Instruments (NI), contains seven 24-bit counters 

and three 16-bit counters. The counters are divided into the following three groups: 

1. Analog input __ two 24-bit, two 16-bit counters 

2. Analog input __ three 24-bit, one 16-bit counters 

3. General __ purpose counter/time functions __ two 24-bit counters 

The PCI-6110 device has a maximum sampling rate of 5 MS/s regardless of whether 1 or 

4 channels are acquiring data, and this was the main reason for choosing this device. 

The PCI-6110 device has bipolar inputs only, with the input voltage range of 20 V 

(±10V). The software-programmable gain on this device increases its overall flexibility 

by matching the input signal ranges to those which the ADC can accommodate. It has 

gains of 0.2, 0.5, 1, 2, 5, 10, 20, and 50, and is suited for a wide variety of signal levels. 

With the proper gain setting, the full resolution of the ADC can be used to measure the 

input signal. Table 6.1 shows the overall input range and precision according to the gain 

used. 
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Table ‎6-1 Actual range and measurement resolution 

Range 

configuration 

 

Gain 

 

Actual Input Range 

 

Resolution 

-10 to +10 V  

5.0 

10.0 

20.0 

 

-2 to +2 V 

-1 to +1 V 

-500 to +500 mV 

 

 

976.56 μV 

488.28 μV 

244.14 μV 
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Figure ‎6-5 PCI-6110 Block diagram 

The analogue input signals are AI CH <0..3> + and AI CH <0..3> - as shown in Figure 

6.5 [57]. The AI CH <0..3> + signals are routed to the positive input of the 

programmable gain instrumentation amplifier (PGIA), and signals connected to AI CH 

<0..3> - are routed to the negative input of the PGIA, as shown in Figure 6.6. The PGIA 

applies gain and common-mode voltage rejection, and presents high input impedance to 

the analogue input signals connected to the PCI-6110. The PGIA converts the two input 

signals to a single signal that is the difference between them multiplied by the gain 
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setting of the amplifier, see Figure 6.6. The amplifier output voltage is referenced to the 

ground for the device. The PIC-6110 device A/D converter (ADC) measures this output 

voltage when it performs the A/D conversions.  

 

Figure ‎6-6  Programmable gain instrumentation amplifier (PGIA) 

The analogue output signals are DAC0OUT, DAC1OUT, and AOGND. Figure 6.7 shows 

how the analogue output connections to the PCI-6110 device. 

 

Figure ‎6-7 Analogue output connections 

DAC0OUT is the voltage output signal for analogue output channel 0, DAC1OUT is the 

voltage output signal for analogue output channel 1, and AOGND is the ground reference 

signal for the analogue output channels. More details in appendix B  
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The I/O connector for PCI-6110 has 68 pins whose assignments are shown in Figure 6.8. 

The PCI-6110 is connected to subsequent devices using the SH6868EP shielded cable. 

  

Figure ‎6-8 I/O connector pin assignment for PCI-6110 

Note that in the new 3D measurement system the positive channels are connected to the 

ground channels.  

System software 

In addition to the hardware introduced so far, the new 3D measurement system also 

includes software which; 
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 Generates the signals: three stable frequencies (100Hz, 1kHz and 25kHz), with 

sampling rate 250kS/s for 25kHz, 10kS/s for both 100Hz and 1kHz. 

 Modulates the signals: using a frequency modulation (FM) technique to modulate 

the 25kHz carrier frequency at 100Hz and 1kHz. 

 Demodulates the signals: demodulates and separates the signals at the receiver 

stage and measure the phase difference between transmitted and received signal 

for each of the frequencies. 

 Data processing: using the algorithms introduced in the previous chapter, 

determines the receivers and transmitter position coordinates. 

 Data display: provides different graphic views of the data; local velocity of 

sound, distance, temperature and humidity within the work space. 

6.4 Signal generation  

The new 3D measurement system uses MFCWFM for distance measurement so there is a 

need to generate three sine waves with stable frequencies of 100Hz, 1kHz and 25kHz.  

LABVIEW software is used to generate a stable frequency sine wave. Figure 6.9 shows 

the procedure used to generate an array containing a sine wave. The reset phase 

determines the initial phase of the sine wave. The default is TRUE. If reset phase is 

TRUE, LABVIEW sets the initial phase to phase in. If reset phase is FALSE, LABVIEW 

uses the value of phase out from when the vi was last executed as the initial phase of sine 

wave. The amplitude set as 1 for all frequencies.   Figure 6.10 shows the device for 

generating a waveform containing the sine waves, the sampling rate is set as 10kS/s for 

both 100Hz and 1Hz, and 250kS/s for frequency 25kHz.  
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Figure ‎6-9 Generation of an array containing a sine wave 

 

 

Figure ‎6-10 Generation of a waveform containing a sine wave 

Figures 6.9 and 6.10 show a simple method for the generation of a sine wave signal with 

the possibility of changing the frequency, amplitude, sampling information and sampling 

rate. This method is used instead of normal circuit hardware, which would be likely to 

have had problems with stability of the frequency, and changing parameters such as 

amplitude, frequency, sampling rate and sampling information. 

6.5 FM modulation 

The transducers have frequency response which peaks at 25kHz, and this was used as the 

carrier frequency. However it was necessary to transmit and receive 100 Hz and 1kHz  
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signals using the same transducers. This was achieved by frequency modulation of the 

carrier frequency, which avoided errors in measuring phase difference produced by 

amplitude variations. 

