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ABSTRACT 

 

This project investigated the structures and physical characteristics of exopolysaccharides 

(EPSs) secreted by lactic acid bacteria.   

    

The structure of a novel exopolysaccharide (EPS) produced by Lactobacillus acidophilus 5e2 

has been characterised.  Analysis of the anomeric region of the 1H-NMR showed that the 

repeating oligosaccharide contained seven monosaccharides.  GC-MS showed the structure 

to consist of D-glucose, D-galactose and D-N-acetyl-glucosamine in a molar ratio of 3:3:1.  

The linkage analysis showed that there were two terminal, three di-linked and two tri-linked 

monosaccharides, and in collaboration with data generated from a series of 2D-NMR 

experiments, an overall structure was determined. 

 

The weight-average molecular weight (Mw) of the EPS secreted by Lactobacillus acidophilus 

5e2 when grown in skimmed milk was monitored during extended fermentation times.   

During the exponential growth phase, the increase in Mw closely followed the increase in 

yield of EPS. Under the fermentation conditions applied in this study, few if any new 

polysaccharide chains were formed during this growth phase despite a twenty five-fold 

increase in the cell count; almost the entire increase in yield can be accounted for by an 

increase in chain length. These results suggested that synthesis of new EPS chains is 

switched off during the exponential and stationary phase of fermentation. The increase in 

yield observed in this period is a consequence of the bacteria's ability to extend existing 

chains right up to the mid-stationary phase. These results raise questions about the factors 

that control EPS production and chain length. 

 

Depolymerisation techniques have been shown to reduce the Mw of the polysaccharide in a 

controlled manner.  The 1H-NMR results have shown that the physical methods, constant 

pressure and ultrasonic disruption break the EPS randomly through the repeating 

oligosaccharide unit; polydispersity data suggests that the breakages were occurring mid-

chain.   A change to the peaks in the anomeric region of the 1H-NMR spectrum showed that 

depolymerisation, by acid hydrolysis, was chemically modifying the EPS structure.  The 

approximate intrinsic viscosities of the EPS produced by Lactobacillus acidophilus 5e2 were 

determined to range between 0.6–2.0 dL g-1 for the Mw range of 1.59x105 – 4.78x105 g mol-1.  

 

A capillary zone electrophoresis method was developed to determine the monosaccharide 

composition of two EPS samples.  The method successfully determined D-glucose and D-

galactose, but a peak for D-N-acetyl-glucosamine was not seen.  The method was sensitive 

compared to current techniques, but not as low as using a HP-AEC-PAD.  

 

A novel method using LC-MS was developed for the linkage analysis of EPSs.  Methylation, 

hydrolysis and reductive amination were used to derivatise the polysaccharide, and the 

fragmentation patterns were examined to determine the different linkage positions.  Due to 

undesirable further fragmentation the method could not unequivocally differentiate between 

the different linkage positions, but the method was capable of resolving the monosaccharides 

residues with different linkage positions, at approximately the correct relative ratio.                    
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GLOSSARY 

Reagents / Chemicals / Terms 

 

AcO   Acetyl 

ACN   Acetonitrile 

BP   British Pharmacopoeia  

d.p.   Degree of polymerisation   

D2O   Deuterium oxide 

DMSO   Dimethylsulphoxide 

EPS    Exopolysaccharide 

EPSs    Exopolysaccharides        

f   Furanose  

FDA    Food and Drug Administration 

Gal   Galactose 

GalNAc   N-acetyl-galactosamine   

GlcNAc   N-acetyl-glucosamine   

Glc   Glucose 

GRAS   Generally regarded as safe 

ICH   International Conference on Harmonisation 

IUPAC   International Union of Pure and Applied Chemistry 

OH   Hydroxyl  

LAB   Lactic acid bacteria 

Lb.   Lactobacillus  

Me   Methyl 

MRD   Maximum recovery diluent  

MRS   de Man, Rogosa and Sharpe growth media 

OMe   Methoxy  

p   Pyranose 

pABN   p-aminobenzonitrile 

Rha   Rhamnose  

TCA   Trichloroacetic acid 

TFA   Trifluoroacetic acid 
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Experimental terms 

1D One dimensional  

2D Two dimensional 

AU Arbitrary Unit 

CID Collison-induced Dissociation  

COSY Correlated spectroscopy  

CZE Capillary zone electrophoresis  

DEPT Distortionless enhancement by polarization transfer  

dn/dc   Refractive index increment  

ESI   Electrospray ionisation 

FAB   Fast Atom Bombardment  

GC    Gas chromatography        

GC-MS   Gas chromatography – mass spectrometry 

HMBC    Heteronuclear multiple bond correlation  

HP    High pressure         

HP-AEC-PAD High performance–anion exchange chromatography–pulsed amperometric 

detection 

HPLC High Pressure Liquid Chromatography 

HSQC    Heteronuclear single quantum coherence      

HSQC-TOCSY Heteronuclear single quantum coherence – total correlation spectroscopy  

Hz    Hertz  

RI   Refractive index 

LC    Liquid chromatography  

LC -MS Liquid chromatography coupled to mass spectrometer 

LC-MS-MS  Liquid chromatography coupled to a tandem mass spectrometer  

M   Molar (mol dm
-3

) 

M    Matrix-assisted Laser Desorption/ionization 

MALLS    Multi-angle laser light scattering   

MS    Mass spectrometer       

Mw   Weight-average molecular weight 

Mn   Number-average molecular weight 

mV   Millivolt    

NMR    Nuclear magnetic resonance   

NOE Nuclear overhauser effect/enhancement 

mg L
-1

 Milligrams per litre (equivalent to parts per million)  

µg mL
-1 

Micrograms per millilitre (equivalent to parts per million) 

ppm   parts per million 

RI   Refractive Index 

SEC   Size exclusion chromatography 

TOCSY Total correlation spectroscopy 

TOF   Time of flight 

UV Ultraviolet 
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1. INTRODUCTION 

1.1 Polysaccharides 

Polysaccharides belong to the general class of biomolecules known as carbohydrates.  

Polysaccharides comprise the most abundant group of natural products in the biosphere.  

They are large chains of sugar units, depending on the polysaccharide the chains may be 

linear or branched.  It is estimated that approximately 4x1011 tons of carbohydrates are 

biosynthesised each year on earth by plants and bacteria, and the majority of these 

carbohydrates are produced as polysaccharides 1.    

 

Carbohydrates are involved in a variety of biological macromolecules e.g. in isolation of 

carbohydrates, as glycoproteins and as glycolipids.  For this project, we are only interested in 

polysaccharides, for information about other glycosylated macromolecules the reader is 

directed towards excellent reviews by Stick and Williams 2 and Bhagavan 3 for glycoproteins 

and Furukawa et al. 4 for glycolipids.   The carbohydrate portion of these glycoconjugates is 

referred to as glycan.   

 

Polysaccharides are macromolecules consisting of large numbers of monosaccharide 

residues, and when dissolved in water they produce viscous liquids.  They are natural 

thickeners which are abundant in nature, and have been used to supplement foods for 

centuries.  Polysaccharides that consist of one type of monosaccharide are called 

homopolysaccharides (Figure 1), and when they are built up of two or more different 

monomeric units they are called heteropolysaccharides.  
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Figure 1: Structure of Cellulose (Homopolysaccharide) 
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Polysaccharides exist in an enormous structural diversity as they are produced by a great 

variety of species, including microbes, plants and animals.    In animals excess D-glucose is 

stored as a large branched polysaccharide called glycogen, whereas in most plants, the 

storage form of D-glucose is called starch.  Bacteria and yeasts store D-glucose as yet 

another type of polysaccharide called dextrans.   In each case these are nutritional reserves; 

when required, they are broken down and the monosaccharide products are metabolised to 

yield energy.   In contrast, cellulose is a structural polysaccharide used to make plant cell 

walls and has particular importance, as it is the most common organic compound on earth.   

These four polysaccharides are the most common, which all have repeating chains of D-

glucose monosaccharide units, with some branching 1. 

 

Other, more complex polysaccharides are biosynthesised by bacteria; these are referred to 

as bacterial extracellular polysaccharides 5.  They are biosynthesised, by bacteria, as either 

exopolysaccharides (EPSs), which are secreted into the surroundings during growth and are 

not permanently attached to the surface of the microbial cell or as capsular polysaccharides 

(CPS), which are permanently attached to the cell surface.  This project will focus only on 

exopolysaccharides, monitoring their production, structure and characteristics.     

 

1.2 Bacteria 

Bacteria are a large group of unicellular microorganisms, that are found in every habitat on 

earth, growing in soil, water, and deep in the Earth's crust, as well as in organic matter and in 

the live bodies of plants and animals 6.   There are approximately 5 nonillion bacteria on this 

planet, accounting for much of the world’s biomass 7.   

 

Commercially, bacteria are important in sewage treatment, the production of cheese and 

yoghurt through fermentation, as well as in biotechnology, and the manufacture of antibiotics 

and other chemicals 8.  
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In terms of their cell structure, bacterial cells can be divided into two types: Gram-positive 

and Gram-negative.   Gram-positive bacteria differ from Gram-negative bacteria in the 

structure of their cell walls. The cell walls of Gram-positive bacteria are made up of 

approximately twenty times as much peptidoglycan than Gram-negative bacteria.  The 

differences between Gram-positive and Gram-negative bacteria can be seen in cross 

sectional diagrams (Figure 2). 

 

 

 
Figure 2: Cross Sections of the Cell Wall from Gram-positive and Gram-negative Bacteria 

9
 

  

The peptidoglycan consists of complex cross-links of polysaccharides and amino acids, 

which layer the cell wall.   The polysaccharide component consists of alternating residues of 

β-1,4-linked N-acetyl-glucosamine and N-acetyl-muramic acid residues.   The thick outer 

matrix of peptidoglycan serves a number of purposes, including membrane transport 

regulation, cell expansion, and shape formation.    Other differences between the two types 

Gram-positive Cell Wall 

Gram-negative Cell Wall 
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of cells are that Gram-negative cell walls posses a lipid outer membrane consisting of 

various lipid complexes and porins.  

 

The classification relies on the positive or negative results from Gram’s staining method 10 

which uses complex purple dye and iodine.  The Gram-positive bacteria have more layers of 

peptidoglycan in their cell walls than Gram-negative, which results in them retaining the dye, 

giving a positive result. 

 

The growth of bacteria can be measured when a culture of bacteria is inoculated to fresh 

medium. The cell concentration can be periodically measured, and a curve plotted, that 

shows the change in cell number against time.  The growth curve for bacteria has four 

distinct phases; lag, exponential, stationary and death shown in Figure 3.  

 

Figure 3: Hypothetical Bacterial Growth Curve 

 

Typically growth starts with the lag phase, where there is little increase in cell numbers.  At 

this point the bacteria are transporting nutrients from the medium into the cell, preparing for 

reproduction. 
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The exponential phase is next, where the bacterial cell division begins and proceeds as a 

geometric progression.  During the exponential phase bacterial reproduction occurs at the 

maximum rate, the number of cells increases as an exponential function of time.  

 

The growing bacterial culture eventually reaches a phase during which there is no further net 

increase in bacterial cell numbers.  This is called the stationary growth phase, the growth 

rate equals the death rate.  The stationary phase is usually reached when a required nutrient 

is exhausted.    

 

The final phase is the death phase, where the number of viable bacterial cells begins to 

decline.  The kinetics of bacterial death, like those of growth, is exponential because the 

death phase really represents the result of the inability of the bacteria to carry out further 

reproduction.   The rate of death is not necessarily equal to the rate of growth during the 

exponential phase; it is simply dependent on the number of surviving cells.           

 

As discussed earlier, bacteria are found in live bodies of plants and animals.   The effects 

that bacteria have on these host organisms can be divided into three sections: probiotic, 

pathogenic and commensal.       

 

Probiotic bacteria are known to have beneficial effects on their host, where as pathogenic 

bacteria are the bacteria that cause infectious diseases.  The term commensal is used to 

group all other bacteria that provide neither benefit nor harm to their host.  Commensal 

bacteria account for the vast majority of all bacteria, with very few being beneficial or harmful 

11. 

 

Probiotic bacteria are being used as dietary supplements.  Fuller 12, once referred to probiotic 

bacteria as 'a live microbial feed supplement which beneficially affects the host animal by 

improving its intestinal microbial balance'.  The main type of bacteria used as a probiotic is 
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lactic acid bacteria (LAB).  Recently, foods containing probiotic bacteria have become widely 

available, which will be discussed in a later section.      

 

1.3 Lactic Acid Bacteria 

LAB are widespread in nature, and are found primarily in the environments where there are 

high levels of carbohydrates, peptides, amino acids and vitamins.  They are classified as 

Gram-positive and consequently have a thick peptidoglycan layer, as explained in section 

1.2.  LAB are usually rod-shaped and present in a regular morphology.   LAB are known to 

produce lactic acid as the major metabolic end-product of carbohydrate (D-glucose) 

fermentation 13.   In the lactic acid fermentation pathway, pyruvate is reduced to lactic acid, 

with the coupled oxidation of NADH to NAD+.  This fermentation pathway is carried out by 

bacteria that are classified as LAB in response to the end product that is produced (lactic 

acid).   This happens by two pathways, homolactic fermentation and heterolactic 

fermentation.   

 

Homolactic fermentation is carried out by Streptococcus, Pediococcus, Lactococcus, 

Enterococcus and various Lactobacillus species.   This pathway is important in the dairy 

industry, where it is responsible for souring milk, and is used in the production of cheeses, 

yoghurts and various other dairy products 14.   
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Figure 4: Homolactic Acid Fermentation Pathway 

 

A schematic of homolactic fermentation is shown in Figure 4.  The glycolysis involves 

glucose being broken down into two pyruvates (or pyruvic acids), two adenosine 

diphosphates (ADP) and two inorganic phosphates (Pi) being converted to two adenosine 

triphosphates (ATP) and the reduction of Nicotinamide adenine dinucleotide (NAD+) to 

NADH.   Most cells will regenerate the used NAD+ by further converting the two pyruvates to 

two lactates (or Lactic acids) as the NADH is oxidised back to NAD+.   The overall reaction 

can be thought of as D-glucose (1 mole), reacting with ADP (2 moles) and Pi (2 mole) to 
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produce lactic acid (2 mole) and ATP (2 mole).   The structures are shown on the left hand 

side of the schematic (Figure 4).    

 

In heterolactic fermentation, lactic acid, ethanol and carbon dioxide are all produced.    

                
   

Figure 5: Heterolactic Acid Fermentation Pathway 
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At the start of the heterolactic pathway a phosphate, which has been removed from ATP to 

form ADP, is substituted onto the glucose molecule at carbon C6.   The energy released as 

Nicotinamide adenine dinucleotide (NAD+) is reduced to NADH ring opens the glucose-6-

phosphate to produce 6-phosphogluconate.   At the next stage more NAD+ is reduced to 

NADH, which removes carbon dioxide to leave ribulose 5-phosphate.   Xylulose 5-phosphate 

then forms two products, whereas glyceraldehyde 3-phosphate results in the production of 

lactate, and acetyl-CoA results in the production of ethanol.    The overall reaction, yields 

lactic acid (1 mole), ethanol (1 mole), carbon dioxide (1 mole) and ATP (1 mole), from D-

glucose (1 mole), ADP (1 mole) and Pi (1 mole).  This fermentation pathway is carried out by 

Leuconostoc and various Lactobacillus species.   

 

Species of Lactobacillus produce lactic acid by either homolactic or heterolactic fermentation.  

Measuring the ethanol and carbon dioxide produced can determine which pathway is 

occurring.      

 

A large variety of bacterial systems can produce complex polysaccharides.   It is not just 

probiotic bacteria, pathogenic strains can also biosynthesise polysaccharides.  Our research 

focuses only on probiotic systems, in particular LAB that secrete polysaccharides.     

 

As discussed briefly in section 1.1, bacterial extracellular polysaccharides are biosynthesised 

as either exopolysaccharides or as capsular polysaccharides.   The main focus of this project 

will be on exopolysaccharides.  Exopolysaccharides can be divided into two groups; those 

that produce homopolysaccharides, and those that produce heteropolysaccharides.  The 

homopolysaccharides can be further divided into subgroups, where different strains of LAB 

have been found to produce unique classes of polysaccharides; α-D-glucans, β-D-glucans 

and fructans 5.   
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Table 1:  Lactic Acid Bacteria that Produce Homopolysaccharides 

 

Subgroups Lactic Acid Bacterial Strains Polysaccharide 

Leuconostoc mesenteroides subsp. 

mesenteroides                                    

Leuconostoc mesenteroides subsp. 

Dextranicum 

α-1,6-linked D-glucose, variable degree 

of branching at position 3, sometimes 

positions 3 and 4 (Strain Specific) 
α-D-glucans 

Leuconostoc Mesenteroides 

Streptococcus mutans          

Streptococcus sobrinus 

α-1,6-linked and α-1,3-linked D-glucose 

β-D-glucans 
Pediococcus spp.                  

Streptococcus spp 

β-D-glucans, β-1,3-linked D-glucose, 

with β-1,2-branches 

Fructans Streptococcus salivarius 
β-2,6-linked D-fructose, with some     β-

1,2-branches   

  

LAB that produces heteropolysaccharides can be subdivided into two groups, mesophilic 

strains and thermophilic strains.  Mesophilic strains are organisms that grow best at 

moderate temperature, 15 – 40 °C for example.  Whereas thermophilic organisms thrive at 

relatively high temperatures, greater than 40 °C.   Mesophilic and thermophilic LAB that 

produce heteropolysaccharides are given in Table 2.  

   

 

 

 

 

 

 



Chapter 1                                                                                                                              Introduction 

- 11 - 

Table 2:  LAB that Produce Heteropolysaccharides 

 

Subgroups Lactic Acid Bacterial Strains 

Mesophilic 

Lactococcus lactis subsp. lactis          

Lactococcus lactis subsp. cremoris         

Lactobacillus casei                               

Lactobacillus sake                                              

Lactobacillus rhamnosus 

Thermophilic 

Lactobacillus acidophilus                    

Lactobacillus delbrueckii subsp. bulgaricus 

Lactobacillus helveticus                       

Streptococcus thermophilus 

 

Recently, exopolysaccharides biosynthesised from the thermophilic group have received the 

most interest because of their important role in the rheology, texture and mouth feel of 

fermented milk drinks and products 5.   

  

1.3.1 Lactic Acid Bacteria in the Food Industry  

LAB are associated with natural food fermentations such as milks, meat, beverages and 

bakery products 15, one example of their exploitation is the Scandinavian Dairy Industry 

which commercially utilizes their characteristics in the production of their buttermilk products 

14.  Some of the LAB used in the food industry include: Streptococcus, Lactobacillus, 

Enterococcus, Lactococcus, Leuconostoc, Pedidococcus and Aerococcus genera.   They 

secrete EPS into the growth medium but also produce lactic acid during fermentation. 

 

LAB are widely used as starter cultures in fermented products.  Their growth lowers both the 

carbohydrate content and the pH of foods they ferment.   It is this acidification process which 

is one of the most desirable side-effects of their growth.   During fermentation, the production 

of lactic acid can reduce the pH to as low as 4.0, which has been reported to be low enough 
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to inhibit the growth of most other microorganisms, including the most common human 

pathogens, which can increase the shelf life of foods 16.   

 

Lactobacillus acidophilus is also added to various commercial milk products (Acidophilus 

Milk), as a probiotic, to aid individuals who are unable to digest milk products adequately 17, 

where enzymes produced by Lactobacillus acidophilus convert milk sugars to products that 

do not accumulate and cause gastrointestinal problems.       

 

LAB have a useful role in winemaking, converting malic acid to lactic acid in malolactic 

fermentation.   Unfortunately, after this conversion has completed the bacteria may still be 

present within the wine, where they can metabolise other compounds leading to spoilage.   

Wines that have not undergone malolactic fermentation may be contaminated with LAB; 

leading to re-fermentation of the wine so that it becomes turbid and slightly effervescent.   

This can be avoided by sterile filtering of wine directly before bottling or the use of phenolic 

compounds to control LAB growth 18.    

 

Other benefits of ‘probiotic’ LAB are that they have anti-hypercholesteremeric effects 19, anti-

carcinogenic effects 20, immunopotentiation 21  and the ability to control intestinal pathogens 

22 .  In addition, there have been claims for the use of products containing LAB in alleviating 

hypertension 23, allergies 24, heart disease, urogenital infection 25 and hepatic 

encephalopathy 26. 

 

1.4 Exopolysaccharides 

Microbial exopolysaccharides are extracellular polysaccharides that are secreted into the 

extracellular environment in the form of slime.  There is no definitive understanding of why 

EPSs are produced by bacteria, they are not used as a feedstock for the bacteria but are 

thought to provide a defensive barrier.  The secretion of exopolysaccharides often envelopes 

the bacteria in a biofilm that enables them to survive and prosper in a range of hostile 
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environments 27.    A biofilm is a complex aggregation of microorganisms that grows on a 

solid substrate.  They are held together and protected by a matrix of excreted polymeric 

compounds, where the main component is a polysaccharide, referred to as an 

exopolysaccharide.   The biofilm matrix traps required nutrients and water and offers bacteria 

a way to adhere to surfaces which they otherwise would be unable to inhabit, surrounding 

the bacteria and reducing and often eliminating the effects of antibacterial agents 28.    It is 

also known that EPSs aid the protection of bacteria against bacteriophage attack, 

phagocytosis, predation by protozoa, antibiotics and desiccation 29.     

 

Our interest in bacterial exopolysaccharides has two main focuses, an interest in beneficial 

application of EPSs and also in the spoilage of foods caused by biofilm formation.       

 

1.4.1 Application of Exopolysaccharides 

Polysaccharides are indispensable tools in food product formulation due to their thickening 

and gelling properties.  They are also used as emulsifiers, stabilizers, and in the inhibition of 

syneresis, which is the release of water from processed foods 5.   Most polysaccharides used 

by the food industry as bio-thickeners are derived from plants, such as starch, pectin, guar 

and seaweed (carrageenan, alginate).   These are not always readily available, and their 

rheological properties often do not match those required, hence, most polysaccharides of 

plant origin require chemical modifications to improve their structure and rheological 

properties 30.  The consequence of these chemical modifications is that the polysaccharides 

carry heavy restrictions over their usage in food products, being labelled with an E-number 

classification 5.     

 

Due to the concerns with established biothickeners,  microbial exopolysaccharides are 

becoming widely applied as natural thickening, gelling and stabilizing agents in the food 

industry 31.  They are water soluble and become viscous when hydrated which gives them 
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thickening and gelling properties.  This has made them very attractive to the food industry as 

replacements for plant and animal derived polysaccharides.  

 

Exopolysaccharides produced by lactic acid bacteria (LAB) carry the ‘generally recognised 

as safe’ (GRAS) status because the microorganisms are food grade, which make them much 

more favourable compared to their synthetic counterparts.   Examples in industry of 

important microbial polysaccharides are dextrans, xanthan, pullulan, and bacterial alginates 

5.  Once developed, it is envisaged that novel microbial biopolymers will eventually replace 

the synthetic polysaccharides, improving both the rheology and stability of foods 32.   The 

main problem when using EPSs has been the variable consistency and an inability to 

produce them on a scale suitable for industrial use.  This means that novel polysaccharides 

of bacterial origin, which can be prepared in large quantity, are of significant interest.  The 

production of Xanthan, from Xanthomanas campestis, has been reviewed by Rosalam and 

England 33, as mentioned above, it is an industrial thickening agent, but because the strain is 

phytopathogenic it is not given GRAS status, despite having gained Food and Drug 

Administration (FDA) approval.     In the search for a new generation of ‘green’ food 

thickeners, much attention is currently being given to exopolysaccharides; the application of 

the excreted EPSs into food products is expected to have great commercial potential.   

Where there is further need of food thickening, with a move to low fat dairy products, LAB are 

of interest as they are currently used in the production of many fermented foods such as 

yoghurts, cheeses and butters as thickening agents to improve the rheological properties of 

the products, such as texture, mouth feel and viscosity 14.   A study by Folkenberg et al. 34 

into the textural effects of EPSs in yoghurt, reported that EPS-protein interaction was 

extremely important, benefiting mouth feel, ropiness and low serum separation. 

  

1.4.2 Spoilage  

The negative attributes of EPS synthesis are associated with their spoilage properties.  The 

synthesis of EPSs by LAB during wine 35 36 and cider 37 production leads to products having 
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undesirable rheological properties.  The formation of dental plaques is related to EPS 

synthesis by LAB 38 39.  The exopolysaccharides for LAB are responsible for biofilm formation 

40 41 that can lead to biofouling 42.   The most notable examples of biofouling are associated 

with biofilm formation in equipment used for processing in the dairy industry e.g. pipe 

blockages 41.       

 

1.4.3 Synthesis of Exopolysaccharides 

The synthesis of the great majority of bacterial homopolysaccharides, and of all 

heteropolysaccharides is a complex intracelluar process, in which sugar nucleotides provide 

activated forms of the monosaccharides 28. Whilst the exact biosynthetic mechanism for 

heteropolysaccharide production in LAB is not known, important details have been identified.   

The mechanism is similar to that proposed for Gram-negative bacteria, as both systems 

require the polymerisation of reducing sugar units.  Heteropolysaccharides are constructed 

from multiple copies of an oligosaccharide (a repeating unit).  The oligosaccharide can 

contain between three and seven residues, possessing a variety of two or more different 

types of monosaccharides, and often a range of different linkage patterns 43.  The varieties of 

monosaccharides are produced through epimerization, dehydrogenation, and 

decarboxylation reactions at the sugar nucleotide level, where D-glucose and D-mannose can 

be converted to D-galactose, uronic acids or pentoses.   The stages of EPS synthesis can be 

summarised into five steps, based on Kleerebezem et al. 44.   A general overview of the 

pathways involved in the synthesis of EPSs is provided in Figure 6. 
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Figure 6: Exopolysaccharide Biosynthesis (Base on Diagram by Kleerebezem et al.) 
44

 

 

The steps involved are given in Table 3, where the repeating units of heteropolysaccharides 

are synthesised as lipid soluble components to which acyl groups are also attached.    

 

Table 3: Steps Involved in Exopolysaccharide Biosynthesis 
 

Steps Action  

Step 1 Sugar transport into the cytoplasm 

Step 2 Synthesis of glucose-1-phosphate 

Step 3 
Synthesis of sugar nucleotides and 

polymerisation into EPS subunit 

Step 4 Export out of the cytoplasm 

Step 5 EPS polymerisation and detachment 

  

As shown in Figure 6, there are two systems for uptake of lactose, via the 

phosphotransferase (PTS)-system or via a non-PTS-system.  The best established system is 

the PTS-system 45, which transfers a high-energy phosphate group from 
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phosphoenolpyruvate to an incoming carbohydrate.  The PTS-system is energy conserving 

as fermentation yields very few ATP molecules in comparison to respiration, and this low 

energy yield from fermentation would not support active transport.  This is why it is found 

predominantly associated with fermentative organisms.  Some bacteria have been shown to 

lack a PTS for lactose and grow significantly more slowly than cells with PTS.  Thompson 

and Thomas 46 have shown this to be true of thermophilus.  Detailed work on EPS 

biosynthesis in LAB has focused on Lactococcus lactis subsp cremoris by Oba et al. 47.   

They suggest that lactose is taken in via a PTS-system and subsequently hydrolysed by the 

phospho-β-galactosidase enzyme.  The D-glucose moiety is converted to glucose-6-

phosphate by glucokinase then to glucose-1-phosphate by phosphoglucomutase.  Qian et al. 

48 proposed that the action of α- and β-phosphoglucomutase is the limiting step in EPS 

biosynthesis as it regulates the flux between metabolism and EPS production in Lactococcus 

lactis subsp cremoris.       

 

As can be seen in Figure 6, the biosynthesis of glucose-1-phosphate generally results in the 

production of UDP-glucose, UDP-galactose, and dTDP-rhamnose nucleotide sugars.   These 

activated nucleotide sugars attach to phospholipids on the lipid carrier and assemble into 

sugar units.  Construction of the basic repeat unit occurs by the transfer of sugar nucleotides 

diphospho-precursors to a carrier lipid.  The lipid carrier plays a central role, acting as an 

anchor to which assembly of the repeating unit takes place.  Oba et al. 47 have analysed the 

lipid linked oligosaccharides by conventional compositional and methylation analysis 

(discussed in section 1.6.2).   The structure of the isolated lipid linked oligosaccharide was in 

agreement with the structure of the secreted polysaccharide.         

 

The repeating units are then polymerised and the polysaccharides are excreted into the 

extracellular environment, where they can be found attached to the cell surface, or as cell-

free colloidal masses or sometimes both.  The EPS produced is usually of distinct weight-

average molecular weight, and the method by which the chain length of the EPS is dictated 
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is still unknown, although genes purporting to control chain length of EPSs have been 

suggested in many exopolysaccharide-synthesised bacteria 49.  Groot and Kleerebezem 50 

have studied the genes that are thought to be responsible for controlling EPS production, 

epsA, epsB, epsC and epsD.   They investigated the effect of deletion and mutation of each 

gene, working out that epsA and epsB appeared to be essential in the biosynthesis of EPSs.  

The deletion of epsC had only a minor effect, while phosphorylation of epsB indicated that 

the EPS synthesis is driven by the presence of a non-phosphorylated form of epsB.  

 

Studies on genetic control of EPS production in LAB have shown that the genes encoding 

synthesis of the polymers may be located either on plasmids for mesophilic species, such as 

Lactobacillus lactis and Lactobacillus casei, or on the chromosome, as in thermophilic LAB 

species 49.   The substrate specificity of the glycosyltransferases controls the sequence of the 

repeating unit, the polymerisation and export 51.  De Vuyst et al. 52, has suggested that there 

are four functional regions of the polysaccharide synthetic cluster in LAB.  The central region 

contains the gene for glycosyltransferases and is sandwiched by two regions, each involved 

in chain-length determination and export.  The final region is situated at one end of the gene 

cluster and is responsible for regulation of biosynthesis of EPSs.   The esp clusters are 

thought to be very similar for different LAB, implying there is a common mechanism for all 

EPS biosynthesis 51. 

 

The mechanism for secretion of EPSs is still unclear; it is thought that EPS subunits are 

transported across the membrane by either proton motive forces 53 or translocated from 

membrane embedded lipid carriers by a translocase enzyme 54.  

 

Biosynthesis of polysaccharides is considered to be energy dependant, requiring one mole of 

ATP for the conversion of each hexose substrate molecule to hexose phosphate and a 

further high-energy phosphate bond is needed for the synthesis of each sugar nucleotide.  

Also one mole of ATP is required for the phosphorylation of the lipid carrier and energy will 
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then be required for the polymerisation and transport of the polysaccharide.   De Vuyst 

(1999) 5 states energy generation in LAB is limited, which will limit polysaccharide production.    

EPSs are produced in relatively small amounts and its production may compete with cellular 

growth 55, this could explain the close relationship between cell growth and EPS synthesis 56.     

 

1.4.4 Review of EPS structures  

Exopolysaccharides from LAB can have many different characteristic properties, as well as 

having distinct chemical structures.   

 

1.4.4.1 Subgroups of Exopolysaccharides  

As explained in section 1.1, EPSs that consist of one type of monosaccharide are called 

homopolysaccharides, however heteropolysaccharides, produced by mesophilic and 

thermophilic LAB strains (shown in Table 1 and Table 2) can be composed of many different 

monomeric units, as the α- or β- anomer and in the pyranose or furanose form 5.  The range 

of monosaccharides and the number of possible linkages between each sugar unit lead to a 

wide range of structures and properties in EPSs from LAB.    

 

1.4.4.2  Chemical Composition of Exopolysaccharides 

The chemical composition and structure of their EPSs varies widely, even from different 

strains within the same species.   The chemical composition of heteropolysaccharides from 

LAB has been investigated and there is agreement that EPSs from LAB are polysaccharides 

with D-glucose and D-galactose as the main sugar constituents and the ratio of the two 

components varies (Laws et al., 2001) 43.   Incorporation of other neutral sugars has been 

reported, for example, D-mannose, L-rhamnose, L-fucose, N-acetyl-D-glucosamine and N-

acetyl-D-galactosamine and to a smaller extent D-glucuronic acid and D-galacturonic acid, 

which both carry a formal negative charge, and are also found in a small number of EPS 

structures. 
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A list of all the reported EPS structures from lactic acid bacteria are given in the Appendix 

section 1.9.  The structures are presented using the rules of nomenclature detailed by Laws 

et al. 43, which are loosely derived from the guidelines presented by the International Union of 

Pure and Applied Chemistry (IUPAC) for the nomenclature of polysaccharides composed of 

more than one kind of residue.    Inspection of the reported EPS structures from lactic acid 

bacteria show that the monosaccharide present in the highest frequency is galactose, closely 

followed by glucose.  Each of these is always present in the D-absolute configuration, 

whereas rhamnose is always present in the L-absolute configuration.   There are a small 

number of structures that contain, D-GalNAc, D-GlcNAc and phosphor-diester, acetyl-ester, 

phosphate-ester, pyruvate-acetal substitutions.  The structures show slight preference for the 

β-anomer, however, there is a definite preference for the α-anomer for rhamnose.   The only 

sugar found to adopt the furanose ring was galactose.    In terms of the different linkages, 

anomeric configuration and linkage type, some general observations can be made.  A large 

number of branches are terminated by D-galactose.  β-D-galactose is preferentially attached 

either as branch terminus or via a 3-, 4- or 6-hydroxyl group.  α-D-glucose shows a strong 

preference for attachment via its 3-hydroxyl group.  β-D-glucose is preferentially attached via 

its 3-, 4- or 6- hydroxyl group, where as α-D-glucose is preferentially attached via its 3- or 6- 

hydroxyl group.  And finally, L-rhamnose is frequently used as a branch junction.            

 

It has also been reported that certain strains of LAB can secrete more than one EPS, for 

example, Grobben et al. 57 58 reported different monosaccharide compositions of EPS 

material from the thermophilic LAB strain Lactobacillus delbrueckii subsp. bulgaricus NCFB 

2772.    Also, Marshall et al. 59 isolated two different EPSs from the mesophilic LAB strain 

Lactococcus lactis subsp. cremoris LC330, where the two EPSs showed different monomeric 

composition and weight-average molecular weight.  High and low molecular weight material 

was also found from fermentations with the Lactobacillus delbrueckii subsp. bulgaricus NCFB 

2772 strain 58 and the Streptococcus thermophilus LY03 strain 60.  However, the high and low 
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molecular mass material from both of these species did not differ in monosaccharide 

composition.   

 

1.4.4.3 Structure of Exopolysaccharides 

The monosaccharides in EPSs are found in repeat units; the monosaccharides are 

connected by α- or β- glycosidic linkages and have D- and L- configurations, which are 

present in the pyranose and furanose forms.  The repeating units range from trisaccharides 

to heptasaccharides.   One exopolysaccharide was reported to consist of a repeating unit of 

eight monosaccharides 61.  This was produced by Streptococcus thermophilus MR-1C but 

this was shown to be a capsular polysaccharide.   

 

According to De Vuyst and Degeest 5 EPSs produced by LAB have a molecular mass range 

from 40 kDa – 6000 kDa.  Care must be taken when determining the molecular mass of 

EPSs, as the material measured is often presumed to be EPS, but may just be due to 

impurities present from the fermentation process.  There is a possibility of mis-assignment of 

residual D-glucose, lactose, proteins and salts or perhaps a glycoprotein or protein-

carbohydrate complex, as has been reported by Al et al. 62, where chemical composition 

analysis showed that the low molecular weight material that was isolated was due to protein.   

 

1.5 Production and Isolation of Exopolysaccharides  

LAB can be grown on plates, where those that, when contacted with a toothpick, generate a 

ropy strand are believed to be EPS producing. LAB have been shown to be able to 

biosynthesize exopolysaccharides that are secreted into their environment when they are 

used to ferment large working volumes of milk 5.   These fermentation conditions must be 

optimised in order to produce exopolysaccharides in a large enough quantity to isolate and 

structurally characterise. There have been many studies carried out to both optimise and 
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improve the fermentation conditions and EPS isolation procedure, these developments are 

detailed below.  

   

1.5.1 Production of Exopolysaccharides during Milk Fermentation 

LAB cultures have been shown to thrive during the fermentation of milk, where the optimal 

fermentation conditions differ for each LAB subgroup.  Cerning et al. 56 has suggested that 

there is a close relationship between LAB cell growth and EPS synthesis, therefore the milk 

fermentation process has been developed as a technique for producing exopolysaccharides 

in a large enough amount to allow their isolation and characterisation.   Individual LAB 

cultures can be inoculated and grown in milk.  To grow an individual culture, the preparation 

of the milk is critical, prior heat treatment of milk is essential as it destroys pathogens and 

other microorganisms which may interfere with the fermentation process.  Once sterile, the 

milk is then inoculated with the LAB culture, and the fermentation proceeds.    

 

The fermentation temperature influences the growth of LAB, which subsequently affects the 

biosynthesis of EPSs.   It has been reported that temperature above and below the optimum 

growth temperature for the LAB have resulted in greater EPS production.  Results 

demonstrating increased EPS production at low incubation temperatures have been 

published by Cerning et al. 56, Marshall et al. 59 and Looijesteijn and Hugenholtz 63.  Their 

reasoning for this is explained by the fact that slowly growing bacterial cells exhibit a much 

slower cell wall polymer biosynthesis, making more lipid carriers available for EPS 

biosynthesis.   In contrast, De Vuyst et al. 64 and Kimmel et al. 65, found higher EPS yield by 

fermenting LAB at higher growth temperatures than the optimal value.    

 

The optimal pH conditions found for production of EPSs are often close to pH 6.0, however, 

some authors (Gamar-Nourani et al., 1998 66 and Dupont et al., 2000 67) do not find 

significant differences in the amount of EPS produced under pH controlled conditions when 

compared to the acidic conditions produced by the LAB generating lactic acid during 



Chapter 1                                                                                                                              Introduction 

- 23 - 

fermentations.  De Vuyst et al. 64 carried out fermentation experiments under constant pH 

conditions, using automatic addition of sodium hydroxide to maintain the pH at 5.5. 

 

There have also been reports that EPS degradation can occur upon prolonged incubation 

Gassem et al. 68, De Vuyst et al. 64 , Petry et al. 69 , which they suggest could be due to 

glycohydrolase activity, although the presence of glycohydrolase has only been 

demonstrated in Lactobacillus rhamnosus R by Pham et al. 70. 

 

To be able to characterise the structures of EPSs, a significant amount of EPS material is 

required.  Work carried out at the University of Huddersfield has developed a procedure to 

produce exopolysaccharide, at an adequate level, during milk fermentations.  The procedure 

involves inoculating sterile milk with LAB, and then fermenting the milk to grow the LAB.   As 

the culture of LAB grows, it synthesises and secretes EPS.   Studies into the fermentation 

procedure have optimized the temperature, pH conditions, supplementation, and length of 

fermentation 71 72.       

 

Although the mechanism of the biosynthesis of exopolysaccharides is moderately 

understood, the actual time course of the production of exopolysaccharides during the 

fermentation process requires further investigation.  During fermentation the yields of LAB 

have been monitored to determine the phase of growth.  Some workers have identified an 

increase in EPS production during the exponential phase.   Lin and Chang Chien 73 have 

attempted to monitor the yield and weight-average molecular weight of EPSs during the 

fermentation of milk, produced from cultures of Lactobacillus helveticus.  They have reported 

that the molecular weight significantly increases throughout the fermentation, then decreases 

during the death phase of the bacterial culture.   Their conclusions were drawn from a study 

that had limited data, sampling at only nine intervals over an 84 hour experiment.       
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1.5.2 Isolation of Exopolysaccharides 

The synthesis and excretion of exopolysaccharides from LAB into the growth medium has 

been described above, the difficulty then lies with isolating and purifying the EPS.  There 

have been many publications that have developed the procedure for isolating EPSs.    Most 

of these methods commonly use solvent such as acetone 74 75 76 or ethanol 77 78 79 to 

precipitate the EPS.  Since 2001, ethanol appears to be the solvent of choice and has been 

used in the majority of EPS precipitations.    

 

When EPS is isolated from milk cultures a de-proteination step prior to EPS precipitation is 

required.  This can be achieved in one of two ways: using a proteinase enzyme or using acid 

to precipitate the protein.    Doco et al. 80 used proteinase initially to break down the caseins, 

followed by the addition of trichloroacetic acid (TCA).  Using proteinase removes the majority 

of proteins but small proteins may remain in the supernatant liquid following centrifugation.   

Studies into the addition of TCA 71 have shown a concentration of TCA (14% w/v) to be 

optimal for precipitation of proteins, although De Vuyst et al. 64 has published a method that 

included two rounds of TCA addition and EPS precipitation.    

 

Once protein has been precipitated, the separated cells and proteins are then removed by 

centrifugation which is followed by the addition of chilled ethanol to re-precipitate the EPS.   

The precipitated EPS is collected and dissolved in water and dialysed to remove the small 

neutral sugars, salts and small proteins.    The dialysed EPS solution is then freeze dried to 

produce a pure EPS solid that is white in colour and has a soft spongy texture.      

 

1.6 Characterisation of Exopolysaccharides  

The structures of exopolysaccharides have been discussed in section 1.4.4, they consist of 

monosaccharide units, which are attached together through α- and β- glycosidic linkages to 

form repeating oligosaccharide units.  The two most important elements of the structural 

characterisation of exopolysaccharides are, firstly, to determine the monosaccharide 
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composition, in terms of identification of monomers and their relative ratio, in the repeating 

unit.  Then secondly, to determine how each monosaccharide is arranged (linked) in the 

repeating unit.  The overall configuration of the repeating oligosaccharide sequence can then 

be deduced.     

 

1.6.1 Monosaccharides 

The most basic carbohydrate units are called monosaccharides, which when linked together 

form more complex carbohydrates, such as di-, oligo- and polysaccharides.  The 

monosaccharide components, can have D- or L- configurations, and be present in both 

furanose and pyranose forms.   The monosaccharides present in exopolysaccharides are 

normally aldohexoses and exist in either the pyranose or furanose forms.   

