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A VERTICAL AXIS WIND TURBINE GENERATOR BASED ON THE 
TANGENTIAL WALL-JET ACTION 

ABSTRACT GEL Perera 

Introduction of a tangential wall-jet at an appropriate 
location on an octagonal cylinder results in a high lift 
force. Theoretical investigation is undertaken; 
(i) To determine the aerodynamic lift and drag due to the 
boundary layer modification caused by the tangential 
wall-jet. 
(ii) To evaluate the power out-put of a vertical axis wind 
turbine generator working on the aerodynamic lift due to 
the tangential wall-jet. 
Mathematical analysis for two types of two-dimensional 
models have been developed to represent the flow 
conditions due to the tangential wall-jet. The flow is 
divided into "Main Flow" and a "Boundary Layer Flow". 
Stream lines representing the "Main Flow" around the 
octagonal cylinder have been plotted for evaluating the 
two mathematical models and for studying the flow 
conditions created by the tangential wall-jets. 
The "Main Flow" is determined by the potential flow theory 
and is corrected for the 'circulation' by a super-position 
technique, making use of the experimental values of the 
lift coefficient. Both the laminar and the turbulent flow 
conditions have been considered within the "Boundary Layer 
Flow". Momentum Integral equation has been used to 
determine both the laminar and the turbulent boundary 
layer development and surface shear stress for correcting 
the measured pressure components of the lift and the drag 
coefficients. 

The instantaneous net power generated by the octagonal 
cylinder is integrated to determine the power out-put of 
the wind turbine generator. Power required for the 
formation of the wall-jets and the effect of the jet 
height on the jet-momentum coefficient are also estab- 
lished. 

The possibility of pressure recovery within the region 
enclosed by the orbiting cylinders of the wind machine 
results in a modification of the flow stream tube of the 
air flow past the machine. A modified Betz limit is 
derived by allowing for the pressure variation associated 
with a given shape of the stream tube. 

Wind tunnel tests have been carried out on a stationary 
octagonal cylinder subjected to tangential wall-jet for 
the measurement of static pressure distribution on the 
surface. The pressure components of the lift and the drag 
forces are evaluated. The circulation due to the 
tangential wall-jet is calculated from the magnitude of 
the pressure component of the lift forces assuming the 
validity of the Joukovski's theorem. A wind tunnel model 
of the proposed wind machine was fabricated and the 
feasibility of the application of the lift generated by 
tangential wall-jet is established. 
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NOMENCLATURE 

A Cross-sectional area of the stream tube (m2) 

b Height of the jet (m) 

B Number of cylinders / Blades 

C, Jet Momentum Coefficient defined as lb V2 
2r W4/ r 

CP Performance Coefficient defined as p 

pHRit/2 

CL Lift Coefficient 

CD Drag Coefficient 

D Modelled Infinity (n-d) 

FX x Component of the resultant force (n-d) 

Fy y Component of the resultant force (n-d) 

f Friction Factor (n-d) 

F External force on the fluid within the 
controlled volume defined by the stream tube 

Fj 
xn 

X component of the force due to the jet 

momentum (3.8-24) 

Fj 
Xn 

Y component of the force due to the jet 

momentum (3.8-25) 

H Height of the cylinder (m) 

J Defined in the equation 3.7-25 

K Mean pressure variation coefficient (Chapter 

2) 

K Defined in equation 3.7-40 (Chapter 3) 

Kn Pressure variation coefficient for upstream 
of the actuator disc (Chapter 2) 

Kdo Pressure variation coefficient for the down 

stream of the actuator disc 

ka Gas constant of air 

i 



Lx 
., 

L xn 
X Component of the lift force due to the 
tangential wall jet / Magnus effect (n-d) 

Ly, LXn Y Component of the lift force due to the 
tangential wall jet / Magnus effect (n-d) 

I Length of the octagonal side (m) 

rh Mass flow rate of air through the stream 
tube 

Nr Defined in equation 2.2-8 

N Radian angular velocity of VAWTG 

Non-dimensional distance measured normal to 
the octagonal surface 

P Static pressure (N/rn2) 

P, Instantaneous power (n-d) 

pw Dissipated power due to the viscous action 
(n-d) 

p' Net Power produced by the VAWTG / Madaras 
net 

Rotor Concept 

P. 
" 

Atmospheric pressure (N rn2) 

Q Defined in equation 3.7-24 

r Circumferential radius of the octagonal 
cylinder (m) 

R Radius of the orbit (m) 

R Defined in equation 3.7-27 

Re Reynolds number (See Appendix 3A) 

Re0 Reynolds number (See Appendix 3A) 

S Solidity ratio 

S Distance measured along the surface in the 

down stream direction 

S °s/l 

Ta Atmospheric air temperature (K) 
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t Non-dimensional jet height used in the 
equation 2.6-1 

U Velocity at the edge of the boundary layer 
(m/s) 

Ui Jet air velocity (m/s) 

Vx x component of the non-dimensional free 
stream velocity 

Vy y component of the non-dimensional free 
stream velocity 

V3 Wall-jet air velocity (n-d) 

Vm Maximum value of V 

V Velocity of air used in the Cp analysis 

f7 Mean value of Vj 

h/ Wind velocity (m/s) 

Wr Wind velocity relative to the orbiting 
cylinder / blade 

x Co-ordinates in the x- direction 

Xx 
l 

y Co-ordinates in the y- direction 

yy 
I 

Z Defined in equation 3.7-31 

i, 
,j, 

k Unit Vectors as defined in section 2.3 

a =(4-K)1(2-K) in section 2.7.1 

a Defined in equation 3.8-7 (Chapter 3) 

ß =(K)/(2-x) in section 2.7.1 

ß Defined in equation 3.8-5 (Chapter 3) 

F Effective circulation ( m2/s) 

rn-d Non-dimensional Effective circulation (See 

Appendix 3A) 
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b boundary layer thickness (m) 

6* Displacement thickness 

A Non-dimensional boundary layer thickness 

77 Defined as y/ö in Chapter 3 

OF Nozzle isentropic expansion efficiency 

0 Momentum thickness 

6,0 1 
Angle between the jet axis and the free 

stream velocity 

A Shape factor defined by the equation 3.7-21 

/I Viscosity of air (kg/m " s) 

p Density of air (kg/n3) 

v Kinematic viscosity ( m2/s) 

0 Solidity Ratio 

-r Surface shear stress (N/rn2) 

'Ca-a Non-dimensional surface shear stress 

Stream function (m, 2/S 

In section 2.7.1 defined as Vw /V ,. 

Non-dimensional stream function 

in Section 2.7.1 defined as Vd/V 

Axial rotational speed (rad/sec) 

Orbital speed (rad/sec) 
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INTRODUCTION 

Motivation 

It is estimated that there is a technical potential for 

generation of power around 45 Twh/year from land-based 

wind energy conversion systems, equivalent to 17 % of 

current electricity demand of UK. Wind energy is 

considered to be the most promising renewable energy 

source for electricity generation. The cost of 

electricity generation by the use of wind power is 

predicted to be in the range of 2.5 to 3.2 p/kWh, by 

the year 2000 A. D. This figure compares very 

favourably with the corresponding cost of 3.0 to 4.7 

p/kWh predicted for electricity generation by coal. 

This makes it extremely attractive to consider large 

scale expansion of wind power utilisation. Hence 

research and development activities for improving 

existing types of wind machines and exploring new ideas 

will be useful. The principle of tangential wall-jets 

for high lift generation, and its utilisation to a 

vertical axis wind turbine generator is investigated in 

this Thesis, for possible application to medium/ large 

scale wind turbine generators. 

1 



Background 

Kinetic energy of natural wind may be exploited in a 

wind energy conversion system for generating electric 

power or for directly operating devices requiring 

mechanical work. Such systems may broadly be cate- 

gorised into (i) Wind turbines operating with lift 

generated by aerofoil sections, (ii) Wind turbines 

operating with aerodynamic lift generated by the 

boundary layer modification. 

The research and development work on the first of the 

above two categories has been in progress for 

considerable time and systems have been constructed for 

generating electric power with magnitudes of the order 

of a few hundreds of kilo-Watts. These machines where 

designed utilising the principles of aerodynamics 

achieve high efficiencies of operation. The research 

and development work on the second category of the 

devices progressed only to a limited extent. This is 

due to inadequate theoretical studies and practical 

difficulties encountered in actual operation. The 

Madaras Rotor Concept belongs to this category and 

utilises the Magnus effect created by axially rotating 

cylinders. Detailed studies on the Madaras Rotor 

Concept have shown that the theoretical advantages of 

the Magnus Effect are unable to find a successful 

application in a Wind Energy Conversion System. 

Boundary layer theory shows that the flow field around 

2 



an axially rotating cylinder can be simulated with an 

introduction of a tangential wall-jet at an appropriate 

location of the surface of a non-rotating cylinder. 

Pressure distribution around the cylinder created by 

the boundary layer flow modification results in an 

aerodynamic lift. Such a lift may successfully be 

utilised to a Vertical Axis Wind Turbine Generator. 

Theoretical Work 

In the present work theoretical investigation is 

undertaken for evaluating the performance of a wind 

machine using the wall-jet principle. This work is 

divided into the following two categories; 

(i) Evaluation of the power out-put of the vertical 

axis wind turbine generator working on the aerodynamic 

lift due to the tangential wall-jet. 

(ii) Determination of the aerodynamic lift and drag 

due to the boundary layer modification caused by the 

tangential wall-jet on an octagonal cylinder. 

The work carried-out under category (i) is presented in 

chapter 2 of the Thesis. Here the instantaneous net 

power generated by the octagonal cylinder due to the 

aerodynamic lift is used to determine the power out-put 

of the wind turbine generator. Power required for the 

formation of the wall-jets and the effect of the 

non-dimensional jet height, on the momentum coefficient 

are also established. In the new concept of vertical 

3 



axis wind turbine generator the lift generated by the 

boundary layer modification due to the tangential 

wall-jet is aerodynamically similar to the Magnus 

effect. In order to compare the application of the 

lift generation by both of these principles the 

theoretical power out-put of the traditional Madaras 

Rotor Concept is compared with a concept having fixed 

cylinders with tangential wall-jets. 

The proposed VAWTG has orbiting octagonal cylinders 

which allows for the pressure recovery within the 

elements of the wind machine and results in a 

modification of the flow stream tube of the air flow 

past the machine. This lead to the re-examination of 

the Betz limit, the traditional theoretical limit of 

the power coefficient. Basic assumptions of the 

traditional derivation, are found to be inconsistent 

with the steady flow energy equation for inviscid flow. 

Therefore, by allowing for a pressure variation and the 

associated shape of the stream tube through the 

introduction of a coefficient "K", a modified Betz 

limit is derived. 

Lift and the drag coefficients on an octagonal cylinder 

due to the tangential wall-jet required for the 

prediction of the power out-put of the proposed wind 

machine are determined by considering a two-dimensional 

steady flow model in chapter 3. The two types of 

two-dimensional mathematical models have been developed 

to represent the flow conditions due to the tangential 
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wall-jet. The flow is divided into "Main Flow" and a 

"Boundary Layer Flow". Governing partial differential 

equations have been set-up and solutions have been 

obtained. For the evaluation of the two mathematical 

models and to understand the flow conditions created by 

the tangential wall-jets, stream lines representing the 

"Main Flow" around the octagonal cylinder have been 

plotted. 

The "Main Flow" which was determined by the potential 

flow theory as above, was corrected for the circulation 

by a super-position technique making use of the 

experimental studies of the lift/drag coefficients. 

Both the laminar and the turbulent flow conditions have 

been considered with in the "Boundary Layer Flow". 

Momentum Integral equation has been used to determine 

both the laminar and the turbulent boundary layer 

development within the "Boundary Layer Flow". For the 

laminar flow conditions Pohlhausens approximate method 

has been used. The traditional 1/7 th Power Law 

turbulent velocity profile was modified by including a 

parabolic sub-layer profile which on using of the 

Blasius formula for pipe wall shear-stress enabled the 

determination of the turbulent boundary layer develop- 

ment. 

The theoretical static pressure variation around the 

octagonal cylinder, determined for the "Main Flow" 

velocity field using the Bernoulli's equation has been 
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used to calculate the pressure components of the 

aerodynamic lift and the drag due to the tangential 

wall-jet. These components of lift and drag forces 

together with the jet momentum force at the jet 

entrance and the forces due to surface shear stress, 

obtained from the "Boundary Layer Flow" gave the Lift 

and the drag forces. 

Experimental Work 

Experimental investigation, consisting of wind tunnel 

studies may be divided into two parts: 

(i) Measurement of the pressure components of the lift 

and drag forces for an octagonal cylinder subjected to 

tangential wall-jet. 

(ii) Practical application of the aerodynamic lift due 

to the tangential wall-jet in a new concept of a 

vertical axis wind turbine generator. 

Wind tunnel tests have been carried-out on a stationary 

octagonal cylinder having sides of the octagon 

measuring 42 mm and having a height of 600 mm. Static 

pressure distribution on the surface of the octagonal 

cylinder has been measured and the pressure components 

of the lift and the drag forces produced by the 

tangential wall-jet are evaluated. The circulation due 

to the tangential wall-jet is calculated from the 

experimentally determined magnitudes of the pressure 
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component of the lift forces for the octagonal 

cylinder, assuming the validity of the Joukovski's 

theorem. 

A wind tunnel model of the proposed wind machine was 

fabricated. The feasibility of the engineering 

application of the tangential wall-jet for a wind 

turbine generator and the working of a rotary axial 

valve through which jet air supply occurs were tested. 

The first part of the experimental work indicated was 

carried out in the wind tunnel at Huddersfield 

Polytechnic and the second part of the experiment was 

carried out in the wind tunnel at Central Electricity 

Research Laboratories in Leatherhead. In the first 

part of the work electronic data logging facilities 

have been used. The programme of the experimental work 

is fully discussed in the chapter 4 of the Thesis. 