 

Figure ‎6-11 Frequency modulation device 

After generation, the 100Hz and 1kHz signals were added together, see Figure 6.11 

which shows the FM device. The FM deviation specifies the desired frequency deviation 

of the frequency modulated signal returned in the FM modulated waveform output. In 

frequency modulation, frequency deviation refers to the maximum absolute difference, 

during a specified period between the instantaneous frequency of the modulated wave 

and the carrier frequency. The new 3D measurement system used an FM deviation of 

100Hz because, in tests with the transducers, 100Hz was sufficient to cover all amplitude 

variations at 25kHz, with the frequency responses shown in Figure 6.3(a). The output of 

Figure 6.11 is a FM modulated waveform containing the baseband signal data and the 

complex envelope of the frequency-modulated signal which contains the following 

elements:  

 t0: trigger (start) time of the signal data. 

 dt: time interval between data points in the signal data. 

 y: complex- valued time domain data array, the real and imaginary parts of this 

complex data array correspond to the in-phase (I) and quadrature-phase (Q) data, 

respectively.  

The output frequency-modulated wave is described by the following equation: 
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Where, fs is the sampling frequency. 

The output of the modulated FM function (FM modulated waveform) connects to the 

input complex waveform of the fractional resample function as shown in Figure 6.12. To 

resample a waveform, a desired sample rate (250kS/s) that differs from the existing 

sample rate of the input complex waveform entered. To realign a waveform without 

changing its sample rate, input a value to the desired sample rate parameter equal to the 

existing sample rate. In this case the initial sample offset parameter (sec) is set as zero to 

resample a waveform without changing the relative timing offset between the input and 

output complex waveforms.         

 

Figure ‎6-12 Fractional resample 

The carrier frequency is applied in an upconvert baseband function as shown in Figure 

6.13. This function converts the baseband signal data to its real passband equivalent. 

Upconverted data of the specified bandwidth is returned in the passband waveform 

output. Baseband waveform contains envelope signal data for upconversion to its 

passband equivalent which contains the following arrays: 

 t0: specifies the trigger (start) time of the acquired signal. 

 dt: specifies the time interval between data points in the acquired signal. 

 y: specifies the complex-valued time domain data array. The real and imaginary 

parts of this complex data array correspond to the in-phase (I) and quadrature-

phase (Q) data, respectively. 
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Figure ‎6-13 Upconvert baseband 

The carrier frequency is the centre of the passband, the incoming signal is upconverted to 

centre around this frequency. Input the desired carrier frequency of the outgoing signal to 

this control. Outputs the upconverted signal in passband form, which contains the 

following elements: 

 t0: trigger (start) time of the acquired signal. 

 dt: time interval between data points in the acquired signal. 

 y: the upconverted information signal array. 

The DAQmx write function (Figure 6.14) is used to write samples to the task or virtual 

channels specified in DAQmx create channel function as shown in Figure 6.15. The 

instances specify the format of the samples to write, whether to write one or multiple 

samples, and whether to write one or multiple channels. In this case the DAQmx write is 

used to write one channels ao0 with multiple samples. The DAQmx create channel 

function is used for the created output channel (ao0) or input channels (ai0, ai1, ai2, ai3) 

for each PCI-6110.   



104 

 

 

Figure ‎6-14 DAQmx write 

 

Figure ‎6-15 DAQmx creates a virtual channel 

DAQmx Timing 

DAQmx timing used to configure the number of samples to acquire or generate a buffer 

when needed. For high resolution the sampling rate was set as 250kS/s per channel and 

sample mode set for continuous sampling. These parameters were used for both 

transmitted and received signals. Figure 6.16 shown the block diagram for this function.   
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Figure ‎6-16 DAQmx timing (sample clock) 

6.6 FM demodulation 

The DAQmx function is used to read multiple samples from multiple channels, e.g. the 

four inputs AI0, AI1, AI2, and AI3 at the receiver stage for each PCI-6110, see Figure 

6.17. For demodulated FM the downconverts function as shown in Figure 6.18, was 

designed to downconvert the real passband signal data of a user specified bandwidth. The 

baseband IQ signal (complex envelop) is returned in the downconverted waveform 

output. When the enable filter parameter is TRUE, the downconverted IQ signal is 

filtered by a software lowpass FIR filter whose design parameters were dictated by the 

following considerations: 

 If the carrier frequency is greater than passband bandwidth, the filter stopband 

begins at the carrier frequency. 

 If the carrier frequency is less than the passband, then the filter stopband begins 

between carrier frequency and 2×carrier frequency – passband bandwidth/2. 
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Figure ‎6-17 DAQmx read 

In the downconvert function the waveform inputs the signal for downconversion in 

passband form and contains the following elements: 

 t0: trigger (start) time of the acquired signal. 

 dt: time interval between data points in the acquired signal. 

 y: complex array representing the signal for downconversion. 

 

 

Figure ‎6-18 Downconvert passband 

The carrier frequency (25kHz) is the centre of the passband, this frequency is 

downconversion to 0Hz (DC), and in this case should be the centre of the expected carrier 

frequency of the incoming signal for downconversion. The passband bandwidth 

(1500Hz) specifies the bandwidth of the passband signal data, this parameter is ignored if 

the reset input is FALSE. 
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The downconversion waveform (output of downconversion function) contains the 

downconversion signal in complex envelope format which contains the following arrays: 

 t0: trigger (start) time of the acquired signal. 

 dt: time interval between data points in the acquired signal. 

 y:  complex-valued time domain data array. The real and imaginary parts of this 

complex data array correspond to the in-phase (I) and quadrature-phase (Q) data, 

respectively. 