        

 
Figure 7: Structures of β-D-galactopyranose and β-D-galactofuranose 

 

In an aldosehexose, the sixth carbon is attached equatorially as –CH2OH to the carbon C5.   

The anomeric proton is situated on carbon C1, which has been labelled in Figure 8.  

 

 

 

 

Figure 8: The Structures of α- and β-D-galactose 

 

Anomeric Proton (β-position) 

Anomeric Proton 
(α-position) 

 

Ligand attached to highest 
numbered asymmetric carbon 

α-D-galactose                              D-galactose         β-D-galactose 
               

β-D-galactopyranose              β-D-galactofuranose
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In solution, D-glucose is present in the open-chair form (acyclic) and ring (cyclic) form in 

equilibrium.   

 

The anomeric configuration of a monosaccharide unit is assigned by the position of the 

ligand attached at the highest numbered asymmetric carbon (within the ring) with the 

anomeric proton.  Therefore determining the position of the anomeric proton on the C1 

carbon in relation to the highest numbered chiral carbon, which for a cyclic aldohexose, is 

carbon C5.   The alpha (α-) anomeric configuration occurs when the anomeric proton is 

positioned on the same side of the ring as the ligand attached to the highest numbered 

asymmetric carbon, and in the beta (β-) anomeric configuration the anomeric proton is 

positioned on the opposite side of the ring as the highest numbered asymmetric carbon.  

This is illustrated in Figure 8, where the groups of interest are labelled.   Nuclear magnetic 

resonance is used to distinguish between the two configurations and this will be discussed 

further in section 1.6.3.      

 

Glycosidic linkages are defined as bonds between monosaccharides, where a bond forms 

between a hemiacetal or hemiketal, at carbon C1 and an alcohol, which is usually another 

carbohydrate.  Glycosidic linkages between carbohydrates can lead to linkages between 

carbon C1 and hydroxyl groups attached to carbons C2, C3, C4 or C6 of another pyranose 

based monosaccharide.  A monosaccharide can have up to four linkages; therefore 

complicated branched structures are possible.  The rules are different when looking at 

furanoses.      

 

1.6.1.1 Monosaccharide Analysis  

Polysaccharides are polymers made up of many monosaccharides joined together by 

glycosidic linkages.  There are several methods that can be used to determine the 

monosaccharide composition of a polysaccharide.   
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The majority of published exopolysaccharide structures have used the procedure described 

by Gerwig et al. 81 to determine the monosaccharide composition.  The analytical procedure 

involves hydrolysis of the exopolysaccharide to monosaccharides, using an acid to catalyse 

the reaction.   The monosaccharide units are then reduced, using sodium borohydride and 

acetylated using acetic anhydride.  The volatile derivatised alditol acetates are assayed by 

GC and their identity confirmed by comparison to alditol acetate standards.   
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Figure 9: Chemical Derivatisation Process of Monosaccharide Analysis 

 

The derivatisation process is illustrated in Figure 9, which shows trifluoroacetic acid (TFA) 

used as a catalyst for the hydrolysis.  The aldehyde is then reduced, and the hydroxyl groups 

are acetylated to provide the alditol acetate of the monosaccharide.  This method is time 

consuming, and difficulties associated with the thermal decomposition of amino sugars have 

been well documented 82.  The method cannot detect N-acetyl amino sugars because the 

acetyl group is removed during hydrolysis leaving only the amino sugar residue 83.     

  

 Pyridine 
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1.6.1.2 Alternative Methods for Monosaccharide Analysis  

More recent methods that have been developed for monosaccharide analysis of 

polysaccharides use high pressure anion exchange chromatography with pulsed 

amperometric detection (HP-AEC-PAD) 84 85.   This method does not require 

monosaccharide derivatisation as alditol acetates, the polysaccharide is simply hydrolysed 

into monosaccharides.  As with the gas chromatography method described above, this 

technique also compares the retention times and relative intensities of monosaccharide 

standards to identify and quantify the monosaccharide composition of polysaccharides.   

Again, due to the requirement for a hydrolysis step, this method cannot distinguish between 

N-acetyl amino sugars and amino sugars 83.      

     

The detection of carbohydrates using capillary zone electrophoresis (CZE) has been well 

documented, in particular by Paulus and Klockow 86.  The detection of underivatised neutral 

carbohydrates is difficult and carbohydrates need to be labelled to improve their detection.   

Neutral carbohydrates lack a conjugated π-system and the absence of a chromophore 

restricts the use of UV detection.  Hofstetter-Kuhn et al. 87, managed to increase the UV 

detection of neutral carbohydrates, by forming on-column complexes with borates, which 

could be detected.   Although the detection levels are still not attractive, the potential of 

borate complexation for sugar analysis was clearly demonstrated.   In formation of borate 

complexes, neutral carbohydrates acquire a partial negative charge as they form a complex 

with the tetrahydroxyborate ion 88, this is illustrated in Figure 10.            
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Figure 10: D-glucose and D-galactose Borate Complexes 
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The formation of borate complexes magnifies the small steric differences between closely 

related isomers, based on the tendency of borate to form more stable complexes with cis-

rather than trans-oriented pairs of hydroxyl groups on adjacent or alternate carbon atoms 89.  

More recently this methodology has been used for monosaccharide analysis by Xioa et al. 90, 

who have reported baseline resolution greater than one minute between D-glucose and D-

galactose using a borate buffering system. 

 

1.6.2 Linkage Analysis 

For determination of the linkage patterns in the repeating oligosaccharide, the majority of 

reported structures use the method developed by Stellner et al. 91.   This procedure has 

similarities to the monosaccharide analysis developed by Gerwig et al. 81; before hydrolysis, 

all the unsubstituted hydroxyl groups are methylated.   The methylated polysaccharide is 

then hydrolysed to monosaccharides using trifluoroacetic acid (TFA).  The partially 

methylated monosaccharides are subsequently converted to alditols by reduction with 

sodium borodeuteride and the products acetylated with acetic anhydride.   The derivatisation 

process is provided in Figure 11, which shows that the end product contains both methoxy (-

OMe) and acetyl (-OAc) groups.    
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Figure 11: Chemical Derivatisation Process of Linkage Analysis 

 

The methoxy groups identify where a free hydroxyl group was present and the acetylated 

sites show where there was a glycosidic linkage to another monosaccharide.  There are 

several different methods for the methylation; the most commonly used is the Hakomori 

method 92, where dimethylsulfinyl anion acts as a base and removes the free hydroxyl 

protons on the monosaccharide and then methyl iodide is added to form methoxy groups.  

The methylated alditol acetates are then analysed using GC-MS, and the fragmentation 

patterns are used to identify the positions of linkages.    

 

An alternative procedure for the methylation of carbohydrates was developed by Ciucanu 

and Kerek 93.  Their methylation procedure uses sodium hydroxide for base-catalysed 

ionisation of the hydroxyl groups, which is then followed by methylation using methyl iodide.   

(Dimsyl anion) 
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Ciucanu and Kerek report that this methylation procedure provides short reaction times, high 

yields and clean gas chromatograms.  The procedure has been recently modified to use an 

excess amount of powdered sodium hydroxide to scavenge any water present in the sample.  

The absence of water means that per-O-methylation with methyl iodide was more feasible 94.  

 

In recent publications, the ‘Ciucanu methylation procedure’ seems to be the preferred choice 

for the methylation of carbohydrates; Rodriguez-Carvajal et al. 79 have used the ‘Ciucanu 

methylation procedure’ to methylate a high-molecular weight EPS isolated from Lactobasillus 

pentosus LPS26.   Kohno et al. 95 have used the ‘Ciucanu methylation procedure’ to 

characterise an extracellular polysaccharide produced by Bifidobacterium longum JBL05.   

The Micshnick Group (Institut fur Lebensmittelchemie, Germany)  have also been using this 

methylation procedure in their recent work 96 97, where they report the fragmentation patterns 

of regioselectively O-methylated malto-oligosaccharides and the substitution patterns of O-

methyl-α- and β-1,4-glucans.  

 

Other methylation procedures exist and they have recently been reviewed by Ciucanu 98.  

Highlighted methods include the use of metal oxide, where the carbohydrate is dissolved in 

methanol and then treated with silver oxide and methyl iodide 99 100 or barium oxide and 

methyl iodide 101.   The drawbacks of these methods are that a suitable solvent cannot be 

found for polysaccharides.  Other methods include using aqueous solution of metal 

hydroxide as the basic agent. This was first introduced by Denham and Woodhouse 102, 

unfortunately this method gives a mixture of partially and fully methylated monosaccharides.   

None of these other methods has been successfully used to per-O-methylate carbohydrates.  

The two most successful are those developed by Hakomori 92 and Ciucanu 93 described 

above.       
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1.6.3 NMR Analysis of Polysaccharides  

Nuclear magnetic resonance spectroscopy (NMR) can be used to determine the anomeric 

configuration of the monosaccharides, and also how the monosaccharides are linked 

together in the repeating oligosaccharide unit of the EPS.   Doco et al. 80, were the first to 

determine the structure of the repeating unit from an EPS, produced by Streptococcus 

thermophilus CNCMI 733 using NMR spectroscopy.  Since this first publication, many 

structures have been published, that have utilised the advances in 1D- and 2D- NMR 

spectroscopy 103 104 105.   

 

1.6.3.1 1H-NMR Spectra for Carbohydrates 

In analysing NMR spectra, spectra are split into two separate regions, the anomeric region 

and the bulk region.   The anomeric region is situated downfield from the ring protons due to 

the electron-withdrawing effects of the neighbouring ring oxygen atoms.  Particular attention 

is placed on the anomeric region (4.4 – 5.6 ppm); the integration and number of signals in 

this region identifies how many monosaccharides are in the repeating oligosaccharide unit.    

 

The configuration of the anomeric proton can be deduced from the 1H-NMR spectra by using 

a combination of the 3J1,2H-H and 1JC-H coupling constants.   For monosaccharides adopting 

the 4C1 chair conformation where the proton attached to carbon C2 is axial, the following 

rules apply:  a monosaccharide has an α-anomeric configuration when the 3J1,2 coupling 

constant is less than 4Hz and β-anomeric configuration when greater than 7.5Hz.   These 

figures are based on the values obtained from the Karplus curve, as described by Tafazzoli 

and Ghiasi 106, which shows the relationship between dihedral angle and the 3J1,2 coupling 

constants. 
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Figure 12: Newman Projection Showing the Dihedral Angles in D-glucose 
 

It must be stressed that the Karplus curve can only be applied to sugars which have the 

hydrogen attached to carbon C2 in the axial position e.g. D-glucose and D-galactose.  For 

these sugars an α-configuration is when the hydrogen, attached to carbon C1, is in an 

equatorial position and the hydrogen, attached to carbon C2, is in an axial position, therefore 

a dihedral bond angle of 60°.  For a β-configuration both hydrogens are axial, so the dihedral 

bond angle is 180°.   The angles for each configuration are shown in Figure 12, which shows 

the anomeric protons in blue.    

 

The configuration can be visually assessed, where the peaks in the 1H-NMR spectrum are 

observed as singlets for an α-configuration and doublets for a β-configuration.   This can be 

inaccurate as it assumes adsorption of the 4C1 conformation and often requires confirmation 

using the 3J1,2 coupling constants.   Also the 1JC-H coupling constants can discriminate 

between the two configurations, where a value of approximately 160Hz confirms the 

assignment of the β-configuration and a value exceeding 170Hz confirms the assignment of 

the α-configuration 107.       

   

1.6.3.2 DEPT135 13C-NMR spectra for Carbohydrates 

The DEPT 135 13C-NMR spectrum shows all carbons present that are attached to a 

hydrogen (–CH, –CH2 and –CH3) in the analyte.  The –CH3 and –CH signals are shown as 

positive peaks, where as the –CH2 signals are negative.    In aldohexoses, there are specific 

H2 (axial) 

H1 (axial) 

H1 (equatorial) 

180° 

60° 

α-configuration  

β-configuration  
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regions of the DEPT 135 spectra in which certain carbons are observed.   The –CH signals 

from carbons C2 – C5 are generally located between 65 – 85 ppm, providing they have –OH 

substitution.  Carbons substituted with amino sugars or methyl groups give signals at a lower 

chemical shift.  The carbon C1 signals are generally located between 95 – 105 ppm due to 

the adjacent electron withdrawing oxygen in the heterocyclic ring.   The signals for carbon 

C6, are observed as –CH2, therefore seen as negative peaks, which are generally located 

between 60 – 70 ppm.     Any –CH3 groups, such as from rhamnose, or N-acetyl-amino 

sugars are observed at a lower ppm, which can be used to quickly identify them.      

   

1.6.3.3 Data from two-dimensional experiments 

Using specific 2D– experiments which show the environment in which each carbon / 

hydrogen is positioned, the structure of complex oligosaccharide repeating units of EPSs can 

be determined.   

 

These experiments are:- 

2D–COSY - Two dimensional correlated spectroscopy  

2D–TOCSY - Two dimensional total correlation spectroscopy 

2D–HSQC - Two dimensional heteronuclear single quantum coherence  

2D–HMBC  - Two dimensional heteronuclear multiple bond correlation 

2D–HSQC–TOCSY - Two dimensional heteronuclear single quantum coherence 

total correlation spectroscopy 

2D–NOESY - Two dimensional nuclear overhauser effect-enhancement 

spectroscopy 

 

An explanation of each experiment is given during the data interpretation, discussed in 

section 3.3.1.1. 

   

1.6.3.4 Choice of solvent 

Polysaccharides are insoluble in common NMR solvents such as CDCl3 and d6-DMSO, 

therefore deuterium oxide (D2O) is used.   Unfortunately, D2O gives a signal from the HOD in 
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the solvent which can mask important signals from the polysaccharide.  This signal can be 

shifted when the samples are recorded different temperatures.   

 

1.6.4 Weight-average Molecular Weight (Mw) Determination 

The molecular weight determination of a polysaccharide is not rudimentary, because it 

cannot be attributed to one distinctive molecular weight as with monodispersed molecules.   

Polysaccharides have a range of molecular weights, therefore they are polydispersed 

molecules.  They are generally characterised by using weight-average (Mw) or number-

average (Mn) molecular weights.   The polydispersity (Mw/Mn) is a ratio of weight-average 

molecular weight divided by the number-average molecular weight.  A polymer is 

monodispersed if the Mw/Mn is equal to one,     

 

The size of a polysaccharide can be expressed by the number of monosaccharide units it 

contains.  This is termed the degree of polymerisation (d.p).     

 

High performance size exclusion chromatography with multi-angle laser light scatter 

detection (HP-SEC-MALLS) can determine the weight-average molecular weights (Mw) of 

macromolecules 108.   This high performance chromatography system has begun to replace 

the older technique of separating polysaccharides, which used gel permentation 

chromatography (GPC).  GPC is now mostly used for sample purification because of the 

large volumes that can be loaded onto the column.   The HP-SEC-MALLS uses columns 

which provide greater resolution and they can withstand much greater back pressure, which 

results in greatly improved chromatography in terms of speed and separation capability.  

 

1.6.4.1 Size Exclusion Chromatography 

Size exclusion chromatography (SEC) is used to analyse molecules such as 

polysaccharides, proteins, and industrial polymers.  SEC is the simplest chromatographic 

method, which is based on separation of particles with respect to their size 109.  
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The column packing consists of particles containing various size pores and pore networks, 

so that molecules are retained or excluded on the basis of their size and shape.  The sample 

is introduced into the flow of the mobile phase which passes through the column.  The 

molecules are separated according to their size.   

 

 
 
 
 

Figure 13: Diagram of the Interaction of Molecules with the Column Particles 

 

Very large molecules cannot enter many of the pores, and they also penetrate less into the 

comparatively open regions of the packing, thus interacting less with the stationary phase 

than smaller molecules do.  This means that the larger molecules elute faster than the 

smaller molecules, because very small molecules diffuse into all or many of the pores 

accessible to them.   Between these two extremes, intermediate-size molecules can 

penetrate some passages, which delays their progress down the column, and exit at 

intermediate times.  For a comprehensive review of size exclusion chromatography the 

reader is directed to Barth et al. 109.   

 

The stationary phases used for separating carbohydrates are strongly hydrophilic.  The 

phases used in GPC are made from rigid allyl dextran / bisacrylamide matrix, such as 

Sephacryl TM (GE Healthcare, Piscataway, NJ, USA).   The phases used for high 

performance size exclusion chromatography of carbohydrates are made from hydroxylated 

Large molecules elute first, small molecules are retained  

Packing material 
retaining small 

molecules 
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methacrylic polymer beads.  The two leading column manufacturers are Varian Inc. 

Corporation (Palo Alto, CA, USA) who makes the Aquagel-OH column range and Tosoh 

Bioscience (Tokyo, Japan) who makes the TSK-gel range of columns.  

  

1.6.4.2 Multi-angle laser light scatter detection  

Multi-angle laser light scattering (MALLS) is one of the most direct and effective ways of 

obtaining molar mass and size information of polymers and biopolymers 110.  It has been 

used to determine the weight-average molecular weights of several bacterial 

exopolysaccharide structures 111 112,113. 

 

When laser light focuses on a macromolecule, the oscillating electric field of the light induces 

an oscillating dipole within it, which will re-radiate light 110.   

 

 

 

 

 

Figure 14: Oscillating Dipole in a Macromolecule (Adaption of Diagram from Wyatt) 
110 

 

The intensity of the radiated light depends on the magnitude of the dipole induced in the 

macromolecule, which depends on its polarizability.  It is necessary to know the 

macromolecule polarizability to determine the scattering from a solution of such 

macromolecules.   This may be determined from the measurement of the dn/dc value also 

referred to as the ‘specific refractive index increment’ 114.   

 

1.6.4.3 Refractive Index Increment (dn/dc) 

The dn/dc value describes how much the refractive index of a polymer solution changes with 

respect to the concentration of the solute.  Measurement of dn/dc is essential for the 

absolute characterization of the molar mass, since it is a term used in the molar mass 
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calculation.  Polymers with larger values of dn/dc scatter more light at the same mass than 

those having smaller values.  Therefore, knowing dn/dc permits the deduction of molar 

masses from the light scattering data.   Because dn/dc changes with wavelength, it is vital to 

measure it at the same wavelength as the light scattering apparatus.    

 

The refractive index detector requires a calibration constant so that the software can convert 

the signals to Rayleigh ratios and refractive index differences respectively.   The calibration 

constant must be determined before the instrument can measure dn/dc values.  The 

calibration constant is measured using a suitable solvent, such as toluene, due to its high 

and accurately determined Rayleigh ratio and also its refractive index is similar to the cell 

windows in the refractive index detector 110.   

 

1.6.4.4 Differential Refractive Index 

Differential refractive index detection is a process whereby solvent passes through one half 

of the cell and the sample passes through the other half of the cell.  The two compartments 

are separated by a glass plate positioned at an angle such that bending of the incident beam 

occurs if the two solutions differ in refractive index.   This resulting displacement of the beam 

causes variation in the output signal, which, when amplified and recorded, provides the 

chromatogram that can be used to measure the concentration of macromolecules, such as 

polysaccharides.  Differential refractive index detectors are used on HPLC instruments, 

providing signals for chromophore and non-chromophore containing analytes.  Refractive 

index detection is not as sensitive as UV detection, therefore are normally only used for 

analysis of compounds with poor UV absorption.         

 

Refractive index detectors are also used for the calculation of dn/dc, refractive index 

detectors respond to nearly all solutes.   A list of dn/dc values was published by Theisen et 

al. 115, which shows that in aqueous systems most dn/dc values of macromolecules lie 

between 0.14 – 0.16 mL g-1.  
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An older technique that was used to determine Mw of polysaccharides was to use SEC with a 

differential refractometer to compare the retention times of the analyte to a calibration curve 

generated from a series of different Mw standards.   An example of this has been reported by 

Beer and co-workers, who used a series of pullulan and dextran standards to determine the 

Mw of guar gum. This approach is acceptable for simple homopolysaccharides that have 

similar structures to the standards, but for exopolysaccharides that can be complex 

heteropolysaccharides the Mw determined are inaccurate, which is why Mw determination 

using dn/dc values is now the preferred technique.   The use of light scattering can more 

accurately determine the Mw of polysaccharides compared to this older technique, especially 

when a dn/dc value that is specific for the particular polysaccharides is used.  

 

1.6.4.5 UV Detection of Proteins and Nucleic acid 

Ultra-violet (UV) detection is another well established method; this detector technique 

measures the UV absorption of the sample.  The sample is passed through an incident UV 

beam and the amount of UV light absorbed is measured.    As neutral carbohydrates are 

poorly detected by a UV detector, due to the lack of conjugated π-bonds, the purpose of the 

UV detector, in the analysis of EPS samples, is to detect residual protein and nucleic acids.   

The UV detectors are set to 260 nm to detect any nucleic acids impurities and set to 280nm 

to detect any protein impurities.   Protein absorbs UV light due to the presence of three 

amino acids, phenylalanine, tyrosine and tryptophan, which all give a strong UV response at 

280nm. 

        

1.6.4.6 HP-SEC-MALLS System  

In HP-SEC-MALLS, the light scattering and other detectors are connected in series after the 

size-exclusion columns.   The detectors are usually set up with the ultra-violet (UV) detector 

first, then the laser light scatter detector and finally the refractive index (RI), as shown in 

Figure 15. 
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Figure 15: Schematic of the HP–SEC–MALLS 

 

The molecular weight is calculated by applying measurements from the laser light scatter 

detector and the refractive index detector to a series of equations that are reviewed by Phillip 

Wyatt 110.    

 

The analysis of light scattering data can be processed using different mathematical 

equations.  The most common equation used to derive Mw is using the Debye plot; other 

equations available are the Zimm and Berry plots.   By applying these different types of plots, 

more accurate results can be generated for different types of macromolecules.   Andersson 

et al. 116, reviews each equation, and suggests that the Berry method is superior, in terms of 

accuracy and robustness.  They also conclude that errors in the different equations are less 

than 1% for molecules with low root-mean square radius of <50nm.  All the macromolecules 

measured in this thesis had radius <50nm.  Therefore, any of the three different 

mathematical equations could be used, without significantly altering the results.     
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The responses from each of the three detectors are plotted on the same chromatogram.  An 

example of a plot obtained for an exopolysaccharide solution can be seen in Figure 16, 

which shows that for this particular sample, there is a 260nm UV signal (green) 

corresponding to the first peak, showing that it is probably due to nucleic acid. 

 

• Major peak due to Exopolysaccharide 
 

• Secondary peak due to Nucleic acids 
 
 

Figure 16: Example of a HP–SEC–MALLS Chromatogram of an Exopolysaccharide 

 

The major peak has a large light scatter (red) and refractive index (blue), and no UV 

response, this is characteristic of a polysaccharide.    

 

1.6.4.7 Sedimentation Analysis 

Another technique that is used for the determination of the size and shape of 

polysaccharides is sedimentation analysis.  Sedimentation analysis is a type of 

ultracentrifugation analysis developed as early as 1920s by Svedberg 117.    The type of 

information that can be obtained from ultracentrifugation analysis depends on the particular 

technique used.  There are four ultracentrifuge methods which can provide information about 

Refractive Index at 690nm (Blue) 

Light Scatter at 690nm (Red) UV at 260nm (Green) 
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polysaccharides.   These are sedimentation velocity, sedimentation equilibrium, isopycnic 

density gradient analysis and diffusion analysis.  The potential information available is 

provided in Table 4 118. 

 

Table 4: Ultracentrifuge Methods and the Potential Information Available  

 

Ultracentrifuge method Potential information available   

Sample homogeneity / purity 

Shape information 

Sedimentation velocity 

Interaction information 

Size (molar mass) 

Size / molar mass distribution 

Sedimentation equilibrium 

Interaction information 

Isopycnic density gradient analysis Sample Purity   

Small molecules through polysaccharide matrix Diffusion analysis 

Interface transport 

 

Sedimentation equilibrium provides similar information to the MALLS system described in 

section 1.6.4.2.   For sedimentation equilibrium, a much lower rotor speed is used, less than 

10,000 rpm.    The distribution of equilibrated solute concentrations of polysaccharides are 

recorded using sensitive refractive index detectors.   

 

The advantages of using sedimentation equilibrium analysis are that reliable molar mass 

measurements can be made for polysaccharides with no problem of interference with dust 

particles or supramolecular contamination, which can be one of the problems encountered 

when using light scattering techniques.    Sedimentation analysis is also better for measuring 

the distribution analysis.   Also the natural ability of sedimentation analysis to separate, 

means there is no need for separating columns or membranes 118.   
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1.7 New Methods of Analysis 

The methods described in section 1.6 have been applied to the analysis of polysaccharides, 

and in most cases have been used to characterise the chemical and physical structures of 

exopolysaccharides.  This section describes proposed novel approaches for measuring the 

physical characteristics and structures of exopolysaccharides, and serves to provide the 

Carbohydrate community with novel analytical approaches for the structural analysis of 

exopolysaccharides.  In terms of monosaccharide composition and linkages present in the 

oligosaccharide repeating structure, the methods are faster and more sensitive than those 

currently available.  

1.7.1 Depolymerisation Techniques 

As described previously exopolysaccharides are composed of repeating oligosaccharide 

units joined together to form a large polysaccharide chain which, when present in an 

aqueous environment, provides a viscous solution 119 120 121 122.  The viscosity of the 

exopolysaccharide solution is related to their degree of polymerisation; for polysaccharides 

having the same repeating unit the viscosity increases with the degree of polymerisation 123.  

There are a number of areas where it would be beneficial to manipulate the degree of 

polymerisation of exopolysaccharides:  to reduce the peak broadening of viscous solutions in 

NMR; to monitor the relationship between the exopolysaccharide chain length and solution 

viscosity.    

 

There are several techniques that have been reported to depolymerise macromolecules. 

These are constant pressure disruption (application of hydrodynamic sheer), ultrasonic 

disruption and mild-acid catalysed hydrolysis.  Constant pressure and ultrasonic disruption 

use physical forces to affect the polysaccharide, whereas acid hydrolysis uses chemical 

reaction.        
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1.7.1.1 Constant Pressure Disruption (Application of Hydrodynamic Shear) 

Constant pressure disruption uses physical force to break open cells.  This is a device 

predominantly used by microbiologists to break open cell membranes to extract DNA and 

enzymes.  It is thought that the hydrodynamic behaviour of the fluid in the disruptor is 

important when considering the mechanics of this disruption process (Lovitt et al., 2000) 124.   

                               

 
Figure 17: Diagram of Constant Pressure Disruptor (Lovitt et al., 2000) 

124 
 

This mechanical disruptor works by forcing a solution through a small orifice at a specified 

pressure and the solution is then collected in the top chamber.  If required the disrupted 

solution can then be repeatedly disrupted at the same or different pressures.   Lovitt et al. 

(2000) 124 used a constant pressure disruptor to release enzymes from bakers’ yeast.  From 

their studies they changed two experimental variables that affected the extent of the 

disruption.  The two variables were the pressure applied and viscosity of solvent.  The 

solvent viscosity will alter the hydrodynamic behaviour, which will change forces exerted 

through the sample.  It was envisaged that the forces created by this technique would be 

enough to break the structure of polysaccharides.   

 

SAMPLE 
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1.7.1.2 Ultrasonic Disruption 

Ultrasonic disruption is another technique used to open cell membranes. Ultrasonic 

disruption can also be used to cleave DNA, or other macromolecules, and uses high 

frequency sound waves.  It is usually applied to biological materials, but can also be used to 

speed up the rates of chemical reactions.   

 

 

Figure 18: Diagram of a Sonication Probe 
 

 

The principle of ultrasonic disruption is that it converts 50-60 Hz line voltage to high 

frequency electrical energy which is then converted to mechanical vibrations via a 

piezoelectric transducer.  These vibrations are intensified by the probe creating waves 

through the liquid.  The action forms millions of microscopic bubbles, which expand during 

the negative pressure excursion, and implode violently during the positive excursion; as the 

bubbles implode they cause millions of shock waves and eddies to radiate outwardly from 

the site of collapse.  This effect, referred to as ‘cavitation’, generates extreme pressures and 

temperatures at the implosion sites 125.  

  

The effect of ultrasonic disruption can be altered by changing the amplitude, pulse time and 

probe size 125.   

 

 

High frequency sound waves 

Probe  
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This technique has been used to successfully depolymerise polysaccharides 126 127, although 

there has been no work reported that has used ultrasonic disruption to depolymerise 

exopolysaccharides produced by LAB.    

 

1.7.1.3 Acid-catalysed Hydrolysis 

Acid-cataylsed hydrolysis can be used as a depolymerisation technique, but this time a 

chemical reaction is responsible for breaking the bonds.   The reaction can proceed as either 

an SN1 or an SN2 reaction, which are shown in Figure 19.    

-H

-H

O

OH
OH

OH

OH

O

O

OH

OH OH
OH

O

OH

OH

OH
OHO

O

OH
OHOH

OH

H

O

H H

O

OH

OH
OH

OH
OH

O

OH
OHOH

OH

O

H H

OH O

R

O

OH

OH OH
OH

OH

O

OH
OH

OH

OH

OH
OH O

R

O

OH

OH

OH
OH

OH
O

OH
OHOH

OH

OH

O

OH
OH

OH

OH

OH
O

OH
OH

OH

OH

O

OH

OH

OH
OHO

O

OH
OHOH

OH

H

OH O

R

O

H H

O

OH

OH

OH
OHO

O

OH
OHOH

OH

OH O

R

O

R

O

+

+

+

+

+

+

+

 

Figure 19: SN1 and SN2 Reaction Mechanisms for Acid-catalysed Hydrolysis of Sugars 

 

The hydrolysis reaction is catalysed by acid, and it is an old established technique first 

reported by Hakomori 92, where the polysaccharides were fully hydrolysed to 
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monosaccharides, the first stage of the monosaccharide analysis described earlier in section 

1.6.1. 

 

1.7.1.4 Mild-Acid Catalysed Hydrolysis  

To provide structural information during depolymerisation only partial acid-cataylsed 

hydrolysis is required.   This can be carried out using mild acid conditions at low 

temperatures.  Due to the nature of this particular reaction, other, unwanted, reactions may 

take place, such as the removal of functional groups attached to monosaccharides, in 

particular, removal of the N-acetyl groups in N-acetyl-amino sugars 83.   Any chemical 

modification would be observed in NMR and GC analysis.         

 

1.7.1.5 Other Depolymerisation Techniques  

Two other depolymerisation techniques recently reported are the use of microwave-assisted 

depolymerisation and enzymic hydrolysis.   

 

Microwave-assisted depolymerisation has been carried out on hyaluronan by Drimalova et al. 

128 and Bezakova et al. 129.  They monitored the change in molecular and structural properties 

of hyaluronan, which is a polysaccharide made up of alternating β-1,4- and β-1,3-linked 

disaccharides of D-glucuronic acid and D-N-acetyl-glucosamine.  They reported a reduction in 

chain length, but no change to the primary structure.    

 

Enzymic hydrolysis can be applied differently for structural analysis of polysaccharides.  It 

has been used by Rinaudo and Milas 130 in an investigation of enzymic hydrolysis of xanthan 

using cellulase.  They used enzymic hydrolysis to reduce the exopolysaccharide chain 

length, they reported that in salt-free solution there is a random breakdown in the 

polysaccharide chain.  Similar findings were reported by Sutherland 131 who used a fungal 

cellulase to hydrolyse xanthan.    
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Enzymic hydrolysis can also be used to cleave branches from the repeating unit of 

exopolysaccharides.   The removal of branches from the repeating unit can be used to 

simplify complicated NMR spectra and can be used to confirm the structure.   This technique 

has been successfully employed by van Casteren et al. 132 who removed a terminal D-

galactose, using an unnamed enzyme, from the EPS produced by Lactococcus lactis subsp. 

cremoris B891.   Others, Nankai et al. 133, Jansson et al. 134 have also used this methodology 

to reduce exopolysaccharides to heptasaccharides by cleaving a specific glycosidic linkage.    

1.7.2 Derivatisation of Carbohydrates  

Neutral carbohydrates contain no conjugated π-bonds and carry no formal charge. This 

makes their detection and analysis challenging.   For many years neutral carbohydrates have 

been detected by refractive index detection, but this technique has poor sensitivity and is 

prone to large inaccuracies when compared to other popular forms of detection, such as UV.   

To provide greater precision, accuracy and sensitivity, derivatisation of neutral carbohydrates 

is required.   The established derivatisation method for monosaccharide and linkage analysis 

of exopolysaccharides has previously been described in sections 1.6.1 and 1.6.2, where 

hydrolysis, reduction, acetylation and methylation have all been discussed.    An alternative 

method is to use reductive amination to label carbohydrates.    

 

1.7.2.1 Reductive Amination  

Reductive amination is where an amine first reacts with a carbonyl group to form an aminol, 

which subsequently loses one molecule of water in a reversible reaction to form an imine.  
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Figure 20: Reaction – Reductive Amination 
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The equilibrium between aldehyde / ketone and imine can be shifted toward imine formation 

by removal of water. This intermediate imine can then be isolated and reduced with a 

suitable reducing agent (e.g. sodium borohydride).  

 

It is possible to carry out both reactions at the same time, with the imine formation and 

reduction occurring simultaneously 135. This is carried out with reducing agents that are more 

reactive toward imines than ketones, such as sodium cyanoborohydride (NaCNBH3) or 

sodium triacetoxyborohydride (NaBH(OCOCH3)3).  The use of several different amines has 

been reported, including: benzylamine 136, 2-aminobenzoic acid 137, 2-aminobenzamide 137; 

structures are given in Table 5.   

 

Table 5: Table of Reported Amines used for Reductive Amination 
 

Amine Structure Formula Weight (g mol-1) 

p-Aminobenzonitrile NNH
2

 

118.14 

Benzylamine 
NH

2  

107.16 

2-Aminobenzoic acid 

NH
2

O

OH

 

137.14 

2-Aminobenzamide 

NH
2

O

NH
2

 

136.15 

 

The use of p-aminobenzonitrile (pABN) has been reported by several research groups most 

notably by Suzuki et al. 138.      
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1.7.2.2 Reductive Amination of Carbohydrates 

As explained in earlier sections, exopolysaccharides usually contain neutral sugars which 

carry no formal charge or chromophore.  This makes them difficult to detect using 

conventional HPLC (using UV detection or mass spectrometry).   By carrying out the 

reductive amination with an amine species that contains an aromatic ring the derivatised 

sugars will contain a chromophore and when in an acidic environment carry a formal positive 

charge, hence increasing the sensitivity to both UV and electrospray mass spectrometry 

detection.   

 

1.7.3 Analytical Techniques 

One of the main aims of this project was to provide the ‘Carbohydrate community’ with novel 

analytical approaches for the structural analysis of exopolysaccharides.  Ideally, any new 

method should be faster and more sensitive than the current methods.  This section will 

describe different analytical techniques that will be used to conduct the proposed research.   

 

1.7.3.1 Capillary Zone Electrophoresis 

The application of capillary zone electrophoresis for the analysis of carbohydrates has been 

discussed previously in section 1.6.1.2, which describes a review by Paulus and Klockow 86 

about the separation and detection of monosaccharides.   Paulus and Klockow discuss 

different methods of detection (using UV, amperometric and RI detectors) for derivatised and 

non-derivatised carbohydrates.   The review provides the detection limits of each technique, 

which are given in Table 6. 
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Table 6: Detection Limits of the Different Techniques used for Carbohydrate Analysis   

 

Detection 

Technique 

Details Detection 

Limit 

Reference 

UV Detection 

Non-derivatised 

carbohydrate at 195nm 

(Optimum wavelength) 

10-3 M Hoffstetter-kuhn et al. (1991) 139 

Amperometric 

Non-derivatised 

carbohydrate using a 

gold wire electrode 

10-6 M O’Shea et al. (1993) 140 

RI Detection 
Non-derivatised 

carbohydrate 
10-4 M Bruno et al. (1991) 141 

UV Detection 

Derivatised carbohydrate 

using reductive 

amination (pABN) at 

285nm (Optimum 

wavelength) 

10-7 M Schwaiger et al. (1994) 142 

 

Although the review by Paulus and Klockow is more than 10 years old, the comparisons 

between the different detection techniques are useful.   The methods show that non-

derivatised carbohydrates can be detected using UV, RI and amperometric detectors, with 

differing sensitivity.   The use of amperometric detection is very sensitive, and close to the 

sensitivity of methods using derivatised carbohydrates that use UV detection.   The 

combination of derivatising the carbohydrates and detecting them using UV will be developed 

further in this project.       

  

1.7.3.2 Chromatography and LC-MS 

Chromatography is an essential component for the monosaccharide composition and linkage 

analysis of carbohydrates.    The separation of carbohydrates can be extremely difficult, as 

the majority of them contain the same functional groups and are often of the same mass.  

Separation of isomeric species is required, which has been made possible using 
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chromatography techniques such as gas chromatography (GC), high performance anion 

exchange chromatography (HP-AEC) and size exclusion chromatography (SEC).   Each of 

these methods has limitations.   With the development of new hyphenated LC-MS methods 

there is scope for the use of this technology to produce new analytical methods for analysing 

monosaccharide composition and linkages in carbohydrates.    

 

As discussed in section 1.6.2, GC-MS has been used for many years to determine the 

glycosyl linkages analysis of oligo- and polysaccharides.  Until the beginning of the 1990s the 

analysis of carbohydrates by mass spectrometry was limited to the use of electron impact 

(EI) and the fast-atom bombardment mass spectrometry (FAB).  Recently there have been a 

number of mass spectrometry techniques developed, in particular, the development of 

desorption/ionization techniques like matrix assisted laser desorption/ionisation (MALDI) and 

electrospray (ESI), which in the past 10 years has allowed the application of liquid 

chromatography coupled to mass spectrometry to structurally characterise carbohydrates.  

Some of the earliest LC-MS work on carbohydrates has been reported by Reinhold et al., 142.   

Using a LC coupled to CID-MS, they successfully determined sequence, linkage and 

branching data of carbohydrates.   Since the publication by Reinhold et al. 142, mass 

spectrometers have developed, in particular in the area of mass spectrometry detection, with 

the development of ion-trap (IT), time-of-flight (TOF) and fourier transform ion cyclotron 

resonance (FT-ICR) mass analysers.  Recently, each of these types of mass spectrometer 

has been used to determine the structures of carbohydrates by IT-MS 136, TOF-MS 137 and 

FT-ICR-MS 143.     

 

To provide the ‘Carbohydrate community’ with novel analytical approaches for the structural 

analysis of exopolysaccharides, this project will utilise certain aspects of other workers’ 

results to produce oligosaccharides which, when charged, can be analysed using LC-MS-MS 

to determine their monosaccharide make up.  To some extent other groups have initiated 

work in this area: 
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Anumula and Dhume 144 have separated reductively aminated oligosaccharides using amide 

columns under normal phase chromatographic conditions.  The structures were confirmed 

using MALDI-TOF-MS.  The oligosaccharides that were analysed were not novel.     

 

Stephens’ group at the University of Cambridge have reductively aminated oligosaccharides 

with 2-aminobenzoic acid and 2-aminobenzamide.  The labelled oligosaccharide was then 

successfully analysed by normal-phase liquid chromatography coupled to MALDI-TOF-MS 

137.  

 

Work has been reported identifying oligosaccharides in milk using LC-ESI-ITMS 145.  Broberg 

used reductive amination with benzylamine followed by N,N-dimethylation to produce DMBA-

oligosaccharides with fixed positive charge at the former reducing terminus.  The derivatised 

oligosaccharide was then analysed using LC-ESI-ITMS.                  

 

Even though the developments in LC-MS have progressed, there have been no publications 

using this technique to characterise the repeating structure of exopolysaccharides.   The 

work carried out during this report will attempt to develop methods that incorporate 

methylation of EPS to aid the analysis of the intact oligosaccharide repeating unit or the 

glycosidic linkage positions of the individual monosaccharides residues of the repeating EPS 

oligosaccharide unit.      

 
 

1.8 Research Aims 

The research aims of this project were divided into three distinctive sections:   

 

The first aim of this project will be directed at using spectrometry (NMR and MS) to 

characterise bacterial polysaccharides.  A number of novel exopolysaccharides have been 

produced from LAB by the group of Prof. V. Marshall and Dr. A. Laws in the department of 

Chemical and Biological Sciences at the University of Huddersfield.  The molecular structure 
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of the EPS produced by Lactobacillus acidophilus 5e2 has yet to be been determined.  Using 

current techniques, such as NMR and GC-MS the monosaccharide and linkage analysis of 

the repeating oligosaccharide structure will be determined.   HP-SEC-MALLS will be used to 

determine the Mw of EPS produced from Lactobacillus acidophilus 5e2.   An accurate weight-

average molecular weight will be determined by measuring the specific refractive increment 

(dn/dc value) for this EPS.  This value will be used in the calculation to provide a more 

accurate representation of Mw.   The production of the EPS during fermentation will be 

periodically monitored, in particular the yield and Mw of the EPS will be evaluated.  A 

thorough study of EPS production has never been reported before, this study could 

potentially resolve many uncertainties surrounding the physical aspects of EPS production by 

LAB during milk fermentation.    

 

The second aim of this project will be to study the depolymerisation of the EPS produced by 

Lactobacillus acidophilus 5e2; using both established and novel approaches, the change in 

weight-average molecular weight will be closely monitored.  This will provide a greater 

understanding of how chain length varies during depolymerisation using several different 

techniques.    The rheological properties will also be examined, in particular, the intrinsic 

viscosity will be calculated for EPS samples that have differing Mw distributions.   