Theoretical and experimental investigation clearly 

indicates the potential for the use of Tangential 

Wall-Jet principle for a Vertical Axis Wind Turbine 

Generator. Prototype testing will however be required 

to obtain data on performance coefficients and evaluate 

the practical operating problems. 
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CHAPTER 1 



1. LITERATURE SURVEY 

1.1 Introduction 

Conventional wind energy conversion system has been the 

leader in harnessing the energy from the wind. Since 

the discovery of the primary advantage of the Vertical 

Axis Wind Turbine Generator (VAWTG) design, unlike 

Horizontal Axis Wind Turbine Generators (HAWTG), they 

do not require a yaw control to turn the machine into 

or away from the wind, VAWTG has been regarded as a 

replacement to the Horizontal Axis Wind Turbine 

Generator. Hence considerable amount of research and 

development has been done on the existing, VAWTG and 

also into the new types of Wind Turbine Generators with 

the hope that from the dark-horse pack a big winner is 

going to emerge. 

1.2 Vertical Axis Wind Turbine Generators 

Among many different types of VAWTG Darrieus concept 

has drawn greater attention in research and development 

in the recent years (1). This by no means a new 

design. Almost 45 years after its patent in USA, it 

was rediscovered by National Research Council, Ottawa, 
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Canada, during the early 1970's (2). In 1974 engineers 

at Sandia Laboratories, Albuquerque, N. M also started 

work on the Darrius concept. 

Its blade is shaped much like an aircraft wing with a 

leading edge. Therefore the aerofoil drives the blade 

into the wind regardless of its direction. Each 

Darrieus blade is curved in the symmetrical shape a 

rope would take if spun around a vertical axis. A 

major advantage of this design is the blades do not 

require a variable -pitch mechanism to protect them 

from damage in the high winds. To strike the balance 

between the cost and the performance, wind machines are 

designed to obtain power from winds with in the 

operational wind speeds. When the Darrieus machine 

exceeds the maximum that the machine is designed to 

operate, the propeller feathers. Because of the 

aerodynamic characteristics, the Darrieus blades go 

into a stall in high winds. But while the Darrieus 

machine has this positive no-pitch characteristic, it 

will not self start like a HAWTG. (Typical Darrieus 

blades will not create lift until brought upto speed) 

Hence in one of the latest Sandia machines, the 

electric generator doubles as a starter motor. The 

machine also delivers mechanical power to the base of 

the shaft allowing heavy power generating equipment to 

be placed and supported near to the ground line. But 

one of the main disadvantages is low rotational speeds 
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and hence costly transmissions. The predictions about 

the Darrieus machine is that the coefficient of 

performance (Cp) is as that of the HAWTG. (2). 

A machine which has several advantages over a Darriues 

concept has been developed. This Cyclogyro vertical 

axis wind turbine generator has straight, variable 

pitch blades. This is a self starting machine and 

pitch control permits the extraction of a greater 

amount of power. Wind tunnel studies have indicated, 

at low rotational speeds Cyclogyro has better power 

coefficients, than the Darrieus type machines (1). The 

straight Cyclogyro blades are also comparably cheaper 

to manufacture. 

Circulation-controlled vertical axis wind turbine 

generator has the same basic configuration as the 

Cyclogyro, but the rotors are designed to take 

advantage of a STOL (Short Take-Off and Landing) 

aircraft-wing design as the circulation control wing. 

In the concept the trailing edge is rounded instead of 

having the knife-edge configuration. High pressure air 

is blown over the trailing edge. The air adheres to 

the trailing edge, then shoots off sideways. In the 

case of an aircraft this acts like a flap, causing the 

air to flow down-wind, giving increased lift. The use 

of same configuration on vertical axis Cyclogyro rotor 

will both increase the torque at a given speed and 
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allow the turbine to operate at a lower optimum speed. 

Since it can operate at low speeds to create high 

efficiencies, it cuts-down the centrifugal forces 

greatly, resulting in an easy structural design. 

Predicted theoretical limit of the coefficient of 

performance was 40-50 percent, operating at about half 

the speed of a conventional blade horizontal axis wind 

turbine generator (3,4). This shows the circulation 

controlled machines has a high inherent coefficient of 

performance. The Darrieus machine, has a coefficient 

of performance in the range of 20 to 40 percent (1). 

The propeller types generally operates in the 40 to 45 

range. 

Another machine which may be the possible successor to 

the Darrieus wind turbine generator is the Variable 

Geometry Vertical Axis Wind Turbine Generator. It has 

been designed originally to retain all the advantages 

of vertical axis operation while eliminating the 

complex blades of the Darrieus machine, replacing them 

with straight, un-tapered, untwisted aerofoils. De- 

signers of this machine also claim that this machine 

has a power and structural load control and the 

resilience to the cyclic stalling. The first prototype 

testing has been completed in 1976 and a coefficient of 

performance of 0.35 has been obtained. Since 1986 a 
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test and monitoring programme has been under taken by 

the Department of Energy, on a 25 m machine in 

Carmarthen Bay, South Wales, UK (5,6). 

1.3 Different Wind Power Generator Concepts 

Tornado wind turbine generator is a augmentor machine. 

Which uses the idea of getting more out of the 

propeller, which enables the propeller to shrunk in 

size, reducing costs. However, in this type of machine 

additional static structures are needed to increase the 

wind speeds to the propeller (7). Tornado concept 

designed by Dr. James Yen of Grunnan Aerospace 

Corporation, Bethpage, N. Y. predicts the power in the 

wind to be increased by a factor of upto 1000 (8). 

This system consists of a tower with operable vertical 

vents. The vents on the side toward the wind would 

open while those opposite the flow would close. As the 

wind blows into the tower it would spiral towards the 

top, creating a vortex (A miniature tornado). In the 

centre of this vortex is a low pressure area, which 

causes the outside air to be sucked in through openings 

around the base of the tower. As this is sucked to 

fill the low pressure void, it would drive rotor blades 
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near the bottom of the tower. One of the major 

draw-backs in this system is the necessity of a huge 

tower. 

Electro Fluid Dynamic concept (EFD) is one of the most 

theoretically promising concepts. This wind power 

generator concept has no moving parts. EFD reproduce 

nature's way of producing a thunderstorm, causing the 

charged rain drops accumulating in the cloud and giving 

rise to an electric field and consequent discharge 

leading to lightning. On this basic principle EFD wind 

power generator has been developed. In this concept 

wind blows water droplets through a highly charged 

grids evenly causing the droplets to become charged. 

The wind would then blow these particles towards 

another charged grid. The mechanical energy of the 

wind does work in overcoming electro static repulsion, 

and the energy is translated into electric current 

(9,10). 

As the EFD concept, Humid Air wind machine is also 

based on the principles of nature. About one-third of 

the solar energy that reaches the surface of the earth 

goes into evaporating the moisture. The idea of the 

device is to capture this energy. It is the 

natural-draft tower in which humid air would be brought 

in at the bottom. The wet air, being lighter than dry 

air, would rise and expand, causing its temperature to 
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drop. The cooling of air results in condensation of 

moisture and the latent heat in the humid air would be 

given off to the now drier air. The warmer air would 

have increased buoyancy and would continue to rise upto 

the tower, passing a wind turbine on its way out. 

Again the major draw back of the system has been the 

height of the tower. A mechanized expansion-compres- 

sion cycle to boost this natural process and reduce the 

tower height has been considered. But the energy 

required for the expansion-compression machines are 

considerable compared with total power out-put of the 

concept (11). 

1.4.1 Madaras Rotor Concept 

Madaras rotor power plant (12,13) was originally 

proposed by Julius D Madaras in 1929 for generation of 

power on a large scale. This system utilises the 

Magnus Effect of rotating cylinders vertically mounted 

on flat cars form an endless train around a closed 

track and alternators geared to the wheels of each car 

generate the electric power. Analytical, wind tunnel 

and full-scale aerodynamic studies of the wind powered, 

Madaras concept were conducted between 1929 and 1934 

(14). Since then there was little progress of the 

originally proposed "Madaras Concept" in the absence of 
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pressing need for wind energy systems owing to the then 

cheap fossil fuels. In 1970's a detailed study of the 

"Madaras Concept" was undertaken by the Dayton 

University Research Institute, Ohio, USA. This study 

indicated several practical problems in using the 

"Magnus Effect" especially for medium / Small scale 

power generation as detailed below. 

(i) The complexity of using large rotating cylinders 

and the energy losses during angular acceleration and 

deceleration. 

(ii) The disadvantage of additional frictional losses 

during the motion of the rather heavy supporting cars 

along the race track. 

(iii) The requirement of essentially unidirectional 

wind for a race track configuration. 

(iv) The difficulties in adjusting and controlling the 

operating parameters for optimum performance. 

1.4.2 Background Theory to The Magnus Effect 

The boundary layer theory shows that the lift force on 

a rotating cylinder in a fluid flow is due to the 

modification in the boundary layer flow resulting from 

the reduced difference between the velocities of the 
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fluid and the solid wall. Where the angular velocity 

of the rotating cylinder is adequate, separation is 

completely eliminated on that side of the cylinder 

where the fluid and the surface of the cylinder move in 

the same direction, but on the other side of the 

cylinder where the direction of the fluid motion is 

opposite to that of the solid wall, separation occurs 

over a considerable region, towards the trailing side. 

The flow pattern produced in the above situation 

approximates to that of the two-dimensional non-viscous 

fluid flow past a circular cylinder with a superimposed 

circulation. For such a case potential flow theory 

establishes the "Magnus Effect" i. e., The presence of a 

high lift force (15). 

1.5.1 Previous Work on The Tangential Wall-Jet 

Principle 

In the presence of a tangential wall-jet on one side of 

a body, reduces the pressure distribution and modifies 

the boundary layer separation. Use of such a boundary 

layer control to alter the lift and drag forces on a 

bluff body in an air stream goes back to the beginning 

of the centenary. In 1904 Prandtl demonstrated lift 

generation on a circular cylinder by suction on the 

upper surface, which was mainly due to the unsymmetri- 
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cal pressure distribution around the cylinder (15). 

Similarly the injection of fluid as a tangential jet at 

the upper surface of a cylinder will also create an 

unsymmetrical pressure distribution giving rise to the 

lift force. This is mainly due to the boundary layer 

separation delay, brought about by the energy input of 

the jet. The delay of the boundary layer separation 

has been widely used to increase the lift to drag ratio 

and is usually referred to as the "Circulation Control" 

(17) . 

Due to the wide practical application of this 

principle, the tangential wall-jet has drawn attention 

(4) of many researchers in the past. Such investiga- 

tions on boundary layer control by blown air through 

narrow tangential slots dates back to 1921 (17). Since 

then there are many reported investigations on 

wall-jets in the absence of external stream, while only 

few considered the detailed aspects of the velocity 

profile and pressure distribution, in the presence of 

an external stream. 

The work on measurements on skin friction in a plane 

turbulent wall-jet (18) by Sigalla refers several 

studies in 1930's including the work on turbulent jet 

expansion (19) by Forrthmann in 1934. Bradshaw (20) 

refers to these little known work as "Scattered 

Literature" on the subject. However published work by 
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Glauert (21) in 1956 on theoretical solution for the 

wall-jet was supported by the experiments of Bakke (22) 

in 1957 and Sigalla (23) in 1958. Further analysis of 

the laminar jet by Tetervin (24) has obtained results 

in good agreement with Glauert (21). However these 

works carry only little practical interest in view of 

the extremely low critical Reynolds numbers of the 

mixing layer flows. The work on turbulent wall-jets 

with and without an external stream by Bradshaw (20) 

produces some useful results. In his work Bradshaw 

(20) make a fair criticism on previous workers for 

neglecting in their calculation the shear-stress 

between the postulated fluid layers. Bradshaw (20) 

developed theoretical model including the effect of the 

shear-stress based on concepts of mixing lengths and 

eddy viscosity profile as given below; 

to 

= 0.0315 
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Although, the theory due to Glauert (21) gives a good 

general description of the flow, Bradshaw (20) has 

achieved better results for the surface shear-stress 

where Glauert (21) has underestimated the shear-stress 

by about 25 % by using the Blasius's pipe flow formula. 
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Literature survey shows that the most of the work 

(4,20) has been concentrated on tangential wall-jet 

blowing over a curved surface in the absence of 

external stream. The attachment of the jet to the 

surface is the well-known "Coanda Effect". In these 

studies mainly the overall features of the flow had 

been dealt with, although there was little reference to 

the shear-stress distribution. 

Carriere and Eichelbrennen (25) give results of mean 

velocity profile traverses in a jet blowing tangential- 

ly beneath the boundary layer on a wind tunnel wall and 

on the deflected flap of an aerofoil, and also present 

a step-by-step calculation method in which the profile 

is divided in to layers between the velocity extremum, 

where each layer was treated independently by empirical 

formulas for both the eddy viscosity and the 

shear-stress. 

Carrriere and Eichelbrennen (25) also established 

theory of the flow attachment by tangential air jet 

discharging against a adverse pressure gradient. This 

work also discusses a series of (i) basic experiments 

and (ii) overall calculations of the boundary layer, 

down stream of a tangential wall-jet. 

Theoretical investigation into circulation control by 

slot blowing, applied to a circular cylinder by Dunham 

(17) discusses the theory developed on the basis of 
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Spalding's unified boundary layer theory (17). Dunham 

has used this work for calculating the wall-jet 

momentum and velocity to delay the boundary layer 

separation until a specified point in a given pressure 

distribution. This has enabled, estimates to be made 

of the lift generated, on a circular cylinder with 

narrow tangential slots on the upper surface for 

boundary layer control. He also highlighted the 

distinction between the circulation control and the 

jet-flap. The circulation control uses a small amount 

of slot air to energize the boundary layer where the 

jet-flap uses as much as ten times the quantity of air 

forming a jet sheet to the inviscid flow as lift (17). 