The downconversion waveform is connected to the demodulate FM function which 

performs frequency demodulation on the incoming IQ signal. The recovered information 

signal is returned in the FM demodulated waveform output. The information signal is 

computed as a result of a demodulation process, which takes place in two steps internally, 

first the incoming IQ data is phase-demodulated, and then the result of this phase 

demodulation is differentiated using a software FIR with three tops.    

 

Figure ‎6-19 Demodulated FM 

The demodulation device shown in Figure 6.19, calculates any residual frequency left in 

the IQ data (complex) input. The demodulate FM function used with NI hardware and the 

residual frequency is the offset from the expected carrier frequency specified in the MT 
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configure downconversion setting. If the actual carrier frequency of the acquired signal is 

different from the centre frequency of the receiver, a DC offset is introduced into the 

output FM demodulated waveform. If the carrier correction parameter is set to TRUE, 

this offset is removed. The correction is a software correction only. 

In Figure 6.20 the FM modulated waveform inputs baseband (downconverted) time-

domain data for demodulation which contains the following arrays: 

 t0: specifies the trigger (start) time of the acquired signal. 

 dt: specifies the time interval between data points in the acquired signal. 

 y:  complex-valued time domain data array. The real and imaginary parts of this 

complex data array correspond to the in-phase (I) and quadrature-phase (Q) data, 

respectively. 

The FM demodulation waveform consist of two frequencies 100Hz and 1kHz, by using 

an analogue bandpass filter whose centre frequency was set at 1kHz to recover the 1kHz 

signal, and set at 100Hz to recover the 100Hz signal.  

Calculation of phase difference 

The LABVIEW software also designed to calculate the phase difference between the two 

waveform of the same frequency. In Figure 6.20 the two signal inputs (A, B) are received 

and the device determines whether they are of the same frequency, and if they are, it 

calculates the phase difference between them. Of course the phase difference is simply 

the shift occurring in the time the wave takes to travel between each transmitter and 

receiver. 
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Figure ‎6-20 Calculation of phase difference 

To provide a clearer view of how the signals are modulated and demodulated Figure 6.21 

shows all the stages. The first sequence measures the phase differences for the 100Hz and 

1kHz signals, and the second sequence measures the phase difference for 25kHz carrier 

frequency.       
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Figure ‎6-21 Block diagram for modulation and demodulation of the ultrasonic signals 
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6.7 Summary   

This chapter has described the hardware and software implementation of the new 3D 

measurement system. The hardware of the new 3D measurement system includes three 

integrated transmitters, five receivers and a multifunctional PCI interface card. The 

hardware has responsibilities of two-mode ultrasound transmitting, ultrasound receiving 

and data communication with the computer. The software has the responsibilities for 

generating the carrier signal, modulating and demodulating the signal, processing the data 

and displaying the results. The experimental testing of this prototype will be described in 

the next chapter.    
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Chapter 7 Enhancement of the measurement system  

7.1 Introduction 

The new 3D measurement system achieved considerable improvements in measurement 

accuracy, resolution and system flexibility, which takes the system one step closer to 

industrial application. However, if the system were to be applied in a complex industrial 

environment, much stronger external disturbances are to be expected, which could 

significantly reduce the system‟s performance. Therefore, in this chapter, the effect of the 

environment on system measurement will be studied, with emphasis on two major 

environmental effects: interference caused by ultrasound echoes/reflections and changes 

in the condition of the air. For each of these problems, a technique has been developed, 

and the experimental tests will be introduced in this chapter.  

7.2 Eliminating distortions in frequency measurement  

Besides drift in the speed of the ultrasound wave due to changes in air temperature and 

humidity in the workspace, ultrasound echo interference is a second major error source in 

the new 3D measurement system, causing significant distortion in the measurement of the 

phase of the received ultrasound signal. Therefore, in this section, a frequency 

measurement technique will be introduced that eliminate these frequency distortions by 

employing Short-Time-Fourier-Transform (STFT). The frequency is measured by 

applying bandpass filter, see figure 7.1. 
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Figure ‎7-1 Frequency measurement 

Figure 7.2 shows the first 1200 measurements of frequency obtained in an experiment 

where the frequencies f1 and f2 were transmitted by FM modulation and f3 transmitted 

directly to receiver. In plots (a) and (b) of Figure 7.2 the effect of ultrasound echoes on 

measure frequencies of the 100Hz and 1kHz signals are seen to very small In plot (c) of 

figure 7.2, however, the ultrasound echoes, result in significant frequency distortions in 

the measurement of the frequency of the 25kHz signal. 
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            Figure ‎7-2 Measured frequencies using MFCWFM technique with obstacles in 

                              workspace 

(a) 100Hz signal     

(b) 1kHz signal and 

(c)  25kHz signal 

To overcome these problems, and eliminate the distortions in the frequency 

measurements, a different frequency measurement technique was used [55, 56]. This 

technique is capable of distinguishing the 25kHz frequency of the main signal from the 

echoes and reduces the error due to standing wave effects on the 100Hz and 1kHz 

signals.   
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7.2.1 Modelling of the ultrasound transmitter-receiver signal    

β 

α

O(xo, yo, zo)

P(x, y, z)

R(xr, yr, zr)

vr(lr, mr, nr)

v(l, m, n)

vo(lo, mo, no)