 

The final aim of this project will be to develop a novel approach to determine the structures of 

the oligosaccharide repeating units of EPSs.  This will involve designing a method capable of 

determining the structure of intact oligosaccharides, and also a method that will provide the 

linkage analysis between each monosaccharide in the repeating oligosaccharide units of 

EPSs.   The methods will utilise the recent developments in CZE and LC-MS, providing 

greater sensitivity and faster analysis times than current methods used for characterising 

exopolysaccharides.   
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The overarching objective of the programme of work is to provide the Bioorganic / 

Carbohydrate community with new and more sensitive methods for the analysis of bacterial 

polysaccharides, in terms of their chemical structures and physical properties when in 

solution.     
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1.9 Appendices 

1.9.1 EPS Structures from Lactic Acid Bacteria 

1.9.1.1 EPS Structures from Str. thermophilus (A-F) 

(A) 

              α-D-Galp 
                1 
         ↓ 
         6 
→3)-α-D-GalpNAc-(1→3)-β-D-Galp-(1→3)-β-D-Glcp-(1→  
 
 
Str. thermophilus CNCCMI 733, 734, 735 80 
Str. thermophilus Sfi6 146 
Str. thermophilus Sfi20 147 
 
 
(B) 
 
                       β-D-Galp 
                1 
         ↓ 
         6 
   →3)-α-D-Galf-(1→3)-β-D-Glcp-(1→3)-β-D-Glcp-(1→  
 
 
Str. thermophilus Sfi39 146 
 
 
(C) 
                   Ac0.4 

           ↓ 
           2 
                                  β-D-Galf 
                     1 
              ↓ 
              6 
   →3)-α-L-Rhap-(1→2)-α-L-Rhap-(1→2)-α-D-Galp-(1→3)-β-D-Galp-(1→3)-β-D-Galp-(1→ 
 
 
Str. thermophilus S3 148 
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(D) 
                            Ac0.4 

           ↓ 
           2 
                           β-D-Galp-(1→6)-β-D-Galp 
                     1 
              ↓ 
              6 
   →2)-α-L-Rhap-(1→2)-α-L-Galp-(1→3)-α-D-Galp-(1→3)-α-D-Galp-(1→3)-α-L-Rhap-(1→ 
 
 
Str. thermophilus OR901 149  
Str. thermophilus Rs 150 
Str. thermophilus Sts 150 
 
 
 
(E) 

    β-D-Galp 
                     1 
              ↓ 
              6 
   →2)-α-L-Rhap-(1→2)-α-L-Galp-(1→3)-α-D-Glcp-(1→3)-α-D-Galp-(1→3)-α-L-Rhap-(1→ 
 
 
Str. thermophilus Sti12 75 
 
 
(F) 
 

    α-L-Rhap 
                     1 
              ↓ 
              6 
   →4)-β-D-Glcp-(1→6)-β-D-Galf-(1→6)-β-D-Glcp-(1→6)-β-D-Galp-(1→6)-α-D-Galp-(1→3)-α-L-

Rhap-(1→ 
 
 
Str. thermophilus EU20 151  
 
 
 

1.9.1.2 EPS Structures from Str. macedonicus 

 
β-D-Galf-(1→6)-β-D-Glcp-(1→6)-β-D-GlcpNAc 

                      1 
               ↓ 
               3 

      →4)-α-D-Glcp-(1→4)-β-D-Galp-(1→4)-β-D-Glcp-(1→ 
 
 

Str. macedonicus Sc136 74  
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1.9.1.3 EPS Structures from Lactobacillus acidophilus  

         β-D-GlcpNAc 
                   1 
            ↓ 
            3 
       →4)-β-D-Glcp-(1→4)-β-D-Glcp-(1→6)-α-D-Glcp-(1→4)-β-D-Galp-(1→ 
 
 
 
Lactobacillus acidophilus LMG9433 152  
 
 

1.9.1.4 EPS Structure from Lactobacillus paracasei (A-B) 

 
(A) 

              sn-glycerol-3-phosphate 
                         1 
               ↓ 
               3 
      →6)-β-D-Galp-(1→6)-β-D-Galp-(1→3)-β-D-GalpNAc-(1→4)-β-D-Galp-(1→ 
 
 

Lactobacillus paracasei 34-1 153  
 
 

(B) 
             α-D-Galp 
                   1 
            ↓ 
            6 
       →2)-α-D-Galp-(1→3)-β-L-Rhap-(1→4)-β-D-Glcp-(1→4)-β-D-GlcpNAc-(1→ 
         3  
         ↑ 
         1 
            α-L-Rhap 
 
  
Lactobacillus paracasei Type V 154 
 
 

1.9.1.5 EPS Structures from Lactobacillus delbrueckii subsp. bulgaricus (A-D) 

(A) 
 

           β-D-Galp        α-L-Rhap  β-D-Galp 
                 1             1          1 
                 ↓      ↓       ↓ 
                 4      3       3 
        →3)-β-D-Glcp-(1→3)-β-D-Galp-(1→4)-α-D-Galp-(1→4)-α-D-Galp-(1→ 
 
 
 
Lactobacillus delbrueckii subsp. bulgaricus rr 76 
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(B) 
 
     β-D-Galp-(1→4)-β-D-Glcp 
                         1 
                    ↓ 
                    6  
        →4)-β-D-Galp-(1→4)-β-D-Glcp-(1→4)-α-D-Glcp-(1→ 
 
 
Lactobacillus delbrueckii subsp. bulgaricus 291 155 
 
 
(C) 

    α-L-Rhap   
  1  

            ↓ 
            3 
       →2)-α-L-Rhap-(1→4)-α-D-Glcp-(1→3)-β-L-Rhap -(1→4)-α-D-Glcp-(1→ 
 
 
Lactobacillus delbrueckii subsp. bulgaricus EU23 104 
 
 
(D) 
 
  α-D-Galp-(1→3)-α-D-Glcp      α-D-Glcp 
              1   1 
           ↓   ↓ 
           3   6  
             →4)-β-D-Glcp-(1→3)-α-D-Galp-(1→ 
     2 
     ↑ 
     1 
  β-D-Galp-(1→4)-β-D-Glcp 
 
  
Lactobacillus delbrueckii subsp. bulgaricus NCFB2074 78 
 
 

1.9.1.6 EPS Structures from Lactobacillus sakei 

 

sn-glycerol-3-phosphate →4)-α-L-Rhap 
    (Ac)0.85            1 
         ↓     ↓ 
         2     3  
      →3)-β-L-Rhap-(1→4)-β-D-Glcp-(1→4)-α-D-Glcp-(1→ 
        6 
        ↑ 
        1 
             β-D-Glcp 
 
 
Lactobacillus sakei 0-1 156 
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1.9.1.7 EPS Structures from Lactobacillus rhamnosus (A-C) 

 
(A) 
 

    α-D-Galp 
                     1 
              ↓ 
              2 
   →3)-α-L-Rhap-(1→3)-β-L-Rhap-(1→2)-α-D-Glcp-(1→3)-α-L-Rhap-(1→3)-α-D-Glcp-(1→3)-α-
L-Rhap-(1→ 
 

 
Lactobacillus rhamnosus R W 9595 M and R 154 
 
 
 
(B) 
 
    →6)-α-D-Galp-(1→6)-α-D-Glcp-(1→3)-β-D-Galf-(1→3)-α-D-Glcp-(1→2)-β-D-Galf-(1→ 
 
 
Lactobacillus rhamnosus C83 157 
  
 
(C)       
             β-D-Galf 

1 
           ↓ 
           6 
→3)-α-L-Rhap-(1→3)-α-D-Galp-(1→3)-β-D-Galf-(1→3)-β-D-Galp-(1→4)-α-D-GlcfNAc-(1→ 
 
 
 
Lactobacillus rhamnosus GG (ATCC 53103) 158  
 
 

1.9.1.8 EPS Structures from Lactobacillus helveticus (A-F) 

 
(A) 
  

 
     β-D-Galp-(1→4)-β-D-Glcp 
                         1 
                    ↓ 
                    3  
        →3)-α-D-Galp-(1→3)-α-D-Glcp-(1→3)-β-D-Glcp-(1→5)-β-D-Galf-(1→ 
 
 
Lactobacillus helveticus TN-4 159  
Lactobacillus helveticus Lh59 160 
 
 
 
 

HOOC 
    

     R 
 

H3C 

4 
 
 
 
6 



Chapter 1                                                                                                                              Introduction 

- 61 - 

(B) 
 

β-D-Galp-(1→4)-β-D-Glcp 
                            1 
                       ↓ 
                       6  
        →6)-β-D-Glcp-(1→3)-β-D-Glcp-(1→6)-α-D-GalpNAc-(1→3)-β-D-Galp-(1→ 
        4 
        ↑ 
        1 

  β-D-Galp 
 
 
Lactobacillus helveticus TY 1-2 161 
 
 
(C) 
 
                    β-D-Galp 

     1 
               ↓ 
               6 
→4)-β-D-Glcp-(1→6)-β-D-Glcp-(1→6)-β-D-Galp-(1→4)-α-D-Galp-(1→3)-β-D-Galp-(1→ 
 
 
Lactobacillus helveticus 2091 162  
 
 
(D) 
 
                  β-D-Glcp            β-D-Glcp 

1         1 
      ↓         ↓ 
      3         3 
→3)-β-D-Glcp-(1→4)-α-D-Glcp-(1→4)-β-D-Galp-(1→3)-α-D-Galp-(1→2)-α-D-Glcp-(1→ 
 
 
Lactobacillus helveticus Lb161 163 
 
 
(E) 
 
                    β-D-Galf 

     1 
               ↓ 
               3 
→6)-α-D-Glcp-(1→6)-α-D-Galp-(1→6)-α-D-Glcp-(1→3)-β-D-Glcp-(1→4)-β-D-Glcp-(1→ 
 
 
Lactobacillus helveticus NCDO 766 164 
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(F) 
 

β-D-Glcp 
                                 1 
                            ↓ 
                                       6  
                     β-D-Glcp-(1→4)-β-D-Glcp 
                1 
                ↓  
                6 

                     →4)-β-D-Galp-(1→4)-β-D-Glcp-(1→4)-α-D-Glcp-(1→ 
     
 
Lactobacillus helveticus K16 165     
 
 

1.9.1.9 EPS Structures from Lactococcus lactis subsp. cremoris (A-E) 

 
(A) 
 

(Ac)0.5 
                            ↓ 
                                       6  
                     β-D-Galp-(1→4)-β-D-Glcp 
                1 
                ↓  
                6 

                     →4)-β-D-Galp-(1→4)-β-D-Glcp-(1→4)-α-D-Glcp-(1→ 
 
 
Lactococcus lactis subsp. cremoris NIZO B891 132 
 
 
(B) 
 

  α-D-Galp-1-phosphate 
                     1        

↓ 
                     3  
         →4)-β-D-Glcp-(1→4)-β-D-Glcp-(1→4)-α-D-Galp-(1→   
               1 
         ↓  
         2 

                             α-L-Rhap 
 

 
Lactococcus lactis subsp. cremoris SBT0495 166  
Lactococcus lactis subsp. cremoris NIZO B40 167  
Lactococcus lactis subsp. cremoris ARH74 168 
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(C) 
 

→4)-β-D-Galp-(1→3)-β-D-Galp-(1→4)-α-D-Galp-(1→  
       3  

         ↓  
         1 

                        β-D-Galp-(1→3)-β-D-Glcp 
 
 
 
Lactococcus lactis subsp. cremoris H414 169  
 
 
(D) 
 
 
        Β-D-Galp-(1→4-β-D-Glcp 

1 
           ↓ 
           4 
→2)-α-L-Rhap-(1→2)-α-D-Galp-(1→2)-α-D-Glcp-(1→3)-α-D-Galp-(1→3)-α-L-Rhap-(1→ 
 
 
Lactococcus lactis subsp. cremoris NIZO B39 170 
 
 
 
(E) 
 

      α-L-Rhap-(1→ 
    1 
    ↓ 
    2 
   →4)-β-D-Glcp-(1→4)-β-D-Galp-(1→4)-α-D-Galp-(1→  

     3  
       ↓  
       O 

                              │ 

         β-D-Galp-(1→3)-β-D-Glcp  O ─ P ─ OH 
               ║ 

           O 
 
Lactococcus lactis subsp. cremoris NIZO B40 80  
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2. EXPERIMENTAL 
 

2.1 General Regents  

The general reagents described throughout the experimental section were all purchased 

from either Sigma-Aldrich Co. Ltd (Gillingham, Dorset, UK), Fisher Scientific UK 

(Loughborough, Leicestershire, UK), Avocado Research Chemicals Ltd (Heysham, 

Lancashire, UK) or VWR International Ltd (Lutterworth, Leicestershire, UK) unless otherwise 

stated.  

2.2 Fermentation of Bacterial Cultures and Isolation of the Exopolysaccharide 

2.2.1 Micro-organisms 

2.2.1.1 Bacterial Cultures 

The bacterial cultures Lactobacillus acidophilus 5e2 and Lactobacillus helveticus Rosyjski 

were obtained from an industrial partner (Rhodia Food Biolacta, Poland) on slants (MRS).   

 

2.2.1.2 Maintenance of Bacterial Cultures 

All cultures were resuscitated in skimmed milk (42 °C) and streaked onto MRS agar.  Single 

well isolated colonies were grown in skimmed milk and maintained as a frozen stock in a 

cryoprotectant (10 % glycerol) on glass beads at -80 °C according to the method described 

by Jones et al. 171.   

 

2.2.1.3 Preparation of Inoculum 

Prior to inoculation into skimmed milk, the cultures were grown from a bead in MRS 172 in 

static cultures at 42 °C. A pure working culture (1 mL) was inoculated into reconstituted 

skimmed milk powder (20 mL, 10% w/v supplied by St. Ivel Ltd, Swindon, UK) supplemented 
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with D-glucose (0.166 M, 3 %w/v) to create, after incubation for 24 hours at 42 °C a master 

culture.   This amount of master culture was used to inoculate a two litre working volume.   

2.2.2 Media 

2.2.2.1 Skimmed Milk 

Skimmed milk (St. Ivel Ltd, Swindon, UK) was used as the growth medium for both the pH 

controlled fermentation batches and to prepare the inoculums for each bacterial culture.   

 

An amount of skimmed milk powder (10 %w/v) was added to deionised water to make the 

desired working volume (typically two litres).  The milk was agitated to make a homogenous 

suspension and then heated to 70 °C for 20 minutes.  The milk was then left to stand at room 

temperature for 24 hours before being poured into the fermentation vessel and autoclaved at 

121 °C for 5 minutes.    

 

2.2.2.2 Preparation of D-glucose Supplemented Media 

To increase the yield of EPS produced, the skimmed milk medium was supplemented using 

D-glucose (0.166 M).  A solution of D-glucose monohydrate (0.166 M, 3 %w/v) was prepared 

using deionised water (100 mL).  This was autoclaved at 121 °C for 5 minutes and then 

added to the skimmed milk in the fermentation vessel prior to inoculation. 

 

2.2.2.3 Preparation of MRS agar 

MRS agar (Oxoid Ltd, Basingstoke, UK) was prepared by dispensing MRS powder (52.0 g) 

into a one litre Schott bottle.  The contents of the bottle were diluted to one litre with 

deionised water.   The MRS agar was then autoclaved at 121 °C for 15 minutes and stored at 

50 °C until required. 
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2.2.2.4 Preparation of MRS Supplemented with Cysteine (MRS-C) 

The MRS agar was supplemented with cysteine (0.5 g) to optimise the growth of the bacterial 

cultures under anaerobic conditions.  The contents of the bottle were diluted to one litre with 

deionised water.   The MRS-C agar was then autoclaved at 121 °C for 15 minutes and stored 

at 50 °C until required. 

 

2.2.2.5 Preparation of the Maximum Recovery Diluent (MRD) 

Maximum Recovery Diluent (Oxoid Ltd, Basingstoke, UK) solution was used as the solvent 

for the serial dilutions of the milk cultures for the viable count assays (discussed in section 

2.2.4.2) and turbidity analysis.  To prepare, MRD (9.5 g) was diluted to one litre with 

deionised water and autoclaved at 121 °C for 15 minutes.  The MRD solution was allowed to 

cool to room temperature before being dispensed (9 mL) into sterile glass bottles (20 mL).            

 

2.2.3 Milk Fermentation Procedure 

2.2.3.1 Fermentation Conditions  

The bacteria were grown in a stirred fermentation vessel; the temperature was maintained at 

42 °C with a thermostatically controlled heating jacket. The pH was set at 5.82 and controlled 

by the addition of sodium hydroxide (4 M). The sodium hydroxide was delivered using a 

peristaltic pump (BioFlo 110 liquid addition, New Brunswick Scientific Co. Edison, NJ, USA) 

which is an integral part of the fermenter.  The batch was continuously agitated at 100 rpm 

and samples were removed using a syringe attached to a stainless-steel sampler.  All the 

conditions were controlled and monitored using a BioFlo 110 Fermentor (New Brunswick 

Scientific Co. Edison, NJ, USA).   
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2.2.3.2 Fermentation   

The fermentation vessel, containing the skimmed milk medium and D-glucose, was left to 

equilibrate at the conditions described in section 2.2.3.1.  The inoculum was added 

aseptically to the fermentation vessel using a peristaltic pump (Bioflo 110 liquid addition, New 

Brunswick Scientific Co, Edison, NJ, USA).   

Samples were taken periodically into sterile glass bottles (30 mL) using a syringe attached to 

a stainless-steel sampling port.  The consumption of sodium hydroxide (4 M) was monitored 

throughout the entire fermentation.    

 

The fermentation time depended on the particular type of investigation, typically 24 – 48 

hours for a standard fermentation and up to 72 hours for a timed fermentation.  

 

2.2.4 Bacterial Growth Measurements 

2.2.4.1 Turbidity 

The turbidity of the milk cultures (10-1 and 10-2 dilution in MRD solution) was measured 

spectrophotometrically (Cary 50 Bio UV, Varian Inc. Corporation, Palo Alto, CA, USA), at 

650nm, in 1cm glass cuvettes.     

 

2.2.4.2 Viable Count 

The viable counts were estimated using the pour plate technique described by Messer et al. 

(2004) 173 in which samples were serially diluted in MRD solution and then the diluted 

samples (1mL) were placed onto individual plates.  The samples were covered with molten 

MRS-C agar and the plates were swirled in a figure of eight motion, and left at room 

temperature until the agar had set.   The plates were then stored in a BugBox (Ruskinn 

Technology Ltd, Bridgend, UK) at 37 °C for 72 hours.  The colonies were counted manually 

and the results were expressed as colony forming units per mL (cfu mL-1).   
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2.2.5 Isolation of the Exopolysaccharide 

The procedure used for EPS extraction was developed in the laboratories at the University of 

Huddersfield 174.    

2.2.5.1 Exopolysaccharide Extraction from Milk using Ethanol Precipitation  

Samples were heated to 80 °C and then left to cool to room temperature, trichloroacetic acid 

(TCA) was added until the TCA concentration of each sample reached 14 %v/v and they 

were then left at 4 °C overnight.  The samples were then centrifuged at 25000g (Avanti J-26 

XPI centrifuge, Beckman Coulter Ltd UK, High Wycombe, UK) for 35 minutes at 4 °C to 

remove cells and proteins.  The crude EPS was then precipitated out by the addition of an 

equal volume of chilled absolute ethanol to the supernatant liquid.  After overnight 

precipitation at 4 °C the sample was centrifuged, as above, and the pellet retained.  The 

pellet was re-dissolved in water (10 mL) with heating at 45 °C if required, until it had 

completely dissolved.  The resulting solution was dialysed to remove small neutral sugars, 

for 72 hours at 4 °C, with three changes of water per day.    

 

2.2.5.2 Preparation of Dialysis Tubing 

Dialysis tubing was prepared by boiling deionised water (500 mL) containing 

ethylenediaminetetraacetic acid (EDTA) (0.186 g) and sodium carbonate (10 g) for 10 

minutes.  The tubing was then rinsed before boiling again with deionised water (500 mL) for 

a further 10 minutes.  Finally the tubing was rinsed with deionised water and stored at 4 °C in 

deionised water.   
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2.2.6 Qualification and Quantification of Exopolysaccharide 

2.2.6.1 Determination of Solids Content 

After dialysis (described in section 2.2.5.1) the exopolysaccharide solutions were frozen and 

lyophilised (freeze-dried) in a pre-weighed round-bottom flask overnight using an Edwards 

Freeze-drier (Northern Scientific, York, UK).  The dry weight was determined. 

 

2.2.6.2 Determination of Carbohydrate Content 

The procedure used for EPS quantitation was based on that described by Dubois et al. 175.  

The total carbohydrate of a sample solution (250 µg mL-1, 1 mL) was measured 

colourimetrically, after addition of phenol solution (5 %w/v, 1 mL) and concentrated sulphuric 

acid (5 mL).  This was left at 70 °C for 20 minutes, mixed then placed in a cool water bath at 

10 °C for a further 10 minutes.  The absorbance was measured spectrophotometrically (Cary 

50 Bio UV, Varian Inc., Palo Alto, CA, USA) at 490 nm against a blank (deionised water) and 

compared to a graph generated from the results obtained for a series of D-glucose standards 

(50 – 300 µg mL-1, 1 mL). 

 

2.2.6.3 Determination of Protein Content 

The amount of protein in the EPS sample was estimated using the Bradford assay 176.   The 

assay is based on the interaction between coomassie brilliant blue with protein under acidic 

conditions.  The chromophore formed has a maximum absorbance at 595 nm and the 

absorbance is proportional to the amount of protein present in the sample.   The protein 

assay was performed using the following procedure. 

 

In a volumetric flask (200 mL), coomassie brilliant blue (20 mg) was dissolved in ethanol (95 

%v/v, 10 mL).  Phosphoric acid (85 %w/w, 20 mL) was also added, and the solution made up 

to 200 mL by the addition of deionised water.  The solution was shaken vigorously, and 

labelled Bradford solution.   
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A series of bovine serum albumin (BSA) standards (10 – 1000 µg mL-1) were made, from a 

stock solution (2 mg mL-1).  Each BSA standard (100 µl) was added to a portion of Bradford 

solution (3 mL) and left at room temperature for 20 minutes.  The absorbance was measured 

spectrophotometrically (Cary 50 Bio UV, Varian Inc., Palo Alto, CA, USA) at 595 nm against 

a blank (Bradford solution) and a calibration curve was generated.   A solution of EPS (250 

µg mL-1, 100 µl) was added to a portion of Bradford solution (3 mL) and was left at room 

temperature for 20 minutes.  The absorbance was measured spectrophotometrically at 595 

nm and the amount of protein present in the sample was determined from the calibration 

curve.  The protein content of the EPS was then expressed in %w/w of EPS. 

 

2.2.6.4 Determination of Nucleic Acid Content 

The amount of nucleic acid present in the EPS was determined using HP-SEC (procedure 

described in section 2.3.4).   The amount of nucleic acid present was separated from the 

carbohydrate using size exclusion chromatography and then quantified 

spectrophotometrically (UV detector, Shimadzu, Milton Keynes, UK) at 260 nm, which is the 

optimum wavelength for nucleic acid.   The peak area of the DNA was then measured and 

compared to that of a DNA standard (Promega UK, Southampton, UK) (1800 bp) (25 µg mL-

1).   The DNA content of the EPS was then expressed in %w/w of EPS.   

 

2.2.6.5 Measuring the Solubility of Exopolysaccharides 

To measure the solubility of the EPS, suspensions / solutions of known concentrations were 

left to equilibrate at 25 °C for 15 hours.    An accurate amount of each suspension / solution 

was freeze dried in a pre-weighed flask to determine the solid residue.  The suspensions / 

solutions (5 mL) were then filtered through 0.2 µm nylon membranes and an accurate 

amount of the filtrate (1 mL) was then freeze-dried in a pre-weight flask and the weight of the 

dry residue determined.  The concentration of a saturated solution could then be calculated.  
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This procedure was carried out on a range of concentrations (300 – 4700 µg mL-1) to 

determine the maximum solubility.  

 

2.3 Structural Characterisation of the EPS using Established Protocols 

The experimental details of the NMR and GC-MS techniques used for the analysis of the 

EPS are given in this section.    

 

2.3.1 NMR Analysis of Exopolysaccharides 

NMR spectra of the exopolysaccharide produced by Lactobacillus acidophilus 5e2 were 

recorded on a Bruker Avance DPX400 400.13 MHz spectrometer by Dr. Neil McLay.    

 

1H and 13C DEPT 135 (one-dimensional experiments) and COSY, TOCSY, HSQC, HMBC, 

HSQC-TOCSY and NOESY (two-dimensional experiments) were all run on different batches 

of the exopolysaccharide produced from Lactobacillus acidophilus 5e2.  Saturated samples 

of EPS were prepared in deuterium dioxide (D2O) (GOSS Scientific Instruments Ltd, 

Nantwich, UK) and left overnight.   The NMR experiments were all acquired at a temperature 

of 70 °C. 

 

2.3.2 Monosaccharide Composition Analysis of Exopolysaccharides  

This work was carried out by Mr. Mohammed Maqsood, the experimental details are given in 

Laws et al. 177. 

 

2.3.3 Linkage Analysis of the Repeating Unit of Exopolysaccharides  

This work was carried out by Mr. Mohammed Maqsood, the experimental details are given in 

Laws et al. 177. 
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2.3.4 Molecular Weight Determination of the Exopolysaccharide 

The experimental detail for the HP-SEC-MALLS analysis is given in this section.  Note only 

the exopolysaccharide produced by Lactobacillus acidophilus 5e2 was analysed by HP-SEC-

MALLS during this study.  

    

2.3.4.1 Measuring the Refractive Index Increment (dn/dc) of the EPS from Lb. acidophilus  

The dn/dc value was required for the determination of the weight-average molecular weight 

(Mw) of the exopolysaccharide produced by Lactobacillus acidophilus 5e2.  Refractive index 

increments (dn/dc) were measured, using a differential refractometer (Optilab rEX, Wyatt 

Technology, Santa Barbara, USA).  A HPLC pump (118 Solvent Module, Beckman Coulter 

Ltd, California, USA) delivered deionised water at 1 mL min-1 and a 2 mL injection loop was 

used on the injection port (7125i port, Rheodyne LLC, California, USA).   Initially the 

instrument was calibrated by determining the dn/dc value for standard solutions of sodium 

chloride.   

 

To determine the instrument constant a sodium chloride solution (1000 µg mL-1) was diluted 

to a series of dilutions ranging from 25 µg mL-1 to 1000 µg mL-1.  The first standard (2 mL of 

25 µg mL-1) was injected, giving a rise in the output signal, as the response fell back to zero 

the next standard in the sequence was injected, this continued until all standards were 

measured.   A graph of the signal response (mV) against concentration was then plotted and 

the results generated were used to calculate optical constant for the instrument, this was 

used in subsequent measurements of the dn/dc value for EPS samples. 

 

To measure the dn/dc value of the exopolysaccharide produced by Lactobacillus acidophilus 

5e2 the same procedure was carried out using dilutions of the EPS ranging from 25 µg mL-1 

to 1000 µg mL-1.  The calculated dn/dc result for the EPS was then used to find the Mw for all 

EPS samples prepared as part of this work.  
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Chromatographic conditions     

Pump   -  Quaternary Pump, 118 Solvent Module 

Flow rate   -  1 mL min-1 

Mobile Phase  -  Water HPLC grade 

Injection volume -  2 mL 

Detector   -  Refractive index (690nm) 

2.3.4.2 Determination of the Mw of Exopolysaccharides using Multi-Angle Laser Light 

Scatter Analysis 

Solutions of EPS (1 mg mL-1) in deionised water were prepared and left for 24 hours to 

completely dissolve.  Samples (200 µL) were injected (using a 7125i injection port, Rheodyne 

LLC, California, USA) onto an analytical size exclusion system comprising three columns 

connected in series (Aquagel-OH 40, 50 and 60, 15 µm particle size, 25 cm x 4 mm, Polymer 

Laboratories UK).  A HPLC pump (Prominence LC-20AD, Shimadzu, Milton Keynes, UK) 

delivered HPLC grade water (Sigma-Aldrich Co. Ltd, Poole, UK) at 1 mL min-1 and the 

neutral analytes were eluted into a series of detectors.  First, a UV detector (Prominence 

SPD-20A, Shimadzu, Milton Keynes, UK) set to 260 nm was used to determine the DNA 

content of the EPS (method discussed in section 2.2.6.4).   Then the concentrations of the 

EPS fractions eluting from the column were determined by a differential refractometer 

(Optilab rEX, Wyatt technology, Santa Barbara, USA) and then finally, the weight average 

molecular weights of each peak of the chromatogram were measured using a multi-angle 

light scattering photometer with the laser set to 690 nm (Dawn EOS, Wyatt technology, 

Santa Barbara, USA).  

 

Chromatographic conditions     

Pump   -  Prominence LC-20AD, Shimadzu, Milton Keynes, UK  

Flow rate   -  1 mL min-1 

Mobile Phase -  Water HPLC grade (Sigma-Aldrich Co. Ltd, Poole, UK)  

Injection volume -  200 µL 
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Calibration constant -  2.000x10-5 (V-1) 

dn/dc value  -  0.198 

Columns - Aquagel-OH 15 µm 40, low molecular weight 

- Aquagel-OH 15 µm 50, medium molecular weight 

- Aquagel-OH 15 µm 60, high molecular weight 

 (Polymer Laboratories Ltd, Shropshire, UK)  

Detectors   -  UV, MALLS and RI detectors (in series) 

Run time   -  45 minutes 

 

These optimised conditions were used for all HP-SEC-MALLS analysis of the EPS produced 

by 5e2 in this work.     

 

2.4 Depolymerisation of EPS Produced by Lactobacillus acidophilus 5e2 

As explained previously (in section 1.7.1), depolymerisation techniques were employed to 

provide structural information about the exopolysaccharide, and to create oligosaccharides 

which would be used for LC-MS analysis.   Depolymerisation was carried out using three 

methods: using a cell disruptor; using ultrasonic disruption and using acid-catalysed 

hydrolysis.    

 

2.4.1 Depolymerisation of an EPS using a Cell Disruptor (Application of Hydrodynamic 

Shear)    

A solution of the EPS was prepared in deionised water (1 mg mL-1, 10 mL) and the solution 

was charged to the sample chamber of a cell disruptor (Constant Cell Disruption system, 

Daventry, UK).  Once the samples had been disrupted an aliquot (1 mL) was removed and 

the sample was charged to the sample chamber for a second pass.  For the first investigation 

a fixed pressure was used for each pass in the series.  For the second investigation the 

pressure was increased for each pass (2 – 40 kpsi).  The second investigation was carried 
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out to study the effect of the solvents’ viscosity on the depolymerisation of EPS.  The 

solvents and viscosities are given in Table 7. 

   

Table 7:  Samples prepared for the viscosity study using the Cell Disruptor   
 

Sample Solvent Kinematic Viscosity of 

Solvent at 20 °C 178  

Concentration of EPS 

A Water 1.01 cSt 500 µg mL-1 

B Glycerol: Water 5.26 cSt 500 µg mL-1 

C Glycerol 1160 cSt 500 µg mL-1 

 

Samples were taken after each pass and diluted to 250 µg mL-1.  The diluted samples were 

subjected to HP-SEC-MALLS analysis using the chromatographic conditions described in 

section 2.3.4.2 to determine the weight-average molecular weight (Mw).   

 

A cell disrupted sample was freeze-dried and 5 mg were dissolved in D2O (0.75 mL).  A 1D-

1H NMR spectrum was recorded and the anomeric region inspected, which would detect any 

structural alterations to the repeating oligosaccharide unit.       

2.4.2 Ultrasonic Disruption of Exopolysaccharides 

The EPS (10mg) was diluted to 1000 µg mL-1 using a sample diluent composed of aqueous 

acetone (1 %v/v, acting as a radical scavenger) 179 with added sodium chloride to 0.1 M.   

The solution (10 mL) was poured into a glass bottle (30 mL) and placed in an ice-bath.  Once 

the sample had cooled the tip of an ultrasonic probe (VCX130, Sonics and Materials Inc, 

Connecticut, USA) was lowered into the centre of the solution until the end was situated 2 

mm from the bottom of the glass bottle.  The solution was sonicated and aliquots (0.5 mL) 

were removed periodically and subjected to HP-SEC-MALLS analysis using the 

chromatographic conditions described in section 2.3.4.2.  The change in average molecular 

weight during sonication was determined.  
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Initially three different amplitudes of ultrasonic power were applied (25 %, 45 % and 85 %) 

each for a duration of 50 minutes using the small probe (3 mm) and operating without any 

temperature control.  The initial results showed that the sonication conditions were too 

intense; therefore the experiment was repeated with the sample submerged in an ice-bath.   

 

A sonicated sample was freeze-dried and 5 mg was dissolved in D2O (0.75 mL).  A 1D-
1H 

NMR spectrum was recorded and the anomeric region inspected, which would detect any 

structural alterations to the repeating oligosaccharide unit.    

 

2.4.2.1 Study of the Effect of Ultrasonic Disruption on the Intrinsic Viscosity of EPS 

solutions 

A sample diluent was prepared as described in section 2.4.2.  The EPS produced by Lb. 

acidophilus 5e2 (80 mg) was added to sample diluent (80 mL), to make a concentration of 

1000 µg mL-1.  This solution was left to fully dissolve over 24 hours, the sample was 

inspected to ensure that there were no solid particles remaining which could potentially block 

the viscometer.  The solution was split equally into four glass bottles (30 mL) labelled A – D.     

 

Table 8: Sonication Times and Amplitude for Samples A – D 
 

Sample Sonication time 

(using the 3mm probe on a 5 second pulse cycle) 

Amplitude 

A 0 minutes - 

B 10 minutes 50 % 

C 20 minutes 50 % 

D 40 minutes 50 % 

 

The bottles were placed in an ice-bath and once the sample had cooled the probe was 

lowered into the centre of the solution until the end was situated 2 mm from the bottom of the 

glass bottle.  The sample solutions (B – D) were sonicated individually and aliquots (0.5 mL) 
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were removed and subjected to HP-SEC-MALLS analysis using the chromatographic 

conditions described in section 2.3.4.2.  Sample solution A was also subjected to HP-SEC-

MALLS analysis.  A proportion of the remaining solution (15 mL) was poured into a glass 

capillary viscometer (Rheotek BS/U tube viscometer size A, Poulten Selfe & Lee Ltd, 

Burnham on Crouch, UK).  The viscometer was submerged in a water bath (20±1 °C) and left 

to equilibrate until the samples had reached 20 °C.  The time taken for the solution to travel 

down the viscometer was measured (in seconds).   

 

Each sample solution (A – D) was then diluted firstly to 500 µg mL-1, and then to 250 µg mL-1, 

and the time taken for these sample solutions to travel down the viscometer was measured.  

A measurement was also taken for the sample diluent.  The densities (20±1 °C) of all of the 

solutions were measured and used to calculate the intrinsic viscosity.   

   

2.4.3 Mild Acid-catalysed Hydrolysis of Exopolysaccharides 

EPS (10mg) was dissolved in trifluoroacetic acid (0.2 M) and held at 30 °C in a heating block 

for 24 hours.  Aliquots (0.5 mL) were taken every 30 minutes for the first 7.5 hours, further 

aliquots were taken after 21 and 25 hours.  Once the aliquots were taken they were 

neutralised immediately to pH 7 using sodium carbonate (0.5 M). 

 

The resulting solutions were subjected to HP-SEC-MALLS analysis using the 

chromatographic conditions described in section 2.3.4.2. The change in average molecular 

weight during hydrolysis was determined.    

 

The 25 hour sample was freeze-dried and 5 mg were dissolved in D2O (0.75 mL).  A 1D-
1H 

NMR spectrum was recorded and the anomeric region examined which would detect any 

structural alterations to the repeating oligosaccharide unit.       
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2.5 Development of Novel LC-MS Methods for the Analysis of Carbohydrates  

One aim of this project was to provide the Carbohydrate Community with novel methods of 

analysis that are more sensitive and less time consuming than are currently available.   

 

2.5.1 Reductive Amination of Carbohydrates 

The process of reductive amination is explained in section 1.7.2.1, where an amine reacts 

with a carbonyl group to form an aminol species, which subsequently loses one molecule of 

water in a reversible reaction to form an imine.  The imine is then reduced to a secondary 

amine.   This can be done successfully using the following procedure, that is based on a 

method described by Suzuki et al. 138.   

   

A reducible carbohydrate (0.1 mmol) was added to a 25 mL round bottom flask containing a 

magnetic flea and was dissolved in water (400 µL).   In a glass vial p-aminobenzonitrile (0.60 

g, 5.08 mmol) and acetic acid (200 µL) were dissolved in methanol (1.0 mL).  In a second 

glass vial, sodium cyanoborohydride (175 mg) was dissolved in methanol (Fisher Scientific 

UK, Loughborough, UK) (0.75 mL).   The contents of the first and second vials were added to 

the round bottom flask.  A water cooled reflux condenser was attached and the flask was 

lowered into an oil bath at 80 °C.  The reaction was stirred constantly and maintained at 80 

°C for 45 minutes.      

 

The solution was cooled to room temperature and transferred to a separating funnel.  Water 

(5 mL) was added and the excess reagents were extracted with ethyl acetate (3 x 5 mL).   

The ethyl acetate extracts were discarded and the aqueous phase was freeze dried 

overnight to produce a white/yellow solid. 

 

The samples were dissolved in with water before LC-MS analysis or stored as a solid in an 

air-tight container until required.   
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2.5.1.1 Reductive Amination of Carbohydrates using 1:1 Ratio of pABN 

The method described in section 2.5.1.2 uses approximately a 50 times excess of p-

aminobenzonitrile, this is the amount that was used by Suzuki et al. 138.  In an attempt to 

reduce the excess, the same reaction described in section 2.5.1 was carried out using a 1:1 

ratio of pABN to monosaccharide.     

 

2.5.1.2 Reductive Amination of Monosaccharides 

The reductive amination reaction procedure described in section 2.5.1 was first carried out 

on a series of five monosaccharides; α-D-glucose, α-D-galactose, α-D-mannose, α-D-

glucosamine and α-D-N-acetyl-glucosamine.  These were to be used as standards for the 

monosaccharide analysis of the EPS using CZE (see section 2.5.4).  

 

LC-MS Analysis 

The p-ABN-labelled monosaccharides (1 mg) were diluted with water (1 mL) to provide a 

concentration of 1000 µg mL-1, and further diluted to 100 µg mL-1. The solutions were then 

subjected to LC-MS analysis using the following chromatographic and mass spectrometry 

conditions. 

 

Chromatographic Conditions – Old Capillary HPLC System 

Instrument  - Ultimate Capillary LC, Camberley, UK 

Mobile Phase  - Gradient: 10-90 % acetonitrile (for 33 minutes) 

UV wavelength  - 280 nm   

Injection volume  - 5 µL 

Column - Hypercarb 100 mm x 0.32 mm, 5 µm particle size, pore size

  250 A (P/N: 35005-100365) 

Flow rate - 0.4 mL min-1 (split to column flow of 8 µl min-1 before entering 

the ESI interface)   

Run Time  - 35 minutes (including 2 minutes equilibration) 
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Chromatographic Conditions – New UPLC System 

Instrument  - Prominence UFLC-XR, Shimadzu, Milton Keynes, UK 

Mobile Phase  - Gradient: 10-90 % acetonitrile (for 18 minutes) 

UV wavelength  - 280 nm   

Injection volume  - 5 µL 

Column - Shim-pack XR-ODS II, 7.5 cm x 2.0 mm, 2.2 µm particle size 

  (P/N: 228-41623-91) 

Flow rate  - 0.4 mL min-1 (split 1:3 before entering the ESI interface)   

Run Time  - 20 minutes (including 2 minutes equilibration) 

 

Mass Spectrometry Conditions  

Instrument - MicrOTOF-q with ESI interface, Bruker Daltonics, Coventry, 

UK) 

Capillary Voltage - -4500 V 

Dry Gas  - 4.0 L min-1 

Nebulizer   - 0.4 bar 

Mass Range  - 50 – 3000m/z 

Collision Energy - 4.0 eV 

Collision RF  - 200 Vpp 

PrePulse Storage - 6.0 µs  

 

MS/MS Conditions 

Isolation width  - 1 m/z  

Collison Energy  - 15 eV 

Isolation Mass  - [M+H]+ 
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2.5.1.3 Reductive Amination of Oligosaccharide  

The method developed for monosaccharides in section 2.5.1.2 was then applied to an 

oligosaccharide.  Maltohexanose (Sigma-Aldrich Co. Ltd, Poole, UK), a neutral six unit 

oligosaccharide (shown in Figure 21) was used to trial the method.   

 

O
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OH
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OHO
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FW = 990.86 g mol
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Figure 21: Structure of Maltohexanose 

 

Maltohexanose (0.01 mmol) was added to a 25 mL round bottom flask containing a magnetic 

flea and was dissolved in water (400 µL) and the procedure in section 2.5.1 was followed.   

 

The p-ABN-labelled maltohexanose (1 mg) was diluted with water (1 mL) to provide a 

solution of concentration of 1000 µg mL-1, and further diluted to 100 µg mL-1.  The solutions 

were then subjected to LC-MS analysis using the same chromatographic and mass 

spectrometry conditions as described in section 2.5.1.2 but with the following modifications. 

 

MS Conditions 

Mass Range  - 50 – 5000m/z 

Collision Energy - 10.0 eV 

Collision RF  - 500 Vpp 

PrePulse Storage - 10.0 µs  

 

 

4 
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MS/MS Conditions 

Isolation width  - 1 m/z  

Collison Energy  - 85 eV 

Isolation Mass  - [M+Na]+ 

 

2.5.2 Isolation of pABN-glucose using Preparative HPLC    

The pABN-labelling of D-glucose was carried out at a larger scale to provide enough material 

to perform 1D- and 2D-NMR analysis.   

 

D-glucose (1.0 g) (5.6 mol) was transferred into a 250 mL round bottom flask containing a 

magnetic flea.  p-aminobenzonitrile (33.0 g) was added to a conical flask (100 mL) and was 

then dissolved in acetic acid (11 mL) and methanol (25 mL).  In a second conical flask 100 

mL) sodium cyanoborohydride (9.63 g) was dissolved in methanol (30 mL).  

 

The contents of the two flasks were mixed in a round bottom flask, a reflux condenser was 

attached and the flask was lowered into an oil bath at 80 °C and stirred constantly for 45 

minutes.     