A jet-flap generates thrust as well as lift. The 

calculation of two-dimensional flow field around a 

cylinder or aerofoil of given shape and incidence is 

indeterminate until the circulation around an aerofoil 

with a sharp trailing edge is fixed by the 

Kutta-Joukowski condition. In the case of a rounded 

trailing edge, this condition is replaced by the 

generalized condition, that the boundary layer on the 

upper surface separates at almost exactly the same 

pressure as does the boundary layer on the lower 

surface. And the circulation could be increased by 

delaying the separation on the upper surface. Dunham 

(17) has also confirmed experimentally, that the 

pressures at which the upper and lower surface 
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separation occurs remain equal, even on a circulation 

controlled cylinder. This provides the the link for 

matching the boundary layer calculations with the 

inviscid flow calculations. In his theoretical model 

Dunham has used a high Reynolds number to ensure the 

turbulent boundary layer separation. In this theoreti- 

cal model Dunham has used a numerical step-by-step 

procedure for calculation of the velocity distribution 

within the boundary layer around the surface, including 

the down stream of a jet, by the method developed by 

Spalding (1964) , until the separation criteria was 

satisfied. The results of these theoretical investiga- 

tion were in good agreement with their own experimental 

results. 

Cheeseman (1966,1967) (3,4) has proposed the 

application of circular controlled helicopter rotors. 

He devised a novel parkable rotor with blades of 

circular cross-section on which lift would be generated 

by circulation control. The scope for moving the 

effective rear stagnation point and hence generating 

lift was obviously maximized by choosing a circular 

cylinder, though Cheesman explained other important 

reasons for this choice such as reducing the gust 

sensitivity of the rotor in a rotating wing aircraft by 

using a bluff body with a blown-jet. In his work (3,4) 

Cheesman described the generation of the lift by the 

circulation control technique and results obtained by 
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testing of a scale model "Hingeless Rotor" (4), at the 

National Gas Turbine Establishment. In particular he 

has shown that the operating rotors at high values of 

thrust coefficient per blade which has lead to high 

induced power factors, to be used in Vertical Take-Off 

and Landing (VTOL) circulation control stopped rotor 

aircraft. 

1.5.2 Aerodynamic Forces Due to Tangential Wall-jets 

Furuya and Yoshino (26) have investigated the 

aerodynamic forces acting on a circular cylinder with 

tangential jet of air. This investigation was 

carried-out to establish the characteristics of flow 

surrounding a circular cylinder with tangential 

injection of air immersed in a uniform flow. As a 

result it was found, that the separation has taken 

place where the radius of curvature of the the cylinder 

was discontinuously increased even if the wall itself 

was smoothly connected. A systematical investigation 

was carried-out on aerodynamic forces acting on 

two-dimensional circular cylinder and on velocity 

profiles of mixing region of jet when the station of a 

jet and intensity of jet were varied at rather small 

Reynolds numbers. 

22 



Furuya and Yoshino (28) have established the 

characteristics of the jet by conducting the 

experiments in the absence and in the presence of the 

main flow. In the absence of the main flow the 

Reynolds number and the location of the jet, has shown 

little influence on the boundary layer thickness and 

velocity profiles. The obtained results were in 

agreement with the Newman's experimental data of static 

pressure distribution (61) on the wall in the direction 

of the flow. 

Further the characteristics of the jet in the presence 

of the main flow have been investigated. In this case 

the velocity of the jet was seen to be reduced and 

eventually reversed with respect to the main flow in 

the vicinity of the main flow (27). Furuya and Yoshino 

have also observed that the velocity profile of the 

mixing region of the jet has almost a fixed shape 

across the whole span, except at the points near to the 

end plates. The velocity profiles of mixing region and 

various circumferential stations at the centre of the 

span in two cases for Cp = 0.085 and 0.0544 were similar in 

shape. Yoshino and Furuya have also observed that the 

profiles were seen to preserve its similarity even 

after the point of separation. In this work pressure 

distribution has been used to calculate the lift and 

drag coefficients generated by the wall-jet. The 

maximum of the lift to drag ratios were all alike for 
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the jet angle o, _> o°, while the maximum of CL/CD and the 

value of the Cp at that maximum increase as 0, increases 

for e, <o°. In this case C/CD= 10 and CL=3.3 were obtained 

at Cg= o. 4' CL/CD> 1o were also obtained as cg was 

further increased and CL/Co had reached the maximum 

somewhere at Cµ>o. 4. 

Furuya and Yoshino (28) both theoretically and 

experimentally investigated the static pressure 

distribution and velocity profile of jet about a 

circular cylinder. Following are the major conclusions 

that may be drawn on their reported work; 

a) On the Jet 

(i) Velocity profiles of the mixing region of the jet 

are throughout geometrically similar in shape even 

after passing the point of separation of the flow. 

b) On the Lift and Drag Coefficients 

i) The case of small C, u <o .1 for the e, <- - 20 ° the C, >O and 

CL once decreases and increases after passing through 

the point of minimum as CJ increases. In the mean time 

Co decreases after passing through the local minimum. 

For e, > o° the boundary layer control like 0<0,., <900+0, is 

impossible. 

ii) In the case of large cji(> o. 1 ), the rate of increase 

of CL with an increase of Cu is nearly constant 

regardless of er Greater the e, is, greater the CL is, 
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when the cl-iis maintained constant. On the other hand, 

the rate of increase of CD with an increase of cl, 

increases as 8, increases. 

Further investigations on the aerodynamic characters of 

the circular cylinder with the tangential blowing with 

the effect of a side-wall has been carried-out by 

Yoshino, Waka et. al. (27). In this study, the 

span-wise distributions of characteristic values such 

as lift and drag coefficients of a circular cylinder 

with tangential blowing immersed in a uniform flow have 

been measured. From the obtained results, the 

variation in these coefficients due to the presence of 

the side-wall of a wind tunnel has been determined. 

This range of variation has become narrower when the 

location of the slot for introducing the jet-air 

farther downstream. The induced angle of attack and 

trailing vortices has also been calculated. Yoshino 

et. al. have given the importance to systematic 

investigation of the overall "Wing" characteristics, 

such as span-wise distribution of them, characteristics 

at the mid-span and so forth, and the flow around the 

cylinder in the wind tunnel. This kind of investiga- 

tion has a greater importance in the industrial 

application, not limited to the circular cylinder. For 

instance this method is applicable for a problem of a 

separated flow near the wing root of an axial flow 

machine or for meeting the demand of "designers" 
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requiring the two-dimensional characteristics of an 

aerofoil with the separated flow. However these 

methods have very limited application for the 

theoretical and experimental investigation for the 

aerodynamic lift in the present problem. 

However, further work by Waka, Yoshino et. al. (27) on 

the aerodynamic characteristics at the mid-span of a 

circular cylinder with tangential blowing has some 

importance to the present work on wall-jets. In their 

work, three different methods have been devised to 

determine the induced angle of attack as a function of 

lift coefficient at the mid-span of a circular cylinder 

with tangential blowing immersed in a uniform flow. 

The lift and drag coefficients on the circular cylinder 

have been corrected to give data for two-dimensional 

flow conditions by making use of the induced angle of 

attack thus obtained. The circumferential static 

pressure distribution on the surface of the cylinder 

has also been calculated by modified Parkinson-Jandali 

method to apply to an asymmetric flow around the 

cylinder with blowing. 

Waka et al. have carried-out experiments by varying 

aspect ratio of the cylinder, angular location of the 

jet, and the jet momentum coefficient under the 

conditions of constant Re = 2. iX los. Then the calculated 

pressure distributions for symmetric (Ci=O) and 
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asymmetric (cu>o) flow with respect to the x-axis have 

been compared with the Dunhams (17) calculated pressure 

distributions. Further the relationship between the 

lift coefficient and the drag coefficient and the 

momentum coefficient have been established. Results 

show that as C increases, CD decreases once and takes a 

minimum value, after that Co increases again. CD is 

mainly given by the sum of the profile drag coefficient 

Coo and the induced drag coefficient Cot for the 

considered Reynolds number. As the C1 increases, Coo 

decreases and Co, increases. When CL is small, the 

decrement of coo is greater than the increment of C0, so 

that as whole, CD decreases. As C1 attains greater 

values, however, the increment of C., comes to exceed 

the decrement of Coo, so that Co begins to decrease 

(28). The ratio of the increase of Coto that of CL is 

larger and is in the same order of aspect ratio of 4. 

6,8 and the values of CD becomes to the values of the 

same order. Hence the influence of the aspect ratio on 

lift and drag coefficient relation appears clearly with 

an increase of the lift coefficient. 
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1.6 Numerical Methods For The Determination of The 

Flow Past Symmetrical Bluff Bodies 

Work by Parkinson and Jandali (34) describe a way of 

predicting the important features of flows past bluff 

bodies whose shapes cause flow separation and the 

formation of a broad wake. A two-dimensional incom- 

pressible potential flow was considered for the flow 

external to a symmetrical bluff body and with its wake. 

In this work the desired flow separation points were 

made the critical points of a conformal transformation 

to a complex plane in which surface "sources" in the 

wake create stagnation conditions at the critical 

points. The stagnation stream lines have then 

transformed to tangential separation stream lines in 

the physical plane, with separation at the desired 

pressure. The position and length of the sources have 

been determined by the requirement of separation 

position and the coefficient of pressure. The flow 

inside the separation stream lines was ignored and base 

pressure was assumed to be constant at the separation 

point. This work also gives features of the 

theoretical model which includes a finite wake width, a 

pressure distribution on the separation stream lines 

decreasing asymptotically towards the free stream value 

at infinity and simple analytical expression for the 

pressure distribution on the body. Comparison of the 
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theory with the experimental data and with other 

theories were also presented for the normal plate, the 

circular cylinder, the 9Q0wedge and the elliptical 

cylinder. Parkinson and Jandali's theory appears to be 

in good agreement with their own experimental results 

(34) . 

Head and Patel (37) in 1968, presented a integral 

method for the calculation of two-dimensional incom- 

pressible turbulent boundary layer. In this method 

entrainment has increased when the rate of growth of 

the layer was less than that of the corresponding 

equilibrium layer and has decreased it when the rate of 

growth was greater. This variation of entrainment was 

in accordance with observation, and a simple physical 

explanation has been proposed to account for it. In 

this work the comparisons with measured boundary layer 

developments show the general accuracy of the method. 

They have increased the accuracy of the predictions by 

taking to account the effects of the convergence and 

the divergence of the flow. 

Further work by Patel and Celik (61) presented a method 

for the calculation of the mean flow past a circular 

cylinder. It utilizes the interactive procedure that 

couples a boundary layer calculation method, by which 

the location of separation and the displacement 

thickness of the boundary layer were predicted, and the 
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two-parameter irrotational flow model, which predicts 

the pressure distribution. The displacement effect of 

the boundary layer was explicitly taken into account in 

the irrotational flow model. The point of separation, 

drag coefficient, and pressure distribution parameters 

has been predicted at high Reynold numbers of 108. This 

work shows the importance of boundary layer in a 

critical flow regime. This was presumed to be a result 

of the rapid thickening of the boundary layer in the 

intensive pressure- rise in this regime. They also 

have observed the continuity of the Reynold number 

dependence even upto Re= 108 This was due to the way in 

which the available minimum pressure coefficient data 

has been extrapolated to high Reynolds numbers, or may 

be due to the increased influence of surface roughness 

with increased Reynolds number which was not considered 

in their model. 

El-sharawi, El-Refai and El-Bedeawi (29) have developed 

a finite deference method for solving the boundary 

layer equations governing the laminar flow about a 

rotating sphere which was subjected to a uniform stream 

in the direction of the axis of rotation. Although the 

work deals with a special case of this problem; namely, 

the flow around a sphere rotating about its axis and 

simultaneously subjected to a stream in the direction 

of the axis of rotation, method of solution and results 

carry a greater interest. This work shows that large 
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gradients exist near the stagnation point and also near 

the separation point. For the chosen Re=10000 

El-Sharawi and others give the position separation 

point 0 as a function of the rotational speed. And 

also their results show for the investigated range of 

rotational speed (0 - 10000) the separation point 

always lies equational plane (29) and shifts forward as 

the value of the rotational speed increases. This is 

in agreement with the conclusions of Schlichting (15), 

that the displacement of the separation point is due to 

the effect of centrifugal forces which, behind the 

equational plane (52). This has the effect of an 

additional pressure increase in flow direction and 

therefore cause the separation point to shift forward. 

Investigation into aerodynamics of a circular cylinder 

in cross-flow, by Bychkov and Kovalenko (30) discuss 

the aerodynamic forces, the distribution of pressure 

and its fluctuations. These tests have been car- 

ried-out in a low-turbulence subsonic wind-tunnel at 

105 <Re <_ 5.105. In these investigations for different 

turbulence level of the flow and cylinder surface 

roughness they have observed "sign-variable" lift (30) 

with a variable drag. In the case of low-turbulence 

flow at critical values of Reynolds number, over a 

smooth cylinder, suggesting asymmetric and unsteady 

position of boundary layer separation. Pressure 

fluctuations on the cylinder surface have attained a 
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maximum in the pre-separation region. Greater the 

turbulence of the free stream and higher the roughness 

of the cylinder surface stabilize the positions of the 

separation point and also results in a greater symmetry 

of the flow over the cylinder. 

Buchkov and Kovalenko have extended this work to 

aerodynamic forces on a smooth rotating cylinder (31). 

These experiments have also been carried-out in the 

same low-turbulence subsonic wind tunnel at 105 <_ Re <_ 6.105. 

In these investigations Buchkov and Kovalenko have 

observed significant changes in the location of 

asymmetric points of the boundary layer separation. 

They also have showed that at the critical Reynolds 

number, rotation stabilizes and the flow about the 

cylinder and reduces the fluctuations of the 

aerodynamic forces. Turbulent flow have also produced 

a smoother variation in aerodynamic forces, due to the 

more stable location of separation points. 

Buchkov and Kovalenko have investigated further on 

aerodynamic forces on a rough cylinder in cross-flow 

(32). These experiments have also been carried-out in 

the same low turbulence wind tunnel at the same 

Reynolds numbers (31). During these tests they have 

established that the magnitude and the nature of 

variation in aerodynamic forces of a rotating rough 

cylinder which differed significally from the case of 
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the smooth cylinder. This was due to properties of the 

flow in the wall-region and the location of the points 

of the separation of the boundary layer. They also 

have found that the higher turbulence level did not 

have any significant effect on the aerodynamic forces 

of the rough cylinder in the critical range of the 

Reynolds numbers. 

