
University of Huddersfield Repository

Wade, Steve, Smith, Martin and Wolstenholme, Mark

Applying Genetic Programming to the Problem of Term Weight Algorithms

Original Citation

Wade, Steve, Smith, Martin and Wolstenholme, Mark (2000) Applying Genetic Programming to the
Problem of Term Weight Algorithms. The New Review of Document and Text Management, Vol. 1.
pp. 101-111. ISSN 1361-4584

This version is available at http://eprints.hud.ac.uk/id/eprint/7627/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Application of a Genetic Algorithm Application of a Genetic Algorithm Application of a Genetic Algorithm Application of a Genetic Algorithm
to the Production of to the Production of to the Production of to the Production of
Text SignaturesText SignaturesText SignaturesText Signatures
Steve Wade, Martin Smith and Mark Wolstenholme, C

e
DAR -

Centre for Database Access Research, The School of Computing and

Mathematics, The University of Huddersfield, Queensgate

Huddersfield, West Yorkshire. (S.J.Wade@HUD.AC.UK)

This paper describes the results of a preliminary attempt to use a genetic algorithm to

divide an inverted file into a specified number of partitions such that the total number of

documents indexed by a particular partition is approximately equal to the total number of

documents indexed by each of the other partitions. The purpose of identifying such

equifrequent partitions is to assist in the generation of text signature representations of

documents which are more discriminating than those created using more traditional

techniques.

The paper is divided into six sections. Following the introduction, the second of these

describes the main idea behind the signature approach The third section introduces the

idea of genetic algorithms and briefly reviews earlier work on the application of this

technique to information retrieval problems. The fourth section describes how we have

used a genetic algorithm to partition a section of the inverted file used to index the LISA

document test collection and how we have then used the partitioned file in the production

of text signatures to represent documents in the collection. We might say that the

signature representations produced in this way have been customised to the vocabulary of

the LISA document collection and we would therefore expect them to be more

discriminating than text signatures produced using more traditional techniques. The fifth

section of the paper compares the results of searches conducted using signatures with

results obtained from searches of the full inverted file. It is concluded that the signatures

produced with the assistance of the genetic algorithm are more discriminating than those

produced using simpler techniques.

INTRODUCTION

Genetic algorithms represent a new approach to solving a range of

computationally-expensive problems that cannot easily be solved

using conventional deterministic approaches. The approach is based

on the identification of an initial set of possible solutions to a

problem which are then iteratively improved using techniques

analagous to those found in natural evolution. A recent paper by

Jones, Robertson and Willett
 3

 outlines a number of information

retrieval problems that might be addressed in this way. One of these

problems concerns the use of a genetic algorithm to divide an

inverted file into equifrequent order-free groups of indexing terms.

The work described here addresses a related problem. Our concern

has been to partition an inverted file whilst preserving the order of

the resulting groups in order to create a partition file which might be

used in the production of text signatures.

TEXT SIGNATURES

The use of an inverted file structure is almost universal in large scale

document retrieval systems. This approach permits rapid searches to

be carried out but suffers from the large storage and processing

overheads associated with updating and maintaining the online

indexes which are needed to provide an interactive response. In many

cases, the inverted indexes take as much space as the main record file

itself and for large systems further overheads are incurred because it

becomes necessary to maintain smaller secondary indexes to gain

access to the main index. No such overheads are incurred in serial

searching but the approach is inherently slow and cannot be expected

to support interactive retrieval from large document collections; this

is true in spite of the number of highly efficient string searching

algorithms that have been suggested and the use that has been made

of parallel hardware for serial searching.

 The idea of using signature representations of text to speed up

serial searching was first suggested by Harrison
2
 in connection with

the development of an efficient "Find X" facility for text editing,

where X would be some user defined string of characters. A text

string is a fixed length bit string representation in which individual

bits are set if certain character strings, (which might be stems, words

or phrases) are present in the text being characterised. The bit string

is typically created by applying a hashing algorithm to each of these

strings, this type of algorithm uses the characters in a particular

string to compute a value which can be taken as a bit position in the

text signature. Thus, the effectiveness of signature representations is

critically dependant upon the discriminating power of the hashing

algorithm used to determine which bits are set.

