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This paper describes the results of a preliminary attempt to use a genetic algorithm to 

divide an inverted file into a specified number of partitions such that the total number of 

documents indexed by a particular partition is approximately equal to the  total number of 

documents indexed by each of the other partitions. The purpose of identifying such 

equifrequent  partitions is to assist in the generation of  text signature representations of  

documents which are more discriminating than those created using more traditional 

techniques. 

 

The paper is divided into six sections. Following the introduction, the second of these 

describes the main idea behind the signature approach The third section introduces the 

idea of genetic algorithms and briefly reviews earlier work on the application of this 

technique to information retrieval problems. The fourth section describes how we have 

used a genetic algorithm to partition a section of the inverted file used to index the LISA 

document test collection and how we have then used the partitioned file in the production 

of text signatures to represent documents in the collection. We might say that the 

signature representations produced in this way have been customised to the vocabulary of 

the LISA document collection and we would therefore expect them to be more 

discriminating than text signatures produced using more traditional techniques. The fifth 

section of the paper compares the results of searches conducted using signatures with 

results obtained from searches of the full inverted file. It is concluded that the signatures 

produced with the assistance of the genetic algorithm are more discriminating than those 

produced using simpler techniques. 

 
INTRODUCTION 

Genetic algorithms represent a new approach to solving a range of  

computationally-expensive  problems that cannot easily be solved 

using conventional deterministic approaches. The approach is based 

on the identification of an initial set of possible solutions to a 

problem which are then iteratively improved using techniques 

analagous to those found in natural evolution. A recent paper by 

Jones, Robertson and Willett
 3

 outlines a number of information 



retrieval problems that might be addressed in this way. One of these 

problems concerns the use of a genetic algorithm to divide an 

inverted file into equifrequent order-free groups of indexing terms. 

The work described here addresses a related problem. Our concern 

has been to partition an inverted file whilst preserving the order of 

the resulting groups in order to create a partition file which might be 

used in the production of  text signatures. 

 
TEXT SIGNATURES 

The use of an inverted file structure is almost universal in large scale 

document retrieval systems. This approach permits rapid searches to 

be carried out but suffers from the large storage and processing 

overheads associated with updating and maintaining the online 

indexes which are needed to provide an interactive response. In many 

cases, the inverted indexes take as much space as the main record file 

itself and for large systems further overheads are incurred because it 

becomes necessary to maintain smaller secondary indexes to gain 

access to the main index. No such overheads are incurred in serial 

searching but the approach is inherently slow and cannot be expected 

to support interactive retrieval from large document collections; this 

is true in spite of the number of highly efficient string searching 

algorithms that have been suggested and the use that has been made 

of parallel hardware for serial searching. 

     The idea of using signature representations of text to speed up 

serial searching was first suggested by Harrison
2
 in connection with 

the development of an efficient "Find X" facility for text editing, 

where X would be some user defined string of characters. A text 

string is a fixed length bit string representation in which individual 

bits are set if certain character strings, (which might be stems, words 

or phrases) are present in the text being characterised. The bit string 

is typically created by applying a hashing algorithm to each of these 

strings, this type of algorithm uses the characters in a particular 

string to compute a value which can be taken as a bit position in the 

text signature. Thus, the effectiveness of signature representations is 



critically dependant upon the discriminating power of the hashing 

algorithm used to determine which bits are set.  

     Even the most discriminating algorithm will have to make use of 

the same bit position to represent a number of different terms. (This 

problem can only be avoided in situations where the signature length 

is at least the same size as the indexing vocabulary). A consequence 

of this is that a signature search may produce matches between query 

terms and documents which have not been indexed under those terms 

but which have been indexed under terms that hash to the same bit 

position. Such a mismatch is known as a “false drop”. To avoid this 

problem text signatures are often  used as the basis for a fast 

approximate search which serves to eliminate large sections of text 

from a more computationally expensive exact search, this implies a 

two-stage retrieval strategy. In the first stage a text signature 

representation of the query string is compared with corresponding 

representations of the documents in the database, in this way a small 

subset of the documents in the collection can be rapidly identified as 

worthy of a more detailed pattern matching search. Such an approach 

can dramatically reduce the time needed for a serial search. 

