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ABSTRACT 
 
 
 

 

The rapid and significant development of communications links between satellites has 

made it possible to use various applications such as relay voice, video, multimedia, 

etc.  As a result,   a great deal of research has been done in this field during the last 

few years to reduce power consumption and increase transmission reliability.   

 

 

This thesis is concerned with an analysis of intersatellite links in free space, with 

optical links using laser sources being considered in particular. It includes a literature 

survey and a thorough theoretical investigation into designing the model of the link in 

free space. This thesis describes the novel technique of designing the optical receiver 

that consists of PIN photodiode as a photodetector, Semiconductor optical amplifier 

(SOA) and a 3
rd

 order Butterworth filter with central decision detection. In addition, it 

discusses the use of several different coding schemes for use in such links: multiple 

pulse position modulation (MPPM); digital pulse position modulation (DPPM); 

Dicode pulse position modulation (Dicode PPM).  

  

 

This novel technique of an optical receiver is investigated and new work is presented 

in order to examine the noise performance of this optical receiver and hence 

determine its sensitivity and the number of photons received for a specified error rate. 

Further new work is carried out to compare these coding schemes in terms of error 

weightings and coding efficiency through showing how the PCM error rate is affected 

by false alarm and erasure errors for MPPM, DPPM and Dicode PPM coding 3, 4, 5 

and 6 bits of PCM. An original maximum likelihood sequence detector (MLSD) is 

presented in this thesis in order to perform these comparisons. In addition, computer 

simulations models (using MCAD) are performed to compare these three coding 

schemes operating with 3, 4, 5 and 6 bits of PCM in terms of sensitivity and 

bandwidth efficiency. These comparisons show that MPPM coding 3, 4, 5 and 6 bits 

of PCM is the appropriate coding scheme to be used in optical inter-satellite links in 

free space and PCM data rates of 1 Gbit/s. 
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1.   INTRODUCTION  
 
 

 

The connectivity, coverage, flexibility, reliability and efficiency of future satellite networks can 

be improved by utilising optical intersatellite links (OISL). Some applications might include 

geosynchronous to geosynchronous communications, geosynchronous to earth 

communications and geosynchronous to low-orbit communications. In addition, the potential 

of high data rate transmission is offered by using an OISL, and relatively small transmitter and 

receiver antennae are used compared to microwave transmission as a result of the high 

directivity associated with the optical beam. 

 

Further advantages of an optical transponder are that it provides greater protection against 

interference and security as a result of the narrow transmit beams. There is greater 

opportunity to collocate a large number of these with reduction in power consumption and 

weight compared to a microwave system. 

 

A number of basic system characteristics should be possessed by an optical intersatellite link, 

low mass (< 50 Kg), low power (< 50 W), low volume and very accurate pointing. The overall 

mass of the system should permit it to be utilised as a secondary payload. The use of laser 

diodes for coherent optical communication is a considerable choice due to the additional 

requirements of long lifetime, reliability and cost effectiveness. Therefore, high sensitivity 

receivers are required because, in this application, laser diodes provide a power limited 

transmitter source and the link budget should be met.  
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The main aim of the research is to investigate the design of an optical inter-satellite link in free 

space and PCM data rates of 1 Gbit/s, and to select the appropriate coding scheme to be 

used in such links. Therefore, this thesis is concerned with an analysis of intersatellite links in 

free space, with optical links using laser sources being considered in particular. An initial 

assumption will be considered that the input speed is of the order of 128 Mbit/s and the output 

speed is of the order of 1 Gbit/s. The novel technique of designing an optical receiver will be 

investigated and new work will be presented in order to examine the noise performance of 

this optical receiver and hence determine its sensitivity and the number of photons received 

for a specified error rate. Furthermore, the use of several different coding schemes in such 

links will be discussed, and hence a comprehensive comparison between these coding 

schemes will be performed and the appropriate coding scheme to be used in such links will 

be addressed. 

 

Chapter 2 will present a literature survey of some significant topics which will form the core 

concepts of the investigation in designing of the model of the link. It will be divided into five 

sections: a review of the work of other researchers in the field of comparison between optical 

and microwave systems is given in the first section; the second section provides an idea of 

some technological studies in the domain of optical intersatellite links for the assessment of 

modulators for high-data- rate laser links in space, such as Semiconductor laser Intersatellite 

Link Experiment (SILEX) and Optical Inter-Orbit Communications Engineering Test Satellite 

(OICETS); a detailed literature reviews of a photodetector, which is the first and most 

important element of the receiver, and the types of photodiode will be comprehensively 

discussed throughout the third section; a basic discussion of optical amplifiers in general and 

Semiconductor Optical Amplifier (SOA) in particular, and also Mach Zehnder interferometer 

device as an external modulator of the continuous wave (CW) laser source will be studied 

within the fourth section in term of types and applications; a detailed and fundamental 

discussion of several different coding schemes for use in optical intersatellite links in space 

such as: Multiple Pulse Position Modulation (MPPM), Digital Pulse Position Modulation 

(DPPM), and Dicode Pulse Position Modulation (Dicode PPM), will be presented within the 

fifth section. 
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Chapter 3 will give a detailed information and in-depth analysis for two types of sources which 

are in use at present: Semiconductor Laser Diodes (SLDs) and Light Emitting Diodes (LEDs). 

This, in turn, will help select the appropriate emission wavelength and the suitable 

semiconductor material of the laser source to be used in free space links and speed of 1 

Gbit/s. This information will represent the main goal of designing the transmitter in such links. 

 

Chapter 4 will be concerned with the use of optically preamplified receiver for such links. It 

contains a comparative review with an in-depth analysis between PIN photodiode and 

Avalanche Photodiode (APD) which will be comprehensively presented and conducted in 

order to select the appropriate detector for the receiver through checking the possibility of 

using avalanche photodiodes (APDs) or PIN photodiodes with semiconductor optical amplifier 

(SOA), and to support selecting the appropriate semiconductor material that could be used in 

fabricating the suitable photodetector to be used in free space links and speed of 1 Gbit/s. 

Additionally, a computer simulation model (using MCAD) will be performed to examine the 

noise performance of an optical receiver and hence determine its sensitivity and the number 

of photons received for a specified error rate. This information will form the main goal of 

designing the receiver in such links. 

 

In chapter 5, work will be presented to compare MPPM, DPPM and Dicode PPM coding 

schemes in terms of error weightings and coding efficiency through showing how the PCM 

error rate is affected by false alarm and erasure errors for MPPM, DPPM and Dicode PPM 

coding 3, 4, 5 and 6 bits of PCM. An original maximum likelihood sequence detector (MLSD) 

will be analyzed in this chapter. In addition, computer simulations models (using MCAD) will 

be performed to compare these three coding schemes in terms of sensitivity and bandwidth 

efficiency.  This chapter will be concluded with a discussion of these comparisons in order to 

select the optimum PPM coding scheme to be used in optical intersatellite links in free space. 

This information forms the main target of this research. 
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Following a comparison of the computer-predicted results obtained for the receiver design 

and comparisons of coding schemes, a discussion of the results and an outline of possible 

future work will be given in chapters 6 and 7. 
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2.    Literature Review 
 

2.1 Comparison between Optical and Microwave Systems: 
 
 

McCullagh and Wisely [1] performed a direct comparison of both optical free space and 

microwave point to point links through expressing the optical path loss equation in the 

traditional microwave form. They concluded that microwave radio systems can operate with 

much lower received power levels than optical systems due to their ability to use 

superheterodyne receiver techniques in which the received signal and a local oscillator are 

mixed to produce a much lower intermediate frequency (IF). Furthermore, the microwave 

systems accomplish much lower outage figures for terrestrial links, less than 0.01 % due to 

their capability to penetrate thick fogs that would cut off optical links. However, they also 

concluded that the path loss with an optical link is much lower because the shorter 

wavelength leads to a much larger antenna gain. In addition, optical systems have the 

potential of operation at Gbit/s data rates due to the almost limitless spectrum available and 

the high speed modulation ability of laser sources. A comparison was made between a typical 

optical link and the microwave equivalent. A 1.55µm, 4km, terrestrial link might have a 

receiving lens area of 0.03m² (i.e. 10cm diameter) and the beam diameter might be 2m at 

4km. A total propagation loss of 20dB was presented by noting that the beam diameter is 20 

times the lens diameter and by direct substitution in the following equation which gives the 

power falling on the detector from a traditional optics point of view: 

 

                             
22

2

11

4 d

DP

A

AP
P t

b

t

r
β

==                                             (1) 

 

where tP is the power transmitted, bA is the beam area at the detector, 1A is the detector lens 

area, β is the beam divergence assumed small, 1D is the lens diameter and d is the 

distance between the transmitter and the detector. 
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The transmit antenna gain and the receive antenna gain are expressed as follows, 

respectively: 

               
2

4

λ

π t

t

A
g =                                  

2

4

λ

π r

r

A
g =                           (2) 

where rA and tA are the receiver and transmit antenna effective areas respectively. The 

effective area of a well designed antenna is typically in the range 0.55 to 0.65 of the physical 

aperture. Therefore, the path loss equation is expressed as follows: 

                         

2

4








=

d
ggPathLoss rt

π

λ
                                           (3) 

where 

2

4









dπ

λ
is free space loss, and d is the distance between the receiver and transmitter 

which are assumed to be isotropic (omnidirectional) elements.  

 

Table 1 demonstrates the comparison for point to point, terrestrial microwave and optical free 

space links in terms of path loss: 

 

 Free Space 

Loss(dB) 

Tx Antenna 

Gain(dB) 

Rx Antenna 

Gain(dB) 

Total path Loss 

(dB) 

Microwave 136 20 20 94 

Optical 210 78 112 20 

 

Table 1. Path Loss comparison for point to point, terrestrial microwave and optical free space 

links [1]. 

 

Table 1 shows that optical links have a much greater free space loss than the microwave 

ones. However, this loss is compensated for by correspondingly greater transmitter and 

receiver gains. Therefore, the total path loss of optical links is much lower than microwave 

ones. 
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Turbulence destroys the spatial and temporal coherence of the beam and so coherent 

detection can not be used in an optical terrestrial link. Thus, it’s important to use a direct 

detection receiver and, moreover, one with a large collecting area and correspondingly large 

capacitance, again due to turbulence-induced spot broadening. The need for this direct 

detection in the optical link results in the receiver for the optical point to point system having a 

poor sensitivity compared with the microwave system. In addition, such receivers will always 

be subjected to high levels of preamplifier noise and a typical example, suitable for use on a 

4km link operating at 155Mbit/s, will have a sensitivity around -32dBm at
910−

bit error rate [1]. 

A transmit power of +23dBm (200mW) is required for the 20dB path loss because allowance 

must be made for scintillation fading of 10 dB and, for an outage of 5 %, another 25dB is 

required to allow for fog, rain etc [1]. 

 

Coherent detection can be utilized in optical links where atmospheric turbulence is not an 

issue. However, since the optical receiver is ultimately limited by signal quantum noise, 

whereas the microwave receiver is limited by the background thermal noise, the receiver 

sensitivity in optical links is still much poorer than in the microwave case. The following table 

shows the comparison of thermal and quantum noise for microwave and optical free space 

links at 300K, 100MHz noise bandwidth and the signal to noise ratio used to determine the 

optical receiver’s noise figure is 8dB: 

   

 Frequency Thermal 

Noise 

Quantum 

Noise 

Sensitivity Rx Noise Fig 

Microwave 29 GHz -94 dBm -117 dBm -70 dBm 10 dB 

Optical 194 THz -214 dBm -79 dBm -32 dBm 39 dB 

 

Table 2. Comparison of thermal and quantum noise for microwave and optical free space 

links at 300 K and 100 MHz noise bandwidth [1]. 
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McCullagh and Wisely [1] found that the optical receiver has a much poorer noise figure than 

in the microwave case. Thus the terrestrial microwave receiver can operate close to its 

thermal noise limit whereas the free space optical receiver has to operate at power levels 

which are much higher than its quantum noise limit. In addition , they justify the reason behind 

giving great attention to the optical wireless systems for use in satellite to satellite links 

through computing the range of an optical system transmitting 200mW of 1.55µm radiation at 

155Mbit/s across space (ie in a vacuum). The transmitter antenna gain is in this case: 

                                     
2

2)(4

λ

πω
=tg                                                 (4) 

Therefore, transmitter antenna gain equals +113dB for a 10cm diameter transmitting 

telescope, modest by space standards. The receiver antenna gain is 112dB from the table 1. 

Additionally, a typically receiver sensitivity of -53dBm was already presented for a suitable 

receiver which used coherent detection without turbulence-induced phase destruction. 

Consequently, the total power margin, which is the difference between the transmit power and 

receiver sensitivity, is 76dBm. This system has resulted in the value of the free space loss 

that is expressed by the term (λ/4πd)² of -301dB producing a maximum range of 138,000km. 

In view of these figures, optical wireless systems for use in satellite to satellite links have 

been receiving a great deal of attention. 

 

Ekberg [2] considered that the transmission parameter, which is dependent on the signal-to-

noise ratio and amplifier bandwidth, is an appropriate basis for comparison of the microwave 

link and the optical link. This transmission parameter is given by: 

                                    B
N

S
R =0                                                       (5) 

For the microwave link, this parameter is expressed as follows: 

                        
KTB

B
LA

R
GPR RTT 20

4

1

π
=                                     (6) 

where RA  is the receiver aerial area, TG is transmitter antenna gain and L is loss factor (<1). 

For the optimum optical link, this parameter becomes: 
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where 2 β  is optical beam width. 

The lines shown in the following figure were derived by Ekberg [2] for various frequencies, a 

fixed transmission range for which these above parameters are calculated, and with up-to-

date transmitter powers and optimum design taken into account at that time:   

 

 

Figure 1. Transmission parameter as a function of frequency, reproduced from Ekberg [2] 

 

Ekberg [2] deduced that as a result, the IR link is much more dependent on weather 

conditions than the microwave one; the microwave link emerges to be about ten times as 

efficient as the IR link in the atmosphere. The IR link can only compete with its microwave 

counterpart in applications where the transmission range is small .In such cases, full 

utilization can be achieved from the compactness and the simplicity of the IR link parts. In 

addition, he defined the optimum optical transmission system “is obviously a system in which 

a transmitted coherent beam is received coherently by means of a powerful coherent local 

light source (oscillator), or non-coherently by means of an appropriate avalanche photodiode. 

Coherent reception is used when the efficient coherent area of the received beam is 

sufficiently large, and non-coherent reception when the spatial coherence of the received 

beam is too much disturbed”. Moreover, he demonstrated that the optical link is superior to 

the microwave one in space because large microwave antennas can’t be used in space, and 
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additionally there is no atmosphere to attenuate the optical beam and ruin the spatial 

coherence in it.  

Toyoshima et al [3] predicted that optical communication systems can make a revolution in 

space system architectures. This is because optical communication systems have many 

advantages compared with RF systems: wider bandwidth; larger capacity; lower power 

consumption; more compact equipment; greater security against eavesdropping; and 

immunity from interference. However, they concluded, in a straight comparison, that RF 

systems offer greater maximum data rates than optical communications ones for space 

applications over long distances. In addition, they stated that only a few in-orbit 

demonstrations have been done. However, the advantages of in-orbit optical communications 

could be verified by experiments which should be continued and full-scale demonstrations 

would follow. Thus, it is essential that the suitable characteristics of such communication 

systems be examined and the best suited systems for various configurations of space 

networks be recognized. 

 

Two optical systems and one RF system were examined by Toyoshima et al [3]. The first 

optical system operated at a wavelength of 0.8µm using intensity modulation (IM) and direct 

detection (DD) with an avalanche photodiode based on Semiconductor Intersatellite Laser 

Experiment (SILEX) technology - the first in-orbit inter-satellite laser communication link 

launched in November 2001. The second optical system used 1.5µm wavelength optical 

preamplifiers with on-off keying. Erbium doped fibre amplifiers (EDFAs) were applied as a 

booster amplifier in the transmitter and as a low-noise preamplifier in the receiver. Transmitter 

and receiver antenna diameters of 10cm and 1m, respectively, were assumed for both 

systems. The RF system parameters were derived from GEO-TAIL, the spacecraft launched 

in 1992 to investigate the geomagnetic tail up to 1,000,000km from the earth. It operates in 

the X-band frequency of 8.47GHz, with transmitting and receiving antenna diameters of 18cm 

and 64m, respectively. Toyoshima et al [3] highlighted that the electrical power of the signal in 

optical systems is proportional to the square of the received optical power and that is 

considered as one of fundamental characteristics of optical systems, whereas the electrical 

power of the signal in RF systems is proportional to the received RF power. Furthermore, the 
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signal-to-noise ratio of optical systems decreases more rapidly over increasing distance than 

with RF systems as a result of the received optical power being inversely proportional to the 

square of the link distance. The following figure shows the maximum accomplishable data 

rates for the optical and RF communication systems at a bit error ratio of 
610−

 versus 

distance (R):  

 

 

 

Figure 2. Maximum data rates for optical and RF communication systems versus link 

distance. GEO stands for geostationary earth orbit, and arrows show distances to GEO, Moon 

and Mars [3]. 

 

As can be seen, the data rates for the RF systems are lower than for the intensity modulation 

and direct detection (IM-DD) and the EDFA systems at distance less than 
610 km. The data 

rate of the RF signal is always proportional to 
2−R , in contrast to the dependence found in the 

optical systems, and the crossover in communication performance takes place at around 

710 km. therefore, the RF system is preferable for the Mars-to-Earth communication link 

distance of around 
810 km. 
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Toyoshima et al [3] deduced that optical systems are more appropriate for communicating 

over a relatively shorter distances in space than RF systems. In contrast, RF systems provide 

greater maximum data rates than optical communications systems for space applications over 

longer distances. Therefore, RF systems are preferable for communicating over long 

distances in space. However, novel technologies, such as particular modulation and coding 

techniques and antenna configurations, and further progress in quantum physics could open 

other possibilities for long-distance optical communications. 

 

In this literature survey, McCullagh and Wisely [1], Ekberg [2] and Toyoshima et al [3] 

explored the competing technologies of optical and microwave systems.  Generally speaking, 

these studies demonstrate that microwave radio systems can receive much lower power 

levels and operate in the atmosphere more efficiently than optical systems because they are 

capable of using superheterodyne receiver techniques [1]. Yet, in space, optical systems can 

operate with much lower path loss as the shorter wavelength leads to a much larger antenna 

gain [1], they are regarded as superior to microwave ones because large microwave 

antennas can not be used there, and there is no atmosphere to attenuate the optical beam 

and disrupt the spatial coherence in it [2]. Optical systems have many advantages compared 

with RF systems; wider bandwidth; larger capacity; lower power consumption; more compact 

equipment; greater security against eavesdropping; and immunity from interference [3].  In 

addition, they have the potential to operate at Gbit/s data rates due to the almost limitless 

spectrum available and the high speed modulation ability of laser sources [1]. Consequently, 

according to these considerations, optical links in space are receiving a great deal of attention 

and this work will focus on using optical intersatellite links. 
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2.2 Transmitter (Semiconductor Laser Diodes): 

 
 

The first technological study in the domain of intersatellite optical links for the assessment of 

modulators for high-data- rate laser links in space was by the European Space Agency (ESA) 

in summer 1977. This was the beginning of a long and continued ESA involvement in space 

optical communications. Twenty years later, a huge number of study contracts and 

preparatory hardware development followed, conducted under various ESA R&D and support 

technology programmes. The Semiconductor laser Intersatellite Link Experiment (SILEX) 

laser terminals having been flight tested for integration with their host spacecraft was 

considered as a fundamental cornerstone as an optical link in space. Simultaneously, the 

European Space Agency (ESA) was preparing itself for a new challenge, which was the 

potential enormous use of optical cross links in satellite constellations for mobile 

communications and global multimedia services [4].  

In summer 1977, European Space Agency (ESA) considered the use of optics for 

intersatellite communications when virtually there was no available component technology to 

support space system development. The available laser sources were rather bulky and 

primarily laboratory devices. ESA used the 2CO  gas laser for its first work. This laser was the 

most efficient and reliable laser available at that time and Europe had a considerable 

background in 2CO  laser technology for industrial applications. However, as a result of its 

weight, lifetime and operational problems, the 10µm 2CO  laser was not the winning 

technology for use in space [4]. Semiconductor diode lasers operating at room temperature 

became available by the end of 1970’s, and provided a very promising transmitter source for 

optical intersatellite links. Therefore, ESA started the first studies to explore the potential of 

using this new device for intersatellite links in 1980 and simultaneously the French national 

space agency, CNES, started to look into a laser-diode-based optical data-relay system 

called Pastel. This line of development was followed and resulted in the Semiconductor laser 

Intersatellite Link Experiment (SILEX) pre-operational, in-orbit optical link experiment in     

1985 [4]. 
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SILEX is a free-space optical communication system that used semiconductor diode lasers 

and consisted of two optical communication payloads to be embarked on the ESA Advanced 

Relay and Technology Mission Satellite (ARTEMIS) spacecraft and on the French Earth-

observation spacecraft SPOT-4. SILEX had two terminals, one on board the French Low 

Earth Orbit (LEO) observation satellite SPOT4 and one on ESA's Geostationary Orbit (GEO) 

telecommunication satellite ARTEMIS and data transmission at 50Mbit/s from LEO to GEO 

using GaAlAs laser-diodes and direct detection was achieved. Apart from launching 

ARTEMIS, Japan is participating in the SILEX programme with its own laser terminal, Laser 

Utilizing Communications Equipment (LUCE), to be carried onboard the Japanese Optical 

Inter-orbit Communications Engineering Test Satellite (OICETS). This programme launched 

in summer 2000 [4]. 

SILEX was barely considered as an attractive alternative to an RF terminal of comparable 

transmission capability because it’s mass of 157kg and electrical power consumption of     

150W. SILEX had provided inflight testing of a pre-operational optical link in space and had 

stimulated the development of many new space-qualified optical, electronic and mechanical 

equipment items and technologies which can be considered as a basis for future optical 

terminals. Therefore, SILEX was a vital developmental step for Europe. In addition, its large 

telescope diameter (25 cm aperture) put very severe demands on the pointing, acquisition 

and tracking (PAT) subsystem and related components. As a result of these considerations 

and since an attractive Inter-Orbit Link (IOL) user terminal needs to keep mass, interface 

requirements to the host spacecraft and cost to a minimum, ESA embarked on a programme 

in January 1992 for the development and manufacturing of an elegant breadboard of a Small 

Optical User Terminal (SOUT). The SOUT activities were successfully completed in 

December 1994 demonstrating a data rate of 2 Mbit/s based on GaAlAs laser-diode 

technology, with a SILEX-compatible wavelength and polarization plan and with a mass of 

about 25 kg [4]. After the successful completion of the SOUT programme, the SOUT terminal 

concept was adapted by the United Kingdom for low-data-rate cross links between two 

communication satellites in geostationary orbit. However, the name SOUT was changed to 

SOTT, the first 'T' standing for 'Telecommunication' instead of 'User'. Maser-Oscillator-Power-
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Amplifier (MOPA) laser diodes were used to boost the communication capacity. Matra 

Marconi Space (UK) has been working on the SOTT programme but directed towards new 

market needs requiring a 1 Gbps data rate and GEO-GEO link distances up to 83 000 km, 

such as in the Hughes Spaceway system [4]. 

As a result of the physical limits to the achievable laser power and detector sensitivity in the 

SILEX programme, ESA continued to examine other advanced system concepts and 

technologies in its search for smaller and more efficient laser terminals. Lutz [4] found that 

direct-detection, semiconductor laser-diode technology, as applied in SILEX, is suitable for 

moderate-data-rate systems which could be 1 Gbps data rate and GEO-GEO link distances 

up to 83 000 km as new market needs required. In addition, optical direct detection receivers 

using state-of-the-art Avalanche Photodiodes (APD) need about 50 photons/bit to achieve a 

Bit Error Rate (BER) better than 
610−

. Since 1989, ESA has stated strong emphasis on the 

development of Nd-YAG laser-based coherent laser communication systems and related 

hardware technologies because coherent systems based on Nd-YAG laser radiation are 

highly promising for high-data-rate systems and there is no fundamental limit to the 

achievable laser power and detector sensitivity can almost reach the theoretical quantum limit 

[4]. In addition, the investigation of advanced concepts such as optical amplifiers in fibre-optic 

and/or semiconductor technology was stimulated by the coherent Nd-YAG laser 

communication effort that also stimulated the possibility of synthesizing the input/output 

aperture of the terminal with the help of an array of smaller sub-apertures, coherently coupled 

together. However, ESA could not perform a full hardware implementation of such terminals 

because of funding difficulties, but Germany went on with this programme under the German 

national Solid State Laser Communications in Space (SOLACOS) programme [4].  

 

 Lutz [4] considered that, up to the early 1990's, the data-relay scenario dominated ESA's 

optical communication activities, but some potential future users of a data-relay service 

vanished and the interest in a near-term development of second-generation user terminals 

dropped considerably. In addition, a new class of potential users of optical intersatellite links 
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emerged with the intended deployment of extensive satellite networks for mobile 

communications and interactive multimedia services. However, based on the pervious 

perspective, ESA initiated internal studies in 1991 to examine probable design solutions for 

the compact laser terminals potentially required by such commercial satellite constellations. 

The Monolithic Mini Optical Terminal (MOMOT) was one of the initial results. In April 1996, a 

contract with an industrial team led by Oerlikon-Contraves Space (CH) was placed by ESA for 

the design, realization and testing of a demonstrator of a compact and lightweight optical 

terminal for short-range optical intersatellite links (SROIL). Lutz [4] deduced that "To be 

responsive to the projected market opportunities, the SROIL terminal was required to be 

capable of servicing the following mission classes: cross links between low-Earth-orbiting 

satellites in global satellite networks for mobile communication (IRIDIUM) and fixed-station 

data highways (Teledesic); cross links between co-located telecommunication satellites in 

geostationary orbit; cross links between extensively spaced geostationary satellites as 

proposed in ESA’s On- Board Processing System or in the Spaceway system from Hughes". 

The model of the SROIL terminal was demonstrated by summer 1998 [4]. 

Lutz [4] concluded that Europe is in a leading position in the domain of space laser 

communications through twenty years of technology activities, sponsored by ESA and other 

European space agencies. Semiconductor laser Intersatellite Link Experiment (SILEX) was 

the most observable result of this effort as it was the world's first launch-ready civilian laser 

communication system. He believed that driven by this vast technological basis at hand, 

European industry is well ready to face the challenge of meeting the current requirements for 

optical intersatellite links in the emerging multimedia, Global Information Infrastructure (GII) 

satcom market. In addition, he considered that the question that remains is basically one of 

how space industry is able to adapt its practices and put the required resources into place, 

and found that old methods of space hardware design and qualification should be replaced by 

production-oriented, commercial manufacturing practices, with designed-in rather than tested-

in quality and reliability. 

The pre-launch optical adaptability of Optical Inter-Orbit Communications Engineering Test 

Satellite (OICETS) with the Advanced Relay and Technology Mission (ARTEMIS) was 
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confirmed by a successful optical communication experiment which was conducted by The 

National Space Development Agency of Japan (NASDA) for data transmission/ acquisition 

from September 9 to 14, 2003. This confirmation was successfully done by conducting two-

way optical communications between ARTEMIS of the European Space Agency (ESA) in 

geostationary orbit and an optical communication equipment engineering model of OICETS, 

which was the same as the flight model and installed at ESA's Optical Ground Station (OGS) 

located in Tenerife Island of the Spanish territory's Canarias Islands in the Atlantic Ocean. 

The adaptability of optical equipment of two satellites was verified by the successful result of 

this experiment and considered as one of the significant pre-launch verification items for 

OICETS. In March 2003, ARTEMIS had the successful intersatellite communication 

experiment using microwave with NASDA’s Advanced Earth Observing Satellite II      

(ADEOS-II), "Midori II" [5]. 

Japan Aerospace Exploration Agency (JAXA) [5] identified the OICETS as a satellite to 

pursue orbital verification of element technologies such as acquisition, tracking and pointing 

technologies between ARTEMIS in geostationary orbit (GEO) and OICETS in low earth orbit 

(LEO) under international cooperation. They considered this optical inter-orbit communication 

technology is essential for future space activities in terms of large-volume communication and 

miniaturized on-board equipment. 

The first bidirectional optical inter-orbit communication experiment in the world was 

successfully carried out by the JAXA and the ESA on December 9, 2005 [5]. This experiment 

used a laser beam, through the mechanism of Laser Utilizing Communications Equipment 

(LUCE), between the Optical Inter-orbit Communications Engineering Test Satellite "Kirari" 

(OICETS) in LEO and the Advanced Relay and Technology Mission (ARTEMIS) of the ESA in 

GEO.  

Many advantages have been achieved by the success of this experiment through enabling 

different technologies such as collecting data for improving transmission speed, and for 

making onboard communication equipment smaller and lighter, which are fundamental for a 

future data relay satellite; acquisition and tracking technology for essentially on-orbit laser 
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beam; and obtaining technology for future international mutual operations through 

international cooperation with ESA. In addition, this experiment enabled optical inter-orbit 

communications system to be a highly advanced technology and as a method for satellites 

that are moving several kilometres per second in particular orbits to transmit and receive laser 

beams. The distance between them can be as far as 40,000 kilometres. This communication 

method has many advantages such as:  more stable communication since laser beam, unlike 

radio waves, does not result in interference; onboard equipment can be smaller and lighter; 

higher transmission speed; and large volume data can be smoothly exchanged. Therefore, 

JAXA expected that Kirari's optical inter-orbit communication technology is going to be a 

fundamental technology for supporting various future space activities including global data 

acquisition by an earth observation satellite as a communication method between a low earth 

orbit satellite and a data relay satellite in geostationary orbit [5].  

The first successful optical communication experiment in the world that connected a low earth 

orbit satellite and a ground station was successfully performed by the National Institute of 

Information and Communication Technology (NICT) and the JAXA on March 31, 2006. This 

experiment used laser beams between the Optical Inter-orbit Communications Engineering 

Test Satellite "Kirari (OICETS)" of JAXA orbiting at an altitude of about 600 km and the optical 

ground station of NICT in Koganei, Tokyo [5]. Moreover, a highly sophisticated technology is 

required by optical communications between a low earth orbit satellite like "Kirari" and a 

ground station. The satellite must keep sending laser beams precisely to the ground station 

while moving at a very high speed although the optical reception level fluctuates remarkably 

as a result of atmospheric attenuation and flicker. This successful experiment demonstrates 

the quality of Japanese technology in the area of optical inter-orbit communication equipment 

and accurate satellite acquisition and tracking [5]. 

Another successful bi-directional optical communication experiment that connected a low 

earth orbit satellite and a ground station was carried out for 3 minutes by the German 

Aerospace Center (DLR) and the JAXA on June 7, 2006. This experiment also used laser 

beams between the Optical Inter-orbit Communications Engineering Test Satellite "Kirari 

(OICETS)" of JAXA orbiting at an altitude of about 600 km and the optical ground station of 
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"OGS-OP" of DLR [5]. The possibility of establishing a flexible optical communication network 

with a satellite and a mobile optical ground station was demonstrated by this successful 

experiment because the DLR optical ground station is unique as it is a mobile station, and this 

is what distinguishes this experiment from the last one with the optical ground station of the 

NICT. 

The "Kirari" found that to verify the performance of the optical inter-orbit communication 

equipment in a space environment as well as to evaluate the influence of the atmosphere and 

acquire statistical data, they had to continue optical inter-orbit experiments with the ARTEMIS 

of the European Space Agency (ESA) in addition to communication experiments with optical 

ground stations including NICT and German Space Agency (DLR) stations [5]. 

 

To summarize, the first significant optical intersatellite link (2000) was Semiconductor Laser 

Intersatellite Link Experiment by the European Space Agency using semiconductor laser 

diode technology [4]. The most recent project (2005) is Optical Inter-orbit Communications 

Engineering Test Satellite “Kirari” by Japan Aerospace Exploration Agency using Laser 

Utilizing Communications Equipment [5]. This enabled optical inter-orbit communications 

system using a semiconductor laser between satellites that are tens of thousands of 

kilometers apart. There were various advantages: more stable communications with less 

interference; lighter; more compact communications equipment; and higher data transmission 

rates. These tests led to new technologies that will support the development and utilization of 

space, including global data reception from Earth Observation satellites and continuous 

communication links with a manned space station. These studies show that, in general, for 

many applications, laser diodes have many advantages: small size; high electrical to optical 

efficiencies; tightly focused beam. In addition, it is possible to adapt the technology used in 

fibre optic links to free-space communications and so multi-Gbit/s transmission is possible 

using readily available integrated driver chips.  

 

Detailed information and in-depth analysis of laser diodes will be extensively presented and 

conducted in the 3
rd

 chapter of this research to select the appropriate emission wavelength 
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and the suitable semiconductor material of the laser source to be used in free space links and 

speed of 1 Gbit/s. This information will form the main goal of designing the transmitter in such 

links. 
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2.3 Receiver (Photodetector/ PIN + APD Photodiode): 
 

An optical receiver consists of a photodetector, an amplifier, and signal-processing circuitry. 

The first task of an optical receiver is the conversion of the received optical energy into an 

electric signal, and then amplification of this signal to a large enough level so that it can be 

processed by the electronics following the receiver amplifier. Therefore, the main 

characteristics and operation of photodetector as a first element of the receiver will be 

discussed within this section, while the major characteristics and operation of the amplifier as 

a second element of the receiver will be discussed in the next section. 

  

As mentioned, a photodetector is the first and most important element of the receiver which 

must be at the receiving end of an optical intersatellite link. It must sense the optical power 

falling upon it and convert the variation of this optical power into a varying electric current. 

Since the light at the end of any optical link is usually of very low intensity and generally 

weakened and distorted when it emerges from the end of the link, this photodetector must 

meet very high performance requirements. Among these requirements are a high sensitivity 

to the emission wavelength range of the optical source being used; a high conversion 

efficiency at the operating wavelength; a minimum addition of noise to the system; it must be 

possible to operate continuously over a wide range of temperatures for many years; and a 

fast response time or sufficient bandwidth to handle the desired data rate to ensure that signal 

distortion does not occur. Several different types of photodetectors are in existence. Among 

these are photomultipliers, pyroelectric detectors, and semiconductor-based photoconductors, 

phototransistors, and photodiodes. However, many of these detectors do not meet one or 

more of the foregoing requirements.  At present, these requirements are met by reverse 

biased p-n photodiodes which are the PIN photodetector and the Avalanche Photodiode 

(APD).  

 

Detailed literature reviews of these photodiodes [6, 15] will be briefly discussed throughout 

this section. The most important parameters that determine the characteristic and the 

performance of these photodiodes will be defined in order to support the selection of the 
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appropriate semiconductor material that could be used in fabricating a suitable photodetector 

in optical intersatellite link. Additionally, detailed information and in-depth analysis of 

photodetectors (PIN, APD) will be presented and conducted in the 4
th
 chapter of this research 

to select the appropriate detector for the receiver through checking the possibility of using 

avalanche photodiodes (APDs) or PIN photodiodes with semiconductor optical amplifier 

(SOA) to be used in free space links and speed of 1 Gbit/s. This information will form the main 

goal of designing the receiver in such links. 