Another detailed investigation has been carried-out by 

Zubarev (33) on the same phenomenon but on a "moving 

surface". This study has been made of the boundary 

layer on a cylinder with a "moving surface" while the 

cylinder was travelling with a constant velocity in an 

incompressible fluid. Zubarev (33) have obtained 

expressions for the distributions of the frictional 

stress on the surface of the cylinder and the 

coordinate of the singular point in the solution of the 

boundary layer equations that indicates the appearance 

of a region of a reverse flow for different values of 

the relative velocity of the motion of the cylinder. 

In this work numerical calculations have also been made 

of the work of the forces of friction associated with 

displacement of the cylinder. 
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1.7 Numerical Methods For The Determination of The 

Aerodynamic Lift Due To The Tangential Wall-jet 

Presence of a tangential wall-jet at an appropriate 

location on a curved surface, in a main stream creates 

an unsymmetrical pressure distribution. Among pub- 

lished literature only very few have concentrated in 

reaching a possible analytical / numerical solution to 

the problem. 

Waka and Yoshino (28) have calculated the circumferen- 

tial static pressure distribution by extending the 

Parkinson Jandali (34) which can be applied to 

two-dimensional flow around a symmetrical bluff body 

with a broad wake. Assuming frictionless flow and a 

imaginary plane (t-plane (28)) they have managed to 

transfer points from the original T-plane using a 

transformation equation; 

t= f(t)=e-`'' T-cos6- 
1 

T- cot 6 

Where, T=, X+iZ , t=x+iz 

i= imaginary unit 

y- angle between the incident flow and the X-axis, 

angle between the stagnation point and the T- plane. 

Waka and Yoshino have transformed a complete circle 

b 
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with radius R the centre of which is at the origin, to 

a circular arc slit, in the t- plane. This slit mapped 

from the circle is not symmetric with respect to the 

X-axis. It has also been considered the complex 

potential of a flow around a circle with radius R 

immersed in a uniform flow U. the direction of which is 

inclined by the angle y with respect to the X-axis in 

the T-plane. Along with this were the two sources of 

different strengths 2Q1 and a Q2 at symmetric angular 

positions E and -E on the circumference of the circle 

respectively, a sink of strength (Q1 +Q2) at the origin 

and a circulation of strength F around the circle. By 

using the total complex potential of the asymmetric 

flow in the T-plane and separation velocities which 

were obtained by using empirical pressure coefficients, 

circumferential static pressure distribution has been 

calculated. Since Waka and Yoshino have adopted a 

method of transformation of a circle into a slit, 

limits the use of the given method for different 

configurations. They also have ignored the skin 

friction and hence the surface shear stress. 

A modified finite element method for solving the time 

dependent incompressible Navier-Stokes equations has 

been developed by Gresho and others (35). This has 

been achieved by utilizing the Galerkin finite element 

(36) and the simplest approximate isoparametric element 

for modelling the Navier-Stokes equations. The 
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approximation has been modified in two ways in the 

interest of cost effectiveness. After appending and 

"hour-glass" connection (35) term to the diffusion 

matrixes, the modified equations have been integrated 

in time using the forward Euller method (51) in a 

special way to compensate for that portion of the time 

truncation error. However in the absence of the 

correction due to the shear-stress and owing to the 

complicity of introducing such a factor to the 

equations finite element technique introduced by Gresho 

was not considered in obtaining a numerical solution to 

the problem. 

Turbulent wall-jets by Rajarathnam (38) gives a detail 

account of the behaviour of the plane turbulent 

wall-jets. A plane jet coming out of a nozzle 

tangentially to a smooth flat plate which is submerged 

in a semifinite expanse of the same fluid. As the jet 

leaves the nozzle due to the velocity discontinuity, a 

shear layer develops on the fluid side and a boundary 

layer develops on the wall side. If the surrounding 

fluid is also in motion in the same direction, 

phenomenon is referred as the plane turbulent compound 

wall-jet. 

A detail study on compound wall-jets has been 

undertaken by Eskinazi and Kruka (39) in 1962. Their 

first work on mixing of a wall-jet into a free-stream 
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has been done with a zero pressure gradient. 

Experiments have been carried-out for various ratios of 

jet to free-stream velocities and have obtained results 

in agreement with the Blasius's frictional law (49). 

And also the non-dimensional shear-stresses have found 

to be in agreement with Fortmann's (19) results which 

were computed from the momentum considerations. Since 

this work was carried-out only for the zero pressure 

gradient, comparisons with the results of the present 

work can not be made. However the work give a good 

general understanding of the compound wall-jet and the 

mixing layers which enabled to formulate the present 

problem. 

In their further work Kruka and Eskinazi (40) have 

carried-out experimental investigations on a plane, 

steady, turbulent wall-jet in a free-stream of air. 

Here they have considered a negligible longitudinal 

pressure gradient. In that investigation Kruka and 

Eskinazi have observed that the inner layer has 

constantly lost its momentum caused by the frictional 

stresses at the wall while the outer layer has 

preserved its momentum. These analysis have been 

carried-out by using empirical equations. 
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1.8 Aerodynamic Theory of Wind Turbine Generators 

Betz limit (55,56) for the performance coefficient is 

one of the factors useful in evaluating the aerodynamic 

design of a wind turbine generator. However the "Betz 

limit" does not represent the maximum possible 

performance coefficient for a wind energy conversion 

system (57). 

Loth (58,59) has carried-out series of investigations 

on the power coefficient of wind turbine generators. 

For the work on optimization of Darrieus turbine, with 

upwind and downwind momentum model (58) a generalised 

Betz limit has been derived. In this work an arbitrary 

number of actuator discs in series has been used. A 

momentum-type velocity model has been introduced with 

separate cosine -type interference coefficients for the 

upwind and downwind half of the rotor. The values for 

the optimum rotor efficiency, solidity, and correspond- 

ing interference coefficients have been obtained in a 

closed -form analytical solution by maximizing the 

power extracted from the downwind rotor half as well as 

from the entire rotor. 

Further work by Loth and McCoy (59) on wind power 

limitations associated with vortices have used the 

pressure dissipation inside vortices due to viscous 

shear. The reduced level of the total pressure flux of 
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the flow inside a vortex has an adverse effect on all 

vortex ingesting wind machines. The Betz limit and 

wind turbines ingesting the vortex generated by an 

aerofoil has been computed. 

By introducing number of actuator discs to their 

models, Loth and McCoy have succeeded in proving that 

the universal use of the Betz limit for wind power 

generators is erroneous. However the pressure recovery 

between the upwind and the downwind sections of a wind 

turbine generator and the influence of the shape of the 

stream tube on the "Betz limit" have not been 

considered. 

39 



CHAPTER 2 



2. THEORETICAL ANALYSIS - POWER OF A VERTICAL AXIS 

WIND TURBINE GENERATOR DUE TO AERODYNAMIC LIFT ON 

ORBITING CYLINDERS 

2.1 Background 

The performance of conventional wind machine is 

essentially determined by the ratio of the lift to the 

drag coefficient obtainable for the particular geometry 

used for the blading. The achievement of a high lift 

results in an efficient and compact machine for given 

power to be generated. One of the methods for 

developing a very high lift coefficient, far in excess 

of what is possible with an aerofoil, is to use the 

"Magnus Effect" in association with a rotating cylinder 

(13). The basic principle is illustrated in Fig 2.1. 

There was little progress of the originally proposed 

"Madaras Rotor Concept" (12,13) as there was at that 

time no economic advantage compared to the use of 

fossil fuels or nuclear energy. A detailed study of 

the "Madaras Rotor Concept" was undertaken by the 

University of Dayton Research Institute, Ohio, USA. 

The above study indicated several practical problems in 

using the "Magnus Effect", especially for medium/small 

scale power generation, as detailed below; 
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(i) The complexity of using large rotating cylinders 

and the energy losses because of the need for reversal 

of rotation, for the cylinders for each orbital motion. 

(ii) The presence of additional mechanical losses due 

to friction during the motion of the heavy carriages on 

a track. 

(iii) The requirement of essentially unidirectional 

winds for a race track configuration. 

(iv) The difficulties in adjusting and controlling the 

operating parameters for optimum performance (13). 

The major difficulties of employing large rotating 

cylinders in the "Madaras Concept" as detailed above 

may be overcome by achieving the aerodynamic lift 

through the use of a wall-jet on non-rotating orbiting 

cylinders as shown in the Fig 2.1. (Also see the 

section 3.1) 

2.2 Instantaneous Power Generated in Madaras Rotor 

Concept 

The components of lift force due to the Magnus Effect 

(15), in non-dimensional form, can be expressed as; 
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(See Appendix 2A) 

and the components of drag force in non-dimensional 

form for the cylinder employed for lift generation 

using the Magnus Effect is 

2.2-2 Dx=CD"Um"VX 

DY=CD'Um'Vy 

(Where the drag coefficient Cd for the Madaras Rotor 

Concept is taken as 0.4 (13)) 

The instantaneous power produced in the Madaras Concept 

due to the orbital motion of the cylinders may be 

expressed in non-dimensional form as; 

2.2-3 P'=FhVx. +FyVY 

where the total component of the forces on the cylinder 

in non-dimensional form are given by; 

2.2-4 FX = LX + Dx 

F,, =L+Dy 
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The Power dissipated due to viscous action for the 

axial rotation of a cylinder Pý can be expressed as; 

2.2-5 Pw=-r(21-7rH)rw 

Where; 

c- surface shear stress 

The surface shear-stress z is expressed as; 

Pf Us 

2 

For reasonably large values of radius of a cylinder the 

friction factor can be taken as for a flat plate with 

velocity of Us (-=rw) (53) 

Therefore 

0.074 

(Re) "s 

USP 
Re=17r" 

and thus the shear-stress r can be expressed as; 

2.2-6 r=0.02942( r 1.6w p0. apo. 2) 1.8 

from the equations 2.2-5 and 2.2-6, 

2.2-7 pW = 0.1849( Il r3.6w2. epo. 8/J o. 2) 
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The power required for the axial rotation of a cylinder 

given by the equation 2.2-7, non-dimensionalised on the 

same basis as P' of equation 2.2-3, is given below by; 

2.2-8 
r 2.8 2.8 

Pw = 0.1849N i-° VMg 
R 

'0 

Where 

N_ ph/r 
r 

9 

RD 
VM 

W 

Therefore the net instantaneous power produced in the 

Madaras Rotor Concept, in the non-dimensional form is; 

2.2-9 Paet 
-p 

Pcu 

The above equation is used in section 2.5.2 to compare 

the theoretical power coefficient of the Madaras Rotor 

Concept with the Concept of using tangential wall-jets. 

2.3 Instantaneous Power Generated by the Aerodynamic 

Forces Utilising Wall-jet Effect on Octagonal Cylinders 

In the section 3.1 the basic principle of the lift 

generation by the tangential wall-jets on non-rotating 
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cylinders is described. The components of the lift 

force due to the wall-jet on an octagonal cylinder may 

readily be obtained by representing the lift force as a 

two-dimensional vector. To facilitate this, the jet 

momentum coefficient is expressed as a vectorial 

equation as follows; 

Cý = (o11+ 07± uzk) 

Where the unit vectors t, 7 lie in a plane normal to the 

axis of orbital rotation of the octagonal cylinder and 

the unit vector k is along the axis of orbital 

rotation. 

The lift force vector due to the tangential wall-jet 

can now be expressed in the non-dimensional form; 

2.3-1 pCrr2HUm(CjU) L=- 
ph/2(rH) 

ijk 

__ pCrr2HUm 00P, 

Ut. vy 0 

Therefore the components of the lift force due to the 

tangential wall-jet are expressed in the non-dimension- 

al form as; 

2.3-2 Lx = CrUm([z "V Y) 

11 - Ly - -C t) 
mýPz 

ýý 
xý 
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Therefore the power produced by the non-rotational 

cylinder elements may now be obtained in terms of 

Lx , Ly and also the forces DX , D. given in the 

equations 2.2-1 and 2.2-2 which are also applicable 

here with an appropriate value of Ca The procedure is 

identical to that developed in the section 2.2 and the 

equation for the instantaneous power produced is given 

by the same form of the equation as 2.2-3. i. e., 

2.2-3 F'=FKVx+FyVy 

Where; 

2.2-4 F =L +D XXX 

2.2-4 Fy=LY+Dy 

The lift to the jet momentum coefficient C, and the 

drag coefficient Co of the above equation are 

determined in the section 3.8.7. 

Power required to form the wall-jet Pis evaluated in 

Appendix-2B and the final result is expressed in the 

non-dimensional form as; 

2.3-3 
F1 

(b) ý" 
3CPaT a\ 

n1/ 

r w3 

Where in the equation 2.3-3, 
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/, n= 
Aa To 

Y' 

Al T1 

Therefore the net power produced in the non-dimensional 

form for this case is; 

2.3-4 Paat -P - Pi 

The above expressions for instantaneous power is used 

to predict the theoretical power coefficient of the 

wind machine based on the wall-jet principle of lift 

generation, in section 2.5.1. 

2.4 Switch-over Angles for a Wind Turbine Generator 

Working on Aerodynamic Lift 

For a Vertical Axis Wind Turbine Generator (VAWTG) 

working on the aerodynamic lift generated by a 

principle such as the "Magnus Effect", requires 

directional change of the axial rotation of cylinders 

at diametrically opposite points of an orbit lying on a 

line perpendicular to the wind velocity direction (Fig 

2.2) considered case of Madaras Rotor Concept for wind 

power generation. As the cylinder travels around the 

orbit from points 1 to 4 the net force is a result of 

components of the lift and the drag forces. During 

this section of the orbit the drag force also 
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contributes to generate useful power. However as the 

machine rotates in the counter clock-wise direction and 

produces useful power, the axial rotation of the 

cylinder has to change from the counter clock-wise 

direction to the clock-wise direction between the 

points 2 and 3 of the orbit. The orbital angle between 

these two points is taken as the switch over angle e,,. 