 
GENETIC ALGORITHMS 

Genetic algorithms offer a way to randomly search a problem space 

for the best answers to problems having the following characteristics: 

 

• No obvious algorithmic solution 

• Information structures that encode potential solutions 

• A way of evaluating these structures 

• Formal means of chopping and re-splicing these structures     

without creating nonsense rules. 

 

The task of partitioning an inverted file meets all of these criteria. It 

would be difficult to specify a deterministic algorithm capable of 

finding the best possible solution for a range of inverted indexes. Our 

potential solutions are simple fixed length array structures containing 

the number of  indexing terms in each partition. These are easy to 



evaluate and can easily be chopped and respliced. They are our 

analogues to biological chromosomes. 

From a computational point of view, genetic algorithms involve the 

selection of a number of  possible solutions to a problem. Initially 

this selection will be completely at random. Each solution will 

exhibit a level of “fitness” to the problem which we must be able to 

measure. Possible solutions are assessed according to their fitness 

and put into a ranked order. The next stage is to breed the individual 

solutions with each other at random, with a greater probability of 

being chosen as a parent being assigned to the higher ranked 

solutions. This produces a new generation of solutions which share 

some characteristics of  the parents in different combinations. (The 

inherited characteristics will in our case be simply sections taken 

from the parent array structure - they are therefore analagous to 

biological genes). The children are then assessed and put into ranked 

order and the process is repeated. 

The operators that are acting in producing new offspring are known 

as “crossover” “mutation” and “inversion”. These operators have 

analogues in natural evolution, further discussion of them is deferred 

until the next section where an explanation of the precise way in 

which they have been implemented is presented. 

 
METHOD OF THE EXPERIMENT 

We are concerned with the use of genetic algorithms in placing 

partitions in an equifrequent way. We are therefore interested in 

using the evolutionary process to select optimal solutions from the 

many possible solutions. The input to this process will be a postings 

file (i.e. one that contains all of the indexing terms that would occur 

in a full inverted file along with their frequency of occurrence). Thus 

a section of this file might look like this: 



 
ABSTRACT  2568 

AGGLOMERATIVE      25 

AUTOMATIC 12000 

BIBLIOGRAPHIC  5000 

BINARY      89 

 

The input file is likely to be  large (say) 10,000 terms. The signature 

representation will reduce this to (say) 100 bits. In this case, the data 

structure taken as input to the genetic algorithm is a partition array of 

length 99. Each location in the array is an integer representing the 

number of indexing terms in that particular partition. 

The following might be a section of the array structure: 

 
126 251 93 150 12 34 400 

 

This data structure represents a situation where there are 126 terms in 

the first partition, 251 indexing terms in the second partition etc. Our 

genetic algorithm is used to produce and modify structures like this 

until the optimal set of partitions is obtained 

First the signature length should be decided (the number of partitions 

of the index file). The total frequency, Ft of words on the index file 

can then be divided by the signature length M to give the ideal 

frequency of each partition Fs. 

 

F

M
Ft

s=  

 

The genetic algorithm will pick partitions completely at random to 

produce the first generation of solutions. These are then evaluated 

with the following formulae: 

 

E F Ft s j

j

M

= −

=

∑ ( )
1

 where Et = total error. 

 



A perfect partitioning of the input document will result in a value of 

zero for Et. Each individual solution in the population can be 

assessed using the above equation, and put into ranked order. For the 

next generation a probability is assigned to each individual, 

depending on its position in the ordered list. The higher up the list, 

the greater the probability of being selected as a parent. 

In the remainder of this section we discuss the specific way in which 

the genetic operators crossover, mutation and inversion are carried 

out on the partition array structures. 

 
Crossover 

Crossover involves the random selection of cut points in the bit string 

and swapping the chunks of material in between the cutpoints with 

another individual, this is analogous to asexual reproduction. 

 

• Two structures a1..am and b1..bm are selected at random from the  

current population. 

• A crossover point x, in the range 1 to m-1 is selected again at  

random. 

• Two new structures: 

 a1a2...axbx+1bx+2....bm 

 b1b2...bxax+1ax+2....am  

are formed. 