 

As the result of the absorption of a photon of light by the semiconductor material, an electron 

can be excited from the valence band (VB) to the conduction band (CB) in reverse biased p-n 

photodiodes. This raises the material conductivity, so-called photoconductivity, because 

electron-hole pairs are generated and this leads to an increase in the diode current which can 

be given by: 

 

           [ ] )1)(exp( −+= kTVqIII sddiode η                        (8) 

 

 Where dI  is the dark current that is the current that arises from the flowing of the current 

through the bias circuit when there is no incident light on the photodiode, and  sI   is the 

photo-generated current due to the incident optical signal. 
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Figure 3 shows that there are three operating regions: forward bias (region 1), reverse bias 

(region 2) and avalanche breakdown (region 3), through the following plot of the last equation 

for varying amounts of incident optical power [6]: 

 

 

Figure 3. V-I characteristic of a photodiode, with varying amounts of incident optical power [6] 

 

Forward bias, region (1) so-called photovoltaic mode, is infrequently used in optical links 

because the frequency response of the diode is poor. In this mode, a change in incident 

power is resulted by a change in terminal voltage.  

 

Reverse bias, region (2) so-called photoconductive mode, is mostly used for detectors in 

optical links. In this mode, a proportional change in diode current is produced by a change in 

optical power. The exponential term in the last equation can be neglected and the reverse 

bias current is expressed as: 

 

                               sddiode III +=                                                      (9) 

Avalanche breakdown, region (3) so-called avalanche photodiodes, APDs, has the V-I 

characteristic which is very steep. Therefore, in order to prevent spontaneous breakdown, the 
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bias voltage has to be tightly controlled. In this region, avalanche breakdown is caused by a 

photo-generated electron-hole pair and results in a large diode current for a single incident 

photon. 

The wavelength of the incident photon accepted by the photodiode is given by: 

                            

12

0
EE

hc

−
=λ                                                        (10) 

where 1E  is valence band (VB) electron energy in J,  h  is Planck’s constant 

(
3410624.6 −× Js), c  is velocity of light in a vacuum (

18103 −× ms ), 2E  is the conduction 

band (CB) electron energy in J, and 12 EE −  is the change in energy in J. The cutoff 

wavelength beyond which the material becomes transparent is set by the band-gap energy of 

the material which is the lowest possible energy change. 

 

The absorption coefficient, α, is a very significant parameter when considering the design of 

photodiodes because it is a measure of how good the material is at absorbing light of a 

specific wavelength and it depends strongly on the wavelength. Photon absorption can take 

place in either the p-type region, the depletion region, or the n-type region which can be 

neglected as the result of the low light intensity in this region. This results from the planar 

structure of most photodiodes that means the incident light must pass through the p-type 

region before reaching the depletion region.  

 

As the result of the low penetration depth (1/ α) that is given by the low wavelength of the 

incident light, electron-hole generation can occur in the p-type region. If this carrier generation 

does not take place within a diffusion length of the depletion layer boundary, the diode current 

does not change because these carriers recombine. While if photon absorption takes place 

within a diffusion length of the depletion layer boundary, the diode current increases as the 

result of the diffusion of the electrons into the depletion region where a high electric field 

exists. Thus useful absorption in the p-type takes place within a diffusion length in the 

depletion layer. 
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When the photon absorption is in the depletion region, the photo-generated electron-hole 

pairs are separated by the electric field with electrons to the n-type, and holes to the p-type. 

These carriers raise the majority carrier density in these regions and so the diode current 

rises. 

This is more efficient than absorption in the p-type, and so an efficient photodiode should 

have a thin p-type layer, less than a diffusion length, and a thick depletion region. Thus a PIN 

photodiode is preferred.  

 

An equivalent circuit for a PIN photodiode is shown in the following diagram: 

 

Figure 4. A circuit model for a typical photodiode [6] 

 

Where sI  is the photoconductive current which has been represented as a current source,   

dI   is the constant current source represents the dark current that is the leakage current and 

any photoconductive current due to background radiation,  sR  is series resistance of the bulk 

semiconductor and the contact resistance, iR  is the shunt resistance that models the slope of 

the reverse bias characteristic,  dC  is the total diode capacitance representing the depletion 

and diffusion capacitances,  LR   is the load resistor that shunts this capacitance and it is this 

time constant that usually limits the speed of response.  iR  and sR can generally be 

neglected, so that bandwidth of the detector is expressed as: 

 

                       

dLCR
f

π2

1
=                                                        (11) 
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The PIN photodetector consists of p and n regions separated by a very lightly n-doped 

intrinsic (i) region and sufficiently large reverse-bias voltage is applied across this device. The 

following schematic represents the circuit of PIN photodiode with an applied reverse bias [7]: 

 

 

Figure 5. Schematic representation of a PIN photodiode circuit with an applied               

reverse bias [7] 

 

Keiser [7] clarified that free electron-hole pairs, which are known as photocarriers, are mainly 

generated in the depleted intrinsic region by exciting electrons from the valence band to the 

conduction band when an incident photon can give up its energy which is greater than or 

equal to the band-gap energy of the semiconductor material. As a result of the high electric 

field in this depletion region where the incident light is absorbed, these carriers will be 

separated and collected across the reverse-biased junction and this gives rise to a current, 

known as the photocurrent, which flows in an external circuit. However, some electron-hole 

pairs will combine during their flow through the material .So, they will move a distance, which 

is known as diffusion length, nL  for electrons or pL  for holes and will take time to combine, 

which is known as carrier lifetime, nτ  for electrons and pτ  for holes to combine. 



Chapter 2. Literature Review 

 

 

 
27 
 

Keiser [7] found that the cutoff wavelength cλ is identified by the band-gap energy gE  of the 

material and given by: 

                    
)(

24.1
)(

eVEE

h
m

gg

c

c ==µλ                                              (12) 

He clarified that when the wavelengths is longer than cλ , an electron does not excite from the 

valence band to the conduction band because the photon energy is not sufficient. Whereas, 

there will be very large values of  the absorption coefficient )(λα s  at the shorter wavelengths 

where the photons are absorbed very close to the photodetector surface and the 

recombination time of the generated electron-hole pairs is very short . 

The primary photocurrent pI  is expressed as: 

                 )1)(1(0 f

w

p ReP
hv

q
I s −−= −α

                                        (13) 

where q  is the electron charge, hv is the photon energy, fR is a reflectivity at the entrance 

face of the photodiode, ω  is the width of the depletion region, 0P  is the incident optical power 

level, )(λα s is the absorption coefficient.  

 

Keiser [7] considered that the two most important characteristics of a photodetector are its 

quantum efficiency η  which is the number of the electron-hole carrier pairs generated per 

incident photon of energy hv  and is given by: 

                              
hvP

qI p

0

=η                                                           (14) 

and its response speed. However, Keiser [7] clarified that a comparison must be made 

between these two parameters because high quantum efficiency requires that the depletion 

layer has to be thick to allow a large part of the incident light to be absorbed. But, the time 

taken for a photogenerated carrier to drift across the reverse-biased junction will be longer 

and this time determines the response speed of the photodiode. 
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Keiser [7] found that the responsivity determines the performance of a photodiode and is a 

function of the wavelength and of the photodiode material (since different materials have 

different band-gap energies); hence the responsivity drops quickly beyond the cutoff 

wavelength, and is given by: 

                         hv

q

P

I
R

p η
==

0
0                                                (15)                   

For Si: 0.65 A/W at 900 nm  

For Ge: 0.45 A/W at 1.3 µm  

For InGaAs: 0.9 A/W at 1.3 µm and 1.0 A/W at 1.55 µm. 

The quantum efficiency is not a constant at all wavelengths, since it varies according to the 

photon energy. Consequently, the responsivity is a function of the wavelength and of the 

photodiode material (since different materials have different band-gap energies). For a given 

material, as the wavelength of the incident photon becomes longer, the photon energy 

becomes less than that required to excite an electron from the valence band to the conduction 

band. The responsivity thus falls off rapidly beyond the cutoff wavelength. The following plot 

compares the responsivity and quantum efficiency as a function of wavelength for pin 

photodiodes constructed of different materials [7]: 

 

 
Figure 6. Comparison of the responsivity and quantum efficiency as a function of wavelength 

for PIN photodiodes constructed of different materials [7]. 
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As regards avalanche photodiodes, Keiser [7] demonstrated that the receiver sensitivity rises 

as the result of the multiplication of the primary photocurrent before meeting the thermal noise 

associated with the receiver circuit. He identified the carrier multiplication mechanism by 

impact ionization where this carrier multiplication occurs when the photogenerated carriers 

pass through a very high electric field region so that photogenerated electron or hole can earn 

enough energy to ionize bound electrons in the valence band upon collide with them, and this 

high electric field also accelerates the newly created carriers .This phenomenon is the 

avalanche effect. 

 

Keiser [7] also demonstrated the commonly used structure for performing carrier multiplication 

that is the reach-through avalanche photodiode (RAPD) which consists of p+ π p n+ where p+ 

and n+ are high-doped p and n type respectively and the π layer is intrinsic material but 

inadvertently has some p doping as the result of imperfect purification. In practical usage, light 

passes through the p+ region and the π material absorbs it .Thus the electron-hole pairs will 

be generated as the result of the given photon energy and will be separated by the electric 

field in the π depletion region. Consequently, carrier multiplication occurs in the high electric 

field presented in the p n+ junction when the photogenerated carriers pass through the π 

region in this junction. 

 

The ratio αβ=K  can be used to measure the photodetector performance, whereα is 

electron ionization rates and is β hole ionization rates and the ionization rate is the average 

number of electron-hole pairs generated by a carrier per unit distance travelled. The 

multiplication M for all carriers created in the photodiode is expressed as: 

                                          

p

M

I

I
M =                                                   (16) 

where MI is the average value of the total multiplied output current and pI  is the primary 

unmultiplied photocurrent. As not every carrier pair created in the diode undergoes the same 

multiplication, the avalanche mechanism has a statistical nature and M is measured as an 

average quantity. 
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In order for M  to be large, there must be a large number of impact ionization collisions in the 

avalanche region. The probability that a carrier will generate an electron-hole pair in a unit 

distance is known as the ionisation coefficient. M  is highly dependent on these coefficients 

which, in turn, depends upon the E-field and the device structure. A large M  requires a low 

value of k. in silicon, k ranges from 0.1 to 0.01, and this leads to value of M  ranging from 

100 to 1000. However, in germanium and III-V materials, k ranges from 0.3 to 1 and, in 

practice, it is difficult to fabricate and control devices with gains above 15. 

 

Similar to the PIN photodiode, the responsivity also determines the performance of an APD, 

and is given by: 

                                 MRM
hv

q
RAPD 0==

η
                                              (17) 

where 0R is the unity gain responsivity.  

 

Since the optical signal is generally very weak, the signal-to-noise ratio S/N for the 

photodetector and the following amplification should be high to detect the weakest possible 

optical signals. This ratio is expressed as [7]: 

 (18) 

The statistical nature of photon-to-electron conversion process in the photodiode causes the 

photodetector noise and thermal and shot noise causes the amplifier noises. It is noticeable 

that the quantum efficiency of the photodetector and the photodetector and amplifier noises 

determine the signal-to-noise ratio. Thus, when the quantum efficiency of the photodetector is 

high and the noises of photodetector and amplifier are low; this ratio will be high .However, 

due to the photodiode quantum efficiency for most applications is normally close to its 

maximum possible value, the noise currents determine the detected minimum optical signal 

and consequently the sensitivity of a photodetector which is describable in terms of the 

minimum detectable optical power. 

Signal power from photocurrent S 

N Photodetector noise power + amplifier noise power 
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Keiser [7] divided the main noises of the photodetector that have no internal gain into 

quantum or shot noise, bulk dark current noise, and leakage current noise. The statistical 

nature of photon-to-electron conversion processes, which is the production and collection of 

photoelectrons, follows a Poisson process, resulting in the quantum or shot noise: 

                   )(2 222
MFBMqIi pQQ == σ                                    (19) 

where B is bandwidth, pI is the average value of photocurrent, and )(MF  is a noise figure 

associated with the random nature of the avalanche process. 

 

The photodiode dark current, which is composed of bulk and surface current (leakage 

current), arises from the flowing of the current through the bias circuit when there is no 

incident light on the photodiode. The thermally created electrons or/and holes in the p n 

junction causes the bulk dark current. These thermally created carriers will be multiplied by 

the avalanche mechanism after they are also accelerated by the high electric field existed at 

the p n junction. The mean-square value of this current is expressed as: 

                )(2 222
MFBMqIi DDBDB == σ                                  (20) 

where DI is the primary unmultiplied detector bulk dark current. The following figure shows a 

comparison of typical dark currents for Si, Ge, GaAs, and InGaAs photodiodes as a function 

of normalized bias voltage [7]: 

 

Figure 7. A comparison of typical dark currents for Si, Ge, GaAs, and InGaAs photodiodes as 

a function of normalized bias voltage [7] 
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The surface leakage current depends on surface area, bias voltage, and surface defects. It 

can be decreased by using the guard ring structure and its mean-square value is given by: 

                      BqIi LDSDS 2
22

== σ                                           (21) 

where LI  is the surface leakage current, and it is noticeable that the avalanche multiplication 

gain does not affect this current because it has bulk effect. 

 

The total mean-square photodetector noise current is expressed as: 

 

BqIBMFMIIqiiii LDpDSDBQDSDBQNN 2)()(2 222222222
++=++=++== σσσσ   

                                                                                                                             (22) 

It is assumed that the photodetector load resistor is much smaller than the amplifier input 

impedance. Therefore its thermal noise is much greater than that of the amplifier input. The 

mean-square thermal (Johnson) noise current of load resistor is given by: 

 

                             B
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== σ                                       (23) 

where BK is Boltzmann’s constant, and T  is the absolute temperature. Using a large load 

resistor decreases this noise, but this load resistor should be consistent with the receiver 

bandwidth requirements. 

 

Consequently, the signal-to-noise ratio at the input of the amplifier is expressed as: 
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With avalanche photodiodes, the photodetector noise normally dominates and the thermal 

noise is of lesser importance. Whereas, the thermal noise of the detector load resistor and the 

active elements of the amplifier circuitry will be dominated when the PIN photodiodes are 

used [7]. 

 

It can be seen that the signal power is multiplied by 
2M and the quantum noise plus bulk dark 

current is multiplied by )(2 MFM . The surface leakage current is not altered by the 

avalanche gain mechanism. Since the noise figure )(MF increases with M ; there always 

exists an optimum value of M that maximizes the signal-to-noise ratio. 

The excess noise factor can be approximated by: 

                                
x

MF =                                                    (25) 

X takes value of 0.3 for Si, 0.7 for InGaAs, and 1.0 for Ge avalanche photodiodes. 

To keep the excess noise factor at a minimum, it is desirable to have small values of effective 

ionization rate ratio effk .  The effective ionization rate ratio effk  varies between 0.015 and 

0.035 for silicon, between 0.6 and 1.0 for germanium. Figure 8 shows the superiority of silicon 

over other material for making avalanche photodiodes [7]: 

 

Figure 8. Carrier ionization rates obtained experimentally for silicon, germanium, gallium 

arsenide, gallium arsenide antimonide, and indium gallium arsenide [7].  
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The gain mechanism of an avalanche photodiode is very temperature-sensitive because of 

the temperature dependence of the electron and hole ionization rates. This temperature 

dependence is particularly critical at high bias voltages, where small changes in temperature 

can cause large variations in gain. For example, if the operating temperature decreases and 

the applied bias voltage is kept constant, the ionization rates for electrons and holes will 

increase and so will the avalanche gain. Figure 9 shows how the gain mechanism of a silicon 

avalanche photodiode depends on temperature [7]: 

 

Figure 9. Example of how the gain mechanism of a silicon avalanche photodiode depends on 

temperature. The measurements for this device were performed at 825 nm [7]. 

 

To maintain a constant gain as the temperature changes, the electric field in the multiplying 

region of the p n junction must also be changed. This requires that the receiver incorporate a 

compensation circuit which adjusts the applied bias voltage on the photodetector when the 

temperature changes.  

 

Yariv [8] concluded that avalanche photodiodes are analogous to normal photodiodes in their 

construction excluding a particular care has to made to achieve very uniform junctions for 

avalanche photodiodes as a result of the steep dependence of M on the applied field in the 

avalanche region. Corresponding to normal photodiode, the frequency response, which is the 

ability of the diode to respond to variations in the incident intensity such as those caused by 



Chapter 2. Literature Review 

 

 

 
35 
 

high-frequency modulation, of the avalanche photodiode is limited by the three following main 

mechanisms: the effect of the finite transit time of the carriers drifting across the depletion 

layer; the effect of the finite diffusion time of carriers created in the p and n regions which can 

be reduced by an appropriate choice of the length of the depletion layer; and the shunting 

effect of the signal current by the junction capacitance.  

 

Brain & Smith [9] considered that using avalanche gain to raise the signal power relative to 

the noise of the preamplifier is the potential advantage of using an APD in an optical receiver. 

But, the generation of excess noise is presented in the avalanche process where how much 

this excess noise is created determines the possibility of an APD to compensate the noise of 

the preamplifier. 

 

Brain & Smith [9] summarised the requirements for an APD receiver which are : a minimum 

level of shot noise due to  the multiplied bulk leakage current which has to be produced at the 

highest operating temperature for the receiver before the reduction of any other noise source 

becomes worthwhile; either decreasing the effective ratio of ionisation rates or decreasing the 

preamplifier noise could produce further improvement in performance , but either would 

require further reduction in the bulk leakage current to be worthwhile.  

 

McIntyre [12] found that the semiconductor p-n junctions have been used as high-gain 

photodiodes when they have more or less uniform avalanche multiplication characteristics 

over significant parts of their areas. These high-gain photodiodes present significant 

advantages over normal photodiodes in wide-band applications where these photodiodes will 

produce an improved signal-to-noise ratio, which is defined by thermal or amplifier noise and 

not by the shot noise in the diode current, provided that the noise created in the multiplication 

process does not become extreme, and present gain through the mechanism of impact 

ionization. 
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McIntyre [13] concluded that there are a number of significant applications in which avalanche 

photodiodes can be excellent light detectors at very low light levels. These applications, in 

which it is necessary to use quite different detection techniques, can be classified into two 

classes: 

 

Photon-Counting Applications: in this class, photons with detection probabilities 

comparable to the best available photomultipliers (especially in the near infrared) and with 

excessively low dark-current rates can be detected while the detection of every photon 

incident on the detector, as it is desirable, is not possible. The detection mode of photon 

counting is considered as the most desirable for some low light level applications such that if 

the flux from the source is very weak, or, in the case of a pulsed laser signal, if the intensity is 

sufficiently low that it is unlikely for there to be more than a few photons per pulse. Under 

these conditions, it is not feasible to discriminate against background (by discriminating 

against single-photon-induced events) as a result of the desired signal would also be 

discriminated against. In these applications, it can be operated below the breakdown voltage 

provided the dark current is sufficiently low where it is practical to operate well above the 

breakdown voltage in a “Geiger-tube” mode. Once the avalanche is started, the current will 

raise until limited by the diode resistance or the external circuit provided a quenching circuit is 

presented which decreases the voltage temporarily below the breakdown voltage, the diode 

can be made ready to receive another photon.  

 

Laser Pulse Detection Applications: in this class, discriminating against single-photon-

induced events (background) is desirable and simultaneously detecting a package of photons 

within time duration of a laser pulse with a high detection probability. It can be noted that the 

avalanche photodiode compares favorably, under the suitable conditions, with the best 

available photomultipliers. Since laser pulses consist of more than a few photons, its 

detection is quite different. The desirable goal now is the detection of all pulses, with as high a 

probability as possible, which arise from more than one photoelectron, while simultaneously 

discriminating against single-photoelectron-induced pluses, which are as a result of either 

dark current (thermally excited electrons) or background radiation (assumed low enough so 
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that the arrival of more than one photon with the resolving time of the detection system is 

unlikely). 

 

As a conclusion, a photodetector at the receiver is needed to convert the modulated light 

signal back into an electrical one.  There are two types of detector in use at present: 

avalanche photodiodes (APDs) or PIN photodiodes [6, 7].  The optimum choice depends on 

the wavelength of operation which, in turn, depends on how the laser source is to be 

modulated.  In optical fibre communications it is common practice to modulate a continuous 

wave (CW) laser with an external Mach- Zehnder interferometer.  As these devices operate at 

a wavelength of 1.55 µm, this must be the wavelength of operation for the link.  
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2.4 Semiconductor Optical Amplifier (SOA): 
 
When setting up an optical link in traditional method, a power budget is formulated and 

repeaters are added in case the available power margin is exceeded by the path loss. An 

optical signal can be amplified with a conventional repeater by performing photon-to-electron 

conversion, electrical amplification, retiming, pulse shaping, and then electron-to-photon 

conversion. Despite the fact that this operates well for moderate-speed single-wavelength 

operation, a few obstructions might affect the adoption of this process in terms of complexity 

and high installation-cost for high-speed multi-wavelength systems. Therefore, huge effort has 

been carried out to develop all-optical amplifiers. These devices are used to compensate for 

the signal-splitting losses in multi-access networks and to amplify the optical signal in long-

distance point-to-point optical fibre links. Moreover, optical amplifiers involve various features 

which have resulted in diversification of applications with different design challenges for each 

application. The general applications of optical amplifiers are: In-line optical amplifiers; 

preamplifier; power amplifier. Basic information of optical amplifiers in general and 

Semiconductor Optical Amplifier (SOA) in particular will be discussed within this section in 

term of types and applications. However, more detail of SOAs and the most important 

parameters that determine the performance of these SOAs will be extensively presented and 

conducted in chapter 4. 

 

Keiser [7] classified the two fundamental types of optical amplifier as semiconductor optical 

amplifiers (SOAs) and active-fibre or doped-fibre amplifiers (DFAs).  The power level of 

incident light is increased in all optical amplifiers through a stimulated emission process 

which, in turn, can be produced by generating a population inversion. The same mechanism 

which is used in laser diodes to produce the population inversion needed for stimulated 

emission is used in optical amplifiers. Despite the fact that optical amplifiers have a similar 

structure to that of a laser, they do not have the optical feedback mechanism that is 

necessary for lasing to occur. Thus an optical amplifier can boost incoming signal levels, but it 

can not produce a coherent optical output by itself [7]. 
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Keiser [7] compared the two types of optical amplifiers, semiconductor optical amplifiers 

(SOAs) and the active-fibre or doped-fibre amplifiers (DFAs). He found that semiconductor 

optical amplifiers consume less power, have fewer components, and are more compact than 

active-fibre or doped-fibre amplifiers (DFAs). He justified the attractiveness of SOAs through 

their possibility of working in both the 1300-nm and the 1550-nm low-attenuation windows and 

can be easily integrated on the same substrate as other optical devices and circuits such as 

couplers, optical isolators, and receiver circuits. In addition, the SOAs have a more rapid gain 

response, which is on the order of 1ps to 0.1ns. This leads to both limitations and 

advantages. The limitation is that the rapid carrier response results in the gain at a particular 

wavelength to fluctuate with the signal rate for bit rates up to several Gb/s. Consequently, the 

overall gain is affected and thus the signal gain at other wavelengths also fluctuates which, in 

turn, produces crosstalk effects when a broad spectrum of wavelengths has to be amplified. 

The advantage of SOAs is that they can be used when both switching and signal processing 

are called for in optical networks [7]. In contrast to SOAs, DFAs are immune from interference 

effects, such as crosstalk and intermodulation distortion, between different optical channels 

within a broad spectrum of wavelengths that are injected simultaneously into the amplifier. 

This is because DFAs are highly transparent to signal format and bit rate, as they display slow 

gain dynamics, with carrier lifetime on the order of 0.1-10 ms. consequently, the gain 

responses of DFAs are fundamentally constant for signal modulations greater than a few 

kilohertz [7].  

 

Keiser [7] classified the two main types of SOAs as the resonant, Fabry-Perot amplifier (FPA) 

and the nonresonant, travelling-wave amplifier (TWA). In an FPA, a Fabry-Perot cavity is 

formed by the two cleaved facets of a semiconductor crystal which perform as partially 

reflective end mirrors and have a natural reflectivity of approximately 32 percent. When an 

optical signal enters the FPA, it reflects back and forth between the mirrors until it is amplified 

and emitted at a higher intensity. Despite the fact that FPAs are easy to fabricate, very careful 

stabilization of temperature and injection current are required due to the optical signal gain 

being very sensitive to variations in amplifier temperature and input optical frequency [7]. 

However, in a TWA, the input light gets amplified only once during a single pass through the 
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TWA because its structure is the same as that of an FPA except that the end facets are either 

antireflection-coated or cleaved at an angle, so that internal reflection does not occur. 

 

Keiser [7] compared TWAs and FPAs and found that TWAs have a large optical bandwidth, 

high saturation power, and low polarization sensitivity. Therefore, TWAs have been used 

more extensively than FPAs. In addition, he concluded that TWAs have become the SOA of 

choice for networking applications and are particularly used as amplifiers in the 1300-nm 

window and as wavelength converters in the 1550-nm region. The 3-dB bandwidth of TWAs is 

about three orders of magnitude greater than that of FPAs.  The pumping method used to 

generate the population inversion is an external current injection.  

 

Keiser [7] considered that the signal gain or amplifier gain G is one of the most important 

parameters of an optical amplifier and is defined as:  

                                    
ins

outs

P

P
G
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                                             (26) 

   

where insP , and outsP , are the input and output powers, respectively, of the optical signal being 

amplified.  

 

The single-pass gain in the active medium of the SOA is: 

 

              ])(exp[])(exp[ LzgLgG m ≡−Γ= α                               (27) 

 

Where Γ  is the optical confinement factor in the cavity, mg is the material gain coefficient,   

α  is the effective absorption coefficient of the material in the optical path, L  is the amplifier 

length, and )(zg is the overall gain per unit length. This equation shows that the gain rises 

with device length. However, the carrier density in the gain region of the amplifier depends on 
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the optical input intensity. This means the internal gain is limited by gain saturation. Excited 

carriers (electron-hole pairs) are depleted from the active region because the input signal 

level is raised. Because there are not enough excited carriers to keep stimulated emission, 

further increases in the input signal level no longer yield an appreciable change in the output 

level when there is a sufficiently large optical input power. Thus, it can be noted that the 

carrier density at any point z in the amplifying cavity depends on the signal level Ps(z) at that 

point. . In particular, near the input where z is small, incremental portions of the device may 

not have reached saturation simultaneously as the sections further down the device, where 

incremental portions may be saturated due to higher values of Ps(z) [7]. 

 

Semiconductor optical amplifiers (SOAs) can be indentified as essentially laser diodes without 

end mirrors, which have fibre attached to both ends. They amplify any optical signal that 

comes from either fibre and transmit an amplified version of the signal out of the second fibre. 

SOAs are typically constructed in a small package, and they work for 1310 nm and 1550 nm 

systems. In addition, they transmit bidirectionally, making the reduced size of the device an 

advantage over regenerators using EDFAs. However, the drawbacks to SOAs include 

polarization dependence, a higher noise figure, and high-coupling ratio/loss that is the 

ratio/loss of optical power from one output port to the total output power and is expressed as 

a percent. As mentioned before, optical amplifiers, in general, and SOAs, in particular, have a 

great deal of attention in modern optical networks because they have the features that led to 

many diverse applications, each having different design challenges.  

 

The most important and widespread of these applications in modern optical networks are: 

 

Power Boosters: Many tunable laser designs output low optical power levels and must be 

immediately followed by an optical amplifier. (A power booster can use either a SOA or 

EDFA). 

In-Line Amplifier: Allows signals to be amplified within the signal path. 

Wavelength Conversion: Involves changing the wavelength of an optical signal. 

Receiver Preamplifier: SOAs can be placed in front of detectors to enhance sensitivity. 
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As a conclusion, there is currently much interest in all optical amplification for applications in a 

signal regeneration and receiver preamplification. For the majority of modern optical 

networks, the Semiconductor Optical Amplifier (SOA) is a highly versatile component that can 

be deployed for a wide range of amplification and routing functions within the 

telecommunications industry. The minimal space requirements, integration capability, and 

strong potential for cost reduction through scaled manufacturing processes will ensure that 

the SOA plays an increasingly important role in future advanced optical networks. SOAs are a 

cost-effective solution to implementing optical amplification in advanced optical networking 

subsystems for core, metro, and ultimately access applications.  
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2.5 Mach-Zehnder Interferometer (MZI): 
 
 
Optical transmission systems are generally based on one of two methods of modulation of a 

signal laser, either direct or external modulation. In the first of these, the bias current to the 

laser is modulated, turning the laser on and off. The disadvantage of this when applied to high 

capacity systems is that the semiconductor material dynamic behaviour introduces frequency 

distortion into the laser output, known as chirp. External modulation of the continuous wave 

(CW) source produces a modulated output signal with significantly reduced chirp, and 

sources of this type are preferred for use in high capacity systems. High speed electro-optic 

modulators such as Mach Zehnder interferometer devices are typically used. 

 

Modulation is the process of imposing information on a light stream and it can be achieved 

either by directly varying the laser drive current with the information stream and thus a varying 

optical output power is produced, or by using an external modulator and thus a steady optical 

power level emitted by the laser is modified. For high-speed systems (> 2.5 Gb/s), external 

modulation is needed to minimize undesirable nonlinear effects such a chirping. A variety of 

external modulators are commercially available, either as a separate device or as an integral 

part of the laser transmitter package. The spontaneous and stimulated carrier lifetimes and 

the photon lifetime determine the fundamental limitation on the direct modulation rate of laser 

diodes. 

 

External modulators can be classified as waveguide devices for use in optical fibre links, and 

bulk modulators for use in high power free-space links. At present, practically all waveguide 

modulators are made using lithium niobate. The refractive index varies according to the 

strength of an externally applied electric field, the so-called electro-optic effect, is one 

characteristic of a lithium niobate, LiNbO3, on which a single-mode waveguide coupler 

fabricated. This effect can be exploited to create phase and intensity modulators. The 

following figure shows the Mach-Zehnder interferometer [6]: 
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Figure 10. A Mach-Zehnder interferometer [6] 
 
 
In this device, the input power is split equally between the two arms of the device by a Y-

junction waveguide. The relative phases of the fields are altered by phase modulators, which 

are placed in the two arms, before recombination in another Y junction. The fields will add and 

light will appear at the output when the phase difference between the two paths is 2Nπ 

radians, where N is an integer. However, the waves will cancel each other out and the output 

will be zero when the phase difference is (2N+1) π radians [6]. The output power is simply 

given by: 

                                  )
2

(cos 2 φ∆
= inout PP                                       (28) 

 
 

where φ∆  is the phase difference between the two branches. The following figure shows the 

measured transmission/drive voltage characteristic of a typical Mach-Zehnder modulator [6]: 

 
 

Figure 11. Measured transfer function of a Mach-Zehnder interferometer [6] 

 

Mach-Zehnder modulators are of great use when a laser has to be modulated at high speed 

with the laser being operated continuously. Such a technique is extensively used at present. 

In addition, since the optical power density in a single-mode waveguide modulator would be 
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excessively high, and could result in damage to the device, bulk modulators must be used to 

modulate the light output of a high power laser - the power density will be lower and thus 

modulator damage is less likely to occur when a wide output beam is existed. Bulk 

modulators can be classified into two groups: those that use the electro-optic effect, and 

those that use the acousto-optic effect [6].  

 
 
As a conclusion, the two methods of modulation of a signal laser in optical transmission 

systems can be classified as direct modulation and external modulation. External modulation 

of the continuous wave (CW) source, such as solid-state and gas lasers, is preferred for high 

capacity systems due to its modulated output signal with considerably reduces chirp. The high 

speed electrode-optic modulator such as Mach Zehnder interferometer device is considered 

as the most suitable external modulator to be used in optical intersatellite links.  
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2.6 Pulse Position Modulation Coding Schemes: 
 
Various pulse position modulation (PPM) schemes have been proposed in the past for use in 

optical communications links. Despite the fact that these coding schemes operate with higher 

data rates than their pulse code modulation (PCM) counterparts, they do offer a better 

sensitivity. They can be used as a means of utilizing the bandwidth available in optical fibre 

links. A review of these pulse positions modulation coding schemes has been carried out. 

Detailed and fundamental information of several different coding schemes for use in optical 

intersatellite links in space such as: Multiple Pulse Position Modulation (MPPM); Digital Pulse 

Position Modulation (DPPM); Dicode Pulse Position Modulation (Dicode PPM), will be 

discussed within this section .Further in-depth analysis will be extensively presented and 

conducted in the 5
th
 chapter of this research to make a thorough comparison between these 

coding schemes for optimum use in such links. This information will form the main target of 

this research. 

The coding scheme currently popular is Digital Pulse Position Modulation (digital PPM). 

Digital PPM is an early form of signal modulation in which n bits of PCM are encoded by 

transmitting a single pulse in one of 
n2  possible time slots. This is repeated every T seconds, 

such that the transmitted bit rate is n/T bits per second. In addition, a guard interval, which is 

composed of a certain number of empty time slots, is sometimes located at the end of the 

frame to minimize the impacts of inter-symbol interference (ISI) and inter-frame interference 

(IFI) resulted from pulse dispersion in optical fibre. This scheme gives an increase of between 

5-11dB in receiver sensitivity in comparison with standard PCM. However, the bandwidth 

expansion results in an increased line rate such that the final data rate can be 10.7 times that 

of the original PCM if six bits are encoded into 64 data slots with no guard bits. This 

bandwidth expansion leads to significant demands on the processing electronics and thus the 

technique has limited appeal [16]. Many alternative coding schemes have been suggested 

that operate with a smaller bandwidth expansion such as differential PPM [17, 18], 

overlapping PPM [19], dicode PPM [20-22] and multiple PPM [23-27]. The most bandwidth-

effective of these are dicode PPM and multiple PPM as they appear to offer the lowest 

bandwidth expansion [16]. 
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Multiple PPM can provide the sensitivity of digital PPM without the large bandwidth 

expansion. For instance, the (12/2) multiple PPM scheme, where 6 bits of PCM can be 

converted into two data pulses used in 12 slot-frame, has a line rate that is twice that of the 

PCM. The (15/4) multiple PPM scheme can convert 10 bits of PCM into 4 data pulses used in 

15 slot-frame and achieve line rate of 1.5 times the PCM rate [16]. Both schemes give 

sensitivities comparable to that of digital PPM. 

Atkin and Fung [24] concluded that the predicted performance of a multiple PPM system with 

Reed Solomon (RS) coding using avalanche photodiodes (APD) was 0.1 nats/photon for an 

error rate of 1 in 
9

10 bits, while an equivalent RS coded, digital PPM system required 0.03 

nats/photon. Sugiyama and Nosu [23] analyzed the error performance of multiple PPM with 

maximum likelihood sequence detection (MLSD) scheme and found that multiple PPM is 

more efficient than digital PPM in terms of power and bandwidth utilization. The best 

predicted sensitivity was 0.58 bits/photon compared to 0.5 bits/photon for digital PPM (both 

operating with an error rate of 1 in 
9

10 ). A power and bandwidth requirement comparison 

was made by Park and Barry [25] between digital PPM, overlapping PPM and multiple PPM. 

It was confirmed that multiple PPM is the most power and bandwidth-efficient of the three. 

Park and Barry [26] compared digital PPM, overlapping PPM and multiple PPM in terms of 

sensitivity and bandwidth efficiency and showed that an 8-level digital PPM system requires 

4.4 dB less power than a (4/2) multiple PPM system when the channel bandwidth is high and 

MLSD is used in both cases. The increase is 2 dB for low channel bandwidth. In their       

paper [27], they concluded that multiple PPM provided a sensitivity advantage of less than     

1 dB when compared with 8-level PPM.  
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Multiple PPM uses two or more pulses in a frame with the pulse positions being determined 

by the original PCM word, whereas dicode PPM only transmits a pulse when there is a 

transition between levels. Therefore, the timing diagram in the following figure shows 

examples of the MPPM, DPPM and Dicode PPM signals.  