 

Figure ‎7-3 Illustration of signal paths used for the mathematical model 

Considering the case illustrated in the above figure, the transmitter at P(x, y, z) is moving 

at speed v(l, m, n). Some of the ultrasound energy radiates from the transmitter directly to 

the receiver R(xr, yr, zr), and carries information on the v‟s subsector vr(lr, mr, nr), which 

has the following expression [47]: 

cos.vvr 
     

‎7-1 

Where, α is the inclination between v and vr, which is on the vector PR  (xr-x, yr-y, zr-z), 

therefore, the cosα can be evaluated by the following equation: 
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Cross multiplying and substituting Equation (7-1) into Equation (7-2), yields: 
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The subsector vr is frequency modulated to the ultrasound wave (ydirect) that is transmitted 

to the receiver: 
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Where, f  is the frequency of the transmitted ultrasound, c denotes the wave speed and the 

positive sign indicates that the transmitter is moving towards the receiver. 

Similarly to Equation (7-3), the portion of the received signal that is reflected by the 

surface O(xo, yo, zo) can be derived as: 
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Where, vo is the subsector of the speed v on the direction of PO (xo-x, yo-y, zo-z), with the 

expression: 
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The „A‟ in Equation (7-5) represents the attenuation of the echo compared with the un-

reflected signal ydirect, whose amplitude is assumed to be unity, so A will be a quantity 

less than 1. As mentioned in the section 3.2.3, assuming spherical radiation, the 

ultrasound attenuation is proportional to the square of the travelled distance, thus A can 

be determined as [34]: 
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In this case, further attenuation caused by scattering on other reflectors is not considered. 

The simulation assumes the worst scenario, where the reflector is hard and smooth so 

there is little or no loss of energy on reflection. The model of the received ultrasound 

signal can be presented as: 
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Where, m and k denote the number and the index of echoes.  

The received signal is shifted down by around 5Hz. The block diagram for this process is 

shown in Figure 7.4.  
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   Figure ‎7-4 Block diagram of the system to shift the frequency of the input signal down 

                    by .o  

The received signal Y(t), which has the spectrum Y(ω), is multiplied by a signal cos(ωot), 

where ωo=2π.24995k rads/s at the mixer. The Fourier-Transform Ymix(ω) of the output is 

then derived as follows: 
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)cos().()( ttYtY omix   

                
 )exp().()exp().(

2

1
tjtYtjtY oo  

    
‎7-9 

According to the shift property of Fourier-transform: 

 )()(
2

1
)( oomix YYY  

    
‎7-10 

Clearly, the signal, ),(mixY  contains the up-shifted and down-shifted spectrum of )(Y . 

However, passing the output through a low-pass filter, gives the signal that has the spectrum, 

)( oY   , which is around 5Hz. 

 

Figure ‎7-5 Measured frequencies, using 5Hz shift with obstacles in the workspace 
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The frequency of the received signal, measured directly from receiver, is shown in 

Figures 7.2(c) and Figure 7.5. In the former case the technique is used with MFCWFM 

and in the latter case after introducing the 5Hz shift. As can be seen from the values on 

the Frequency axis, the distortion obtained using 5Hz shift is significantly less than when 

using MFCWFM.  

7.3 Ultrasound speed environment correction  

The speed of ultrasound depends on the characteristic properties of air, and slight changes 

in temperature and humidity can cause significant errors in ultrasonic distance 

measurements. To evaluate for these ultrasound speed drifts, two systems were set up to 

measure average temperature and humidity in workspace, see Figure 5.7, and the values 

obtained were applied to the 1D distance measurement algorithm.  

Equation 5-12 gives the speed of sound in air as a function of temperature, and Figure 7.6 

shows the same relationship graphically. A change of air temperature by 1°C, for 

example, from 20 to 21°C increases speed of sound by 0.6m/s. For practical purposes the 

speed of ultrasound in air may be taken to be directly proportional to the air temperature, 

see Equation (7.11): 

Tc .61.04.331       ‎7-11 

Where T is the temperature in degrees Celsius. 

Equation (5-13) for 1D distance measurement shows that, a change in the speed of sound 

caused by a change of only 0.50C – 0.3 m/s – will result in an error in the 1D distance 

measurement of 0.347mm. Figure 7.7, shows the possible error in the 1D distance 

measurement caused by changes in workspace air temperature (see Equation (5.9)).  
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Figure ‎7-6 Speed of sound as a function of temperature 

 

Figure ‎7-7 Error in 1D distance measurement as a function of the speed of sound 

However, changes in humidity also cause changes in the speed of sound that may result 

in errors in the 1D distance measurement. The effects of changes in humidity are much 
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will cause an error in the 1D distance measurement (1.2m) of only 14μm, see Figure 7.9 

(see section 5.2.3). 

 

Figure ‎7-8 Relative humidity versus speed of sound at 20 oC  

 

 

Figure ‎7-9 Speed of sound versus error in 1D distance measurement 
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A new technique was introduced in Sections 5.2.2 and 5.2.3 that provided a more 

effective and economical solution for ultrasound speed evaluation. This new technique is 

described by the author in [35]. Compared with other current techniques [34, 33], this 

new technique requires no additional special equipment, and thus reduces the add-on cost 

to the ultrasonic 3D measurement system.  