 



 

This situation is summarised in the following diagram: 

 

Indi vi dual      (126,1)  (253,2)

(bi t  st ri ng)    (68,1)   (52,2)

(93,3)  (15,4)

(67,3)   (6,4)

(89,5)  . . . .  (150,99)

(16,5)  . . . .   (27,99)

1

2

Produces

(126,1)  (253,2)

 (68,1)   (52,2)

(67,3)  (6,4)

(93,3)  (15,4)

(89,5)  . . . .  (150,99)

(16,5)  . . . .   (27,99)

3

4
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parti tion

Posi tion of 
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It should be noted that the sum of the terms in solutions (3) and (4) 

above will not add up to the total number of terms in the original 

postings file (TT )  and so will need to be normalised. This involves 

multiplying each element in the two solutions by a common factor. 

(PT /TT  ) where PT   is the number of terms in the solution being 

considered. In each case the result will be a real number which will 

be rounded. At the end of this process there will still be leftovers, 

these are distributed at random throughout the solution.  

Normalisation will also apply to mutation and inversion. 

 

 

 

 



Mutation 

Mutation has a small probability of happening and is the random 

change of any particular element in the data structure. For example: 

 

(126,1)  (253,2)  (93,3) (15,4) ....(150, 99) 

 

mutated becomes: 

 

(126,1)  (254,2)  (93,3) (15,4) ....(150, 99) 

  

The purpose of mutation is to ensure that the solution does not get 

stuck at a local optimum. 

 
Inversion 

Inversion plays an ancilliary role, but is very important in bringing 

together elements that were far apart and separating ones that were 

close together. This promotes close linkage between the successful 

elements and is important in later crossovers. 

The way in which inversion was applied might be summarised as 

follows: 

 

(126,1)  |  (253,2)  (93,3) (15,4) |  ....(150, 99) 

 

inverted becomes: 

 

(126,1)  (15,4)  (93,3) (253,2)....(150, 99) 

 

Cut points are randomly selected within an individual, and then the 

elements within the cut points are swapped around. Where inversion 

is to be followed by a crossover operation it is necessary to perform 

equivalent inversion operations on both mates. 

 

 

 

 



Results with Test Data 

The algorithm was tested using a postings file that could be perfectly 

partitioned. The following represents an extract from the file: 

 

3  4  5  1  7  3  4  5  1  7  3  4  5  1  7  3  4  5  1  7 

 

Each of these numbers would be taken as the posting for a term in 

the index. In the test file the repeating pattern (3  4  5  1  7) is 

repeated 20 times. Thus the sum of  all the postings is  400. If  we 

wish to create 20 partitions of this data (for a signature length of 20) 

we would expect each partition to index  20 documents (400 / 20). 

Which is, of course, the sum of the frequencies in the repeating 

group. In order to create this perfect set of partitions the genetic 

algorithm would have to partition the file after every five terms. Thus 

the best solution would be: 

 

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 



 
How the Software Operates 

The software consists of four main modules: 

 

Reproduction Module

Evaluation Module

Population Module

provides
parents

operates on
individuals
to produce new
members

returns
new 
individuals

 
    As the program runs, an initial population of solutions is generated 

at random. Next, each individual solution in the population is 

evaluated by the fitness function. The program then begins a series of 

cycles known as generations. This involves a “parent” being selected 

from the population which is then passed to the reproduction module. 

The reproduction module will apply a genetic operator (crossover, 

mutation or inversion) to the parent to produce a new solution, the 



“child”.  If the operation is crossover or inversion, two parents are 

involved and two children are produced. 

     The operator may cause the children to differ from their parents in 

that they are closer to the ideal solution (having a lower error score 

than the parents) or further way (having a higher error score than the 

parents). The fitness of the children is measured in the evaluation 

module and one generation passes. The cycle is then repeated  until 

the ideal solution is found (an error rate of  0) or the generation limit 

is reached. 

 
Managing the Population 

The initial population is created by randomly partitioning the 

postings file a number of times to produce a population of solutions. 

Common practice among GA practitioners is to have an initial 

population size of around 100. This population will grow with each 

new generation created. There are however limits to population size 

imposed by the technical constraints of  software and hardware. This 

means that the population size can only increase until a fixed limit is 

reached; thereafter we have replaced the worst individual in the 

population with the new solution. This replacement strategy adds a 

selection pressure to the search since we would expect most of the 

new solutions to be better than the ones they replace. 