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 
 

 Figure 12. Examples of timing diagram for the MPPM, DPPM and Dicode PPM signals with 

the time slot width ( sT ) for each scheme 
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The coding alphabet for digital PPM and multiple PPM for 3 and 4 bits of PCM is shown in 

tables 3, 4, respectively: 

 

 
PCM (3 Bits) 

 
DPPM 

 
MPPM (5,2) 

 

000 0000 0001 11000 (1,2) 
 

001 0000 0010 10100 (1,3) 
 

010 0000 0100 10010 (1,4) 
 

011 0000 1000 10001 (1,5) 
 

100 0001 0000 01100 (2,3) 
 

101 0010 0000 01010 (2,4) 
 

110 0100 0000 01001 (2,5) 
 

111 1000 0000 00110 (3,4) 
 

 
 
 
 

Table 3. Alphabet for coding 3 bits of PCM into digital PPM and multiple PPM 
 
 
 
 
As regards the coding alphabet, digital PPM codes n bits of PCM into a single pulse which 

occupies one of 
n2 time slots. So, table 3 shows digital PPM in which a single pulse 

occupies one of 8 time slots to code 3 bits of PCM. However, the multiple PPM scheme uses 

a number of pulses in a frame, with the pulse positions being determined by the original PCM 

word. Table 3 shows (5, 2) multiple PPM in which a 5-slot frame uses two data pulses to code 

3 bits of PCM. 
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PCM (4 Bits) 

 
DPPM 

 
MPPM (7,2) 

 

0000 
 

0000 0000 0000 0001 1100000 (1,2) 

0001 
 

0000 0000 0000 0010 1010000 (1,3) 

0010 
 

0000 0000 0000 0100 1001000 (1,4) 

0011 
 

0000 0000 0000 1000 1000100 (1,5) 

0100 
 

0000 0000 0001 0000 1000010 (1,6) 

0101 
 

0000 0000 0010 0000 1000001 (1,7) 

0110 
 

0000 0000 0100 0000 0110000 (2,3) 

0111 
 

0000 0000 1000 0000 0101000 (2,4) 

1000 
 

0000 0001 0000 0000 0100100 (2,5) 

1001 
 

0000 0010 0000 0000 0100010 (2,6) 

1010 
 

0000 0100 0000 0000 0100001 (2,7) 

1011 
 

0000 1000 0000 0000 0011000 (3,4) 

1100 
 

0001 0000 0000 0000 0010100 (3,5) 

1101 
 

0010 0000 0000 0000 0010010 (3,6) 

1110 
 

0100 0000 0000 0000 0010001 (3,7) 

1111 
 

1000 0000 0000 0000 0001100 (4,5) 

 
Table 4. Alphabet for coding 4 bits of PCM into digital PPM and multiple PPM 

 
 

Table 4 shows digital PPM in which a single pulse occupies one of 16 time slots to code 4 bits 

of PCM and (7, 2) multiple PPM in which a 7-slot frame uses two data pulses to code 4 bits of 

PCM. 

 
As regards the signaling format of dicode PPM, only data transitions are sent and no signal is 

transmitted when the data is constant. Data transitions from logic zero to logic one are coded 

as +V and transitions from logic one to logic zero are coded as –V. If there is no change in the 

PCM signal, a zero signal is transmitted. The positive pulse can be regarded as setting the 

data to logic one (pulse SET), whereas the negative pulse resets the data to logic zero (pulse 
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RESET) (as can be seen in figure 12). These SET and RESET signals are converted into two 

pulse positions in a data frame. Therefore, a pulse is generated in slot S by PCM transition 

from zero to one and a pulse is produced in slot R by one to zero PCM transition. In addition, 

there is no transmitted signal when the PCM data is constant [20].  

 

As a conclusion, Digital PPM is the preferred coding scheme for use in optical inter-satellite 

links because it operates with very low average power and offers high sensitivity.  However, it 

does suffer from a very large bandwidth expansion problem in that a scheme coding 5 bits of 

PCM will have a final line rate of 6.4 times the original PCM rate [16].This places a great 

strain on the processing electronics as the speed can be prohibitive.  Many alternative coding 

schemes have been suggested that operate with a smaller bandwidth expansion such as 

differential PPM overlapping PPM, dicode PPM and multiple PPM. The most bandwidth-

effective of these are dicode PPM and multiple PPM. Digital PPM and these two alternative 

coding schemes have been examined in this section. In addition, an in-depth analysis and 

comprehensive comparison between these three coding schemes in terms of sensitivity, 

bandwidth efficiency, error rate weightings and coding efficiency has been made and will be 

extensively discussed in the 5
th
 chapter of this research to select the optimum choice to be 

used in optical intersatellite links in free space. This information will form the main target of 

this research.  
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3.   The model of the link (Transmitter (TX)/ the light source of the laser) 
 
 
3.1 Introduction: 

 
 

Space communication at optical frequencies has been seriously considered by various 

agencies such as ESA and NASA. Proposed mission scenarios are: 

• Inter satellite links between two geosynchronous satellites. 

• Inter orbit links between a low earth orbiting satellite and a geosynchronous data 

relay satellite. 

• Optical communications to deep space probes. 

 

As mentioned in the previous chapter, optical intersatellite links in space are receiving a great 

deal of attention and can make a revolution in space system architectures. This is resulted by 

the competing technologies of optical and microwave systems which have been examined by 

McCullagh [1], Ekberg [2], Toyoshima et al [3] and Allen et al [28].  These studies show that, 

in general, microwave radio systems can receive much lower power levels and operate in the 

atmosphere more efficiently than optical ones [1]. However, in space, optical systems can 

operate with much lower path loss and are considered superior to microwave ones [2]. In 

addition, they have the potential of operation at Gbit/s data rates.  

 

Despite the fact that radio frequency (RF) links are considered as a reliable and well 

understood technology and have been used by the space industry for almost all space-based 

communications for decades, there are still various disadvantages of using RF in space: 

disrupting the communication link because the relatively broad beam widths raises 

susceptibility to jamming and interception; the bandwidth of the antenna limits the data 

throughput; antenna gain is small at RF wavelengths as a result of higher beam diffraction at 

longer wavelength leading  to the need for higher transmitter power; one cannot design a DC 

to 10 GHz broadband RF antenna [29]. 
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Wree et al [29] highlighted the various advantages of optical communications in space. The 

optical communication link produces much higher data rates where currently the light of a 

single laser in long-haul fibre optic transmission systems usually carries 2.5 Gb/s or 10 Gb/s 

and lately up to 40 Gb/s. The typical telecom satellite will have 15 RF transponders and 

achieve a total data rate of 150 Mb/s. A single RF transponder consumes anywhere from 30 

Watts to 300 Watts, and to produce an equivalent data rate, a satellites would consume a 

power of up to 1 KW because it would need anywhere from 10 to 30 RF transponders. 

 

There is insignificant chance of interference from another user in optical communication as it 

depends on lasers as the transmission source. The potential overlap area of multiple laser 

signals is radically decreased by the fact that lasers have very tight beam widths, and no side 

or back lobes. The interference can only occur if another laser is incident on the detector and 

this is extremely unlikely and can be designed around. In addition, optical communication is 

much more secure than RF communication because the tight beam width of lasers is virtually 

impossible for an outside observer to detect if a transmission is taking place while an RF 

transponder will spread its radiated energy over a much larger area. This is considered to be 

another advantage of the tight beam width of lasers [29]. Moreover, the eavesdropping on a 

transmission is almost impossible in optical systems and even detecting that a transmission is 

taking place is difficult because only scattered light can be seen off the optical path of the 

laser, and in space, there are few particles to produce such scatter. Therefore, optical links 

require less encryption to maintain the integrity and safety of the data stream.  More complete 

use of the available bandwidth for actual data, in turn, is allowed, and the overall efficiency of 

the optical system is increased compared to an RF system [29]. However, a line of laser is a 

big challenge. 
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Phillips et al [30,31] highlighted that the bandwidth limitations of microwave satellite links 

traditionally resulted in greater restrictions on the bit rate in satellite communications, but for 

compatibility with the STM-1 signal in the new synchronous digital hierarchy (SDH) there is a 

requirement to operate at a bit rate of 155 Mbit/s and above. Therefore, laser satellite 

communications have been proposed for intersatellite links. 

 

Cryan & Unwin [32] pointed out the advantages of optical technologies for space 

communications: 

 

• The optical transmitter is a diode laser which is efficient, compact, reliable and 

inexpensive. 

• The high frequency of the optical carrier leads to communications at data rates far in 

excess of those realisable using RF and microwave systems. 

• The mass of the communication subsystems and hence the mass of the satellite host 

is reduced as a result of the use of transmission optics of modest dimensions which is 

resulted by the short emission wavelength. 

• The antenna size and the power consumption of the communication subsystem are 

reduced in optical systems.  

 

As well as considering the advantages of optical technologies for space communications, 

Cryan & Unwin [32] explained the tradeoffs between direct detection and coherent detection. 

This examination of the detection technique leads to the direct detection as the preferred 

technology for optical satellite communications as a result of the reduced complexity and 

greater potential sensitivity. In addition, the direct detection systems are being more actively 

pursued because they are insensitive to phase and frequency noise associated with lasers, 

whereas the coherent systems contain complicated optics and electronics in order to 

accomplish reasonable error rates as a result of excessive frequency and phase noise 

associated with semiconductor laser diodes. However, it should be noted that shot noise 
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limited coherent detection offers the best solution in the situation where background noise 

and noise associated with the receiver can not be ignored. 

 

Therefore, according to these considerations, this research work is concerned with an 

analysis of intersatellite links in space, with optical links using laser diodes as sources being 

considered in particular because , generally, for many applications, they have many 

advantages: small size; high electrical to optical efficiencies; tightly focused beam. In addition, 

it is possible to adapt the technology used in fibre optic links to free-space communications 

and so multi-Gbit/s transmission is possible using readily available integrated driver chips. 

This chapter presents detailed information and in-depth analysis for two types of sources 

which are in use at present: semiconductor laser diodes (SLDs) and light emitting diodes 

(LEDs). Despite the fact that LED is used in fibre optic and can not be used with Mach-

Zehnder interferometer device, which is used as an external modulator of the continuous 

wave (CW) laser source,  but it is discussed into this chapter in order to clarify the operation 

process of the SLD. This, in turn, allows selecting the appropriate emission wavelength and 

the suitable semiconductor material of the laser source to be used in free space links and 

speed of 1 Gbit/s. This information represents the main goal of designing the transmitter in 

such links. 
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3.2 Comparative Review 

3.2.1 Semiconductor Laser Diodes (SLDs) and Light-emitting Diodes 

(LEDs): 

 

Cryan & Unwin [32] highlighted the laser diode as the attractive candidate for intersatellite 

optical communication transmitter as a result of its compactness, simplicity and high 

efficiency. The use of transmission optics of modest dimensions and reducing the mass of the 

communication subsystem are resulted by the short emission wavelength which is in the 

region of 0.85 µm as the majority of proposed communication systems are based upon 

GaAlAs laser diodes. Directly modulating the laser injection current performs the optical 

intensity modulation.  

  

Ferrier et al [33] found that the technology of the semiconductor lasers is the enabling 

technology for coherent optical intersatellite links. They considered that very stringent 

requirements on the laser transmitter are required when using coherent detection system. 

These include mode stability, frequency response and a very narrow linewidth. In addition, 

they deduced that further stringent requirements should be met by the laser: it should be 

capable of high-speed modulation, where the lasers are modulated by direct modulation of 

the bias current; it should be capable of operating at high power; it should have low intensity 

noise to decrease the excess noise density produced at the receiver; it should be reliable, 

which is particularly significant for space applications. Furthermore, they highlighted that the 

buried heterostructure distributed feedback (BH) DFB InGaAsP laser is well suited to high-

speed modulation and can be made very reliable. This is because this structure of the laser 

can, while maintaining a low leakage current, operate at current many times greater than the 

threshold current. In addition, the series resistance and the parasitic capacitance and 

inductance are kept at low levels as fabrication; mounting and packaging are permitted by this 

laser structure [33]. 
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The principal light sources used for fibre optic communications applications are 

heterojunction-structured semiconductor laser diodes (also referred to as injection laser 

diodes or ILDs) and light-emitting diodes (LEDs). A heterojunction consists of two adjoining 

semiconductor materials with different band-gap energies. These devices are suitable for fibre 

transmission systems because they have adequate output power for a wide range of 

applications, their optical power output can be directly modulated by varying the input current 

to the device, they have a high efficiency, and their dimensional characteristics are 

compatible with those of the optical fibre. Comprehensive treatments of the major aspects of 

LEDs and laser diodes are presented in various books and journals [6-7, 34-39]. 

 

The light-emitting region of both LEDs and laser diodes consists of a pn junction constructed 

of direct-band-gap III-V semiconductor materials. When this junction is forward biased, 

electrons and holes are injected into the p and n regions, respectively. These injected minority 

carriers can recombine either radiatively, in which case a photon of energy hv is emitted, or 

nonradiatively, whereupon the recombination energy is dissipated in the form of heat. This p n 

junction is thus known as the active or recombination region. 

 

A major difference between LEDs and laser diodes is that the optical output from an LED is 

non-coherent, whereas that from a laser diode is coherent. In a coherent source, the optical 

energy is produced in an optical resonant cavity. The optical energy released from this cavity 

has spatial and temporal coherence, which means it is highly monochromatic and the output 

beam is very directional.  In a non-coherent LED source, no optical cavity exists for 

wavelength selectivity. The output radiation has a broad spectral width, since the emitted 

photon energies range over the energy distribution of the recombining electrons and hole, 

which usually lie between 1 and 2 BK T. In addition, the non-coherent optical energy is 

emitted into a hemisphere according to a cosine power distribution and thus has a large beam 

divergence. 
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Sibley [6] highlighted the needed characteristics of the light source to be effective in an optical 

link: it must be possible to modulate the light output over a wide range of modulating 

frequencies and to operate the device continuously at a variety of temperatures for many 

years; the emitting area should be small in order to couple large amount of power into an 

optical fibre; the output spectrum should be narrow in order to decrease material dispersion in 

an optical fibre link; the wavelength of the output, for fibre links, should coincide with one of 

the transmission windows for the fibre type used. 

 

Sibley [6] identified the differences between semiconductor laser diodes (SLDs) and light 

emitting diodes (LEDs) in several ways: SLDs emit light by stimulated emission, whereas 

LEDs emit light spontaneously; the application of a constant current is required by a laser 

diode to preserve stimulated emission; the output is more directional; and the response time 

is faster. 

 

Stimulated emission takes place when a photon of light impinges on an already excited atom 

and, instead of being absorbed; the incident photon results in an electron to cross the band-

gap, thus creating another photon. The stimulated photon has the same frequency and phase 

as the original and these two create more photons as they pass through the lattice that 

actually multiplies the original photon. Light amplification by the stimulated emission of 

radiation supported by the acronym laser. The light output is coherent and has a narrow 

linewidth because the created photons are all in phase. A quasi-stable state known as a 

population inversion is that the conduction band (CB) has to include a large number of 

electrons and the valence band (VB) a large number of holes before stimulated emission can 

take place, and arises from the injection of a large number of carriers into a heavily doped, 

ELED (the edge light emitting diode) active layer.  If a population inversion exists then, some 

stimulated emission takes place by virtue of the light confinement from the heterojunction. It 

should be noted that some addition optical confinement has to be provided in order to 

guarantee that it is the principal light creating process.  
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This extra confinement arises in a laser diode from cleaving the end faces; therefore they 

form partial reflectors or facets. This resulting structure is called a Fabry-Perot etalon and is 

shown in the following figure [6]: 

 

 

Figure 13. A basic Fabry-Perot cavity [6] 

 

Stimulated emission and hence gain results from some of the spontaneously emitted light that 

is reflected back into the active region by these facets. Thus, provided the optical gain in the 

cavity exceeds the losses, stimulated emission will occur.  

 

Sibley [6] examined the optical gain that is produced by stimulated emission and the spectral 

characteristics of SLDs for the simple stripe contact laser, which is analogous in construction 

to a stripe contact ELED. It should be noted that propagation can take place along all three 

axes; longitudinal, transverse and lateral propagation because light emission takes place in a 

rectangular cavity. He deduced that the optical gain for lasing is expressed as: 
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where rε is the relative permittivity of the active region, spτ is the carrier lifetime for 

spontaneous emission, )( fg  is the Lorenztian curve, 1n is the electron density in the CB, 

2n is the electron density in the VB, gv is the group velocity of the light in the semiconductor 

material, 0λ is cut-off wavelength and f is the frequency of photons.  For stimulated emission 

to take place, 2n has to be greater than 1n . This is the quasi-stable state known as a 

population inversion that can be produced in SLDs by injecting a large number of electrons 

into the active region of a double heterojunction diode. 

 

It should be noted that the SLD has to be biased at a certain current to preserve a population 

inversion. Below this threshold current, the SLD will emit light spontaneously as there will not 

be enough current to create a population inversion. The rate equations for a SLD have to be 

found in order to find the threshold current density ( thJ ).  

 

The SLD rate equations are expressed as: 
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where φ  is the optical flux density (photons/m³), rτ is radiative recombination time, d is the 

distance between the heterojunctions, q is the electronic charge, J is the diffusion current 

density, C is a constant of proportionality for stimulated emission, D is constant that helps to 

explain operation below threshold despite the fact that it is very low typically and phτ is the 

stimulated photon lifetime in the active region. For the first equation: the first term is the 

injected carrier density; the second term is the number of carriers lost due to recombination; 

and the third term is the total loss due to stimulated emission and absorption. As regards the 

second equation: the first term is the total increase in light due to stimulated emission and 
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absorption; the second term is the fraction of spontaneous emission coupled into a laser 

mode; and the third term is the loss due to photons being emitted by the cavity. For the 

steady-state rate equations, the last equations (31) and (32) then become: 
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By combining these equations to give: 
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The first term in this equation is the spontaneous emission term, while the term in the 

brackets relates to stimulated emission. There are three regions of interest with a laser diode: 

operation below threshold, operation at threshold, and operation above threshold. 

 

For operation below threshold, the stimulated emission term is zero and so: 
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Thus, the equation (35) becomes: 
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 The output optical power is then expressed as: 

          f
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This equation indicates that the power output of a SLD operating below threshold is directly 

proportional to the applied current, that is, it is operating as an LED. Taking into account, the 

factor fh has been included as a photon density has been considered. 

 

For operation at threshold, the light output will raise until there is sufficient spontaneously 

emitted light to result in stimulated emission as a result of increasing of the drive current. At 

this stage, the spontaneous emission can be neglected and the second equation from the 

steady-state rate equations, equation (34), becomes: 
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where thn is the threshold electron density and B is the Einstein coefficient. The C is given by: 

               )( fgBhC f=                             (44) 

And, from pervious equation of the optical gain, equation (29), the optical gain at threshold is: 
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The optical gain at threshold is also given by: 
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where α is the attenuation of the optical power per unit length (hence the factor 1/2), 1R and 

2R are the reflectivity of the mirrors at x = 0 and x = L respectively, and L is the length of 

cavity. 

Then the photon lifetime phτ is expressed as: 
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The physical parameters of the SLD only determine the photon lifetime that also sets a limit 

on the maximum rate of modulation. Therefore, the threshold electron density becomes: 
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The bias current supplies these carriers, and so the threshold current density is: 
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By assuming thn  >> 1n , then: 
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 And so thJ  at the nominal wavelength of emission is: 
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where fδ  is half-power spread propagating through the SLD. This fδ can be found by one 

way that is to excite the SLD material with light of varying wavelength, and plot the variation of 

absorption with frequency. This equation shows that thJ  is directly proportional to the width of 

the active region, and the linewidth of the ELED that makes up the SLD. Despite the fact that 

this equation is reasonably accurate at low temperature, it can be approximated under normal 

operating conditions by: 

             )120/exp(5.2)( TJTJ thth =                               (55) 

 

For operation above threshold, the spontaneous emission is neglected, and so the resulted 

equation from combining the two rate equations, equation (35), becomes: 
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In this case, the gain is effectively clamped at the value given by equation (49). And so any 

raise in carrier density will not raise the gain – it will, however, raise the light output. Under 

these conditions, it can be written: 
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Sibley [6] considered that commonly with the planar optical waveguide, light waves of certain 

wavelengths only can propagate in the cavity. The condition for successful propagation is that 

the reflected and original waves have to be in phase. 

Where N is an integer. The cut-off wavelength is expressed as: 

                    L
N

n1
0

2
=λ                                     (59) 

Therefore, the laser will only amplify wavelengths that satisfy 0λ . Each wavelength is known 

as a longitudinal mode, or simply a mode. The modes result in a line spectrum, and the mode 

spacing will be produced by solution of the last equation of 0λ . 

The bias current determines highly the spectral emission of a laser. Below threshold, 

spontaneous emission predominates and so the linewidth is analogous to that of an LED. 

However, above threshold, the linewidth decreases because the cavity exponentially amplifies 

the first mode to reach threshold, at the expense of all other modes. To examine this, as 

mentioned above, the steady-state solution for the photon density is given by equation (34). 

By rearranging this equation to give the photon concentration: 
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The term outside the brackets is the amount of spontaneous emission coupled into a laser 

mode. Therefore, this equation can be interpreted as an amplification factor, G, which is 

acting on the spontaneous emission of an ELED, given by: 
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Since the gain function has a Lorenztian distribution, it can be expressed as: 
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When a SLD operates below threshold, the term in {} is small, and thus the cavity amplifies all 

the propagating modes to the same extent. The following figure shows the effect that the 

amplification increases when the diode current is increased, but the mode whose wavelength 

is closest to the nominal operating wavelength is amplified the most: 

 

Figure 14. (a) Allowable modes in a SLD; (b) gain profile of a SLD operating below threshold; 

(c) gain profile of a SLD operating above threshold; and (d) resultant emission spectrum [6] 

Therefore, when a SLD operates above threshold, the linewidth is considerably less than that 

of an ELED. 

In practice, the output consists of a range of modes following a gain profile because modes 

close to the principle also pass through significant amplification. This profile can be 

approximated to the Gaussian distribution: 
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where σ  is the linewidth of the laser output. The linewidth of typical stripe contact SLDs can 

vary from 2 to 5 nm. 

The gain profile could shift slightly if the laser is operated at currents significantly higher than 

threshold. Therefore, one of the modes close to the nominal wavelength becomes control. 

This effect is known as mode-hopping and it is responsible for kinks in the power/current 

characteristic. This mode-hopping can modify the operating frequency if the laser is 

modulated by varying the drive current, and so dynamic mode-hopping is also known as 
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chirp. The stripe contact lasers are not commonly used in high-data-rate optical fibre links 

because mode-hopping can result in problems in these links. Any chirp on the optical pulse 

will alter the operating wavelength so resulting in pulse dispersion if the link is operating at a 

zero dispersion wavelength. Then, alternative laser structures have to be used. 

As mentioned, there are also transverse and lateral as well as longitudinal modes. These tend 

to yield an output beam which is highly divergent, resulting in inefficient launching into an 

optical fibre. The ideal situation is one in which only the principle transverse and lateral 

modes are existed. This would produce a parallel beam of light of very small cross-sectional 

area. The condition for a single lateral mode is analogous to that for a planar dielectric 

waveguide, and so 
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where 1n  and 2n are the refractive indices of the active region and the surrounding material 

respectively. In most laser diodes, the active region is typically less than 1 µm thick and the 

last equation is usually satisfied. The single transverse mode operation is more difficult to 

perform. This is because the width of the active region is set by the current density profile in 

the active layer, which can be difficult to dominate in the stripe contact lasers.  

 

Sibley [6] concluded that the frequency response of the SLD has a peak at a frequency close 

to the natural frequency of the cavity, 0ω . This is known as a relaxation resonance, and it is 

caused by a resonance between the photon and electron populations in the laser. Under 

digital modulation, this gives rise to the ringing that the optical pulse suffers from it at an 

angular frequency given by
2

22

0

phth

s

sth
n

nC
τ

φ
φω == . It should also be noted that the 

response falls off at a rate 
22

0 / mωω  (where mω  is an angular frequency at which the diode 

current is modulated) at frequencies above 0ω . Therefore, the bandwidth of the SLD is set by 

the frequency of the relaxation resonance. Since SLDs are normally used in long-haul, high-

data-rate routes, which use SM fibres, it is generally desirable to minimise the linewidth and 
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operate with a single lateral mode. It is also significant to decrease the threshold current, as 

this will yield a more efficient device. 

 

Sibley [6] found that the stripe contact design is the most common SLD structure for general 

use. The decreasing of the active region cross-sectional area is the most explicit way of 

decreasing the threshold current thI . As this is set by the area of the stripe contact, the thI  

could be decreased by decreasing of the cavity length. However, this causes increasing of the 

threshold current density, thJ , as a result of increasing of the gain required for threshold. The 

cavity length is usually limited to typically 150 µm because of heatsinking problems that result 

from a high current density. Therefore, the reduction of the contact width has to be made to 

decrease thI . To a certain extent the width of the active region is set by the width of the 

contact. Since the injected current tends to diffuse outwards as it passes through the laser if 

the contact stripe width is less than about 6 µm, the threshold current  thI practically  fails to 

fall in proportion to the contact stripe width. Ultimately, the threshold current of stripe contact 

lasers is usually no less than 120 mA because an existed active region that is independent of 

the contact width. 

 

A different structure should be used to decrease the threshold current thI further, and operate 

with a single lateral mode. The following figure shows that the diode current in a buried 

heterostructure, BH, laser is restricted to flow in a well-defined active region: 

 

 

Figure 15. Cross-section through a buried-heterojunction, semiconductor laser diode [6] 
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In the heterojunctions, a carrier confinement is provided by either side of the active region, 

and thus the width of this region can be made very small, typically 2 µm or less. These 

heterojunctions will also yield a narrow optical waveguide, and so single lateral mode 

operation is often performable. The threshold current of these devices is typically 30 mA. The 

gain profile of the BH structure is considerably narrowed by using a small active region. This 

is considered as a further advantage of the BH structure. Therefore, the emission spectrum of 

some BH lasers can consist of a single line- a considerable advantage in long-haul routs 

operating at a zero dispersion wavelength. However, the wavelength of emission may alter 

during operation so resulting in dispersion because the gain profile is dependent on the 

junction temperature. 

 

The distributed feedback, or DFB, laser that is distributing the feedback throughout the laser 

can produce a truly single-mode source. The following figure shows a cross-section through a 

distributed feedback semiconductor laser diode, where a grating replaces the Fabry-Perot 

cavity resonator: 

 

Figure 16. Cross-section through a distributed feedback semiconductor laser diode [6] 

 

In these devices, each perturbation reflects some of the light and the phase of the twice 

reflected light has to match that of the incident light in order to propagate successfully. This 

produces the effect of grating that is to choose just one propagating mode. This condition is 

expressed as: 

                                 0

..

22 λmAn =                                             (65) 

where
..

A  is the period of the grating, 2n  is the refractive index of the material above the 

grating, and m is an integer. The factor 2 appears in the lift-hand side of this equation 
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because the light has to be reflected twice in order to be in phase with the incident wave. The 

wave will not propagate and the scattered light from the grating will interfere destructively if 

this condition is not satisfied. On the other hand, this equation is a special case of Bragg’s 

law. So, if m equals unity, the wave is said to be incident at the first Bragg condition. It is also 

possible for light to be reflected using the second Bragg condition that can be seen if m = 2, 

the grating period will increase, so making it easier to fabricate. It should be noted that a 

grating in the active region will result in surface dislocations, and this will increase the non-

radiative recombination rate. Therefore, the grating is not part of the active layer. Instead, the 

grating usually exists in a waveguide layer where it interacts with the evanescent field. 

The distributed Bragg reflector, DBR, laser is a modification of the DFB laser. In this device, 

short lengths of grating, which act as frequency selective reflectors, replace the Fabry-Perot 

resonator. In addition, despite of many modes propagate in the active region, a single 

wavelength only is reflected back and undergoes amplification. 

 

The threshold current of both these devices is typically 20 mA, and their linewidth is quite 

narrow < 0.5 nm. Therefore, these devices are often used for high-data-rate/long-haul routes. 

As mentioned, these lasers depend on the grating period to choose a special wavelength. 

However, the wavelength will alter because changes in temperature will result in the grating to 

expanding or contracting. The laser temperature can be controlled by mounting the 

semiconductor on a peltier cooler. If a thermistor is placed close to the device, a simple 

control loop can be used to preserve the laser temperature.  

 

Sibley [6] highlighted the packaging of SLDs in the laboratory and for commercial applications 

as the following: 

 

For using in the laboratory: SLDs are usually mounted in brass studs. With this package, 

the body of the stud forms the anode of the SLD, and so the lead at the rear of the package 

has to be connected to a negative voltage, current source. A thread on the back of the stud 

enables the user to bolt the diode on to an efficient heatsink.   
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For commercial applications: the SLD is commonly mounted on a Peltier cooler in a dual-

in-line package. The power monitoring facility is provided by a photodiode that is placed on 

the non-emitting end of the laser. A fibre pig-tail, with a lens grown on the laser end of the 

fibre, provides the output. For launching into MM fibre, a hemispherical lens is often used, 

whereas for launching into SM fibres, a tapered lens is more common. The lenses can be 

made by dipping the fibre end into low-melting-point glass. With this technique, up to 66 per 

cent of the output power can be coupled into the fibre. 

 

As a SLD ages, the threshold current requirement tends to increase because carrier lifetime 

reduces with age. Therefore, a feedback loop has to be used that monitors the laser output, 

and increases the drive current accordingly. However, the threshold point tends to become 

less well-defined as time passes, and so the control loop has to contain some means of 

raising an alarm if the threshold requirement becomes too great. Accelerated life testing 

suggests that this condition takes place after, typically, 20 to 25 years. 

 

Sibley [6] concluded that semiconductor laser diodes are used in optical fibre links but are 

seldom used in free-space optical links as a result of their low output power. Instead, high-

power solid-state or gas lasers are used. Such lasers are usually physically large, and 

modulation of the light output can prove difficult. In spite of this, such lasers are often used in 

the laboratory, and their application to free-space links is developing.  

 

Sibley [6] highlighted that the recombination of the minority carriers in a p-n semiconductor 

diode, holes in the n-type and electrons in the p-type, can take place by electrons dropping 

down from the CB to the VB when a forward bias is applied to a semiconductor and thus the 

barrier voltage of a p-n semiconductor junction diode decreases. This recombination leads to 

the electrons losing a certain amount of energy equal to the band-gap energy difference. 

There are two different processes for this recombination: indirect transitions (also known as 

non-radiative recombinations) which generate lattice vibrations, or phonons; and direct 

transitions (or radiative recombinations) which generate photons of light.  
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The wavelength of the incident photon is given by: 
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=λ                                            (66) 

Where 1E  is valence band (VB) electron energy, 2E   is the conduction band (CB) electron 

energy, and 12 EE −  is the change in energy. The lowest possible energy change is the 

band-gap energy of the material, and so this results in a cut-off wavelength beyond which the 

material becomes transparent. These cut-off wavelengths are identical to the emission 

wavelengths of sources made of the same material.  

The following table lists the band-gap energy, and transition type, of a range of 

semiconductors. It can be seen from this table that the semiconductors have a direct band-

gap, and so are most often used. However, all the common single element materials have an 

indirect band-gap and so are never used as light sources. This table is: 

 

Characteristics of various semiconductor materials 

(D – direct, I – indirect band-gap) 

Semiconductor 

material 

Transition 

type 

Band-gap 

Energy (eV) 

Wavelength of 

emission (µm) 

InAs D 0.36 3.44 

PbS I 0.41 3.02 

Ge I 0.67 1.85 

GaSb D 0.72 1.72 

Si I 1.12 1.11 

InP D 1.35 0.92 

GaAs D 1.42 0.87 

CdTe D 1.56 0.79 

GaP I 2.26 0.55 

SiC I 3.00 0.41 
 

Table 5. Characteristics of various semiconductor materials (D-direct, I –indirect band-gap) 
 

Silicon responds to light of wavelengths up to 1.1 µm, whereas germanium photodiodes 

operate up to 1.85 µm. 
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Keiser [7] considered that the lasing medium can be a gas, a liquid, an insulating crystal (solid 

state), or a semiconductor. Despite the fact that there are some differences between them, 

the basic principle of operation is the same for each type of laser and semiconductor laser 

diodes are similar to other lasers, such as the conventional solid-state and gas lasers, in that 

the emitted radiation has spatial and temporal coherence; that is, the output radiation is highly 

monochromatic and the light beam is very directional. However, semiconductor laser diodes 

are almost exclusively the laser sources used for optical fibre systems.  

 

Keiser [7] demonstrated that Laser action is the consequence of three major processes: 

photon absorption, spontaneous emission, and stimulated emission. The following simple 

two-energy-level diagrams represent these three processes: 

 

 

Figure 17. The three key transition processes involved in laser action [7] 

 

The open circle represents the initial state of the electron and the filled circle represents the 

final state. Incident photons are shown on the left of each diagram and emitted photons are 

shown on the right. 

where 1E  is the ground-state energy and 2E  is the excited-state energy.  The absorption or 

emission of a photon of energy 1212 EEhv −=  is involved by a transition between theses two 

states according to Planck’s law. When a photon of energy 12vh  collides on the system, that 

normally is in the group state,  an electron in state 1E  can absorb the photon energy and be 

excited to state 2E , as shown in (a). 

Since this is an unstable state, the electron will shortly return to the ground state, thereby 

emitting a photon of energy 12vh  without any external stimulation. This is called spontaneous 
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emission, as shown in (b). However, these emissions come out as a narrowband Gaussian 

output because they are isotropic and of random phase. 

The electron can also be induced to make a downward transition from the excited level to the 

ground-state level by an external stimulation. If photon of energy 12vh  collides on the system 

while the electron is still in its excited state, the electron is directly stimulated to drop to the 

ground state and give off a photon of energy 12vh . This is called stimulated emission, as 

shown in (c). However, this emitted photon is in phase with the incident photon.  

 

The stimulated emission is basically negligible when most of photons incident on the system 

will be absorbed because the density of excited electrons is very small in thermal equilibrium. 

Only if the population of the excited states is greater than that of the ground state, stimulated 

emission will go beyond absorption. This condition is known as population inversion that is 

performed by various pumping techniques as it is not an equilibrium condition. In a 

semiconductor laser, population inversion is achieved by injecting electrons into the material 

at the device contacts to fill the lower energy states of the conduction band. 

 

Keiser [7] concluded that the semiconductor injection laser diode is preferred over the LED for 

optical fibre communication systems requiring bandwidth greater than approximately 200 

MHz. However, the construction of laser diodes is more complicated, basically as a result of 

the additional requirement of current confinement in a small lasing cavity. The double-

heterojunction LED configuration developed from the successful demonstration of both carrier 

and optical confinement in heterojunction injection laser diodes. The more quick development 

and utilization of LEDs as compared with laser diodes existed in the inherently simpler 

construction, the smaller temperature dependence of the emitted optical power, and the 

absence of decreasing in LEDs. In addition, he found that Laser diodes, which are typically 

have response times less than 1ns and have optical bandwidths of 2nm or less, are generally 

capable of coupling several tens of milliwatts of useful luminescent power into optical fibres 

with small cores and small mode-field diameters. Actually all laser diodes in use are 

multilayered heterojunction devices. 
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Optical transitions between distributions of energy states in the valence and conduction bands 

produce stimulated emission in semiconductor lasers. This varies from gas and solid-state 

lasers, in which radiative transitions take place between discrete isolated atomic or molecular 

levels. 