The technique provides a novel way of viewing and solving the problem of ultrasound 

speed evaluation, compared with other existing techniques, this technique has advantages 

of better accuracy, efficiency and does not require extra equipment to monitor the 

environment. Considering these distinct advantages and the promising results obtained in 

the simulation, this new technique is recommended for the next generation ultrasound 3D 

measurement system to provide a full evaluation for a larger workspace. 

 

Figure ‎7-10 Temperature measured by ultrasonic and fluke systems 

 

Figure 7.10 shows experimental result for temperature system. The measured difference 

between the ultrasonic system and fluke system for measure temperature (accuracy 0.02 

0C) is seen to be about 0.050C for temperature in the range from 22.05 to 22.30C. The 

distance between transducers was 840.230 mm.  
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The new technique to evaluate temperature and humidity in workspace area was tested 

and proved in a simulation of 3D position measurement in a virtual environment. Without 

proper evaluation of the ultrasound speed, inaccurately measured distance may be used, 

and result in significant errors in the estimated coordinates. In Figure 7.11, the deviations 

of the estimated coordinates from the real coordinates are shown on the x, y and z axes 

respectively. The maximum deviation occurred during the measurement on x, y and z 

axes are 0.52mm, 1mm and 1.2mm respectively.  

Figure 7.12, shows the same deviations when the environmental parameters are 

considered are 1.3×10-4mm, 1.4×10-4mm and 3.0×10-4mm respectively, which are so 

small that they can be ignored.  
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Figure ‎7-11 Deviations of the estimated coordinates without evaluation 

      (a) Deviations at x-axis.    

      (b) Deviations at y-axis. 
      (c) Deviations at z-axis. 
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Figure ‎7-12 Deviations of the estimated coordinates with evaluation 

(a) Deviations at x-axis. 
(b) Deviations at y-axis. 
(c) Deviations at z-axis. 
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7.4 Summary 

In this chapter, major external disturbances to the proposed 3D measurement system, 

ultrasound speed drift and echo inference, were studied, and methods of overcoming 

these disturbances introduced. 

With the use of the MFCWFM system for distance measurement, the disturbances caused 

by ultrasound echoes became more significant. During the movement of the transmitter, 

echoes interfere with the main signal and cause significant distortion of the measured, 

which means that the traditional frequency measurement technique cannot be used. 

Therefore, a frequency measurement technique was introduced in this chapter. This 

technique uses to distinguish the echoes from the main signal.  

Ultrasound speed drift is caused by the changes of the condition of the air within the 

workspace. Without proper evaluation of temperature and humidity, a wrong estimate of 

the ultrasound speed could cause significant errors in distance measurement, resulting in 

deviations in the measured coordinates of the transmitter position. To overcome this 

problem, this chapter tested a novel method, which uses two ultrasound measurement 

systems for temperature and humidity measurements in the workspace. The use of this 

method allows a more accurate measurement of position coordinates.  

A new technique was developed and tested in a simulation environment with LABVIEW.  
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Chapter 8  Experimental validation tests of the prototype measurement 

system   

8.1 Introduction 

Previous chapters introduced the working principles and hardware/software 

implementation of the new 3D measurement system, and described how it evaluated the 

speed of sound in workspace. This chapter reports the experimental testing of the new 3D 

measurement system.  

As described earlier, the new 3D measurement system involves a MFCWFM system for 

fixed and dynamic distance measurement. This has been experimentally tested, including 

measurement of the translational movement of a transmitter in 3D space, and its benefits 

clearly demonstrated. To accomplish the measurements, the system needed to pass 

through the two phases of: system setup, and 3D measurement. This chapter will present 

the practical details of these stages together with the corresponding experimental results. 

The new 3D measurement system was tested on a Zeiss Coordinate Measurement 

Machine (CMM) and GEISS 5-axis CNC machine and compares the results with 

Renishaw XL-80 and laser tracer system (eTALON) to validate the accuracy of the 

system.   

8.2 Ultrasound system setup on Zeiss CMM 

To validate the accuracy of the ultrasound system, the first test was on a Zeiss CMM as 

shown on Figure 8.1 in a ±2 oC temperature controlled environment. The stated accuracy 

of this CMM is 2µm in the volume, which makes it an ideal reference for this testing. 

As introduced earlier in Chapter 5, before starting the measurement, one procedure has to 

be followed, is called System Setup. 

 System Setup locates the receivers at convenient positions on Zeiss CMM, whose co-

ordinate frame is co-incident with the CMM co-cordinate frame.  
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Figure  8-1 Ultrasound sound system on CMM 

8.2.1 System setup-Positioning of the receivers 

This section presents the practical implementation of the receiver positioning method 

introduced in Section 5.4, to evaluate the coordinates of the three receivers used in this 

experiment. The arrangement of the experiment including the three receivers is illustrated 

in Figure 8.2. 
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Figure ‎8-2 Arrangement of the receivers 

The coordinates of the three receivers are established using the following setup 

procedure: 

 Set the coordinates of the Receiver1 as (0, 0, 0) 

 Determine the distance between the Receiver1 and Receiver2, noted as a, so that 

coordinates of Receiver2 can be established as (a, 0, 0). Here, Receiver2 is 

configured as a transmitter by switching its transducer to the transmitter driver. 

The measured result for a was 902.121mm, thus the coordinates of the Receiver2 

were determined as (902.121, 0, 0). 