 Even the most discriminating algorithm will have to make use of

the same bit position to represent a number of different terms. (This

problem can only be avoided in situations where the signature length

is at least the same size as the indexing vocabulary). A consequence

of this is that a signature search may produce matches between query

terms and documents which have not been indexed under those terms

but which have been indexed under terms that hash to the same bit

position. Such a mismatch is known as a “false drop”. To avoid this

problem text signatures are often used as the basis for a fast

approximate search which serves to eliminate large sections of text

from a more computationally expensive exact search, this implies a

two-stage retrieval strategy. In the first stage a text signature

representation of the query string is compared with corresponding

representations of the documents in the database, in this way a small

subset of the documents in the collection can be rapidly identified as

worthy of a more detailed pattern matching search. Such an approach

can dramatically reduce the time needed for a serial search.

GENETIC ALGORITHMS

Genetic algorithms offer a way to randomly search a problem space

for the best answers to problems having the following characteristics:

• No obvious algorithmic solution

• Information structures that encode potential solutions

• A way of evaluating these structures

• Formal means of chopping and re-splicing these structures

without creating nonsense rules.

The task of partitioning an inverted file meets all of these criteria. It

would be difficult to specify a deterministic algorithm capable of

finding the best possible solution for a range of inverted indexes. Our

potential solutions are simple fixed length array structures containing

the number of indexing terms in each partition. These are easy to

evaluate and can easily be chopped and respliced. They are our

analogues to biological chromosomes.

From a computational point of view, genetic algorithms involve the

selection of a number of possible solutions to a problem. Initially

this selection will be completely at random. Each solution will

exhibit a level of “fitness” to the problem which we must be able to

measure. Possible solutions are assessed according to their fitness

and put into a ranked order. The next stage is to breed the individual

solutions with each other at random, with a greater probability of

being chosen as a parent being assigned to the higher ranked

solutions. This produces a new generation of solutions which share

some characteristics of the parents in different combinations. (The

inherited characteristics will in our case be simply sections taken

from the parent array structure - they are therefore analagous to

biological genes). The children are then assessed and put into ranked

order and the process is repeated.

The operators that are acting in producing new offspring are known

as “crossover” “mutation” and “inversion”. These operators have

analogues in natural evolution, further discussion of them is deferred

until the next section where an explanation of the precise way in

which they have been implemented is presented.

METHOD OF THE EXPERIMENT

We are concerned with the use of genetic algorithms in placing

partitions in an equifrequent way. We are therefore interested in

using the evolutionary process to select optimal solutions from the

many possible solutions. The input to this process will be a postings

file (i.e. one that contains all of the indexing terms that would occur

in a full inverted file along with their frequency of occurrence). Thus

a section of this file might look like this:

ABSTRACT 2568

AGGLOMERATIVE 25

AUTOMATIC 12000

BIBLIOGRAPHIC 5000

BINARY 89

The input file is likely to be large (say) 10,000 terms. The signature

representation will reduce this to (say) 100 bits. In this case, the data

structure taken as input to the genetic algorithm is a partition array of

length 99. Each location in the array is an integer representing the

number of indexing terms in that particular partition.

The following might be a section of the array structure:

126 251 93 150 12 34 400

This data structure represents a situation where there are 126 terms in

the first partition, 251 indexing terms in the second partition etc. Our

genetic algorithm is used to produce and modify structures like this

until the optimal set of partitions is obtained

First the signature length should be decided (the number of partitions

of the index file). The total frequency, Ft of words on the index file

can then be divided by the signature length M to give the ideal

frequency of each partition Fs.

F

M
Ft

s=

The genetic algorithm will pick partitions completely at random to

produce the first generation of solutions. These are then evaluated

with the following formulae:

E F Ft s j

j

M

= −

=

∑ ()
1

 where Et = total error.

A perfect partitioning of the input document will result in a value of

zero for Et. Each individual solution in the population can be

assessed using the above equation, and put into ranked order. For the

next generation a probability is assigned to each individual,

depending on its position in the ordered list. The higher up the list,

the greater the probability of being selected as a parent.