 

The solution was transferred to a separating funnel.  Water was added (~50 mL) and the 

excess reagents were extracted with ethyl acetate (3 x 50 mL).   The ethyl acetate extracts 

were discarded and the aqueous phase was retained.   

 

Preparative HPLC was used to isolate the pABN-labelled D-glucose from the excess 

reagents.  The crude solution was injected into the Rheodyne 7125 injection port and the 

product was separated using the conditions described below.  The pABN-labelled D-glucose 

was collected between 6.8 – 8.4 minutes (16.0 mL) from the outlet of the UV detector.  

Fractions were collected from eight separate chromatographic runs.  
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Chromatographic Conditions  

Instrument - Gilson 303 and 303 pump with Holochrome UV detector, 

Gilson Inc., Middleton, WI, USA 

Mobile Phase  - 85:15 (Acetonitrile: Water)  

UV wavelength  - 280 nm   

Injection volume  - 5 mL 

Column  - C18 Dynamax column, 21.4 mm ID, 8 µm PS, 250 mm length 

Flow rate  - 10.0 mL min-1 pump 

Chart recorder  - 5 mm min-1, 10 mV 

 

Fractions containing the desired product were collected and combined, and then freeze-dried 

overnight.  The collected pABN-labelled D-glucose (5 mg) was dissolved in D2O and 

subjected to 1H-NMR analysis and compared to literature results of pABN-labelled D-glucose 

to confirm the identity and to check purity.   

 

2.5.3 Acid-catalysed Hydrolysis of Carbohydrates 

To break down oligosaccharides and exopolysaccharides a method was developed which 

used a similar procedure to that reported by Hakomori in 1964 92.  The procedure was carried 

out as follows: 

 

Trifluoroacetic acid (TFA, 4M, 1 mL) was added to the dry residue and the solution was 

heated at 120 °C for 2 hours in a pressure tube.  After 2 hours the solution was evaporated 

to dryness under a stream of nitrogen gas at 50 °C.  The residue was then dissolved in 

distilled water (200 µL).  This procedure was later applied both to methylated 

oligosaccharides and to exopolysaccharides (discussed in section 2.6).  
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2.5.4 Monosaccharide Analysis using Capillary Zone Electrophoresis  

The procedure used for the monomer analysis of EPSs was based on that described by Xioa 

et al. 90.  Five pABN-labelled monosaccharides were analysed by CZE to determine their 

relative migration times.   

 

2.5.4.1 Mobile Phase and CZE Conditions     

The mobile phase was prepared as follows: disodium tetraborate (Sigma-Aldrich Co. Ltd, 

Poole, UK) (1.91 g) was added to a volumetric flask (100 mL) and made to volume with ultra 

pure water.  The pH was adjusted to 9.3 using dilute hydrochloric acid (2 M) (Fisher Scientific 

UK, Loughborough, UK) and then the solution was filtered.  

 

A solution of acetone (1 %v/v) was prepared by diluting acetone (50 µL) with water (5 mL).  

This solution was used to measure the electroosmotic flow.  The samples and standards 

were evaluated on the CZE using the following conditions: 

 

Chromatographic Conditions  

Instrument - P/ACE™ MDQ, Beckman Coulter, High Wycombe, UK 

Column  - Capillary length 50 cm, 75 µm ID and 375 µm OD 

Mobile Phase  - 50 mM disodium tetraborate, adjusted to pH 9.3 with HCl 

UV wavelength - 254 nm and 280 nm 

Injection type  - Pressure injection 

Voltage   - 20 kV 

Temperature   - 30 °C 

Run Time  - 15 minutes 

2.5.4.2 Identification of the Retention Times of pABN-labelled Monosaccharide Standards 

The standards were prepared using the procedure described in section 2.5.1.2 with a final 

concentration of 100 µg mL-1 and the samples were run on the CZE using the procedure 

described in section 2.5.4.1. 
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2.5.4.3 Analysis of the Monosaccharide Composition of Exopolysaccharides using CZE 

The monosaccharide analysis was carried out on two known exopolysaccharides produced 

by LAB that have been previously characterised at the University of Huddersfield.  The two 

published structures were cultures from Lactobacillus acidophilus 5e2 177 and Lactobacillus 

delbrueckii subsp. bulgaricus NCFB2074 78.   They first had to be hydrolysed into 

monosaccharides using the following procedure: 

 

EPS (10 mg) was placed into a pressure tube and the acid-cataylsed hydrolysis was 

performed as stated in section 2.5.3.   The hydrolysed EPS samples were then pABN-

labelled using the method described in section 2.5.1.1.   The EPS samples (1 mg) were 

diluted to 1ml with ultra pure water to make a final concentration of 100 µg mL-1.  The 

samples and standards were analysed on the CZE using the conditions described in section 

2.5.4.1.   

 

2.5.5 Adaptation of the ‘Hakomori Methylation Procedure’  

Out of the various methylation reactions discussed in section 1.6.2, the two most applicable 

were evaluated for the analysis of EPS samples using LC-MS.  The first methylation 

procedure used was based on that described by Hakomori in 1964 92, where dimethylsulfinyl 

anion acts as a base and removes the free hydroxyl protons on the monosaccharide and 

then methyl iodide is added to form methoxy- groups.  Methylation was carried out on both 

pABN-derivatised and non-derivatised carbohydrates depending on the application.    

An amount of carbohydrate (10 mg) was placed into a pressure tube and anhydrous 

dimethylsulphoxide (1.5 mL) was added, the tube was capped and the solution heated in an 

oil bath at 65 °C for one hour (Tube A).  

 

Sodium hydride (30 mg) was weighed into a pressure tube and anhydrous 

dimethylsulphoxide (1.5 mL) was added, the tube was capped and the solution heated in an 

oil bath at 65 °C for one hour (Tube B). 
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The contents of the two pressure tubes were combined and methyl iodide (CH3I) (Sigma-

Aldrich Co., Poole, UK) (0.7 mL) was added.  The pressure tube was heated at 40 °C for 3 

hours.  After 3 hours the solution was transferred into a separating funnel and chloroform (10 

mL) and water (5 mL) were added, and then the flask was gently shaken. The two layers 

were separated and the aqueous layer was placed in the separating funnel and extracted a 

further two more times, combining the organic layers.  The combined organic layer was dried 

using anhydrous sodium sulphate (Fisher Scientific UK, Loughborough, UK), filtered into a 

pressure tube and evaporated to dryness under a stream of nitrogen gas at 40 °C to give the 

methylated carbohydrate.  This was stored in an air-tight container until required.   

 

2.5.5.1 ‘Hakomori Methylation Procedure’ for pABN-glucose 

The adapted Hakomori methylation procedure (described in section 2.5.5) was first carried 

out on a sample of pure pABN-labelled D-glucose produced in section 2.5.2.  

 

This sample was used to evaluate the methylation procedure, in particular the time required 

for per-O-methylation to occur.   This was achieved by repeating the experiment several 

times and varying the time which the methyl iodide had to react before the extraction. This 

time was varied between 30 – 210 minutes.      

 

Methylated p-ABN-glucose (1 mg) was dissolved in acetonitrile (1 mL, 50 % in water) and 

further diluted to give a final concentration of 250 µg mL-1.  The solution was then subjected 

to LC-MS analysis using the chromatographic and mass spectrometry conditions described 

in section 2.5.1.2 
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2.5.5.2 ‘Hakomori Methylation Procedure’ for Oligosaccharides 

The adapted Hakomori methylation procedure (described in section 2.5.5) was then applied 

to the pABN-maltohexanose which had been produced using the method described in 

section 2.5.1.3.  

   

Methylated pABN-maltohexanose (1 mg) was dissolved in acetonitrile (1 mL, 50 % in water) 

and further diluted to give a final concentration of 250 µg mL-1.  The solution was then 

subjected to LC-MS analysis using the chromatographic and mass spectrometry conditions 

described in section 2.5.1.3. 

 

2.5.6 Adaptation of the ‘Ciucanu Methylation Procedure’  

The second methylation procedure investigated was based on that described by Ciucanu 

and Caprita 94.   

   

An amount of carbohydrate (0.01 mmol) was added to a pressure tube and was dissolved in 

water (10 µL) and DMSO (0.7 mL).   Sodium hydroxide was heated (100 – 120 °C) and then 

added to a pestle and mortar where the sodium hydroxide was ground to a fine powder.  The 

hot powder was poured into a screw top vial and kept in a dessicator until required.    

 

The sodium hydroxide (fine powder, 70 mg) was added to the pressure tube containing the 

carbohydrate.  The sample solution was stirred to achieve a suspension. Then methyl iodide 

(300 µL) was added using a syringe and the mixture was stirred vigorously for 60 minutes at 

25 °C.  

 

The per-O-methylated carbohydrate was extracted by adding water (1 mL) and 

dichloromethane (1 mL) to the reaction mixture.  The organic layer was washed with 3 x 5 

mL of water and then dried with a stream of nitrogen at 40 °C to give a residue of methylated 

carbohydrate.  This was stored in an air-tight container until required.    
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2.5.6.1 ‘Ciucanu Methylation Procedure’ for Mono- and Disaccharides 

The methylation procedure based on that described by Ciucanu (described in section 2.5.6) 

was carried out on pABN-labelled mono- and disaccharides (2 mg, 0.01 mmol).   

 

The methylated pABN-labelled mono- and disaccharides (1 mg) was dissolved in acetonitrile 

(1 mL, 50 %v/v in water) and further diluted to give a final concentration of 250 µg mL-1.  The 

solution was then subjected to LC-MS analysis using the chromatographic and mass 

spectrometry conditions described in section 2.5.1.2 

     

2.5.6.2 ‘Ciucanu Methylation Procedure’ for Oligosaccharides 

The Ciucanu methylation procedure (described in section 2.5.6) was also carried out on 

pABN-maltohexanose (9.9 mg, 0.01 mmol) prepared using the method described in section 

2.5.1.3.  

 

This method was repeated in an attempt to optimize the amount of carbohydrate being per-

O-methylated; the reaction time (10 – 60 minutes) and excess of methyl iodide (3 – 15 times 

excess) was altered in an attempt to fully methylate all 20 hydroxyl groups (plus the 2° 

amine) of pABN-maltohexanose.  The results for each sample were then expressed as a 

percentage of full methylation.   

All the methylated pABN-maltohexanose samples (1mg) were dissolved in acetonitrile (1 mL, 

50 %v/v in water) and further diluted to give a final concentration of 250 µg mL-1.  The 

solution was then subjected to LC-MS analysis using the chromatographic and mass 

spectrometry conditions described in section 2.5.1.3. 

   

2.5.7 Deuterated Samples 

The exchangeable proton on the hydroxyl groups can be deuterated by simply shaking an 

anhydrous solution with deuterium hydroxide (D2O) (GOSS Scientific Instruments Ltd, 
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Nantwich, UK).  This test identifies how many hydroxyl groups are present in the sample, 

which is particularly useful when monitoring the completion of the methylation of a 

carbohydrate.     

 

2.5.7.1 Deuteration of Methylated Mono- and Disaccharides       

Methylated pABN-labelled mono- and disaccharides (1 mg) were freeze-dried overnight and 

the solid residue was re-dissolved in D2O:ACN  (50:50, 1 mL).  After a further dilution to 250 

µg mL-1 with D2O, the samples were then infused into the mass spectrometer using the same 

conditions that are described in section 2.5.1.2.   

 

2.5.7.2 Deuteration of Methylated Oligosaccharides  

Methylated pABN-maltohexanose (1 mg) was freeze dried overnight and the solid residue 

was re-dissolved in D2O:ACN (50:50, 1 mL).  After a further dilution to 250 µg mL-1 with D2O, 

the sample was then infused into the mass spectrometer using the same conditions that are 

described in section 2.5.1.3.  

 

2.6 Development of a Novel Method for the Linkage Analysis of Carbohydrates  

The methodology developed (in section 2.5) for mono- and oligosaccharides was used to 

design a novel approach to determine the linkages of the monosaccharides in complex 

carbohydrates. 

 

This new approach uses the methylation procedure described in section 2.5.6 followed by 

the acid-catalysed hydrolysis given in section 2.5.3 and finally the reductive amination 

procedure in detailed section 2.5.1.   
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2.6.1 Linkage Analysis of Carbohydrates using LC-MS-MS 

Carbohydrate (0.01 mmol) was added to a pressure tube and was dissolved in water (10 µL) 

and DMSO (0.7 mL).   Sodium hydroxide was heated (100 – 120 °C) in pestle and mortar 

and the sodium hydroxide was ground to a fine powder.  The hot powder was poured into a 

screw top vial and kept in a dessicator until required.   The sodium hydroxide (fine powder, 

70 mg) was added to the pressure tube containing the carbohydrate.  The sample solution 

was stirred vigorously for 2 minutes in order to generate a suspension.  Methyl iodide (300 

µL) was added with a syringe and the mixture was stirred vigorously for 60 minutes.  The 

per-O-methylated maltohexanose was extracted by adding water (1 mL) and 

dichloromethane (1 mL) to the reaction mixture.  The organic layer was washed with 3 x 5 

mL of water and then dried with a stream of nitrogen at 40 °C to give a crude sample of the 

methylated carbohydrate.     

 

TFA (4 M, 1 mL) was added to the dry residue and the solution was heated at 120 °C for 2 

hours in a pressure tube.  After 2 hours the solution was evaporated to dryness under a 

stream of nitrogen gas at 40 °C.  The residue was then dissolved in distilled water (200 µL) 

and subjected to the reductive amination procedure (using 1:1 ratio of pABN) reported in 

section 2.5.1.1 but without the extraction procedure.  

 

2.6.1.1 Linkage Analysis of Disaccharide Standards  

The linkage analysis described in section 2.6.1 was first carried out on a series of five 

disaccharide standards (0.01 mmol) listed in  

 

 

 
 
 
 
 
 
 

Table 9. 
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Table 9: Table of Disaccharide Standards Studied  
 

Disaccharides Structure Formula Weight (g mol-1) 

Trehalose 

α-[1-1]-linked 

O

O

OH

OH

OH

OH

O

OH
OH

OH

OH

 

342.30 

2-α-Mannobiose 

α-[1-2]-linked 

O
OH

OH
OH

OH

O

O
OH

OH

OH

OH  

342.30 

3-α-Galactobiose 

α-[1-3]-linked 

O
OH

OH

OH

OH

O

O

OH

OH

OH

OH  

342.30 

Cellobiose 

α-[1-4]-linked 

O
O

OH

OH

OH

OH

O
OH

OH

OH

OH

 

342.30 
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Gentibiose 

α-[1-6]-linked 

O
OH

OH

OH

OH

O
OH

OH
OH

OH

O

 

342.30 

Each solution was further diluted with acetonitrile to 250 µg mL-1 and subjected to LC-MS and  

 

LC-MS-MS analysis using the chromatographic and mass spectrometry conditions described 

in section 2.5.1.2. 

2.6.1.2 Application of the Novel Linkage Analysis Method to Oligosaccharides 

The linkage analysis procedure described in section 2.6.1 was carried out on maltohexanose 

(shown in Figure 21) (9.9 mg, 0.01 mmol).     

 

The sample solution was further diluted with acetonitrile to 250 µg mL-1 and subjected to LC-

MS and LC-MS-MS analysis using the chromatographic and mass spectrometry conditions 

described in section 2.5.1.2. 

 

2.6.1.3 Application of the Novel Linkage Analysis Method to Exopolysaccharides  

The linkage analysis, described in section 2.6.1, was finally carried out on two known 

exopolysaccharides produced by LAB that have been characterised at the University of 

Huddersfield.  The two published cultures were Lactobacillus acidophilus 5e2 177 and 

Lactobacillus delbrueckii subsp. bulgaricus NCFB2074 78.   

 

The sample solution was further diluted with acetonitrile to 250 µg mL-1 and subjected to LC-

MS and LC-MS-MS analysis using the chromatographic and mass spectrometry conditions 

described in section 2.5.1.2. 
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2.6.1.4 Linkage Analysis in a Deuterated Exchange System 

The linkage analysis of the standard disaccharides described in section 2.6.1.1 was repeated 

but this time the samples were first deuterated as described in section 2.5.7.1 and then 

subjected to LC-MS-MS analysis, as described in section 2.5.1.2, but using D2O in the 

mobile phase instead of water.    

 

2.6.1.5  Linkage Analysis of Sodium Cyanoborodeuteride 

The linkage analysis of a standard disaccharide (cellobiose) was carried out as described in 

section 2.6.1.1, but during the reductive amination reaction sodium cyanoborodeuteride was 

used instead of sodium cyanoborohydride.   The sample solution was further diluted with 

acetonitrile to 250 µg mL-1 and subjected to LC-MS and LC-MS-MS analysis using the 

chromatographic and mass spectrometry conditions described in section 2.5.1.2. 

 



Chapter 2                                                                                                                              Experimental 

- 94 - 

 

RESULT & DISCUSSION SECTIONS 

 

 

3. Production and Characterisation of 
Exopolysaccharides 

 

 

 
4. Depolymerisation of Exopolysaccharides 

 

 

 

5. New Methods for Analysis of Exopolysaccharides 



Chapter 3                    Results & Discussions - Production and Characterisation of Exopolysaccharides 

- 95 - 

3. PRODUCTION AND CHARACTERISATION OF 
EXOPOLYSACCHARIDES  

 

3.1 Introduction 

This chapter discusses the production of exopolysaccharide from LAB cultures; Lactobacillus 

acidophilus 5e2 and Lactobacillus helveticus Rosyjski.   Firstly the quantity and purity of the 

isolated EPS will be analysed, then the full structural characterisations of the isolated EPS 

will be discussed.   Finally a study designed to monitor the EPS production and measure the 

change in Mw of the EPS throughout fermentation will be examined and rationalised.   

 

3.2 Qualification and Quantification of the Exopolysaccharides 

Using the experimental protocols described in section 2.2.6, the isolated exopolysaccharides 

were analysed to establish their quantity and composition using different fermentation 

conditions.   

 

3.2.1 Determination of Solids Content of Exopolysaccharide   

The solid content was determined by the lyophilisation of a dialysed solution of 

exopolysaccharide.  The solids content of each fermentation batch was expressed in mg L-1, 

so the yields of each batch could be compared.  The results are given in Table 10. 
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Table 10: Batch Descriptions and Yield of EPS Produced by from Lactic Acid Bacteria 
 

Batch 

Number 
Batch Description Yield (Solid Content, mg L

-1
) 

Xn341 

-Culture: Lb. acidophilus 5e2 
-10 %w/w skimmed milk  
-1.5 L batch 
-2 % inoculum 
-D-glucose 0.166 M 
-pH 5.82 
-100 rpm 
-37 °C 
-29 hr 
Prepared by  
Mariana Chacon-Romero 

124.1 

Xn342 

-Culture: Lb. acidophilus 5e2 
-10 %w/w skimmed milk  
-1.5 L batch 
-2 % inoculum  
-D-glucose 0.166 M  
-pH 5.82 
-100 rpm  
-37 °C 
-24 hr 
Prepared by  
Mariana Chacon-Romero 

133.4 

Xn358 

-Culture: Lb. acidophilus 5e2 
-10 %w/w skimmed milk  
-2 L batch 
-2 % inoculum  
-D-glucose 0.166 M  
-pH 5.82 
-100 rpm  
-42 °C 
-46 hr 

281.5 

Xn359 

-Culture: Lb. helveticus 
Rosyjski 
-10 %w/w skimmed milk  
-2 L batch 
-2 % inoculum  
-D-glucose 0.166 M  
-pH 5.82 
-100 rpm  
-42 °C 
-46 hr 

237.0 

The yield of the timed fermentation batches Xn356 and Xn360 are given in sections 3.4.1 and 3.4.2.4 
respectively. 

 

The yields from each batch differ significantly, This may be because the biosynthesis of 

EPSs is complex and involves a large number of gene products (Laws et al., 2001) 43.  The 

genes coding for the enzyme and regulatory proteins required for EPS synthesis are of 

plasmid origin.  It is thought that the decreased EPS production can be attributed to the 

reduction in gene coding due to the loss of these plasmids (van Kranenburg et al., 2000) 180.   
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Other reasons may also contribute; firstly the growth of bacterial cultures is often not 

reproducible, even when identical fermentation conditions are maintained (Cerning, 1990) 181.  

This would account for the variability of solid content observed from batch to batch.  

Secondly, the recovery process for isolation of EPSs is not very accurate, the EPS recovery 

is significantly dependent on its solubility, there would be a reduction in recovery of EPS as 

the solubility reduces.  EPS remaining as a solid would be removed during the isolation 

process with the precipitated proteins, cells and DNA.    

 

Work carried out at the University of Huddersfield by Elvin 72 and Dunn 71 has attempted to 

improve the isolation procedure, but their work mainly focused on producing purer 

exopolysaccharides, by reducing the protein contamination.   Research into improving the 

overall yield was carried out by Chacon-Romero 182, also at the University of Huddersfield, 

she attempted to improve the yield of EPS by supplementing the fermentation media with 

different carbon feeds and through use of controlled pH (5.82).  The results for her work on 

Lactobacillus acidophilus 5e2 can be found in Laws et al. 177.    Historically, the yields of 

EPSs produced by LAB are modest, previously reported EPS yields for batches fermented 

without pH control or D-glucose supplemented growth media for Lactobacillus acidophilus 

5e2 were 74.6±15 mg L-1. Similar results were observed for Lactobacillus helveticus Rosyjski 

where the yield varies by ±50 % 71.  

 

The solids content results reported in Table 10 are significantly greater than those previously 

reported by Dunn 71, this is probably due to the supplementation with glucose increasing the 

yield of batches: Xn341 and Xn342 to 124.1 mg L-1 and 133.4 mg L-1 respectively.  These 

batches used growth media supplemented with D-glucose (0.166 M) and were pH controlled 

at 5.82.   In the current work, by increasing the length of time of fermentations, it has been 

possible to increase yields further.   Lactobacillus acidophilus 5e2 batch Xn358 was 

fermented for 46 hours providing a 281.5 mg L-1 yield (cf. 124.1 mg L-1 for batch Xn341), 
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batch Xn359 of Lactobacillus helveticus Rosyjski was fermented for 46 hours and gave a 

yield of 237.0 mg L-1.   

 

Historically, the solids content was used as a value for the amount of EPS produced by LAB 

during fermentation.   To obtain a more accurate assessment the carbohydrate, protein and 

nucleic acid content of EPS were determined. 

                    

3.2.2 Determination of Carbohydrate Content   

The carbohydrate content of the dried exopolysaccharide for each batch was determined 

using a procedure based on that described by Dubois et al. 175.   The method used was a 

colourmetric test for sugars and polysaccharides, where an orange colour was produced 

when carbohydrates were treated with a phenol/sulphuric acid solution.  The intensity of this 

colouration is directly proportional to the amount of sugar present.   The carbohydrate 

content of the EPS from each fermented batch was evaluated against a series of D-glucose 

standards.   A calibration curve was plotted using the absorbance readings at 490 nm of the 

D-glucose standards (1 mL, 25 – 300 µg mL-1, Figure 22).  
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Figure 22: Calibration Curve for D-glucose Standard using Phenol/Sulphuric Acid Assay 

 

 

The absorbance measurements for each concentration of D-glucose standard showed 

satisfactory correlation, R2 = 0.9985.  The trendline shows a slight positive bias, both the 

upper and lower 95 % confidence limits are positive values, therefore the bias is significant.  

Although significant, the carbohydrate determination for each EPS sample would not be 

affected as the expected carbohydrate concentrations were towards the top end of the 

calibration curve.   The equation of the trendline was used to calculate the carbohydrate 

content of each batch; the results are shown in Table 11. 

  

 

Intercept  
Upper 95% Limit = +0.110 
Lower 95% Limit = +0.019   
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Table 11: Results for the Carbohydrate Analysis of EPS from Each Fermented Batch 
 
 

Batch Number Abs490 nm Calculated Amount (µg mL-1
) 

Carbohydrate content of EPS 

(%w/w) 

Xn341 2.5217 210.0 84.00 

Xn342 2.4351 202.6 81.03 

Xn356 2.3368 194.2 77.66 

Xn358 2.5088 208.9 83.54 

Xn359 2.2924 190.4 76.14 

Xn360 2.6135 217.9 87.14 

 

 

The amounts of carbohydrate present for each batch are lower than expected, comparisons 

from literature were difficult to find, but Ai et al. 62 describe similar results which will be 

discussed in section 3.2.5.  Tuiner et al. 183 also reported low carbohydrate content (after 

purification) of the EPS produced by Lactococcus lactis subsp. cremoris NIZO B40. They 

detailed the breakdown as; EPS (72 %), protein (6 %), inorganic material (9 %), mannan (7 

%) and water (6 %).  The results show that the solid content is not only due to carbohydrate 

and other material must be present.  The EPS samples were tested for their protein and DNA 

content in an attempt to identify any non-carbohydrate components.  

 

3.2.3 Protein Content of the Recovered Exopolysaccharides Samples  

The protein content was determined using the Bradford protein assay 176, which used the 

interaction between coomassie brilliant blue dye and protein under acidic conditions.  

Coomassie brilliant blue dye has three charge forms, red, blue and green which have 

absorbance maxima at 470, 590 and 650 nm respectively.  The blue charge form is the one 

that binds to protein forming a complex that intensely absorbs light at 590 nm. This intensity 

is proportional to the amount of protein present in the sample.   
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A series of BSA standards (10 – 100 µg mL-1) were analysed and the absorbances were 

plotted against concentration to create a calibration curve, given in Figure 23. 

 

y = 0.0028x + 0.0455
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2
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Figure 23: Calibration Curve for BSA Standard using Bradford Protein Assay 
 

 

The calibration curve appears to be linear over the concentrations tested. It has been 

reported that the linear range of this method is narrow due to the overlapping spectrum of 

two of the different colour forms of the dye 184.   This source suggests that the linear range is 

only 2 – 10 µg mL-1.   The possible non-linearity of the calibration curve could also account 

for the large positive intercept (+0.0455).  The positive upper and lower 95 % confidence 

limits confirm that the intercept has significant bias.   This had to be considered when 

calculating the protein content of the EPS samples.  The calibration curve (Figure 23) is 

comparable to that described by Zor and Selinger 184, who also reported a positive intercept.    

 

The intensity of the absorptions of the EPS samples were measured at 590 nm and the 

amount of protein was calculated using the equation of the trendline given.  The protein 

Intercept 
Upper 95% Limit = +0.050 
Lower 95% Limit = +0.040 
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content was then expressed as a percentage of the solid content of each EPS sample (see 

Table 12).     

 

Table 12: Results for the Protein Analysis of EPS from Each Fermented Batch 
 

Batch Number Abs590 nm 

Calculated Amount         

(µg mL
-1

) 

Protein content of EPS (%w/w) 

Xn341 0.0457 0.07 0.03 

Xn342 0.0461 0.21 0.09 

Xn356 0.0590 4.81 1.92 

Xn358 0.0564 3.89 1.56 

Xn359 0.0486 1.12 0.45 

Xn360 0.0471 0.57 0.23 

 

 

The amount of protein present in all EPS samples was low, showing that the isolation 

sufficiently removes residual protein, which is probably from the growth media and bacterial 

cultures.   The greatest amount detected was <2 %, found in batch Xn356.   

 

Protein accounted for only a small proportion of the non-carbohydrate content of the isolated 

EPS samples.  The determination of nucleic acids was then performed.   

 

3.2.4 Nucleic Acid Content of the Recovered Exopolysaccharide Samples 

The nucleic acid content of the EPS samples was determined using a method developed by 

the author that used HP-SEC with UV detection.  The EPS samples were separated using 

size exclusion chromatography and the nucleic acid content measured using a UV detector 

at 260 nm.  The peak area of the nucleic acids in the EPS sample was quantified against the 

peak area of a DNA standard.             
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Figure 24: Example of the Chromatogram of DNA Standard (25 µg mL
-1

)  

 

 

The chromatogram for the DNA standard is shown in Figure 24, the sample contained a 

mixture of DNA strands ranging from 50 – 1800 bp.  The total peak area at 260 nm was 

found to be 3.83x106 AU.  

 

 

 
 

Figure 25: Example of the Chromatogram of an EPS (1000 µg mL
-1

) 

 

Xn356 (1000 mg L
-1
) 

Peak Area = 4614583 AU 

DNA Standard (25 mg L
-1
) 

Peak Area = 3833212 AU 
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An example of a chromatogram obtained for one of the EPS samples is shown in Figure 25; 

the peak appears to be different, this is due to the molecular weight distribution of DNA 

present.  The standard has two distinct molecular weight distributions, whereas the EPS 

sample has one.      

 

The peak areas measured at 260 nm were recorded for each batch of EPS sample and then 

compared to the standard (25 µg mL-1).   The results for each batch are shown in Table 13, 

as with the protein, the results were expressed as a percentage of the solid content of the 

EPS.   

 

Table 13: Results for the Nucleic Acid Analysis of EPS from Each Fermented Batch 
 
 

Sample  Concentration (µg mL
-1

) Peak Area 
Nucleic acid content 

of EPS (%w/w) 

Xn341 1000 4026800 0.42 

Xn342 1000 4025962 0.42 

Xn356 1000 4614583 0.48 

Xn358 1000 7305496 0.76 

Xn359 1000 4799396 0.50 

Xn360 1000 3833212 0.42 

DNA Standard 25 3833212 - 

 

 

The nucleic acid content for each EPS sample isolated from the fermentations of Lb. 

acidophilus 5e2 is low, in each case it accounted for less than 1 % of the solid content.   This 

shows that the isolation process is satisfactory but that small amounts of nucleic acids 

remain.    
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3.2.5 Overall Composition of the EPS  

The overall composition of each EPS sample was determined using the results from the 

carbohydrate, protein and nucleic acid analysis.  The amount of remaining solid from each 

EPS sample is shown in Table 14.  

 

Table 14: Composition of EPS Samples 
 

Batch Number 
Carbohydrate 

Content (%w/w) 

Protein Content 

(%w/w) 

Nucleic Acid 

Content (%w/w) 

Remaining 

Amount (%w/w) 

Xn341 84.00 0.03 0.42 15.55 

Xn342 81.03 0.09 0.42 18.46 

Xn356 77.66 1.92 0.48 19.94 

Xn358 83.54 1.56 0.50 14.40 

Xn359 76.14 0.45 0.76 22.65 

Xn360 87.14 0.23 0.42 12.21 

 

 

As can be seen from the results generated, each EPS sample contained a large amount of 

remaining material that was not due to carbohydrate, nucleic acid or protein.   Ai et al.  62 

describe the chemical composition of an EPS isolated from a fermentation of Lactobacillus 

casei LC2W, their EPS was isolated using the same methodology as was used to isolate all 

the EPS sample in the current project.  They measured the carbohydrate, protein, inorganic 

material and moisture content of their EPS.   They state that their EPS has three distinct 

molecular weight distributions; one around 1,236 kDa, and two more at 21 and 17 kDa.  The 

largest EPS fraction, which is the most comparable to the EPS samples in Table 14 (see Mw 

results in section 3.3.2), contains approximately 90 % carbohydrate and a trace amount of 

protein.   The remaining 10 % was attributed to the moisture and inorganic material content.   

The remaining amounts in the above EPS samples may also be due to moisture, even 

though the samples have been lyophilized, trapped water could be present.     
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Due to the limited amounts of EPS available investigation of the moisture content was not 

determined, but it seems a plausible explanation that the remaining material is due to 

trapped water and inorganic incombustible materials.              

 

3.2.6 Solubility of the EPS 

The solubility of EPS in water at 25°C was assessed using the protocol described in section 

2.2.6.5.   The solubility was determined by measuring the amount of EPS dissolved in 

suspensions / solutions of known concentration.   A portion (1 mL) of each suspension was 

freeze dried to determine the amount of EPS.  Another portion (5 mL) was filtered through a 

0.2µm nylon filter and the filtrate (1mL) was then freeze dried to determine the amount of 

EPS.   Due to non-carbohydrate material present in the EPS samples, these results only 

provided an approximate indication of the EPS solubility.     

 

Table 15: Solubility of Exopolysaccharide produced by Lactobacillus acidophilus 5e2 

 

EPS Solution 

Solid weight of 1 mL 

of initial suspension/ 

solution  (mg) 

Concentration of 

suspension/solution            

(µg mL
-1

) 

Solid weight of 1 mL 

of filtrate (mg) 

1 0.3 300 0.3 

2 0.6 600 0.6 

3 1.1 1100 1.1 

4 2.1 2100 1.8 

5 2.8 2800 1.9 

6 3.9 3900 1.8 

7 4.7 4700 1.9 

Due to a limited amount of sample only the solubility of batch: Xn358 was evaluated. 

 

To determine the critical solubility at 25°C the results from Table 15 were plotted in a graph 

(Figure 26).    
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Figure 26: Graph to Determine the Critical Solubility of EPS Produced by Lb. acidophilus 5e2    

 

The maximum amount of EPS recovered from the filtrate of the suspensions / solutions was 

approximately 1.8 mg per 1 mL (1800 µg mL-1).   This is the concentration of a saturated 

solution and the point of critical solubility at 25 °C.   The dotted line on the graph (Figure 26) 

illustrates the critical solubility at 25 °C; above this concentration the filtration removed the 

undissolved EPS.   Slight fluctuations can be seen for the amount of solid recovered, but the 

critical solubility can be clearly defined by this method.   

 

This was the first time the solubility of the EPS produced by Lb. acidophilus 5e2 has been 

evaluated.  A comparison of solubility of EPS isolated from other fermented batches of Lb. 

acidophilus 5e2 would have been informative but due to the limited amount of EPS available, 

this was not possible.   

 

An alternative, and more accurate method to determine the solubility of a solute in water 

would be to use cloud point (turbidity) determination as described by Dinter et al. 185.  This 

technique requires a larger amount of material therefore was not considered.  
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3.3 Structural Characterisation of the EPS using Established Protocols 

 

This section discusses the structural characterisation of EPS using NMR and GC-MS.   The 

analysis of the exopolysaccharide produced by Lactobacillus acidophilus 5e2 is reported in 

this section.     

 

3.3.1 Structural Characterisation of Lactobacillus acidophilus 5e2 

3.3.1.1 Structural Analysis using NMR 

To determine the structure of the repeating oligosaccharide unit of the exopolysaccharide 

produced by Lactobacillus acidophilus 5e2 a series of 1D- and 2D- NMR experiments was 

carried out.   

 

The first NMR experiment performed was the 1D-
1H NMR. The spectrum from this 

experiment showed a signal for every proton in the repeating oligosaccharide unit of the 

EPS.   Particular attention was placed on the anomeric region (4.4 – 5.6 ppm); the number of 

signals in this region identifies how many monosaccharides are in the repeating 

oligosaccharide unit.    
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3.43.53.63.73.83.94.04.14.24.34.44.54.64.74.84.95.05.15.25.35.45.55.6 ppm 

 

Figure 27: 
1
H NMR Spectrum of EPS from Lactobacillus acidophilus 5e2 in D2O at 70°C 

 

As can be seen from the spectrum shown in Figure 27, there are seven signals in the 

anomeric region, which can be labelled A – G (from left to right).  Anomeric protons A and B 

are unresolved doublets or single peaks.   The peaks corresponding to C, D, E, F and G are 

clearly resolved doublets.  The anomeric configuration of the sugars was determined by 

measurement of the 3J1,2 coupling constants, where A and B are less than 4 Hz representing 

sugars having α-anomeric configuration.  Signals C – G all have coupling constants greater 

than 7.5 Hz and are of β-anomeric configuration.  

 

Table 16: 
3
J1,2 Coupling Constants 

 

Monosaccharide 
3
J1,2 Coupling constants

 
Configuration  

A 3.24 α 

B 0 α 

C 8.04 β 

D 7.72 β 

E 7.52 β 

F 7.92 β 

G 7.68 β 

 

 

Anomeric Region 
(7 protons A – G) 

A 
B 

C D 
E 

F 
G 
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Figure 28: DEPT 135 
13

C NMR Spectrum of EPS from Lactobacillus acidophilus in D2O at 70°C 

 

The DEPT 135 13C spectrum (Figure 28) shows CH and CH3 displayed as positive peaks and 

CH2 (C6s) as negative peaks.  The anomeric (C1) carbons are positioned downfield due to 

the presence of the neighbouring ring oxygen atom and the CH2s are typically located 

between 60 – 70 ppm.   

    

Full characterisation of the structure of the EPS was achieved through inspection of a series 

of 2D-NMR experiments.  The COSY spectrum was the first of the 2D- spectra to be 

examined, it showed protons attached to the adjacent carbon (linked by scalar coupling) 

therefore, for example, the hydrogens on C2 (H2) can be found from the scalar coupling to 

hydrogens on C1 (H1) of each monosaccharide.       

 

 

6065707580859095100105 ppm 

C1s  

C6s  
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Figure 29: COSY spectrum of EPS from Lactobacillus acidophilus 5e2 in D2O at 70 °C 

 

Once the H2 were identified (see Figure 29) then the corresponding C2 were identified on 

the HSQC spectrum, which shows which protons are attached to which carbon.  The HSQC 

spectrum of EPS from Lactobacillus acidophilus 5e2 is shown in Figure 31.  

 

The most informative spectra, when determining which carbons belong to which 

monosaccharide, is the HSQC-TOCSY spectrum.   A normal TOCSY spectrum detects 

contiguous protons on a carbon chain, therefore in a sugar residue a TOSCY spectrum can 

give a signal for every proton attached to the six carbons in the ring.  When combined with 

the results of a HSQC experiment the carbons present in each sugar residue can be read 

directly under the sugar residues’ anomeric proton.    
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A – 6 visible, 0 missing   B – 4 visible, 2 missing   

C – 5 visible, 1 missing   D – 6 visible, 0 missing   

E – 4 visible, 2 missing   F – 6 visible, 0 missing   

G – 4 visible, 2 missing    

 
 
Figure 30: HSQC-TOCSY Spectrum of EPS from Lactobacillus acidophilus 5e2 in D2O at 70 °C 

 

The HSQC-TOCSY spectrum of the EPS is shown in Figure 30, where cross-peaks are 

visible for the protons attached to their monosaccharide.   All the protons can be seen for A, 

D and E, but B, C, E and G still have missing information that must be found using the other 

2D-spectra.  Not all the protons are visible because the 2D-TOCSY spectrum relies on scalar 

coupling; if absent then no contiguous coupling is observed beyond that point.  The carbon 

numbers in the monosaccharide ring are then assigned; the peaks at the highest ppm are the 

C1s (more deshielded next to the oxygen in the heterocyclic ring).  Next the negative CH2 

peaks are assigned as the C6s (using Figure 28), then a combination of 2D-TOCSY and 2D-

HMBC spectra is used to assign the remaining carbons.  

 

A B 

C D E 
F 

G 
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To determine which peaks are due to C2 – C5, the 2D-TOSCY spectra can be run using 

different mixing times (ms).  A shorter mixing time will only show the tallest, most intense 

peaks; which are usually due to the proton on the adjacent carbon.   As the mixing times are 

extended, peaks of lesser intensities become visible; which are usually due to the protons on 

the next but one carbon.    The 2D-TOCSY spectra were analysed and the results were 

compared to the 2D-HMBC spectra shown in Figure 32. 
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Figure 31: 

1
H–

13
C HSQC Spectrum of EPS from Lactobacillus acidophilus 5e2 in D2O at 70 °C 

 

 

The identity of cross peaks is noted by the sugar residue, as A – G, and by identifying the 

location of hydrogens/carbons within the ring as 2 – 6.  The resonance positions for the non-

anomeric 1H signals and 13C signals are indicated on the 1H–13C HSQC spectrum (Figure 

31), the anomeric 1H signals are indicated on the HMBC spectrum (Figure 32) and the 

combined data is presented in Table 17 and Table 18.   
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Table 17: 
1
H NMR Chemical Shifts of EPS Recorded in D2O at 70 ºC 

 

1
H Chemical Shifts (ppm) SUGAR 

RESIDUE H1 H2 H3 H4 H5 H6 H6' 

Glc – A 5.35 3.57 3.61 3.75  4.21 4.04 3.68 

Gal – B 4.97 3.93 3.91 4.21 4.11 4.04 3.85 

NAcGlc – C 4.80 3.96 4.22 3.99 3.67 4.04 3.86 

Glc – D 4.71 3.46 3.63 3.42 3.66 3.87 3.74 

Gal – E 4.58 3.59 3.67 3.95 3.67 3.80 3.72 

Glc – F 4.52 3.36 3.67 3.62 3.60 3.97 3.83 

Gal – G 4.46 3.57 3.66 3.95 3.66 3.80 3.80 

                   

The designation of monomers as either D-galactose (B, E & G) or as D-glucose (A, D & F) is 

based primarily on the location of the H4 resonance. The H4 resonance for a D-galactose is 

shifted substantially to a lower field than that of a D-glucose, regardless of the anomeric 

configuration and linkage: data collected from the assignments for LAB EPS structures show 

that the H4 resonances for a D-galactose lie in the range 4.30–3.85 ppm whilst those for D-

glucose lie in the range 3.7 – 3.4 ppm 78. 

 

Table 18: 
13

C NMR Chemical Shifts of EPS Recorded in D2O at 70 ºC 
 

13
C Chemical Shifts (ppm) SUGAR 

RESIDUE C1 C2 C3 C4 C5 C6 

Glc – A 99.44 (L) 72.35 69.96 73.94 71.17 66.32 (L) 

Gal – B 99.08 (L) 68.10 79.76 (L) 69.63 69.96 69.23 (L) 

NAcGlc – C 102.83 (L) 56.08 75.99 (L) 74.15 (L) 76.17 61.29 

Glc – D 101.30 (L) 72.35 82.76 (L) 76.51 70.53 61.29 

Gal – E 102.21 (L) 71.58 75.99 69.18 73.37 61.59 

Glc – F 102.98 (L) 73.57 75.00   79.44 (L)   75.48 61.03 

Gal – G 103.57 (L) 71.67 75.93 69.28 73.37 61.62 

(L) = Glycosidic linkage  
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The chemical shifts data from Table 17 and Table 18 for the H5 and C5 resonances indicate 

that the monosaccharides are all present in their pyranose (6-membered) ring form, as 

furanose (5-membered) has C5 values greater than 81 ppm 186. 