 Measure the distances (b, c) from Receiver3 to Receiver1 and 2 respectively, by 

configuring Receiver3 as the transmitter. The measurement results of b and c are 

1192.608mm and 785.794mm respectively. Substitute these values and a (as 

determined earlier) into Equations (5-28) and (5-29): 

a

cba
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2

3

2

3 xby   

The coordinates of the Receiver3 were established as (897.143, 785.794, 0).   

8.2.2 Calibration of the transducers 

    

            α 

Receiver

Receiver

Transmitter

0

 

Figure ‎8-3 Transducer positioning 

The above figure shows the transducer positions used for all receivers and transmitters. 

During the measurement, the position of transmitter and receiver are assumed to have the 

coordinate centre, O. Therefore, to obtain the real distances between the transmitter and 

the receiver, the transducers should be calibrated. The Zeiss CMM was used to calibrate 

all transducers by using its inherent positioning accuracy.  

In addition to calibration of the transducers there is another test which shows to effect of 

moving transmitter with difference angle α on measure distance and then measure 

position as shown in Figure 8.4. The maximum deviation is 9µm. 
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Figure  8-4 The effect of moving transmitter with angle α to measure position 

Once the instantaneous distances have been determined, they and the pre-determined 
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Where, (x, y, z) is the coordinates of the transmitter, di is the distance to the ith receiver 

and (xi, yi, zi) is the coordinates of the ith receiver. The difference between ultrasound 

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

8

9

10

Angle (degree)

E
rr

o
r 

p
o
s
it
io

n
 (

m
ic

ro
m

e
te

r)



133 

 

system and CMM for measured position with moving the x-axis in increments of 20mm 

is shown in the following figure.  

Figure 8.5 shows the measured errors on each axis to have maximum values of 0.022mm, 

0.019mm and 0.024mm, which can be regarded as the accuracy of the measurement in x, 

y, and z axis respectively. 
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                              Figure ‎8-5 Difference between ultrasound system and CMM                                        

                                          (a) Measured errors on x-axis 
                                          (b) Measured errors on y-axis 

                                          (c) Measured errors on z-axis 
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8.3 Ultrasound system setup on GEISS 5-axis milling machine-CO-axial test 

The second test was on a GEISS machine as shown in Figure 8.6 but in a normal 

workshop environment. The transmitter was mounted on the spindle. By using the 

software of the GEISS machine to move the transmitter into a zero position (0, 0, 0) and 

consider this zero position for both ultrasound system and GEISS work piece offset 

(G54).   

 

Figure ‎8-6  Arrangement of the receivers on GEISS machine 

First the receiver‟s positions are established in the local frame. Then by using the control 

of the machine the transmitter (position) is moved on the x axis from 0 to 760mm in 

40mm increments, at every point.  

The next step is to transfer the data measured by ultrasound system to machine 

coordinates. This is achieved by calculating angles   α, β and θ to determine the 

corresponding axis. Angles and x, y, z for measured positions are used in Equation 5.24, 

to calculate the new coordinates.  

Transmitter 
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The measured x, y and z from the ultrasound system was then compared with that  

measured by XL-80 (accuracy about 2µm) as shown in Figure 8.7. The same procedure 

was repeated on y and z axis, but on z axis moved from 0 to 500mm. 

 

Figure ‎8-7  Renishaw XL-80 applied on GEISS machine 

 Figure 8.8 shows that the error position measured by ultrasound system and XL-80 

system for each axis, and this figure shows the sensitivity of ultrasound system in 

measuring the geometric error of the machine moving on each axis. As can be seen, the 

maximum difference is 38µm.  
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Figure ‎8-8 The error measured by the ultrasound system and XL-80 system from GEISS  

                  Machine 

             (a) Measured errors on x-axis 
            (b) Measured errors on y-axis 

            (c) Measured errors on z-axis 

In Figure 8.9 the difference between ultrasound system and XL-80 system to measure the 

error position on GEISS machine. The difference between them on x axis was 30μm and 

on y axis was 38μm, however the error on z axis was 25μm. 
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Figure ‎8-9 The difference between the ultrasound system and XL-80 system to measure   

                  the error on GEISS machine. 

8.4 Ultrasound system setup on GEISS 5-axis milling machine-volume test 

The laser tracer system (eTALON) was also used to validate measurement of the 

ultrasound system by applying the laser tracer on GEISS machine to measure same 

positioning measured by ultrasound system as shown in Figure 8.10, but at different time 

due to practical problems of using the tracker.   

A test was carried out to measure the position in three levels of z axis and 27 positions on 

x and y axis as shown in Figure 8.11. 
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Figure ‎8-10 eTALON applied on GEISS machine 

 

 

Figure ‎8-11 Measurement plan on workspace area  
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The principle of the eTALON measurement depends on a triangulation method, which 

means to measure accurately x, y, z axis on GEISS machine the eTALON system  must 

be run at least in three positions in GEISS machine. Therefore, for best accuracy the 

eTALON was moved in four positions about workspace area inside the machine and  the 

coordinates for the position  calculated by eTALON software. Figure 8.12 shows the 

error position for the plan in Figure 8.10 measured by ultrasound system and eTALON 

system.     
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Figure ‎8-12 The error measured by ultrasound system and eTALON system from GEISS 

               (a) Measured errors on x-axis 

              (b) Measured errors on y-axis 
              (c) Measured errors on z-axis 

In Figure 8.13 the difference between ultrasound system and eTALON system to measure 

the error position on GEISS machine. The difference between them on x axis was 

±59μm, on y axis was ±67μm, and on z axis was ±57μm. 
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Figure  8-13 The difference between ultrasound system and eTALON system to measure  

                    the error on GEISS machine  

8.5 Ultrasound system setup on GEISS 5-axis milling machine - Non-cartesian axis 

test 

The last test on ultrasound system was of the rotary C-axis of the GEISS machine (figure 

8.14). To maintain transmitter position, the spindle was rotated in anti phase.  