 

The radiation in the laser diode is created within a Fabry-Perot resonator cavity that is much 

smaller, being approximately 250-500 µm long, 5-15 µm wide, and 0.1-0.2 µm  thick. In the 

laser diode Fabry-Perot resonator, pair of flat, partially reflecting mirrors are directed toward 

each other to enclose the cavity. The aim of these mirrors is to give strong optical feedback in 

the longitudinal direction, thereby converting the device into an oscillator with gain mechanism 

that offsets for optical losses in the cavity. The laser cavity can have many resonant 

frequencies. The device will oscillate at those resonant frequencies for which the gain is 

sufficient to surmount the losses. The sides of the cavity are simply formed by roughening the 

edges of device to decrease unwanted emissions in these directions. 

 

Keiser [7] found that a pattern of electric and magnetic fields lines called the modes of the 

cavity is produced by the optical radiation within the resonance cavity of a laser diode. These 

can adequately be separated into two independent groups of transverse electric (TE) and 

transverse magnetic (TM) modes. Each group of modes can be expressed in terms of the 

longitudinal, lateral, and transverse half-sinusoidal variations of electromagnetic fields along 

the major axes of the cavity. 

 

The longitudinal modes: they are correlated to the length L of the cavity and define the main 

structure of the frequency spectrum of the emitted optical radiation. Many longitudinal modes 

can present because L is much larger than the lasing wavelength of approximately 1µm.  

 

The lateral modes: they lie in the plane of the pn junction. The side wall preparation and the 

width of cavity determine these modes that define, in their turn, the shape of the lateral profile 

of the laser beam. 
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The transverse modes: these modes are of great importance, because they highly define 

such laser characteristics as the radiation pattern (the angular distribution of the optical output 

power) and the threshold current density. They are companioned with the electromagnetic 

field and beam profile in the direction perpendicular to the plane of the pn junction.  

 

The lasing conditions and resonant frequencies can be defined by expressing the 

electromagnetic wave propagating in the longitudinal direction (along the axis normal to the 

mirrors) in terms of the electric field phasor 

 

                
)()(),( zwtj

ezItzE
β−×=                              (67) 

where )(zI is the optical field intensity, ω is the optical radian frequency, and β  is the 

propagating constant. 

 

The requirement for lasing, that is the condition at which light amplification becomes possible 

in the laser diode, is that a population inversion be performed. The main relationship between 

the optical field intensity I , the absorption coefficient α , and the gain coefficient g  in the 

Fabry-Perot cavity can clarify this condition. The stimulated emission rate into a given mode is 

proportional to the intensity of the radiation in that mode. The radiation intensity at a photon 

energy hv  differs exponentially with the distance z that it passes through along the lasing 

cavity according to the relationship: 
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Where 
−

α  is the effective absorption coefficient of the material in the optical path and Γ is the 

optical-field confinement factor that is the fraction of optical power in the active layer. The 

feedback mechanism of the optical cavity produces the optical amplification of selected 

modes. In the repeated passes between the two partially reflecting parallel mirrors, a part of 

the radiation companied with those modes that have the highest optical gain coefficient is 

kept and further amplified during each trip through the cavity. 



Chapter 3. Transmitter (TX) 

 

 

 

77 

 

Keiser [7] considered that examining the laser diode rate equations that control the interaction 

of photons and electrons in the active region can define the relationship between optical 

output power and the diode drive current. As mentioned above, carrier injection, spontaneous 

recombination, and stimulated emission define the total carrier population. For a pn junction 

with carrier-confinement region of depth d, the rate equations are expressed as: 

                           
ph

spRCn
dt

d

τ

φ
φ

φ
−+=

                            (69) 

This controls the number of photons φ . The first term is a source of photons arising from 

stimulated emission, the second term, describing the number of photons resulted by 

spontaneous emission, is relatively small compared with the first term, and the third term 

implies the decay in the number of photon resulted by loss mechanisms in the lasing cavity.   

And: 

                     φ
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Which controls the number of electrons n . The first term represents the raise in the electron 

concentration in the conduction band as current flows into the device, and the second and 

third terms indicate the number of electrons lost from the conduction band as a result of 

spontaneous and stimulated transitions, respectively. 

 

Where C is a coefficient describing the strength of the optical absorption and emission 

interactions, spR is the rate of spontaneous emission into the lasing mode, phτ  is the photon 

lifetime, spτ  is the spontaneous recombination lifetime, and J is the injection-current density. 

The last two equations could be balanced by considering all the factors that affect the number 

of carriers in the laser cavity. Solving these two equations for a steady-state condition, which 

is characterized by the left-hand sides of these two equations being equal to zero, will 

produce an expression for the output power.  
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For the equation (69), assuming spR  is negligible and noting that 
dt

dφ
  has to be positive 

when φ  is small: 
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This indicates that n has to go beyond a threshold value thn  in order for φ  to rise.  

For the equation (70), this threshold value can be expressed in terms of the threshold current 

thJ needed to preserve an inversion level thnn =  in the steady state when the number of 

photons 0=φ : 
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This expression determines the current required to support an excessive electron density in 

the laser when spontaneous emission is the only decay mechanism. 

 

Keiser [7] identified the external differential quantum efficiency extη  as the number of photons 

emitted per radiative electron-hole pair recombination above threshold. Under the assumption 

that above threshold the gain coefficient keeps fixed at thg , extη  is given by: 
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where iη  is the internal quantum efficiency. However, it is not well-defined quantity in laser 

diodes where most measurements result in 7.06.0 −≅iη at room temperature.  
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Experimentally, extη  is defined from the straight-line part of the curve for the emitted optical 

power P  versus drives current I , which gives: 
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where gE  is the band-gap energy in electron volts, dP  is the incremental change in the 

emitted optical power in milliwatts for an incremental change dI in the drive current (in 

milliamperes), and λ is the emission wavelength in micrometers. For standard semiconductor 

lasers, external differential quantum efficiencies of 15-20 percent per facet are typical. High-

quality devices have differential quantum efficiencies of 30-40 percent. 

       

Keiser [7] concluded that the current flow has to be limited laterally to a narrow stripe along 

the length of the laser that is a principle requirement for efficient operation of laser diodes, in 

addition to transverse optical and carrier confinement between heterojunction layers. Several 

methods of performing this have been suggested, but all strive for the same aims of limiting 

the number of lateral modes. Therefore, lasing is restricted to a single filament, stabilizing the 

lateral gain, and guaranteeing a relatively low threshold current. 

 

Keiser [7] highlighted that a compromise has to be made between current density and output 

beam width when designing the width and the thickness of the optical cavity. Because when 

either the width or the thickness of the active region increases, a narrowing of the lateral or 

transverse beam width takes place, respectively, but at the expense of a raise in the threshold 

current density. Most waveguide devices have a lasing spot 3µm wide by 0.6µm high. This is 

significantly greater than the active-layer thickness, since about half the light runs in the 

confining layers.  
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The achievable threshold current density, modulation speed, and linewidth of the device are 

limited because the electronic and optical properties remain the same as in the bulk material 

despite that fact that the active layer in a standard double-heterostructure laser is thin enough 

(1-3 µm) to restrict electrons and the optical field. Quantum-well lasers surmount these 

limitations by having an active-layer thickness around 10 nm. This changes the electronic and 

optical properties dramatically, because the dimensionality of the free-electron motion is 

decreased from three to two dimensions. A quantization of the energy levels results from the 

confinement of the carrier motion normal to the active layer. The possible energy-level 

transitions which result in photon emission are designated by ∆Eij . Both single quantum-well 

(SQW) and multiple quantum-well (MQW) lasers have been manufactured, where these 

structures include single and multiple active regions, respectively. Barrier layers are the layers 

separating the active regions. The MQW lasers have a better optical-mode restriction, which 

leads to a lower threshold current density. The wavelength of the output light can be changed 

by adapting the layer thickness d. The following figure shows energy-band diagram for a 

quantum layer in a multiple quantum-well (MQW) laser, the parameter ∆Eij represents the 

allowed energy-level transitions [7]: 

 

Figure 18. Energy-band diagram for a quantum layer in a multiple quantum-well (MQW)   

laser [7] 
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Keiser [7] demonstrated that single-mode lasers, which have to include only a single 

longitudinal mode and a single transverse mode, are needed for high-speed long-distance 

communications. Thus, the spectral width of the optical emission is very narrow. The 

decreasing of the length L of the lasing cavity to the point where the laser transition line width 

is lower than the frequency separation ∆v of the adjacent modes is one method of confining a 

laser to have only one longitudinal mode. However, these lengths make the device hard to 

handle, and they are restricted to optical output powers of only a few milliwatts. 

Vertical-cavity surface-emitting lasers are among alternative devices that were thus 

developed. The following figure shows a basic architecture of a vertical-cavity surface-

emitting laser: 

 

Figure 19. Basic architecture of a vertical-cavity surface-emitting laser [7] 

 

The major aspect of a vertical-cavity surface-emitting laser (VCSEL or VCL), that makes the 

integration of multiple lasers easy onto a single chip in one- or two-dimensional arrays, which 

makes them attractive for wavelength-division-multiplexing applications, is that the light 

emission is perpendicular to the semiconductor surface. Very low threshold currents (< 100 

µA) result from the very small active region volume of these devices. In addition, the 

modulation bandwidths are much greater for an equivalent output power compared to edge-

emitting lasers because the higher photon densities decrease radiative lifetimes. A maximum 

reflectivity is needed for efficient operation, thus the mirror system used in VCSELs is of 

critical importance. 
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There are three types of laser configurations using a built-in frequency-selective reflector, 

which are: distributed-feedback (DFB) laser; distributed-Bragg-reflector (DBR) laser; and 

distributed-reflector (DR) laser. In each case, the frequency-selective reflector is a corrugated 

grating which is a passive waveguide layer adjacent to the active region. The optical wave 

propagates parallel to this grating. The distributed Bragg phase-grating reflector determines 

the operation of these types of lasers. A phase grating is mainly a region of periodically 

varying refractive index that results in two counterpropagating travelling waves to couple. The 

coupling is at a maximum for wavelengths close to the Bragg wavelength Bλ , which is related 

to the period Λ of the corrugations by: 

                                
K

ne

B

Λ
=

2
λ                                       (75) 

Where en  is the effective refractive index of the mode and K  is the order of the grating. The 

strongest coupling is provided by first-order gratings ( 1=K ), but sometimes second-order 

gratings are used since their larger corrugation period facilitates manufacture. Lasers based 

on this architecture offer good single-mode longitudinal operation with low sensitivity to drive-

current and temperature variations. 

 

The distributed-feedback (DFB) laser: It can be shown by figure 20:  

 

Figure 20. The distributed-feedback (DFB) laser [7] 

 

In this configuration, the grating for wavelength selector is configured over the entire active 

region. The longitudinal modes in an ideal DFB laser are spaced identically around Bλ  at 

wavelengths given by: 
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Where ,.......2,1,0=m is the mode order and eL is the effective grating length. The 

amplitudes of successively higher-order lasing modes are highly decreased from the zero-

order amplitude. Theoretically, the two zero-order modes, in a DFB laser that has both ends 

antireflection-coated, on either side of the Bragg wavelength should experience the same 

lowest threshold gain and would lase simultaneously in an idealized identical structure. 

However, in practice, the degeneracy in the model gain is lifted and a single-mode operation 

is resulted by the randomness of the cleaving process. This facet asymmetry can be further 

raised by putting a high-reflection coating on one end and a low-reflection coating on the 

other.  

The distributed-Bragg-reflector (DBR) laser: shown in the figure 21: 

 

Figure 21. The distributed-Bragg-reflector (DBR) laser [7] 

 

In this configuration, the cleaved end mirrors used in the Fabry-Perot optical resonator are 

replaced by the gratings that are located at the ends of the normal active layer of the laser. 

The distributed-reflector (DR) laser: shown in the figure 22: 

 

Figure 22. The distributed-reflector (DR) laser [7] 
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This configuration consists of active and passive distributed reflectors. The lasing features of 

conventional DFB and DBR lasers are improved by this structure that has a high efficiency 

and high output capability. 

 

The second structure of vertical-cavity surface-emitting lasers is tunable laser sources that 

are significant instruments for tests that measure the wavelength-dependent response of an 

optical component or link. For example, Hewlett-Packard (Model 8168B) that creates a true 

single-mode laser line for every selected wavelength point. The source is an external-cavity 

semiconductor laser. A tunable filter for wavelength selection is a movable diffraction grating. 

According to the source and grating combination, a typical instrument is tunable over either 

the 1280-to-1330-nm band or the 1450-to-1565-nm band. The minimum output power of 

these instruments is -10 dBm and the absolute wavelength accuracy is typically ±0.1 nm. 

 

Keiser [7] considered that the temperature dependence of the threshold current )(TI th  is a 

significant factor in the application of laser diodes. Various complex temperature-dependent 

factors result in increasing this parameter with temperature in all types of semiconductor 

lasers. Despite of the fact that the formulation of a single equation that holds for all devices 

and temperature ranges is hindered by the complexity of these factors, the temperature 

variation of  thI can be approximated by the empirical expression: 

 

                                  0/
)(

TT

zth eITI =                                            (77) 

 

where 0T  is a measure of the relative temperature insensitivity and zI  is a constant. 
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For a conventional stripe-geometry GaALAs laser diode, 0T  is typically 
o

C165120 −   in the 

vicinity of room temperature. The following figure shows an example of a laser diode with  

o
CT 1350 =  and mAI z 52= :  

 

Figure 23. Temperature-dependent behavior of the optical output power as a function of the 

bias current for a particular laser diode [7]. 

 

 

For this laser diode, the threshold current increase by a factor of about 1.4 between 20 and 

60
o

C . In addition, the lasing threshold can alter as the laser ages. Consequently, if a 

constant optical output power level is to be preserved as the temperature of the laser changes 

or as the laser ages, it is necessary to adapt the dc-bias current level. Possible ways for 

performing this automatically are optical feedback and feedforward schemes, temperature-

matching transistors, and predistortion techniques.  
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The following figure shows the variation in thI  with temperature is 0.8 percent/
o

C : 

 

 

Figure 24. Variation with temperature of the threshold current thI  for two types of laser 

diodes, which are a conventional stripe-geometry GaALAs laser diode,
o

CT 1350 = , and 

GaALAs quantum-well heterostructure laser at, 
o

CT 4370 =   [7]. 

 

This figure shows also the temperature dependence of thI  for GaALAs quantum-well 

heterostructure lasers. For these lasers, 0T  can be as high as 437
o

C . The threshold 

variation for this particular laser type is 0.23 percent/
o

C . Experimental values of 0T  for 1300-

nm InGaAsP lasers are typically 60-80 K (333-353
o

C ).  
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3.2.2 The emission wavelength 1300 and 1550 nm: 

 

Allen et al [28] chose the 1310-nm region for two reasons. First, the reflectance is about an 

order of magnitude greater at this wavelength than at 1550 nm. Second, driven by the cable 

TV market, fibre-optic technology supporting operation in the 1310-nm band has recently 

reached a maturity level such that these components are economical and reliable.  

 

Wree et al [29] recently considered that the reasonable assumptions for component 

specifications used in 10.7 Gb/s optical transmitter-receiver for free-space system are: the 

wavelength of the  laser is 1550 nm , and both satellites have 10 cm diameter  apertures for 

the optical path length which is 46000 km. 

 

Phillips et al [30, 31] demonstrated the possibility of employing an optically preamplified 

receiver for the purposes of intersatellite laser communication employing PPM.  An optically 

preamplified on-off keyed (OOK) non-return to zero (NRZ) intersatellite system employing 

erbium-doped fibre amplifiers (EDFAs) was proposed by Phillips et al [30, 31]. They found 

that operation at a particular wavelength, which is normally between 1.53 and 1.55 µm, is 

required by the choice of an erbium-doped fibre amplifier (EDFA). Thus, feasibility of their 

system is dependent on the development of high power, and highly directional, laser sources 

for deployment at the transmitter. As a result of corresponding to a low loss wavelength 

region in silica optical fibre, sources at wavelength 1.55 µm are in common use in optical fibre 

communications.  

 

Ferrier et al [33] concluded that Marconi Space Systems are considering the use of 1.55 µm 

distributed feedback lasers (DFB) and operation with a 100 Mbit/s data rate for a heterodyne 

detection space communications system. A breadboard was developed to simulate a Geo-

Geo intersatellite link meeting post 2000 telecommunication traffic requirements. On the other 

hand, they mentioned that InGaAsP lasers operating at 1.55µm which utilize the distributed 

feedback (DFB) structure were existed in 1990. 
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Mikhrin et al [40] reported on GaAs-based broad area (100 µm) 1.3 µm quantum dot (QD) 

lasers with high CW output power (5 W) and efficiency (56%). The reliability of the devices 

has been demonstrated beyond 3000 h of CW operation at 0.9 W and 40 °C heat sink 

temperature with 2% degradation in performance. P-doped QD lasers with a temperature-

insensitive threshold current and differential efficiency up to 80 °C have been realized. 

 

Eric et al [41] simulated a transmission data link using a high speed digital signal to modulate 

a 1300 nm laser diode. A Nd:YAG laser was used to simulate ionizing effects induced by 

transient particle irradiation on the laser diode by creating carriers only in the laser cavity. 

With this method, calibration of ionizing effects, error amplitude and influence of operational 

parameters of the link (frequency, amplitude of modulation...) have been studied. 

 

Rabinovich et al [42] considered that free-space optical links (lasercomm) are finding 

increasing use for commercial systems and are being considered for military systems. The 

narrow divergence and high bandwidth of optical beams enable point-to-point data links at 

rates exceeding 1 Gbit/s. However, these links require large telescopes, lasers, and highly 

accurate pointing systems to work. There are many situations in which one end of the link 

cannot accommodate the weight of a lasercomm terminal. These asymmetric links often have 

lower data requirements than a conventional lasercomm link because the smaller platform 

may have the capacity for only a moderate (1 to 100 Mbit/s) data rate sensor. An optical link 

may still be desirable in these cases because rf terminals for these data rates would be large, 

rf spectrum allocation may be limited, and because optical links are difficult to intercept.  

 

Rabinovich et al [42] demonstrated a 1550-nm eye-safe, free-space optical communications 

link at rates up to 5 Mbits/s over a distance of 2 km in the Chesapeake Bay, using quantum-

well-based modulating retroreflectors. Tests were conducted under various atmospheric 

conditions over a period of about a year. The experimental and theoretical link budgets were 

compared and statistical measurements of the effects of scintillation were collected. 
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3.3 Design of the Transmitter: 
 

 
As can be seen, this research work is concerned with an analysis of intersatellite links in free 

space, with optical links using laser sources being considered in particular. Therefore, a 

detailed literature review for two types of sources which are in use at present: semiconductor 

laser diodes (SLDs) and light emitting diodes (LEDs), and comprehensive treatments of the 

major aspects of laser diodes have been presented. In addition, various techniques for 

modulating the output of a light source have been considered. With a semiconductor light 

source, such as the SLD or LED, the light output can be modulated by varying the drive 

current. However, some form of external modulator has to be used for solid-state and gas 

lasers because they are usually continuous wave (CW) devices. Therefore, a comprehensive 

literature review of Mach-Zehnder interferometer as an external modulator has been 

presented in the 2nd chapter to check the possibility of using it in such links. Since Mach-

Zehnder interferometer is used as an external modulator at high speed, which is usually more 

than 1 Gb/s, it should be noted that some modifications have to be done with a Mach-Zehnder 

interferometer to be used as an external modulator in such links. These modifications have 

been mentioned into the previous chapter. 

 

These treatments show that laser diodes have many advantages compared with LEDs for 

many applications: high electrical to optical efficiencies; small size; tightly focused beam; the 

optical output from a laser diode is coherent and thus the output beam is very directional, 

whereas that from an LED is non-coherent and hence the output radiation has a broad 

spectral width. In addition, it is possible to adapt the technology used in fibre optic links to 

free-space communications and so multi-Gbit/s transmission is possible using readily 

available integrated driver chips. In optical fibre communications, it is common practice to 

modulate a c.w. laser with an external Mach-Zehnder interferometer [6].  As these devices 

operate at a wavelength of 1.55 µm, this must be the wavelength of operation for the link.  
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On the other hand, investigations have been carried out to select the appropriate emission 

wavelength of the laser source and thus the comprehensive literature survey and in-depth 

analysis have been done. These studies considered that free-space optical links (lasercomm) 

are finding increasing use for commercial systems and are being considered for military 

systems. The narrow divergence and high bandwidth of optical beams enable point-to-point 

data links at rates exceeding 1 Gbit/s. However, these links require large telescopes, lasers, 

and highly accurate pointing systems to work.  

 

These investigations reveal that using 1.55 µm as an emission wavelength is receiving a 

great deal of attention, and thus the suitable semiconductor material should be InGaAsP. This 

is because the wavelength 1.55 µm free-space optical communications link achieved 

significant results compared with 1.3 µm under various atmospheric conditions over a time 

period of about a year. Additionally, the wavelength of 850 nm that is working with vertical-

cavity surface-emitting laser (VCSEL) and the semiconductor material is GaAsP has a too low 

power ≈ 5 mW. Further investigations have been presented in the 4th chapter to link between 

selecting the emission wavelength and the material of the light source with the cut-off 

wavelength and the material of the detector. However, it should be noted that although the 

emission wavelength of the light source does not commonly equal to the cut-off wavelength of 

the detector which is made of the same material of that light source is made because the 

emission wavelength can be changed by doping the semiconductor material with impurities 

and hence changing its band-gap. However, it is important to mention that the light source 

and detector in such links are made by the same semiconductor material that is InGaAsP and 

hence the cut-off wavelength equals the emission wavelength which is 1550 nm. 
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3.4 Conclusion: 
 
 

This chapter highlighted the importance of using laser diodes as a light source in optical 

intersatellite links in space. The laser diode has many advantages over many applications. 

These advantages are: small size, high electrical to optical efficiencies, tightly focused beam, 

it is possible to adapt the technology used in fibre optic links to free-space communications 

and so multi-Gbit/s transmission is possible using readily available integrated driver chips. 

Therefore, comprehensive treatments of the major aspects of both two types of sources, 

which are in use at present: semiconductor laser diodes (SLDs) and light emitting diodes 

(LEDs), were presented in this chapter. This, in turn, support selecting the appropriate 

emission wavelength and the suitable semiconductor material of the laser source to be used 

in free space links and speed of 1 Gbit/s.  

 

 

As a conclusion, initial assumption has been considered that the input speed of the link is of 

the order of 128 Mbit/s and the output speed is of the order of 1 Gbit/s. Therefore, work has 

been carried out to establish the model of the transmitter to be used in free space links and 

speed of 1 Gbit/s through selecting the appropriate emission wavelength of the laser source 

and suitable semiconductor material that is used in fabricating this source. These 

investigations reveal that the suitable emission wavelength is 1.55 µm and thus the suitable 

semiconductor material should be InGaAsP. This information represents the main goal of 

designing the transmitter in such links. 
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4.    The model of the link (Receiver (RX)) 

 

4.1 Introduction: 

 

In the field of high bit rate long distance optical transmissions, photoreceivers providing both high 

sensitivity and high bandwidth are of great interest. The use of optical preamplification can be 

attractive in this case, since it leads to separately optimise the noise performance of the receiver 

(mainly limited by the noise of the optical amplifier) and its speed (only given by the photodiode 

bandwidth). In other words, in order to obtain maximum sensitivity, an optically preamplified receiver 

must be optical amplifier noise limited rather than thermal noise limited. 

As mentioned in chapter 2, an optical receiver consists of a photodetector, an amplifier, and signal-

processing circuitry. Therefore, the basic structure of an optical receiver which consists of:                  

a photodiode, a low-noise preamplifier, the front-end, feeds further amplification stages, the post-

amplifier, before filtering. The following figure shows the basic structure of an optical receiver: 

 

 

 

 

 

 

 

Figure 25 . The basic structure of an optical receiver 

As can be seen, an optical receiver converts the received optical energy into an electric signal, and 

then amplifies it to a large enough level so that it can be processed by the electronics following the 

Photodiode 

Preamplifier Post-amplifier 
Pre-detection 

filter 
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receiver amplifier. Comprehensive treatments of the major aspects of an optical receiver are 

presented in various books [6-7, 43-57]. 

This basic structure can be considered as a fundamental base for design of the receiver in optical 

intersatellite links in free space. Therefore, this chapter is concerned with using an optically 

preamplified receiver for such links. It looks at a comparative review with an in-depth analysis 

between PIN photodiode and avalanche photodiode (APD) which is extensively presented and 

conducted in order to select the appropriate detector for the receiver through checking the possibility 

of using avalanche photodiodes (APDs) or PIN photodiodes with semiconductor optical amplifier 

(SOA), and to support selecting the appropriate semiconductor material that could be used in 

fabricating the suitable photodetector to be used in free space links and speed of 1 Gbit/s. in addition, 

a computer simulation model (using MCAD) has been carried out to examine the noise performance 

of an optical receiver and hence determine its sensitivity and the number of received photons in such 

links. This information will form the main goal of designing the receiver in such links. 
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4.2 Comparative Review: 

4.2.1 Avalanche Photodiode (APD) and PIN Photodiode: 

Cryan & Unwin [32] identified the photodetector as a device that performs the opto-electronic 

conversion operation in which the optical signal at the receiver is converted into an electrical signal for 

detection. They considered two types of detectors for direct detection optical satellite systems which 

are: Photomultiplier Tube and Avalanche Photodiode (APD). The photomultiplier has a very large 

internal gain (
610 ), and so the additive Gaussian noise of the pre-amplifier is effectively eliminated 

and an extremely low dark current. High bias voltages and a relatively large electrical power 

requirement limit its appeal. The avalanche photodiode (APD), which is the solid state equivalent of a 

photomultiplier tube, is compact, requires low bias voltages and has lower power consumption. 

However, the additive receiver noise can no longer be ignored because APDs have lower gains. In 

addition, the gain induced excess noise is significant for an APD because the avalanche process is 

much noisier than the photomultiplier process. In spite of this, the APD is the detection device 

commonly used as the advantages overshadow the disadvantages. 

 

Detailed literature reviews of APD and PIN photodiodes and the most important parameters that 

determine the characteristic and the performance of these photodiodes have been presented in 

chapter 2 in order to help selecting the appropriate detector that could be used with semiconductor 

optical amplifier for the receiver, and to support selecting the appropriate semiconductor material that 

could be used in fabricating the suitable photodetector in optical intersatellite link.  Comprehensive 

treatments of the major aspects of both types of photodiodes are presented in various books and 

journals [6-15, 58-59]. 

 

Sibley [6] illustrated a comparison between PIN and APD photodiodes through calculating the 

sensitivity of analogue and digital receiver using an APD photodiode, and compared it with that of the 

same receiver using a PIN photodiode. The results show that a considerable increase in sensitivity 
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results by using an APD with a noisy digital receiver, compared with that by using a PIN detector. 

However, since the total receiver noise is dominated by the APD noise and hence any reduction in 

preamplifier noise will not generate a considerable change in sensitivity, the advantage is significantly 

reduced for the low-noise receiver. With a PIN detector, the total receiver noise is dominated by the 

preamplifier noise and hence a significant change in sensitivity results from a reduction in preamplifier 

noise. These results show that an APD detector is preferable to a PIN with noisy analogue receivers. 

However, the advantage of using an APD is significantly reduced for the low-noise analogue receiver 

and thus its use is a disadvantage. This is because a high level of multiplied shot noise comes from a 

standing photocurrent which is generated by the average received power. Therefore, it can be 

generally concluded that the sensitivity of a noisy preamplifier is increased by using an APD detector. 

 

Keiser [7] summarized some general operating characteristics of Si, GE, and InGaAs photodiodes as 

comparisons between them in the following tables: 

 

 

Parameter 

 

Symbol 

 

Unit 

 

Si 

 

Ge 

 

InGaAs 

Wavelength range λ  nm 400-1100 800-1650 1100-1700 

Responsivity 
oR  A/W 0.4-0.6 0.4-0.5 0.75-0.95 

Dark Current 
DI  nA 1-10 50-500 0.5-2.0 

Rise time 
rτ  ns 0.5-1 0.1-0.5 0.05-0.5 

Bandwidth B  GHz 0.3-0.7 0.5-3 1-2 

Bias voltage 
BV  V 5 5-10 5 

 

Table 6. Generic operating parameters of Si, Ge, and InGaAs PIN photodiodes 
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Parameter Symbol Unit Si Ge InGaAs 

Wavelength range λ  nm 400-1100 800-1650 1100-1700 

Avalanche gain M  - 20-400 50-200 10-40 

Dark Current 
DI  nA 0.1-1 50-500 10-50 

@ 10=M  

Rise time 
rτ  ns 0.1-2 0.5-0.8 0.1-0.5 

Gain. Bandwidth BM .  GHz 100-400 2-10 20-250 

Bias voltage 
BV  V 150-400 20-40 20-30 

 

Table 7. Generic operating parameters of Si, Ge, and InGaAs avalanche photodiodes 

 

As can be seen, depending on the integrated photodiode the spectrum ranging from 400 – 1100 nm 

(Si diodes), 1100 – 1650 nm (InGaAs diodes), or 800 – 2100 nm (Ge diodes) can be detected very 

efficiently up to a bandwidth of 3.5 GHz. In addition, Keiser [7] concluded that relatively inexpensive 

solutions for short-distance links are provided by Si devices that operate around 850 nm. InGaAs-

based devices are used for longer links as an operating in the 1300-nm and 1550-nm windows is 

usually required for these links. 

 

Therefore, according to these considerations, these studies [6-7, 43-57] and further investigations 

reveal that using a PIN photodiode with semiconductor optical amplifier (SOA) is receiving a great 

deal of attention for using in optical intersatellite links in free space, because of an APD photodiode 

has multiplication that causes increase of excess noise, which are dark and signal noise, and poor 

bandwidth. In contrast, a PIN photodiode has a very good bandwidth and has a lower excess noise 

than APD photodiode because it does not have multiplication. In addition, using a PIN photodiode 

with semiconductor optical amplifier (SOA) has a very good bandwidth, multiplication and easy of use. 

However, using an APD photodiode with SOA is not sufficient as the noise with the signal will be 

highly amplified.  



Chapter 4. Receiver (RX) 

 

97 

As regards to the appropriate semiconductor material that could be used in fabricating the PIN 

photodiode, previous studies [6-15, 58-59] and current investigations as a comprehensive comparison 

between Si, Ge and InGaAs have been carried out in order to select the appropriate semiconductor 

material that could be used in fabricating a photodiode and simultaneously should be suitable with the 

emission wavelength which is 1.55 µm. These comparisons are presented through the following 

points: 

• The silicon can not be used in such links because it is transparent for the operation 

wavelength 1.55 µm.  

• InGaAs has the highest responsivity at the wavelength of interest. As can be seen by the 

figure 6 in chapter 2/ section 2.3. 

• In practice, it’s difficult to fabricate and control devices with gains above 15. So, InGaAs, 

which has the lowest multiplication, is the best in terms of control and multiplication of excess 

noise. 

• InGaAs has the lowest bias voltage. This is the main problem for Si that needs very high bias 

voltage. 

• By using  the separate-absorption-and-multiplication (SAM) to InGaAs APDs or PINs , InGaAs 

has high performance: 

To improve the performance of InGaAs APDs or PINs various complex device architectures 

have been devised. One widely used structure is the separate-absorption-and-multiplication 

(SAM) APD configuration.  
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The following figure shows cross-section of the multi-quantum well (MQW) SAM-APD [7]: 

 

Figure 26. Cross-section of the multi-quantum well (MQW) SAM-APD [7] 

 

This structure uses different materials in the absorption and multiplication regions, with each region 

being optimized for a particular function. Variations on the SAM structure include adding other layers 

to the device. These include: 

1. Using a grading layer between the absorption and multiplication regions to increase the 

response time and bandwidth of the device. 

2. Adding a charge layer that provides better control of the electric field profile. 

3. Incorporating a resonant cavity that decouples the optical and electrical path lengths to 

achieve high quantum efficiencies and wide bandwidths simultaneously. 

 

• InGaAs has the lowest rise time. So, it is faster than Si and Ge. 

• Low band-gap means that photodiodes exhibit a high leakage current (>100 nA). InGaAs has 

the biggest band-gap (1.42 eV) and direct as well. So, it has the lowest leakage current and is 

used in long-haul routes. 

• At long wavelengths, > 1 µm, detectors for 1.3 and 1.55µm wavelengths must be made out of 

low band-gap materials. Germanium has a band-gap of 0.67 eV, corresponding to a cut-off 

wavelength of 1.85 µm, and so would appear to be a suitable material. However, the low 



Chapter 4. Receiver (RX) 

 

99 

band-gap means that Ge photodiodes exhibit a high leakage current (> 100 nA). As the dark 

current is an additional source of noise, and so Ge PIN photodiodes are rarely used in long-

haul routes. The InGaAsP emits light in the band 1.0-1.7 µm. Thus detectors made of a 

similar material should respond to 1.3 or 1.55 µm light. 

 

As mentioned in the 3
rd

 chapter the cut-off wavelength preferably equals the emission wavelength 

which is 1550 nm, and hence the light source and detector in the link are made by the same 

semiconductor material that is InGaAsP. In addition, according to the above-mentioned 

considerations, InGaAsP is the best choice as a semiconductor material for using in fabricating a PIN 

photodiode in optical intersatellite links in free space. Before moving on to examine the noise 

performance and the sensitivity of the selected receiver, it is important to discuss in detail the SOA as 

a second element of the receiver and define the main parameters that determine its performance. 
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  4.2.2 Semiconductor optical amplifier (SOA) as an optical amplifier: 

 

There is currently much interest in all optical amplification for applications in a signal regeneration and 

receiver preamplification.  Therefore, an optical amplifier is receiving a great deal of attention for using 

in an optical receiver as a preamplifier. There are two main types of optical amplifiers in use at 

present: semiconductor optical amplifiers (SOAs) and active-fibre or doped-fibre amplifiers (DFAs). 

Comprehensive treatments of the major aspects of both types of optical amplifier are presented in 

various books and journals [6-7, 60-69].  

 

The most popular approach is based on erbium doped-fibre amplifiers (EDFAs) and leads to very 

good sensitivities around -40dBm input power at 10 Gbit/s for 
910−

bit error rate. This represents a 

very large improvement compared to the best photodiode-transistor sensitivity of -23.5 dBm, and also 

compared to the record APD sensitivity of -29.4 dBm reported recently at the same bit rate [45]. 

However, the EDFA configuration is rather bulky, complex (as it often includes two amplifying stages) 

and expensive. Owing to their compactness and their compatibility with further integration on 

semiconductor substrate, semiconductor optical amplifiers (SOA) have attracted attention for this 

application, where they stay perfectly linear. 

 

The SOA is a highly versatile component that can be deployed for a wide range of amplification and 

routing. In addition, it has been considered as a better and widely used amplifier than DFA. This is 

because the SOA has many advantages compared with DFA: fewer components; less power 

consumption; more compact; more rapid gain response; higher performance and higher functionality; 

and the possibility of working in both 1300 nm and 1550 nm low-attenuation windows; can be easily 

integrated on the same substrate as other optical devices. Therefore, the SOA is receiving a great 

deal of attention to be used as an optical preamplifier in the receiver in the link, and thus the most 

significant parameters has been extensively presented within this section in order to determine the 
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performance of the SOA and hence supporting the examination of the noise performance for the 

receiver.   

As mentioned in the 2
nd

 chapter, the two major types of SOAs are the resonant, Fabry-Perot amplifier 

(FPA) and the nonresonant, travelling-wave amplifier (TWA). 