    In experiments with the test data, we have changed the initial and 

maximum population sizes and the rates for mutation, crossover and 

inversion. The following graphs summarise some of the results 

which focussed on: 

 

• the total error of the population 

• the error of the best solution found after every 100 generations 

• the number of generations taken to find the solution 

• the time taken to reach the solution. 



 
Initial Graphs 

This graph refers to a run of the program using the test data described 

above with key parameters set as follows: 

 

Initial Population      30 

Max. Population Size    700 

Mutation Rate (%)       5 

Crossover Rate (%)     75 

Inversion Rate (%)     20 

Total Generations 4000 

Time Taken (mins)    10 

 

   The following graph plots the total population error (Y axis) 

against the number of generations (X axis): 
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Notice how the total error of the population first goes up, reaches a 

peak at over 100,000 and then gradually falls down to 17000. This 

explained by the expanding population size for the first few hundred 

generations, until the maximum population size is reached. Then the 

total error falls as better solutions replace the weakest members of 

the population. 

 



     The next graph plots the results for the best individual solutions. 

Again the individual error is plotted on the Y axis against the number 

of generations on the X axis: 
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Notice how the error for the best individual falls sharply to 10 then 

bottoms out for a while before dropping to 6 and then to 0 the ideal 

solution. This is explained by the diverse initial population producing 

quite a high error for each individual. Then as the crossover operator 

works to bring the dispersed parts of the solution together, the 

individuals get better and better until they converge around 10. This 

is where the mutation operator is noticed by working in the 

background to create a new solution. 



 
Results for a Small Population 

This experiment shows that if the population is too small, then a 

solution is more difficult to find, because of premature convergeance, 

but program execution is much quicker.  

 

Initial Population      100 

Max. Population Size      100 

Mutation Rate (%)         5 

Crossover Rate (%)       75 

Inversion Rate (%)       20 

Total Generations 10000   

Time Taken (mins)        4 

 

Once again the graph plots the error rate for the best individual 

solution against the number of generations: 
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What appears to be happening is that initially only a few members of 

the population contain partitions with the ideal solution of 5 and 

these are scattered throughout the population. The crossover 

operation brings them together, because the search space is small but 

there are not enough 5’s spread throughout the available strings. 

Because the population is small, individuals very quickly look alike. 



It takes a while for the breakthrough to be made through the 

operations of inversion and mutation. 

The next section will describe a comparison between the results of 

searches conducted using a full inverted file and text signatures 

developed using one of three techniques. One of these techniques, 

partition-based hashing, uses the partitions created by the genetic 

algortihm as the basis for creating the signature. The manner in 

which this has been done is discussed in the appropriate part of the 

next section. 
 

Evaluation of Indexing Effectiveness 

In this section we discuss a further series of experiments conducted 

with the LISA document test collection. This collection comprises 

6004 documents and 35 queries and answers. In the comparisons that 

follow, the results obtained from a full inverted file search of the 

LISA database have been taken as a baseline against which the 

performance of  different signature generation methods have been 

evaluated. The evaluation is based on the value of the Dice 

coefficient of similarity between references in the rankings produced 

by the signature-based and inverted-file-based searches averaged 

over the 35 queries in the collection. 

 

The Dice coefficient is defined as SIM
C

A B
=

+

2

( )
 where C represents 

the number of documents common to the two sets, A represents the 

total number of documents in one of the sets and B the total number 

of documents in the set with which A is being compared; in these 

experiments the sizes of the retrieved sets of documents, A and B 

were either 10 or 20. The value of the function therfore varies from 0 

to 1, with 1 representing identical sets and 0 representing sets which 

have no documents in common. A value of 1 for SIM would 

therefore imply that exactly the same documents had been found in 

the rankings produced by matching signature representations as were 

found in those obtained by searches based on the full inverted file, 



although the order of these documents in the two rankings might be 

different. 