 

As described above the 1H–13C HMBC spectrum is used in conjunction with the 1H–13C 

HSQC spectrum to find out which carbons are next to each other within a monosaccharide 

and importantly, how they are linked through the glycosidic acetal bond.   

 

ppm

4.04.24.44.64.85.05.25.45.6 ppm

68

70

72

74

76

78

80

82

84

 

AH1-D3 

AH1-A5 

AH1-A3 

GH1-F4 CH1-B3 

DH1-C3 

FH1-F3 

FH1 -X 

BH1-B2 

BH1-A4 

BH1-B3 

EH1-C4 

FH1-F5 

GH1-G5 

GH1-G3 

BH4-B3 

BH4-B2 

CH3-C4 

 

 
Figure 32: 

1
H–

13
C HMBC Spectrum of EPS from Lactobacillus acidophilus 5e2 in D2O at 70 °C 

 

 

The 1H–13C HMBC spectrum (Figure 32) shows intra-residue couplings highlighted in yellow 

and the inter-residue couplings are highlighted in green.  The identity of cross peaks is noted 

by the sugar residue, A – G, and by identifying the location of coupled hydrogens/carbons 

within the ring as 1 – 6.   On the 1H–13C HMBC spectrum, inter-residue cross peaks are 

observed between A H1 and D C3 confirming a A(1→3)D linkage; C H1 and B C3 confirming 

    AH1                 BH1        CH1  DH1     EH1FH1GH1 
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a C(1→3)B linkage; D H1 and C C3 confirming a D(1→3)C linkage; E H1 and C C4 

confirming a E(1→4)C linkage and finally G H1 and F C4 confirming a G(1→4)F linkage.  
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Figure 33: 
1
H–

1
H NOESY (500ms) Spectrum of EPS from Lb. acidophilus in D2O at 70 °C 

 
 

Finally, the sequence of the monosaccharides in the oligosaccharide repeat unit was 

confirmed by the examination of the 2D- 1H–1H NOESY spectra.  This technique can detect 

proton interactions through space, from one sugar residue to another.   These are called 

Nuclear Overhauser Enhancements (NOE) and give further structural information.  Cross 

peaks linking different sugars are highlighted on the spectrum shown in Figure 33, where the 

intra-residue NOEs are highlighted in yellow, the inter-residue NOEs are highlighted in green.  

As was the case for the 1H–13C HMBC spectrum the identity of cross peaks is noted by the 

sugar residue, A – G, and by identifying the location of coupled hydrogens within the ring as 

1 – 6.  

 

AH1                        BH1          CH1    DH1     EH1 FH1 GH1 
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On the 1H–1H NOESY spectrum there are inter-residue cross peaks between: A H1 and D 

H4/2 which is consistent with a A(1→3)D linkage (see HMBC results for confirmation of the 

presence of this linkage, Figure 32); B H1 and A H6 confirming a B(1→6)A linkage; a strong 

cross peak between D H1 and C H3 confirming a D(1→3)C linkage; E H1 and C H4 

confirming a E(1→4)C linkage and finally, there is a weak cross peak between F H1 and B 

H6 suggesting a F(1→6)B linkage.  

 

3.3.1.2 Structural Analysis using GC-MS 

The results for monosaccharide (GC) and linkage analysis (GC-MS) were generated at the 

University of Huddersfield by Mr. Mohammed Maqsood.  The results were combined with 

data from the NMR experiments.    

 

Monosaccharide Analysis  

The results of monosaccharide analysis and determination of the absolute configuration 

indicate that the exopolysaccharide is composed of D-glucose, D-galactose and either N-

acetyl-D-glucosamine or D-glucosamine in a molar ratio of 3.1 : 2.9 : 0.7.   This is consistent 

with the EPS having a heptasaccharide repeat unit as shown in the anomeric region of the 

1H-NMR (see Figure 27).   

 

Linkage Analysis 

In the 13C-NMR spectrum, the glycosidic links for the simple hexoses (A, B, D–G) were 

signalled by a shift to a lower field (by approximately 4 ppm) of the bridging carbons.   When 

combined with the GC-MS linkage analysis, the sugar residues were identified as follows: 

 

A as a 1,6-linked α-D-glucose; B as a 1,3,6- linked α-D-galactose; C as the 1,3,4-linked β-N-

acetyl- D-glucosamine; D as a 1,3-linked β-D-glucose; E & G as terminal β-D-galactoses and 

F as a 1,4-linked β-D-glucose.   
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The results indicate that branching is present in the repeating oligosaccharide unit of the 

EPS and that there is a N-acetyl-glucosamine located at one of the branching points.    

 

3.3.1.3 Proposed Structure of the EPS produced by Lactobacillus acidophilus 5e2 

Using information from the NMR spectra and the GC-MS results the following structure was 

proposed.  

O

H

OH

OH OH

OH

O

OH

OH
O

O

OH OH

O

O

O

O OH
H

O

H

OH

O

OH

OH

OH

O

OH

OH OH

OH
O

O

O

H

H

O

H

H

OH

OH

NH

OOH

 

            

β-D-Galp 
                                                                                1 
                                                                                 ↓ 
                                                                                 4                           
  →6)-α-D-Glcp-(1→3)-β-D-Glcp-(1→3)-β-D-GlcNAcp-(1→3)-α-D-Galp-(1→ 
                                            6                                                                       
                   ↑                                              
                       1 
                                                                   β-D-Galp-(1→4)-β-D-Glcp 
 

 
Figure 34: Structure of Exopolysaccharide Produced by Lactobacillus acidophilus 5e2 

 
 

The anomeric protons of the proposed structure of the exopolysaccharide produced by 5e2 

are in shown in blue.  The spine of the repeating unit consists of four monosaccharides 

joined by a series of 1,3-linkages, with two branches, one a D-galactose unit and the other a 

galactose – glucose disaccharide i.e. a lactose unit.  The structures of published EPS 

produced from LAB can be found in the appendix section 1.9.1.   The EPS structure from 

Lactobacillus acidophilus 5e2 agrees with many of the statements made for the inspection of 

reported EPS structures from lactic acid bacteria, discussed in section 1.4.4.2.  The EPS 

(F)  β-D-glucose 

(A)  α-D-glucose 

(D)  β-D-glucose 

(C)  β-D-N-acetyl glucosamine 

(G)  β-D-galactose 
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from Lactobacillus acidophilus 5e2 shows that the monosaccharide present in the highest 

frequency is galactose, closely followed by glucose, which are both present in the D-absolute 

configuration.  This structure contains a GlcNAc, which has been seen in numerous EPS 

structures from LAB.   The EPS structures showed slight preference for the β-anomer, 

containing only two α-anomers.  The branches of the EPS structure are terminated by D-

galactose, and the remaining β-D-galactoses are attached via a 3-, 4- or 6-hydroxyl group.   

β-D-Glucose is preferentially attached via its 3- or 4- hydroxyl group, whereas α-D-glucose is 

preferentially attached via its 3- hydroxyl group.   This is a novel exopolysaccharide and its 

proposed structure has been published in Carbohydrate Research 177.   

 

3.3.2 Determination of Weight-average Molecular Weight for Exopolysaccharides  

The weight-average molecular weight of the exopolysaccharides produced by Lactobacillus 

acidophilus 5e2 and Lactobacillus helveticus Rosyjski were determined using the HP-SEC-

MALLS.  Prior to the analysis of EPS the differential refractometer was calibrated by 

determining the refractive index increment (dn/dc) for sodium chloride and the accuracy and 

precision of the HP-SEC-MALLS instrument was evaluated using a pullulan standard of 

known Mw (800,000) and low polydispersity (Mw/Mn = ~1.23).  

 

3.3.2.1 Measuring dn/dc Value of the EPS Produced by 5e2 using Refractive Index 

HP-SEC with multi-angle laser light scattering (MALLS) detection is a technique that can be 

used to determine the molecular weight distribution of macromolecules (e.g. 

exopolysaccharides).  To calculate an accurate weight-average molecular weight (Mw) the 

specific refractive index increment (dn/dc value) of the EPS was required.    

 

Calculating the Refractometer Calibration Constant  

Upon installation the refractometer was calibrated by a Wyatt Technology Engineer.   Sodium 

chloride (with a known dn/dc value of 0.172 mL g-1 at 690 nm) was used to calculate a 
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calibration constant.  The slope of the calibration curve plotted (change in refractive index, 

dn, versus phase difference between the sample and reference cells, mV) was used to 

calculate the instruments’ calibration constant.   The intercept should be close to zero since a 

zero voltage corresponds to zero change in refractive index.   The calibration constant 

calculated by Wyatt Technology was 2.0000x10-5 V-1; this was used in all subsequent 

measurements of dn/dc.    

 

Calculating dn/dc 

Using the calibration constant (2.000x10-5 V-1) the dn/dc value for sodium chloride at 690nm 

was checked and compared to the known value of 0.172 mL g-1.  A series of concentrations 

(2.5x10-4 to 1.0x10-3 g mL-1) were prepared and evaluated as described in section 2.3.4.1.   

 

A graph of the signal response (mV) against concentration was then plotted and the 

calculated result was compared to the known value.   

 

 

Figure 35: dn/dc Curve for the Sodium Chloride 
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The dn/dc was calculated to be 0.170 mL g-1, this was close to the known dn/dc value for 

sodium chloride (at 690 nm) of 0.172 mL g-1.   This confirmed that the calibration constant 

was suitable. 

 

Literature values for the dn/dc can be found for common polysaccharides such as dextran, 

pullulan, etc.  The dn/dc value for the EPS produced by Lb. acidophilus 5e2 had never been 

measured before, and was therefore calculated using the same procedure as performed on 

sodium chloride.  

 

A series of EPS solutions ranging from 2.5x10-4 to 1.0x10-3 g mL-1, were made and the 

change in signal response (dn) was measured for each concentration (g mL-1).  A graph was 

generated as is illustrated in Figure 36. 

 

 

 
Figure 36: dn/dc Curve for the EPS Produced by Lb. Acidophilus 5e2    

 

The dn/dc value was calculated to be 0.198 mL g-1, which is relatively large when compared 

to the list of values published by Theisen et al. in 2000, which shows that most dn/dc values 
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for macromolecules, in aqueous systems, lie between 0.14 – 0.16 mL g-1.   The value may 

have been large due to the purity of the EPS, the carbohydrate content has been shown to 

be approximately 80 % (see section 3.2.2).      

 

This value was used for all subsequent weight-average molecular weight (Mw) 

measurements of EPS produced by 5e2.      

 

3.3.2.2 Determination of the Mw of a Pullulan Standard (800,000 Mw)  

A pullulan standard of known Mw and narrow polydispersity (Mw/Mn = ~1.23) was used to 

evaluate the accuracy and precision of the HP-SEC-MALLS.  A literature dn/dc value of 

0.147 mL g-1 was found for pullulan 187 and was used in the following measurements.     

 

Table 19: HP-SEC-MALLS Results for Pullulan Standard (800,000 Mw) 
 

Pullulan Standard  

800,000 Mw (700 µg mL-1) 

Weight-average  

Molecular Weight (g mol-1) 

Polydispersity 

(Mw/Mn) 

 Run 1 795100 1.122 

Run 2 793500 1.095 

Run 3 792100 1.090 

Mean 793567 1.102 

Standard Deviation 1501.1 0.0172 

RSD % 0.2 1.6 

   
 

The results generated (Table 19) showed that the HP-SEC-MALLS gave good accuracy and 

precision for the pullulan standard.  The Mw value obtained was similar to the known Mw and 

there was satisfactory agreement between repeat determinations.  
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Figure 37: A Chromatogram of the Pullulan Standard (800,000 Mw)   

 

The chromatography (example given in Figure 37) was clean with a large principal peak, 

which was preceded by a very much smaller peak which had a Mw of ~810000 g mol-1.    

 

The results from the pullulan analysis showed that the HP-SEC-MALLS was capable of 

accurately and precisely determining the Mw of neutral polysaccharides of known dn/dc.         

 

3.3.2.3 Determination of the Weight-average Molecular Weight for EPS produced by 5e2  

After the determination of dn/dc and the successful analysis of pullulan, the HP-SEC-MALLS 

was used to determine the weight-average molecular weight for the EPS produced by 

Lactobacillus acidophilus 5e2.   The specific dn/dc for the EPS (0.198 mL g-1, calculated in 

section 3.3.2.1) was used to accurately work out the weight-average molecular weight of a 

1000 µg mL-1 sample solution (dissolved in deionised water). 

 

 

Light Scatter Chromatogram (Red) 
 

Refractive Index Chromatogram (Blue) 
 



Chapter 3                    Results & Discussions - Production and Characterisation of Exopolysaccharides 

- 124 - 

Table 20: Mw of the EPS Produced by Two Fermentations of Lb. acidophilus 5e2   
 

Fermentation 

Batch and Details  

Samples  

(1000 µg mL-1) 

Weight-average Molecular 

Weight (Mw)# 

Statistics  

Run 1 643800 

Run 2 623100 

Xn341 
 

29 Hours 
Fermentation 

Run 3 621900 

Mean = 629600 

 

S.D =  12312 

 

RSD = 2.0 % 

Run 1 361500 

Run 2 323800 

Xn342 
 

24 Hours 
Fermentation 

Run 3 361400 

Mean = 348900 

 

S.D =  21737 

 

RSD = 6.2 % 

# In all cases the major peak is used for the Mw determination.  

 

Initially two batches were analysed, Xn341and Xn342, the fermentation conditions are shown 

in Table 10.   The results show that even though the fermentation conditions are similar there 

is a distinct difference in the Mw of the EPS from each batch.  Xn341 was fermented for five 

hours longer and has a Mw approximately double that of Xn342, this difference will be 

discussed in section 3.4.   The results for batch Xn342 gave a RSD% of >6 % for three 

repeat injections of the same sample solution, compared to 2 % for batch Xn341.  The 

differences can be explained by the polydispersity of the samples.  
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Table 21: Mw/Mn of the EPS Produced by Two Fermentations of Lb. acidophilus 
 

Fermentation 

Batch 

Samples 

(1000 µg mL-1) 

Polydispersity  

(Mw/Mn)
# 

Statistics  

Run 1 1.084 

Run 2 1.104 Xn341 

Run 3 1.129 

Mean = 1.106 

 

S.D =  0.023 

 

RSD % = 2.0 

Run 1 1.135 

Run 2 1.225 Xn342 

Run 3 1.125 

Mean = 1.162 

 

S.D = 0.055 

 

RSD % = 4.7 

# In all cases the major peak is used for the Mw/Mn determination.  

 

As can be seen in Table 21, batch Xn342 has a higher polydispersity, hence a broader 

distribution of molecular weight across the peak.  Broader peaks are more difficult to 

integrate accurately; this may then lead to a higher overall RSD % 188.    

 

A comparison of the peaks in the chromatograms from each batch (shown in Figure 38 and 

Figure 39) show that batch Xn342 is in fact broader, confirming the polydispersity result.   
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Figure 38: A Chromatogram of EPS produced by 5e2 Batch Xn341 
 

The peak width for batch Xn341 is approximately 7.8 minutes, compared to 8.4 minutes for 

batch Xn342.   

 

Figure 39: A Chromatogram of EPS Produced by 5e2 Batch Xn342 

7.8 min 

8.4 min 

20.6 min 

21.1 min 
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The volume at which the peak maxima occurred were also measured, as expected the 

principal peak in batch Xn341 has a smaller volume due to it having a larger weight-average 

molecular weight.  As explained in section 1.6.4.1, larger macromolecules elute first when 

using size exclusion chromatography.  

 

Both chromatograms of the EPS sample (Figure 38 and Figure 39) show that there are two 

peaks present; a small peak which is followed by a major peak.   Both peaks are believed to 

be due to EPS, the smaller peak, which elutes first, is thought to be due to EPS with a larger 

Mw distribution.   This is not unusual, many EPS structures have been published that have 

two or three distinct MW distributions 62 79 189.   For this study, the Mw of the major peak was 

determined for all EPS samples, this meant that comparison between different fermentation 

batches could be made.    

 

The exact limits within which to integrate the peak are difficult to define, the Mw can change 

depending at which points the peak is integrated between.   If the Mw is plotted against the 

volume (which is effectively the time due to the instrument delivering the mobile phase at 1.0 

mL min-1), the change in Mw
 can be observed as a negative slope.      

 

Figure 40: A Mw vs Volume Plot for the Pullulan Standard (800,000 Mw) 
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Figure 40 shows the Mw vs volume plot for pullulan, this peak should be integrated over this 

region which is highlighted by the dotted box.     

           

Figure 41: A Molar Mass vs Volume Plot for EPS Produced by Lb. acidophilus 5e2 

 

If there are co-eluting or overlapping peaks, integration becomes more problematic.  The plot 

of molar mass vs volume of an EPS sample produced by Lb. acidophilus 5e2 is shown in 

Figure 41, there is a secondary peak on the front shoulder of the principal peak which 

interfered with an accurate determination of the Mw.  The negative slope can be observed 

across a large section of the peak but not all of the peak.   To get an accurate determination 

of the Mw the integration should be taken over the region with the negative slope.  During this 

region only the principal peak will contribute to the Mw determination.  This process has been 

implemented, when required, for all Mw determinations throughout this work.    
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Table 22: The Mw Results From EPS Isolated from Other Fermentations  
 
 

Batch 

Number 
Bacterial Culture 

Weight-average 

Molecular Weight (Mw) 

Polydispersity 

(Mw/Mn) 

Xn358          

46 hour 

Fermentation  

Lactobacillus acidophilus 

5e2 
477600 1.218 

Xn359          

46 hour 

Fermentation 

Lactobacillus helveticus 

Rosyjski 
997300

 # 
 1.445 

#
 

Mw determination of batches Xn356 and Xn360 are given in sections 3.4.1 and 3.4.2.5 respectively. 
 
#
dn/dc value for EPS produced by Lb. acidophilus 5e2 was used to approximate the Mw, Mw/Mn results.   

 

The Mw determination and polydispersity of batches Xn358 and Xn359 are provided in Table 

22.   Mw determination of batches Xn356 and Xn360 are given in sections 3.4.1 and 3.4.2.5 

respectively. 

 

3.4 Results of the Timed Fermentation Studies of Lb. acidophilus 5e2  

The production of exopolysaccharide during the fermentation process of LAB is not fully 

understood.   Lin and Chang Chien 73 have monitored the yield and molecular weight during 

the fermentation of two types of Lactobacillus helveticus (BCRC14030 and BCRC14076) and 

a Streptococcus thermophilus BCRC14085.  They have reported that for Lactobacillus 

helveticus BCRC14030 there was a significant increase in the viable counts, the Mw of EPS 

and the production of EPS throughout fermentation, which decreased towards the final 

stages as the culture proceeded through its ‘death’ phase (defined in section 1.2).  An 

investigation was carried out on Lactobacillus acidophilus 5e2, initially to determine if there 

was a change in the Mw of EPS produced throughout fermentation.    

 



Chapter 3                    Results & Discussions - Production and Characterisation of Exopolysaccharides 

- 130 - 

3.4.1 Timed Fermentation of Lactobacillus acidophilus 5e2 - Preliminary Study 

Firstly, a preliminary study was undertaken to see whether the Mw of the EPS produced by 

Lactobacillus acidophilus 5e2 would change during the fermentation process.  The study 

monitored the fermentation for 72 hours, the majority of samples were taken between 11 – 

24 hours, this is where the exponential phase for the growth of Lactobacillus acidophilus 5e2 

had been reported 182.   The samples were collected in sterile glass bottles and the EPS was 

isolated and the Mw and solid content were determined.   
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Table 23: Table of Fermentation Results (Batch Xn356) 
 
 

Time Point (Hours) 
Weight-Average Molecular 

Weight (g mol
-1

) 
Solid Content (µg mL

-1
) 

0 - - 

11 181300 68.0 

12 148500 42.0 

13 245300 92.0 

14 268000 84.0 

15 241600 88.0 

16 277500 94.0 

17 307000 116.0 

18 314100 114.0 

19 260600 72.0 

20 281300 96.0 

21 379800 142.0 

22 282700 134.0 

23 409900 152.0 

24 781100 234.0 

38 1219000 226.0 

48 1769000 258.0 

72 492800 182.0 

 

 

The results for the determination of the solid content (µg mL-1) and also the weight-average 

molecular weight measurement for each time point are provided in Table 23 and the variation 

in Mw with time is plotted in Figure 42. 
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Figure 42: Graph of Molecular Weight against Time for Batch Xn356 during Fermentation 

 

The plot of Mw against time (Figure 42), shows a dramatic change in the Mw of EPS produced 

throughout the fermentation process.   Between 12 – 24 hours there is a gradual increase in 

Mw, this is followed by a significant increase which continues for the next 24 hours (until 48 

hours).  During the final 24 hours of fermentation, the Mw decreases to approximately the 

same size distribution as at 24 hours.  Unfortunately, the majority of the sampling was carried 

out in the early stages.   
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Figure 43: Solid Content Isolated for Each Time Point during the Fermentation Process 

 

The solid content isolated at each time point was plotted (see Figure 43).  The solid content 

of the samples follows the same general trend as the change in Mw of the EPS: there is a 

distinct increase as the fermentation proceeds, which is followed by a slight decrease 

towards the end of the fermentation.     

 

3.4.2 Timed Fermentation of Lactobacillus acidophilus 5e2 (Batch Xn360)   

The results generated from the preliminary study were generally very informative, but more 

frequent time sampling was needed to verify what was happening during the stationary 

phase of the fermentation. This would hopefully provide a full explanation of the EPS 

production during the fermentation of Lactobacillus acidophilus 5e2 in skimmed milk.   

 

The fermentation procedure was monitored at more regular intervals throughout the whole 72 

hour fermentation: samples (30 mL) were taken every three hours.   Lactobacillus 

acidophilus 5e2 was fermented for 72 hours using the conditions described in section 

2.2.3.1.   This study was primarily carried out to monitor the changes to the Mw and the 
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amount of EPS produced, but other tests were performed in order to record the growth of 

Lactobacillus acidophilus 5e2, these were done by measuring the viable counts, turbidity and 

sodium hydroxide consumption during the fermentation.   The results for the tests are shown 

in Table 24.      
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Table 24: Results of 72 hour Fermentation (Batch Xn360) 
 

Sample Time 

Point (hr) 

Viable 

Count 

(cfu mL
-1

) 

log10  

cfu mL
-1

 

Turbidity 

Abs(650nm) 

% of Total 

NaOH (4M) 

Consumed 

Solid 

Content 

(µg mL
-1

) 

Weight-Average 

Molecular 

Weight (g
 
mol

-1
) 

0 100 2.00 0.0222 0.00 0.0 0 

3 316 2.50 0.0251 1.13 13.3 342500 

6 776 2.89 0.0394 4.69 31.7 364900 

9 8320 3.92 0.0549 12.44 28.3 378200 

12 20900 4.32 0.0990 24.54 81.7 530900 

15 21400 4.33 0.0938 42.40 85.0 679200 

18 20900 4.32 0.0998 64.23 83.3 910300 

21 17800 4.25 0.0845 76.36 116.7 926300 

24 15800 4.20 0.0872 82.86 123.3 1289000 

27 18200 4.26 0.0974 86.23 125.0 1285000 

30 28200 4.45 0.1051 88.72 126.7 1209000 

33 16200 4.21 0.1045 90.45 116.7 1189000 

36 15100 4.18 0.1135 91.86 108.3 1288000 

39 17800 4.25 0.0740 92.87 125.0 1212000 

42 14800 4.17 0.0739 93.92 118.3 1225000 

45 14100 4.15 0.0839 94.77 120.0 1219800 

48 13800 4.14 0.0843 95.73 126.7 1328000 

51 6160 3.79 0.1317 96.72 136.7 1251000 

54 6760 3.83 0.1167 97.64 135.0 1295000 

57 6450 3.81 0.1145 98.55 135.0 1023000 

60 4570 3.66 0.1105 99.22 143.3 1036000 

63 2040 3.31 0.1117 99.81 133.3 1073000 

66 1905 3.28 0.1183 100.00 126.7 927400 

69 2820 3.45 0.1236 100.00 130.0 929300 

72 1620 3.21 0.1241 100.00 138.3 928300 
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3.4.2.1 Viable Counts Results 

Viable count (colony forming units per mL, cfu mL-1) is a quantitative expression for the 

amount of microorganisms present, in this case the amount of Lactobacillus acidophilus 5e2.  

The viable counts for each time point, throughout the 72 hr fermentation, were determined 

and these are shown in Table 24.  A graph of the log10 of the viable counts (cfu mL-1) was 

then plotted against fermentation time (Figure 44).   
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Figure 44: Log of cfu mL
-1

 for Samples Taken during the 72 hr Fermentation of Lb. acidophilus 

 

The viable count results generated show that the growth of Lb. acidophilus 5e2 has quickly 

entered an exponential rate of growth, there is a substantial increase in growth between (0 – 

12 hours).  After 12 hours, the growth remains approximately stationary until 48 hours, and 

then slowly decreases towards the end of the fermentation.   The reason why the batch 

entered the exponential phase so rapidly could be explained by the fact that if a bacterial 

culture in the exponential phase of growth is inoculated into fresh medium, the lag phase is 

usually bypassed and exponential growth continues 190.  Also, previous work carried out at 

the University of Huddersfield by Elvin 72, Dunn 71 and Chacon-Romero 182 had optimized the 

inoculation procedure.   Previous work had indicated that EPS was not being produced 
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during the lag phase, therefore by using a large initial inoculum the lag phase would be 

reduced.   Also, by maintaining the pH at 5.82, this strain of Lb. acidophilus has been shown 

to have optimal conditions for growth.  This was studied by Chacon-Romero 182 and it has 

been reported in section 3.2.1 of this project.    An estimate for the magnitude of error 

associated with these results would be ±0.2.   

 

3.4.2.2 Turbidity Results 

Turbidity analysis uses spectrophotometry to determine the amount of cells in a culture.  This 

is not a specific test for the amount of Lb. acidophilus 5e2 present; all cells in the system will 

contribute to the reading.  This causes the measurements in opaque growth media, such as 

milk, to be very difficult and accurate readings are often not possible.   
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Figure 45: Turbidity of Samples taken during the 72 hr Fermentation of Lb. acidophilus  
 

 

A plot of the turbidity readings for each sample is shown in Figure 45.   There appears to be 

a general trend, that the absorbance(650 nm) is increasing throughout the fermentation.  During 

the time between 6 – 15 hours the increase in absorbance(650 nm) is steeper, which coincides 

with the exponential growth seen in the viable count assay shown in Figure 44.  After 15 
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hours a gradual increase occurs until the end of the fermentation, this is expected because 

both living and dead cells contribute to the turbidity measurement.  There is a drop in 

turbidity between 39 – 48 hours, but it is not thought to account for anything significant and it 

can be probably be accredited to the large errors expected from carrying out turbidity 

analysis on milk samples.  An estimate for the magnitude of error would be in the region of 

±0.02 AU.   

 

3.4.2.3 Sodium Hydroxide Consumption 

Another method of monitoring cell growth of LAB is by measuring the consumption of sodium 

hydroxide.  For this study the pH of the fermenter is controlled at 5.82 by the addition of 

sodium hydroxide (4 M).  LAB are known to produce lactic acid as the major metabolic end-

product of carbohydrate (glucose) fermentation 13.   As bacteria grow and multiply the pH of 

the medium, in the non-pH controlled fermenter, would decrease.   Therefore the amount of 

sodium hydroxide consumed to regulate pH, in a pH controlled fermenter, would 

approximately relate to how much LAB is present in the system.    Species of Lactobacillus 

produce lactic acid by either homolactic or heterolactic fermentation.  Unfortunately, the 

fermenter (BioFlo 110) was not capable of measuring the amount of ethanol and carbon 

dioxide produced during fermentation, which may have provided information about which 

type of fermentation pathway was occurring (homolactic or heterolactic).   

 

The amount of sodium hydroxide (4 M) consumed was recorded as each sample was taken.     
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Figure 46: Sodium Hydroxide Consumption during the Fermentation of Lb. acidophilus 5e2 

 

A plot of sodium hydroxide consumption during the fermentation is provided in Figure 46.  

The results are expressed as a percentage of the total amount of sodium hydroxide used 

throughout the 72 hour fermentation.  The graph shows a moderate increase in consumption 

during the first 9 hours, the increase becomes more significant between 9 and 21 hours and 

there was a gentle increase up to and including 63 hours.  There was only a modest 

consumption of sodium hydroxide between 63 and 72 hours.  The large amounts of sodium 

hydroxide used in the early stages of the fermentation agree with results for the viable counts 

and turbidity analysis seen in sections 3.4.2.1 and 3.4.2.2 respectively.      

 

The results from these techniques (viable count, turbidity and NaOH consumption) all 

indicate that the fermentation conditions used gave adequate growth of Lactobacillus 

acidophilus 5e2.  The results provided information of the rate of growth of Lactobacillus 

acidophilus 5e2 which will be discussed in relation to the yield of EPS obtained in section 

3.4.2.4.          
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3.4.2.4 Solid Content of Samples Taken During the 72 hr Fermentation (Dry Weight mg L-1) 

The solid content of samples taken every 3 hours during the 72 hour fermentation was 

determined.  As shown in section 3.2.2, the percentage of carbohydrate in the solid residue 

recovered by the isolation procedure (described in section 2.2.5.1) has been shown to be 

approximately 77.1 %, this must be considered when analysing the solid content results.  

The results are provided in Table 24 and are plotted in Figure 47.       
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Figure 47: Solid Content Recovered during the 72 hr Fermentation of Lb. acidophilus 5e2 

  

As described in section 3.2.1 there are several factors that may contribute to inaccuracies in 

these results, which must not be overlooked, therefore only general comments can be made 

about the graph shown in Figure 47.  The graph shows an increase in solid content 

throughout the fermentation, the largest increase occurs between 0 – 24 hours which 

coincides with increases observed with the viable count, turbidity and sodium hydroxide 

consumption measurements.   The graph shows fluctuations in the correlation between the 

solid content and fermentation time, which can be attributed to the difficult and lengthy 

recovery process of the EPS.  Therefore an estimate for the magnitude of error for the solid 

content is ±15mg.    The results generated, in this study, for the solid content (approximate 
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EPS yield) are similar to those previously reported by Degeest et al. 191, and Vaningelgem et 

al. 192 and Knoshaug et al. 193.  They all reported that EPS production is related to growth of 

the LAB cultures.  Degeest et al. 191, described that the EPS concentration increased 

between 8 – 12 hours, it then reduced slightly and then continued to slowly increase until the 

end of the fermentation (24 hours).   The results reported by Vaningelgem et al. 192 showed 

an increase in EPS yield during the first five hours that continued to rise for the duration of 

the fermentation (25 hours).   In each of these publications the purity of their isolated EPS 

was not provided, which makes comparisons difficult.    

 

3.4.2.5 Results of Weight-average Molecular Weight Determination 

The weight-average molecular weights were determined for EPS samples isolated from each 

time point, these are provided in Table 24 and are plotted against time in Figure 48.   
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Figure 48: Mw of Samples Taken during The 72 hr Fermentation of Lb. acidophilus 5e2    

 

The results shown in Figure 48 show that there was a significant increase in Mw during the 

first 24 hours of fermentation which was followed by the Mw remaining approximately 
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constant until 54 hours.  The Mw then started to decrease until the fermentation was stopped 

after 72 hours.  The Mw results fluctuates which can be attributed the accuracy of the 

instrumentation used.  An estimate for magnitude of error when determining Mw of EPS by 

MALLS could be as considerable as ±10%.   Results reported by Lin and Chien 73 also 

describe an increase in molecular weight, their results are shown in Table 25.  

 

Table 25: Results Reported by Lin and Chien 
73

 for the Mw of EPS during Fermentation    
 

Time Point 
Highest Weight-average 

Molecular Weight (kDa) 
Fraction (%) of EPS 

12 26 100 

26 26 68 

30 26 77 

24 26 100 

32 26,500 20 

36 26,500 52 

48 26,500 19 

60 26,500 34 

72 2,700 20 

84 2,700 23 

 

Lin and Chien 73 reported that the Mw of EPS (isolated from Lactobacillus helveticus 

BCRC14030) remained stationary, at 26 kDa, for the first 24 hours, they then reported a 

sudden increase to 26,500 kDa after 32 hours which, astonishingly, was an ~100,000 % 

increase in Mw.  The Mw remained stationary, at 26,500 kDa, until 60 hours, where it dropped 

to 2,700 kDa and remained there until the end of the fermentation.  The large increase in Mw 

of EPS they report occurs approximately 12 hours after the end of the exponential phase of 

growth.  This 12 hour delay was also seen in the fermentations discussed in this project 

(Table 23 and Table 24). 
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The Mw values that Lin and Chien report are of the highest molecular weight fraction of EPS, 

this only accounts for as little as 20 % of their total EPS at 32 hours, and also 20 and 23 % 

for 72 and 84 hours respectively.  They do not report the Mw for all the remaining 80 % of 

their sample fractions. 

 

To date, as far as we are aware, there have not been any previous reports in which the chain 

length of the exopolysaccharide is related to time.  The study reported in this thesis is the 

most reliable investigation of the EPS production and change in Mw during the fermentation 

process.     The results reported in this section have been published in the International Dairy 

Journal 194.   

 

3.4.3 Discussion of Timed Fermentation of Lactobacillus acidophilus 5e2 

The results given in section 3.4.2 show that the largest changes in EPS yield and Mw are 

seen at the end of the exponential phases.   In the period, between 6 and 15 hours, there 

was a 25-fold increase in the cell count, which was accompanied by a 3.9-fold increase in 

yield of EPS and a 3.5-fold increase in the Mw which takes place between 6 and 27 hours.   

There was a 12 hour delay between the time of the exponential cell growth, to the largest 

increase in EPS yield and Mw, this was discussed in section 3.4.2.5.   Over this region the 

increase in Mw of EPS closely matches the increase in yield and interestingly, this suggests 

that the overall number of polysaccharide chains within the system has not significantly 

changed over this period.   

 

The results suggest that during this period of rapid cell division there was extension of 

existing EPS chains, which was stimulated by the ready supply of sugar nucleotides that are 

produced for cell wall and EPS synthesis.  The increased rate of polymerisation of the EPS 

was not matched by a corresponding increase in the rate of cleavage of the polymer from its 

lipid carrier.   Once the fermentation has entered the stationary phase, between 24 and 48 

hours, the yield of EPS and the Mw remain constant.  On prolonged stirring of the system, 
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between 48 and 72 hours, the yield remains constant but the Mw slowly falls from 1,300 kDa 

to 900 kDa.  It is not fully understood why this should be the case.  One possibility, described 

by Pham et al. 70, is that cell lysis may release glycosylhydrolases that can digest the EPS, 

hence reducing exopolysaccharide chain length.  However, experiments described in chapter 

4 demonstrate that the EPS produced by Lactobacillus acidophilus 5e2 is susceptible to 

hydrodynamic shear and the very large macromolecules may simply be getting fractured by 

the stirring in the fermentation vessel.   Studies, again described in chapter 4, have also 

shown that an increase in the viscosity of the solvent in which the EPS is dissolved increases 

the hydrodynamic shear, hence the EPS chain would be more susceptible to fracture.  It has 

been reported by Ruas-Madiedo et al. 121, Ayala-Hernandez et al. 113 and Yang and Liau 195 

that the presence of EPSs significantly increases the viscosity of the fermented milk medium, 

this would explain the reduction in Mw of EPS during the latter stages of fermentation.   Yang 

and Liau describe that increasing the shear stress by increasing the viscosity or agitation has 

a detrimental effect on the production of EPS, but this contradicts the increase in the EPS 

yield observed in this study.         

    

The increase in viable counts between 6 and 15 hours indicates that approximately four new 

generations of bacteria are produced.  However, since the number of new polysaccharide 

chains has not increased significantly over the same period, it suggests that de-novo EPS 

synthesis has been switched off.  Groot and Kleerebezem 50 discuss the role of the epsA, 

epsB and epsC proteins encoded at the 5’-end of the exopolysaccharide gene cluster in the 

regulation of EPS production in Lactococcus lactis.  They have found that EPS production is 

under the control of a phosphor-regulatory system and that if epsB is phosphorylated, EPS 

biosynthesis is terminated.   Their results are in agreement with what occurs during the early 

stages of the fermentation process, the EPS biosynthesis is being switched off by 

phosphorylation of epsB.  The results are also in agreement with the fact that they were 

unable to identify a gene product that controlled exopolysaccharide chain length.   
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From the result of this study, an explanation is required as to the factors that control chain 

length.   One possibility is that chain length is controlled by a combination of factors including 

the availability of sugar nucleotides, the length of the fermentation with the subsequent 

release of glycosylhydrolases and the extent of hydrodynamic shear within the local 

environment.   It is possible that there may not be a need for a specific gene product that 

directly controls chain length.   Until a specific gene is found, the speculation will continue.    
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4. DEPOLYMERISATION OF EXOPOLYSACCHARIDES 
 

4.1 Introduction 

The results from chapter 3 describe how the weight-average molecular weights (Mw) of 

exopolysaccharides were measured and showed how the Mw changed during the 

fermentation process.   Further analysis of the EPS produced by Lactobacillus acidophilus 

5e2 was required to explore how the Mw influences the physical properties of their aqueous 

solutions.  This chapter takes a closer look at the weight-average molecular weights of EPSs 

and shows how depolymerisation techniques can be used to manipulate the physical and 

chemical properties of aqueous solutions of EPS.  

   

4.2 Depolymerisation of EPS Produced by Lactobacillus acidophilus 5e2 

To depolymerise exopolysaccharides a chemical or physical process is required, this section 

investigates three different methods: constant pressure disruption (application of 

hydrodynamic shear), ultrasonic disruption and acid-catalysed hydrolysis.   The results from 

each technique showed how the polysaccharide backbone was broken and what effect this 

had on the structure of the repeating oligosaccharide unit.   All the depolymerisation studies 

were performed on EPS produced by Lactobacillus acidophilus 5e2.  This was due to several 

reasons, firstly, Lactobacillus acidophilus 5e2 provides a good yield of EPS using the 

fermentation conditions discussed in chapter 3.  Secondly, this EPS has been shown to be 

compatible with the HP-SEC-MALLS, allowing many Mw determinations to be made, without 

reducing the system’s performance. This has not been the case with other EPS cultures 

studied, which have blocked the HP-SEC-MALLS system, causing lengthy cleaning 

procedures to be employed.    

 

All the depolymerisation studies were also performed on particular batches of Lactobacillus 

acidophilus 5e2: Xn342, Xn341 and Xn358.   These batches gave good yields of EPS and 
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the isolated EPS gave clean NMR spectra. The HP-SEC-MALLS analysis of EPS isolated 

from these batches gave a large principal peak with only a relatively small and insignificant 

secondary peak.  A clean HP-SEC-MALLS chromatogram was important because this would 

allow the changes in weight-average molecular weight of the EPS samples to be measured 

more precisely.  

 

4.2.1 Depolymerisation of Exopolysaccharides Using a Constant Pressure Disruptor 

(Application of Hydrodynamic Shear) 

The constant pressure disruptor is used in microbiology to open cells so that the DNA, 

protein, enzyme etc., contained in the cell can be extracted and analysed.  The technique 

uses pressure to force the cells through a narrow orifice.   The force acting on the cell, which 

is responsible for breaking the cell wall, is called hydrodynamic shear.   It is this force which 

was used to break the polymer chains of exopolysaccharides, the constant pressure 

disruption was used to apply hydrodynamic shear to solutions of EPS.    

 

Constant cell disruption was first carried out using five different pressures (2, 5, 10, 20 and 

40 kpsi) the sample was passed through the instrument four times and the weight-average 

molecular weight, polydispersity and the apparent hydrodynamic radius were all determined 

by HP-SEC-MALLS after each passage through the instrument.    
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Table 26: Results for the Constant Pressure Disruption Analysis of EPS Produced by 5e2    
  
 

Number of cell disruption passes 
Pressure HP-SEC-MALLS Measurement 

0 1 2 3 4 

Weight-average molecular weight     
(g mol

-1
) 

324500 226900 231100 239200 222700 

Percentage of initial Mw (%) 100 69.9 71.2 73.7 68.6 

Polydispersity (Mw/Mn) 1.217 1.212 1.175 1.173 1.155 

Apparent hydrodynamic radius (nm) 17.1 17.0 16.8 16.0 13.3 

2 kpsi 

% of initial apparent hydrodynamic 
radius 

100 99.4 98.2 93.6 77.8 

Weight-average molecular weight     
(g mol

-1
) 

323800 186000 198900 191200 191300 

Percentage of initial Mw (%) 100 57.4 61.4 59.0 59.1 

Polydispersity (Mw/Mn) 1.225 1.163 1.158 1.197 1.192 

Apparent hydrodynamic radius (nm) 18.3 14.7 13.6 14.4 13.8 

5 kpsi 

% of initial apparent hydrodynamic 
radius 

100 80.3 74.3 78.7 75.4 

Weight-average molecular weight     
(g mol

-1
) 

323800 144800 132100 120900 110900 

Percentage of initial Mw (%) 100 44.7 40.8 37.3 34.2 

Polydispersity (Mw/Mn) 1.225 1.198 1.193 1.186 1.161 

Apparent hydrodynamic radius (nm) 18.3 12.6 11.3 11.4 10.8 

10 kpsi 

% of initial apparent hydrodynamic 
radius 

100 68.9 61.7 62.3 59.0 

Weight-average molecular weight     
(g mol

-1
) 

323800 116400 102900 93800 100300 

Percentage of initial Mw (%) 100 35.9 31.8 29.0 31.0 

Polydispersity (Mw/Mn) 1.225 1.184 1.199 1.170 1.208 

Apparent hydrodynamic radius (nm) 18.3 12.7 8.3 7.0 7.2 

20 kpsi 

% of initial apparent hydrodynamic 
radius 

100 69.4 45.4 38.3 39.3 

Weight-average molecular weight     
(g mol

-1
) 

361500 102300 67200 68300 85000 

Percentage of initial Mw (%) 100 28.3 18.6 18.9 23.5 

Polydispersity (Mw/Mn) 1.135 1.222 1.228 1.113 1.208 

Apparent hydrodynamic radius (nm) 18.2 10.5 7.1 8.3 8.9 

40 kpsi 

% of initial apparent hydrodynamic 
radius 

100 57.7 39 45.6 48.9 
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A graph was plotted (Figure 49) to show the change in Mw for each pressure after each 

passage thought the constant pressure disruptor.   
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Figure 49: Graph - Constant Pressure Disruption at Different Pressures 
 

The results show that the first passage through the constant pressure disruptor decreases 

the weight-average molecular weight of the EPS.  For each pressure the decrease in Mw is 

different, the higher the applied pressure the larger the reduction in the length of the 

polysaccharide chain.    At all pressures the largest decrease in molecular weight occurs 

during the first passage through the constant pressure disruptor, the results seem to plateau 

for subsequent passes.  At each pressure, a limiting Mw was observed, similar findings have 

been reported for the depolymerisation of polysaccharides using ultrasonic shear (detailed in 

section 4.2.2).  The results for one pass through the cell disruptor at each pressure were 

studied further and a graph was plotted showing the percentage of initial Mw after passage 

through the disruptor Vs pressure (see Figure 50).    
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Figure 50: Change in Mw at Different Pressures after One Pass 
 
 

There is a definite exponential relationship between the pressure used and the change in the 

weigh-average molecular weight of the EPS, where the reduction in Mw is tending towards a 

limiting value.   The force required to break bonds through the application of shear stress 

depends on the conformation molecules adopt in solution 196.  For a rigid polymer molecule 

the force necessary for cleavage of the backbone was shown to be inversely proportional to 

the square of its length 197.   The same appears to be true for the results shown in Figure 50, 

there is a relatively good correlation between the pressure applied to the sample and the 

inverse square of the percentage mass of the product obtained after passage through the 

constant pressure disruptor shown in Figure 51.       
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Figure 51: Inverse Square of Percentage Mw Vs Pressure 

 

The correlation of force needed to snap molecules with the inverse square of the mass 

suggests that it becomes increasingly more difficult to break the molecules as they get 

smaller; as seen in the experimental results in Figure 49, a limiting mass at which 

depolymerisation stops is observed for each pressure.  Studies of ultrasonic disruption of 

polysaccharides found similar results with a limiting mass being recorded which could not be 

reduced, upon continuous irradiation 198.       