From the points 4 to 5 the net force has components 

such that useful power is produced because of lift due 

to the "Magnus Effect". As the cylinder reaches the 

point 6 the axial rotation should again be changed into 

the clock-wise direction. The angle between points 5 

and 6 where the axial rotation changes from the 

clock-wise direction to the counter clock-wise 

direction is the second switch-over angle 0C2. However 

between the points 5 and 6, as the cylinder drives 

against the wind there is no useful contribution of 

forces for power generation. Between the points 6 and 

1 the forces acting on the cylinder are identical to 

the forces in between the points 4 and 5. 

Fig 2.3 shows the relation ship between the orbital 

angle and the angular velocity (axial) of a cylinder. 

For the Madaras Rotor Concept the switch over angles 

are taken as; 5° <_ 0 
c, 1 0C2 <_ 100 

for the purpose of comparison of power coefficients 

discussed in the section 2.5.2 
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During one complete orbit for optimum operating 

conditions the direction of the net resultant force 

should always be in the same direction as the orbital 

motion of the cylinder. However for a given wind 

velocity and a constant axial rotation achieving this 

optimization with the Madaras Rotor Concept is 

impossible. 

c., J 

Change Over Angle Vs Angular (Axial) Velocity 

Fig 2.3 

In the case of a wind machine using the principle of 

tangential wall-jets (see 3.1) the switch over angles 

can practically be made zero as this involves only 
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switching over to a different set of wall-jets at 

locations considered earlier. In between switch over 

points it is also possible to optimize the operating 

conditions of the machine by activating different sets 

of jets in order to obtain required angle between 

directions of jet and the relative wind velocity (see 

paragraph 3 of 4.3.2). 

However for the present comparison study discussed in 

the section 2.5.2 the effectiveness of the optimization 

of the jet location on octagonal cylinders is not 

considered, since this study was based only on a fixed 

jet position. 

2.5.1 Tangential Wall-jet Principle for the Madaras 

Rotor Concept 

The wall-jet principle may be applied to achieve 

aerodynamic lift in the Madaras Rotor Concept instead 

of using axial rotation of the cylinders (see 3.1). 

Theoretical power output of a wind machine based on the 

traditional Madaras Rotor Concept is compared with a 

machine utilising the concept consisting of cylinders 

with tangential wall-jets. 

The mean power produced by the system during one 
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complete orbit is; 

2.5-1 r 
T0 Pdt 

Where 

T_2 
n 

Therefore the equation 2.5-1 can also be expressed as; 

2.5-2 f) 0=2n d6 
P= P 

2 17 e=o .) 

1 217 
= Pde 

217 0 

P= Instantaneous power at an angular position e 

which is given by; (see 2.2 and 2.3) 

(, OD) 
P-F` 

2 

F, = sum of the tangential components of the 

instantaneous lift and drag forces produced on the 

cylinder at the position 00 

The power coefficient C, can be expressed as; 

Cp= 
P 

Available Wind Power 
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p 
1 /2p6/3)(2RH) 

or 

2.5-3 X 
p6 1 211 Fr 

Cp CLýV 
2 360 (pW2rH) 

Where 

DR 
Xp= 

W 

a= solidity ratio 

The FORTRAN computer programme which is developed to 

evaluate the values of Cpfor the traditional Madaras 

Rotor Concept and for the concept utilising the 

tangential wall jets, is given in the Appendix 5D. The 

non-dimensional track speed £R/W, the ratio of the 

rotational speed of the cylinder around its axis to the 

orbital rotational speed of the machine win, the ratio 

of the cylinder to the track radius r/R, the Aspect 

Ratio of the cylinder H/r, and the switch over angle ec 

are the main input parameters in the POWERG1 programme 

for the evaluation of the power coefficient of the 

Madaras Rotor Concept with axially rotating cylinders. 

For the evaluation of the Power Coefficient for the 

case utilising the wall-jets, the non-dimensional jet 
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velocity v, is used in place of the ratio w1n for the 

main input parameters in the FORTRAN programme POWERG1. 

2.5.2 Comparison of Theoretical C, of The Madaras 

Rotor Concept With concept of Wall-Jets 

The computer programmes mentioned in the section 2.5.1 

are used for the comparison of the traditional Madaras 

Rotor Concept with the tangential wall-jets. In this 

study the inertia losses due to angular acceleration 

and deceleration during switch over angles, of axially 

rotating cylinders are considered to be negligible. In 

principle this is only possible where regenerative 

braking is achieved with 100 % efficiency. In practice 

these losses will reduce the value of Cp. In spite of 

this assumption of 100 % regenerative braking, computer 

simulation studies show that, by using tangential 

wall-jets in a Madaras Rotor Concept, as much as 30% 

increase in power output after accounting for the power 

required for the formation of the wall-jets is possible 

(62) . 

Hence these theoretical studies show that by replacing 

axially rotating cylinders with fixed cylinders 

provided with tangential wall-jets will enable to 

design a more efficient Wind Turbine Generator. 
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However both the original Madaras Rotor Concept and the 

modified concept proposed by the Dayton University 

Research Institute have many practical disadvantages 

over a conventional wind turbine generator (13). 

Therefore it will not be possible to achieve the 

optimum utilisation of the wall-jet principle and its 

advantages, in applying to the Madaras Rotor Concept. 

The principle of high lift generation may also be 

utilised to enhance the performance of a conventional 

wind machine by introducing tangential wall-jets on to 

the turbine blades (62). A preliminary study indicated 

that the complexity of the mechanical arrangement, will 

render this technique impractical in general. Hence a 

new concept of a Vertical Axis Wind Turbine Generator 

utilising the principle of wall-jets is proposed (see 

2.6.1 and 2.6.2). 

2.6.1 The Concept of a New Vertical Axis Wind Turbine 

Generator 

The tangential wall-jets can be applied with several 

advantages in a new concept of a Vertical Axis Wind 

Turbine Generator consisting of two or more polygonal 

cylinders acting as turbine "blades" as shown in Fig 

2.4 (41). The performance is optimized by introducing 

the wall-jets at appropriate locations dependent on the 
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relative wind direction, as cylinders orbit about the 

axis of the machine. Both the boundary layer 

considerations (see 2.6.3) and the wind tunnel studies 

(4.3.2) showed that it is adequate to use only one 

tangential wall-jet located at an angular position of 

about 135°measured from the upstream stagnation point 

with respect to relative wind velocity. The number of 

sides of the polygon is decided by the requirement for 

introducing the wall-jets at an optimum angle of about 

135°. Therefore for a Vertical Axis Machine the minimum 

convenient number of sides required is 8. Hence 

octagonal cylinders are considered to be "blades" of 

the new machine. The wind machine using the above 

concept is referred to as The Octagonal Cylinder 

Machine. 

2.6.2 The Octagonal Cylinder Wind Machine 

The proposed wind machine (Fig 2.4) is to have 

octagonal cylinders as turbine blades and following are 

the major additional advantages over a conventional 

Vertical Axis Wind Turbine Generator; 

(i) The Wall-jets can also be used for aerodynamic 

braking and speed control. 

(ii) The flexible nature of air jets makes it simple 
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to alter the operating conditions with changes in the 

wind speed and direction, maintaining optimum perfor- 

mance throughout. 

(iii) The structural stability of the octagonal 

cylinders will result in material savings as critical 

stress conditions present for traditional "blades" are 

avoided. 

(iv) Less liable for "stalling" as wall-jets stabilise 

the boundary layer. 

(41,62) 

The only major disadvantage of the Machine is due to 

the requirement of the external source of power for the 

jet air supply. This can overcome by employing a 

passive air supply through the use of inbuilt 

centrifugal impellers driven by the wind machine itself 

as indicated in the Fig 2.4. In this case to start the 

machine external power has to be supplied either from a 

separate electric motor or by using the electric 

generator of the wind machine as a motor. If the 

generator of the wind machine is not connected to an 

electric power grid or does not form part of a 

wind-diesel plant, then a mechanical starter using a 

Savonius Rotor can be used. However the selection of 

the starting system has to be decided on the economics 

and the individual conditions of the operation of the 

wind turbine generator. 
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IS 

Fig 2.4 Proposed Concept of the VAWTG 
with Tangential Wall-jets 
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2.6.3 Number of Wall-Jets, End Plate Diameter Ratio 

and Aspect Ratio 

Tests were carried carried-out using one, two or three 

tangential wall-jets to determine the number of 

wall-jets required to achieve the maximum aerodynamic 

lift on the octagonal cylinder. The investigation 

showed that by increasing the number of wall-jets, the 

obtainable lift force could also be increased. However 

the power required for the formation of the wall-jets 

was also increased. Hence the instantaneous net power 

decreases with greater number of wall-jets. Therefore 

for the present application, single wall-jet has been 

selected as sufficient to create the adequate 

aerodynamic lift. This makes also easier to optimize 

the the wall-jet angle and hence the switch over of the 

jets from one set to the other in a complete orbit. 

Investigations done by the Dayton University Research 

Institute (13) on the Madaras Rotor Concept, has proved 

the effect of the end plate diameter on the aerodynamic 

lift due to the axial rotation (Magnus Effect) of the 

cylinder. Since the flow patterns created by both the 

Magnus Effect and the Tangential Wall-jet are identical 

in nature, Dayton University findings on the ratio of 

the end plate diameter to the cylinder diameter was 

considered. This was qualitatively verified to be 
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satisfactory with the octagonal cylinder described in 

the section 4.3.2. The ratio is taken to be equal to 

2.0 for the present work. It was also observed that by 

increasing the end plate diameter ratio above 2.0 the 

lift to drag coefficient ratio CL/CD increases and 

eventually has an extremum value. By introducing the 

end plates to the wind tunnel model of the octagonal 

cylinder end losses are kept to a minimum value. Also 

at the mid-span, the flow around the octagonal cylinder 

becomes closer to a two-dimensional flow. Thus the 

comparisons of the results of the experimental 

investigations with the two-dimensional theoretical 

models are justifiable. 

The technical report (13) also shows, that the lift to 

drag coefficient ratio CL/CD does not have any maximum 

with respect to the cylinder aspect ratio. For 

increasing values of the aspect ratio Cl/CD increases 

and hence, the aspect ratio of the cylinder is decided 

here with arbitrarily to be 6. 
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2.6.4 Calculation of The Momentum Coefficient and The 

Power Required for Air supply to The Nozzle 

Using the non-dimensional jet height t(= h/r) the jet 

momentum coefficient C, can be expressed as; 

2.6-1 (1-y) Cm=K1 "t (1+4Y) 

and the power required for the formation of the jet by 

the nozzle can be expressed as; 

2.6-2 K2- t(1 -Y)3/2 PN 
Y( 1 +4y) 

1 
Al P1 

U1 T1 

J04. 

Fig 2.5 Jet Nozzle 

A2 P_P 

U2 T2 

P. 
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In the equations 2.6-1 and 2.6-2 y is defined as; 

2.6-3 P 0.286 
y=ro. 286_ <1 p 

(PJi 

At the exit of the nozzle the velocity of air U2 is 

obtained from the steady flow energy equation, assuming 

adiabatic flow. We get (62) (Fig 2.5), 

U2=\2Cp(T I- T2) 

Where T, and T2 are absolute temperatures of air at 

locations 1 and 2. Cp is the specific heat of the air. 

The mass flow rate through the nozzle rhmay now be 

expressed using the isentropic nozzle efficiency and 

the velocity U2 as follows; 

2.6-4 C 
M_ 

2rýEýp 
ý 

ýl 
-x 

pa ýT ka 21 -77 1 -x) 

Where 

x=exp 1- 

of is nozzle isentropic expansion efficiency. kQ 

is the gas constant for air. 

The momentum flow rate of air jet through the nozzle is 

given by; 

2.6-5 02 = rr U2 
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Eliminating y between the equations 2.6-1 and 2.6-2, PN 

may be expressed as; 

2.6-6 
PK3 

(4C ++ K1" t) 
N=" K1 "t- Cm 

Where K1, K2 and K3 are constants. 

Where the function represented by the equation 2.6-6 

does not have an extremum with respect to "t" and 

within the practical range of values for "t" dPN/dt<0. 

From the equation 2.6-6 can be seen that, as the jet 

height ratio increases the required power for the 

formation of the jet decreases. 

From the equation 2.6-1 for given values of y, as the 

non-dimensional jet height (t) increases the jet 

momentum coefficient increases and hence the lift 

coefficient C1 of the cylinders of the machine 

increases. Therefore ideally, by increasing the 

non-dimensional jet height, more lift can be produced. 

However the magnitude of the jet-height ratio tis 

limited by the practical arrangement for introducing 

the two-dimensional wall-jet. It is also observed that 

the drag coefficient will also increase with greater 

values of cdue to the increased projected area of the 

octagonal cylinder. Equations 2.6-4 2.6-1 and 2.6-6 

are used for calculation of cµ, m and PN in the design 

of the wind machine. 
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2.7 Maximum Possible Power Coefficient of a Wind 

Turbine Generator 

Traditional Betz limit has been identified as the 

maximum possible power coefficient, for a wind machine 

operating under ideal flow conditions. However it is 

known for certain configurations of wind machines 

theoretical analysis shows that the power coefficient 

may exceed the traditional Betz limit of 16/27 (58,59). 

The proposed Vertical Axis Wind Turbine Generator using 

the wall-jet principle differs from the conventional 

wind machines and a reappraisal of the applicability of 

the Betz limit is necessary. The main reason for 

exceeding the Betz limit arises due to the pressure 

recovery in the region between the up-wind and the 

down-wind active elements comprising the wind turbine. 

Therefore a modified Betz-type limit is derived 

accounting for the pressure variation within the stream 

tube, up-stream and down-stream of the actuator disc 

and the associated shapes for the stream tube (42). 

The quantitative effect of the pressure variation and 

the associated shape for the stream tube is expressed 

through the use of pressure variation coefficient K. 