FPA: they are easy to fabricate, the optical signal gain is very sensitive to variations in amplifier 

temperature and input optical frequency. Thus, they require very careful stabilization of temperature 

and injection current. 

TWA: these devices have been used more widely than FPAs because they have a large optical 

bandwidth, high saturation power, and low polarization sensitivity. Since the 3-dB bandwidth of TWAs 

is about three orders of magnitude greater than that of FPAs, TWAs have become the SOA of choice 

for networking applications. Therefore, TWA is the appropriate choice of the SOA to be used in the 

link. 

 

External current injection is the pumping method used to create the population inversion needed for 

having a gain mechanism in SOAs. This is similar to the operation of laser diodes. In addition, there 

are five main parameters which are used to characterize SOAs [64]:  

1. Gain ( sG ).  

2. Gain Bandwidth.  

3. Saturation Output Power ( satP ). 

4. Noise Figure (NF). 

5. Polarization Dependent Gain (PDG). 
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As a result of the physical limitations of the various processes occurring inside the SOA, an ideal SOA 

is impossible to implement. However, an ideal SAO can be achieved theoretically through the 

following conditions:  

• A SOA must have the highest gain suitable to the application. 

• A SOA must have a wide optical bandwidth so that can amplify a wide range of signal 

wavelengths. 

• A SOA must have very high saturation output power to accomplish good linearity and to 

maximize its dynamic range with minimum distortion in order to avoid of the effects of gain 

saturation which causes undesirable distortion to the output. 

• A SOA must have a very low noise figure (the physical limit is 3 dB) to minimize the amplified 

spontaneous emission (ASE) power at the output.  

• A SOA must have very low polarization sensitivity to minimize the gain difference between the 

transverse-electric (TE) and transverse-magnetic (TM) polarization.  

 

1. Gain ( sG ):  

One of the most important parameters of an optical amplifier is the signal gain or amplifier gain G, 

which is defined as:  

                          

ins

outs

P

P
G

,

,
=                                                  (78) 

Where outsP ,  and  insP ,  are the input and output powers, respectively, of the optical signal being 

amplified. The radiation intensity at photon energy vh  varies exponentially with the distance traversed 

in a lasing cavity. 
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As mentioned previously, an optical amplifier is essentially a laser without feedback. Therefore, SOAs 

amplify incident light through stimulated emission; the same mechanism used by semiconductor 

lasers.  The optical gain has been considered as the most useful feature of SOA and it can be 

realized when the amplifier is pumped to accomplish population inversion. The optical gain depends 

on the local beam intensity at any point inside the amplifier, as well as its dependence on the 

frequency (or wavelength) of the incident signal. Therefore, the single pass optical gain (Gs) below 

saturation, where spectral effects and nonuniform distribution of the carrier density are not 

considered, is approximately determined by [64]:  
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Γ  is the optical confinement factor, α  is optical loss, mg  is the material gain, og  is the gain 

coefficient,  L  is the cavity length, iη  is the current injection efficiency, W  is the active width, d  is 

the thickness of the active region in which the carriers are confined, e  is the electronic charge, I  is 

the operating current, N  is the carrier density at the operating current I , oN  is the carrier density at 

transparency, sτ  is the spontaneous recombination lifetime of the carriers. In addition to, it can be 

indicated by this equation that a high gain may be accomplished with a high injection current, a large 

optical confinement, a long cavity, a multiple quantum well (MQW) structure, or a combination of 

them. 

2. Gain Bandwidth:  

 

The gain bandwidth is defined as the full width at the half-maximum (FWHM) height of the gain 

spectrum. Optical communication systems prefer the use of amplifiers with a relatively large 

bandwidth because the gain is almost constant over the entire bandwidth. A 3dB bandwidth can 

exceed 60 nm for quantum-well SOAs, where it is about 45 nm for bulk SOAs. The band filling effect 

increases the injection current which, in turn, will broaden the bandwidth that depends inversely on 
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the optical confinement and the cavity length. Moreover, wider bandwidth can be achieved by MQW 

SOAs compared with bulk SOAs. 

3. Saturation Output Power: 

 

The saturation output power is defined as the output power for which the amplifier gain is reduced by 

a factor of 2 (or by 3 dB) from its unsaturated value. It depends inversely on the optical confinement. 

4. Noise Figure ( n
F ):  

 

The amplifier noise figure ( nF ) is defined as the ratio between the input signal-to-noise ratio of the 

amplifier inSNR)( and the output signal-to-noise ratio of the amplifier outSNR)( . This parameter 

quantifies the degradation of the signal-to-noise ratio )(SNR  of the amplified signal which is caused 

by spontaneous emissions that add to the signal during its amplification in all laser amplifiers. 

The following sources essentially attribute the noise:  

(1) Amplified signal shot noise.  

(2) Spontaneous emission shot noise. 

(3) Signal-spontaneous beat noise. 

(4) Spontaneous-spontaneous beat noise.  

(5) Signal excess noise.  

The sources (1) and (2) are related to several detector parameters. The shot noise levels are usually 

20 dB smaller than the beat noise. The spontaneous-spontaneous beat noise prevails in the low 

output power region, while the signal-spontaneous beat noise dominates in the high output power 

region. The SNR  of the amplified signal is degraded by a factor of 2 (or 3 dB) for an ideal detector 

whose performance is limited by the shot noise only. As a result of the intrinsic internal loss of the 

SOA and the lower coupling efficiency on its input side, a SOA practically exhibits a higher noise 
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level. However, the SOA has the same theoretical lower noise figure limit of 3 dB as an EDFA. For 

most SOAs, nF is typically in the range of 6-10 dB. In addition, an optical amplifier must have an 

nF as low as possible to be used in optical communication systems. NF is also dependent on the 

operating wavelength, the operating current, and the input signal power [64].  

 

5. Polarization Sensitivity:  

 

The confinement factor and the effective mode index are different for each of the transverse-electric 

(TE) and transverse-magnetic (TM) polarizations. This leads to the amplifier gain differing for both of 

these polarizations and hence makes the gain sensitivity to input signal polarization of the SOA an 

undesirable characteristic. This feature makes the amplifier gain dependent on the polarization state 

of the input beam. The polarization sensitivity of SOAs can be reduced to less than 1 dB by using 

several possible approaches in geometric design of the active layers combined with a proper use of 

tensile strain (bulk or multi-quantum well). 
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4. 3 Design of the receiver: 

 

As mentioned earlier in this chapter, the basic structure of an optical receiver consists of:                    

a photodiode, a low-noise preamplifier, the post-amplifier, filtering. Moreover, PIN photodiode and 

SOA have been received a great deal of attention to be used as a suitable photodetector and 

amplifier, respectively, in the receiver for optical intersatellite links in free space.  

In these processes, errors in the interpretation of the received signal can result from various noises 

and distortions which will unavoidably be introduced. The random noises associated with the 

photodetection process adversely affect the current generated by the photodetector that is generally 

very weak. When this electric signal output from the photodiode is amplified, further corruption of the 

signal will be caused by additional noises resulting from the amplifier electronics. Therefore, noise 

considerations are significant in the design of optical receivers, because the lowest limit for the 

signals that can be processed is generally set by the noise sources operating in the receiver. 

A computer simulation model (using MCAD) has been performed in such links using three different 

coding schemes: multiple pulse position modulation (MPPM); digital pulse position modulation 

(DPPM); Dicode pulse position modulation (Dicode PPM). This simulation examines the noise 

performance of the selected optical receiver, and hence determines its sensitivity and the number of 

received photons for each coding scheme (the simulation is attached in the appendix E).  
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4. 3.1 Simulation Model: 

These systems are operating in space at a wavelength of 1.55µm, 3 bits PCM and PCM data rates of 

1 Gbit/s. A High speed InGaAs PIN photodiode C30637, @ 1550 nm (optoelectronics. PerkinElmer) 

and an SOA-High Power Operation (IEEE 802.3av) have been used as a photodetector and amplifier, 

respectively, (Datasheets are attached in appendixes A and B, respectively). The receiver has been 

considered as a linear channel and the a.c. equivalent circuit of an optical receiver shown in the 

following figure: 

 

Figure 27. A.c. equivalent circuit of an optical receiver 

The photodetector is modeled by an ideal current source, sI , shunted by the detector capacitance, 

dC .this feeds the parallel combination of inR and inC , modeling the input impedance of the 

preamplifier. A single voltage amplifier, with transfer function )(ωA , models the pre- and post- 

amplifiers and the output of which feeds the pre-detection filter.  While initially neglecting the 

photodiode noise, the only noise in the receiver will be resulted by the preamplifier.  The mean-square 

equivalent input noise current (
2A ) is expressed by [6]: 
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Where IS is a shunt noise generator ( HzA2
), modeling the noise current due to the preamplifier 

first stage and the photodiode load resistor. ES , the series noise generator( HzV 2
), models the 



Chapter 4. Receiver (RX) 

 

108 

preamplifier series noise sources. B  is the PCM bit rate , which is 
910 bits in the link. TC is the total 

input capacitance which equals ( ind CC + ). 2I and 3I are bandwidth integrals which depend on the 

shape of the input and output pluses. As the receiver uses a pre-detection filter that generates pulses 

with a raised-cosine spectrum, 1=α  (where α is the fraction of the time-slot occupied by the 

rectangular pulses) and thus the pulses fill the whole of the slot and having full-width or non-return-to 

zero, NRZ, rectangular pulses. The following table shows values of 2I and 3I  for different rectangular 

input pulses [6]: 

Rectangular input pulses 

α  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

2I  0.376 0.379 0.384 0.392 0.403 0.417 0.436 0.463 0.501 0.564 

3I  0.030 0.031 0.032 0.034 0.036 0.040 0.044 0.053 0.064 0.087 

 

Table 8. Values of 2I and 3I  for different rectangular input pulses  

Therefore, by using table 8, the values of 2I and 3I are 564.02 =I  and 087.03 =I  for 1=α . 

It can be noted that the preamplifier noise consists of a frequency-independent term of magnitude 

IS ( HzA2
), and an

2f  noise term of magnitude ES ( HzV 2
). However, the series noise generator 

( ES ) has a negligible effect on the receiver noise in free space for PCM data rate of 1 Gbit/s because 

it is insignificant compared with IS and the SOA shot noise which are much higher than ES . 

Therefore, the mean-square equivalent input noise current (
2A ) becomes: 

                                         2

2
BISi I

c
n =                                                     (81) 

As mentioned before, IS models the noise current due to the preamplifier first stage and the 

photodiode load resistor. However, Assuming the photodiode load resistor ( Ω= 50LR , InGaAs PIN 
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photodiode C30637) is much smaller than the amplifier input impedance ( Ω=×= 10502150fR  as 

dBG 20=  the Gain of SOA (IEEE 802.3av)). Consequently, the thermal noise of the photodiode load 

resistor is much greater than that of the amplifier input. Therefore, the shunt noise generator, IS , 

which is considered here as the noise delivered to the input of the SOA from the source, IN ,  equals 

the mean-square thermal (Johnson)noise current of load resistor and is given by: 

           
2210312.3

4 −×===
L

B

II
R

TK
NS          ( HzA2

)                             (82) 

Where (
1231038.1 −−×= JKK B ) is Boltzmann's Constant, ( 300=T Kelvin) is the absolute 

temperature. It should be noted that using different coding schemes requires using different bit rates. 

Thus, the mean-square equivalent input noise current becomes: 

                2
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2A )                                               (83) 

Where CB is the bit rate which takes different values, for 3 bits of PCM, of  B
3

5
, B

3

23

and B2 for 

MPPM(5,2), DPPM and Dicode PPM , respectively. The results have been made for these three 

coding schemes as can be seen in table 10. 

As discussed in chapter 2, the photodiode noise falls into two main categories- invariant dark current 

noise, and signal-dependent shot noise. In a PIN receiver the signal-dependent noise is often 

insignificant compared with the circuit noise. Taking into consideration the photodiode noise, the total, 

signal-independent, equivalent input noise current which includes the noise from the photodiode dark 

currents and any preamplifier noise is given by [6]: 
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Where ( Cq 1910602.1 −×= ) is electron charge, and DI  is the dark current of PIN photodiode 

( AI D

9101 −×= , InGaAs PIN photodiode C30637). The results have been made for the three used 

coding schemes as can be seen in table 10. 

Before moving on to determine the sensitivity of the selected optical receiver in the link, it is important 

to mention that there is an extra noise from the SOA which is the input noise of the device itself, AN , 

and is expressed as: 

                  
21103.2)1( −×=−= FNN IA                  ( HzA2

)                    (85) 

Where F is amplifier noise factor ( )(9)log(10 dBFNF == is the amplifier noise figure of SOA 

(IEEE 802.3av)). 

In order to determine the sensitivity of the used optical receiver in the link, the mean optical power 

required, P , is given by [6]: 

                  )( 2
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Where Q is the signal-to-noise ratio parameter, Q =6 for an error rate of 1 in 
910 pulses. oR is the 

responsivity of PIN photodiode ( 95.0=oR (A/W), InGaAs PIN photodiode C30637). The results have 

been made for the three used coding schemes as can be seen in table 10. 

The signal-to-noise ratio parameter is expressed as: 
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Where Q =6 for an error rate of 1 in 
910 pulses, and 

c
ni

2
is already known. Thus, I which is the 

output current of PIN photodiode and given by: 
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                             2
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 Thus, the received power is given by: 

                                          

o

o
R

I
P =                   (W )                                     (89) 

Therefore, the number of received photons is expressed as: 

                                
ch

T
PNP s

o
.

λ=                                                                (90) 

Where λ is wavelength of operation ( λ =1550 nm in the link), h is Planck's constant 

( h =
3410624.6 −×  JS), c is velocity of light in a vacuum ( c =

8103× m/s) and sT  is the slot time 

which takes different values for 3 bits of PCM of
5

.3 bT
,

32

.3 bT
and 

2

bT
 for MPPM(5,2),DPPM and 

Dicode PPM, respectively. The results have been made for these three coding schemes as can be 

seen in table 10. 

 

The following figure shows the flow chart of the aforementioned simulation for MPPM, DPPM and 

Dicode PPM, respectively, operating with 3 bits of PCM. This chart clarifies the process of the 

simulation and how the results have been yielded: 
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Figure 28. Flow chart of the simulation for examination of the performance of the used optical receiver 

with MPPM, DPPM and Dicode PPM coding 3 bits of PCM 

As mentioned previously, A High speed InGaAs PIN photodiode C30637, @ 1550 nm 

(optoelectronics. PerkinElmer) and an SOA-High Power Operation (IEEE 802.3av) have been used as 

a photodetector and amplifier, respectively, (Datasheets are attached in appendixes A and B, 

respectively). Therefore, the simulation starts with SOA as preamplifier, PIN photodiode as 

photodetector and common terms. The following list of parameters shows these terms: 

Input noise of the SOA 
device (An extra 

noise) 

( HzA2
) 

The mean optical 
power required 

(sensitivity)  

(W , mdB )                       

The total noise 
current  

(
2A ) 

Input noise current 

(
2A )     

The number of 

received 

photons 

The received 
power  

(W )                                     

Thermal (Johnson) 

noise current of load 

resistor  

)HzA2
( 

InGaAs PIN photodiode  

Terms 

Common  

Terms 

The output current 

of PIN photodiode 

( A ) 

Preamplifier (SOA)  

Terms 

Start 
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Preamplifier (SOA) (IEEE 802.3av) terms 

dBG 20=  Gain of SOA 

λ =1550 nm Wavelength of operation 

)(9)log(10 dBFNF ==  Amplifier noise figure 

943.7=F  Amplifier noise factor 

Common Terms 

910=B  PCM bit rate 

910−=bT  PCM bit time 

3=N  Number of PCM bits 

610=nf  Channel bandwidth for free space 

Cq 1910602.1 −×=  Electron charge 

1231038.1 −−×= JKK B  Boltzmann's Constant 

300=T Kelvin Absolute temperature 

h =
3410624.6 −×  JS Planck's constant  

 c =
8103× m/s Velocity of light in a vacuum  

CB =  B
3

5
, B

3

23

and B2  
Bit rate for 3 bits PCM for MPPM(5,2), DPPM 
and Dicode PPM , respectively 

564.02 =I  and 087.03 =I  Bandwidth integrals 

InGaAs PIN photodiode terms 

AI D

9101 −×=  Dark current of PIN photodiode 

95.0=oR (A/W) Responsivity of PIN photodiode @ 1550 nm 

Ω= 50LR  Photodiode load resistor 

FC
12104.0 −×=  Photodiode Capacitance 

 

Table 9. List of parameters used in the simulation for examination of the performance of the used 

optical receiver with MPPM, DPPM and Dicode PPM coding 3 bits of PCM 
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The simulation results have been concluded by using the above parameters with the previous 

equations (82-90) in sequence in order to formulate the process of the simulation as shown in the 

aforementioned flow chart. These results are shown in table 10. 
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4. 3.2 Results and discussion: 

The following table show summary of the results of the aforementioned simulation for MPPM, DPPM 

and Dicode PPM operating with 3 bits of PCM, in order to examine the noise performance of the 

selected optical receiver in the link, and hence determine its sensitivity and the number of received 

photons for each coding scheme (the simulation is attached in the appendix): 

 

3 Bits PCM 

 

MPPM 

 

 

DPPM 

 

Dicode PPM 

 

Final Line Rate        

 

1.7 ×PCM Data Rate           

(3 Bits) 

 

2.7 ×  PCM Data Rate     

(3 Bits) 

 

 

2 ×  PCM Data Rate 

(Fixed) 

 

The Total Noise 

T
ni

2
, (

2A ) 

 

1310113.3 −×  

 

1310981.4 −×  

 

1310736.3 −×  

    

 

The mean optical 

power required 

(sensitivity)  

     (W , mdB )   

 

610533 −×⋅ (W ) 

 

52324 ⋅−  ( mdB ) 

 

6104674 −×⋅ (W ) 

 

523 ⋅− ( mdB ) 

 

6108673 −×⋅ (W ) 

 

12624 ⋅− ( mdB ) 

    

 

Slot Time (S) 

 

10106 −×  

 

1010753 −×⋅  

 

10105 −×  

 

The number of 

received photons, 

NP 

 

410649.1 ×  

 

410304.1 ×  

 

410506.1 ×  

Table 10. Summary of the simulation results for examination of the performance of the used optical 

receiver with MPPM, DPPM and Dicode PPM, respectively, coding 3 bits of PCM 
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As can be seen, the final line rate for the MPPM (5, 2) scheme is 1.7 that of the PCM. This should be 

compared to DPPM that runs at a final line rate which is 2.7 times that of the original PCM data rate, 

and to Dicode PPM that has a fixed final line rate- twice the PCM rate.  

Table 10 shows that the optical receiver offers the lowest total noise of
1310113.3 −×  (

2A ) when 

MPPM coding scheme is used because MPPM has the lowest speed and hence the lowest bandwidth 

requirement. The optical receiver used with DPPM coding scheme has a higher total noise of 

1310981.4 −× (
2A ) than that when Dicode PPM coding scheme is used (

1310736.3 −× 2A ) because 

Dicode PPM has lower speed and bandwidth than DPPM.   

The optical receiver used with MPPM offers the best sensitivity because it needs the lowest main 

optical power required (
610533 −×⋅ W , 52324 ⋅− dBm ) for an error rate of 1 bit in 

910 .In 

addition, the optical receiver used with Dicode PPM has better sensitivity than that uses DPPM coding 

scheme because it needs (
6108673 −×⋅ W , 12624 ⋅− dBm ) optical power required for the same 

error rate , whereas DPPM needs (
6104674 −×⋅ W , 523 ⋅− dBm ) optical power required. 

The optical receiver used with MPPM coding scheme has the largest number of received photons 

which is 
410649.1 × (photons) because MPPM has the largest time slot width of 0.6 (ns). Dicode 

PPM has a time slot width of 0.5 (ns) and hence the optical receiver used with Dicode PPM has a 

higher number of received photons (
410506.1 × Photons) than that uses DPPM 

(
410304.1 × Photons). 
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4.4 Conclusion: 

In the field of high bit rate long distance optical transmissions, photoreceivers producing both high 

sensitivity and high bandwidth are of great interest. The use of optical preamplification can be 

attractive in this case, since it results in separately optimise the noise performance of the receiver 

(mainly limited by the noise of the optical amplifier) and its speed (only given by the photodiode 

bandwidth).  

A photodetector is needed at the receiver to convert the modulated light signal back into an electrical 

one. There are two types of detectors in use at present: avalanche photodiodes (APDs) or PIN 

photodiodes .The optimum choice depends on the wavelength of operation which, in turn, depends on 

how the laser source is to be modulated. In optical fibre communications it is common practice to 

modulate a continuous wave (CW) laser with an external Mach- Zehnder interferometer.  As these 

devices operate at a wavelength of 1.55 µm, this must be the wavelength of operation for the link.  

Comparative reviews and comprehensive treatments of the major aspects of both types of 

photodiodes have been presented to select the appropriate detector for the receiver through checking 

the possibility of using avalanche photodiodes (APDs) or PIN photodiodes with semiconductor optical 

amplifier (SOA), and to support selecting the appropriate semiconductor material that could be used 

in fabricating the suitable photodetector to be used in free space links and speed of 1 Gbit/s. These 

studies show that, unlike APD photodiodes, a PIN photodiode does not have multiplication and thus it 

has a lower excess noise and very good bandwidth. Whereas, an APD photodiode has multiplication 

that leads to increase of excess noise, which are dark and signal noise, and poor bandwidth. In 

addition, using an APD photodiode with SOA is not sufficient because the noise with the signal will be 

highly amplified. However, using a PIN photodiode with SOA has a very good bandwidth, 

multiplication and easy of use. Therefore, according to these considerations and investigations, using 

an optically preamplified receiver that consists of: a PIN photodiode as a photodetector, 

Semiconductor Optical Amplifier (SOA) as an amplifier, and a 3rd order Butterworth filter with central 

decision detection, is considered as a suitable design of the receiver to be used in optical intersatellite 

links in free space. Moreover, InGaAsP is the best choice as a semiconductor material to be used in 

fabricating a PIN photodiode in the link.  
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Since the lowest limit for the signals that can be processed is generally set by the noise sources 

operating in the receiver, noise considerations are significant in the design of optical receivers. 

Therefore, in order to examine the noise performance of the selected optical receiver, and hence 

determine its sensitivity and the number of received photons, a computer simulation model (using 

MCAD) has been carried out in such links and with using three different coding schemes for 3 bits of 

PCM: multiple pulse position modulation (MPPM); digital pulse position modulation (DPPM); Dicode 

pulse position modulation (Dicode PPM), respectively.  

The results of this simulation show that the optical receiver offers the lowest total noise when MPPM 

coding scheme is used because MPPM has the lowest speed and hence the lowest bandwidth 

requirement. The optical receiver used with DPPM coding scheme has a higher total noise than that 

when Dicode PPM coding scheme is used. In addition, the optical receiver used with MPPM offers the 

best sensitivity as it needs the lowest main optical power required. The optical receiver used with 

Dicode PPM has better sensitivity than that uses DPPM coding scheme. Moreover, the optical 

receiver used with MPPM coding scheme has the largest number of received photons as MPPM has 

the largest time slot width. The optical receiver used with Dicode PPM has a higher number of 

received photons than the DPPM. Therefore, according to these considerations, it is concluded that 

the optical receiver, which uses PIN photodiode as a photodetector and SOA as an amplifier, used 

with MPPM coding 3 bits of PCM can be used in optical inter-satellite links in free space and PCM 

data rates of 1 Gbit/s.  
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5.    The model of the link (Pulse Position Modulation Coding Schemes). 

 

5.1 Introduction: 

As mentioned in the last section of chapter 2, DPPM is currently the preferred coding scheme 

for use in optical inter-satellite links because it operates with very low average power and 

offers high sensitivity.  However, it does suffer from a very large bandwidth expansion 

problem in that a scheme coding 5 bits of PCM will have a final line rate of 6.4 times the 

original PCM rate [16].This places a great strain on the processing electronics as the speed 

can be prohibitive. Comprehensive treatments of the major aspects of DPPM coding scheme 

are presented in various journals [70-95]  

Many alternative coding schemes have been proposed that operate with a smaller bandwidth 

expansion.  Of these, MPPM [16, 23-27] and Dicode PPM [20-22] appear to offer the lowest 

bandwidth expansion.  The coding alphabet for DPPM and two alternative coding schemes, 

MPPM and Dicode PPM, has been presented in the last section of chapter 2. Additionally, 

basic information and previous comparisons between these three coding schemes in fibre 

optic have been discussed in chapter 2. These basic studies can be considered as a core 

concept to make a comprehensive comparison between these three coding schemes and 

hence select the appropriate and best coding scheme to be used in an optical intersatellite 

link in space.  

In this chapter, work is presented to compare MPPM, DPPM and Dicode PPM coding 

schemes in terms of error weightings and coding efficiency through showing how the PCM 

error rate is affected by false alarm and erasure errors for MPPM, DPPM and Dicode PPM 

coding 3, 4, 5 and 6 bits of PCM. In addition, computer simulations models (using MCAD) 

have been carried out to compare these three coding schemes in terms of sensitivity and 

bandwidth efficiency.  



Chapter 5. PPM Coding Schemes 

 

 

120 

 

Therefore, this chapter form this research project work is concerned with an  in-depth analysis 

and comprehensive comparisons between these three coding schemes in terms of sensitivity, 

bandwidth efficiency, error weightings and coding efficiency. These comparisons support 

selecting the optimum PPM coding scheme to be used in optical intersatellite links in free 

space.  
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5.2 The importance of using PPM coding schemes in optical inter-

satellite links: 

Digital pulse position modulation (DPPM) is considered to be the most efficient modulation 

format for use in intersatellite laser communications when the ideal photon counting channel 

is utilised [96, 97]. It has also proved effective over the optical fibre channel when a threshold 

detection scheme is employed [98]. 

Cryan & Unwin [32] used the ideal photon counting channel as a model for optical detection in 

the deep space communications. This modulation format illustrated that the PPM format is the 

most efficient modulation format, and hence this efficiency has resulted in its widespread 

consideration for the optical satellite communications channel.  In addition, the PPM format 

can be used to generate high peak power short duration pulses for semiconductor laser 

diodes which are both peak and average power limited and provided that the number of 

possible pulse positions or time slots is not as large as to lead to facet damage in the laser. 

This high peak power short duration pulses are easily distinguishable from background 

radiation and thermal noise. 

Phillips et al [99] presented an original theoretical analysis for an optically preamplified direct-

detection receiver employing the PPM transmission format in an optical fibre n-ary. They used 

the erbium-doped fibre amplifier (EDFA) as an optical preamplifier and the calculations were 

performed using physically realisable parameters and operating at a bit rate of 622 Mbit/s and 

a wavelength of 1.53µm. The results show that this receiver configuration with PPM system 

can surpass an equivalent PCM system by a 7.5 dB as a sensitivity benefit. In addition, a 

further demonstration was concluded by Phillips et al [99] that an optically preamplified PPM 

receiver can also offer sensitivities that significantly improve on the basic sensitivity limit of an 

optically preamplified PCM system and approach values achievable by coherent detection. 

This means that the theoretical sensitivity of a directly detected optically preamplified n-ary 

PPM system is equivalent to that of a shot noise limited coherent PCM system. 
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An optically preamplified on-off keyed (OOK) non-return to zero (NRZ) intersatellite system 

employing erbium-doped fibre amplifiers (EDFAs) was examined by Phillips et al [30,31], and 

hence the combination of optical preamplification, in particular erbium-doped fibre amplifiers 

(EDFAs), and PPM for an optical satellite communications receiver was investigated. An 

analysis is presented to help high bit rate operation for a PPM system employing threshold 

detection which is instead of employing a photon counting strategy and could be operated at 

high bit rates, thus allowing more efficient use of the wide bandwidth potential of optical 

intersatellite communications, whilst maximum likelihood detection is operated at much lower 

bit rates and has been considered as the common method of detecting optical PPM in the 

satellite channel. In addition, they mentioned that this presented analysis can be applied to 

semiconductor optical amplifiers, with some superficial modification [30, 31].  

Phillips et al [30, 31] demonstrated the possibility of employing an optically preamplified 

receiver for the purposes of intersatellite laser communication employing PPM. The results 

showed that a possible receiver sensitivity of 13.5 photons/bit (at a BER of
610−

) when 

operating at the STM-1 signalling bit rate of 155 Mbit/s, using conservative parameters and in 

the presence of background noise. This indicates to the considerable potential of the 

presented receiver formation for use in satellite communications. In addition, further 

demonstration was concluded by Phillips et al [30, 31] that receiver sensitivities up to 12.3 dB 

better than an equivalent EDFA OOK NRZ satellite receiver can be achieved by this threshold 

detection PPM scheme. Furthermore, the results showed that the PPM system can carry out 

at sensitivities beyond the basic optically preamplified OOK NRZ limit of 27.3photons/bit. 

Phillips et al [100, 101] highlighted that digital pulse position modulation (DPPM) can provide 

a considerable receiver sensitivity improvement at the cost of fibre bandwidth. This leads to 

that DPPM is receiving a significant recent attention with respect to implementation over the 

optical fibre channel. They applied a Chernoff bound, by means of a recently developed 

moment-generating function (MGF), to the bit-error probability of an optically preamplified 

pulse position modulation (PPM) receiver in optical fibre channel for operation at the STM-4 

bit rate of 622 Mbit/s, assuming Gaussian received pulse shapes, and using the erbium-
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doped fibre amplifier (EDFA) as an optical preamplifier. The results show that this receiver 

configuration can achieve a sensitivity of 25.27 photons/bit, and can surpass an equivalent 

on-off-keyed non return-to-zero (OOK NRZ) system by 7.1 dB. Additionally, a further 

demonstration was concluded by Phillips et al [100, 101] that an optically preamplified PPM 

receiver can also offer sensitivities that improve on the basic sensitivity limit of an optically 

preamplified OOK NRZ receiver and approach values achievable by coherent detection. 

Phillips et al [102] analysed an optically preamplified intersatellite digital pulse position 

modulation (DPPM) receiver using the optimal detection scheme of maximum likelihood 

detection (MLD). This analysis was made by means of using a Gaussian approximation (GA), 

which is the assumption of Gaussian received pulse shapes that gives an advantage in terms 

of ease and speed of computation, and Chernoff bound (CA) techniques. They used the 

erbium-doped fibre amplifier (EDFA) as an optical preamplifier, and additionally the 

calculations were performed using physically realisable parameters and operating at a bit rate 

of 25 Mbit/s and a wavelength of 1.54µm. The theoretical results show that the strong 

potential of this receiver configuration can offer impressive sensitivity, and can surpass an 

earlier optically preamplified PPM receiver by approximately 1.5 dB. In addition, a further 

demonstration was concluded by Phillips et al [102] that this optically preamplified 

intersatellite DPPM receiver can also offer sensitivities that improve on the basic sensitivity 

limit of an optically preamplified on-off-keyed non-return-to-zero (OOK NRZ) signalling. 

Furthermore, it should be noted that such impressive performance of this receiver 

configuration drives it to be the significant candidate for implementation in future laser 

intersatellite communications systems. 

Phillips et al [102] clarified that the reason of the limited optimal scheme of maximum 

likelihood detection (MLD) is the relative complexity and associated speed limitations of the 

integrate and compare circuitry involved.  This leads to the optimal scheme of MLD operating 

at a lower data rate than is normally possible for the leading edge threshold detection scheme 

which is usually found in fibre PPM and used in the first proposal of optically preamplified 

PPM for laser intersatellite communications [30]. 
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Phillips et al [103] clarified that some of the abundant fibre bandwidth is exchanged by using 

DPPM over the optical fibre channel for impressive receiver sensitivity benefits. This justifies 

why DPPM was studied extensively in relation to different optically preamplified receiver 

configurations that has also an intense interest due to the recent emergence of practical 

optical amplifiers. In addition, they were particularly interested in using optical amplifiers as 

optical preamplifiers that boost the optical power level of an incoming photon steam directly 

before its impinging on the photodetector.  

 

An optically preamplified digital pulse position modulation (DPPM) receiver with an improved 

electrical domain filtering regime, which consists of a matched filter in cascade with a 

proportional-derivative-delay (PDD) network, was thoroughly analysed for the first time by 

Phillips et al [103]. They used the erbium-doped fibre amplifier (EDFA) as an optical 

preamplifier, presented sensitivity curves and examined the behaviour of the pulse-shaping 

network under the assumption of Gaussian received pulse shapes, and additionally 

considered the penalty incurred by removing the pulse-shaping network to be about 1.9 dB for 

high PPM coding levels , but it is lower at the optimum coding level. The results show that the 

strong potential of this receiver configuration can offer impressive sensitivity of 21.54 

photons/bit predicted at 622 Mbit/s, and can surpass an equivalent optically preamplified on-

off-keyed nonreturn-to-zero (OOK NRZ) system by 8.1 dB. In addition, a further 

demonstration was concluded by Phillips et al [103] that this optically preamplified DPPM 

receiver can also offer sensitivities that improve on the basic sensitivity limit of an optically 

preamplified OOK NRZ receiver and approach values achievable by coherent detection 

systems. However, it should be noted that such impressive performance is achieved at the 

cost of bandwidth. 
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Phillips et al [104] highlighted that the operation of PPM coding scheme in relation to different 

receiver configurations significantly outperform receivers detecting standard on-off keyed non-

return-to-zero (OOK NRZ) modulation in terms of sensitivity. However, this improvement 

comes at the expense of bandwidth. Consequently, this success leads to looking for an 

alternative modulation format that keeps some of the sensitivity benefits of PPM without the 

extreme bandwidth consumption. Therefore, Phillips et al [104] examined Dicode PPM that 

only produces a fourfold increase in the line rate over the OOK NRZ data rate and offers the 

sensitivity benefit. Whereas, line rates greater than 10 times the data rate might be required 

by the optimal PPM scheme. 

Phillips et al [104] originally analysed and investigated the performance of an optically 

preamplified dicode pulse position modulation (Dicode PPM) receiver for the first time. They 

used the erbium-doped fibre amplifier (EDFA) as an optical preamplifier, and additionally the 

calculations were performed using physically realisable parameters and operating at two 

different bit rates of 622 Mbit/s and 2.5 Gbit/s. They concluded the new and accurate 

derivation for the average power of the Dicode PPM pulse stream, and additionally compared 

the sensitivity performance of this receiver configuration with that obtainable from equivalent 

optically preamplified pulse position modulation (PPM) and on-off keyed non-return-to-zero 

(OOK NRZ) systems. The theoretical results show that the strong potential of the optically 

preamplified Dicode PPM receiver configuration can offer impressive sensitivity, and can 

potentially surpass an optically preamplified OOK NRZ receiver by approximately 4.2 dB.  

However, a further demonstration was concluded by Phillips et al [104] that optically 

preamplified systems that use the optimal PPM scheme,  which significantly outperforms 

OOK NRZ by 7.1 dB [100,101], can offer sensitivities that improve on those use Dicode PPM 

scheme by between 3 and 5 dB, depending on the normalised fibre bandwidth. 
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5.3  Error weightings for MPPM, DPPM and Dicode PPM coding 

schemes: 

One of the major aspects of coding schemes is error weighting and coding efficiency.      

Sibley [16] examined the impact of detection errors on the resulting PCM data through 

considering a (12/2) multiple PPM scheme operating over graded-index plastic optical fibre. 

He found that PPM systems suffer from three types of detection error: wrong-slot, false alarm 

and erasure errors.  