 

These results showed that by changing the pressure accordingly, any desired molecular 

weight could be achieved within an absolute lower limit which is approximately 20 % of the 

initial Mw.  As discussed in the introduction (section 1.4.1) exopolysaccharides play an 

important role in improving the rheology, texture and mouth feel of fermented products, 

therefore being able to control the molecular weight of the exopolysaccharides would be of 

huge benefit for this type of application.  It has been reported that an EPS with a larger Mw 

produces solutions that are more viscous; later in this chapter the relationship between the 

intrinsic viscosity of EPS (produced by Lb. acidophilus 5e2) and Mw will be studied.    
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The analysis has shown that the Mw of EPS decreases with passage through the constant 

cell disruptor, the polydispersities of the EPS prepared at different pressures were also 

measured to see if they altered as the Mw decreased.  The polydispersity (Mw/Mn) is a ratio of 

weight-average molecular weight divided by the number-average molecular weight.  A 

polymer is monodispersed if the Mw/Mn is equal to one, but the term monodispersed is 

conventionally applied to synthetic polymers which have a ratio less than 1.1 199.  The graph 

in Figure 52 shows the polydispersity measurements from the same set of samples as shown 

in Figure 49.  
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Figure 52: Polydispersity at Different Pressures for Four Passes 
 

       

The results showed that the polydispersity remained constant at each pressure despite the 

decrease in Mw, this confirmed that the exopolysaccharide was maintaining the same narrow 

distribution of Mw after passage through the constant pressure disruptor.  To put the 

polydispersity values into context, a typical synthetic polymer would have a polydispersity 

value of approximately 4, polyethylene might be more heterogeneous, having a 

polydispersity of around 30 199.   There have been reports using other depolymerisation 

techniques which have shown the polydispersity to change.   Chen et al. 200 have reported a 
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decrease in the polydispersity during ultrasonic degradation of chitosan, where the 

polydispersity decreased from approximately 10 to 2.   But the use of enzyme degradation 

has been shown to increase the polydispersity of cellulose by Pala et al. 201, who report an 

increase in the polydispersity from approximately 5 to 9, in some cases.    The results 

showing constant polydispersity (Figure 52) suggest that non-random breakages to the 

polysaccharide chain are occurring.  Czechowska-Biskup et al. 126 are another group to have 

studied ultrasonic disruption of chitosan.  They suggest that chain scission proceeds in a 

non-random manner, where there is a definite minimum chain length which limits the 

degradation process, and when this is reached no further scission is observed.  According to 

Czechowska-Biskup et al. 126, breakages near the mid-point of the polymer chain are 

preferred. Therefore, when the exopolysaccharide is subjected to hydrodynamic shear it will 

be expected to cleave mid chain to generate products with Mw of approximately 50 % of their 

original values, that maintain a similar polydispersity.   This seems to be the case for the 

results from our experiments (Figure 52).  

 

The apparent hydrodynamic radius of the samples was also determined, where the 

hydrodynamic radius of a molecule is the size of its radius when in solution, taking into 

account all the water molecules it carries in its hydration sphere. 
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Figure 53: Apparent Hydrodynamic Radius at Different Pressures for Four Passes 
 

 

A plot of the change in apparent hydrodynamic radius at each pressure for each pass 

through the constant pressure disruptor is provided in Figure 53.  At the higher pressures 

there is a decrease in the apparent hydrodynamic radius, but the reduction is not as great as 

seen for the decease in Mw.  When comparing results (using percentage of initial value), after 

the first pass through the cell disruptor at 40 kpsi, the Mw decreases to 28.3 % of the original 

value, but the apparent hydrodynamic radius only reduces to 57.7 %.  These results suggest 

that an EPS with a lower molecular weight can hydrate more, relative to its size, than an EPS 

with a higher molecular weight.  To provide an explanation for this, the solution conformation 

would need to be determined, as the conformation may be different after being subjected to 

hydrodynamic shear.   For example, Tuinier et al. 183 states that, in solution,  

exopolysaccharides are not rigid rods but behave as random coil polymers.  Therefore a 

change in the conformation of the polysaccharide after constant pressure disruption could 

cause the coiled exopolysaccharides to straighten, hence, changing the apparent 

hydrodynamic radius.   
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The constant pressure disruption work was then repeated using batch Xn341, but this time 

the pressure was increased after each pass (1st pass at 2 kpsi, 2nd pass at 5 kpsi etc.).   

Samples were taken after each pass and the molecular weight was determined.   

 

Table 27: Results of the Constant Pressure Disruption of the EPS using Water as Solvent 
 

Solvent Water - Concentration 250 µg mL-1 

Passage through 

cell disruptor 
Pressure (kpsi) 

Weight-average 

molecular weight  

(g mol-1) 

Percentage of 

initial average 

molecular weight 

0 0 563900 100.00 

1st 2 459000 81.40 

2nd 5 304000 53.91 

3rd 10 262000 46.46 

4th 20 187000 33.16 

5th 40 181000 32.10 

 

The change in Mw was plotted against pressure (Figure 54).  
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Figure 54: Change in Mw using Different Pressures for Each Pass 
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The graph in Figure 54 had a similar profile to the graph in Figure 50.  Using this procedure 

the decrease in Mw after the 5th pass (40 kpsi) was the same as the original procedure at 40 

kpsi (results in Table 27), when taking the errors of the method into account.   This new 

procedure was developed to allow constant pressure disruption analysis to be carried out on 

less EPS sample, as only a limited amount of EPS was available.    

 

The viscosity of the solvent has been shown to influence the hydrodynamic shear that is 

applied on the solute 199, hence by altering the viscosity of the solvent the degree of 

depolymerisation using the constant pressure disruptor should change.   

    

The same experimental procedure was then carried out using three different solvents, 

glycerol, water and a glycerol : water mixture (50:50).  These solvents were chosen because 

they had different kinematic viscosities, as can be seen in Table 28; also the EPS was 

soluble in each of the solvents.     

 

Table 28: Table of the Viscosities of the Solvents 
 

Solvent Kinematic Viscosity of Solvent at 20 °C 

(Shankar and Kumar, 1994) 178  

Water 1.01 cSt 

Glycerol: Water 5.26 cSt 

Glycerol 1160 cSt 

 

The EPS was dissolved in each solvent and passed through the constant pressure disruptor 

using the new procedures shown in Table 27.   The results that were generated for EPS 

dissolved in glycerol / water and glycerol are given in Table 29 and the results for EPS 

dissolved in water were given in Table 27.  
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Table 29: Results of the Constant Pressure Disruption of the EPS using Two Other Solvents  
 

Solvent Glycerol / Water (50:50) - concentration 250 µg mL-1 

Passage through 

constant pressure 

disruptor 

Pressure (kpsi) 

Weight-average 

molecular weight    

(g mol-1) 

Percentage of initial 

Mw 

0 0 549000 100.00 

1st 2 292400 53.26 

2nd 5 200600 36.54 

3rd 10 143600 26.16 

4th 20 67130 12.23 

5th 40 71230 12.97 

Solvent Glycerol - concentration 250 µg mL-1 

Passage through 

constant pressure 

disruptor 

Pressure (kpsi) 

Weight-average 

molecular weight    

(g mol-1) 

Percentage of initial 

Mw 

0 0 341500 100.00 

1st 2 36070 10.56 

2nd 5 33130 9.70 

3rd 10 28110 8.23 

4th 20 16720 4.90 

5th 40 15490 4.54 

 

The results for the percentage of initial Mw for the EPS dissolved in each solvent are plotted 

in Figure 55.    
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Figure 55: Graph of Constant Pressure Disruption using Different Viscosity Solvents 
 

 

The graph shows that the Mw of the EPS decreases for each solvent, but more significantly, 

the degree of depolymerisation for each solvent was different.   The results show that the 

greater the viscosity of the solvent, the greater the degree of depolymerisation of the EPS.   

Using glycerol as the solvent, the Mw was decreased to 1.5x104 g mol-1, i.e. 4.5 % of the 

initial Mw, compared to a decrease to 1.8x104 g mol-1, 32.1 % of the initial Mw, when water 

was used as the solvent.   The results suggest that a more viscous solvent exerts a larger 

hydrodynamic shear on the EPS.   The application of mechanical or shear stress to 

depolymerise biological macromolecules has a long history, although the majority of studies 

have concentrated on proteins and nucleic acids 124 196.   Although Harrington and Zimm 

carried out the majority of their work on DNA, they described the mechanical degradation of 

polystyrenes in different solvents.  They report three techniques of applying hydrodynamic 

shear by using; a high pressure capillary, a high pressure piston / cylinder and a 

homogeniser.    The high pressure piston / cylinder technique is similar to the constant 

pressure disruptor, and the results generated for polystyrenes are comparable to the results 

observed here for EPS (Table 28 and Table 29). 
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Harrington and Zimm report a decrease to 24 % of the initial Mw after 5 passes through the 

high pressure piston / cylinder at 3.2 kpsi.    There have only been a small number of studies 

measuring the effect of shear stress on polysaccharides 202, other studies have looked at the 

application of ultrasonic disruption as a technique to depolymerise polysaccharides 198 203.  

Depolymerisation of EPSs using ultrasonic disruption will be discussed in section 4.2.2.   

 

The study discussed in this section, which uses a constant pressure disruptor to apply 

hydrodynamic shear to exopolysaccharides, appears to be the first of its kind.  The controlled 

manner in which the EPS can be depolymerised should provide the carbohydrate community 

with a method to explore the rheology of different Mw ranges for a variety of polysaccharides 

in solution, including EPSs.  

 

Solutions of the EPS were subjected to 1H-NMR before and after being passed through the 

pressure disruptor, to determine whether there had been a change to the structure of the 

repeating oligosaccharide unit.   The anomeric region of the 1H-NMR spectrum was analysed 

for both samples (Figure 56).   

 

Figure 56: 
1
H-NMR Spectrum of the Anomeric Region for EPS Produced by Lb. acidophilus 5e2 

 
Blue Spectrum – Before being passed through the cell disruptor   
Red Spectrum – After being passed through the cell disruptor  
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The 1H-NMR spectrum, shown in Figure 56, of a constant pressure disrupted sample shows 

that the anomeric region remains unaltered; this suggests that this depolymerisation 

technique is not chemically modifying the oligosaccharide repeating unit.   The hydrodynamic 

shear must be creating random glycosidic breakages in the oligosaccharide repeating unit.     

 

4.2.2 Depolymerisation of Exopolysaccharides using Ultrasonic Disruption 

The next depolymerisation technique used was ultrasonic disruption; as with the constant 

pressure disruptor, ultrasonic disruption is used primarily by the Biology Community to 

extract biological macromolecules from cells.  As explained in section 1.7.1.2 ultrasonic 

disruption works by high frequency electrical energy that is converted to mechanical 

vibrations, these vibrations create pressure waves which cause the formation of microscopic 

bubbles or cavities.  These expand during negative excursion and implode violently during 

the positive excursion.  This phenomenon is referred to as ‘cavitation’, which creates millions 

of shockwaves in the liquid as well as elevating the pressure and temperature.  The 

cumulative effect causes extremely high levels of energy to be released into the liquid.  

Cavitation generates shear and thermal stresses, whereas constant pressure disruption 

relies exclusively on hydrodynamic shear.      

 

The force of cavitation causes scission of polysaccharides, which can lead to the production 

of radicals.   Radicals are produced as the glycosidic linkages are broken in a Fenton 

reaction system 204.   Radicals are short lived but extremely reactive molecules, capable of 

degrading all kinds of organic molecules 205.   Scission of polysaccharides has been 

successfully measured by Schweikert and co-workers by monitoring the decrease in the 

viscosity of a polysaccharide solution.   Radical scavengers can be added to remove the 

radicals before they have time to cause unwanted side reactions.  Sodium chloride and 

acetone have been used as radical scavengers in work described by Paradossi et al. 179 and 

other workers have successfully used n-butanol 206.        

   



Chapter 4                                          Results & Discussions – Depolymerisation of Exopolysaccharides 

- 161 - 

In this project acetone (1 %v/v) and sodium chloride (0.1 M) were added to the EPS solutions 

as radical scavengers.   Ultrasonic disruption was carried out on solutions of EPS (1000 µg 

mL-1) using three different amplitudes, 20, 50 and 80 %.  The results for the change in Mw 

and polydispersity during ultrasonic disruption are provided in Table 30.  
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Table 30: Results - Ultrasonic Disruption of EPS without Temperature Control    

Time (Minutes) 
Weigh-average Molecular 

Weight    (g mol
-1

) 

Percentage of initial 

MW 

Polydispersity 

(Mw/Mn) 

20 % Amplitude 

0 419000 100.0 1.253 

5 49380 11.8 1.130 

10 43810 10.5 1.270 

15 51270 12.2 1.214 

20 35690 8.5 1.402 

25 34840 8.3 1.168 

30 45120 10.8 1.509 

35 28400 6.8 1.667 

40 25490 6.1 1.322 

45 34530 8.2 1.474 

50 16090 3.8 1.835 

50 % Amplitude 

0 885300 100.0 1.098 

5 139500 15.8 1.435 

10 41210 4.7 1.746 

15 35370 4.0 1.804 

20 26720 3.0 1.555 

25 82140 9.3 1.512 

30 86490 9.8 1.280 

35 26330 3.0 1.942 

40 83500 9.4 1.345 

45 76320 8.6 1.447 

50 44470 5.0 1.572 

80 % Amplitude 

0 406300 100.0 1.812 

5 55860 13.7 1.777 

10 28220 6.9 1.580 

15 43660 10.7 1.942 

20 32070 7.9 1.663 

25 44600 11.0 1.229 

30 73320 18.0 1.372 

35 60780 15.0 1.797 

40 45350 11.2 1.887 

45 31960 7.9 1.760 

50 46400 11.4 1.218 
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 A plot of the Mw recorded after disruption at each amplitude is given in Figure 57; the 

ultrasonic disruption was carried out for 50 minutes without temperature control.   
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Figure 57: Graph – Ultrasonic Disruption Results of EPS (No Temperature Control) 

 
 

The results generated show that when ultrasonic disruption is performed without temperature 

control, the polysaccharide chain is broken quickly.  The EPS chain length was reduced to 

approximately the same Mw for each different amplitude and this occurred exclusively within 

the first five minutes.  Subsequent sonication, for the next 45 minutes, does not alter the EPS 

chain length.  The sudden decrease in the first five minutes was probably due to the heat 

produced.  As discussed earlier in this section, there is significant heat production during the 

cavitation process, the increase in heat, decreases the activation energy required for the 

shockwaves to break the EPS chain.     

      

The changes in polydispersity during the ultrasonic disruption are reported in Table 30, when 

plotted (Figure 58) they show a similar pattern to the polydispersity results seen for the 

depolymerisation using the constant pressure disruptor.    
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Figure 58: Polydispersity Results for Ultrasonic Disrupted EPS (No Temperature Control) 
 

 

The polydispersity of the EPS solutions, measured at each amplitude, remains constant 

throughout the ultrasonic disruption.  The T0 values at each amplitude differ because different 

batches of EPS were used.  These results show similarities to the polydispersity values 

determined for the EPS solutions that were depolymerised by hydrodynamic shear discussed 

in section 4.2.1.  The results lead to the same conclusion, where non-random scission is 

evident, and that the breakages are occurring mid-chain.   As discussed previously (section 

4.2.1), Czechowska-Biskup et al. 126 have reported that mid-chain breaking of 

polysaccharides is preferred.         

 

The depolymerisation of EPS using ultrasonic disruption was repeated, surrounding the EPS 

solutions with an ice bath to control the temperature; the results are given in Table 31.     
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Table 31: Results - Ultrasonic Disruption of EPS Solutions in an Ice-bath    

 

Time (Minutes) Weigh-average Molecular Weight (g mol
-1

)  Percentage of initial MW 

20% Amplitude 

0 425600 100.0 

5 382500 89.9 

10 350100 82.3 

15 294000 69.1 

20 205000 48.2 

25 175600 41.3 

30 182300 42.8 

35 166500 39.1 

40 194000 45.6 

45 181600 42.7 

50 170800 40.1 

50% Amplitude 

0 425600 100.0 

5 266200 62.5 

10 205000 48.2 

15 136100 32.0 

20 87750 20.6 

25 100200 23.5 

30 71550 16.8 

35 86390 20.3 

40 76880 18.1 

45 87080 20.5 

50 74540 17.5 

80% Amplitude 

0 425600 100.0 

5 151000 35.5 

10 102300 24.0 

15 64500 15.2 

20 65800 15.5 

25 42020 9.9 

30 36960 8.7 

35 45170 10.6 

40 33370 7.8 

45 46190 10.9 

50 47710 11.2 
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Figure 59: Graph – Ultrasonic Disruption Results of EPS (Using an Ice-bath) 

 

The results presented in the graph (Figure 59) show that, in ice, the EPS depolymerises at a 

slower, more controlled rate.  Clear differences can be seen between the three amplitudes: 

using greater amplitude increases the degree of depolymerisation.   The results generated 

show that after 50 minutes of ultrasonic disruption, the Mw using 20 % amplitude is 40.1 % of 

the initial Mw, compared to a decrease to 17.5 % at 50 % amplitude and 11.2 % at 80 % 

amplitude.   From observation of the results, the depolymerisation of the EPS can only be 

reduced to a limiting value for each amplitude, where no further chain scission is possible.   

Similar limiting values and have been reported by Basedow and Ebert 207, Henglein and 

Gutierrez 208, Malhorta 209 and Price et al. 210 who all used ultrasonic disruption to degrade 

polymers in aqueous solutions.   Limiting values for depolymerisation have also been 

discussed in this report when using the constant pressure disruptor.  

 

The overall depolymerisation, using ultrasonic disruption, is not as controlled as using cell 

disruption, but the technique can accommodate a much larger sample volume, making this 

technique more attractive for conducting an experiment to determine the relationship 

between EPSs Mw and viscosity.  An investigation to monitor the relationship between 
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molecular weight and viscosity of this bacterial polysaccharide is described in section 4.2.3. 

Work published by other groups, Camino et al. 127 for example, have reported the ultrasonic 

disruption of hydroxypropylmethylcellulose.  They refer to their depolymerisation technique 

as the application of high-intensity ultrasound, but in their experiment they describe using an 

identical ultrasonic processor as was used in this thesis.  The results they report for the 

reduction in Mw are comparable to those produced here and shown in Figure 59.    

 

The polydispersity results, for the sample surrounded by ice, showed the same trend as 

previous results that were ultrasonicated without temperature control.   

 

Solutions of EPS were subjected to 1H-NMR before and after being exposed to ultrasonic 

disruption, to determine whether there had been a change to the structure of the repeating 

oligosaccharide unit.   The anomeric region of the 1H-NMR spectrum was analysed for both 

samples (Figure 60).   

 

 

Figure 60: 
1
H-NMR Spectrum of the Anomeric Region for EPS Produced by Lb. acidophilus 5e2 

 

 

 Blue Spectrum – Before ultrasonic disruption  
Red Spectrum – After ultrasonic disruption  
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The 1H-NMR spectra of an ultrasonicated sample shows that the anomeric region remains 

unaltered; this suggests that this depolymerisation technique produces no modifications to 

the polysaccharide backbone structure.  The spectra of the EPS sample before (blue 

spectrum) and after (red spectrum) ultrasonic disruption are shown in Figure 60.  The signal 

to noise ratio of EPS after ultrasonic disruption is much lower because of the presence of 

sodium chloride, which was added during the sample preparation.  The solution contained 

five times more NaCl than EPS.   It is well documented that salts reduce the signal strength 

of both 1H and 13C-NMR analysis 211.  The EPS solution could have been dialysed to remove 

the salt, but it was not expected to be of any benefit, as the peaks in the NMR could still be 

interpreted.    

 

The 1H-NMR for ultrasonicated EPS gives a similar spectrum to constant pressure disrupted 

EPS, confirming that by using these two physical depolymerisation techniques, random 

breakages in the oligosaccharide repeating unit are occurring.          

 

4.2.3 Intrinsic Viscosity Measurements of EPS Solutions 

There have been several publications which report that the viscosity of a polysaccharide 

solution can be reduced by depolymerisation, as previously discussed. Iida et al. 203, have 

used ultrasonic disruption to effectively decrease the viscosity of gelatinous starch.  In this 

section the intrinsic viscosity measurement of the EPS produced by Lactobacillus acidophilus 

5e2, at different Mw distributions, is reported and discussed.     

 

The approximate intrinsic viscosities for a series of EPS solutions which have different 

weight-average molecular weights were determined using an Ostwald glass capillary 

viscometer.  All measurements were recorded at 20±1 °C, using the average of three 

concordant determinations.  The intrinsic viscosities could only be calculated approximately 

because of the insufficient temperature control of the water bath.  Temperature significantly 

effects viscosity measurements; therefore only instrumentation capable of controlling the 
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temperature by at least ±0.2 °C should be used to measure viscosity.  The results generated 

from this study were used mainly for the purpose of assessing changes in intrinsic viscosity, 

not calculating accurate values.    Ultrasonic disruption was used to create EPS solutions of 

different weight-average molecular weights as described in section 4.2.2.  A sample of EPS 

(1000 µg mL-1) produced by Lactobacillus acidophilus 5e2 was split into four equal portions.   

Each sample was sonicated for different lengths of time to change the molecular weight 

distribution (see Table 32).   The density and drain times were determined for three 

concentrations of each sonicated sample solution (A – D) and the η/η* was calculated using 

Equation 1, where t is the drain time of the sample, and t* the drain time of the sample 

diluent, and ρ is the density of the sample and ρ* the density of the sample diluent.   

 

η / η* = (t / t*)*(ρ / ρ*) 

Equation 1 
199
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Table 32: Viscosity Results and Determination of Approximate Intrinsic Viscosity     
 

Batch: Xn358 
Concentration   

(g dL
-1

) 

Sample A 

No 

Sonication 

Sample B 

10 min 

Sonication 

Sample C 

20 min 

Sonication 

Sample D 

40 min 

Sonication 

0.1 1.0151 1.0151 1.0151 1.0151 

0.05 1.0091 1.0091 1.0091 1.0091 

0.025 1.0055 1.0055 1.0055 1.0055 

Density at    

20 °C (g cm
-3

) 

Sample Diluent 0.9982 0.9982 0.9982 0.9982 

0.1 430.01 387.59 380.05 362.02 

0.05 372.54 355.75 349.23 343.51 

0.025 350.07 342.13 339.86 337.08 

M
e
a
s
u

re
m

e
n

ts
 

Average Drain 

Time
# 
at 20 °C 

(sec) 

Sample Diluent 333.32 333.32 333.32 333.32 

0.1 1.312 1.183 1.160 1.105 

0.05 1.130 1.079 1.059 1.042 

0.025 1.058 1.034 1.028 1.019 

η/η* 

Sample Diluent 1.000 1.000 1.000 1.000 

0.1 3.119 1.825 1.595 1.045 

0.05 2.598 1.578 1.184 0.836 

0.025 2.320 1.360 1.108 0.748 

C
a
lc

u
la

te
d

 V
a
lu

e
s
 

(η/η*-1)/Cp 

Sample Diluent - - - - 

The densities of each set of concentrations (Samples A – D) were assumed to be the same before 
and after ultrasonic disruption.   Cp = concentration in g dL

-1
.  

#
 Average of three repeats 

 

 

The (η/η*-1)/Cp value was then calculated for each concentration of the sonicated sample 

solutions (A – D) and then plotted against the concentration.   The approximate intrinsic 

viscosity was determined for each sample solution by calculating the intercept of the 

trendline, shown in Figure 61 and these are presented in tabular form in Table 33.   
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Figure 61: Determination of the Intrinsic Viscosities at Each Molecular Weight Distribution 

 

For each set of samples an increase in concentration gave a longer drain time.  Also, as 

expected, the calculated intrinsic viscosities decreased for the sample solutions with lower 

weight-average molecular weights.   The drain time for Sample C (1000 µg mL-1) was slightly 

longer when compared to times for the other solutions, this caused the gradient of the slope 

to be steeper than expected.  This can probably be attributed to some solid particles affecting 

the drain time through the glass capillary viscometer or fluctuation in the temperature of the 

water bath.    

 

Table 33: Results - Intrinsic Viscosity and Weight-average Molecular Weights for Each Sample   
 

Batch: Xn358 

Sample A 

No 

Sonication 

Sample B 

10 min 

Sonication 

Sample C 

20 min 

Sonication 

Sample D 

40 min 

Sonication 

Approximate Intrinsic Viscosity [η] (dL g
-1

) 2.057 1.235 0.878 0.643 

Gradient  10.646 6.039 7.025 4.000 

Mw  (g mol
-1

) 477600 304500 213900 159000 

Percentage of initial Mw 100.0% 63.8% 44.8% 33.3% 
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The intrinsic viscosity is the contribution of the solute to the viscosity of a solution.  A plot of 

approximate intrinsic viscosity against the weight-average molecular weight of the EPS is 

given in Figure 62.  The graph shows that the relationship between the two variables is not 

directly proportional.  
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Figure 62: Approximate Intrinsic Viscosity against Weight-average Molecular Weight  

 

 

Further information can be determined by applying the Mark–Houwink–Kuhn–Sakurada 

equation which gives the relationship between intrinsic viscosity and molecular weight.    

 

[η] = K*Mw
a 

Equation 2: Mark–Houwink–Kuhn–Sakurada Equation 
198

 
 

 

Using this equation it is possible to determine the stiffness of the polymer chain.   Exponent a 

can reflect the chain geometry such as branched, sphere, rod or coil.   The slope (term a) 

can be calculated from a plot of log [η] against log Mw.    
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Figure 63: Mark–Houwink–Kuhn–Sakurada Plot of the EPS produced by Lb. acidophilus 5e2 
 

 

A plot of log [η] against log Mw for the results generated from the EPS produced by Lb. 

acidophilus 5e2 can be seen in Figure 63, which gives a value for a of approximately 1.0.   If 

in solution, term a relates to the following chain geometry: if the polymer molecules are rigid 

rods, then a = 2.  On the other extreme, if the polymers are hard sphere, a = 0.   If a = 1, the 

polymers are semi-coils 212. The result of 1.0 suggests that the chain geometry for the EPS 

produced by Lb. acidophilus 5e2 is semi-coil, but it must be taken into account that this value 

has been calculated from approximate intrinsic viscosity values.    

 

The intrinsic viscosity results for the EPS produced by Lb. acidophilus 5e2 were compared to 

other polysaccharides that have been reported.  Direct comparisons of the intrinsic 

viscosities of polysaccharides are often misleading, due the dependence on molecular 

weight.   The EPS produced by Lb. acidophilus 5e2 had an intrinsic viscosity of 

approximately 0.6 – 2.0 dL g-1 over the Mw range of 1.59x105 – 4.78x105 g mol-1, which 

compares to guar (10 – 11 dL g-1, between 50 – 90 °C) 213; pectin (3 – 6 dL g-1, for Mw 

145000 – 180000 g mol-1) 214 and an EPS from Cyanospira capsulata (~22 dL g-1, in 0.1 M 
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NaCl, Mw not provided) 215.   Another EPS, Lactococcus lactis subsp. Cremoris ARH53, has 

also been reported to have an Mw of 1.47x106 g mol-1 and an intrinsic viscosity of 

approximately 20 dL g-1 168.  When compared to these values, the intrinsic viscosity of the 

EPS produced by Lb. acidophilus 5e2 is not very viscous, this suggests that without chemical 

modifications this particular EPS could not be used as a thickening, stabilizing or gelling 

agent in foods or pharmaceuticals.  Groot et al. 50 state that an intrinsic viscosity as high as 

20 dL g-1, normally corresponds to weight-averaged molar weights of the order of 106 g mol-1.  

The EPS produced by 5e2 has a Mw of 4.78x105 g mol-1, but only an intrinsic viscosity of 2.0 

dL g-1, showing that the intrinsic viscosity is low.   

 

Polysaccharides with high intrinsic viscosities normally contain charged groups and 

branches, such as xanthan for example, which contains (1→4) β-D-glucose units along its 

backbone, and a substituted trisaccharide at the carbon C3 position on every other D-glucose 

residue.  The trisaccharide consists of a D-glucuronic acid unit between two D-mannose units, 

approximately half of the terminal D-mannose units contain a pyruvic acid residue linked via 

keto groups to the 4 and 6 positions, with an unknown distribution.  The D-mannose linked to 

the main chain contains an acetyl group at position O-6 216.    

   

Other polysaccharides, biosynthesised from plants, such as pectins and alginates are used 

for their gelling properties.  These sugars are not neutral and contain monosaccharides that 

bear carboxylic acids or sulphated groups.   The charged nature of these sugars provides 

them with solubility in water, even when of high molecular weight.                  

 

One reason why the intrinsic viscosity of the EPS produced by Lb. acidophilus 5e2 was low 

could have been because the intrinsic viscosity of the EPS was measured using solutions 

that contained sodium chloride (100mM).  There has been work published by Khourvieh et al. 

217, reporting that the intrinsic viscosity of xanthan decreases to less than 50 % when the 

intrinsic viscosity of the polysaccharide is measured in sodium chloride (40 mM) as opposed 
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to  water containing no sodium chloride.  It is believed that the sodium chloride influences the 

structure of xanthan, making it become more ordered in conformation.  This is due to the 

ionic strength of the sodium chloride.   This same effect could be the reason why a low 

viscosity has been observed for the EPS produced by Lactobacillus acidophilus 5e2: the 

sodium chloride concentration in the solution was 100mM, more than double that used in the 

xanthan study.   The sodium chloride was present to provide chloride ions to scavenge for 

any radicals produced by the ultrasonic disruption process.   In hindsight, the solutions 

should have been dialysed after sonication to remove the sodium chloride, this would be a 

recommendation for any future intrinsic viscosity work on EPSs that uses ultrasonic 

disruption.    If there is a difference in the viscosity of an EPS in the absence and presence of 

salt, then the EPS is showing polyelectrolyte behaviour.     

 

The application of physical methods, hydrodynamic shear and ultrasonic disruption to 

depolymerisation of exopolysaccharides has been shown to be restricted by the limiting 

values, where the no further scission of the chain is possible.   The techniques have been 

able to provide a method to determine the intrinsic viscosity of the EPS, but they have not 

been able to reduce the polymer chains down to oligosaccharide units, which would be 

useful for intact structural analysis by LC-MS to be discussed in chapter 5.       

 

4.2.4 Depolymerisation Using Mild Acid-catalysed Hydrolysis  

The constant pressure and ultrasonic disruption depolymerisation techniques use the 

application of physical forces to break polysaccharide chains.  Using ultrasonic disruption 

and hydrodynamic shear (applied using a constant pressure disruptor) the Mw of EPSs can 

be reduced in a controlled manner but to a limiting value.  It is also possible to depolymerise 

using mild acid-catalysed hydrolysis as a depolymerisation technique.   This process uses 

the application of a chemical reaction to break the polysaccharide chain; because of this, it 

was expected that this technique would potentially modify the structure of the EPS as 

discussed in section 1.7.1.4.   
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Acid-catalysed hydrolysis was carried out on a solution of EPS (1000 µg mL-1) using mild 

conditions (trifluoroacetic acid (0.2 M) at 30 °C).  Samples were removed from the reaction 

mixture periodically, neutralised and the Mw of the EPS was determined.   The results for the 

Mw and polydispersity of the EPS are given in Table 34. 
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Table 34: Results – Mild Acid-catalysed Hydrolysis of EPS Produced by Lb. acidophilus 5e2 
 
 

Time (Minutes) Mw of Major Peak  (g mol-1) Percentage of Initial Mw 

0 489100 100.00 

30 399200 81.62 

60 353000 72.17 

90 314700 64.34 

120 298800 61.09 

150 247700 50.64 

180 200500 40.99 

210 199000 40.69 

240 195500 39.97 

270 199700 40.83 

300 171800 35.13 

330 150700 30.81 

360 158600 32.43 

390 160600 32.84 

420 116400 23.80 

450 130100 26.60 

1260 59930 12.25 

1500 53710 10.98 

 

 

A plot of the results for the percentage of initial Mw of the EPS against time are provided in 

Figure 64.    
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Figure 64: Graph – Percentage of Initial Mw against Time for the Hydrolysis of the EPS  
 

The Mw of the EPS decreases during mild acid-catalysed hydrolysis, on completion of the 

reaction, after 1500 minutes, the Mw of the EPS produced by Lb. acidophilus 5e2 had 

decreased to approximately 11 % of the initial Mw.  The hydrolysis reaction has the profile of 

a first order reaction.   

 

The decrease in Mw of EPS would decrease much more rapidly if a stronger acid was used 

e.g. sulphuric acid, and also if a higher temperature was employed.  Complete acid 

hydrolysis is a fundamental part of monosaccharide analysis of polysaccharides, which has 

been discussed in section 1.6.1.1.   Using stronger acid and higher temperature would 

reduce exopolysaccharides all the way to monosaccharides, by using conditions such as 

TFA (2 M) at 120 °C for 3 hours.  Complete acid hydrolysis to monosaccharides will be 

discussed in chapter 5.     
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It is known that acid-catalysed hydrolysis would remove the N-acetyl-groups on the N-acetyl-

glucosamine residue, modifying it to a glucosamine 83.   It is clear from the 1H-NMR spectra 

that there is substantial modification of the EPS (Figure 65). 

 

 

 
Figure 65:

 1
H-NMR of EPS Produced by 5e2 after Acid Hydrolysis (1500 minutes) 

 

There are extra signals seen in the 1H-NMR spectrum for the EPS sample after hydrolysis 

(Red Spectrum), these clearly suggesting that there has been some modification to the 

oligosaccharide repeating unit.    The 1H-NMR signals for the hydrolysed EPS sample are not 

very intense, this is thought to be due to the chemical degradation of the EPS, and to the 

presence of salts, from the neutralisation of trifluoroacetic acid.  Sodium carbonate was used 

to quench the hydrolysis reaction.   The problem with this technique, when comparing it to 

the physical methods, is that chemical modifications occur to the structure, which may 

reduce the application of this technique to be used for controlled depolymerisation.    

Blue Spectrum – Before mild acid-catalysed hydrolysis  
Red Spectrum – After mild acid-catalysed hydrolysis for 1500 minutes 

A       B      C     D      E  F  G 
     (N-acetyl) 

Connected     Side  
      to C        Chains 
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5. NEW METHODS FOR ANALYSIS OF EXOPOLYSACCHARIDES 
 

5.1 Introduction  

In this chapter, novel methods for the structural analysis of exopolysaccharides are 

described.   Firstly a novel method for the analysis of monosaccharide composition will be 

discussed.   Secondly, a novel LC-MS method for the analysis of intact oligosaccharides will 

be explored.   Finally, linkage analysis of exopolysaccharides using a novel LC-MS-MS 

approach will be considered.        

  

5.2 Reductive Amination of Carbohydrates  

The most common sugar residues found in the exopolysaccharides secreted from LAB are D-

glucose, D-galactose, L-rhamnose and N-acetyl-aminosugars 5.  A procedure for labelling the 

carbohydrates using reductive amination, providing monosaccharides with both a UV 

chromophore and charge, is discussed in this section.        

 

 

The process of reductive amination is explained in section 1.7.2.1, where an amine reacts 

with a carbonyl group to form an aminol species, which subsequently loses one molecule of 

water in a reversible reaction to form an imine.  The imine is then reduced to a secondary 

amine.   Successful reductive amination has been carried out by reaction of benzylamine 136, 

2-aminobenzoic acid 137 and 2-aminobenzamide 137, with reducible carbohydrates.    

 

In this study the derivatisation procedure described by Suzuki et al. 138, provided the best 

results:  the derivatisation procedure was fast and the amine used was readily available and 

relatively inexpensive.   The reaction used a 50 times molar excess of amine (p-

aminobenzonitrile) and a small amount of acid to catalyse formation of the imine.  The imine 

was then reduced using a relatively mild reducing agent, sodium cyanoborohydride, to form a 
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secondary amine, as shown in Figure 66.   The majority of excess reagents were removed by 

liquid / liquid extraction using ethyl acetate.     

   

H O H NR

CH
2

NHR

 

Figure 66: Reductive Amination Reaction  

 

The first carbohydrate examined was D-glucose; this monosaccharide was known to be one 

of the two most common components of EPSs secreted by LAB 5.    To determine if the 

derivatisation of D-glucose was successful, the purified reaction product was subjected to 

analysis by mass spectrometry and NMR.   For NMR analysis to be carried out, a large 

amount of pure pABN-labelled D-glucose was required.   The reductive amination was first 

carried out on a larger scale, where D-glucose (1.0 g) was derivatised.   Preparative HPLC 

was then used to isolate the pure pABN-glucose from the other reagents and the sample was 

then subjected to LC-MS and 1D- and 2D-NMR analysis.  .    

 

 

Figure 67: Preparative HPLC Chromatogram of pABN-glucose using UV Detection at 280 nm 
 

 

Excess 
RNH2  

 

H
+
 

NaCNBH4 

 

p-aminobenzonitrile 

pABN-glucose 

Impurity  
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An example of the gradient chromatography of the crude reaction mixture is shown in Figure 

67 (10 % - 90 % acetonitrile gradient and a UV wavelength of 280 nm).   This large excess of 

pABN obtained after the ethyl acetate extraction can be seen in the chromatogram in Figure 

67.   The moderately water soluble nature of pABN made it difficult to extract completely 

using ethyl acetate.    There is also a small amount of an imine impurity present, at 

approximately 8.92 minutes.   

 

Using preparative chromatographic conditions the pABN-glucose peak was collected.  

Samples were collected from ten separate chromatographic runs, the combined fractions 

were lyophilized (freeze dried) overnight to produce a pure sample of pABN-glucose (1.1 g).  
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Figure 68:

 1
H-NMR Spectrum of pABN-glucose in D2O 

 

The 1H-NMR spectrum, shown in Figure 68, confirms the presence of the aromatic ring at 6.7 

and 7.5 ppm.  The large singlets at 2.3 and 4.7 ppm were due to reference acetone spike 

and water respectively.  The –CHs on the ring opened monosaccharide chain are between 
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3.2 and 4.0 ppm.  The –CHs were then assigned using an expanded 1H-1H-COSY NMR 

spectrum. 

 

 

 

 
 
 

Figure 69: Expanded 
1
H-

1
H-COSY Spectrum of pABN-glucose in D2O 

 

 

The peaks for the –CHs are all visible, with the two H1 sets of ABX (H1a and H1b) visible at 

approximately 3.13 and 3.32 ppm.  The other –CH signals are labelled in Figure 69.  The 1H-

NMR and 1H-1H-COSY NMR spectra confirmed the structure of pABN-glucose.  
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Figure 70: Base Peak Chromatogram of pABN-glucose with Mass Spectrum of Principal Peak 

 
 

The Base peak chromatogram (BPC) (Figure 70) shows a large principal peak.  Extracted ion 

chromatograms were used to highlight the pABN-glucose (305.1 m/z) and the excess pABN 

reagent (141.1 m/z).    A mass spectrum of the principal peak clearly shows the presence of 

the sodiated and protonated molecular ions of pABN-glucose.  Even after extraction with 

ethyl acetate, a small amount of pABN remains due to the slightly water soluble nature of the 

reagent.   

 

Electrospray ionisation was used which is regarded as a relatively soft ionisation technique, 

meaning that the molecular ion is often the most abundant ion, as it is for pABN-glucose.  

The abundance of the protonated adducts can be increased by the addition of acid to the 

mobile phase (e.g. formic acid).  The nature of the soft ionisation means that structural 

information is not normally available.  Using cone-voltage fragmentation can provide 

structural information, but this is not always easily interpreted, therefore the use of MS/MS is 
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often the only way of providing the necessary fragmentation required for structural 

evaluation.  