 
The Hashing Techniques Used 

The results recorded in the tables presented in this section were 

obtained using a text signature representation of the query created by 

stemming and then hashing each substantive query term to single 

position in the signature. Thus, "results for simple hashing 

techniques" would be reduced to the stem list "result simpl hash 

techniq" by eliminating stopwords and applying Porter's stemming 

algorithm to the remaining terms. Each of these stems would then be 

hashed to a single bit position in the signature. Signature 

representations of documents in the database were also created in this 

way, with a single signature representing the title and abstract of each 

document in the test collection. The resulting signatures were then 

stored as columns as an N M×  table where N is the number of 

documents in the database and M is the bit-length of each signature, 

so that, in effect, the signatures are stored vertically. This data 

structure can be represented by the following table: 

 

    Document Numbers 

 1 2 3 .... N 

Bit Position      

1 0 0 0 .... 1 

2 1 1 0 ... 0 

3 0 0 1 ... 0 

: : : : : : 

M 0 1 1 ... 1 

 

     For the purpose of searching the LISA database, this file structure 

offered the following advantages: 

 

1. Each row in the table is a fixed length, fixed format record 

which is easy to manipulate. 

 



2. Organisation by means of bit positions, rather than by means 

of the document numbers, allows ready access to the bits 

characterising a query; this in turn results in a comparatively 

rapid calculation of the requisite query-document similarities. 

 
The Search 

Each bit in a signature represents only the presence or absence of 

stems in a document, there is therefore no way of calculating the type 

of  IDF (Inverse Document Frequency) weights commonly 

associated with best match searching in inverted file systems. The 

way in which the searches were conducted can be represented by the 

following algorithm: 

 
Initialise total_SIM_so_far; 

 

FOR I := 1 TO no_of_queries DO 

 initialise docweight; 

 FOR J := 1 TO QuerySize DO 

  Calculate hash_value of Q[J]; 

  FOR K := 1 TO no_of_docs_in_database DO 

   IF K'th bit set in hash_value'th row  

   THEN docweight[K] := docweight[K] + 1; 

  ENFOR 

 ENDFOR; 

 sort and rank documents in order of docweight; 

 calculate SIM_for_this_query  

 add SIM_for_this_query to total_SIM_so_far; 

ENDFOR; 

SIM :=  
total sim so far

no of queries

_ _ _

_ _
 

 

     The results reported in the tables that follow were obtained by 

taking three different ways of calculating hash_value in the 

algorithm above. One of these was based on the partitioned file 

created by the genetic algorithm described above, the other two are  

briefly described below. 

 



Division Hashing 

Of the numerous hashing algorithms that have been suggested 

(Martin
5
) the one that consistently performs best under most 

conditions is the Division method (Knuth
4
). 

     The approach is very simple. A hash function h is chosen which 

can take on at most M different values where, in this case, M is the 

signature length, so that 0 < <h k M( ) , where K is the stem to be 

hashed or, more accurately, a number derived from some information 

in the stem. The Division method used in this evaluation meets these 

constraints by taking the remainder modulo M to give a value in the 

range 0  <= K MOD M < (M-1); this value is then incremented by 

one to give the hash value, so that h(K) = (K MOD M) + 1. In 

practice better performance has been observed if M  is a prime 

number (Knuth
4
). Accordingly, the signatures considered in this 

section are all a prime number of bits long. 

     The version of the algorithm used looks like this: 

 

division_hash_code := 0; 

FOR I := TO length_of_stem DO 

 get ordinate_value for I'th character in the stem; 

 division_hash_code := division_hash_code + ordinate_value; 

ENDFOR 

division_hash_code := (division_hash_code MOD signature_length); 

 
Concatenated Division Hashing 

The Concatenated hashing algorithm used in these experiments is a 

derivation of the division hashing algorithm described above. In this 

approach the ordinal value of the characters in the stem is not simply 

added together; instead they are appended to one another. So that for 

example, the ordinal values 65 (representing "A") and 66 

representing "B" would be joined to give the value 6566. The number 

generated in this way is truncated if it becomes too large for the 

machine to handle 

 

The modified algorithm looks like this: 



 

concatenated_hash_code := 0; 

FOR I := TO length_of_stem DO 

 get ordinate_value for I'th character in the stem; 

 find no_of_digits_in_ord_value; 

 IF concatenated_hash_code > 0 THEN  

  multiply concatenated_hash_code by   

  10no of digits in ord val_ _ _ _ _  
 ENDIF 

 add ordinate_value to concatenated_hash_code 

ENDFOR 

concatenated_hash_code := (concatenated_hash_code MOD 

signature_length); 

