Computing and Library Services - delivering an inspiring information environment

Spontaneous Transfer of Parahydrogen Derived Spin Order to Pyridine at Low Magnetic Field

Atkinson, Kevin D., Cowley, Michael J., Elliott, Paul I., Duckett, Simon B., Green, Gary G. R., López-Serrano, Joaquín and Whitwood, Adrian C. (2009) Spontaneous Transfer of Parahydrogen Derived Spin Order to Pyridine at Low Magnetic Field. Journal of the American Chemical Society, 131 (37). pp. 13362-13368. ISSN 1520-5126

Metadata only available from this repository.


The cationic iridium complex [Ir(COD)(PCy3)(py)]BF4 (1) is shown to react with dihydrogen in the presence of pyridine (py) to form the dihydride complex fac,cis-[Ir(PCy3)(py)3(H)2]BF4 (2). Complex 2 undergoes rapid exchange of the two bound pyridine ligands which are trans to hydride with free pyridine; the activation parameters for this process in methanol are ΔH = 97.4 ± 9 kJ mol−1 and ΔS = 84 ± 31 J K−1 mol−1. When parahydrogen is employed as a source of nuclear spin polarization, spontaneous magnetization transfer proceeds in low magnetic field from the two nascent hydride ligands of 2 to its other NMR active nuclei. Upon interrogation by NMR spectroscopy in a second step, signal enhancements in excess of 100 fold are observed for the 1H, 13C and 15N resonances of free pyridine after ligand exchange. The degree of signal enhancement in the free substrate is increased by employing electronically rich and sterically encumbered phosphine ligands such as PCy3, PCy2Ph, or PiPr3 and by optimizing the strength of the magnetic field in which polarization transfer occurs.

Item Type: Article
Subjects: Q Science > Q Science (General)
Q Science > QD Chemistry
Schools: School of Applied Sciences
Related URLs:
Depositing User: Sara Taylor
Date Deposited: 05 Aug 2010 15:34
Last Modified: 28 Aug 2021 10:58


Downloads per month over past year

Repository Staff Only: item control page

View Item View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©