In the remainder of this section we discuss the specific way in which

the genetic operators crossover, mutation and inversion are carried

out on the partition array structures.

Crossover

Crossover involves the random selection of cut points in the bit string

and swapping the chunks of material in between the cutpoints with

another individual, this is analogous to asexual reproduction.

• Two structures a1..am and b1..bm are selected at random from the

current population.

• A crossover point x, in the range 1 to m-1 is selected again at

random.

• Two new structures:

 a1a2...axbx+1bx+2....bm

 b1b2...bxax+1ax+2....am

are formed.

This situation is summarised in the following diagram:

Indi vi dual (126,1) (253,2)

(bi t st ri ng) (68,1) (52,2)

(93,3) (15,4)

(67,3) (6,4)

(89,5) (150,99)

(16,5) (27,99)

1

2

Produces

(126,1) (253,2)

 (68,1) (52,2)

(67,3) (6,4)

(93,3) (15,4)

(89,5) (150,99)

(16,5) (27,99)

3

4

Size of

parti tion

Posi tion of

parti tion

Cut points

It should be noted that the sum of the terms in solutions (3) and (4)

above will not add up to the total number of terms in the original

postings file (TT) and so will need to be normalised. This involves

multiplying each element in the two solutions by a common factor.

(PT /TT) where PT is the number of terms in the solution being

considered. In each case the result will be a real number which will

be rounded. At the end of this process there will still be leftovers,

these are distributed at random throughout the solution.

Normalisation will also apply to mutation and inversion.

Mutation

Mutation has a small probability of happening and is the random

change of any particular element in the data structure. For example:

(126,1) (253,2) (93,3) (15,4)(150, 99)

mutated becomes:

(126,1) (254,2) (93,3) (15,4)(150, 99)

The purpose of mutation is to ensure that the solution does not get

stuck at a local optimum.

Inversion

Inversion plays an ancilliary role, but is very important in bringing

together elements that were far apart and separating ones that were

close together. This promotes close linkage between the successful

elements and is important in later crossovers.

The way in which inversion was applied might be summarised as

follows:

(126,1) | (253,2) (93,3) (15,4) | (150, 99)

inverted becomes:

(126,1) (15,4) (93,3) (253,2)....(150, 99)

Cut points are randomly selected within an individual, and then the

elements within the cut points are swapped around. Where inversion

is to be followed by a crossover operation it is necessary to perform

equivalent inversion operations on both mates.

Results with Test Data

The algorithm was tested using a postings file that could be perfectly

partitioned. The following represents an extract from the file:

3 4 5 1 7 3 4 5 1 7 3 4 5 1 7 3 4 5 1 7

Each of these numbers would be taken as the posting for a term in

the index. In the test file the repeating pattern (3 4 5 1 7) is

repeated 20 times. Thus the sum of all the postings is 400. If we

wish to create 20 partitions of this data (for a signature length of 20)

we would expect each partition to index 20 documents (400 / 20).

Which is, of course, the sum of the frequencies in the repeating

group. In order to create this perfect set of partitions the genetic

algorithm would have to partition the file after every five terms. Thus

the best solution would be:

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

How the Software Operates

The software consists of four main modules:

Reproduction Module

Evaluation Module

Population Module

provides
parents

operates on
individuals
to produce new
members

returns
new
individuals

 As the program runs, an initial population of solutions is generated

at random. Next, each individual solution in the population is

evaluated by the fitness function. The program then begins a series of

cycles known as generations. This involves a “parent” being selected

from the population which is then passed to the reproduction module.

The reproduction module will apply a genetic operator (crossover,

mutation or inversion) to the parent to produce a new solution, the

“child”. If the operation is crossover or inversion, two parents are

involved and two children are produced.

 The operator may cause the children to differ from their parents in

that they are closer to the ideal solution (having a lower error score

than the parents) or further way (having a higher error score than the

parents). The fitness of the children is measured in the evaluation

module and one generation passes. The cycle is then repeated until

the ideal solution is found (an error rate of 0) or the generation limit

is reached.

Managing the Population

The initial population is created by randomly partitioning the

postings file a number of times to produce a population of solutions.