 

CN
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OH
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Figure 71: Structure of pABN-Labelled D-glucose  

 

The reductive amination using p-aminobenzonitrile provides a ring opened D-glucose 

derivative which possesses a chromophore and, under acidic conditions, the structure has a 

formal positive charge, making the analysis by UV and mass spectrometry detection 

possible. The fragmentation patterns produced in the MS/MS of the derivatised 

monosaccharide generate a series of ions due to fragmentation within the backbone. 
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Figure 72: b- and y-ion Series for the Fragmentation of pABN-glucose 
 

 

This method of labelling of such fragmentation patterns was introduced by Domon and 

Costello 218, see Figure 72.     
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The y-ion series is more likely to be seen, as each y-ion will carry a formal positive charge on 

the nitrogen.   This method of labelling has been implemented throughout this chapter for 

monosaccharide and linkage analysis. 

 

5.2.1 Reductive Amination of Standard Monosaccharides 

The reductive amination was carried out on a series of standard monosaccharides that are 

found in exopolysaccharides produced by LAB.  D-Galactose, D-mannose, D-N-acetyl-

glucosamine and D-glucosamine were all subjected to reductive amination with p-

aminobenzonitrile and then the derivatives were examined using mass spectrometry to 

confirm their structures.  These reactions were carried out on a smaller scale than for D-

glucose, where only 18mg of each monosaccharide was used.  The mass spectra of these 

structures are given in the appendix section 5.7.1. 

 

Each monosaccharide was successfully derivatised by reductive amination, the [M+Na]+ ion 

was the most abundant ion in all cases.    
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Figure 73: pABN-glucosamine 
 
 

There appears to be a large amount of fragmentation in the pABN-glucosamine sample, it is 

unclear why this would be the case.  The base peak at 204.1 m/z, is probably due to the y3-

H2O ion, which has also been seen in the pABN-glucose mass spectrum.     
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This series of pABN-labelled monosaccharides was used as standards for the capillary zone 

electrophoresis analysis of unknown monosaccharides.  The capillary zone electrophoresis 

analysis is discussed in section 5.4.1.  

 

5.2.2 Reductive Amination of Oligosaccharides 

There have been a number of publications that have used the derivatisation of 

oligosaccharides to characterise them by LC-MS.  After the success of the reductive 

amination of monosaccharides using pABN, described above, the Suzuki method was also 

carried out on an oligosaccharide, which contained a reducing end.  Maltohexanose, an 

oligosaccharide with six continuous D-glucose units linked together via α-1,4-glycosidic 

linkages, was ideally suited to optimize the method.  To ensure that the oligosaccharide 

would derivatise, the initial reductive amination conditions were applied, which used a 50 

times molar excess of pABN.     Maltohexanose was reacted with pABN and was infused into 

the mass spectrometer. 

 

2 8 3 . 1 2 6 5

3 1 9 . 0 8 3 6 4 4 5 . 1 8 5 6

4 9 7 . 1 3 8 0

5 6 6 . 1 7 9 5

8 3 3 . 2 5 7 1

1 1 1 5 .3 8 4 3

+ M S , 0 . 0 -0 .5 m i n  # (2 -3 0 )

0

2

4

6

4x 1 0

I n t e n s.

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 m /z  
 

Figure 74: Mass Spectrum of pABN-maltohexanose 
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The mass spectrum of pABN-maltohexanose confirms the successful labelling, showing both 

the [M+Na]+ = 1115.38 m/z and the [M+Na+Na]2+ = 569.18 m/z.  The purity of the derivatised 

pABN-maltohexanose was determined by HPLC using a UV detector (280 nm).    

 

 

 
 

Figure 75: HPLC Chromatogram of pABN-maltohexanose 
 

 

The derivatised pABN-maltohexanose was analysed using HPLC with gradient elution (10 % 

- 90 % acetonitrile gradient).    The chromatogram shows that some p-aminobenzonitrile 

remains after the extraction with ethyl acetate, probably because this reaction was carried 

out using a 50 times molar excess of pABN.   The order in which the peaks eluted is as 

expected, the polar nature of the oligosaccharide causes it to elute before the pABN, and 

there is also an impurity present, which is due to the formation of the imine which has not 

been reduced by the sodium cyanoborohydride. 

 

To confirm the identity of the pABN-maltohexanose the sample was analysed by LC-MS and 

the expected masses (pABN-maltohexanose, [M+Na]+ = 1115 m/z and pABN, [M+Na]+ = 141 

m/z) were further examined using extracted ion chromatograms. 

  

pABN-maltohexanose 
p-aminobenzonitrile 

Impurity 
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Figure 76: LC-MS Chromatogram of pABN-maltohexanose 
 
 

The chromatogram clearly shows the peaks are separated and have the correct mass to 

charge ratios.  The response for pABN is lower than that observed when analysing the 

monosaccharides and this is due to the instrumental conditions used, these were optimized 

for the detection of the larger compounds, such as pABN-maltohexanose.  Under these 

conditions, masses lower than 500 m/z appeared with low intensity and the presence of a 

large excess of pABN is not as problematic as is the case with the monosaccharide analysis.    

One of the main objectives for derivatising maltohexanose was to determine whether MS/MS 

could be used to gain structural information about oligosaccharides.  There have been 

several publications reporting the analysis of intact oligosaccharides, Broberg 136, Cheng 219.   

However, their procedures do not involve any pre-treatment to generate the 

oligosaccharides, which will be necessary for the analysis of EPSs. 

 

MS/MS conditions were optimized by altering the collision energy, collision RF, transfer time 

and pre-pulse storage.  The spectrum could be further enhanced by changing the isolation 

width and MS/MS collision energy.   The following conditions were used (Table 35). 

 

 

 

BPC : 49-3001m/z 

EIC : 1115m/z = pABN-maltohexanose [M+Na]
+
 

EIC : 141m/z = pABN [M+Na]
+
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Table 35: Optimized Mass Spectrometer Conditions for pABN-maltohexanose 
 

MS conditions 

Collision Energy 10.0 eV z -1 

Collision RF 500.0 Vpp 

Transfer time 100.0 µs 

Pre Pulse Storage 10.0 µs 

  

MS/MS conditions 

Selected m/z 1115.38 

Isolation width 1.0 m/z 

Collision Energy 80.0 eV 

  

Using these conditions, pABN-maltohexanose gave the following MS/MS spectrum shown in 

Figure 77.    Previous reports by Reinhold and co-workers 220 221, who pioneered LC-MS 

analysis of carbohydrates, indicated that relatively low-energy collision conditions should 

lead to extensive fragmentation of the glycosidic bonds between the monosaccharides.      
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Figure 77: MS/MS Spectrum of the [M+Na]
+
 Peak of pABN-maltohexanose 
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A series of b- and y-ions produced from the parent ion (1115 m/z, [M+Na]+) are visible in 

Figure 77.  This spectrum contains masses corresponding to cleavages across the glycosidic 

bonds between the monosaccharide units, as shown in Figure 78.   
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Figure 78: Structure and Predicted Masses of pABN-maltohexanose 

 

This was a very encouraging result; both the b- and y-ion series are clearly visible.  Using 

this technique it could be possible to determine the structure of the repeating unit of 

exopolysaccharides, providing information about branching and the backbone sequence.  To 

get details of branch points it will be necessary to get fragmentation within each ring.  Using 

the nomenclature reported by Domon and Costello 218, these intra ring cleavages are 

identified as x- and a-ions, as shown in Figure 79.  The x- and a-ions are required to 

discriminate between different linkage positions around the ring. 
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Although the b- and y-ions were observed, there is little evidence in Figure 78 for cleavages 

within the ring.   Broberg 136 has observed 1,4x-ion cleavages, but only when using high 

fragmentation amplitudes (1.5 V) on an ion trap mass spectrometer.   Other cleavages are 

possible: Maslen et al. 137 have reported that by using a MALDI-CID mass spectrometer, the 

0,2x-, 1,5x- and 0.2a- and 3,5a-ion can also be produced.    

 

Further experiments using the Bruker MicrOTOF-q mass spectrometer, which used larger 

collision energies, were unable to produce cleavages within the monosaccharide rings.   

Future work would have to use different types of mass spectrometer such as ion trap or 

MALDI-CID as used by Broberg 136 and Maslen et al. 137 described above.          

 

5.3 Acid-Catalysed Hydrolysis of Carbohydrates 

As mentioned earlier, existing derivatisation reactions are used for the analysis of 

oligosaccharides.  For the analysis of exopolysaccharides it will be necessary to 

depolymerise the polymer before the derivatisation process can be applied.    An established 

method to depolymerise di-, oligo- and polysaccharides into monosaccharide units is to use 

acid-catalysed hydrolysis.  This process hydrolyses the glycosidic bond between two 

monosaccharides, the mechanism for this reaction is given in section 1.7.1.3.   To hydrolyse 

sugars, different acids and conditions can be used but during the work described here 

trifluoroacetic acid was used exclusively. 

     

5.4 Capillary Zone Electrophoresis of Monosaccharides  

As described earlier, capillary zone electrophoresis is capable of resolving isomeric 

monosaccharides using borate buffering systems.  Recent work published by Xioa 90 has 

reported that capillary zone electrophoresis was able to separate a range of derivatised 

isomeric monosaccharides using a borate eluent system.  His methodology used 1-naphthyl-
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3-methyl-5-pyrazolone (NMP) to derivatise the monosaccharides, then used CZE to separate 

complexes formed between the derivatised monosaccharides and borate.   The theory 

behind this is discussed in detail in section 1.6.1.1, where the borate forms complexes of 

different strengths with the available hydroxyl groups of the monosaccharides.   It was 

envisaged that this type of separation could be used to determine the monosaccharide 

composition of EPSs produced by LAB.   The proposed method was to hydrolyse the EPS 

into monosaccharides, label them with pABN and then to separate and quantify the pABN-

labelled monosaccharides as complexes with borate using CZE.  To identify the 

monosaccharides, their migration time would be compared to the migration times of a series 

of standard pABN-labelled monosaccharides.     

 

5.4.1 Determination of pABN-Labelled Monosaccharide Standards by CZE 

Five pABN-labelled monosaccharides were analysed by CZE to determine their migration 

times.  Each standard was prepared at a concentration of 100 µg mL-1.  Relative migration 

times were used to compensate for the slight fluctuations of migration times.  The migration 

times of each of the five pABN-labelled monosaccharide standards were divided by the 

corresponding electroosmotic flow to give the relative retention times in Table 36.  The 

chromatograms for the pABN-labelled monosaccharides are provided in the appendix section 

5.7.2. 
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Table 36: Retention Times of pABN-labelled Monosaccharides (100 µg mL
-1

) 
 

pABN-Labelled 

Monosaccharide 

Approximate 

Migration Time 

(Minutes) 

Relative 

Migration Time 

Signal to 

Noise 

Ratio 

Quantification 

Limit           

(µg mL-1) 

D-glucose 7.9 1.61 ± 0.01 164 6.1 

D-galactose 9.0 1.89 ± 0.02 154 6.5 

D-mannose 7.5 1.55 ± 0.01 162 6.2 

D-N-acetyl-

glucosamine 
7.6 1.56 ± 0.01 138 7.2 

D-glucosamine 6.3 1.27 ± 0.01 80 12.5 

#
 Migration time divided by the time of the electroosmotic flow.  The typical electroosmotic flow  

was approximately 4.85 minutes.   Errors calculated from five repeat injections. 

 

These migration times were compared to peaks obtained from EPS samples that had been 

hydrolysed to monosaccharides and derivatised to determine their monosaccharide 

composition; the relative ratios of the peak areas in each EPS sample were used to calculate 

the ratio of the monosaccharides. 

 

The results in Table 36 clearly show that CZE is able to successfully resolve a series of 

pABN-labelled monosaccharides common to EPSs produced by LAB.   Each standard was 

analysed by CZE at a concentration of 100 µg mL-1.  The signal to noise ratios were 

calculated using the equation: 

h

2H
=Ratio Noise to Signal  

 

Where, H = Peak height at the maxima, h = Average height of background noise. 

Equation 3: Signal to Noise Ratio 
222

  

 

 

The peak heights and background noise from each sample chromatogram are provided on 

the relavent chromatograms in the appendix section 5.7.2.   The quantification limit (QL) can 



Chapter 5                           Results & Discussions – New Methods For Analysis of Exopolysaccharides 

- 195 - 

be defined as the concentration where the signal to noise ratio is equal to 10:1 223.   Using 

the signal to noise ratio the QL was approximated and the values are shown in Table 36.  

The QL values range between 6.1 µg mL-1 – 12.5 µg mL-1, which is not as sensitive when 

compared to the HP-AEC-PAD analysis which will be discussed later.    

  

5.4.2 Monosaccharide Composition of EPSs Produced by Lactic Acid Bacteria 

A novel approach, using CZE to determine the monosaccharide composition of 

exopolysaccharides was carried out on two previously characterised EPS samples; the EPS 

produced by Lactobacillus delbrueckii subsp. bulgaricus NCFB2074 78 and the EPS 

produced by Lactobacillus acidophilus 5e2 177.  The EPS samples were first hydrolysed to 

monosaccharides and then the monosaccharides were labelled using pABN.   As with the 

standard monosaccharides, CZE, using a borate buffering system, was then used to 

separate the labelled monosaccharides, and the migration times were compared to the 

migration times given in Table 36.  This procedure was faster than the current gas 

chromatography method reported by Gerwig et al. 81, which is the current method for 

analysing monosaccharides.  

 

The EPS produced by Lactobacillus delbrueckii subsp. bulgaricus NCFB2074 was analysed 

first, this EPS was known to contain three D-glucose and four D-galactose units in the 

repeating oligosaccharide.   
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Figure 80: Example of a CZE Chromatogram of the EPS Produced by NCFB2074 

    

The CZE chromatogram (Figure 80) shows two peaks that correspond to pABN-glucose and 

pABN-galactose, the peak areas show a ratio of 0.67:1 (D-glucose : D-galactose).   Although 

the monosaccharide composition of this particular EPS was relatively simple, the result was 

very encouraging.  Next the EPS produced by Lactobacillus acidophilus 5e2 was analysed 

by CZE.   The repeating unit of this EPS was known to contain three D-glucose units, three D-

galactose units and one N-acetyl-glucosamine unit.  The N-acetyl-glucosamine would appear 

as a chemically modified glucosamine, having lost the N-acetyl during the acid-catalysed 

hydrolysis step of the sample preparation.  

 

Using the same chromatographic conditions as for the EPS produced by NCFB2074, the 

EPS was analysed to give the chromatogram shown in Figure 81.   

 

pABN-glucose 
Peak area = 27742 

pABN-galactose 
Peak area = 42026  

Peak Ratio 
 

0.67 : 1 
cf 0.75 : 1 
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Figure 81: CZE Chromatogram of the EPS Produced by Lb. acidophilus 5e2 

 

The results were not as expected, as can be seen in Figure 81, peaks for pABN-glucose and 

pABN-galactose are observed but no peak for N-acetyl-glucosamine could be detected.   As 

explained above, the acid-catalysed hydrolysis procedure would remove the N-acetyl group 

leaving glucosamine 83.  Therefore a peak corresponding to pABN-glucosamine, at 

approximately 6.3 minutes, should have been observed. 

 
 

To determine why the N-acetyl-glucosamine peak was not present in the EPS sample, the 

hydrolysis and pABN-labelling was carried out on the monomer N-acetyl-glucosamine.    

pABN-glucose  

pABN-galactose  

No peak for  
pABN-glucosamine 
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Figure 82: CZE Chromatogram of Hydrolysed and pABN-labelled N-acetyl-glucosamine 

 

A peak for pABN-glucosamine should have been seen, but no peak of any significance was 

observed in the CZE chromatogram (Figure 82), there was a small peak at 8.6 minutes but 

this was seen as background in all of the samples.   To determine why D-glucosamine was 

not being observed further analysis would be required, which is suggested in the chapter 6.    

 

This method was able to determine the D-glucose and D-galactose composition of EPS in 

approximately 1 day, which was significantly faster that the current GC method, which takes 

approximately 3 days to complete.    In our research group, HP-AEC-PAD has also been 

used to determine the monosaccharide composition of EPSs.  The technique has been 

shown to be much more sensitive than CZE, reporting quantification limits of 0.1 µg mL-1, 

approximately 100 times smaller than reported for this method.   Furthermore, when using 

HP-AEC-PAD the sugar residues do not require labelling with pABN to improve their 

detection.  The only problem encountered with HP-AEC-PAD is that the peak shape can be 
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poor and the retention times can often fluctuate.   These problems do not occur in CZE 

analysis, therefore monosaccharide composition by CZE is worthy of further development but 

only if the problems of detecting N-acetyl-amino sugars can be resolved.   

 

5.5 Methylation of Carbohydrates 

Failure to produce cross ring cleavage of intact oligosaccharides in LC-MS-MS experiments 

required an alternative strategy for identifying the positions of linkages.  Therefore it was 

decided to try and identify linkage positions by methylating the free hydroxyls.   Out of the 

various methylation reactions reviewed in section 1.6.2 the two most applicable were 

evaluated for the analysis of EPS samples using LC-MS.   

 

5.5.1 Methylation – ‘Hakomori Procedure’ 

The first methylation procedure used was based on that described by Hakomori 92, where the 

dimethylsulfinyl anion acts as a base and removes the free hydroxyl protons on the 

monosaccharide and then methyl iodide is added to form methoxy- groups.   This 

methylation procedure was applied to the linkage analysis of sugars by Stellner et al. 91 and 

ever since has been the major method used for the linkage analysis of carbohydrates.   In 

this section of the study the Hakomori methylation was carried out on both free 

monosaccharides and pABN-derivatised carbohydrates depending on the application.  The 

methylation of pABN-glucose, pABN-maltohexanose and exopolysaccharides are all 

described.    

 

5.5.1.1 Methylation of pABN-glucose 

The pABN-glucose, isolated by preparative HPLC in section 5.2, was methylated using the 

Hakomori procedure.  The methylated pABN-glucose was dried under nitrogen at 40 °C and 

dissolved in acetonitrile before being infused into the mass spectrometer.   For all reactions 
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that involved pABN-labelling of methylated carbohydrate, the procedure for reductive 

amination was modified slightly, where a 1:1 molar equivalent of pABN to carbohydrate was 

used in the reaction.   This was because the product was now methylated and the ethyl 

acetate extraction could not be used to remove the excess pABN, as it would also remove 

the methylated product.   The change to the protocol had no significant effect on the quality 

and yield of the product produced.   
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Figure 83: Mass Spectrum of Methylated pABN-glucose 

 

The mass spectrum (Figure 83) shows that full methylation had been achieved ([M+Na]+ = 

389.2 m/z) but several partially methylated species were present.   Ions for species 

corresponding to those having between one to four methyl groups missing were all seen 

([M+Na]+ = 333.14, 347.15, 361.17 and 375.18 m/z).  Theses ions were observed in the 

mass spectrum with masses that correspond to protonated hydroxyl groups, i.e. these ions 

are likely to arise from partial methylation of the sugar rather than fragmentation of the 
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methylated species.   The sample was subjected to LC-MS to see if the partially methylated 

species could be separated, hence, confirming whether or not they were generated in the MS 

by fragmentation.   
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Figure 84: LC-MS Chromatogram of Methylated pABN-glucose  

    

The chromatogram in Figure 84 shows peaks due to partially methylated pABN-glucose, 

confirming that the ions observed in Figure 83 are not just due to fragmentation of the fully 

methylated species.  Ciucanu and Kerek 93 reviewed the Hakomori methylation procedure, 

stating that per-O-methylation is unlikely, and N-methylation is even more unlikely.  Their 

studies have shown low yields (0.3 mol of per-O-methylated derivative per mol of sugar), 

despite these findings, the Hakomori method is extensively used for the structural analysis of 

carbohydrates.     

 

The reason partial methylation occurred could be simply due to the time the dimsyl ions (or 

dimethylsulfinyl carbanion) had to react with hydroxyl groups on the monosaccharide.   

 

BPC : 49-3001 m/z 

EIC: 333.2 m/z (-4Me) 

EIC: 361.2 m/z (-2Me) 
 

EIC: 347.2 m/z (-3Me) 

EIC: 375.2 m/z (-1Me) 
 

EIC: 389.2 m/z (-0Me) 
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Figure 85: Formation of Dimsyl Ion and Methylation Reaction    

 

In the reaction procedure, initially, the dimsyl ion is produced and this then reacts with the 

hydroxyl group leaving an alkoxy oxygen, which is then methylated using methyl iodide.   

There is a distinctive colour change during this reaction, where the reaction mixture changes 

from a yellow / straw colour to a deep brown.  The brown colour is either due to the formation 

of the dimsyl ion or the production of the I3  ion as the methyl is removed. Further 

investigation of this reaction was required.   

 

5.5.1.2 Deuterated Methylated pABN-glucose    

To confirm that the peaks seen in Figure 83 are due to partially methylated pABN-glucose, a 

simple experiment was set up to measure the number of remaining hydroxyl groups present. 

Using deuterated solvents (acetonitrile and deuterium oxide), the remaining exchangeable 

protons on the hydroxyls were deuterated; hence the mass to charge ratio of each peak 

would increase by one mass unit for every hydroxyl group present.      

 

To deuterate the sample, the methylated pABN-glucose was freeze dried and re-dissolved in 

a solvent composed of deuterated acetonitrile and deuterium dioxide (50:50).  The sample 

was then infused into the mass spectrometer.    

 

“Formation of dimsyl ion” 

“Methylation” 
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Figure 86: Mass Spectrum of pABN-glucose Before and After Deuteration 

 

The mass spectra from before and after deuteration can be seen in Figure 86.  As expected 

the peak due to fully methylated pABN-glucose does not increase in mass.  The partially 

methylated species, -1Me, -2Me and -3Me, all increase by one mass unit for each missing 

methyl group.  This confirms that the peaks in Figure 83 are in fact due to partially 

methylated monomers.   

 

5.5.1.3 Timed Methylation 

An experiment was set up to monitor the progress of the methylation reaction.  A portion of 

the reaction mixture was removed every 30 minutes and the extent of methylation was 
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expressed as a ratio between the peak area of the fully methylated species, [M+Na]+ = 389.2 

m/z, and the partially methylated species with two methyl groups missing, [M+Na]+ = 361.2 

m/z, which was the next most abundant species.  The samples were analysed by LC with UV 

detection at 280 nm.  The peak areas of the fully methylated species and the partially 

methylated species (two missing methyl groups) were compared to determine the extent of 

methylation throughout the reaction.   The chromatograms are given in the appendix section 

5.7.3.   

 

Table 37: Time Methylation Reaction Results  
   
 

 HPLC Peaks Area at 280 nm 

Reaction Time 

(Minutes) 

Partially Methylated 

pABN-glc (AU) 

Fully Methylated 

pABN-glc (AU) 
Ratio 

30 31.3 90.2 2.88 

60 37.8 94.3 2.49 

90 54.5 135.1 2.48 

120 41.5 111.9 2.70 

150 37.8 96.5 2.55 

180 48.7 135.2 2.78 

210 66.1 189.9 2.87 
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Figure 87: Graph – Timed Methylation Reaction 

 

The results generated showed that the yield of the fully methylated pABN-glucose increased, 

but so did that of the partially methylated compound.  The green line, which represents a 

ratio of the peak areas of the two species, does not increase, only fluctuates throughout the 

3.5 hour reaction.   The results are in agreement with Ciucanu and Kerek 93, confirming poor 

yield of per-O-methylation.  From the results generated, it is evident that a longer reaction 

time increases the yield of the methylated products.   

 

Further investigation of the Hakomori methylation procedure was carried out on a pABN-

labelled oligosaccharide, this study was carried out to provide additional information about 

why partial methylation was occurring.     

 

5.5.1.4 Methylation of pABN-oligosaccharides  

Despite the Hakomori procedure producing partial methylation for pABN-glucose, this 

method was used to methylate a pABN-labelled oligosaccharide.  It was envisaged that the 
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analysis of this pABN-labelled oligosaccharide would provide more information about which 

hydroxyl positions are not being methylated, when partial methylation occurred. 

   

Methylated pABN-maltohexanose showed a large distribution of products, as can be seen in 

Figure 88.   The peaks observed ranged from the fully methylated product (1409.69 m/z), to 

a partially methylated species that had eleven missing methyl groups (1255.53 m/z).       
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Figure 88: Mass Spectrum of Methylated pABN-maltohexanose 

 

The distribution of products was interesting, the partially methylated pABN-maltohexanose 

with 1 missing methyl group was not observed, only the mass to charge ratios of 1409.7 m/z 

(fully methylated) and 1381.6 m/z (two missing methyl groups) were present.   This was 

similar to the methylated pABN-glucose system, where the peak area for the UV absorbance 

for two missing methyl groups was always greater than that for one missing methyl group.      
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The, overall distribution had similarities to a Gaussian distribution where the three most 

intense ions occurred in the middle, which were partially methylated pABN-maltohexanose 

with 5, 6 and 7 missing methyl groups.  The [M+Na]+ series of ions had the greatest intensity 

but the [M+H]+ ions were also visible, and had the same overall distribution.  

 

5.5.1.5 Deuteration of Methylated pABN-maltohexanose 

Again, to confirm that partial methylation was occurring, deuteration of the methylated pABN-

maltohexanose was carried out to measure the number of remaining hydroxyl groups 

present.  The proton on each remaining hydroxyl was exchanged for deuterium, hence the 

masses of each peak would increase by one mass unit for every hydroxyl group present.     

The methylated pABN-maltohexanose was freeze dried and re-dissolved in a mixture of 

deuterated acetonitrile and deuterium oxide.  The sample was then infused into the mass 

spectrometer.    
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Figure 89: Deuterated Methylated pABN-maltohexanose   

 

The masses observed, in Figure 89, confirm that the methylated pABN-maltohexanose was 

only partially methylated.  The fully methylated peak (1409.69 m/z) did not increase in mass 

because there were no hydroxyl (-OH) groups to deuterate.  The other peaks all increased by 

one m/z unit per missing methyl group.  The distribution of the deuterated species was 

similar to the distribution of the protonated system seen in Figure 88, with products ranging 

from the fully methylated oligosaccharides to those with eleven missing methyl groups.   

      

5.5.1.6 LC-MS Analysis of Methylated pABN-maltohexanose 

To confirm that these partially methylated peaks were not due to fragmentation of the fully 

methylated ion, the sample was subjected LC-MS.  The LC-MS chromatogram was recorded 

and extracted ion chromatograms (EIC) were taken for each expected mass to charge ratio.   
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Figure 90: EIC of Partially Methylated pABN-maltohexanose 

 

The EIC for expected mass to charge ratio for each partially methylated product is observed 

in the LC-MS chromatogram shown in Figure 90. Although the peak shape is broad, each 

partially methylated species was present, and under the chromatographic conditions 

employed there, were partially separated.   The relative intensities of these peaks correlate to 

the intensities of the peaks observed in Figure 88, hence confirming that the peaks in the 

infused mass spectrum (Figure 88) exist as partially methylated species and are not just due 

to fragmentation of the fully methylated pABN-maltohexanose. 

 

On closer inspection of the extracted ion chromatogram of the LC-MS chromatogram shown 

in Figure 90, the spectrum for 1381.6 m/z (-2Me groups missing), it is clear that there are two 

distinctive peaks present which suggests that two main isomers exist.   

 

EIC : 1283.55 m/z (-9 Me) 

EIC : 1325.6 m/z (-6 Me)  

EIC : 1339.6 m/z (-5 Me)  

EIC : 1353.6 m/z (-4 Me) 

 

EIC : 1367.6 m/z (-3 Me)  

 

EIC : 1381.7 m/z (-2 Me)  

 

EIC : 1395.6 m/z (-1 Me) 

 

EIC : 1409.6 m/z (Fully Methylated) 
 

EIC : 1311.6 m/z (-7 Me)  
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Glycosidic (Gly) > Primary (1°) > Secondary (2°) 

 
Figure 91: Positions of Methylation 

 

According to Ciucanu and Kerek 93 the order of reactivity of each hydroxyl group dictates the 

ease with which they are methylated.   Therefore, methylation should occur in the following 

sequence, glycosidic > primary > secondary (Figure 91).  pABN-maltohexanose does not 

have any hydroxyl on the glycosidic positions, therefore the primary hydroxyl attached to the 

carbon C6 position will be methylated first.  The next site of methylation would be the 

secondary hydroxyls, at the carbon C2 and C3 positions.  Due to the α-(1→4)-linkages of 

maltohexanose, methylation would be most likely to occur at the carbon C3 positions in 

preference to the carbon C2 position, because of reduced steric hindrance, this theory is 

supported by Adden and Mischnick 97, where they react amylose α(1→4), and cellulose 

β(1→4), with deuterated methyl iodide (MeI-d3).   Adden and Mischnick 97 reported 

preferential methylation at the carbon C2 for cellulose, and at the carbon C3 for amylose.   

 

It must also be noted that Ciucanu 98 suggests that for complex carbohydrates the order of 

methylation can be modified due to the presence of intramolecular hydrogen bond 

interactions and steric effects.    In the maltohexanose, if random methylation was occurring, 

one missing methyl group could potentially produce 19 different isomeric species, further 

investigation was required.  
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Further work into methylation was carried out using an alternative methylation procedure 

which has been employed by Mischnick’s group 96 97 224 225, using a sodium hydroxide – 

methyl iodide system, that was first developed by Ciucanu and Kerek 93.   As mentioned 

earlier, Ciucanu 98, reports that his methylation procedure is superior to the Hakomori dimsyl 

anion – methyl iodide approach, although others, such as Price 226 disagree.       

 

5.5.2 Methylation – ‘Ciucanu Procedure’   

The second methylation procedure investigated was based on that described by Ciucanu 

and Kerek 93 but was later developed for neutral polysaccharides in aqueous samples by 

Ciucanu and Caprita 94.  This method uses an excess of powdered sodium hydroxide to 

scavenge any water present in the sample, the absence of water increases the degree of 

per-O-methylation.   As with the Hakomori methylation procedure, this method of methylation 

was first carried out on pABN-glucose, and then applied to pABN-maltohexanose.    

 

5.5.2.1 Methylated of pABN-glucose 

The Ciucanu methylation procedure was carried out on pABN-glucose and the sample was 

subjected to LC-MS analysis.  
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Figure 92: LC-MS Chromatogram of Methylated pABN-glucose (BPC) 
 

 

This methylation procedure produced a large peak for the fully methylated species, with a 

retention time of 10.8 minutes.  In comparison to the Hakomori methylation procedure, this 

method provides a much larger amount of the per-O-methylated derivative.   There were 

several other peaks present, which were attributed to partially methylated pABN-glucose. 

These are labelled in Figure 92.         
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Figure 93: LC-MS Chromatogram of Acetonitrile / Water Blank (BPC) 

 

Throughout this work, extra peaks were observed towards the end of the gradient elution.   

An acetonitrile / water blank was run to try to determine the origin of the peaks.   The LC-MS 

chromatogram in Figure 93 shows two peaks present in an acetonitrile / water blank.  This 

suggests that they were coming from the system and not the samples.   After MS analysis 

the peaks were thought to be from plastisizer contamination.   The plastisizers were identified 

from the list of ESI background ions and contaminants encountered in modern mass 

spectrometers, published by Keller et al. 227.  The plastisizer peaks were thought to be 

caused by the plastic tubing in the LC or the septum from the vials.  They always eluted at 

the end of the gradient run, when the mobile phase composition exceeded 80 % acetonitrile.  
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These plastisizers, diisooctyl phthalate ([M+Na]+ = 413 m/z) and dibutyl phthalate ([M+Na]+ = 

301 m/z), contain large alkyl groups which are relatively non-polar, therefore would require a 

high concentration of organic solvent to eluent them in a reverse phase system.  Using the 

10 – 90 % acetonitrile gradient, the plastisizers did not interfere with the analysis of the 

derivatised carbohydrates, therefore no further development of the method was required to 

remove them from the system.     

 

5.5.2.2 Methylation of pABN-maltohexanose 

To compare the degree of methylation using the Ciucanu procedure to the Hakomori 

procedure, pABN-maltohexanose was methylated.   The reaction time and quantity of methyl 

iodide required was varied to optimize the method.   pABN-maltohexanose was methylated 

under the different reaction conditions, which are provided in Table 38.  The degree of 

methylation and the percentage relative abundance of the per-O-methylated product was 

measured and compared for each of the different samples.   The percentage relative 

abundance was calculated by dividing the abundance of the fully methylated peak by the 

total abundance of all of the peaks due to partially and fully methylated pABN-

maltohexanose.   The mass spectra for each sample are given in the appendix section 5.7.4.         
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Table 38: Results – To Optimize Ciucanu Methylation Procedure  
 

Sample 

No. 

Reaction 

Time 

(Minutes) 

Amount of Methyl  

Iodide used (µl) 

Visible 

Degrees of 

Methylation 

Percentage Relative 

Abundance of per-O-

methylation 

1 10 60 
Full to 7 missing 

methyls 
6.10% 

2 20 60 
Full to 6 missing 

methyls 
31.25% 

3 60 60 
Full to 6 missing 

methyls 
31.43% 

4 60 300 
Full to 6 missing 

methyls 
36.08% 

5 60 1500 
Full to 8 missing 

methyls 
22.51% 

  

The investigation to optimise this methylation procedure, showed that using methyl iodide 

(300 µl), and a reaction time of 60 minutes gave the greatest relative abundance of the per-

O-methylated product.   It also provided the narrowest degree of methylated species.   These 

reaction conditions were used in subsequent studies when the ‘Ciucanu methylation 

procedure’ was used.           

 

5.5.2.3 Deuteration of Methylated pABN-maltohexanose   

As with the Hakomori procedure (section 5.5.1.5), a methylated pABN-maltohexanose (using 

the ‘Ciucanu methylation procedure’) was deuterated to confirm that partial methylation was 

occurring.  A methylated pABN-maltohexanose sample (Sample 4, Table 38) was freeze 

dried and re-dissolved in a solvent composed of equal portions of deuterated acetonitrile and 

deuterium oxide.  The sample was then infused into the mass spectrometer.    
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Figure 94: Deuterated Methylated pABN-maltohexanose 

 

The increases by one m/z unit for each hydroxyl group present in the partially methylated 

species confirmed the partial methylation.   As expected, the fully methylated ion did not 

increase in m/z, but its abundance was reduced in comparison to the spectrum for the non-

deuterated sample.   This was thought to be due to the fully methylated product not being as 

soluble in D2O as the other partially methylated species.  A distribution of ions was observed 

that corresponded to methylated maltohexanose that was not pABN labelled.  

 

Further analysis using LC-MS-MS was used to determine where the missing hydroxyl groups 

were located along each partially methylated pABN-maltohexanose.  
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5.5.2.4 LC-MS-MS Analysis of Methylated pABN-maltohexanose 

To try to establish which hydroxyl positions were not being methylated LC-MS-MS analysis 

was carried out on [M+Na]+ ions of each partially methylated pABN-maltohexanose.   It was 

envisaged fragmentation of an isolated [M+Na]+ would break the glycosidic linkages and 

analysis of the B- and Y-series of ions would show where the missing methyl groups were 

situated.  This would establish whether partial methylation was occurring randomly or 

whether methylation was being restricted to certain sites.  A methylated pABN-

maltohexanose sample (Sample 4, Table 38) was first subjected to LC-MS analysis.    
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Figure 95: LC-MS of Methylated pABN-maltohexanose 

 

The base peak chromatogram detected several peaks, these were individually identified as 

samples with two, three, four, five or six missing methyl groups using EICs (Figure 95).  The 

MS/MS analysis was carried out on ions of m/z given in Table 39.  

 

BPC : 50 – 3000m/z 

EIC : 1325.6m/z (-6 Me)  

EIC : 1339.6m/z (-5 Me)  

EIC : 1353.6m/z (-4 Me) 

 

EIC : 1367.6m/z (-3 Me)  

 

EIC : 1381.7m/z (-2 Me)  

 

EIC : 1409.6m/z (Full Methylated) 
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Table 39: Methylated pABN-maltohexanose Ions Analysed by LC-MS-MS  
 

Isolated MS/MS ions Number of missing methyl groups 

1409.6 m/z 0 (Fully Methylated) 

1381.6 m/z Loss of 2 

1367.6 m/z Loss of 3 

1353.6 m/z Loss of 4 

 

The MS/MS spectra for each isolated ion of methylated pABN-maltohexanose can be seen in 

appendix section 5.7.5.  

 

The fragmentation patterns for each isolated ion listed in Table 39 showed distinct peaks for 

both the b- and y-ion series.   Further analysis of the MS/MS spectra confirms that the free 

hydroxyl positions are distributed randomly along the six member oligosaccharide chain.   

The sets of fragmentation patterns for the Y-ion series of each isolated MS/MS ion (Table 39) 

suggest that the free hydroxyl positions occur mainly on the two monosaccharide units 

closest to the pABN end of the structure.  Unfortunately, the fragmentation patterns of the B- 

ions contradict the results from the y-ions, which show that the mass spectrometer is 

detecting more than one single structure for the isolated ion.  The mass spectrometer is 

detecting many isomeric products that differ by the position of the free hydroxyl.  

 

This work carried out on the methylation of pABN-maltohexanose has significantly increased 

the yield of per-O-methylation, but the problem of random, partial methylation still exists.         

 

5.5.3 Comparison of the Methylation Procedures Used  

Price (2008) 226 states that the Hakomori methylation procedure is better than the Ciucanu 

methylation procedure.  Conclusions drawn from the results of the two methylation 

procedures generated in this work disagree with the report by Price.   Both procedures have 
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similar extraction methods, which potentially remove any partially methylated pABN-labelled 

sugars and therefore the only difference is in the methylation reactions themselves.    

 

From a practical perspective, the Ciucanu methylation procedure is much easier to carry out: 

the removal of excess reagents is simpler, and the reaction reaches the same degree of 

completion much faster, without the need to heat the sample.    

 

5.6 Novel Linkage Analysis of Carbohydrates using LC-MS-MS 

The derivatisation procedures described in the previous sections (pABN-labelling and 

methylation) were used to develop a novel technique to characterise the linkage patterns of 

EPSs.    

  

5.6.1 Disaccharide Standards 

The method was first attempted on disaccharides, where the position of the glycosidic 

linkage was known.  A series of disaccharides, each with different glycosidic linkages (1,1–, 

1,2–, 1,3–, 1,4– and 1,6–linked) were used.   The structures of all these disaccharide 

standards are given in  

 

 

 
 
 
 
 
 
 

Table 9.  Each disaccharide was first methylated, then hydrolysed and then pABN-labelled.  

Finally the standards were subjected to LC-MS-MS analysis to separate the derivatives and 

to generate fragmentation patterns.  The fundamentals are similar to those used in the 

current GC-MS methodology 91, but this novel procedure is faster and potentially more 

sensitive.   Each disaccharide was first methylated and hydrolysed into two sugar residues, 
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after labelling with pABN, one derivatised sugar residue corresponded to the terminal 

([M+H]+ = 347.1 m/z) and one derivatised sugar residue corresponded to a linked sugar, 

containing one free hydroxyl group located where the glycosidic linkage was originally 

located ([M+H]+ = 325.1 m/z).     

 

A schematic of the reaction is given in Figure 96, which highlights the differences between 

the structures of the two derivatised sugar residues. 
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Figure 96: An Overview of the Proposed Linkage Analysis Reaction 

 

The position of the extra hydroxyl group will change depending on the position of the 

glycosidic linkage between the disaccharides.   It was envisaged that this change in position 

could be identified through inspection of the MS/MS fragmentation patterns.  The greatest 

amount of linkage information was generated when using the protonated ions ([M+H]+), for 

MS/MS analysis of the sugar residues.   

 

The mass spectrometry conditions were optimized for the MS/MS analysis of these sugar 

residues, see Table 40.  These conditions provided fragmentation patterns for use in 

Methylation, 
Hydrolysis and 
pABN-labelling 

Terminal Sugar Residue, [M+H]
+
 = 347.1 m/z             1,6-Linked Sugar Residue , [M+H]

+
 = 325.1 m/z 

 

Isomaltose (α-D-Glcp-1→6-α-D-Glcp)  
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evaluating the linkages (80 – 350 m/z).   All samples subjected to LC-MS and LC-MS-MS 

were prepared at a concentration of 250 µg mL-1.        

 

 

 

 

Table 40: Optimized MS and MS/MS Conditions for the Linkage Analysis  
 

MS conditions 

Collision Energy 4.0 eV z-1 

Collision RF 200.0 Vpp 

Transfer time 148.0 µs 

Pre Pulse Storage 6.0 µs 

MS/MS conditions 

Selected m/z [M+H]+ 325.1 & 347.1 m/z 

Isolation width 1.0 m/z 

Collision Energy 15.0 eV 

 

The MS/MS spectra of each disaccharide standard are provided in appendix section 5.7.6.  

 

Even when using optimized conditions, the b- and y-ion series were not clearly observed; 

ions due to further fragmentation, such as losses of MeOH and H2O were evident, and in the 

greatest abundance.   This made the assignment of the b- or y-ion series extremely difficult, 

losses of 18 m/z (H2O), 32 m/z (MeOH), 36 m/z (2H2O) and 50 m/z (MeOH & H2O) all had to 

be considered.   A table which lists the masses of the b- and y-ion series with the further 

fragmentation is given in appendix section 5.7.7.   The loss of several MeOH / H2O gave 

peaks that were identical for both yn and yn-1 and also the further fragmentation caused some 

of of the b- and y- ions to have equal m/z, making assignment of these ions difficult: mass to 

charge ratios of 131.1 m/z, 143.1 m/z and 175.1 m/z were possible from further 

fragmentation of both b- and y-ion series.   
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5.6.1.1 Deuterated System 

To help to deduce the origin of each ion, the series of disaccharide standards were subjected 

to deuterium exchange and then analysed by LC-MS-MS.  To ensure the samples remained 

deuterated, deuterium oxide replaced water in the mobile phase.  The spectra for each 

sample are given in appendix section 5.7.8.    