The basic assumptions in the Betz's analysis based on 

the stream tube for an actuator disc, shown in the Fig. 

2.6 may be summarized as follows; 
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(i) Steady, incompressible, inviscid flow 

(ii) Pressures on the surfaces of the stream tube, 

upstream and down-stream of the actuator disc are equal 

to P. although the pressures at inlet and outlet of the 

actuator disc differ from px. 

The assumption (ii) is inconsistent with the steady 

flow energy equation for inviscid flow. This may be 

reconciled only by assuming that the stream tube 

changes in area rather abruptly across the actuator 

disc as shown in the Fig. 2.7 (for K=O). 

2.7.1 Betz-Type Limit for Coefficient of Performance 

Allowing for the Pressure Variation - The Flow Model 

Fig 2.6 shows the one-dimensional steady flow model. 

Mass conservation equation for incompressible fluid 

flow gives; 

2.7-1 
_4, Vý=Ad Vd=AWVW 

The linear momentum equation for inviscid, incompress- 

ible flow for the control volume enclosed by the 

section 1 and 4 and by the stream tube (Fig 2.6) is 

given by; 

2.7-2 F-Ad(p2-A3)-m ("''w-1/ 
-) 

66 



The energy equations for the control volume between the 

sections 1 and 213 and 4 (Fig 2.6) are given by; 

2.7-3 p2-pte [ý2-V2 
00 d 

p2 

2.7-4 p3- p 1ý2 -V d 

p2 

From the equations 2.7-3 and 2.7-4 on substraction, 

2.7-5 P2 1J3 V2_V 2_ 
00 ui 

p2 

The external force F on the control volume appearing in 

the linear momentum equation (2.7-2) is obtained by 

considering the pressure forces on the surface of the 

control volume. We have, 

2.7-6 F=pu(Ad--41)+AD(Aw-Ad) -p. 
(AW-Ai) 

Where the mean pressure p, and p, are assumed to be 

given by; 

2.7-7 Ku(P2-Ao) 
Pu = pý+ 

2 

2.7-8 KD(p3 P-) 

PD=P ±2 
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Assuming that Ku=KD=K, and using the equations (2.7-1), 

(2.7-7) and (2.7-8) with equation (2.7-6), F may be 

expressed as; 

2.7-9 KA Vd Vd 
F=2 

[(P2 
- P3)_V (P2 

-A_)-V 
(A_ 

-A3) 
w 

Substituting for (p2-p. 
'), 

(p3-p. ), (p2-p3) from the equation 

2.7-3 to 2.7-5 and for F from the equation 2.7-9 into 

the equation 2.7-2, we get the relationship between the 

velocity ratios as follows; 

2.7-10 02-O(ao- 1)+ßV3=0 

The relationship between 0 and ip corresponding to the 

traditional Betz's analysis is obtained from the 

equation 2.7-10 by putting the value of K=O. We get 

for this, special case, 

(1+0)=2 

2.7.2 The Coefficient of Performance 

The coefficient of performance of a wind turbine is 

given by; 

2.7-11 (v2-v 
w)/2. 

(pVd 4d) 
Cp (P: ldl "co)/2 
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I(I_ 02) 

The optimum value of C, is then obtained by maximising 

the Cp given by the equation 2.7-11 with the 

constraining relationship between the 0 and ? given by 

the equation 2.7-10. Here the value of K is a 

parameter which is dependent on the shape of the stream 

tube. 

It is readily verified that for K=O the traditional 

Betz limit for C, of 16/27 occurs for 0=1 /3 and ?p= 2/3. 

2.7.3 The Effect of Pressure Variation 

The effect of allowing the pressure to change gradually 

on the surface of the stream tube, which follows from 

the energy equation for steady inviscid flow, may be 

studied by taking different values for Ku and K0. The 

values of Ku and K0 are associated with a corresponding 

shape of the stream tube, up-stream and down-stream of 

the actuator disc, respectively. In the present 

simplified analysis, equation 2.7-10 and 2.7-11 are 

applicable where, Ku=ho=x. The possible shapes of 

stream tubes for values of x ranging from 0 to 1 are 

shown in the Fig 2.7 and Fig 2.8. It may be noted that 

the traditional Betz's analysis corresponding to K=O 

and the associated stream tube has quite an abrupt 
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change in cross-sectional area close to the actuator 

disc. Figs 2.9 and 2.10 show the variation of 0 andCP 

with respect to Pfor values of K ranging from 0 to 

1.0, computed from the equations 2.7-10 and 2.7-11. It 

can be seen in Fig 2.9 that w attains a minimum value, 

min for given K and o- v graphs may be considered to be 

in two parts, Viz; a "lower leg" and an "upper leg" 

corresponding to the lower and the higher values of o 

for given o. The "lower legs" of O-v graphs for given K 

in Fig 2.9 correspond to the "higher legs" of the C, -p 

graph for the same h of Fig 2.10, and vice-versa. From 

the definition of 0and the equation 2.7-1, a higher 

value of osignifies a lower wake area for the stream 

tube. Hence the "lower leg" of the C, -v graphs 

correspond to lower wake areas, which has an obvious 

physical significance. For values of K in the region 

of 0. to 0.18, the lower legs of the Cp -i graphs 

exhibit a maximum. 

The simple assumption of using the arithmetic mean 

value of pressures at stations 112 and 3,4 as the 

constant mean pressure on the stream tube surface 

between the sections 112 and 314 respectively, 

corresponds to K=1-0 However for K=1 .0 it is noted from 

the figures 2.9 and 2.10 ,0=v=1 and c, =0 is the only 

possible solution. 
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Fig 2.11 shows the variation of Pmtnwith respect to K. 

Fig 2.12 shows the variation of Cp , Au, "d , . AJAd with 

respect to K, for the location of maximum value of cP 

on the "lower leg" of the C, -zp graphs. 

The use of stream tube in the Betz's analysis arises 

from the requirement that the wind machine operates in 

the atmosphere, with air intake from atmosphere and air 

exit back to atmosphere. This is in contrast with the 

situation encountered in conventional turbo-machines 

where the handling of the fluid supply and disposal 

does not directly influence the operating parameters of 

the machine. Hence Betz limit is meaningful only for 

the conditions of operation of wind machines and is 

dependent on the shape of the stream tube past the 

actuator disc. 
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CHAPTER 3 



3 THEORYRETICAL ANALYSIS - FLUID FLOW PAST AN OCTAGONAL 

CYLINDER WITH TANGENTIAL WALL-JETS 

3.1 Basic Principle of Lift Generation Due to The 

Modified Boundary Layer 

Introduction of a tangential wall jet at an appropriate 

location on a symmetrically placed bluff body, such as 

an Octagonal cylinder (i. e. cylinder of octagonal 

cross-section) in a free stream, gives rise to a high 

lift force. This is due to the modification of the 

boundary layer flow, influenced by the tangential 

wall-jet. A two-dimensional flow past the bluff body 

is considered as depicted in Fig 3.1. Where the jet 

momentum is adequate, boundary layer separation is 

completely eliminated in the down stream region from 

the point where the jet is introduced upto the down 

stream separation stream line. On the other side of 

the cylinder beyond the separation stream line (Fig 

3.2), where the jet influence is negligible, separation 

occurs over a considerable region towards the trailing 

side. The flow pattern outside the boundary layer 

produced in the above situation approximates to that of 

the two-dimensional non-viscous fluid flow past 

circular cylinder with a superimposed circulation. For 

a such a case, potential flow theory establishes the 
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presence of a high lift force (15). The modification 

in the boundary layer flow for the case of a rotating 

cylinder in a free stream of cross-flow, resulting from 

the reduced difference between the velocities of the 

fluid and the solid wall approximates the boundary 

layer flow with the wall-jet for a non-rotating 

cylinder (62) (Fig 2.1). 

The use of tangential wall-jet for high lift generation 

on an octagonal cylinder, has several advantages over 

the traditional lift generating methods using aerofoil 

sections (See 2.6.2). In view of this, predictions of 

the lift and the drag forces due to this phenomenon 

have been made (2.3). Only a limited information is 

available on the lift and drag coefficients due to the 

tangential wall-jets, all of which are on circular 

cylinders (26,27,28). In order to carry out a 

comprehensive investigation of the boundary layer 

modification on the lift and the drag forces for 

octagonal cylinders, theoretical analysis has been 

carried out, using mathematical models of fluid flow. 

3.2 Mathematical Models for Fluid Flow 

Introduction of end plates to the octagonal cylinder 

considered in the section 2.6.3 has the effect of 

minimizing the flow in the direction parallel to axis 

80 



of cylinder, and hence it is considered sufficient to 

treat the present problem as a two-dimensional flow. 

Initially a flat plate with a tangential wall-jet in a 

free-stream, situated at an angle to the stream was 

considered as an exploratory model to study the nature 

of flow on any one of the sides of the octagon. This 

was a steady flow, over a smooth plate submerged in a 

semi-finite expanse of the fluid entering with a 

uniform velocity and subjected to a tangential wall-jet 

of the same fluid issuing from the nozzle as depicted 

in the Fig 3.3. In this representation as the jet 

leaves the nozzle, due to the velocity discontinuity a 

shear layer develops on the fluid side, and the 

boundary layer develops on the wall-side. Experience 

in developing this theoretical model was useful in 

formulating the two-dimensional mathematical models 

discussed in the sections 3.2.1 and 3.2.2. For the 

present problem, in replacing the three-dimensional 

physical models by two-dimensional models, the 

solutions have become simpler. However, these being 

two-dimensional, it is impossible to represent actual 

three-dimensional fluid flow situation. Therefore two 

possible representations are proposed (Model-1 and 

Model-2). Solutions for both the models out-side the 

boundary layer (see 3.3.1) are evaluated and compared 

(see 3.6.7). 
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3.2.1 Two-dimensional Model With an octagonal 

Cross-section With a Wall-jet and a Location of Air 

Withdrawal (Model-1) 

The first two dimensional steady flow model considered, 

consists of an octagon placed in an uniform stream of 

air and subjected to a tangential wall-jet at an 

appropriate location. The quantity of air which is 

introduced as the wall-jet is drawn inwards at a 

diametrically opposite location on the octagon (Fig 

3.4). The boundary conditions are prescribed according 

to the physical situation of the fluid boundaries 

except those at the point of infinity which are 

simulated by finite coordinates to create the outer 

contour and to facilitate numerical integration 

procedures. The outer contour is defined by the points 

A'(10,10), B'(-10,10), C'(-10, -10), D'(10, -10). (Fig 

3.4). The free stream enters at B'C' and discharges 

through A'D' and on these boundaries stream function 

changes linearly with distance measured along the 

boundaries. It is assumed that there is no flow across 

boundaries A'B', C'D'. 

On the inner contour C2, at the location of the jet 

entry, AB, the velocity profile is represented by the 

1/7 th power law (see Appendix 3B). The stream 

function along the contour C2 from point B to F is a 
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constant and equal to the stream function at B, since 

there is no flow across this part of the contour. The 

same is true for points G to A and the stream function 

is having a constant value equal to that at point A. 

At the location of air withdrawal (F to G) the stream 

function is assumed to vary linearly over the distance 

F to G. The zero slip stream line connects the outer 

contour Cl with the inner contour C2 at point S. 

Therefore from G to A the stream function has a zero 

value. The contours C1 and C2 are divided into 

segments (Fig 3.7) as detailed in the Table 3-1. 

Table 3-1 

ide A-B B-C C-D D-E E-F F-G G-H 

Number 
of 6 10 10 10 10 6 10 

egments 

ide H-I I-J J-A A-B B-C C-D D-A 

Number 
of 10 10 10 4 8 4 8 

Segments 
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3.2.2 Two-dimensional Model With an octagonal Cross 

Section With a Wall-jet (Model-2) 

The second two-dimensional steady flow model considered 

consists of an octagon placed in an uniform stream of 

air and subjected to a tangential wall-jet at an 

appropriate location. The quantity of air which is 

introduced as the wall-jet is drawn inwards from the 

axial direction normal to the plane of two-dimensional 

flow. In order to satisfy the continuity equation in 

two-dimensional flow arrangement, a "6s" thickness 

strip which connects the inner contour with the outer 

contour is introduced (Fig 3.5). The thickness of the 

strip should be as small as possible to minimize the 

influence of the strip on the flow pattern around the 

octagon cylinder and the jet, and in the present case 

it is selected to have a non-dimensional value of 0.01 

and located at the upstream stagnation point. This 

means the strip is about 1/100 in width compared with 

the side of the octagon. Further the shape of the 

strip may be adjusted to follow closely the slip stream 

line through the stagnation point, by a trial and error 

procedure. 
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The method of iteration used to locate the upstream 

stagnation point, where the strip meets the inner 

contour C2 is as follows. Initially an arbitrary strip 

(1,21,20,19,11,12,13,14) (Fig 3.6) on the down stream 

side is selected. The two-dimensional flow field is 

now defined by a single contour enclosing a region. 

This can be seen in the Fig 3.6 following the point 

numbering from 1 to 21. This flow field is called the 

"right Hand" flow system (Model-2R). The two-dimen- 

sioal flow system in the Fig 3.5 will be called as the 

"Left Hand" flow system (Model-2L) to distinguish the 

two. The contour of the Right Hand and Left Hand flow 

systems are divided into segments as indicated in the 
V. 

Table 3-2. 