 

1. Wrong-slots error:  

This error takes place when noise on the leading edge of a detected pulse results in the pulse 

to appear in adjacent time slots either before or after the current slot. Moreover, this error 

occurs in fibre optic and is not applicable in free space because it is minimized if the pulse is 

detected at the center of the time slot and thus the probability of a wrong-slot error, sP , is: 

                                 )2(5.0 ss QerfcP =                                     (91) 

Where  

                                  
2

)(

2
o

ds

s

n

tslopeT
Q =                                          (92) 

where 
2

on is the noise on the detected signal, sT  is the time slot width, and )( dtslope is 

the slope of the received pulse at the threshold crossing instant, dt . Due to the dependency 

of the resulting PCM error on which slot the pulse appears to be in, this probability equation is 

that of a pulse moving by 2/sT  in either direction. 
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2. False alarm  error:  

A false alarm error is caused by noise in an empty time slot generating a threshold crossing. 

This means that this error occurs in the interval between the beginning of the frame and the 

arrival of the signal pulse if noise boosts the receiver output voltage such that it crosses the 

threshold. The probability of this taking place, fP , is given by: 

                         )2(5.0 f

R

s

f Qerfc
T

P
τ

=                                      (93) 

where RsT τ/ is the number of uncorrelated samples per time slot and Rτ  is the time at which 

the autocorrelation function of the filter has become small and fQ  is given by: 
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=                                              (94) 

where )( do tv is the signal voltage in the slot considered, and dv is the decision or threshold 

level voltage.  

3. Erasures  error:  

An erasure error is caused by noise obliterating a valid pulse and making detection 

impossible. This means the amplitude of the pulse at the decision time, dt , falls below the 

threshold voltage, dv , when noise is present on it. The probability of this taking place, eP , is 

given by: 

                   )2(5.0 ee QerfcP =                                             (95) 

where eQ  is expressed as: 
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=                                                     (96) 

where pkv is the peak signal voltage within the time-slot. 
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Thus, when transmitting PPM over a slightly dispersive channel, such as optical fibre, the 

estimation of the arrival time of the pulse is affected by noise resulting in three types of error, 

namely, erasures, false alarms, and wrong-slot errors. Of these, only erasure and false alarm 

errors are relevant in free-space communications because wrong-slot error occurs in 

dispersive channels and so is not applicable in free space. Moreover, wrong-slot error is 

minimized by normally transmitting the pulses so that the desired threshold crossing instant 

takes place at the center of the time slot. Therefore, all PPM coding schemes operating in 

free space suffer from only two types of error: false alarm and erasure errors. As the original 

PCM code is converted into another code, these errors will cause the original PCM to be 

corrupted. In addition, inter-symbol interference (ISI) and inter-frame interference (IFI) do not 

affect on the detected pulse in free space because they result from pulse dispersion in optical 

fibre and thus they only exist in fibre optic. Moreover, the receiver in the link uses a pre-

detection filter that generates pulses with a raised-cosine spectrum.  Such a filter helps to 

minimise inter-symbol-interference. It can be approximated by a single pole preamplifier 

following by a 3
rd

 order Butterworth filter. 

 

Work has been carried out to show how the PCM error rate is affected by false alarm and 

erasure errors for MPPM, DPPM and Dicode PPM operating with 3, 4, 5 and 6 bits of PCM. A 

maximum likelihood sequence detector (MLSD) is used in the decoder and so the PCM error 

weighting is as shown in tables 11, 12 and 13. 
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Original PCM 

Word 

MPPM Code MLSD Probable MPPM words 

000 11000 11100 01100 (100) 

   10100 (001) 

   11000 (000) 

   Average of error = 0.666 

  11010 01010 (101) 

   10010 (010) 

   11000 (000) 

   Average of error = 1 

  11001 01001 (110) 

   10001 (011) 

   11000 (000) 

   Average of error = 1.333 

Final 

average of 

error 

  0.999 for 3 bits 

0.333 per bit 

 

Table 11. Determination of PCM error when a false alarm occurs in (5, 2) multiple PPM  

 

As an example, if the code 11000 MPPM, which is the code for 000 PCM, has a false alarm 

occurring in an empty slot in the code-word, three pulses are present and the MLSD operates 

as shown in table 11. The process is repeated for false alarms in all vacant slots and the 

average number of PCM error obtained. Consideration of all possible code-words yields the 

total average number of PCM bits in error due to false alarm detection errors as can be seen 

in table 14 (detailed results of false alarm error weightings are attached in the appendix). 
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Original PCM 

Word 

DPPM Code MLSD Probable DPPM 

words 

000 0000 0001 1000 0001 1000 0000 (111) 

   0000 0001 (000) 

   Average of error = 1.5 

  0100 0001 0100 0000 (110) 

   0000 0001 (000) 

   Average of error = 1 

  0010 0001 0010 0000 (101) 

   0000 0001 (000) 

   Average of error = 1 

  0001 0001 0001 0000 (100) 

   0000 0001 (000) 

   Average of error = 0.5 

  0000 1001 0000 1000 (011) 

   0000 0001 (000) 

   Average of error = 1 

  0000 0101 0000 0100 (010) 

   0000 0001 (000) 

   Average of error = 0.5 

  0000 0011 0000 0010 (001) 

   0000 0001 (000) 

   Average of error = 0.5 

Final average of 

error 

  0.86 for 3 bits 

0.286 per bit 

 

Table 12.  Determination of PCM error when a false alarm occurs in digital PPM 



Chapter 5. PPM Coding Schemes 

 

 

131 

 

If the code 0000 0001 DPPM, which is the code for 000 PCM, experiences a false alarm in an 

empty slot in the code-word, two pulses are present and the MLSD operates as shown in 

table 12. Consideration of false alarms in all vacant slots will yield the average PCM error for 

that particular DPPM word. Consideration of all possible code-words yields the total average 

number of PCM bits in error due to a false alarm detection error as can be seen in             

table 14 (detailed results of false alarm error weightings are attached in the appendix). 

Original PCM 

Word 

MPPM Code MLD Probable MPPM words 

000 11000 01000 11000 (000) 

   01100 (100) 

   01010 (101) 

   01001 (110) 

  10000 11000 (000) 

   10100 (001) 

   10010 (010) 

   10001 (011) 

Final 

average of 

error 

  1.125 for 3 Bits 

0.375 per bit 

 

Table 13.  Determination of PCM error when an erasure occurs in (5, 2) multiple PPM 

 

Taking the code 11000 MPPM, which is the code for 000 PCM, an erasure error leaves only 

one pulse in the detected code-word. As two pulses have to be present, the maximum 

likelihood sequence detector (MLSD) operates as shown in table 13.The same procedure 

applies if the second pulse is erased and the average error rate is obtained by taking each 

possible code-word in turn and averaging. Consideration of all possible code-words yields the 
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total average number of PCM bits in error due to an erasure detection error as can be seen in 

table 14 (detailed results of erasure error weightings are also attached in the appendix). 

When a digital PPM pulse is erased, the decoded word is all zeroes.  So the maximum 

likelihood sequence decoder assumes it could have been any word at all.  Thus the output 

word will be the average word – 111 (max) 000 (min) giving an average of 1.5 errors. For a 4 

bits digital PPM word it would be 1111 (max) 0000 (min) average of 2 errors, etc. 

As regards the error weightings for dicode PPM, the erasure and false alarm errors 

weightings would be constant and independent of the coding level because the Dicode PPM 

system operates continuously. 

The following table shows PCM errors weightings caused by false alarms and erasures for 

MPPM, DPPM and Dicode PPM coding 3, 4, 5 and 6 bits of PCM : 

False Alarm 

(Per Bit PCM) 

Erasure 

(Per Bit PCM) 

 

 

MPPM 

 

 

DPPM 

 

Dicode 
PPM 

 

MPPM 

 

DPPM 

 

Dicode 
PPM 

PCM 

(3 bits) 

 

0.309 

 

0.286 

 

0.249 

 

0.382 

 

0.5 

 

0.193 

PCM 

(4 bits) 

 

0.3088 

 

0.266 

 

0.249 

 

0.419 

 

0.5 

 

0.193 

PCM 

(5 bits) 

 

0.305 

 

0.258 

 

0.249 

 

0.440 

 

0.5 

 

0.193 

PCM 

(6 bits) 

 

0.310 

 

0.253 

 

0.249 

 

0.433 

 

0.5 

 

0.193 

 

Table 14.  Summary of PCM errors weightings caused by false alarms and erasures for 

MPPM, DPPM and Dicode PPM coding 3, 4, 5 and 6 bits of PCM 
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This table shows the weighting that must be applied to the probability of false alarm and 

erasure errors for MPPM, DPPM and Dicode PPM. These weightings show how the PCM 

error rate is affected by false alarms and erasures for MPPM, DPPM and Dicode PPM 

operating with 3, 4, 5 and 6 bits of PCM. As can be seen, Dicode PPM is the best coding 

scheme in terms of error weightings because it has the lowest false alarm and erasure error 

weightings. In addition, DPPM is better than MPPM in terms of false alarm error weightings 

because it has fewer error weightings than MPPM. MPPM is better than DPPM in terms of 

erasure error weightings.  

Dicode PPM is the best coding scheme in terms of coding efficiency and simplicity of coding 

method because it operates continuously and only transmits a pulse when there is a transition 

between levels. Thus, the erasure and false alarm weightings for Dicode PPM are 

independent of the coding level. MPPM uses two or more pulses in a frame to convey the 

original PCM word and DPPM codes n bits of PCM into a single pulse which occupies one of 

n2  time slot. Therefore, the erasure and false alarm weightings for MPPM and DPPM are 

dependent on the coding level. 
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 5. 4 Comparison between MPPM, DPPM and Dicode PPM schemes: 

 

As mentioned earlier in this chapter, the main target of this chapter and hence this research 

project work is selecting the best and appropriate PPM coding scheme to be used in optical 

intersatellite links in free space and for PCM data rates of 1 Gbit/s.  This requires making a 

comprehensive and complete comparison between these three PPM coding schemes. This 

comparison can be performed not only in terms of error weightings and coding efficiency, but 

also in terms of the sensitivity (in terms of photon per PCM bit), the noise bandwidth, the peak 

voltage and hence the bandwidth efficiency.  

 

Therefore, in addition to the work that was presented in the last section to perform this 

comparison between MPPM, DPPM and Dicode PPM coding schemes operating with 3, 4, 5 

and 6 bits of PCM in terms of error weightings and coding efficiency, twelve computer 

simulations models (using MCAD) have been carried out to perform this comparison between 

MPPM, DPPM and Dicode PPM coding schemes operating with 3, 4, 5 and 6 bits of PCM in 

terms of sensitivity and bandwidth efficiency (these simulations are attached in the appendix). 

The initial assumption is that the input speed is of the order of 128 Mbit/s and the output 

speed is of the order of 1 Gbit/s. 
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 5. 4.1 Simulation Model: 

 

Simulations have been performed with the three systems using MPPM, DPPM and Dicode 

PPM, respectively. These systems are operating in space at a wavelength of 1.55µm,             

a photodiode quantum efficiency of 100%, 3, 4, 5 and 6 bits of PCM, respectively, and PCM 

data rates of 1 Gbit/s. The following figure shows the block diagram of the receiver system 

under consideration: 

 Figure 29. A block diagram of the receiver system in an optical intersatellite link in free space 

 

Square pulses are assumed to be received with the following Fourier Transform (FT):    
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Normalising to the slot time gives: 
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The receiver uses a pre-detection filter that generates pulses with a raised-cosine spectrum.  

Such a filter helps to minimise inter-symbol-interference. It can be approximated by a single 

pole preamplifier with bandwidth of 

sT

1
7.0 ×  following by a 3

rd
 order Butterworth filter with 

bandwidth of

sT

1
5.0 × .  Assuming ideal raised-cosine spectrum pulses, the pulse shape 

presented to the threshold detector [22] is 
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And the derivative of the pulse shape is: 
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where a(ω), b(ω) are variables and given by: 
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where Pnω  is the preamplifier bandwidth, Bnω is the bandwidth of the Butterworth filter, sT  is 

the slot time which takes different values of
M

TN b.
,

N

bTN

2

.
and 

2

bT
 for MPPM( M ,2), DPPM 

and Dicode PPM, respectively. Where N  is the number of PCM bits, bT is PCM bit time , 

and M  is the number of slots used in MPPM which is 5, 7, 9 and 12 for 3, 4, 5 and 6 bits of 

PCM, respectively. Examples of time slots are shown in figure 12 in the last section of chapter 

2 which shows examples of timing diagram for the MPPM, DPPM and Dicode PPM signals 

with the time slot width ( sT ) for 3 bits of PCM and for each scheme. 

A threshold-crossing detector makes a decision as to the presence or absence of a pulse in a 

particular time-slot. A normalised decision voltage, iV , is given by: 

                                                iV =

pk

d

V

V
                                               (103) 

where dV  is the threshold crossing voltage and pkV  is the peak voltage of the pulse. For a 

given coding scheme, the pulse shape and noise can be determined and the optimum value 

of iV  that yields the lowest number of photons per pulse, b, can be found for a specified PCM 

error rate (1 in 
910 in these simulations).  

An algorithm was designed to generate results which can be used as comparative tools 

between MPPM, DPPM and Dicode PPM operating with 3, 4, 5 and 6 bits of PCM in terms of 

error weightings, coding efficiency, sensitivity and bandwidth efficiency. Consequently, the 

most appropriate coding scheme can be determined to be used in optical inter-satellite links in 

free space and for PCM data rates of 1 Gbit/s.  

The following figure shows the flow chart of the aforementioned simulations for comparisons 

of the three used coding schemes MPPM, DPPM and Dicode PPM operating with 3, 4, 5 and 

6 bits of PCM, respectively. This chart clarifies the process of the simulation and how the 

results were yielded: 
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Figure 30. Flow chart of the simulations for comparisons of the three used coding schemes 

MPPM, DPPM and Dicode PPM coding 3, 4, 5 and 6 bits of PCM 
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As can be seen by figure 30, the simulations start with preamplifier and pulse shape terms. 

These preamplifier terms are shown by the following list of parameters: 

 

Preamplifier  Terms 

241016 −×=oS  Preamplifier noise at input-doublesided 

Philps TZA 3043 

λ =1550 nm Wavelength of operation 

910=B  PCM bit rate 

910−=bT  PCM bit time 

8=n  Number of like symbols in PCM 

610=nf  Channel bandwidth for free space 

3=N or 4 or 5 or 6 Number of PCM bits 

19106.1 −×=qη  Quantum energy 

2010832.12_ −×=energyPhoton  Photon energy  

247.1=oR  Responsivity 

3105×=b  Constant  

1000=range  Constant 

20,........1,0=i  variable  

 

Table 15. List of parameters used in the simulations for comparisons of the three used coding 

schemes MPPM, DPPM and Dicode PPM coding 3, 4, 5 and 6 bits of PCM  

 

As regards the pulse shape terms, the most important parameter is the slot time, sT , which 

takes different values of
M

TN b.
,

N

bTN

2

.
and 

2

bT
 for MPPM( M ,2), DPPM and Dicode PPM, 

respectively. Where N  is the number of PCM bits, bT is PCM bit time , and M  is the number 
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of slots used in MPPM which is 5, 7, 9 and 12 for 3, 4, 5 and 6 bits of PCM, respectively. 

Examples of time slots are shown in figure 12 in the last section of chapter 2 which shows 

examples of timing diagram for the MPPM, DPPM and Dicode PPM signals with the time slot 

width ( sT ) for 3 bits of PCM and for each scheme. 

As mentioned previously, the receiver uses a pre-detection filter that generates pulses with a 

raised-cosine spectrum.  Such a filter helps to minimise inter-symbol-interference. It can be 

approximated by a single pole preamplifier with bandwidth of 

sT

1
7.0 ×  following by a 3

rd
 

order Butterworth filter with bandwidth of

sT

1
5.0 × . So, the preamplifier bandwidth, Pnω , and  

the bandwidth of the Butterworth filter, Bnω , are given by: 

                         

s

p
T

f
1

7.0=                                     

s

B
T

f
1

5.0=                               (104) 

                           BB f×= πω 2                               sBnB Tf ××= πω 2                         (105)  

                           pp f×= πω 2                               spnp Tf ××= πω 2                         (106) 

 

The Fourier Transform (FT):    
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The autocorrelation time is given by: 

                                  

B

R
ω

τ
8

=                      

sB

nR
T×

=
ω

τ
8

                                (109) 

By using values of these parameters into equations (101) and (102), the pulse shape 

presented to the threshold detector can be found as expressed by equation (99). 

The noise bandwidth is given by:  

             ∫
∞

×=
0

2

)()(.
.2

2
ωωω

π
dHHnoise Bp                                      (110) 

The peak time, Pkt , can be found by using the pulse shape and the equation: 

                                 ),).((
2

1 tTtIroott spk =                                               (111) 

And so the peak voltage, pkV , is given by: 

                              )()( 0 pkpk tIqbbV ××= η                                              (112) 

The decision time is expressed as: 

                     [ ]tTtIVtIroott spkid i
,)()(

2

00 ×−=                                (113) 

And so the threshold crossing voltage is given by: 

                            )(),( 0 idd tIqbibV ××= η                                               (114) 

By using the noise bandwidth, equation (110), the peak voltage, equation (112), and the 

threshold crossing voltage, equation (114), the signal to noise ratios for false alarm and 

erasure errors can be found by the following equations: 
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For false alarm, threshold crossing: 

                          
noiseS

ibV
ibQ d

t
×

=
0

),(
),(                                                (115) 

For erasure error: 

                        
noiseS

ibVbV
ibQ

dpk

r
×

−
=

0

),()(
),(                                           (116) 

As mentioned previously, a maximum likelihood sequence detector (MLSD) has been used in 

the decoder in order to show how the PCM error rate is affected by false alarm and erasure 

errors for MPPM, DPPM and Dicode PPM operating with 3, 4, 5 and 6 bits of PCM. Examples 

have been presented throughout tables 11, 12 and 13 in order to show how MLSD was used. 

In addition, table 14 shows the results of PCM errors weightings caused by false alarms and 

erasures for MPPM, DPPM and Dicode PPM coding 3, 4, 5 and 6 bits of PCM. 

By using these false alarm and erasure weightings, faP and erP , respectively,  and the signal 

to noise ratios, equations (115) and (116), the false alarm and erasure error probabilities can 

be found and are given by: 

For false alarm error: 

                   )
2

),(
(5.0),(

ibQ
erfcPibP t

faf ××=                             (117) 

For erasure error: 

                  )
2

),(
(5.0),(

ibQ
erfcPibP r

err ××=                               (118) 

And so the binary error probability, ),( ibPeb , for MPPM and Dicode PPM is given by: 

                                  ),(),(),( ibPibPibP rfeb +=                                            (119) 
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Whereas the binary error probability for DPPM can be found through the symbol error 

probability, ),( ibPes , that is given by: 

                 ),(
2

1
),(),( ibP

n
ibPibP fres

−
+=                                  (120) 

And so the binary error probability for DPPM is given by: 

               ),(
)1(2

),( ibP
n

n
ibP eseb

−
=                                               (121) 

The minimum number of photons per PCM bit represents the sensitivity. Thus the sensitivity 

for MPPM and DPPM is given by: 

                          NaPhotons /)min(=                                            (122) 

Whereas the Dicode PPM system operates continuously and so its sensitivity is independent 

of the coding level and given regardless of the division on the number of PCM bits:                          

                            )min(aPhotons =                                                (123) 

Where ),( ibpc , ia are variable for a specified PCM error rate (1 in 
910 ) and given by: 

                       9)),(log(),( += ibPibpc eb                                    (124) 

                          )),,(( bibpcrootai =                                               (125) 

 

The simulations results have been concluded by using the previous parameters with the 

above equations (97-125) in sequence in order to formulate the simulations process as shown 

in the aforementioned flow chart. These results are shown in tables 16, 17, 18 and 19 for 

MPPM, DPPM and Dicode PPM operating with 3, 4, 5 and 6 bits of PCM, respectively. 
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5. 4.2 Results and discussion: 

The following tables16, 17, 18 and 19 show the summary of the results of these simulations 

for MPPM, DPPM and Dicode PPM operating with 3, 4, 5 and 6 bits of PCM, respectively: 

 

3 Bits PCM 

 

MPPM 

 

DPPM 

 

Dicode PPM 

 

Weighting for False Alarm 
Errors  

 

0.309 

 

0.286 

 

0.249 

 

Weighting for Erasure Errors  

 

0.382 

 

0.5 

 

0.193 

    

 

Photon per PCM Bit  

 

3108222 ×⋅  

 

3103412 ×⋅  

 

3102927 ×⋅  

 

Noise Bandwidth  (Hz) 

 

810776.8 ×  

 

910404.1 ×  

 

910053.1 ×  

 

Final Line Rate (B/W 
Expansion) 

 

1.7 ×PCM Data Rate    
(3 Bits) 

 

2.7 ×  PCM Data Rate    
(3 Bits) 

 

 

2 ×  PCM Data Rate 
(Fixed) 

 

Slot Time (S) 

 

10106 −×  

 

1010753 −×⋅  

 

10105 −×  

 

Normalised Peak Voltage 

( pkV ) 

 

0.625 

 

1 

 

0.75 

 

Decision Voltage ( iV =

pk

d

V

V
) 

 

540 ⋅  

 

5660 ⋅  

 

510 ⋅  

Table 16. Summary of the results of simulations for comparisons of MPPM, DPPM and 

Dicode PPM operating with 3 bits of PCM 
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Table 16 shows the results of simulation for MPPM, DPPM and Dicode PPM coding 3 bits of 

PCM. As can be seen, MPPM offers the lowest noise bandwidth of
810776.8 × Hz because it 

has the lowest speed and hence the lowest bandwidth requirement. DPPM has a higher noise 

bandwidth of 
910404.1 × Hz than Dicode PPM (

910053.1 × Hz) because Dicode PPM has 

lower speed and bandwidth than DPPM.   

The peak voltage has been normalised to unity. MPPM has the lowest peak voltage which is 

0.625 that of the DPPM because it has the largest time slot width of 0.6ns. Dicode PPM has a 

time slot width of 0.5ns and a peak voltage which is 0.75 that of the DPPM. The time slot 

width for MPPM (5, 2), DPPM and Dicode PPM signals is 
5

.3 bT
,

32

.3 bT
and 

2

bT
 respectively. 

DPPM offers the best sensitivity in terms of photon per PCM bit because it requires 

3103412 ×⋅ Photons per PCM bit. In addition, MPPM has better sensitivity than Dicode PPM 

because it requires 
3108222 ×⋅  Photons per PCM bit, whereas Dicode PPM requires 

3102927 ×⋅  Photons per PCM bit. 
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4 Bits PCM 

 

MPPM 

 

DPPM 

 

Dicode PPM 

 

Weighting for False 
Alarm Errors  

 

0.3088 

 

0.266 

 

0.249 

 

Weighting for 
Erasure Errors 

 

0.419 

 

0.5 

 

0.193 

    

 

Photon per PCM 
Bit  

 

3100712 ×⋅   

 

3104341 ×⋅  

 

 

3102927 ×⋅   

 

Noise Bandwidth 
(Hz) 

 

810215.9 ×  

 

 

910106.2 ×  

 

910053.1 ×  

 

Final Line Rate       
(B/W Expansion) 

 

 

1.75 ×PCM Data Rate           
(4 Bits) 

 

 

4 ×  PCM Data Rate      
(4 Bits) 

 

 

2 ×  PCM Data Rate 
(Fixed) 

 

Slot Time (S) 

 

1010714.5 −×  

 

101052 −×⋅  

 

10105 −×  

 

Normalised Peak 

Voltage ( pkV ) 

 

0.437 

 

1 

 

0.5 

 

Decision Voltage 

( iV =

pk

d

V

V
) 

 

540 ⋅  

 

5660 ⋅  

 

510 ⋅  

Table 17. Summary of the results of simulations for comparisons of MPPM, DPPM and 

Dicode PPM operating with 4 bits of PCM 
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Table 17 shows the results of simulation for MPPM, DPPM and Dicode PPM coding 4 bits of 

PCM. As can be seen, MPPM has better sensitivity than Dicode PPM because it 

requires
310071.2 ×  Photons per PCM bit. Whereas the required photons per PCM bit for 

Dicode PPM is independent of the coding level and equals 
310292.7 × Photons per PCM bit. 

In addition, this table shows that DPPM operating with 4 bits of PCM offers the best sensitivity 

in terms of photon per PCM bit because it requires
310434.1 × Photons per PCM bit.  

DPPM has a higher noise bandwidth of 
910106.2 × Hz than Dicode PPM (

910053.1 × Hz) for 

4 bits of PCM because Dicode PPM has lower speed and bandwidth than DPPM.  In addition, 

MPPM coding 4 bits of PCM offers the lowest noise bandwidth of 
810215.9 × Hz as it has the 

lowest speed and hence the lowest bandwidth requirement.  

The peak voltage has been normalised to unity. Similar to operating with 3 bits of PCM, 

MPPM coding 4 bits of PCM has the lowest peak voltage which is 0.437 that of the DPPM for 

4 bits of PCM because it has the largest time slot width of 5714.0 ns. Dicode PPM has a time 

slot width of 5.0  ns and a peak voltage that is 0.5 that of the DPPM. The time slot width for 

MPPM (7, 2), DPPM and Dicode PPM signals is 
7

.4 bT
,

42

.4 bT
and 

2

bT
 respectively. 
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5 Bits PCM 

 

MPPM 

 

DPPM 

 

Dicode PPM 

 

Weighting for False 
Alarm Errors  

 

0.305 

 

0.258 

 

0.249 

 

Weighting for  

Erasure Errors 

 

0.440 

 

0.5 

 

0.193 

    

 

Photon per PCM 
Bit  

 

31063581 ×⋅   

 

31090680 ×⋅  

 

 

3102927 ×⋅   

 

Noise Bandwidth 
(Hz) 

 

810478.9 ×  

 

 

91037.3 ×  

 

910053.1 ×  

 

Final Line Rate       
(B/W Expansion) 

 

 

1.8 ×PCM Data Rate           
(5 Bits) 

 

 

6.4 ×  PCM Data Rate      
(5 Bits) 

 

 

2 ×  PCM Data Rate 
(Fixed) 

 

Slot Time (S) 

 

1010556.5 −×  

 

10105631 −×⋅  

 

10105 −×  

 

Normalised Peak 

Voltage ( pkV ) 

 

0.281 

 

1 

 

0.312 

 

Decision Voltage 

( iV =

pk

d

V

V
) 

 

540 ⋅  

 

5660 ⋅  

 

510 ⋅  

Table 18. Summary of the results of simulations for comparisons of MPPM, DPPM and 

Dicode PPM operating with 5 bits of PCM 
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Table 18 shows the results of simulation for MPPM, DPPM and Dicode PPM coding 5 bits of 

PCM. As can be seen, the peak voltage has been normalised to unity. Since MPPM has the 

largest time slot width of 5556.0  ns, it has the lowest peak voltage which is 0.281 that of the 

DPPM for 5 bits of PCM. In addition, Dicode PPM has a time slot width of 5.0  ns and a peak 

voltage that is 0.312 that of the DPPM. The time slot width for MPPM (9, 2), DPPM and 

Dicode PPM signals is 
9

.5 bT
,

52

.5 bT
and 

2

bT
 respectively. 

This table shows that Dicode PPM coding 5 bits of PCM has less sensitivity than MPPM as it 

requires 
310292.7 × Photons per PCM bit, which is independent of the coding level. Whereas 

the required photons per PCM bit for MPPM is 
3106358.1 ×  Photons per PCM bit for 5 bits of 

PCM. In addition, similar to 3 and 4 bits of PCM, DPPM operating with 5 bits of PCM offers 

the best sensitivity in terms of photon per PCM bit because it requires 
3109068.0 ×  Photons 

per PCM bit. 

Since Dicode PPM has lower speed and bandwidth than that of DPPM, it can be seen from 

this table that Dicode PPM has a lower noise bandwidth (
910053.1 × Hz), which is also 

independent of the coding level, than DPPM which has noise bandwidth of 
91037.3 × Hz for 

5 bits of PCM. In addition, MPPM operating with 5 bits of PCM offers the lowest noise 

bandwidth of 
810478.9 × Hz because it has the lowest speed and hence the lowest 

bandwidth requirement.  
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6 Bits PCM 

 

MPPM 

 

DPPM 

 

Dicode PPM 

 

Weighting for False 
Alarm Errors  

 

0.310 

 

0.253 

 

0.249 

 

Weighting for  

Erasure Errors 

 

0.433 

 

0.5 

 

0.193 

    

 

Photon per PCM Bit  

 

31029271 ×⋅   

 

31058540 ×⋅  

 

 

3102927 ×⋅   

 

Noise Bandwidth (Hz) 

 

910053.1 ×  

 

 

910616.5 ×  

 

910053.1 ×  

 

Final Line Rate       
(B/W Expansion 

 

2 ×PCM Data Rate           
(6 Bits) 

 

10.7 ×  PCM Data Rate  
(6 Bits) 

 

 

2 ×  PCM Data Rate 
(Fixed) 

 

Slot Time (S) 

 

10105 −×  

 

11103759 −×⋅  

 

10105 −×  

 

Normalised Peak 

Voltage ( pkV ) 

 

0.187 

 

1 

 

0.187 

 

Decision Voltage 

( iV =

pk

d

V

V
) 

 

540 ⋅  

 

5660 ⋅  

 

510 ⋅  

Table 19. Summary of the results of simulations for comparisons of MPPM, DPPM and 

Dicode PPM operating with 6 bits of PCM 



Chapter 5. PPM Coding Schemes 

 

 

151 

 

Table 19 shows the results of simulation for MPPM, DPPM and Dicode PPM coding 6 bits of 

PCM. This table shows that MPPM has better sensitivity than Dicode PPM because it 

requires 3102927.1 ×  Photons per PCM bit for 6 bits of PCM. Whereas the required photons 

per PCM bit for Dicode PPM is independent of the coding level and equals 

310292.7 × Photons per PCM bit. In addition, similar to 3, 4 and 5 bits of PCM, DPPM 

operating with 6 bits of PCM offers the best sensitivity in terms of photon per PCM bit as it 

requires 
3105854.0 ×  Photons per PCM bit.  

The peak voltage has been normalised to unity. MPPM has the lowest peak voltage which is 

0.187 that of the DPPM for 6 bits of PCM because it has the largest time slot width of 5.0  ns. 

Dicode PPM has the same time slot width of MPPM ( 5.0  ns), and thus the same peak 

voltage that is 0.187 that of the DPPM. 

As can be seen ,MPPM operating with 6 bits of PCM offers the lowest noise bandwidth of 

910053.1 × Hz as it has the lowest speed and hence the lowest bandwidth requirement. 

DPPM has a higher noise bandwidth of 
910616.5 × Hz than Dicode PPM (

910053.1 × Hz), 

which equals the noise bandwidth of MPPM, for 6 bits of PCM because Dicode PPM has 

lower speed and bandwidth than DPPM.   
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5.5 Conclusion: 

 

DPPM is currently the preferred coding scheme for use in optical inter-satellite links because 

it operates with very low average power and offers a high sensitivity. However, it does suffer 

from a very large bandwidth expansion problem. Two alternative coding schemes have been 

examined in this research project work and a comparison has been made in terms of 

sensitivity, bandwidth efficiency, error weightings and coding efficiency.  

Results show that Dicode PPM is the best coding scheme in terms of error weightings and 

coding efficiency because it has the lowest error weightings and operates continuously. In 

addition, it offers a fixed small bandwidth expansion - twice the PCM rate. MPPM can run at a 

lower speed - the final line rate for the MPPM (5, 2), (7, 2), (9, 2) and (12, 2) scheme are 1.7, 

1.75, 1.8 and 2 that of the PCM, respectively. This should be compared to DPPM operating 

with 3, 4, 5 and 6 bits of PCM that run at a final line rate which are 2.7, 4, 6.4 and 10.7 times 

that of the original PCM data rate, respectively. 

Despite the fact that Dicode PPM is the best coding scheme in terms of error weightings and 

coding efficiency, it requires the highest photons per PCM bit and thus has the lowest 

sensitivity. This is because the Dicode PPM system operates continuously and so its 

sensitivity, which is represented by the minimum number of photons per PCM bit, is 

independent of the coding level and given regardless of the division on the number of PCM 

bits as can be seen by equation (123). However, MPPM requires much lower photons per 

PCM bit compared to Dicode PPM, offers the lowest bandwidth expansion, has the lowest 

speed and offers the lowest noise bandwidth. Therefore, according to these considerations, it 

is concluded that MPPM coding 3, 4, 5 and 6 bits of PCM is the appropriate coding scheme to 

be used in optical inter-satellite links in free space.  
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6 .     Future work 

 

 
 
 
In general, there is good correlation between computer predicted and theoretical results. This 

shows that the novel model of the link used in the theoretical analysis is reasonably accurate. 

Therefore, the author has achieved his objective of the research and demonstrated the 

suitable design of the model of optical inter-satellite link in free space and PCM data rates of 

1 Gbit/s, and hence determined the most appropriate coding scheme to be used in such links. 

However, this research project work has discussed and investigated MPPM (5, 2), (7, 2), (9, 

2) and (12, 2) coding 3, 4, 5 and 6 bits of PCM, respectively. Such techniques include 

random, linear, Hamming, Gary and Reed Solomon codes could be investigated. Therefore, 

this research project work could be the core concept for future work that is examining these 

code techniques in general and Reed Solomon in particular, for using in optical intersatellite 

links in free space in case of aforementioned MPPM systems (X/2) or maybe more than 12 

slots such that an optimum can be found.  In all cases the suitability for use in free space 

(power consumption and complexity) will be addressed.   

 
 
On the other hand, this research project work could be the core concept for future work that is 

extending the comparisons in order to include more coding schemes such as Offset Pulse 

Position Modulation (OPPM) coding schemes for using in optical intersatellite links in free 

space in case of aforementioned PCM data rates of 1 Gbit/s or maybe more than 1 Gbit/s 

such that an optimum can be found. 
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7 .    Conclusion  
 
 
 
This thesis described an analysis of intersatellite links in free space, with optical links using 

laser sources being considered in particular. The initial assumption was that the input speed 

is of the order of 128 Mbit/s and the output speed is of the order of 1 Gbit/s. This work has 

investigated a suitable design of the model of optical inter-satellite link in free space and has 

selected the most appropriate coding scheme to be used. The following block diagram 

summarises the results of the work:  

  

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 31.  The block diagram represents the final results of design of the model for optical 

intersatellite links in free space and for PCM data rates of 1 Gbit/s 

 

As can be seen from this diagram, the model of the link consists of: transmitter, receiver and 

coding system. This research project work started in chapter 2 with an in-depth analysis and 
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literature review of significant topics, which have formed the core concepts of the investigation 

into designing the model of the link.  

 

The importance of using laser diodes as a light source in optical intersatellite links in space 

was presented in chapter 3. This chapter showed that a laser diode has many advantages: 

small size; high electrical to optical efficiencies; tightly focused beam. It is possible to adapt 

the technology used in fibre optic links to free-space communications and so multi-Gbit/s 

transmission is possible using readily available integrated driver chips. Investigations have 

been carried out throughout this chapter in order to establish the model of the transmitter. 

These investigations have concluded that emission wavelength of 1.55 µm and InGaAsP as 

the semiconductor material are the most suitable combination. 