Figure 8.16 shows the error position every 450 . The machine error on x axis is 0.7mm, y 

axis 1.23mm and on z axis 0.035mm.     

 

 

0 5 10 15 20 25 30
-80

-60

-40

-20

0

20

40

60

80

Position measurement (mm)

E
rr

o
r 

p
o
s
it
io

n
 (

m
ic

ro
m

e
te

r)

Error on x axis

Error on y axis

Error on z axis



145 

 

 

Figure  8-14 Rotate the axis about C-axis 

 

In this test the error measured by ultrasound system need to be compare with another 

system measured same positions. The dial test indicators (DTIs), precision (GRADE A) 

test mandrel were used as shown in Figure 8.15, Figure 8.16 also shows the error 

measured by DTIs.   
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Figure  8-15 DTIs applied on GEISS machine 
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Figure  8-16  Error position after rotate about C 

                                                 (a) Measured errors on x-axis 

                                                (b) Measured errors on y-axis 
                                                (c) Measured errors on z-axis 

In Figure 8.17 the difference between ultrasound system and DTIs system to measuring 

the error position on GEISS machine. The difference between them on x axis was ±60μm 

, on y axis was ±60μm and on z axis was ±22μm. 
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Figure  8-17 The difference between ultrasound system and DTIs system to measure  

                    the error on GEISS machine 

Figures 8.18 and 8.19, respectively, show the average temperature and humidity in the 

workspace during measurement of the 3D position of the transmitter on Zeiss CMM.  
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Figure ‎8-18 Measured temperature in workspace 

 

Figure ‎8-19 Measured humidity in workspace 
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8.6 Summary 

This chapter has described experimental work and results on the prototype measurement 

system.  

Table 8.1 compares the characteristics of Ultrasound system, XL-80, CMM and 

eTALON. It is hoped that the table will be helpful for the reader when reviewing 

comparison between ultrasound system and other systems in terms of the accuracy.    

Table ‎8-1 Characteristics comparison of the Ultrasound system, XL-80, CMM and 

eTALON 

 Ultrasound 

system 

 

eTALON
 

 

Renishaw XL-80 

 

CMM 

Accuracy ±67µm 5µm 2µm 2µm 

Measuring Volume 1.2x1.2m 15m 80m 2x1.2m 

Costs £1200 £130000 £30000 £250000 

Portability Good Medium Medium - 

Setup time 15 min 45 min 90 min - 

Measurement time 

for volume 

30 min 2 hrs 2 day - 

Times estimated for a 1m3 volume. 

Table 8.2 summarizes the validation test on the Zeiss CMM and GEISS milling machine. 

The system was developed for fixed and dynamic distance measurement. Its accuracy is 

estimated as 0.025mm compared with CMM in a ±2oC temperature controlled 

environment, about ±0.065mm in normal environment compared with eTALON, about 

0.038mm compared with XL-80 and ±0.06 compared with DTIs.   
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Table  8-2 Comparison between ultrasound system and other systems for measuring 

position 

Test Comparator  Comparison accuracy 

CMM CMM 25µm 

GEISS CO-liner XL-80 38 µm 

GEISS Volume eTALON ±67µm 

GEISS C-Axis DTIs ±60µm 

  

 

 

 

 

 

 

 

 

 

 

 



153 

 

Chapter 9  Conclusions and recommendations for further work 

9.1 Conclusions 

This research has made significant achievements in the improvement of the accuracy, 

resolution and applicability of an ultrasonic 3D measurement system. The basis of the 

measurement system which has been developed during the current research is a three 

receiver, MFCWFM system. The accuracy of the measured 1D distance between 

transmitter and receiver with this system has reached an accuracy of ±0.019mm in a 

workspace of dimensions up to 1.2m. A number of novel techniques and algorithms have 

been developed during the work and presented by the author [45, 47]. The working 

principles of the system were presented in Section 5.2.1. 

Ultrasound speed is very important in ultrasonic distance measurements. Unfortunately, 

this can drift with time according to the changes in the properties of the air in the 

workspace. The most important characteristics are air temperature and humidity. These 

changes have always been a problem in applications of airborne ultrasonics and, in many 

systems‟ have significantly limited measurement accuracy.  

Conventional methods for ultrasound speed evaluation measure temperature and 

humidity at a single point in the workspace for real-time estimation of the ultrasound 

speed. This is simple and can be relatively effective in many cases. However, it has 

limitations that restrict the application of the ultrasonic measurement system. In this 

project a novel method for ultrasound speed evaluation was developed to further improve 

measurement accuracy. This new method uses two ultrasound systems for simultaneous 

temperature and humidity measurement [35]. The detailed working principles were 

presented in Section 5.2.2. The solution was obtained by solving a constrained nonlinear 

optimization problem. The simulation results of this method have demonstrated that the 

ultrasound speed drifts are evaluated with great accuracy, see Section 7.3. This new 
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method has the significant advantage compared with conventional methods of requiring 

no extra instrumentation, thus reducing the add-on cost to the measurement system.  