Common practice among GA practitioners is to have an initial

population size of around 100. This population will grow with each

new generation created. There are however limits to population size

imposed by the technical constraints of software and hardware. This

means that the population size can only increase until a fixed limit is

reached; thereafter we have replaced the worst individual in the

population with the new solution. This replacement strategy adds a

selection pressure to the search since we would expect most of the

new solutions to be better than the ones they replace.

 In experiments with the test data, we have changed the initial and

maximum population sizes and the rates for mutation, crossover and

inversion. The following graphs summarise some of the results

which focussed on:

• the total error of the population

• the error of the best solution found after every 100 generations

• the number of generations taken to find the solution

• the time taken to reach the solution.

Initial Graphs

This graph refers to a run of the program using the test data described

above with key parameters set as follows:

Initial Population 30

Max. Population Size 700

Mutation Rate (%) 5

Crossover Rate (%) 75

Inversion Rate (%) 20

Total Generations 4000

Time Taken (mins) 10

 The following graph plots the total population error (Y axis)

against the number of generations (X axis):

0

20000

40000

60000

80000

100000

10

0

70

0

13

00

19

00

25

00

31

00

37

00
No of Generations

Notice how the total error of the population first goes up, reaches a

peak at over 100,000 and then gradually falls down to 17000. This

explained by the expanding population size for the first few hundred

generations, until the maximum population size is reached. Then the

total error falls as better solutions replace the weakest members of

the population.

 The next graph plots the results for the best individual solutions.

Again the individual error is plotted on the Y axis against the number

of generations on the X axis:

0

20

40

60

80

100

100 1300 2500 3700
No. of Generations

Notice how the error for the best individual falls sharply to 10 then

bottoms out for a while before dropping to 6 and then to 0 the ideal

solution. This is explained by the diverse initial population producing

quite a high error for each individual. Then as the crossover operator

works to bring the dispersed parts of the solution together, the

individuals get better and better until they converge around 10. This

is where the mutation operator is noticed by working in the

background to create a new solution.

Results for a Small Population

This experiment shows that if the population is too small, then a

solution is more difficult to find, because of premature convergeance,

but program execution is much quicker.

Initial Population 100

Max. Population Size 100

Mutation Rate (%) 5

Crossover Rate (%) 75

Inversion Rate (%) 20

Total Generations 10000

Time Taken (mins) 4

Once again the graph plots the error rate for the best individual

solution against the number of generations:

0

20

40

60

80

100 2900 5000 7800
No. of Generations

What appears to be happening is that initially only a few members of

the population contain partitions with the ideal solution of 5 and

these are scattered throughout the population. The crossover

operation brings them together, because the search space is small but

there are not enough 5’s spread throughout the available strings.

Because the population is small, individuals very quickly look alike.

It takes a while for the breakthrough to be made through the

operations of inversion and mutation.

The next section will describe a comparison between the results of

searches conducted using a full inverted file and text signatures

developed using one of three techniques. One of these techniques,

partition-based hashing, uses the partitions created by the genetic

algortihm as the basis for creating the signature. The manner in

which this has been done is discussed in the appropriate part of the

next section.

Evaluation of Indexing Effectiveness

In this section we discuss a further series of experiments conducted

with the LISA document test collection. This collection comprises

6004 documents and 35 queries and answers. In the comparisons that

follow, the results obtained from a full inverted file search of the

LISA database have been taken as a baseline against which the

performance of different signature generation methods have been

evaluated. The evaluation is based on the value of the Dice

coefficient of similarity between references in the rankings produced

by the signature-based and inverted-file-based searches averaged

over the 35 queries in the collection.

The Dice coefficient is defined as SIM
C

A B
=

+

2

()
 where C represents

the number of documents common to the two sets, A represents the

total number of documents in one of the sets and B the total number

of documents in the set with which A is being compared; in these

experiments the sizes of the retrieved sets of documents, A and B

were either 10 or 20. The value of the function therfore varies from 0

to 1, with 1 representing identical sets and 0 representing sets which

have no documents in common. A value of 1 for SIM would

therefore imply that exactly the same documents had been found in

the rankings produced by matching signature representations as were

found in those obtained by searches based on the full inverted file,

although the order of these documents in the two rankings might be

different.