 

A theoretical model of an optically preamplified receiver has been developed throughout 

chapter 4. This model relied heavily on the basic structure of an optical receiver which 

consists of: a photodiode, a low-noise preamplifier, the front-end, further amplification stages, 

the post-amplifier and filtering. This chapter included studies and investigations in order to 

establish the model of the receiver. These studies have resulted in the conclusion that using 

an optically preamplified receiver that consists of: a PIN photodiode as a photodetector, 

Semiconductor Optical Amplifier (SOA) as an amplifier and a 3
rd

 order Butterworth filter with 

central decision detection, is considered as a suitable combination in the design of the 

receiver to be used in optical intersatellite links in free space. Moreover, InGaAsP is the best 

choice as a semiconductor material to be used in fabricating a PIN photodiode in the link. This 

is because an APD photodiode has multiplication that leads to increase of excess noise, 

which are dark and signal noise, and poor bandwidth. In contrast, a PIN photodiode does not 

have multiplication and thus it has a lower excess noise and very good bandwidth. In addition, 

using an APD photodiode with SOA is not sufficient because the noise and the signal will be 

highly amplified. However, using a PIN photodiode with SOA has a very good bandwidth, 

multiplication and easy to use.  
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An original analysis of this novel technique of an optically preamplified receiver has also been 

presented in chapter 4 in order to examine the noise performance of the selected optical 

receiver, and hence determine its sensitivity and the number of received photons. This 

analysis was presented by using a computer simulation model (using MCAD) that has been 

carried out in such links and with using three different coding schemes for 3 bits of PCM: 

Multiple Pulse Position Modulation (MPPM), Digital Pulse Position Modulation (DPPM) and 

Dicode Pulse Position Modulation (Dicode PPM), respectively.  

 

The results of this simulation have showed that the optical receiver offers the lowest total 

noise when MPPM coding scheme is used because MPPM has the lowest speed and hence 

the lowest bandwidth requirement. The optical receiver used with Dicode PPM coding 

scheme has a lower total noise than that when DPPM coding scheme is used. Additionally, 

the optical receiver used with MPPM offers the best sensitivity as it requires the lowest optical 

power. The optical receiver used with Dicode PPM has better sensitivity than that using 

DPPM coding scheme. Moreover, the optical receiver used with MPPM coding scheme has 

the largest number of photons received for a specified error rate as MPPM has the largest 

time slot width. The optical receiver used with DPPM has a lower number of photons received 

for a specified error rate than that uses Dicode PPM.  

 

According to these results and investigations, it is concluded that the optical receiver, which 

uses PIN photodiode as a photodetector with SOA as an amplifier and a 3
rd

 order Butterworth 

filter with central decision detection, used with MPPM coding 3 bits of PCM is considered a 

suitable design for use in optical inter-satellite links in free space. This information has 

represented the main goal of designing the receiver in such links. 

 

DPPM and two alternative coding schemes, which are MPPM and Dicode PPM, have been 

examined and analysed throughout chapter 5. This chapter included original algorithms that 

have been designed. The results can be used as comparative tools between MPPM, DPPM 

and Dicode PPM operating with 3, 4, 5 and 6 bits of PCM in terms of error weightings, coding 

efficiency, sensitivity and bandwidth efficiency. Consequently, the most appropriate coding 
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scheme can be determined to be used in optical inter-satellite links in free space and for PCM 

data rates of 1 Gbit/s.  

 

Final investigations and results have resulted in the conclusion that Dicode PPM is the best 

coding scheme in terms of error weightings and coding efficiency because it has the lowest 

error weightings and operates continuously. In addition, it offers a fixed narrow bandwidth 

expansion - twice the PCM rate, but it requires the highest photons per PCM bit and thus has 

the lowest sensitivity. However, MPPM can run at a lower speed - the final line rate for the 

MPPM (5, 2), (7, 2), (9, 2) and (12, 2) scheme are 1.7, 1.75, 1.8 and 2 that of the PCM, 

respectively. This should be compared to DPPM operating with 3, 4, 5 and 6 bits of PCM that 

run at a final line rate which are 2.7, 4, 6.4 and 10.7 times that of the original PCM data rate, 

respectively. Moreover, MPPM requires much lower photons per PCM bit compared to Dicode 

PPM, offers the lowest bandwidth expansion, has the lowest speed and offers the lowest 

noise bandwidth. 

 

Therefore, according to these investigations and considerations, it is concluded that MPPM 

coding 3, 4, 5 and 6 bits of PCM is the most appropriate coding scheme to be used in optical 

inter-satellite links in free space and for PCM data rates of 1 Gbit/s. This information has 

represented the main target of this research. 
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High Speed InGaAs PIN Photodiodes 
C30616, C30637, C30617, C30618 Series 
 

Overview  
 
This series of high speed InGaAs 
photodiodes is designed for use in          
OEM fiber-optic communications systems 
and high-speed receiver applications 
including trunk line, LAN, fiber-in-the-loop 
and data communications. Ceramic sub- 
mount packages are available for easy 
integration into high speed SONET, 
FDDI, data link receiver modules, or as 
back facet power monitors in laser diode 
modules.  
 
Available in hermetic TO-18 packages, or 
in connectorized receptacle packages 
with industry standard FC or SC 
connectors, these photodiodes are 
designed to function with either single or 
multimode fibers. Receptacle packages 
use a ball-lens TO-18 package to 
maximize coupling efficiency. All devices 
are planar passivated and feature  
 

 
 
proven, high reliability mounting and 
contacting.   
 
Recognizing that different applications 
have different performance requirements, 
PerkinElmer offers a wide range of 
customization of these photodiodes to 
meet your design challenges.  
Responsivity and noise screening, 
custom device testing and packaging are 
among many of the application specific 
solutions available

 
Features and Benefits  
 

• Available in various packages 
• 50, 75, 100, 350 μm diameters 
• High responsivity at 1300 and 
  1550 nm 
• Low capacitance for high 

bandwidths (to 3.5 GHz) 
• RoHS Compliant 
 
 

 
Applications  
 

• Telecommunications 
• Instrumentation 
• Data transmission 
• High speed switching 
• Data links and LANs 

 
 

www.optoe lect ron ics .perk ine lmer .com  
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Table 1.  Mechanical and Optical Characteristics 
 

 
 C30616 C30637 C30617 C30618 Unit

Shape Circular Circular Circular Circular  

Useful Area 0.002 0.004 0.008 0.096 mm2

Useful Diameter 50 75 100 350 µm 

Package Types1 Rectangular 
ceramic 

Rectangular 
ceramic 

TO-18 Ball 
Lens, 

Rectangular 
ceramic, FC, 

SC receptacle 

TO-18, 
Rectangular 
ceramic, FC 
receptacle 

 

Window Type   Ball Lens Glass Flat Glass  
1.  See Figures 5-10 for package dimension details. 
 
 
Table 2.  Typical Electrical Characteristics at TA = 22 °C, @ VR=Vop typical 
 

Parameter C30616 C30637 Units 

 Min Typ Max Min Typ Max  

Operating voltage (Vop) 1 5 10 1 5 10 V 

Breakdown voltage 25 100 - 25 100 - V 

Responsivity @ 1300 nm   
TO-18, ceramic 
FC/ST/SC receptacle 

 
0.80 

- 

 
0.90 

- 

 
- 
- 

 
0.80 

- 

 
0.90 

- 

 
- 
- 

 
A/W 

 
Responsivity @ 1550 nm   
TO-18, ceramic 
FC/ST/SC receptacle 

 
0.85 

- 

 
0.95 

- 

 
- 
- 

 
0.85 

- 

 
0.95 

- 

 
- 
- 

A/W 

Dark Current - <1.0 2.0 - <1.0 2.0 nA 

Spectral Noise current (10KHz, 1.0 Hz) - <0.02 0.15 - <0.02 0.15 pA/√Hz 

Capacitance @ VR=VOP 

Ceramic 
TO-18 

 
- 

 
0.35 

- 

 
0.55 

- 

 
- 

 
0.40 

- 

 
0.60 

- 

 
pF 

 

Rise/Fall time (10%-90%) - 0.07 0.5 - 0.07 0.5 ns 

Bandwidth (-3dB, RL=50Ω) - 3.5 - - 3.5 - GHz 

Maximum Forward Current - - 10 - - 10 mA 

Power Dissipation - - 100 - - 100 mW 

Storage Temperature -60  125 -60  125 °C 

Operating Temperature -40  125 -40  125 °C 
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Parameter C30617 C30618 Units 

 Min Typ Max Min Typ Max  

Operating voltage 1 5 10 1 5 10 V 

Breakdown voltage 25 100 - 25 80 - V 

Responsivity @ 1300 nm   
TO-18, ceramic 
FC/ST/SC receptacle2

 
0.80 
0.65 

 
0.90 
0.75 

 
- 
- 

 
0.80 
0.65 

 
0.90 
0.75 

 
- 
- 

 
A/W 

 
Responsivity @ 1550nm   
TO-18, ceramic 
FC/ST/SC receptacle2

 
0.85 
0.70 

 
0.95 
0.80 

 
- 
- 

 
0.85 
0.70 

 
0.95 
0.80 

 
- 
- 

A/W 

Dark Current 
       Ceramic package 
       TO-18 package 

 
- 
 

 
<1.0 

- 

 
2.0 
4.0 

 
- 
 

 
1.0 
- 

 
5.0 
- 

nA 

Spectral Noise current (10 KHz, 1.0 Hz) - <0.02 0.15 - 0.02 0.20 pA/√Hz 

Capacitance @ VR=VOP 

Ceramic 
TO-18 

 
- 

 
0.6 
0.8 

 
0.8 
1.0 

 
- 

 
4.0 
4.0 

 
6.0 
6.0 

 
pF 

 

Rise/Fall time (10%-90%) - 0.07 0.5 - 0.5 1.0 ns 

Bandwidth (-3dB, RL=50Ω) - 3.5 - - 0.75 - GHz 

Maximum Forward Current - - 10 - - 10 mA 

Power Dissipation - - 100 - - 100 mW 

Storage Temperature3 -60  125 -60  125 °C 

Operating Temperature3 -40  125 -40  125 °C 
 
2. Coupled from 62.5 µm, 0.28NA, graded index multi-mode fiber using 1300 nm SLED source. 
3. Maximum storage and operating temperature of connectorized /receptacle devices is +85°C. 
 
 
Table 3.  Ordering Guide 
 

Package Type C30616 C30637 C30617 C30618 

TO-18 ball glass lens - - C30617BH - 

TO-18 flat glass lens - - - C30618GH 

Rectangular ceramic C30616ECERH C30637ECERH C30617ECERH C30618ECERH

TO-18 ball lens with FC 
receptacle - - C30617BFCH C30618BFCH 

TO-18 ball lens with SC 
receptacle - - C30617BSCH - 

 
 
 
 



 

www .optoe lect ron ics .perk ine lmer .com High Speed InGa As P IN Photodiodes           

D
A

T
A

S
H

E
E

T
 

 

Typical InGaAs PIN QE

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

600 800 1000 1200 1400 1600
WaveLength (nm)

Q
ua

nt
um

 E
ffi

ci
en

cy
 (%

)

 
 
 
 

 
 
 
 
 
 

  

Figure 1
Typical Quantum 
Efficiency vs. Wavelength 

InGaAs PIN Responsivity vs Wavelength
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Figure 2
Typical Responsivity vs. 
Wavelength 
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Capacitance vs Voltage - Small Area InGaAs PINs
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Figure 3
Typical Capacitance vs. 
Operating Voltage  

Dark Current vs. Temperature
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Figure 4
Typical Dark Current vs. 
Temperature 
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Figure 5 
Package dimension for rectangular 
ceramic ECERH types, in mm, for 
reference only 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6
Package dimension for TO-18         
ball lens BH types, in mm, for 
reference only 

 
 
 

Figure 7 Package dimension for TO-18        
flat glass lens GH types, in mm, for 
reference only 
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Figure 8  
Package dimension for TO-18            
ball lens FC receptacle BFC types, in 
mm (inches), for reference only 

 
 
  

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 Figure 9 
 Package dimension for TO-18         

ball lens SC receptacle BSC types, 
in mm (inches), for reference only 

 
 

 
  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
RoHS Compliance 
This series of photodiodes is designed and built to be fully compliant with the European Union 
Directive 2002/95EEC – Restriction of the use of certain Hazardous Substances in Electrical 
and Electronic equipment. 

 
 
Warranty 
A standard 12-month warranty following shipment applies. Any warranty is null and void if the 
photodiode window has been opened.  
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Your Partner of Choice 
With a broad customer base in all major markets, built on ninety years of solid trust and 
cooperation with our customers, PerkinElmer is recognized as a reliable partner that delivers 
high quantity, customized, and superior "one-stop" solutions. Our products – from single 
photocells to complex x-ray inspection systems - meet the highest quality and environmental 
standards. Our worldwide Centres of Excellence, along with our Customer and Technical 
Support teams, always work with you to find the best solutions for your specific needs. 
 
PerkinElmer Optoelectronics 
PerkinElmer Optoelectronics is a global technology leader providing market-driven, integrated 
solutions for a wide range of applications, which leverage our lighting, sensors, and imaging 
expertise. Our technologies, services and support are enhancing our customers' productivity, 
optimizing performance, and accelerating time to market. So contact us and put PerkinElmer's 
expertise to work in your demanding applications. We will show how our innovations will help 
you deliver the perfect product. 
 
 
 
 
 

North America  
Customer Support Hub 
PerkinElmer Optoelectronics 
22001 Dumberry Road 

European Headquarters Asia Headquarters Vaudreuil-Dorion, Québec 
Canada J7V 8P7 
Telephone: +1 450-424-3300,                                             
(+1) 866-574-6786 (toll-free) 

PerkinElmer Optoelectronics PerkinElmer Optoelectronics 
Wenzel-Jaksch-Str. 31 47 Ayer Rajah Crescent #06-12 
65199 Wiesbaden, Germany Singapore 139947 

Fax: +1 450-424-3345 Telephone: (+49) 611-492-247 Telephone: (+65) 6775-2022 
Email: opto@perkinelmer.com Fax: (+49) 611-492-170 Fax: (+65) 6775-1008 

 www.optoelectronics.perkinelmer.com Email: opto.Europe@perkinelmer.com Email: opto.Asia@perkinelmer.com 
 
 
For a complete listing of our global offices, visit www.optoelectronics.perkinelmer.com 
©2007 PerkinElmer, Inc. All rights reserved. The PerkinElmer logo and design are registered trademarks of PerkinElmer, Inc. PerkinElmer reserves the right to change this document at any time 
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Two 10 Gb/s downstream solutions

DFB
EAM
SOA

PIN
-18 dBm
sensitivity
@ 10 Gb/s
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-18 dBm
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Pout = +11 dBm
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-18 dBm
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-18 dBm
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@ 10 Gb/s

Pout = +3 dBm

29 dB link budget
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Higher cost ONT
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SOA vendor survey
From:
http://www.ieee802.org/3/av/public/2006_11/3av_0611_lee_1.pdf

(November 2006 meeting)

Production SOAs operating in the 
1490 nm range, as well as SOAs 
with peak gain > 25 dB are also 
available on the market.

Note 1 – SOA saturation  power is 
measured with a cw source.  For 
a modulated signal with Pave = 
Psat(3dB), the peak,“1,” power 
will be well into saturation, while 
the “0” will be below saturation.

2
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SOA questions
• Performance

– What happens when SOA operates near saturation?
• State of the art

– What kind of saturation power are available using present 
technology?

– Are there any physical limits to higher saturation powers?
• Feasibility

– Is SOA technology mature?
– Are there any lifetime issues when operating SOAs at very high 

saturation power?
– What kind of power does such a device draw; what cooling is 

necessary?
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SOAs operating near saturation
• Near saturation 

– Waveform distortion 
increases

– Chirp increases

-20

-19

-18

-17

-16

-15

0 2 4 6 8 10 12 14

SOA AVERAGE output power(dBm)

re
ce

iv
er

 s
en

si
tiv

ity
 (

dB
m

)

no fiber

20 km

10 Gb/s RZ signal at 6.0 dB into saturation

10 Gb/s RZ signal at 0.5 dB into saturation

Conditions:
10 Gb/s signal modulation
C-band SOA
Psat (1 dB) = 10 dBm
Psat (3 dB) = 12 dBm
PIN receiver (no optical filter)
~7 GHz electronic filter
Receiver sensitivity measured at 10-9 s-1 BER

(Note that chirp + dispersion can counteract waveform distortion)
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SOAs near saturation

Under the following conditions:
– 10 Gb/s data rate
– Wavelength in the 1480 to 1600 nm range
– Average power at or below the 1 dB (cw) saturation point*
– Through 20 km of G.652 fiber
– Using a PIN receiver

Power penalty will be less than 1 dB compared to operation
in the linear regime

*another way to look at this is that the peak power is ~ 4 dB into saturation
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SOA state of the art

• Most SOAs marketed today are in-line 
amplifiers with polarization dependant gain 
minimized. 

• Since booster amplifiers are matched with a single 
polarization source, they do not need polarization 
independent gain.

• With this constraint removed, higher saturation 
powers can be obtained.

• Commercially available Psat(1dB) = +10 
dBm SOA exist today.

• Using standard materials and design 
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SOA hero experiments
“8×10 Gb/s DWDM transmission over 240 km of standard fiber using a cascade of 
semiconductor optical amplifiers ,” Spiekman, L.H.; Wiesenfeld, J.M.; Gnauck, A.H.; Garrett, L.D.; 
van den Hoven, G.N.; van Dongen, T.; Sander-Jochem, M.J.H.; Binsma, J.J.M.; Photonics 
Technology Letters, IEEE Volume 12,  Issue 8,  Aug. 2000 Page(s):1082 – 1084
(SOAs are operated with Pave at the 1 dB (cw) saturation point with ~ 1dB power penalty)

“High saturation power (>16.5 dBm) and low noise figure (<6 dB) semiconductor optical 
amplifier for C-band operation ,” Borghesani, A.; Fensom, N.; Scott, A.; Crow, G.; Johnston, L.; 
King, J.; Rivers, L.; Cole, S.; Perrin, S.; Scrase, D.; Bonfrate, G.; Ellis, A.; Lealman, I.; Crouzel, G.; 
Chun, L.H.K.; Lupu, A.; Mahe, E.; Maigne, P.; Optical Fiber Communications Conference, 2003. 23-
28 March 2003 Page(s):534 - 536 vol.2

“Record high saturation power (+22 dBm) and low noise figure (5.7 dB) polarization-
insensitive SOA module ,” Morito, K.; Tanaka, S.; Photonics Technology Letters, IEEE Volume 17,  
Issue 6,  June 2005 Page(s):1298 - 1300

“An ultrawide-band (120 nm) semiconductor optical amplifier having an extremely-high 
penalty-free output power of 23 dBm realized with quantum-dot active layers ,” Akiyama, T.; 
Ekawa, M.; Sugawara, M.; Sudo, H.; Kawaguchi, K.; Kuramata, A.; Ebe, H.; Morito, K.; Imai, H.; 
Arakawa, Y.; Optical Fiber Communication Conference, 2004. Volume 2,  23-27 Feb. 2004
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SOA feasibility

• SOAs use the identical InP technology 
used in
– 1550 nm DFB lasers
– EA modulators
– 1480 nm EDFA pump lasers

– These devices use similar materials and waveguide 
dimensions and output > 300 mW (24.8 dBm)

• Fabrication, packaging, and lifetime are 
well understood.
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Powering

• A SOA operating at +12 dBm output 
power requires:
– 400 mA of current (with a 1.8 V drop) 
– 3 W of TEC power to operate at 25°C chip 

temperature over a case temperature of -40 to 
65°C
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Physical Limits

• Output power is limited by heating due to 
the injection of carriers in the active stripe. 

• In concept, one could have SOAs with 
output powers as high as 1480 nm EDFA 
pump lasers (> 300 mW)
– In fact Morito, et al. demonstrated essentially 

this in their Hero paper.
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Summary

• For the 10G – EPON downstream 
application, SOA-based OLT transmitters 
can reliably provide required performance 
with present day technology.
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PCM 

(3 Bits) 

 
DPPM 

False Alarm 
Per PCM Bit  

 
MPPM (5,2) 
False Alarm 
Per PCM Bit  

 
Dicode PPM 
False Alarm 
Per PCM Bit 

 
000 

 

0.286 0.333 0.249 

001 
 

0.286 0.314 0.249 

010 
 

0.286 0.351 0.249 

011 
 

0.286 0.259 0.249 

100 
 

0.286 0.277 0.249 

101 
 

0.286 0.37 0.249 

110 
 

0.286 0.314 0.249 

111 
 

0.286 0.259 0.249 

 
Average 

 

 
0.286 

 
0.309 

 
0.249 
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PCM 

(3 Bits) 

 
DPPM  

Erasure 
Per PCM Bit 

 
MPPM 

Erasure 
Per PCM Bit 

 
Dicode PPM 

Erasure 
Per PCM Bit 

 
000 

 

0.5 0.375 0.193 

001 
 

0.5 0.38 0.193 

010 
 

0.5 0.428 0.193 

011 
 

0.5 0.333 0.193 

100 
 

0.5 0.333 0.193 

101 
 

0.5 0.4285 0.193 

110 
 

0.5 0.388 0.193 

111 
 

0.5 0.388 0.193 

 
Average 

 

 
0.5 

 
0.382 

 
0.193 
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PCM 

(4Bits) 

 
DPPM 

False Alarm 
Per PCM Bit 

 
MPPM (7,2) 
False Alarm 
Per PCM Bit 

 
Dicode PPM 
False Alarm 
Per PCM Bit 

0000 
 

0.266 0.2833 0.249 

0001 
 

0.266 0.33325 0.249 

0010 
 

0.266 0.3083 0.249 

0011 
 

0.266 0.3416 0.249 

0100 
 

0.266 0.2833 0.249 

0101 
 

0.266 0.31665 0.249 

0110 
 

0.266 0.3999 0.249 

0111 
 

0.266 0.3666 0.249 

1000 
 

0.266 0.32495 0.249 

1001 
 

0.266 0.3166 0.249 

1010 
 

0.266 0.3 0.249 

1011 
 

0.266 0.3166 0.249 

1100 
 

0.266 0.29995 0.249 

1101 
 

0.266 0.2583 0.249 

1110 
 

0.266 0.27495 0.249 

1111 
 

0.266 0.2166 0.249 

 
Average 

 

 
0.266 

 
0.3088 

 
0.249 
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PCM 

(4Bits) 

 
DPPM 

Erasure 
Per PCM Bit 

 
MPPM (7,2) 

Erasure 
Per PCM Bit 

 
Dicode PPM 

Erasure 
Per PCM Bit 

0000 
 

0.5 0.354 0.193 

0001 
 

0.5 0.4375 0.193 

0010 
 

0.5 0.4 0.193 

0011 
 

0.5 0.45 0.193 

0100 
 

0.5 0.388 0.193 

0101 
 

0.5 0.444 0.193 

0110 
 

0.5 0.5 0.193 

0111 
 

0.5 0.475 0.193 

1000 
 

0.5 0.425 0.193 

1001 
 

0.5 0.444 0.193 

1010 
 

0.5 0.416 0.193 

1011 
 

0.5 0.425 0.193 

1100 
 

0.5 0.425 0.193 

1101 
 

0.5 0.361 0.193 

1110 
 

0.5 0.388 0.193 

1111 
 

0.5 0.375 0.193 

 
Average 

 

 
0.5 

 
0.419 

 
0.193 
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PCM 

(5 Bits) 

 
DPPM 
False 
Alarm 

Per PCM 
Bit  

 
MPPM (9,2) 

False 
Alarm 

Per PCM 
Bit 

 
Dicode 

PPM 
False 
Alarm 

Per PCM 
Bit 

 
00000 

 

0.258 0.266 0.249 

00001 
 

0.258 0.266 0.249 

00010 
 

0.258 0.323 0.249 

00011 
 

0.258 0.323 0.249 

00100 
 

0.258 0.3142 0.249 

00101 
 

0.258 0.280 0.249 

00110 
 

0.258 0.280 0.249 

00111 
 

0.258 0.247 0.249 

01000 
 

0.258 0.285 0.249 

01001 
 

0.258 0.304 0.249 

01010 
 

0.258 0.304 0.249 

01011 
 

0.258 0.314 0.249 

01100 
 

0.258 0.276 0.249 

01101 
 

0.258 0.280 0.249 

01110 
 

0.258 0.271 0.249 

01111 
 
 

0.258 0.438 0.249 
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10000 
 

0.258 0.304 0.249 

10001 
 

0.258 0.323 0.249 

10010 
 

0.258 0.299 0.249 

10011 
 

0.258 0.323 0.249 

10100 
 

0.258 0.309 0.249 

10101 
 

0.258 0.361 0.249 

10110 
 

0.258 0.3428 0.249 

10111 
 

0.258 0.347 0.249 

11000 
 

0.258 0.347 0.249 

11001 
 

0.258 0.323 0.249 

11010 
 

0.258 0.299 0.249 

11011 
 

0.258 0.309 0.249 

11100 
 

0.258 0.304 0.249 

11101 
 

0.258 0.285 0.249 

11110 
 

0.258 0.242 0.249 

11111 
 

0.258 0.252 0.249 

 
Average 

 

 
0.258 

 
0.305 

 
0.249 
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PCM 

(5 Bits) 

 
DPPM 

Erasure 
Per PCM 

Bit  

 
MPPM (9,2) 

Erasure 
Per PCM 

Bit 

 
Dicode 

PPM 
Erasure 
Per PCM 

Bit 

 
00000 

 

0.5 0.35 0.193 

00001 
 

0.5 0.35 0.193 

00010 
 

0.5 0.4375 0.193 

00011 
 

0.5 1.0625 0.193 

00100 
 

0.5 0.426 0.193 

00101 
 

0.5 0.4 0.193 

00110 
 

0.5 0.4 0.193 

00111 
 

0.5 0.369 0.193 

01000 
 

0.5 0.375 0.193 

01001 
 

0.5 0.4 0.193 

01010 
 

0.5 0.4 0.193 

01011 
 

0.5 0.426 0.193 

01100 
 

0.5 0.4 0.193 

01101 
 

0.5 0.4 0.193 

01110 
 

0.5 0.4 0.193 

01111 
 

0.5 0.575 0.193 

10000 
 

0.5 0.4 0.193 
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10001 
 

0.5 0.44 0.193 

10010 
 

0.5 0.428 0.193 

10011 
 

0.5 0.457 0.193 

10100 
 

0.5 0.446 0.193 

10101 
 

0.5 0.475 0.193 

10110 
 

0.5 0.453 0.193 

10111 
 

0.5 0.428 0.193 

11000 
 

0.5 0.485 0.193 

11001 
 

0.5 0.461 0.193 

11010 
 

0.5 0.4 0.193 

11011 
 

0.5 0.428 0.193 

11100 
 

0.5 0.428 0.193 

11101 
 

0.5 0.415 0.193 

11110 
 

0.5 0.384 0.193 

11111 
 

0.5 0.4 0.193 

 
Average 

 

 
0.5 

 
0.440 

 
0.193 
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PCM 

(6 Bits)  

 

 
DPPM 

False Alarm 
Per PCM Bit  

 
MPPM (12,2) 
False Alarm 
Per PCM Bit 

 
Dicode PPM 
False Alarm 
Per PCM Bit 

000000 
 

0.253 0.233 0.249 

000001 
 

0.253 0.2666 0.249 

000010 
 

0.253 0.255 0.249 

000011 
 

0.253 0.283 0.249 

000100 
 

0.253 0.288 0.249 

000101 
 

0.253 0.277 0.249 

000110 
 

0.253 0.34995 0.249 

000111 
 

0.253 0.338 0.249 

001000 
 

0.253 0.291 0.249 

001001 
 

0.253 0.311 0.249 

001010 
 

0.253 0.302 0.249 

001011 
 

0.253 0.311 0.249 

001100 
 

0.253 0.327 0.249 

001101 
 

0.253 0.327 0.249 

001110 
 

0.253 0.32215 0.249 

001111 
 
 

0.253 0.355 0.249 

010000 
 
 

0.253 0.316 0.249 
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010001 
 

0.253 0.349 0.249 

010010 
 

0.253 0.316 0.249 

010011 
 

0.253 0.330 0.249 

010100 
 

0.253 0.3083 0.249 

010101 
 

0.253 0.3166 0.249 

010110 
 

0.253 0.361 0.249 

010111 
 

0.253 0.311 0.249 

011000 
 

0.253 0.3555 0.249 

011001 
 

0.253 0.272 0.249 

011010 
 

0.253 0.3166 0.249 

011011 
 

0.253 0.2722 0.249 

011100 
 

0.253 0.302 0.249 

011101 
 

0.253 0.2694 0.249 

011110 
 

0.253 0.399 0.249 

011111 
 

0.253 0.394 0.249 

100000 
 

0.253 0.327 0.249 

100001 
 

0.253 0.322 0.249 

100010 
 
 

0.253 0.344 0.249 

100011 
 

0.253 0.327 0.249 

100100 
 
 

0.253 0.324 0.249 
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100101 
 

0.253 0.308 0.249 

100110 
 

0.253 0.294 0.249 

100111 
 

0.253 0.2944 0.249 

101000 
 

0.253 0.299 0.249 

101001 
 

0.253 0.333 0.249 

101010 
 

0.253 0.294 0.249 

101011 
 

0.253 0.3083 0.249 

101100 
 

0.253 0.302 0.249 

101101 
 

0.253 0.333 0.249 

101110 
 

0.253 0.338 0.249 

101111 
 

0.253 0.327 0.249 

110000 
 

0.253 0.336 0.249 

110001 
 

0.253 0.349 0.249 

110010 
 

0.253 0.324 0.249 

110011 
 

0.253 0.3166 0.249 

110100 
 

0.253 0.305 0.249 

110101 
 
 

0.253 0.2916 0.249 

110110 
 

0.253 0.308 0.249 

110111 
 

0.253 0.266 0.249 

111000 
 
 

0.253 0.2777 0.249 
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111001 
 

0.253 0.263 0.249 

111010 
 

0.253 0.2805 0.249 

111011 
 

0.253 0.283 0.249 

111100 
 

0.253 0.297 0.249 

111101 
 

0.253 0.288 0.249 

111110 
 

0.253 0.274 0.249 

111111 
 

0.253 0.283 0.249 

 

Average 

 

 

0.253 

 

0.310 

 

0.249 
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PCM 

(6 Bits)  

 

 
DPPM 

Erasure 
Per PCM Bit  

 
MPPM (12,2) 

Erasure 
Per PCM Bit 

 
Dicode PPM 

Erasure 
Per PCM Bit 

000000 
 

0.5 0,318 0.193 

000001 
 

0.5 0.363 0.193 

000010 
 

0.5 0.356 0.193 

000011 
 

0.5 0.386 0.193 

000100 
 

0.5 0.393 0.193 

000101 
 

0.5 0.378 0.193 

000110 
 

0.5 0.477 0.193 

000111 
 

0.5 0.462 0.193 

001000 
 

0.5 0.420 0.193 

001001 
 

0.5 0.436 0.193 

001010 
 

0.5 0.441 0.193 

001011 
 

0.5 0.4318 0.193 

001100 
 

0.5 0.446 0.193 

001101 
 

0.5 0.446 0.193 

001110 
 

0.5 0.439 0.193 

001111 
 
 

0.5 0.484 0.193 

010000 
 
 

0.5 0.4318 0.193 
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010001 
 

0.5 0.477 0.193 

010010 
 

0.5 0.444 0.193 

010011 
 

0.5 0.460 0.193 

010100 
 

0.5 0.441 0.193 

010101 
 

0.5 0.4318 0.193 

010110 
 

0.5 0.492 0.193 

010111 
 

0.5 0.424 0.193 

011000 
 

0.5 0.484 0.193 

011001 
 

0.5 0.371 0.193 

011010 
 

0.5 0.431 0.193 

011011 
 

0.5 0.380 0.193 

011100 
 

0.5 0.428 0.193 

011101 
 

0.5 0.383 0.193 

011110 
 

0.5 0.545 0.193 

011111 
 

0.5 0.537 0.193 

100000 
 

0.5 0.446 0.193 

100001 
 

0.5 0.439 0.193 

100010 
 
 

0.5 0.469 0.193 

100011 
 

0.5 0.460 0.193 

100100 
 
 

0.5 0.460 0.193 
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201 

100101 
 

0.5 0.45 0.193 

100110 
 

0.5 0.401 0.193 

100111 
 

0.5 0.401 0.193 

101000 
 

0.5 0.409 0.193 

101001 
 

0.5 0.454 0.193 

101010 
 

0.5 0.412 0.193 

101011 
 

0.5 0.428 0.193 

101100 
 

0.5 0.433 0.193 

101101 
 

0.5 0.454 0.193 

101110 
 

0.5 0.462 0.193 

101111 
 

0.5 0.446 0.193 

110000 
 

0.5 0.476 0.193 

110001 
 

0.5 0.492 0.193 

110010 
 

0.5 0.475 0.193 

110011 
 

0.5 0.431 0.193 

110100 
 

0.5 0.416 0.193 

110101 
 
 

0.5 0.412 0.193 

110110 
 

0.5 0.436 0.193 

110111 
 

0.5 0.391 0.193 

111000 
 
 

0.5 0.378 0.193 
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202 

111001 
 

0.5 0.373 0.193 

111010 
 

0.5 0.396 0.193 

111011 
 

0.5 0.416 0.193 

111100 
 

0.5 0.420 0.193 

111101 
 

0.5 0.404 0.193 

111110 
 

0.5 0.4 0.193 

111111 
 

0.5 0.425 0.193 

 

Average 

 

 

0.5 

 

0.433 

 

0.193 

 
 
 
 



Pulse position modulation coding schemes
for optical intersatellite links

F.J. Ghosna and M.J.N. Sibley

The rapid and significant development of communications links
between satellites has made it possible to use various applications
such as relay voice, video, multimedia, etc. As a result, much research
has been carried out in this field during recent years to reduce power
consumption and increase transmission reliability. This reported
work focuses on analysis of intersatellite links in free space, with
optical links using laser sources being considered in particular. The
use of several different coding schemes are discussed for use in such
links: multiple pulse position modulation (MPPM); digital pulse posi-
tion modulation (DPPM); Dicode pulse position modulation (Dicode
PPM). Work has been carried out to compare these coding schemes
in terms of error weightings and coding efficiency through showing
how the PCM error rate is affected by false alarm and erasure errors
for MPPM, DPPM and Dicode PPM coding 3 bits of PCM.
Comparison between these coding schemes is drawn in terms of sensi-
tivity and bandwidth efficiency.

Introduction: The competing technologies of optical and microwave
systems have been examined by McCullagh et al. [1] and Ekberg [2].
These studies show that, in general, microwave radio systems can
receive much lower power levels and operate in the atmosphere more
efficiently than optical ones [1]. However, in space, optical systems
can operate with much lower path loss and are considered superior to
microwave ones [2]. In addition, they have the potential of operation
at Gbit/s data rates. Therefore, according to these considerations,
optical links in space are receiving a great deal of attention.

The first significant optical intersatellite link, in 2000, was the
Semiconductor Laser Intersatellite Link Experiment (SILEX) by the
European Space Agency (ESA) using semiconductor laser diode tech-
nology [3]. The most recent project, in 2006, is the Optical Inter-orbit
Communications Engineering Test Satellite (OICETS) ‘Kirari’ by the
Japan Aerospace Exploration Agency (JAXA) using laser utilising com-
munications equipment (LUCE) [4]. This was an optical inter-orbit
communications system using a high-power semiconductor laser
between satellites that are tens of thousands of kilometres apart. As a
source, laser diodes have many advantages: small size; high electrical
to optical efficiencies; tightly focused beam. In addition, it is possible
to adapt the technology used in fibre-optic links to free-space communi-
cations and so multi-Gbit/s transmission is possible using readily avail-
able integrated driver chips.