As well as developing the MFCWFM system to measure the initial and subsequent 

instantaneous positions of a moving transmitter, significant improvements have been 

made in the practicality of the system. These have been achieved by improving the 

algorithm for calculating the position coordinates and removing the requirement to place 

the receivers at predefined, precise positions. In previous ultrasonic 3D measurement 

systems, the real-time calculation of the position coordinates required orthogonal 

placement of the receivers, which is difficult to implement in practice and restricts system 

flexibility. Therefore, in the early stage of this project, a new algorithm was developed to 

evaluate the position coordinates by iteratively solving a system of equation given in 

Equation (5-9), which allows arbitrary placement of receivers [50]. Subsequently, in 

order to simplify the task of real-time processing, a more efficient algorithm was 

developed to solve the equations directly, without using any iterative procedure. The 

detailed working principle of this new algorithm was presented in Section 5.3. 

Having established an algorithm to calculate the position co-ordinates from arbitrarily-

placed receivers, a new procedure was also required to determine the coordinates of the 

receivers. This procedure, described in Section 5.4, which calculates the receivers' 3D 

position from inter-receiver distances. The procedure offers a simple means of efficient 

and accurate receiver positioning, which significantly improves the system's flexibility 

and adaptability.  

The final practical implementation problem addressed ultrasound echoes which cause 

amplitude and frequency distortions in the received ultrasound signal.  

All the techniques and algorithms outlined in this research were developed towards the 

goal of achieving an economical, accurate real-time ultrasonic 3D measurement system 

that can provide high-resolution information on position coordinates. Compared with 

previous ultrasonic 3D measurement systems, significant improvements have been made 

in many different aspects during the research carried out during the current project. Table 
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8.2 shows 3D accuracy of 25µm in ideal condition and ±65µm in normal workshop for a 

1m3 volume. However, a certain amount of further work is required before a fully 

working system can be achieved, as discussed in the following section.  

9.2 Recommendations for further work 

Use of the new techniques and algorithms described in this thesis has greatly improved 

the overall performance of a new ultrasonic 3D measurement system. So far, this has 

been tested in a prototype measurement system only, as described in Chapters 7 and 8, 

but further development is required for the measurement system to be satisfactory as a 

commercial product for industrial applications. This section therefore provides a number 

of recommendations for this further development work.  

9.2.1 Implementation issues 

The most immediate area of further work is to build and test a full five channel real-time 

system. This will need a time to complete and a moderate amount of funding. However, 

the research and testing carried out to date has shown that such a system will be suitable 

for real industrial application and have the necessary attributes of high accuracy, high 

resolution and low cost.  

The enhancements made to the measurement system involve a significant amount of extra 

computation, particularly for the frequency measurement technique introduced in Section 

7.2. Hence, there is a need to distribute the computation over the whole system. 

Therefore, the calculations for the distance measurements will be finished locally at the 

receivers within the system. Sixteen-bit and eight input channels for DAQ card interface 

with an operating speed over 6Ms/s are recommended. 

All software necessary for the enhanced system is contained within the 3D system 

package. At present this is LABVEIW 7.1, which has become a very popular software 

platform. Future work should consider developing the LABVIEW version from 7.1 to 

8.6, and using LABVIEW to calculate phase differences, distances and 3D positions. 
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The ultrasound speed evaluation technique was developed in Chapter 5 and tested in 

Chapter 7. The accuracy achieved for distance measurement was ±0.019mm over 

distances of up to 1.2m. To increase the measurement range as will be required by larger 

workspaces may need additional sensors/systems to preserve the accuracy of the 

temperature and humidity measurement. 

Once the real system has been built, it will be necessary to test the magnitude of the 

frequency distortions involved in the frequency measurement, and see how much of these 

distortions can be constrained by the technique developed in Chapter 7. The essential 

requirement for this test is an enclosed room (or big box) lined with sound absorbing 

materials. By placing obstacles at different positions in the enclosure, echoes at different 

frequencies and amplitudes can be produced for the experiment.  

9.2.2 Further enhancement to measurement performance 

Although the research carried out has achieved significant improvement in measurement 

using the MFCWFM technique, by using more than three transmission frequencies might 

improve accuracy. Considering the frequency response of the ultrasound transducer, see 

Section 6.2, the three transmitting frequencies could be 24.5, 25 and 25.5 kHz.  

Alternatively burst of ultrasound at any of these frequencies could be picked up by a 

band-pass filter in the receiver. The frequencies used in the 3D measurement system were 

100Hz, 1kHz and 25kHz, but with increase in the distance to be measure there must be a 

corresponding increase so that the half wavelet for the lowest frequency  remains longer 

than the distance to be measured. 
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9.3 Contributions to knowledge 

1- The technique used for measure distance was introduced in section 5.2.1 and the 

hardware and software design were introduced in chapter 6. The experimental 

results were introduced in chapter 8.  

2- The second objective is met in sections 5.2.2 and 5.2.3 and experimental results 

met in section 7.3. 

3- Modeling of the ultrasound transmitter-receiver signal is introduced in section 7.2 

wit modeling of the ultrasound transmitter-receiver signal method for eliminated 

distortion frequency measurement.  

4- The new 3D measurement system based on three receivers and one transmitter, as 

shown in sections 5.3 and 5.4. The experimental results are shown in chapter 8. 

5- All the 3D measurement results from the new system was compared with CMM, 

eTALON, XL-80 and DTIs systems (see Tables 8.1 and 8.2), and the accuracy 

achieved from new system is efficient with many productise for machine 

calibration.   
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Appendix B 

Hardware 
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