The Hashing Techniques Used

The results recorded in the tables presented in this section were

obtained using a text signature representation of the query created by

stemming and then hashing each substantive query term to single

position in the signature. Thus, "results for simple hashing

techniques" would be reduced to the stem list "result simpl hash

techniq" by eliminating stopwords and applying Porter's stemming

algorithm to the remaining terms. Each of these stems would then be

hashed to a single bit position in the signature. Signature

representations of documents in the database were also created in this

way, with a single signature representing the title and abstract of each

document in the test collection. The resulting signatures were then

stored as columns as an N M× table where N is the number of

documents in the database and M is the bit-length of each signature,

so that, in effect, the signatures are stored vertically. This data

structure can be represented by the following table:

 Document Numbers

 1 2 3 N

Bit Position

1 0 0 0 1

2 1 1 0 ... 0

3 0 0 1 ... 0

: : : : : :

M 0 1 1 ... 1

 For the purpose of searching the LISA database, this file structure

offered the following advantages:

1. Each row in the table is a fixed length, fixed format record

which is easy to manipulate.

2. Organisation by means of bit positions, rather than by means

of the document numbers, allows ready access to the bits

characterising a query; this in turn results in a comparatively

rapid calculation of the requisite query-document similarities.

The Search

Each bit in a signature represents only the presence or absence of

stems in a document, there is therefore no way of calculating the type

of IDF (Inverse Document Frequency) weights commonly

associated with best match searching in inverted file systems. The

way in which the searches were conducted can be represented by the

following algorithm:

Initialise total_SIM_so_far;

FOR I := 1 TO no_of_queries DO

 initialise docweight;

 FOR J := 1 TO QuerySize DO

 Calculate hash_value of Q[J];

 FOR K := 1 TO no_of_docs_in_database DO

 IF K'th bit set in hash_value'th row

 THEN docweight[K] := docweight[K] + 1;

 ENFOR

 ENDFOR;

 sort and rank documents in order of docweight;

 calculate SIM_for_this_query

 add SIM_for_this_query to total_SIM_so_far;

ENDFOR;

SIM :=
total sim so far

no of queries

_ _ _

_ _

 The results reported in the tables that follow were obtained by

taking three different ways of calculating hash_value in the

algorithm above. One of these was based on the partitioned file

created by the genetic algorithm described above, the other two are

briefly described below.

Division Hashing

Of the numerous hashing algorithms that have been suggested

(Martin
5
) the one that consistently performs best under most

conditions is the Division method (Knuth
4
).

 The approach is very simple. A hash function h is chosen which

can take on at most M different values where, in this case, M is the

signature length, so that 0 < <h k M() , where K is the stem to be

hashed or, more accurately, a number derived from some information

in the stem. The Division method used in this evaluation meets these

constraints by taking the remainder modulo M to give a value in the

range 0 <= K MOD M < (M-1); this value is then incremented by

one to give the hash value, so that h(K) = (K MOD M) + 1. In

practice better performance has been observed if M is a prime

number (Knuth
4
). Accordingly, the signatures considered in this

section are all a prime number of bits long.

 The version of the algorithm used looks like this:

division_hash_code := 0;

FOR I := TO length_of_stem DO

 get ordinate_value for I'th character in the stem;

 division_hash_code := division_hash_code + ordinate_value;

ENDFOR

division_hash_code := (division_hash_code MOD signature_length);

Concatenated Division Hashing

The Concatenated hashing algorithm used in these experiments is a

derivation of the division hashing algorithm described above. In this

approach the ordinal value of the characters in the stem is not simply

added together; instead they are appended to one another. So that for

example, the ordinal values 65 (representing "A") and 66

representing "B" would be joined to give the value 6566. The number

generated in this way is truncated if it becomes too large for the

machine to handle

The modified algorithm looks like this:

concatenated_hash_code := 0;

FOR I := TO length_of_stem DO

 get ordinate_value for I'th character in the stem;

 find no_of_digits_in_ord_value;