Fig 3.7 Segment and Nodal Points on an Octagonal Side 
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Table 3-2 

Side Model 1-2 2-3 3-4 4-5 5-6 6-7 7-8 

umber 2R 10 10 10 
of n 10 10 10 
egmentg 2L * 6 10 10 

Side odel 8-9 9-10 10-11 11-12 12-13 13-14 14-15 

Number 2R 6 10 
of 10-n 1 1 1 4 

Segments 2L 10 10 

Side Model 15-16 16-17 17-18 18-19 19-20 20-21 21-1 

Number 2R 
of 4 8 .4 4 1 1 1 

egmentS 2L 

* Number of segments are decided by the Computer 

programme PART4N 

In the Model-2R (Fig 3.6) as there is no flow across 

the contour joining the points 19,20,21,1,2,3,4, 

5,6,7,8 the stream function 'P has a constant value 

which is taken to be zero. On the jet (from points 8 

to 9) the stream function is determined by considering 

the velocity profile for the jet in the form of 1/7 th 

power law (see Appendix 3B). Thus the stream function 

on the points 9,10 and 10,11 are equal to the stream 
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function at point 9 (=-K). On the slip stream defined 

by the points 11,12,13,14 the stream function is 

given by 0=-K. From points 14 to 15 the stream 

function changes linearly from -K to +10. On the side 

joining points 15 and 16 the stream function is equal 

to +10 and the stream function changes linearly with 

the Y-coordinate and attains a value of -10 at nodal 

point 17. From points 17 to 18 the stream function 

remains a constant. The stream function changes 

linearly from points 18 to 19 where it attains the zero 

value at point 19. The above boundary values of the 

stream function are utilized in formulating the 

boundary conditions as discussed in the section 3.5.1. 

3.3.1 Boundary Layer Flow and the Main Flow 

The two-dimensional flow field surrounding the octagon 

is determined by the traditional method of dividing it 

into a boundary layer flow and an ideal fluid flow 

outside the boundary layer. The latter flow is 

referred to here as the "main flow". Boundary layer 

flow is determined by the momentum integral equation 

(3.7-1). The main flow, i. e., the flow outside the 

boundary layer is assumed to be incompressible and 

non-viscous so that this part of the flow may be 

determined by the potential flow theory (15). 
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3.3.2 Differential Equations for Stream Function 

The partial differential equations for velocity and 

pressure are obtained on the basis of the momentum and 

the mass conservation equations for the incompressible 

viscous laminar fluid flow around the octagon 

cross-section. These are the traditional the 

Navier-Stokes equations, and can be expressed in the 

non-dimensional form; 

3.3-1 au au aP 11 a2U a2U Uax+V aY ax+Ocw axe+ay2 

av av aP a2v a2v Uax+vaY aY+OCW axe+aY2 

aUay 
ax by 

For the assumed potential flow outside the boundary 

layer, where µ=o, the equations (3.3-1) on introducing 

the two-dimensional stream function 0 lead to Laplace's 

equation. For 0; 

3.3-2 
o2 a2o+ a2_ 

_o ax ay 

The transformation of the Navier-Stoks equation to the 

form of Laplace's equation for omakes easier to obtain 
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a solution to the main flow of the present problem. 

However because of the assumption of potential flow in 

the transformation, the equation 3.3-2 does not 

represent a flow with a circulation. Therefore the 

solutions obtained by using the equation 3.3-2, are to 

be corrected to account for the circulation using the 

wind-tunnel data as shown in the section 3.6.8. 

3.4.1 Boundary Conditions for the Model-1 

For the fluid flow model-1 (3.2.1) the boundary 

conditions for the Laplace's equation along the 

contours Cl and C2 are specified by considering a 

uniform wind velocity across sides B'C' (Fig 3.4). The 

stream function at the mid-point of B'C' is arbitrarily 

taken to be zero. By considering the stream line 

through the stagnation point S, and the mid-point of 

B'C', the stream function for the point A is found to 

be zero. Determination of the boundary conditions on 

the contour C2 are discussed in the Appendix 3B. These 

give expressions for the stream function, in 

non-dimensional form (see Appendix 3A) along the 

contours Cl and C2 and are given by; 
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along GH, HI, IJ, JA 0=p 

along BC, CD, DE, EF h 8/7 
_ -2K 1 K2 

2l 

along AB from A to mid-point AB 0=- 2K1K2Z 8" 

along AB, from mid-point of AB to B 

= -2K 1 K2 
)8/7 

+K1 K2Z8/7 
21 

along FG xG-x 
OR 

(XG-XF 

along CID' c5 =- 10. 

along A'B' (p =+10. 

along AID' = 

along B'C' = 

Where 

g Cu 
K1=7 

ZR/h 

K2= 
8(21 1/7 
-- 7h 

Z=(2lJ-\ýJ 

3.3-3 
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3.4.2 Approximations in Prescribing the Boundary 

Conditions on the Contours for the Model-1 

In prescribing the boundary conditions on the contours 

C1 and C2, the following approximations have been made; 

a) Along AB (Fig 3.4) the jet velocity has a profile 

prescribed by the 1/7 power law (Equation 3B-1) and 

along FG (Fig 3.4) the air intake has a uniform 

velocity profile. 

b) On the sides A'B' and C'D' the velocity of air at 

all points is normal to the sides and has a constant 

value of W. 

c) The solution obtained with the infinite size of the 

outer contour Cl, being sufficiently large compared to 

the dimensions of the inner contour C2, will be close 

to the solution for the case of finite free stream 

across the cylinder. 

In using the NAG DO3EAF (44) routine on the contours Cl 

and C2 the following approximations have also been 

made. 

The boundaries of the contours Cl and C2 are divided 

into n small intervals, in such a way that any corners 

or abrupt changes in the form of the boundary occur at 
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points of the sub-divisions. The stream function, 0. 

and its normal derivative to the contour, (acbian), are 

within these intervals and prescribed at the mid-points 

of the intervals which are called the nodal points of 

the intervals. If the above values are denoted by 0, 

and Of ,i=1,2 ,3...... n, then half of them is prescribed as 

boundary conditions and the other half is evaluated in 

the mathematical procedure. Thus when 0 is prescribed 

at the appropriate nodal point of the i th interval of 

the contour C1 or the contour C2,3013n, is evaluated, 

at this "nodal" point for this interval (44). 

3.4.3 Computation of the Coordinates of Nodal Points 

and Evaluation of the Stream Function at the Nodal 

Points for the Model-1 

The NAG DO3EAF (43) routine requires the coordinates of 

segments, the boundary values (the stream function) on 

nodal points and the coordinates of the nodal points as 

main parameters in obtaining the solution for the "Main 

Flow". Here the nodal points are taken to be the 

mid-points of the segments. For a given jet angle e 

and non-dimensional jet height h/l, at all the 

coordinates A, B, C, D, E, F, G, H, I, J of the 

octagonal contour (Fig 3.4) are determined. The 

coordinates of the end points of the segments and the 
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coordinates of the nodal points are determined 

according to the number of segments specified to each 

individual octagonal side as shown in the Table 3-1. 

Then at these nodal points the value of the stream 

functions are calculated using the boundary conditions 

on the contours given in the section 3.4.1. 

The coordinates of the end points of the At, B', C', D' 

are specified (see 3.2.1) for the outer finite contour 

C1. Similar to the procedure used for the contour C2 

the coordinates of the end points of the segments, the 

coordinates of the nodal points and the stream 

functions at nodal points are determined according to 

the segment specification and the boundary conditions 

which are given in the Table 3-1 and the section 3.4.1, 

respectively (Fig 3.7). 

FORTRAN programme PART2 and PART3 are developed to 

compute the required input data for the NAG DO3EAF 

routine and are given in the Appendix 5F. 

On the contour C2 the non-dimensional stream function 

may be defined in terms of the jet momentum coefficient 

C,, as shown in the Appendix 3B. The Jet Momentum 

Coefficient c, 1, non-dimensional jet height h/ I and the 

jet angle 0 are been used as main in put parameters for 

the FORTRAN programme PART3. 
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On the outer contour Cl stream function is expressed in 

terms of the free stream velocity w as shown in the 

Appendix 3B and leads to specified non-dimensional 

stream function -P on this counter. 

3.5.1 Computation of the Coordinates of the Nodal 

Points and Evaluation of the Stream Function at the 

Nodal Points for the Model-2 

The two-dimensional fluid flow representation consid- 

ered for the Model-2 requires, a bs strip at the 

upstream stagnation point s2Lfor the left hand flow 

system (See 3.2.2 and Fig 3.5). The location of the S2L 

and the shape of the strip is to be determined. In 

order to determine the S2, initially the flow model 

Model-2R (see 3.2.2 and Fig 3.6) is used. For this 

Model-2R a similar bs strip at the location S1, has to 

be specified. Therefore a down stream stagnation point 

s, R is specified arbitrarily. Considering the slip 

velocities around the inner contour C2 the upstream 

stagnation point S21is determined. This has been done 

according to the procedure given below; 

Stage 1. For the right hand side contour (Fig 3.6) the 

down stream stagnation point S, Rhas been taken to be 

the nearest nodal point to the point of intersection 

100 



between the octagonal surface and a radial line through 

the centre of the octagon which measures an angle of ( 

with the radial line corresponding to the 

location of the jet. 

The angle 6+22.5° is chosen here as this will locate the 

S2Rpoint approximately close to the true down-stream 

stagnation point for the jet positions 0 ranging from 

35° to 55°, considered in the present work. Using the bs 

strip as described above with the Model-2R, the 

velocities around the contour C2 are computed. The 

upstream stagnation point S ,, is then determined. 

Stage 2. For the second stage of the procedure at the 

upstream stagnation point 52L, the bs strip is intro- 

duced. Now by considering the slip stream velocities 

around the inner contour C2 the true down stream 

stagnation point is determined (Fig 3.5 and Fig 3.8). 

For the introduction of the bs strip mentioned in 

Stages 1 and 2 the following procedure has been used; 

On one of the sides of the bs strip there are the three 

straight lines connecting the points 1,21,20,19. In 

the free stream flow direction these points are taken 

to be equal distant to each other. At points where the 

perpendicular lines to sides connecting points 15,18 
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and 2,10 crosses the 1/3 of the measured in the free 

stream direction and distances are taken as the points 

20 and 21 respectively. The second side of the bs 

strip are the three straight lines connecting the 

points 11,12,13,14 parallel to the lines connecting 

points 1,21,20,19 with the distance of Os. 

Once the location of the SZLis fixed the geometry of 

the Model-2L is finalised and the necessary input 

parameters for the NAG D03EAF are obtained as detailed 

in the section 3.4.3. 

Stagnation points S, , S, the actual downstream and 

upstream stagnation points, the coordinates of the ends 

of the segments, the coordinates of the nodal points 

(Fig 3.5) and the magnitudes of the stream functions at 

nodal points are determined by the FORTRAN programme 

PART4N (see Appendix 5A). Jet momentum coefficient C,, 

angle 0 between the jet axis and the free stream 

velocity, free stream velocity k/. and the non-dimen- 

sional jet height hilare the main input parameters, 

used in this computer programme. 
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3.5.2 Approximations Prescribing the Boundary Condi- 

tions on the Contours, for the Model-2 

In addition to the approximations used in the section 

3.4.2, for the model-2 the following assumptions have 

been made; 

(i) The strip consisting of points 1,21,20,19 and 

11,12,13 14 , makes negligible influence on the 

position of the upstream stagnation point s, Ri for the 

"right hand flow system" (Fig 3.6). Hence, the 

upstream stagnation point s, Revaluated with the assumed 

point for the s2R is used when the flow changes over to 

the "left hand flow system" (Fig 3.5). 

(ii) The upstream stagnation point S21required in 

specifying the "left hand flow system", (Model-2L, Fig 

3.5) which finally used for the solution, is determined 

using the "right hand flow system" (Model-2R,. Fig 3.6). 

In specifying the downstream stagnation point SIR for 

the latter case, its arbitrary location has negligible 

influence on the position of S2L. 

(iii) For both the flow systems ("Right Hand" and 

"Left Hand") line connecting the points 1,21,20,19 

represents the zero slip stream line. 
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(iv) The 6s strip is sufficiently narrow that the main 

flow field, especially in the vicinity of the octagon, 

is approximately same as the flow field existing the 

actual three-dimensional situation present where the 

jet air is introduced in the axial direction. 

3.6.1 Use of the NAG D03EAF Routine for Slip Stream 

Velocities and Stream Functions 

NAG scientific routine D03EAF (43) solves Laplace's 

equation (3.3-2) in two dimensions for an arbitrary 

domain bounded by internally or externally by one or 

more closed contours, given the value of either the 

unknown function or its normal derivative (into the 

domain) at each point of the boundary (44,43). This 

routine uses an integral method, based upon Green's 

theorem (44,45,46), which yields the solution, 0, at 

any point within the domain, in terms of (acbian) and 45 

values along the boundary. 

The solution is obtained in two stages. The first 

stage is executed only once to determine the 

complementary boundary values, i. e. normal derivative 

()cb/an) where the stream function o is specified or 

vice-versa. The second stage is executed repeatedly as 

many times as the number of points at which the 
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solution is required. The second stage utilises the 

computed values obtained in the first stage and the 

coordinates of the points where the solution is 

required, as input data. This involves solving a set 

of simultaneous linear algebraic equations which is 

achieved by means of auxiliary routines F01BK and 

F04UAF. 

3.6.2 Determination of the Stream Function Using the 

NAG D03EAF Routine 

In the original NAG D03EAF (43) package supplied, the 

two stages of the routine are computed in a single 

computer programme. This programme was modified, so 

that the two stages may be executed independently in 

applying the package for obtaining the solution to the 

main flow for the Model-1 and Model-2. This was done 

to achieve maximum possible accuracy with in the 

allowable maximum computer execution time. This arises 

from the fact that the accuracy of the solution depends 

on the number of nodal points used in the specifying 

the contours. This is discussed further in the next 

section 3.6.3. The separation of the programme into 

independent routines also provides the flexibility to 

use the intermediate results of the first stage, at a 

subsequent later time for obtaining solutions, to 
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evaluate the surface shear-stress of the solid 

boundary, and the values of the lift and the drag 

coefficients due to the boundary layer modification on 

the octagonal cylinder by wall-jet (3.8.7). 

3.6.3 Accuracy of the NAG D03EAF and Selection of the 

Segment Points 

The accuracy of the computed solution depends upon how 

closely stream function 0, is approximated by 

constants in each interval of the boundary, and upon 

how well the boundary contours, which may be curved, 

are represented by straight sided polygons whose 

vertices are at the selected points of the contours. 