An increase of one m/z was seen for each exchangeable proton that was located on the 

hydroxyl groups and nitrogen, this gave an increase from [M+H]+ = 325.1 m/z to [M+D]+ = 

329.1 m/z for sugar residues that previously had a glycosidic linkage in either the 2-, 3-, 4- or 

6- position and an increase from [M+H]+ = 339.1 m/z to [M+D]+ = 342.1 m/z for terminal sugar 

residues.  An example of exchange with deuterium oxide of an exchangeable proton in the 6- 

position is shown in Figure 97.   

 

CN

MeO
MeO

OMe

CN

ND
MeO

OMe

MeO

OD

OD

N
HOH

OH

 

 
Figure 97: Deuterium Oxide Exchange of 1,6-linked Sugar Residue 

 

Each deuterated disaccharide fragment was subjected to LC-MS-MS, using slightly altered 

chromatographic conditions to compensate for the increase in back pressure caused by 

using deuterium oxide in the mobile phase.   

 

The linkage analysis of the deuterated disaccharide standards provided information about 

how the sugar residues were fragmenting using MS/MS.  The molecular ion was visible for all 

of the standards, where losses of MeOD (-33 m/z) and D2O (-20 m/z) were observed.   As 

with the protonated disaccharide standards, neither the Y- nor B- ion series were seen again, 

further losses of MeOH (-32 m/z), HDO (-19 m/z) and 2HDO (-38 m/z) were observed.   

D2O Exchange  

[M+H]+ = 325.1 m/z      [M+D]+ = 329.1 m/z 

2 
2 
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There is evidence of rearrangements occurring, as losses were observed that were not 

possible by simple elimination of neutral molecules e.g. loss of 2H2O.  

 

Deuterating the disaccharide standards did not help deduce where each ion originated; 

because of further fragmentation, there were still mass to charge ratios that could be 

attributed to yn or yn-1 and also b- or y-ions.    

Using the protonated or deuterated systems, significant differences between the 

disaccharide standards could not be established.   Even when examining the spectra for 

masses that were unique for a particular linkage position, the further fragmentation or 

rearrangements prevented unequivocal assignment of the linkage position.  

 

5.6.1.2 Linkage Analysis using Sodium Cyanoborodeuteride    

A different approach was used to try to distinguish between ions from the B- and Y- series.  

This involved increasing each ion in the y-series by one m/z unit.  Sodium 

cyanoborodeuteride was used during the reductive amination, instead of sodium 

cyanoborohydride.  

CN

ND

OMe
MeO

OMe

OH
OH

D

 

 

Figure 98: Product from the Reductive Amination using Sodium Cyanoborodeuteride 

 

The product that is formed, when sodium cyanoborodeuteride is used to reduce the imine is 

shown in Figure 98.  Two deuteriums are attached, but the exchangeable deuterium is lost 

when the product comes into contact with a source of protium (e.g. water).   Due to limited 

amounts of each disaccharide standard, this reaction was only performed on cellobiose 

[M+H]
+
 = 327.2 m/z 
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where the monosaccharides are linked through an α-1,4-glycosidic bond.   The MS spectrum 

can be seen in appendix section 5.7.9.   

 

The spectrum shows that all of the fragment ions which are due to the y-ion series increase 

by one m/z unit, changing them to even numbers.  The particular m/z of interest (131.1 m/z, 

143.1 m/z and 175.1 m/z), showed a one unit increase, but also the original ion remained.  

This shows that these fragmentation ions are due to both the y- and b-ion series.   The ratios 

differ slightly, the ratio between peaks 131.1 m/z to 132.1 m/z is approximately 1:2.5, for 

143.1 m/z to 144.1 m/z is approximately 1:1.2 and for 175.1 m/z to 176.1 m/z is 

approximately 1:1.6.   This shows that these masses were due to both the b- and y-ion 

series.   Due to the position of the formal charge, it is expected that the majority of ions 

produced from MS/MS analysis of these derivatised ring-opened sugars would be due to the 

y-series.  This is certainly the case, with all but two distinct ions from the y-series.  The b-ions 

present were also subject to further losses of MeOH (-32 m/z) and H2O (-18 m/z).  The only 

ions that were observed without these further losses were the y0 and y1.     

 

The conclusions drawn form this work are that the optimised MS/MS conditions were able to 

generate fragmentation spectra, but the procedure suffered from further losses of MeOH and 

H2O.  This meant that significant differences between the different disaccharide standards 

could not be found.   Ideally, for this method to be successful, the MS/MS fragmentation 

would need to break the carbon-carbon backbone, without removing the –OMe and –OH 

groups, hence providing clean y- and b-ions.   For this method to succeed, future work would 

need to concentrate on altering the fragmentation conditions or using different chemistry to 

replace the methylation procedure, to provide substituents which are not as prone to 

fragmentation.  This may prove difficult as methyl groups are regarded as the most difficult to 

remove, once attached.              
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5.6.2 Linkage Analysis of Oligosaccharides 

Despite the proposed linkage analysis method being unable to completely distinguish 

between the disaccharide standards, an attempt was made to use this procedure to 

determine the linkage patterns of an oligosaccharide.   Maltohexanose was used, with a 

structure consisting of six monosaccharides that are each linked through an α-1,4-glycosidic 

bond.  The reaction procedure, shown in Figure 96, was applied and the expected residues 

produced were one terminal residue and five identical 1,4-linked residues.  The product from 

the reaction was subjected to LC-MS analysis.    The peak retention times and peak areas of 

these two residues were compared to see if the method was capable of resolving the peaks 

and then quantifying the peaks.      

 

  

Figure 99: LC-MS Chromatogram of the Linkage Analysis of Maltohexanose 
 

 

The LC-MS method was capable of separating the 1,4-linked (6.3 minutes) and terminal (7.5 

minutes) sugar residues.  The order in which the peaks eluted was as expected, where the 

1
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+ 
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Peak Area = 125486 AU 
Retention Time = 7.5 minutes
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extra hydroxyl group on the 1,4-linked residue made the compound slightly more polar, 

hence, elute earlier.  The extracted ion chromatograms were used to calculate the peak 

areas for the two different sugar residues (Figure 99); the peak areas were expressed as a 

peak area ratio.   The results show a 5.2:1 ratio for the residues of the 1,4-linked sugars to 

the terminal sugar, which is close to the theoretical ratio of 5:1.   The problems of partial 

methylation, previously discussed, could be contributing to the differences between the 

calculated and theoretical values.   To calculate the ratio more accurately, the peak area of 

each sugar residue should be calculated from a calibration curve, which has been generated 

from standards of known concentration.         

 

Although the results were not conclusive, this exercise demonstrated the potential application 

of this approach to linkage analysis to quantify different sugar residues in a simple 

homopolysaccharide.        

  

5.6.3 Linkage Analysis of Exopolysaccharides  

The linkage analysis of complex oligosaccharides has been routinely determined by GC-MS 

for many years, this type of analysis is time consuming and not very sensitive.  A novel, 

faster and more sensitive technique would be to use LC-MS to determine the linkage pattern 

of exopolysaccharides.  The proposed linkage analysis procedure was used to examine two 

previously characterised EPS samples; the EPS produced by Lactobacillus delbrueckii 

subsp. bulgaricus NCFB2074 78 and the EPS produced by Lactobacillus acidophilus 5e2 177.  

The structures of the two exopolysaccharides are given in Figure 100.  Both are complex 

heteropolysaccharides, consisting of seven monosaccharides in their repeating unit.   

 

The procedure first methylates all the available hydroxyl groups on the exopolysaccharides, 

then uses acid-catalysed hydrolysis to break the polymer chain into monosaccharide units.  

These partially methylated monosaccharides were then pABN-labelled and subjected to LC-

MS analysis.   
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EPS Produced by Lactobacillus acidophilus 5e2 (Laws et al., 2008) 177 

 

β-D-Galp 
                                                                                1 
                                                                                 ↓ 
                                                                                 4                           
  →6)-α-D-Glcp-(1→3)-β-D-Glcp-(1→3)-β-D-GlcNAcp-(1→3)-α-D-Galp-(1→ 
                                            6                                                                       
                   ↑                                              
                       1 
                                                                   β-D-Galp-(1→4)-β-D-Glcp 
 

 

EPS Produced by Lb. delbrueckii subsp. bulgaricus NCFB2074 (Harding et al., 2005) 78 

 
 
α-D-Galp-(1→3)-α-D-Glcp         α-D-Galp 

               1      1 
            ↓      ↓ 
            3      6 
                →4)-β-D-Glcp-(1→3)-α-D-Galp-(1→ 
      2 
      ↑ 
      1 
   β-D-Galp-(1→4)-β-D-Glcp 
 

 
Figure 100: Structures of the Exopolysaccharides used for the Linkage Analysis 

 

The following derivatised monomers were expected for the EPS produced by Lactobacillus 

acidophilus 5e2 (Table 41) and the EPS produced by Lactobacillus delbrueckii subsp. 

bulgaricus NCFB2074 (Table 42).  

 

      

(C)   (D)        (E) 

(A)         (B) 

(G)  (F) 

(A)         (D)     (C)                (B)  

(G)             (F) 

(E)  
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Table 41: Table of Expected Structures for the Repeating Unit of the EPS Produced by 5e2  

 

Expected Masses (m/z) Structure Unit 

[M+H]+ [M+Na]+ 

N

N

OH

MeO

MeO

OH

OMe

H

 

A 325.1 347.1 

N

N

OH

OMe

OH

OH

OMe

H

 

B 311.1 333.1 

N

N
OH

OH

OH

NHMe

H

OMe

 

C 310.1 332.1 

N

N

MeO

OH

OH

OMe

H

OMe

 

D 

 

325.1 

 

 

347.1 

 

N

N

OMe

OH

OMe

H

OMe

MeO

 

E 339.1 361.1 

N

N

OH
OH

OMe

H

OMe

MeO

 

F 325.1 347.1 

N

N

OMe

OH

OMe

H

OMe

MeO

 

G 339.1 361.1 

 

Derived from the 1,6-linked α-D-glucose 

Derived from the 1,3,6-linked α-D-galactose 

Derived from the 1,3,4-linked β-D-N-acetyl glucosamine 

Derived from the 1,3-linked β-D-glucose 

Derived from the first terminal β-D-galactose 

Derived from the 1,4-linked β-D-glucose 

Derived from the second terminal β-D-galactose 
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Table 42: Table of Expected Structures for the Repeating Unit of the EPS from NCFB2074 
 

Expected Masses (m/z) Structure Unit 

[M+H]+ [M+Na]+ 

OMe

N

N

OH
OH

OH OH

H

 

A 297.1 319.1 

OMe

OMe

N

N

OH

OH

OH

H

 

B 311.1 333.1 

OMe

OMe

OMe
N

N

OH

OH

H

 

C 339.1 361.1 

OMe

OMe

N

N

H
OH

OH

OH

 

D 

 

325.1 

 

 

347.1 

 

OMe

OMe

OMe

MeO

N

N

OH H

 

E 339.1 361.1 

OMe

OMe

MeO

N

N

OH
OH H

 

F 325.1 347.1 

OMe

OMe

OMe

MeO

N

N

OH
H

 

G 339.1 361.1 

Derived from the 1,2,3,4-linked α-D-glucose 

Derived from the 1,3,6-linked α-D-galactose 

Derived from the first terminal β-D-galactose 

Derived from the 1,3-linked β-D-glucose 

Derived from the terminal β-D-glucose 

Derived from the 1,4-linked β-D-glucose 

Derived from the second terminal β-D-galactose 
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The expected structures and masses of the derivatized monosaccharides from the EPS 

produced by Lactobacillus acidophilus 5e2 (shown in Table 41), highlighted potential 

problems which the chromatography must overcome.  As can be seen, residues (B) and (C) 

have unique masses, but residues (E) and (G) are identical in both mass and structure.  The 

expected masses for residues (A), (D) and (F) are the same but the structures are isomers of 

each other.   The method had to be capable of resolving different isomers in order to 

determine the glycosidic linkage positions.   

 

For the EPS produced by Lactobacillus delbrueckii subsp. bulgaricus NCFB2074 the 

structures for residues (A) and (B) have unique masses, whereas residues (D) and (F) are 

isomeric, as are (E), (C) and (G).    This time the terminal D-galactoses, residues (C) and (G), 

are identical with each other in mass and structure.   
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Figure 101: LC-MS Chromatogram of the Linkage Analysis of the EPS produced by 5e2 

 

 
 

BPC : 49 – 3001m/z 
 

EIC : 339.1m/z [M+H]
+
 

EIC : 325.1 m/z [M+H]
+
 

EIC : 311.1 m/z [M+H]
+
 

EIC : 310.1 m/z [M+H]
+
 

EIC : 141.1 m/z [M+Na]
+
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Table 43: LC-MS Peak Area Results for the Linkage Analysis of the EPS produced by 5e2   

 

Peak No. Retention Time Monosaccharide Residue Peak Area Ratio c.f. Ratio 

1 1.5 Excess pABN (141.1 m/z) 82136 - - 

2 2.3 (C) 29440 1.0 
#
 1 

3 2.6 (A) or (D) or (F) 22738 0.8 1 

4 2.7 (A) or (D) or (F) 34439 1.2 1 

5 2.9 (A) or (D) or (F) 25369 0.9 1 

6 3.5 (E) and (G) 60966 2.1 2 

# 
Ratios relative to monosaccharide residue (C), monosacchride residue (B) was not observed. 

 

The derivatised monomers generated by treatment of the EPS produced by 5e2 were 

resolved by HPLC (Figure 101).   From the table of expected masses (Table 41), there 

should be three peaks for the isomers with mass 325.1 m/z, which are all visible.   One peak 

at mass 339.1 m/z, which is visible at a retention time of approximately 3.5 minutes, 

corresponds to the two identical terminal β-D-galactose residues.  This peak is present at 

approximately twice the intensity as that of the earlier eluting peaks (1 : 2.1, c.f. 1 : 2), which 

is as expected.   There should only be one peak for 311 m/z, derived from the 1,3,6-linked α-

D-galactose, but a second peak, at a lower retention time was also visible.   This may be due 

to monosaccharide residue (C) which has a mass of 310 m/z, and has been incorporated into 

the extracted ion chromatogram due to the isolation width being set to one.  This has not 

been proven, and as with the CZE analysis of the EPS produced by 5e2, discussed in 

section 5.4.2, the N-acetyl-glucosamine residue is not visible at the expected mass (310.1 

m/z) using EIC, hence further investigation is required.  Even though the experiment used a 

1:1 ratio of pABN to analyte, the peak due to pABN ([M+Na]+ = 141 m/z) was still present but 

it is significantly reduced in size and is clearly resolved from the  peaks of interest.    

 

The second EPS sample was then analysed by the same method.  This EPS does not 

contain an N-acetyl-amino sugar, therefore all residues were expected to be visible.   
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Figure 102: LC-MS Chromatogram of the Linkage Analysis of the EPS produced by NCFB2074 

 

 

Table 44: LC-MS Peak Areas for the Linkage Analysis of the EPS produced by NCFB2074  
 

Peak No. Retention Time Monosaccharide Residue Peak Area Ratio c.f. Ratio 

1 1.5 (A) 35580 1.0 
#
 1 

2 2.3 Excess pABN (141.1 m/z) 27408 - - 

3 2.6 (B) 36561 1.0 1 

4 2.7 (D) or (F) 37124 1.0 1 

5 2.9 (D) or (F) 34998 1.0 1 

6 3.5 (C), (E) and (G) 113043 3.2 3 

# 
Ratios relative to monosaccharide residue (A).  

 

As with the previous analysis of the EPS produced by 5e2, the BPC and EIC for the 

expected masses are shown in Figure 102.   Again there is one large peak correlating to 

mass 399.1 m/z.  This peak contains three terminal D-galactose residues, and is 

approximately three times more intense than the single peak for mass 311.1 m/z (1:3.2, c.f. 

BPC : 49 – 3001m/z 
 

EIC : 141m/z [M+Na]
+
 

EIC : 297.1m/z [M+H]
+
 

EIC : 325.1 m/z [M+H]
+
 

EIC : 311.1 m/z [M+H]
+
 

EIC : 339.1 m/z [M+H]
+
 



Chapter 5                           Results & Discussions – New Methods For Analysis of Exopolysaccharides 

- 233 - 

1:3).   The EIC for mass 325.1 m/z contains two main peaks, but two smaller peaks are also 

visible and are partially resolved.  One reason for these extra peaks could be that a small 

proportion of the terminal sugars is maybe partially methylated, producing a peak with an m/z 

14 less than expected.   The same explanation could be applied to explain the extra peaks in 

the extracted ion chromatograph for 311.1 m/z, one at each side of the principal peak.   The 

EIC for mass 297.1 m/z contains one peak of approximately the correct size relative to the 

other peaks (Table 44), and also several other peaks which elute later, and can not be 

explained without further investigation.      

 

These results are encouraging and with further method development this aspects of this 

methodology could eventually be used to confirm the linkage analysis of carbohydrates.   

Basic comparisons between the current GC-MS method and the proposed LC-MS method 

show that there are improvements in both sensitivity and analysis time.  But until the method 

is capable of providing unequivocal linkage analysis, a quantitative comparison between the 

methods will not be possible.  
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5.7 Appendices  

5.7.1 Mass Spectra of pABN-labelled Monosaccharides 

5.7.1.1   Mass Spectrum of pABN-galactose  
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5.7.1.2 Mass Spectrum of pABN-mannose 
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5.7.1.3 Mass Spectrum of pABN-N-acetyl-glucosamine 
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5.7.2 Examples of the CZE Chromatograms for the pABN-labelled Monosaccharides 

 

5.7.2.1 pABN-mannose 

 

 
 

5.7.2.2 pABN-galactose 
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5.7.2.3 pABN-glucose  

 

 
 
 

5.7.2.4 pABN-N-acetyl-glucosamine 
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5.7.2.5 pABN-glucosamine  

 

 

 

5.7.2.6  Peak Heights and Noise for CZE Analysis of pABN-labelled Monosaccharides   

 

pABN-labelled 

Monosaccharide (100 µg mL
-1

) 

Peak Height       

(H) 

Background noise       

(h) 

Signal to Noise Ratio 

D-glucose 3362 41 164 

D-galactose 4312 56 154 

D-mannose 3888 48 162 

D-N-acetyl-glucosamine 4002 58 138 

D-glucosamine 2920 73 80 

Average Results from the replicate injections  
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5.7.3 UV Chromatograms For Timed Methylation Reaction 
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2 - Methylated pABN-Glc (Fully Methylated) - 11.333
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TEST RUN #107 [modified by Administrator] Methylation of pABN-Glc (210 minutes) UV_VIS_2
mAU

min

1 - Methylated pABN-Glc (2Me Missing) - 6.917

2 - Methylated pABN-Glc (Fully Methylated) - 10.983

WVL:280 nm
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5.7.4 MS/MS Spectra – Optimising the Methylation of pABN-maltohexanose 

5.7.4.1 Methylation using Methyl Iodide (60 µl), Reaction Time 10 minutes 
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5.7.4.2 Methylation using Methyl Iodide (300 µl), Reaction Time 20 minutes 
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5.7.4.3 Methylation using Methyl Iodide (300 µl), Reaction Time 60 minutes 
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5.7.4.4 Methylation using Methyl Iodide (1000 µl), Reaction Time 60 minutes 
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5.7.5 MS/MS Spectra – Analysis of Partially Methylated pABN-maltohexanose 

5.7.5.1 Fully Methylated pABN-maltohexanose – 1409.6 m/z  
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5.7.5.2 Partially Methylated pABN-maltohexanose – 1381.6 m/z (Peak 1) 
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5.7.5.3 Partially Methylated pABN-maltohexanose – 1381.6 m/z (Peak 2) 
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5.7.5.4 Partially Methylated pABN-maltohexanose – 1367.6 m/z 
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5.7.5.5 Partially Methylated pABN-maltohexanose – 1353.6 m/z (Peak 1) 
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5.7.5.6 Partially Methylated pABN-maltohexanose – 1353.6 m/z (Peak 2) 
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5.7.6 MS/MS Spectra – Linkage Analysis of Disaccharide Standards 

5.7.6.1 Gentibiose (1,6–linked) 
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5.7.6.2 2-Mannobiose (1,2–Linked)  
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5.7.6.3 3-Galactobiose (1,3–Linked) 
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5.7.6.4 Cellobiose (1,4–Linked) 
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5.7.6.5 Trehalose (1,1–Linked) 
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5.7.7 Fragmentation Masses for y- and b- Series 

 

Terminal [M+H]
+
 Y4 Y3 Y2 Y1 Y0 B0 B1 B2 B3 B4 

  339 293 263 219 175 131 45 75 119 163 207 

-H2O 321 275 245 201 157 113 27 57 101 145 189 

-MeOH 307 261 231 187 143 99 13 43 87 131 175 

-H2O+MeOH 289 243 213 169 125 81 -5 25 69 113 157 

-2H2O 303 257 227 183 139 95 9 39 83 127 171 

            

1,2 - Linked [M+H]
+
 Y4 Y3 Y2 Y1 Y0 B0 B1 B2 B3 B4 

  325 279 249 205 161 131 45 75 119 163 193 

-H2O 307 261 231 187 143 113 27 57 101 145 175 

-MeOH 293 247 217 173 129 99 13 43 87 131 161 

-H2O+MeOH 275 229 199 155 111 81 -5 25 69 113 143 

-2H2O 289 243 213 169 125 95 9 39 83 127 157 

            

1,3 - Linked [M+H]
+
 Y4 Y3 Y2 Y1 Y0 B0 B1 B2 B3 B4 

  325 279 249 205 175 131 45 75 119 149 193 

-H2O 307 261 231 187 157 113 27 57 101 131 175 

-MeOH 293 247 217 173 143 99 13 43 87 117 161 

-H2O+MeOH 275 229 199 155 125 81 -5 25 69 99 143 

-2H2O 289 243 213 169 139 95 9 39 83 113 157 

            

1,4 - Linked [M+H]
+
 Y4 Y3 Y2 Y1 Y0 B0 B1 B2 B3 B4 

  325 279 249 219 175 131 45 75 105 149 193 

-H2O 307 261 231 201 157 113 27 57 87 131 175 

-MeOH 293 247 217 187 143 99 13 43 73 117 161 

-H2O+MeOH 275 229 199 169 125 81 -5 25 55 99 143 

-2H2O 289 243 213 183 139 95 9 39 69 113 157 

            

1,6 - Linked [M+H]
+
 Y4 Y3 Y2 Y1 Y0 B0 B1 B2 B3 B4 

  325 293 263 219 175 131 31 61 105 149 193 

-H2O 307 275 245 201 157 113 13 43 87 131 175 

-MeOH 293 261 231 187 143 99 -1 29 73 117 161 

-H2O+MeOH 275 243 213 169 125 81 -19 11 55 99 143 

-2H2O 289 257 227 183 139 95 -5 25 69 113 157 

            

   Fragment ion not possible       
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5.7.8 MS/MS Spectra – Linkage Analysis of Deuterated Disaccharide Standards   

5.7.8.1 Deuterated Cellobiose (1,4–Linked) 
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5.7.8.2 Deuterated 2-mannobiose (1,2–Linked) 
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5.7.8.3 Deuterated Gentibiose (1,6–Linked) 
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5.7.8.4 Deuterated 3-Galactobiose (1,3–Linked) 
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5.7.8.5 Deuterated Trehalose (1,1–Linked Terminal) 
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5.7.9 MS/MS Spectrum of Cellobiose (1,4–Linked) using Sodium Cyanoborodeuteride 
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6. CONCLUSIONS  

6.1 Production and Characterisation of Exopolysaccharides  

Two LAB cultures, Lactobacillus acidophilus 5e2 and Lactobacillus helveticus Rosyjski were 

inoculated to milk and grown as the milk was fermented.   The EPS produced by the cultures 

was isolated and purified using a technique developed at the University of Huddersfield to 

provide a solid white residue which was soft in texture.   The solids content from the batches 

of Lactobacillus acidophilus 5e2 fermented for 24 – 27 hours at 37 °C was between 124 – 

133 mg L-1, increasing to 281 mg L-1 when fermented for 46 hours at 42 °C.   Only one batch 

of Lactobacillus helveticus Rosyjski was grown providing a solid content of 237 mg L-1 after 

46 hours fermentation.  The composition of the solid residue recovered differed slightly from 

batch to batch but contained approximately 80 % carbohydrate, <2 % protein and <0.8 % 

DNA.  The remaining portion was not identified but was assumed to consist of moisture and 

inorganic material.   Using an adapted ultra-filtration method, the critical solubility of the 

crude EPS produced by Lactobacillus acidophilus 5e2 was shown to be 1800 µg mL-1 for 

batch Xn358.          

 

The structure of a novel exopolysaccharide produced by Lactobacillus acidophilus 5e2 has 

been fully characterised and published in Carbohydrate Research (Laws et al., 2008) 177.  

The monosaccharide analysis showed that the repeating oligosaccharide structure consisted 

of three D-glucose units, three D-galactose units and one D-N-acetylglucosamine units, which 

were confirmed by inspection of the anomeric region of the 1H-NMR.   Linkage analysis by 

GC-MS showed that there were two terminal, four di-linked and two tri-linked 

monosaccharides, confirming that the repeating oligosaccharide contains a monosaccharide 

branch and a disaccharide branch.   Data from the 2D-NMR experiments confirmed these 

linkages and showed which monosaccharides were linked to each other in the repeating unit 

of the EPS.   Further 2D-NMR experiments are required to determine the structure for the 
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EPS produced by Lactobacillus helveticus Rosyjski.  The structural evaluation of this EPS is 

expected to be completed in the near future.      

 

The Mw of the EPS produced by Lactobacillus acidophilus 5e2 was determined using HP-

SEC-MALLS.  To provide a more accurate determination of Mw a specific refractive index 

increment (dn/dc) value was required for the EPS.   A value of 0.198 mL g-1 was determined 

and used in all subsequent calculation of the Mw for the EPS.        

 

The HP-SEC-MALLS system was evaluated using a pullulan standard (800,000 Mw) of 

known Mw and polydispersity.  The system gave the correct Mw, with a RSD of 0.2 %.   The 

Mw results for the EPS produced by Lactobacillus acidophilus 5e2 were batch dependent, 

differing due to the fermentation conditions used.   Longer fermentation produced EPS with 

larger Mw, this was studied further using prolonged fermentations, where samples were 

removed periodically throughout the milk fermentation.  The EPS was isolated from each 

time point and the yield and Mw determined.   The timed fermentation results, interestingly, 

showed a significant increase in Mw during the first 24 hours of fermentation, which was 

followed by the Mw remaining approximately constant until 54 hours.  The Mw then started to 

decrease until the fermentation was stopped after 72 hours.   Until the Mw began to decrease 

the increase in Mw of EPS closely matched the increase in EPS yield, this suggests that the 

overall number of polysaccharide chains within the system has not significantly changed over 

this period.  The increased rate of polymerisation of the EPS was not matched by a 

corresponding increase in the rate of cleavage of the polymer from its lipid carrier.   

Prolonged stirring of the system resulted in a slow fall in the average molecular weight, and 

the reason for this is not fully understood. Cell lysis may release glycosylhydrolases able to 

digest the EPS or the EPS could be susceptible to hydrodynamic shear from stirring in the 

vessel.   The increase in viable counts between 6 and 15 hours indicates that approximately 

four new generations of bacteria are produced.  However, since the number of new 
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polysaccharide chains has not increased significantly over the same period, this suggests 

that de-novo EPS synthesis has been switched off.   

6.1.1 Future Work 

Further work related to these studies could include completing the structural determination of 

the EPS produced by Lactobacillus helveticus Rosyjski.  Further 2D-NMR experiments are 

required to deduce the structure.   

          

A measurement of the viscosity of the growth media throughout the fermentation process 

would prove very informative.   There have been many publications supporting the notion 

that EPS production increases the viscosity of the fermented milk.   For a future study, the 

viscosity measurement could be taken of the milk media at each time point.  The viscosity of 

the media and the Mw measurements of the EPS could then be related to viscosity data 

generated for EPS of different Mw reported in this thesis.   This type of viscosity analysis 

could be added to the testing regime for all future fermentations. 

 

Other timed fermentations designed to indicate the measurement of Mw as a function of time 

could be carried out on different LAB cultures, e.g. Lactobacillus helveticus Rosyjski.  

However this could be problematic for this particular culture, because the EPS has poor 

solubility which was observed when attempting the NMR and HP-SEC-MALLS analysis.   

     

6.2 Depolymerisation of Exopolysaccharides  

Further analysis of the EPS produced by Lactobacillus acidophilus 5e2 was required to 

understand how the Mw of EPS influences the physical properties when in aqueous solutions.   

Physical and chemical depolymerisation techniques were used to reduce the chain length of 

the EPS produced by Lactobacillus acidophilus 5e2.  Two physical techniques: constant 

pressure disruption (application of hydrodynamic shear) and ultrasonic disruption were used, 

along with a chemical technique, acid-catalysed hydrolysis.    
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Constant pressure disruption is a technique which uses pressure to force an aqueous 

sample through a narrow orifice, exerting hydrodynamic shear on the sample.  The results 

using constant pressure disruption showed that this technique could reduce the molecular 

weight of EPSs in a controlled manor by altering the pressure applied.  There was an 

exponential relationship between the pressure and the decrease in Mw of the EPS.  As the 

Mw of the EPS decreased, the polydispersity remained constant, maintaining a narrow 

distribution of molecular weight, implying that the polysaccharide chain was breaking in a 

non-random manner.  Further experiments using solvents with different viscosities to 

dissolve the EPS were carried out.  The results suggested that solvents with greater viscosity 

exert a larger hydrodynamic shear on the EPS, hence breaking it faster and to a greater 

extent.   Due to the physical nature of this depolymerisation technique, a limiting value was 

found at which point no further depolymerisation was possible.  This value was 

approximately 15000 g mol-1, for the EPS produced by Lactobacillus acidophilus 5e2.    

 

Ultrasonic disruption was the next technique used to depolymerise the EPS produced by 

Lactobacillus acidophilus 5e2.   This technique features a phenomenon referred to as 

‘cavitation’, which creates millions of shockwaves in the liquid, the cumulative effect of which 

causes extremely high levels of energy to be released into the liquid, generating shear and 

thermal stresses.  The results of this technique also showed that the EPS was being broken 

down over time in a controlled manner.   Larger amplitudes provided greater 

depolymerisation.  As with constant cell disruption, the polydispersity of the EPS showed no 

significant changes throughout the ultrasonic process, again suggesting that the 

polysaccharide chain was being cleaved in a controlled manner.   This depolymerisation 

technique also had a limiting value, which was found to be approximately 16000 g mol-1.   

 

A study of the variation of the viscosity of aqueous solution of the EPS produced by 

Lactobacillus acidophilus 5e2 was undertaken to measure the approximate intrinsic viscosity 

relative to the Mw of the EPS.   Solutions of EPS were sonicated for different times to 
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produce different Mw. The approximate intrinsic viscosities were determined using an 

Ostwald glass capillary viscometer at 20±1 °C.   The EPS produced by Lb. acidophilus 5e2 

had an intrinsic viscosity of approximately 0.6 – 2.0 dL g-1 over the Mw range of 1.59x105 – 

4.78x105 g mol-1, which was relatively low when compared to that of other polysaccharides 

that had been reported, such as xanthan or pectin.   Application of the Mark–Houwink–Kuhn–

Sakurada equation suggested that the chain geometry for the EPS produced by Lb. 

acidophilus 5e2 is semi-coil, but it must be taken into account that this value has been 

calculated from approximate intrinsic viscosity values.    

  

 

It is also possible to use mild acid-catalysed hydrolysis as a depolymerisation technique.   

This process uses the application of a chemical reaction to break glycosidic linkages 

between monosaccharides on the polysaccharide chain.  Using mild conditions, TFA (0.2 M) 

at 30 °C, the EPS produced by Lactobacillus acidophilus 5e2 was depolymerised.  The 

results showed controlled depolymerisation of the EPS, the concentration vs time profile for 

the hydrolysis reaction was first order.   The 1H-NMR results of the acid hydrolysed EPS 

sample showed that the chemical reaction was changing the structure of the repeating 

oligosaccharide unit, probably by removing the N-acetyl group from N-acetyl glucosamine.   

Also, certain glycosidic linkages may have been preferentially hydrolysed compared to 

others.   Both of these events would cause a shift in the signals that were seen in the 

anomeric region of the 1H-NMR spectrum.      

 

The depolymerisation techniques explored have been shown to be beneficial in terms of 

polysaccharide analysis.  The controlled manner in which the EPS was depolymerised 

makes the techniques suited to a wide range of applications.  The drawbacks of these 

methods are that limiting values of depolymerisation were found using the physical 

techniques and chemical modifications were observed when using acid-catalysed hydrolysis.         
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6.2.1 Future Work  

Further work could investigate the use of mild acid-catalysed hydrolysis to depolymerise the 

exopolysaccharides to oligosaccharides and then, using LC-MS-MS, the structures could be 

determined to see if specific glycosidic linkages are breaking, or if the structure for the 

repeating unit can be obtained.   In this report, a novel approach to oligosaccharide analysis 

is described which uses LC-MS-MS.  With further development, this technique could 

eventually be used to determine the structure of intact repeating oligosaccharides of 

exopolysaccharides, making the analysis faster and more sensitive than methods currently 

available.  

  

Further work could be carried out on the EPS produced by Lactobacillus acidophilus 5e2 

using other depolymerisation techniques, such as enzymic and microwave assisted 

depolymerisation.   It would have been interesting to compare results for these differing 

depolymerisation techniques, and suggest how they would suit different applications.   

 

6.3 Novel Methods of Analysis 

The final chapter of this work looked at novel methods for the analysis of EPS.   EPSs have 

been structurally characterised in a similar fashion for many years, but these techniques are 

time consuming and lack sensitivity.  The Carbohydrate community would benefit from novel 

approaches which implement more modern analytical techniques.   

  

Carbohydrates, in particular neutral carbohydrates, are difficult to detect at low levels due to 

their lack of a chromophore and formal charge.   A derivatisation technique was applied to 

rectify this problem and improve their detection.   This was achieved by labelling the reducing 

end of a carbohydrate with p-aminobenzonitrile, using a reductive amination reaction.  The 

derivatisation procedure was first trialled on simple monosaccharides.  LC-MS and NMR 

were used to evaluate the completion of the reaction.   The results showed that pABN was 

successfully used to derivatise a range of neutral monosaccharides.  The mass spectrometer 
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conditions were optimised for the analysis of mono-, di- and oligosaccharides.    The LC-MS-

MS analysis of maltohexanose, a six unit oligosaccharide, showed that the B- and Y-ion 

series were observed, but the X- and A-ion series were not visible.    Further work could be 

done on the ion-trap or MALDI-CID mass spectrometer, in particular increasing the 

fragmentation amplitude to cause the production of X- and A-ions to aid with the structural 

evaluation.         

 

A method was developed utilising capillary zone electrophoresis to separate a range of 

monosaccharides common to EPSs produced by LAB.  The monosaccharides were pABN-

labelled and the separation was aided using a borate buffer system.   The intended 

application of the method was in determining the monosaccharide composition of EPS 

samples.   Initial results were encouraging; the composition of a published EPS produced by 

Lactobacillus delbrueckii subsp. bulgaricus NCFB2074 was confirmed by this method.  A 

problem was encountered when analysing the EPS produced by Lactobacillus acidophilus 

5e2, where the N-acetyl-glucosamine could not be detected.   It was expected that the N-

acetyl group would be removed by acid hydrolysis, which should have left a glucosamine 

residue.  Neither the N-acetyl-glucosamine nor the glucosamine were detected.   This 

problem could not be explained, despite further investigation.   However this method has 

shown that the rapid analysis of EPSs is possible, cutting analysis time down from three days 

to one day.                    

 

Two methylation procedures were used in an attempt to achieve per-O-methylation of an 

EPS sample.  Methods documented by Hakomori (1964) and Ciucanu and Kerek (1984) 

were used to methylate the hydroxyl groups on mono-, di- and oligosaccharides.  The 

Hakomori procedure uses dimethylsulfinyl anion as a base, the free hydroxyl protons on the 

monosaccharide are removed and then methyl iodide is added to form methoxy- groups.   

Initial work, methylating pABN-glucose, showed that per-O-methylation was not occurring, 

providing a range of partially methylated species.   This was confirmed by LC-MS and 
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analysis of deuterated products.  An investigation into the methylation reaction of pABN-

glucose showed that the ratio of fully methylated product to partially methylated product does 

not significantly improve over time.  The yield of fully methylated product increased 

throughout, but so did that of the partially methylated species.   Analysis of methylated 

pABN-maltohexanose also showed partial methylation, where the overall distribution had 

similarities to a Gaussian distribution, where the most intense ions occurred in the middle, 

which had 5, 6 and 7 missing methyl groups.  LC-MS confirmed that the partial methylation 

was not caused by fragmentation of the per-O-methylated product.  This method was not 

robust enough to be used for the analysis of EPS, therefore the Ciucanu and Kerek 

methylation procedure, which uses sodium hydroxide as the basic agent, was investigated.         

 

The Ciucanu and Kerek method was shown to be superior, producing more per-O-

methylated product.  The procedure was optimised by altering the amounts of reagents and 

reaction time, but still incomplete methylation was observed.   A study using LC-MS-MS 

attempted to locate the positions of the missing methyl groups.  From the results generated, 

the free hydroxyls appeared to be distributed randomly.   

 

Using the derivatisation processes described, a novel method for the linkage analysis of 

exopolysaccharides was developed.  The method was trialled using a series of 

disaccharides, each with different glycosidic linkages (1,1–, 1,2–, 1,3–, 1,4– and 1,6–linked).     

Each disaccharide was first methylated and hydrolysed into two sugar residues, after 

labelling with pABN, one derivatised sugar residue corresponded to the terminal sugar and 

one derivatised sugar residue corresponded to a linked sugar and contained one extra 

hydroxyl group located at the linkage position.  LC-MS-MS analysis was used to separate the 

sugar derivative, and to generate fragmentation patterns.  Optimised MS conditions provided 

detailed fragmentation patterns, but the b- and y- ion series were not clearly observed, ions 

due to further reaction, such as losses of MeOH and H2O were evident, and in great 

abundance.   The loss of several MeOH / H2O gave peaks that were identical for yn and yn-1 
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and further fragmentation reaction generated the b- and y- ions with equal m/z, making 

assignment of these ions difficult.   

 

Deuterating the samples to aid identification of the b- and y- ions proved unsuccessful, and 

did not help deduce where each ion had originated.  The use of sodium cyanoborodeuteride 

in the reductive amination reaction to increase the entire y- ion series by one m/z helped and 

showed that the majority of ions observed were due to the y- ion series, but could not prevent 

further fragmentation from occurring, which prevented the different linkage positions from 

being identified.   Despite the proposed linkage analysis method proving unable to 

completely distinguish between the disaccharide standards, this procedure was used to 

probe the linkage patterns of maltohexanose.   The fragmentation data was not examined, 

instead this investigation concentrated on peak retention times and peak areas.     

 

The LC-MS method was capable of separating the 1,4-linked and terminal sugar residues, 

with peak area ratio of 5.2 : 1 (1,4-linked : terminal), which is close to the theoretical ratio of 5 

: 1.   From these encouraging results, the EPSs produced by both Lactobacillus delbrueckii 

subsp. bulgaricus NCFB2074 and Lactobacillus acidophilus 5e2 were examined using this 

methodology.  The results were positive; peaks were detected for each differently linked 

sugar residue.  The relative peak areas of each sugar residue were close to those expected 

for both EPS samples.  Unfortunately, the N-acetyl-glucosamine monosaccharide residue 

was not observed either as N-acetyl-glucosamine or glucosamine.   This was probably due to 

the similar problems that were encountered using the CZE method, where it was suspected 

that N-acetyl-glucosamine was destroyed during acid hydrolysis.  Basic comparisons 

between the current GC-MS method and the proposed LC-MS method show that there are 

improvements in both sensitivity and analysis times when using the LC-MS method.   

However, as the method was not capable of providing unequivocal linkage analysis, a 

quantitative comparison between the methods was not possible.  
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6.3.1 Future Work 

Further work is required to resolve the problem of detecting N-acetyl amino sugars by CZE 

for monosaccharide composition analysis.    A similar problem was encountered for the 

linkage analysis by LC-MS, the peak for the N-acetyl amino sugars was not visible.   It is 

likely that similar factors are preventing the detection of this peak in both methods, where the 

N-acetyl amino sugar is being broken down during the acid hydrolysis stage of the reaction.   

Further work could involve the analysis of N-acetyl-D-lactosamine, which comprises of a β-D-

galactose-(1→4)-N-acetyl-D-glucosamine.  This simple disaccharide could be analysed by 

both procedures, to evaluate their feasibility and possibly determine which steps of the 

procedures are problematic.  Work has been started, but so far has proved inconclusive.       

 

Other future developments for linkage analysis by LC-MS should concentrate on preventing 

elimination reactions.   This is essential if this method is to be used as the preferred 

technique for the linkage analysis of polysaccharides.   One approach might be to use a 

different functional group to substitute the available hydroxyl hydrogens i.e. instead of using 

methyl groups.   Benzoylation, ethylation, or acetylation, for example, could be used. 

Although, it is likely that similar, unwanted fragmentation of these groups would be seen.   

Methylation was used in this study because methyl groups are thought to be stable.  Any 

derivatisation method chosen must be able to derivatise all available hydroxyl groups.   

Partial derivatisation only leads to complications when interpreting peaks in the LC-MS 

chromatograms.       

  

Another approach could be to use a different type of mass spectrometer.   There is a 

requirement for a mass spectrometer to provide conditions that can break the carbon-carbon 

backbone bonds, but leave the derivatised side groups unaltered.  This may prove difficult 

based on their relative strengths.  There is little difference between the bond energies of 

carbon-carbon bonds (348 kJ mol-1) in comparison to the carbon-oxygen bonds (360 kJ mol-

1).       
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Although problems were encountered with these analytical approaches to the linkage 

analysis of polysaccharides, further work using the suggestions above, could provide the 

Carbohydrate Community with new, faster and more sensitive methods for the analysis of 

complex polysaccharides.         
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