 IF concatenated_hash_code > 0 THEN

 multiply concatenated_hash_code by

 10no of digits in ord val_ _ _ _ _
 ENDIF

 add ordinate_value to concatenated_hash_code

ENDFOR

concatenated_hash_code := (concatenated_hash_code MOD

signature_length);

Partition-Based Hashing

This approach makes use of the partitions identified by the genetic

algorithm described in the previous section. Once the genetic

algortihm has identified the equifrequent partitions the stems at the

head of each partition can be written to a file. This having been done,

the signature representations can be produced by taking a stem,

searching the dictionary to identify the partition that the stem belongs

in and then setting the bit position corresponding to that partition. So

that, for example, the stem “Comput” would be identified as

belonging in the partition headed by “Comprehens” if that entry in

the partition file immediately preceded a stem alphabetically greater

than “Comput” like “Concept”.

 The partition file created in this way is not very large (containing

only as many stems as there are bits in the signature) it can also be

created fairly easily and, given the known frequency distribution

characteristics of vocabulary in free text (Cooper et al
1
) it need not

be updated even in applications where the database is very dynamic.

 The results presented in the next section are not based on a

partitioning of the full inverted file structure associated with the

LISA document test collection. The current version of our software

has been written in Turbo Pascal for the PC, so we were constrained

by hardware and sofware limitations. Instead of the full inverted file

we have used the genetic algorithm to partition a subset of the

inverted file containing all of the terms occuring in the 35 queries

provided by the test collection. This subset contains 350 indexing

terms. We are currently porting our software to an environment

where memory constraints are less restrictive, once this has been

achieved we will be able to repeat these experiments with the full

inverted file and correspondingly longer signatures. It does not seem

unreasonable to expect that the results reported here will be broadly

similar to those we will obtain from larger scale experiments.

The Results

When the top 10 references in the ranking are considered:

 Signature Length

Hashing Technique 31 51 127

Division 0.09 0.14 0.20

Concatenated 0.06 0.12 0.18

Partitioned 0.11 0.21 0.32

When the top 20 references in the ranking are considered:

 Signature Length

Hashing Technique 31 51 127

Division 0.09 0.16 0.22

Concatenated 0.07 0.13 0.20

Partitioned 0.11 0.23 0.36

 It can be seen from these results that the signature representations

produced from the partitioned inverted file are more discriminating

than signature representations produced using either of the

alternative, commonly-used hashing algorithms.

CONCLUSION

In this paper we have discussed how a genetic algorithm might be

used in the partitioning of an inverted file. These partitions are then

used in the conversion of indexing terms to bit positions in text

signatures, an operation normally carried out by a hashing algorithm.

In this context, the ideal hashing algorithm would be one that makes

use of the full length of the signature, to make each bit as

discriminating as possible. This presents a problem, it is impossible

to define a hash function that creates random data from the non-

random data in actual files. The genetic algorithm approach seeks to

compensate for the non-random nature of the text in a particular

database by tailoring the conversion procedure to the occurrence

characteristics of that text. An evaluation has been presented

demonstrating that the signature representations produced with the

genetic algorithm are more discriminating than those produced using

simpler, more widely used hashing techniques.

REFERENCES
1. Cooper, D. Dicker M.E. and Lynch M.F. -1980- Sorting of textual databases:

a variety generation approach to distribution sorting.- Information Processing

and Management 16 (1) pp. 59-66.

2. Harrison M.C. - 1971 -. Implementation of substring search by hashing.

Communications of the ACM 14, pp. 777-779.

3. Jones G.; Roberston, A.M. and Willett, P. -1994 - An introduction to genetic

algorithms and to their use in information retrieval - Online and CDROM

Review Vol. 18. No. 1 pp. 3-12.

4. Knuth, D.E. - 1973 - The art of programming Vol. 1 Fundamental algorithms

2d. ed. - Addison-Wesley.

5. Martin, J. - 1977- Computer Database Organisation. - Englewood Cliffs.

Prentice Hall.

6. Porter, M.F. - 1980 - An algorithm for suffix stripping. - Program 14 (3)

 pp. 130-137.