 
Partition-Based Hashing 

This approach makes use of  the partitions identified by the genetic 

algorithm described in the previous section. Once the genetic 

algortihm has identified the equifrequent partitions the stems at the 

head of each partition can be written to a file. This having been done, 

the signature representations can be produced by taking a stem, 

searching the dictionary to identify the partition that the stem belongs 

in and then setting the bit position corresponding to that partition. So 

that, for example, the stem “Comput” would be identified as 

belonging in the partition headed by “Comprehens” if that entry in 

the partition file immediately preceded a stem alphabetically greater 

than “Comput” like “Concept”. 

      The partition file created in this way is not very large (containing 

only as many stems as there are bits in the signature) it can also be 

created fairly easily and, given the known frequency distribution 

characteristics of  vocabulary in free text (Cooper et al 
1
) it need not 

be updated even in applications where the database is very dynamic. 

   The results presented in the next section are not based on a 

partitioning of the full inverted file structure associated with the 

LISA document test collection. The current version of our software 

has been written in Turbo Pascal for the PC,  so we were constrained 



by hardware and sofware limitations. Instead of the full inverted file 

we have used the genetic algorithm to partition a subset of the 

inverted file containing all of the terms occuring in the 35 queries 

provided by the test collection. This subset contains 350 indexing 

terms. We are currently porting our software to an environment 

where memory constraints are less restrictive, once this has been 

achieved we will be able to repeat these experiments with the full 

inverted file and correspondingly longer signatures. It does not seem 

unreasonable to expect that the results reported here will be broadly 

similar to those we will obtain from larger scale experiments.  

 
The Results 

When the top 10 references in the ranking are considered: 

 

 Signature Length 

Hashing Technique  31 51 127 

Division  0.09 0.14 0.20 

Concatenated  0.06 0.12 0.18 

Partitioned  0.11 0.21 0.32 

 



 

When the top 20 references in the ranking are considered: 

 

 Signature Length 

Hashing Technique  31 51 127 

Division  0.09 0.16 0.22 

Concatenated  0.07 0.13 0.20 

Partitioned  0.11 0.23 0.36 

 
     It can be seen from these results that the signature representations 

produced from the partitioned inverted file are more discriminating 

than signature representations produced using either of the 

alternative, commonly-used hashing algorithms. 

 
CONCLUSION 

In this paper we have discussed how a genetic algorithm might be 

used in the partitioning of an inverted file. These partitions are then 

used in the conversion of indexing terms to bit positions in text 

signatures, an operation normally carried out by a hashing algorithm. 

In this context, the ideal hashing algorithm would be one that makes 

use of the full length of the signature, to make each bit as 

discriminating as possible. This presents a problem, it is impossible 

to define a hash function that creates random data from the non-

random data in actual files. The genetic algorithm approach seeks to 

compensate for the non-random nature of the text in a particular 

database by tailoring the conversion procedure to the occurrence 

characteristics of that text. An evaluation has been presented 

demonstrating that the signature representations produced with the 

genetic algorithm are more discriminating than those produced using 

simpler, more widely used hashing techniques. 

 

 

 

 



REFERENCES 
1. Cooper, D. Dicker M.E. and Lynch M.F. -1980-  Sorting of textual databases:  

a variety generation approach to distribution sorting.-  Information Processing  

and Management 16 (1) pp. 59-66. 

 

2. Harrison M.C. - 1971 -. Implementation of substring search by hashing.  

Communications of the ACM 14,  pp. 777-779. 

 

3. Jones G.; Roberston, A.M. and Willett, P. -1994 - An introduction to genetic  

algorithms  and to their use in information retrieval -  Online and CDROM  

Review Vol. 18. No. 1 pp. 3-12.  

 

4. Knuth, D.E. - 1973 - The art of programming Vol. 1 Fundamental algorithms  

2d. ed. - Addison-Wesley.  

 

5. Martin, J. - 1977-  Computer Database Organisation. - Englewood Cliffs.  

Prentice Hall. 

 

6. Porter, M.F. - 1980 -  An algorithm for suffix stripping. -  Program 14 (3)  

      pp. 130-137. 

 

 

 

 

 

 