As these devices operate at a wavelength of 1.55 mm, this must be the
wavelength of operation for the link.

Coding schemes: Digital pulse position modulation (DPPM) is cur-
rently the preferred coding scheme for use in optical inter-satellite
links because it operates with very low average power and offers high
sensitivity. However, it suffers from a very large bandwidth expansion
problem [5]. This places great strain on the processing electronics as
the speed can be prohibitive.

Many alternatives have been proposed that operate with a smaller
bandwidth expansion. Of these, multiple PPM (MPPM) [5] and
Dicode PPM [6] appear to offer lowest bandwidth expansion. MPPM
uses two or more pulses in a frame with the pulse positions being deter-
mined by the original PCM word, whereas Dicode PPM only transmits a
pulse when there is a transition between levels. Sibley [5] examined the
impact of detection errors on the resulting PCM data through consider-
ing a (12/2) multiple PPM scheme operating over graded-index plastic
optical fibre. He found that PPM systems suffer from three types of
detection error: wrong-slot, false alarm and erasure errors. Wrong-slot
error occurs in dispersive channels and is not applicable in free space.
Therefore, only erasure and false alarm errors are relevant in free-
space communications. A false alarm is caused by noise in an empty
time slot generating a threshold crossing and an erasure is caused by
noise obliterating a valid pulse. As the original PCM code is converted
into another code, these errors will cause the original PCM to be cor-
rupted. The coding alphabet for MPPM and DPPM for 3 bits of PCM
is shown in Table 1.

Work has been carried out to show how the PCM error rate is affected
by false alarm and erasure errors for MPPM, DPPM and Dicode PPM
operating with 3 bits of PCM. A maximum likelihood sequence detector

(MLSD) is used in the decoder with the same method as mentioned by
Sibley [5].The process is repeated for false alarms and erasures in all
vacant slots and the average number of PCM errors obtained.
Consideration of all possible codewords yields the total average
number of PCM bits in error due to false alarm and erasure detection
errors as can be seen in Table 2. The erasure and false alarm weightings
for Dicode PPM are independent of the coding level because the Dicode
system operates continuously.

Table 1: Alphabet for coding 3 bits of PCM into MPPM and DPPM

PCM (3 bits) MPPM (5,2) DPPM

000 11000 (1,2) 0000 0001

001 10100 (1,3) 0000 0010

010 10010 (1,4) 0000 0100

011 10001 (1,5) 0000 1000

100 01100 (2,3) 0001 0000

101 01010 (2,4) 0010 0000

110 01001 (2,5) 0100 0000

111 00110 (3,4) 1000 0000

Table 2: Summary of results of simulations for MPPM, DPPM and
DPPM operating with 3 bits of PCM

3 bits PCM MPPM DPPM Dicode PPM

Weighting for false
alarm errors 0.309 0.286 0.249

Weighting for
erasure errors 0.382 0.5 0.193

Photon per PCM bit 2. 822 � 103 2. 341 � 103 7. 292 � 103

Noise bandwidth (Hz) 8.776 � 108 1.404 � 109 1.053 � 109

Final line rate
(B/W expansion)

1.7 � PCM
data rate (3 bits)

2.7 � PCM
data rate (3 bits)

2 � PCM
data rate (fixed)

Slot time (S) 6 � 10210 3. 75 � 10210 5 � 10210

Normalised peak
voltage (Vpk)

0.625 1 0.75

Decision voltage

Vi ¼
Vd

Vpk

� �
0.54 0.566 0.51

Simulation model: Simulations were performed with the three systems
using MPPM, DPPM and Dicode PPM, respectively. These systems are
operating in space at a wavelength of 1.55 mm, a photodiode quantum
efficiency of 100%, 3 bits PCM and PCM data rates of 1 Gbit/s.

Square pulses are assumed to be received with the following Fourier
transform (FT):

PulseðvÞ ¼
sinðv Ts=2Þ

ðv Ts=2Þ
ð1Þ

Normalising to the slot time, Ts, gives:

PulsenðvÞ ¼
sinðv=2Þ

ðv=2Þ
ð2Þ

The receiver uses a pre-detection filter that generates pulses with a
raised-cosine spectrum. Such a filter helps to minimise inter-symbol-
interference. It can be approximated by a single pole preamplifier with
bandwidth of 0:7� 1=Ts followed by a third-order Butterworth filter
with bandwidth of 0:5� 1=Ts. Assuming ideal raised-cosine spectrum
pulses, the pulse shape presented to the threshold detector [6] is

I0ðtÞ ¼
vPn

p Ts

ð1

0

PulsenðvÞ

aðvÞ cosðv ðt � 0:5ÞÞ
þbðvÞ sinðv ðt � 0:5ÞÞ

aðvÞ2 þ bðvÞ2

2
664

3
775dv ð3Þ

where a(v), b(v) are variables and given by:

aðvÞ ¼ vPn � 3
v2

vBn
� 3

v2 vPn

v2
Bn

þ
v4

v3
Bn

ð4Þ

bðvÞ ¼ vþ 3
vvPn

vBn
� 3

v3

v2
Bn

�
v3 vPn

v3
Bn

where vPn is the preamplifier bandwidth, vBn the bandwidth of the
Butterworth filter, Ts the slot time which takes different values of
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Optical communication

ELECTRONICS LETTERS 18th February 2010 Vol. 46 No. 4



3 Tb=5, 3 Tb=23 and Tb/2 for MPPM (5,2), DPPM and Dicode PPM,
respectively.

A threshold-crossing detector makes a decision as to the presence or
absence of a pulse in a particular time-slot. A normalised decision
voltage, Vi, is given by:

Vi ¼
Vd

Vpk
ð5Þ

where Vd is the threshold crossing voltage and Vpk is the peak voltage of
the pulse. For a given coding scheme, the pulse shape and noise can be
determined and the optimum value of Vi that yields the lowest number of
photons per pulse, b, can be found for a specified PCM error rate (1 in
109 in these simulations).

An algorithm was designed to generate results which can be used as
comparative tools between MPPM, DPPM and Dicode PPM operating
with 3 bits of PCM in terms of error weightings, coding efficiency,
sensitivity and bandwidth efficiency. Consequently, the appropriate
coding scheme can be determined for use in optical intersatellite links
in free space.

Results and discussion: Table 2 shows the weighting that must be
applied to the probability of false alarm and erasure errors for MPPM,
DPPM and Dicode PPM. These weightings show how the PCM error
rate is affected by false alarms and erasures for MPPM, DPPM and
Dicode PPM operating with 3 bits of PCM. As can be seen, Dicode
PPM is the best coding scheme in terms of error weightings because
it has the lowest false alarm and erasure weightings. In addition,
DPPM is better than MPPM in terms of false alarm weightings
because it has fewer errors than MPPM. MPPM is better than DPPM
in terms of erasure weightings.

Dicode PPM is the best coding scheme in terms of coding efficiency
because it operates continuously and only transmits a pulse when there is
a transition between levels. Thus, the erasure and false alarm weightings
for Dicode PPM are independent of the coding level. MPPM uses two or
more pulses in a frame to convey the original PCM word and DPPM
codes n bits of PCM into a single pulse which occupies one of 2n

time slot. Therefore, the erasure and false alarm weightings for
MPPM and DPPM are dependent on the coding level.

MPPM offers the lowest noise bandwidth of 8.776 � 108 Hz because
it has the lowest speed and hence the lowest bandwidth requirement.
DPPM has a higher noise bandwidth of 1.404 � 109 Hz than Dicode
PPM (1.053 � 109 Hz) because Dicode PPM has lower speed and band-
width than DPPM.

The peak voltage has been normalised to unity. MPPM has the lowest
peak voltage which is 0.625 that of the DPPM because it has the largest
time slot width of 0.6 ns. Dicode PPM has a time slot width of 0.5 ns
and a peak voltage which is 0.75 that of the DPPM.

DPPM offers the best sensitivity in terms of photon per PCM bit
because it requires 2.341 � 103 photons per PCM bit. In addition,
MPPM has better sensitivity than Dicode PPM because it requires
2.822 � 103 photons per PCM bit, whereas Dicode PPM requires
7.292 � 103 photons per PCM bit.

Conclusion: DPPM coding can operate with very low average power and
offer a high sensitivity. However, it does suffer from a very large band-
width expansion problem. Two alternative schemes have been examined
in this Letter and a comparison has been made in terms of sensitivity,
bandwidth efficiency, error weightings and coding efficiency.

Results show that Dicode PPM is the best coding scheme in terms of
error weightings and coding efficiency because it has the lowest error
weightings and operates continuously. In addition, it offers a fixed
small bandwidth expansion – twice the PCM rate. MPPM can run at
a lower speed – the final line rate for the MPPM (5, 2) scheme is 1.7
that of the PCM. This should be compared to DPPM that runs at a
final line rate which is 2.7 times that of the original PCM data rate.

Dicode PPM requires the highest photons per PCM bit and thus has
the lowest sensitivity. However, MPPM requires much lower photons
per PCM bit compared to Dicode PPM, offers the lowest bandwidth
expansion, has the lowest speed and offers the lowest noise bandwidth.
In addition, MPPM has the lowest peak voltage as it has the largest time
slot width. Therefore, according to these considerations, it is concluded
that MPPM coding 3 bits of PCM is the appropriate coding scheme for
use in optical intersatellite links in free space.
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Appendix E: Simulation 2

DicodePPM using a Butterworth Filter and zero guard 
with 1Gbit/s data and 3 PCM BITS  for Free Space

Preamplifier terms

S o 16 10
24. Preamp noise at input - double sided Philips TZA 3043

B 1 10
9. Bit rate
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T b
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Appendix E: Simulation 8

DicodePPM using a Butterworth Filter and zero guard 
with 1Gbit/s data and 5 PCM BITS  for Free Space
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Appendix E: Simulation 11

DicodePPM using a Butterworth Filter and zero guard 
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Appendix E: Simulation 3

DPPM using a Butterworth Filter and zero guard with 
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DPPM using a Butterworth Filter and zero guard with 
1Gbit/s data and 4 PCM BITS  for Free Space
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DPPM using a Butterworth Filter and zero guard with 
1Gbit/s data and 5 PCM BITS  for Free Space
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DPPM using a Butterworth Filter and zero guard with 
1Gbit/s data and 6 PCM BITS  for Free Space
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MPPM using a Butterworth Filter and zero guard with 
1Gbit/s data and 3 PCM BITS  for Free Space
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3

Pulse shape

I 0 t( )
1

π
0

1 10
11.

ωPulse ω( ) Re H pre ω( ) H B ω( ). exp i ω. t 0.5( ). T s
... d.

a ω( ) ω pn 3
ω

2

ω Bn
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ω

2
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.

ω Bn
2

. ω
4

ω Bn
3

b1 ω( ) ω 3
ω ω pn

.
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. 3
ω

3
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2

.
ω

3
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.
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3
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.

0

100

ωPulse n ω( )
a ω( ) cos ω t 0.5( ).( ). b1 ω( ) sin ω t 0.5( ).( ).

a ω( )
2

b1 ω( )
2

. d.

I 1 t( )
ω pn

π T s
2.

0

100

ωPulse n ω( ) ω.
b1 ω( ) cos ω t 0.5( ).( ). a ω( ) sin ω t 0.5( ).( ).

a ω( )
2

b1 ω( )
2
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t 1 0.99, 6..

2 1 0 1 2 3 4 5 6
5 .10

8

0

5 .10
8

1 .10
9

1.5 .10
9

I 0 t( )

t

2 1 0 1 2 3 4 5 6
2 .10

18

1 .10
18

0

1 .10
18

2 .10
18

3 .10
18

I 1 t( )

t

noise
2

2 π.
0

1 10
11.

ωH pre ω( ) H B ω( ). 2
d.

noise 8.776 10
8.=

t 1.474

t pk root I 1 t( ) T s
2. t,

t pk 1.474=

v pk b( ) b ηq. I 0 t pk
.

v pk b( ) 8.697 10
7.=
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t 0.878

t d
i

root I 0 t( ) v
i

I 0 t pk
. T s

2. t,

v d b i,( ) b ηq. I 0 t d
i

.

t d
5

0.878=

Erasure Error 

Q r b i,( )
v pk b( ) v d b i,( )

S o noise.

3 Bits PCM error caused by erasure in MPPM
P er 0.382

P r b i,( ) 0.5 P er
. erfc

Q r b i,( )

2

.
Erasure Error Probability

False Alarm Error

Q t b i,( )
v d b i,( )

S o noise.

P fa 0.309 3 Bits PCM error caused by False Alarm  in MPPM

False Alarm Error Probability
P f b i,( ) 0.5 erfc

Q t b i,( )

2

. P fa
.

P eb b i,( ) P r b i,( ) P f b i,( ) Binary Error Probability

pc b i,( ) log P eb b i,( ) 9 Set for 1 in 10^9 errors
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a
i

root pc b i,( ) b,( ) Find the root to give 1 in 10^9

minimum min a( )
range 1000

minimum 8.466 10
3.=

b 5 10
3.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
8400

8500

8600

8700

8800

8900

a
i

i

minimum 8.466 10
3.=

v off 0.53

N 3

f n 1 10
6.

v
10

0.54=

P r b i,( )

1.073·10    -4

1.103·10    -4

1.133·10    -4

1.164·10    -4

1.196·10    -4

1.228·10    -4

1.262·10    -4

1.296·10    -4

1.332·10    -4

1.368·10    -4

1.405·10    -4

1.443·10    -4

1.481·10    -4

1.521·10    -4

1.562·10    -4

1.604·10    -4

=
P f b i,( )

1.55·10    -5

1.504·10    -5

1.459·10    -5

1.415·10    -5

1.373·10    -5

1.332·10    -5

1.292·10    -5

1.253·10    -5

1.215·10    -5

1.178·10    -5

1.143·10    -5

1.108·10    -5

1.074·10    -5

1.042·10    -5

1.01·10    -5

9.792·10    -6

=
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MPPM using a Butterworth Filter and zero guard with 
1Gbit/s data and 4 PCM BITS  for Free Space

Preamplifier terms

S o 16 10
24. Preamp noise at input - double sided Philips TZA 3043

B 1 10
9. Bit rate

i 0 1, 20..
T b

1

B
PCM bit time

v
i

v off
i

rangeNumber of like symbols in PCM
n 8

f n 1 10
6. Channel Bandwidth for free space

N 4 Number of PCM Bits

T s

4 T b
.

7
Slot Time for MPPM(7,2)

ηq 1.6 10
19. Quantum energy

λ 1.55 10
6. This is the wavelength of operation

photon_energy
6.63 10

34. 3. 10
8.

λ

R o
ηq

photon_energy
R o 1.247

Pulse shape terms

T s 5.714 10
10.=

f p 0.7
1

T s

. f B 0.5
1

T s

.

α
0.1874 T b

.

f n

α n

0.1874 T b
.

f n T s
.

ω B 2 π. f B
. ω Bn ω B T s

.
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ω p 2 π. f p
. ω pn 2 π. f p

. T s
.

τ R
8

ω B

τ Rn
8

ω B T s
.

Pulse ω( )

sin
ω T s

.

2

ω T s
.

2

Pulse n ω( )

sin
ω

2

ω

2

H pre ω( )
1

1 j
ω

ω p

.
H B ω( )

ω B
3

j ω. ω B
3

H pren ω( )
1

1 j
ω

ω pn

.
H Bn ω( )

ω Bn
3

j ω. ω Bn
3

Pulse shape

I 0 t( )
1

π
0

1 10
11.

ωPulse ω( ) Re H pre ω( ) H B ω( ). exp i ω. t 0.5( ). T s
... d.

a ω( ) ω pn 3
ω

2

ω Bn

. 3
ω

2
ω pn
.

ω Bn
2

. ω
4

ω Bn
3

b1 ω( ) ω 3
ω ω pn

.

ω Bn

. 3
ω

3

ω Bn
2

.
ω

3
ω pn
.

ω Bn
3

I 0 t( )
ω pn

π T s
.

0

100

ωPulse n ω( )
a ω( ) cos ω t 0.5( ).( ). b1 ω( ) sin ω t 0.5( ).( ).

a ω( )
2

b1 ω( )
2

. d.

I 1 t( )
ω pn

π T s
2.

0

100

ωPulse n ω( ) ω.
b1 ω( ) cos ω t 0.5( ).( ). a ω( ) sin ω t 0.5( ).( ).

a ω( )
2

b1 ω( )
2

. d.
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t 1 0.99, 6..

2 1 0 1 2 3 4 5 6
5 .10

8

0

5 .10
8

1 .10
9

1.5 .10
9

I 0 t( )

t

2 1 0 1 2 3 4 5 6
2 .10

18

0

2 .10
18

4 .10
18

I 1 t( )

t

noise
2

2 π.
0

1 10
11.

ωH pre ω( ) H B ω( ). 2
d.

noise 9.215 10
8.=

t 1.474

t pk root I 1 t( ) T s
2. t,

t pk 1.474=

v pk b( ) b ηq. I 0 t pk
.

v pk b( ) 9.132 10
7.=
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t 0.878

t d
i

root I 0 t( ) v
i

I 0 t pk
. T s

2. t,

v d b i,( ) b ηq. I 0 t d
i

.

t d
5

0.878=

Erasure Error 

Q r b i,( )
v pk b( ) v d b i,( )

S o noise.

4 Bits PCM error caused by erasure in MPPM
P er 0.419

P r b i,( ) 0.5 P er
. erfc

Q r b i,( )

2

.
Erasure Error Probability

False Alarm Error

Q t b i,( )
v d b i,( )

S o noise.

P fa 0.3088 4 Bits PCM error caused by False Alarm  in MPPM

False Alarm Error probability
P f b i,( ) 0.5 erfc

Q t b i,( )

2

. P fa
.

Binary Error probability
P eb b i,( ) P r b i,( ) P f b i,( )

pc b i,( ) log P eb b i,( ) 9 Set for 1 in 10^9 errors
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a
i

root pc b i,( ) b,( ) Find the root to give 1 in 10^9

minimum min a( )
range 1000

minimum 8.284 10
3.=

b 5 10
3.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
8200

8300

8400

8500

8600

8700

a
i

i

minimum 8.284 10
3.=

v off 0.53

N 4

f n 1 10
6.

v
10

0.54=

P f b i,( )

1.038·10    -5

1.006·10    -5

9.744·10    -6

9.439·10    -6

9.143·10    -6

8.856·10    -6

8.577·10    -6

8.307·10    -6

8.045·10    -6

7.79·10    -6

7.543·10    -6

7.304·10    -6

7.072·10    -6

6.847·10    -6

6.629·10    -6

6.417·10    -6

=
P r b i,( )

8.556·10    -5

8.803·10    -5

9.056·10    -5

9.316·10    -5

9.583·10    -5

9.857·10    -5

1.014·10    -4

1.043·10    -4

1.072·10    -4

1.103·10    -4

1.134·10    -4

1.166·10    -4

1.199·10    -4

1.233·10    -4

1.268·10    -4

1.303·10    -4

=
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MPPM using a Butterworth Filter and zero guard with 
1Gbit/s data and 5 PCM BITS  for Free Space

Preamplifier terms

S o 16 10
24. Preamp noise at input - double sided Philips TZA 3043

B 1 10
9. Bit rate

i 0 1, 20..
T b

1

B
PCM bit time

v
i

v off
i

rangeNumber of like symbols in PCM
n 8

f n 1 10
6. Channel Bandwidth for free space

N 5 Number of PCM Bits

T s

5 T b
.

9
Slot Time for MPPM(9,2)

ηq 1.6 10
19. Quantum energy

λ 1.55 10
6. This is the wavelength of operation

photon_energy
6.63 10

34. 3. 10
8.

λ

R o
ηq

photon_energy
R o 1.247

Pulse shape terms

T s 5.556 10
10.=

f p 0.7
1

T s

. f B 0.5
1

T s

.

α
0.1874 T b

.

f n

α n

0.1874 T b
.

f n T s
.

ω B 2 π. f B
. ω Bn ω B T s

.
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ω p 2 π. f p
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.
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.
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3
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3

Pulse shape

I 0 t( )
1

π
0

1 10
11.

ωPulse ω( ) Re H pre ω( ) H B ω( ). exp i ω. t 0.5( ). T s
... d.

a ω( ) ω pn 3
ω

2

ω Bn

. 3
ω

2
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.

ω Bn
2

. ω
4

ω Bn
3

b1 ω( ) ω 3
ω ω pn

.
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ω

3
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2

.
ω

3
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.

ω Bn
3
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ω pn

π T s
.

0
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ωPulse n ω( )
a ω( ) cos ω t 0.5( ).( ). b1 ω( ) sin ω t 0.5( ).( ).

a ω( )
2

b1 ω( )
2

. d.

I 1 t( )
ω pn

π T s
2.

0

100

ωPulse n ω( ) ω.
b1 ω( ) cos ω t 0.5( ).( ). a ω( ) sin ω t 0.5( ).( ).

a ω( )
2

b1 ω( )
2

. d.
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t 1 0.99, 6..

2 1 0 1 2 3 4 5 6
5 .10

8

0

5 .10
8

1 .10
9

1.5 .10
9

I 0 t( )

t

2 1 0 1 2 3 4 5 6
2 .10

18

0

2 .10
18

4 .10
18

I 1 t( )

t

noise
2

2 π.
0

1 10
11.

ωH pre ω( ) H B ω( ). 2
d.

noise 9.478 10
8.=

t 1.474

t pk root I 1 t( ) T s
2. t,

t pk 1.474=

v pk b( ) b ηq. I 0 t pk
.

v pk b( ) 9.392 10
7.=
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t 0.878

t d
i

root I 0 t( ) v
i

I 0 t pk
. T s

2. t,

v d b i,( ) b ηq. I 0 t d
i

.

t d
5

0.878=

Erasure Error 

Q r b i,( )
v pk b( ) v d b i,( )

S o noise.

5 Bits PCM error caused by erasure in MPPM
P er 0.440

P r b i,( ) 0.5 P er
. erfc

Q r b i,( )

2

.
Erasure Error Probability

False Alarm Error

Q t b i,( )
v d b i,( )

S o noise.

P fa 0.305 5 Bits PCM error caused by False Alarm  in MPPM

False Alarm Error Probability
P f b i,( ) 0.5 erfc

Q t b i,( )

2

. P fa
.

P eb b i,( ) P r b i,( ) P f b i,( ) Binary Error Probability

pc b i,( ) log P eb b i,( ) 9 Set for 1 in 10^9 errors
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a
i

root pc b i,( ) b,( ) Find the root to give 1 in 10^9

minimum min a( )
range 1000

minimum 8.179 10
3.=

b 5 10
3.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
8100

8200

8300

8400

8500

8600

a
i

i

minimum 8.179 10
3.=

v off 0.53

N 5

f n 1 10
6.

v
10

0.54=

P f b i,( )

8.069·10    -6

7.811·10    -6

7.56·10    -6

7.317·10    -6

7.082·10    -6

6.853·10    -6

6.632·10    -6

6.417·10    -6

6.209·10    -6

6.007·10    -6

5.812·10    -6

5.623·10    -6

5.439·10    -6

5.261·10    -6

5.089·10    -6

4.922·10    -6

=
P r b i,( )

7.423·10    -5

7.643·10    -5

7.869·10    -5

8.101·10    -5

8.34·10    -5

8.585·10    -5

8.837·10    -5

9.096·10    -5

9.362·10    -5

9.635·10    -5

9.915·10    -5

1.02·10    -4

1.05·10    -4

1.08·10    -4

1.112·10    -4

1.144·10    -4

=
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MPPM using a Butterworth Filter and zero guard with 
1Gbit/s data and 6 PCM BITS  for Free Space

Preamplifier terms

S o 16 10
24. Preamp noise at input - double sided Philips TZA 3043

B 1 10
9. Bit rate

i 0 1, 20..
T b

1

B
PCM bit time

v
i

v off
i

rangeNumber of like symbols in PCM
n 8

f n 1 10
6. Channel Bandwidth for free space

N 6 Number of PCM Bits

T s

6 T b
.

12
Slot Time for MPPM(12,2)

ηq 1.6 10
19. Quantum energy

λ 1.55 10
6. This is the wavelength of operation

photon_energy
6.63 10

34. 3. 10
8.

λ

R o
ηq

photon_energy
R o 1.247

Pulse shape terms

T s 5 10
10.=

f p 0.7
1

T s

. f B 0.5
1

T s

.

α
0.1874 T b

.

f n

α n

0.1874 T b
.

f n T s
.

ω B 2 π. f B
. ω Bn ω B T s

.
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ω p 2 π. f p
. ω pn 2 π. f p

. T s
.

τ R
8

ω B

τ Rn
8

ω B T s
.

Pulse ω( )

sin
ω T s

.

2

ω T s
.

2

Pulse n ω( )
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ω

2

ω

2
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1

1 j
ω

ω p

.
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ω B
3

j ω. ω B
3

H pren ω( )
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ω
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.
H Bn ω( )

ω Bn
3

j ω. ω Bn
3

Pulse shape

I 0 t( )
1

π
0

1 10
11.

ωPulse ω( ) Re H pre ω( ) H B ω( ). exp i ω. t 0.5( ). T s
... d.

a ω( ) ω pn 3
ω

2

ω Bn

. 3
ω

2
ω pn
.

ω Bn
2

. ω
4

ω Bn
3

b1 ω( ) ω 3
ω ω pn

.

ω Bn

. 3
ω

3

ω Bn
2

.
ω

3
ω pn
.

ω Bn
3

I 0 t( )
ω pn

π T s
.

0

100

ωPulse n ω( )
a ω( ) cos ω t 0.5( ).( ). b1 ω( ) sin ω t 0.5( ).( ).

a ω( )
2

b1 ω( )
2

. d.

I 1 t( )
ω pn

π T s
2.

0

100

ωPulse n ω( ) ω.
b1 ω( ) cos ω t 0.5( ).( ). a ω( ) sin ω t 0.5( ).( ).

a ω( )
2

b1 ω( )
2

. d.
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t 1 0.99, 6..

2 1 0 1 2 3 4 5 6
5 .10

8

0

5 .10
8

1 .10
9

1.5 .10
9

I 0 t( )

t

2 1 0 1 2 3 4 5 6
4 .10

18

2 .10
18

0

2 .10
18

4 .10
18

I 1 t( )

t

noise
2

2 π.
0

1 10
11.

ωH pre ω( ) H B ω( ). 2
d.

noise 1.053 10
9.=

t 1.474

t pk root I 1 t( ) T s
2. t,

t pk 1.474=

v pk b( ) b ηq. I 0 t pk
.

v pk b( ) 1.044 10
6.=
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t 0.878

t d
i

root I 0 t( ) v
i

I 0 t pk
. T s

2. t,

v d b i,( ) b ηq. I 0 t d
i

.

t d
5

0.878=

Erasure Error

Q r b i,( )
v pk b( ) v d b i,( )

S o noise.

6 Bits PCM error caused by erasure in MPPM
P er 0.433

P r b i,( ) 0.5 P er
. erfc

Q r b i,( )

2

.
Erasure Error Probability

False Alarm Error

Q t b i,( )
v d b i,( )

S o noise.

P fa 0.310 6 Bits PCM error caused by False Alarm  in MPPM

False Alarm Error Probability
P f b i,( ) 0.5 erfc

Q t b i,( )

2

. P fa
.

P eb b i,( ) P r b i,( ) P f b i,( ) Binary Error Probability
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pc b i,( ) log P eb b i,( ) 9 Set for 1 in 10^9 errors

a
i

root pc b i,( ) b,( ) Find the root to give 1 in 10^9

minimum min a( )
range 1000

minimum 7.756 10
3.=

b 5 10
3.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
7700

7800

7900

8000

8100

a
i

i

minimum 7.756 10
3.=

v off 0.53

N 6

f n 1 10
6.

v
10

0.54=

P f b i,( )

3.154·10    -6

3.043·10    -6

2.935·10    -6

2.831·10    -6

2.73·10    -6

2.633·10    -6

2.539·10    -6

2.448·10    -6

2.361·10    -6

2.276·10    -6

2.194·10    -6

2.115·10    -6

2.039·10    -6

1.966·10    -6

1.894·10    -6

1.826·10    -6

=
P r b i,( )

3.414·10    -5

3.526·10    -5

3.641·10    -5

3.76·10    -5

3.882·10    -5

4.009·10    -5

4.139·10    -5

4.273·10    -5

4.411·10    -5

4.553·10    -5

4.7·10    -5

4.851·10    -5

5.007·10    -5

5.167·10    -5

5.332·10    -5

5.502·10    -5

=
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The model of the noise performance and sensitivity 

for an optically Pre-amplified Receiver (SOA + 

PIN) with 1 Gb/S and 3 Bits of PCM in Free Space

Preamplifier (SOA) terms

G 20 Gain of SOA (dB) (SOA-High Power Operation)(IEEE 802.3av)

λ 1550 10
9. Wavelength of operation (m) 

NF 9 Amplifier noise figure (dB)

F 10

NF

10
Amplifier noise factor 

F 7.943=

Common terms

B 1 10
9. PCM bit rate

T b
1

B
PCM bit time

N 3 Number of PCM Bits

f n 1 10
6.

Channel Bandwidth for free space

q 1.602 10
19.

Electron Charge

K B 1.38 10
23. Boltzmann's Constant

T 300 The absolute temperature (Kelvin)

h 6.624 10
34. Planck's Constant(JS)

c 3 10
8.

Velocity of light in a vacuum (m/s)
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InGaAs PIN Photodiode terms

I D 1 10
9. Dark Current (A) ( High speed InGaAs PIN photodiode C30637,

@ 1550 nm, optoelectronics.PerkinElmer) 

R o 0.95 Resposivity (A/W) @ 1550 nm

Photodiode Load Resistor (Ω)
R L 50

C 0.4 10
12. Photodiode Capacitance (F)

For Dicode PPM :

T s1

T b

2
Slot time for Dicode PPM for 3 Bits of PCM

B 1 2 B. Bit rate for DicodePPM for 3 Bits of PCM

I 2 0.564 Bandwidth integrals which depend on the shape of the input and output 
pulses, output pulse shape is raised-cosine spectrum pulse.

these values are for α=1 pulses fill the whole of the slot (rectangular 
pulses)I 3 0.087

The noise delivered to the input of SOA from the source, which is
The mean-square thermal (Johnson) noise current of load resistor 

(A²/Hz). Assumption to the photodiode load resistor is much 
smallar than the amplifier input impedance.Therfore, it's 
thermal noise is much greater than that of the amplifier input.

N i

4 K B
. T.

R L

N i 3.312 10
22.=

S i N i The shunt noise generator, models the noise current due to the 

preamplifier first stage and the photodiode load resistor(A²/Hz)

N input S i B 1
. I 2

. The mean-square equivalent input noise current (A²)

N input 3.736 10
13.=
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The total, signal-independent, 
equivalent input noise current which 
includes the noise from the 
photodiode dark currents and any 
preamplifier noise (A²)

N total 2 q. I D
. B 1

. I 2
. N input

N total 3.736 10
13.=

N A N i F 1( ). The input noise of the SOA device which is considered as 

an extra noise (A²/Hz)

N A 2.3 10
21.=

Q 6 This value is for an error rate of 1 in 10^9 pulses

P Q
N total q B 1

. I 2
. Q.

R o

.
The mean optical power required

 (Sensitivity)

P 3.867 10
6.=

Y 6 The signal to noise ratio, which equals 6 for 
an error rate of 1 in 10^9 pulses

I Y N input
.

I 3.667 10
6.=

The received power (W)
P o

I

R o

P o 3.86 10
6.=

NP P o λ.
T s1

h c.
.

The number of received photons for 
Dicode PPM for 3 Bits of PCM

NP 1.506 10
4.=
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For  DPPM :

T s2

3 T b
.

2
3 Slot time for DPPM for 3 Bits of PCM

Bit rate for DPPM for 3 Bits of PCM
B 2

2
3

B.

3

I 2 0.564
Bandwidth integrals which depend on the shape of the input and output 
pulses, output pulse shape is raised-cosine spectrum pulse.

these values are for α=1 pulses fill the whole of the slot (rectangular 
pulses)

I 3 0.087

The noise delivered to the input of SOA from the source, which is
The mean-square thermal (Johnson) noise current of load resistor 

(A²/Hz). Assumption to the photodiode load resistor is much 
smallar than the amplifier input impedance.Therfore, it's thermal 
noise is much greater than that of the amplifier input.

N i

4 K B
. T.

R L

N i 3.312 10
22.=

S i N i The shunt noise generator, models the noise current due to the 

preamplifier first stage and the photodiode load resistor(A²/Hz)

N input S i B 2
. I 2

. The mean-square equivalent input noise current (A²)

N input 4.981 10
13.=

The total, signal-independent, 
equivalent input noise current 
which includes the noise from the 
photodiode dark currents and any 
preamplifier noise (A²)

N total 2 q. I D
. B 2

. I 2
. N input

N total 4.981 10
13.=
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N A N i F 1( ). The input noise of the SOA device which is considered 

as an extra noise (A²/Hz)

N A 2.3 10
21.=

Q 6 This value is for an error rate of 1 in 10^9 pulses

P Q
N total q B 2

. I 2
. Q.

R o

.
The mean optical power required 

(Sensitivity)

P 4.467 10
6.=

The signal to noise ratio, which equals 6 for an 
error rate of 1 in 10^9 pulses

Y 6

I Y N input
.

I 4.235 10
6.=

The received power (W)
P o

I

R o

P o 4.458 10
6.=

NP P o λ.
T s2

h c.
.

The number of received photons 
for DPPM for 3 Bits of PCM

NP 1.304 10
4.=
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For MPPM (5,2) :

T s3

3 T b
.

5
Slot time for MPPM(5,2) for 3 Bits of PCM

B 3
5 B.

3
Bit rate for MPPM(5,2) for 3 Bits of PCM

I 2 0.564
Bandwidth integrals which depend on the shape of the input and output 
pulses, output pulse shape is raised-cosine spectrum pulse.

these values are for α=1 pulses fill the whole of the slot (rectangular 
pulses)

I 3 0.087

N i

4 K B
. T.

R L

The noise delivered to the input of SOA from the source, which is
The mean-square thermal (Johnson) noise current of load resistor 

(A²/Hz). Assumption to the photodiode load resistor is much 
smallar than the amplifier input impedance.Therfore, it's
thermal noise is much greater than that of the amplifier input.N i 3.312 10

22.=

S i N i The shunt noise generator, models the noise current due to the 

preamplifier first stage and the photodiode load resistor(A²/Hz)

N input S i B 3
. I 2

. The mean-square equivalent input noise current (A²)

N input 3.113 10
13.=

N total 2 q. I D
. B 3

. I 2
. N input The total, signal-independent, 

equivalent input noise current which 
includes the noise from the photodiode 
dark currents and any preamplifier 
noise (A²)

N total 3.113 10
13.=
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N A N i F 1( ). The input noise of the SOA device which is considered as an 

extra noise (A²/Hz)

N A 2.3 10
21.=

Q 6 This value is for an error rate of 1 in 10^9 pulses

P Q
N total q B 3

. I 2
. Q.

R o

.
The mean optical power required 

(Sensitivity)

P 3.53 10
6.=

Y 6 The signal to noise ratio, which equals 6 for an error 
rate of 1 in 10^9 pulses

I Y N input
.

I 3.348 10
6.=

P o
I

R o

The received power (W)

P o 3.524 10
6.=

NP P o λ.
T s3

h c.
.

The number of received photons for 
MPPM(5,2) for 3 Bits of PCM

NP 1.649 10
4.=
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