Consequently, the accuracy increases as the boundary is 

sub-divided into smaller and smaller intervals. 

Alternatively, since the point of maximum error always 

lies on the boundary of the domain, an estimate of the 

error over analytical solution has been obtained by 

computing the stream function 0for the simulated 

mathematical model consisting of a circular cylinder 

under cross-flow without a tangential wall-jet. These 

preliminary investigations show the sensitivity of the 

solution to the number of segments on the inner contour 

C2 is higher than the number of segments on the outer 

contour C1. It was also established that the number of 
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segments required on the outer contour Cl, can be 

decreased to some extent while increasing the size of 

the outer contour Cl, represented by the modelled 

infinity, in order to achieve the same accuracy of the 

solution. Based on these investigations on the outer 

contour C1,24 nodal points (24 segments) and on the 

inner contour C2,92 nodal points (92 segments) have 

bee selected. For the modelled infinity the outer 

contour size of 20 X 20 non-dimensional lengths has 

been selected. Having selected these contour specifi- 

cations, the solution using NAG D03EAF routine for a 

circular cylinder showed only an error of 0.02 %. The 

detailed computed results are presented in the Appendix 

3K. 

3.6.4 Slip Stream Velocity on the Octagonal Cylinder 

With a Tangential Wall-jet 

The calculated values of the normal derivatives of the 

stream function (, )O/an) at nodal points represent the 

slip stream velocities on the octagonal cylinder (see 

3.6.2) (see Appendix 3C). A typical sample of these 

computed velocities are shown in the Appendix 3L. 

These results indicate that the velocity variation with 

respect to the distance measured along the contour of 
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the octagon, has a wavy nature with an extremum value 

close to the vertex. This variation of the slip 

velocity will be referred to here as "Oscillatory 

nature" for slip velocity. Causes for this behaviour 

may be explained by two hypothesises; 

1. The mathematical /computational limitations of the 

NAG D03EAF routine in predicting the slip stream 

velocities at the vertices of the octagonal contour C2, 

introduce this spurious result. 

2. The true behaviour of the flow patterns around the 

vertices of the octagonal contour C2 has the 

oscillatory nature. 

In order to investigate the above the NAG D03EAF 

routine has been used to analyse the flow around simple 

two-dimensional solid boundaries. Here (i) A rectangu- 

lar cross-section , (ii) A triangular cross-section in 

a free stream has been considered (Fig 3.9). 

The rectangular cross section which was used as the 

model was placed in the free stream at an angle of 

attack of 90°. The computed flow field around the 

rectangular cross-section showed an oscillatory slip 

velocity around end points of the sides of the contour 

(Fig 3.9a). However when the model was rotated around 

its axis to give a smaller angle of attack, the 
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oscillatory nature for the slip velocity at the 

vertices of the rectangular cross-section disappeared. 

Further a similar investigation with the triangular 

cross-section showed results of a comparable nature. 

This clearly establishes the cause for the oscillatory 

nature of the slip stream velocities at corner points 

of the contour C2. Hence the second of the two 

hypothesises used to explain the behaviour of the flow 

around the octagonal cylinder can be identified as the 

sole reason for such a behaviour of the slip stream 

velocities. 

3.6.5 Computer Time for Determining the Stream Function 

of the "Main Flow" 

The computer time required for the stage one of the NAG 

D03EAF which is executed only once for a particular 

problem, is proportional to the square of the number of 

segments N2. On the other hand the time taken for the 

execution of the stage two of the NAG D03EAF routine, 

to obtain the stream function at a given point of the 

flow field is proportional to the number of segments 

(N). By separating the two stages of the original NAG 

routine into two independent routines it is possible to 

use the maximum number of segments for the allowable 

computer time for a single job run, resulting in a high 
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accuracy. The number of segments for both the model-1 

and model-2 have been chosen to be 116 which represents 

a reasonable compromise between the computer time and 

of the accuracy of the solution which was discussed in 

the section 3.6.3. 

3.6.6 Stream Lines Around the Octagonal Cylinder 

The solution obtained for the "Main Flow" is used to 

determine the stream lines around the octagonal 

cylinder in the free stream of air, with the tangential 

wall-jet. The second stage of the NAG D03EAF routine 

is used to evaluate the stream function at various 

points inside the domain bounded by the contour Cl and 

C2. In the case of Model-1 points lying on lines 

perpendicular to the octagonal sides through nodal 

points have been used to create a grid around contour 

C2 (Fig 3.10). On each of these perpendicular lines, 

26 points at intervals of 0.01,0.02,0.03,0.04,0.05, 

0.06,0.07,0.08,0.09,0.1,0.12,0.14,0.16,0.18, 

0.20,0.22,0.24,0.26,0.28,0.30,0.32,0.34,0.36, 

0.38,0.40, have been selected. This forms a total of 

2080 (26X80) grid points. The coordinates and the 

corresponding stream functions at these points are used 

to determine the stream lines around the octagonal 

cylinder. This has been done by finding the 
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coordinates of points on radial lines, at which the 

stream function attains a specified value of stream 

function, Opreset. In this procedure all the 2080 points 

on the grid are scanned for every o preset value. On each 

of the radial lines ' max and the O min values are found. 

If the 'Ppreset value is within the range of the 

omax and Omin the coordinates of the points where the 

stream function has the preset value, on the radial line 

are interpolated. All such coordinates for a given 

Opreset value constitute a stream line. If a stream line 

has the shape, shown by ABCDEFGH in the Fig 

3.10, the section ABC, section DE and section EFG 

are treated as separate stream lines with the same 

Opreset value for the purpose of computer plotting. The 

scanning process is always started from the first 

radial line (radial line which goes through the first 

nodal point of the side connecting the points 1 and 2) 

(Fig 3.10) and carried-out in the clock-wise direction. 

In scanning all the grid points if the continuity of 

the stream function is broken, further points predicted 

having the same Opreset value are treated as another 

stream line with the same opreset value i. e. stream line 

PQR and stream line KLM with 4=K2. The maximum 

possible number of points on any one radial line line 

for a given preset value is unlikely to be more than 4 

and this has been incorporated in the computer 

programme. The FORTRAN computer programme GRID1 
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developed to prepare the coordinates of the stream 

lines in the above mentioned manner is given in the 

Appendix 5E. 

The coordinates for the stream lines generated are used 

with a simple computer programme which utilises with 

the GHOST-80 soft-ware routine to obtain computer 

plotted stream lines. By treating the stream lines 

with same opreset values, with special conditions 

attached as mentioned above, enables to plot the stream 

lines with shapes given in the Fig 3.10 conveniently. 

Stream lines obtained for typical flow conditions with 

and without the circulation are given in the section 

5.1 

The grid points lie on perpendicular lines to the 

octagonal sides of in the Model-1 (see 3.6.1 1 and 

3.6.5) and resulting in large undetermined areas 

between any two octagonal sides. Hence the stream 

lines, within these undetermined areas of the main flow 

have to be approximated by smooth lines. Therefore in 

developing the Model-2 these perpendicular lines have 

been replaced by radial lines, from the centre of the 

octagonal cylinder and through the nodal points as 

shown in the Fig 3.10, for the purpose of generating 

the grid points. 
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3.6.7 Comparison of the Fluid Flow Model-1 and Model-2 

For the Model-1 on the inner contour C2 the continuity 

equation for the two-dimensional model has been 

satisfied by introducing an air intake point on the 

contour C2. This has been chosen at a diametrically 

opposite location on the two-dimensional model to 

minimize the influence of the imposed air intake on the 

tangential wall-jet. For the Model-1 the stream lines 

of the "Main Flow", around the octagonal cross-section, 

for different typical flow conditions are computed and 

are shown in Fig 3.11 to Fig 3.15. As the momentum 

coefficient increases, these figures clearly show, the 

influence of the air intake on the flow conditions 

around the octagonal cylinder. This is particularly 

strong towards the bottom half of the flow model. 

Therefore if the Model-1 is to be used for the 

prediction of the lift generation due to the boundary 

layer modification around the octagonal cylinder, a 

correction has to be made to account for the influence 

of the air intake, on the over-all pressure 

distribution, 

In the Model-2, to satisfy the continuity equation for 

the two-dimensional model, the small 11 ös' strip has 

been introduced (see 3.2.2) (Fig 3.5). To minimize the 

influence of the "ös' strip, on the flow field around 
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the octagonal cylinder, upstream stagnation point 321 

where the strip is introduced has been computed. Using 

the Model-2 stream lines plotted around the octagonal 

cylinder for the same typical flow conditions are given 

in the 5.1. These representations involving different 

momentum coefficients, hit and 0 values show consider- 

able improvement of the flow field. This conclusion is 

arrived at by the comparison of the stream lines for 

the case of a rotating cylinder in a cross-flow (15). 

There is a considerable similarity between the stream 

lines of the Model-2 and the above. This also shows 

the negligible influence on the "Main Flow" stream 

lines due to the selected location of the bs strip at 

the up-stream stagnation point. It is also possible to 

eliminate this influence, totally by the method of 

iteration in determining the the up-stream and 

down-stream stagnation points and by adjusting the 

shape of the bs strip to match with the zero slip 

stream line. 

Hence, for further investigations Model-2 has been 

selected, as it gives a more accurate representation of 

the flow field 
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3.6.8 

tion 

Circulation Due to the Boundary Layer Modifica- 

The flow field determined by employing the NAG D03EAF 

(43) routine does not include the circulation created 

by the boundary layer modification due to the 

tangential wall-jet. This is due to the assumptions 

made in simplifying the the Navier-Stokes equations 

(3.3-1) in obtaining the form of Laplace's equation for 

stream function (3.3-2) (See section 3.3.2). Therefore 

the circulation estimated from the wind tunnel tests 

have been used to correct the results obtained by the 

NAG routines. For the free vortex flow in two-dimen- 

sions along the closed path line of radius r the 

circulation r is given by (47); 

3.6-1 T= 2I7 rVW 

And the relationship between the stream function and 

the two velocity components for a free vortex flow is 

given by (47); 

3.6-2 1, d0=Vr=O 

r öB 

and 

3.6-3 

3r w2 17 r 
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By integrating these equation the stream function 0 is 

obtained as; 

0_-r (ln r+ Constant) 
2rr 

Where, r=R0 0=0o 

00 =-r ln Ro + Constant) 
217 

or 

3.6-4 r C0 
- o0J l_ 

2T 17 - 
In 

Ro 

Where r> Ro 

Therefore 

3.6-5 rn-d (x2+Y2) 
(Pr n-d - 417 

In 
Rol 1)2 

If the computed value of the stream function in the 

section 3.6.2 is q5, the corrected value of the stream 

function c is given by the super-position principle 

as; 

(Pc=(prn-d+(P 

For the considered octagonal cross-section, Ro=R, 

124 



Ro_R 1 
1 2sin(22.5)° 

and 

(x2 ± Y2)ý, 
R2 
1 

Therefore the T, obtained from the wind tunnel tests 

(see 4.3.2) have been used to modify the stream 

function as shown by the equation 3.6-5. The stream 

lines around the octagonal cross-section are obtained 

for the main flow after correcting for the circulation, 

for typical cases and are given in the section 5.1. 

Slip velocities for the boundary layer flow were 

obtained by the first stage of the NAG D03EAF routine 

(see 3.6.2) which does not take to account the 

circulation. These slip velocities are also to be 

corrected for the circulation. If the stream function 

corrected for the circulation is -P,, the slip velocity 

corrected for the circulation can be given by; 

VWC 
dr 

The lift force L for the octagonal cylinder can now be 

expressed using the Kutta-Joukowski theorem (47); 
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3.6-6 L=pWTH 

Therefore the lift coefficient is given by; 

CL= pWFH 
0.5pW2(2RH) 

and hence the lift coefficient may be given in the 

alternative form; 

3.6-7 l'() CL 
- 

rn-d 
R 

3.7 Boundary Layer Flow 

Pressure distribution on the surface of the octagonal 

cylinder obtained from the mathematical fluid flow 

model for the "Main flow" (See 3.2) and the surface 

shear forces are required in calculating the 

theoretical values of the lift and the drag 

coefficients (see 3.8.7). In order to calculate the 

surface shear forces the boundary layer flow around the 

octagonal cylinder is considered. The pressure 

distribution and the slip velocities at the octagonal 

surface obtained from the "Main flow" are used to 

stipulate the boundary conditions. This ensures that 

the velocity on the edge of the boundary layer 
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automatically matches with the slip velocities of the 

"Main flow" at the octagon surface (Fig 3.16). In 

determining the laminar boundary layer thickness and 

the wall shear-stress Prandtl's boundary layer 

equations are used (15). In integration of the above 

equations, with the required boundary conditions on the 

boundary layer around the octagonal cylinder is 

sub-divided into Region-l, Region-2 and Region-3. 

These are; 

Region-1 : from the point 1 to the point 5, 

Region-2 : from the point 11 to the point S, 

Region-3 : from point the point 6 to the point S 

as depicted in the Fig 3.5. 

For the general conditions considered in this 

investigation, from the stagnation point s,, a laminar 

layer develops in both the Region-1 and Region-2 and 

farther down-stream, changes into a "turbulent layer". 

For the Regions 1 and 2 considered (Fig 3.5) the 

laminar boundary layer develops with initial conditions 

stated in the section 3.7.5. It is usual to make 

simplifying assumptions in setting up the boundary 

layer equations, for example in the Pohihausen's method 

(48), the pressure is assumed to be a constant, in the 

direction at right angles to the boundary layer, 

whereas along the wall the pressure is regarded as 

being "impressed" by the external flow so that it 

becomes a given function. The resulting omission of 
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the equation of motion perpendicular to the direction 

of flow, was interpreted by Pohlhausen, in physical 

terms, as that the fluid particle in the boundary layer 

has zero mass, and suffers no frictional drag as far as 

its motion in the transverse direction is concerned. 

With such fundamental changes introduced into the 

equations of motion as in this case considered it is 

anticipated that their solutions will exhibit certain 

mathematical singularities and that of a good agreement 

between observed and calculated phenomenon can not be 

expected (15). Some of these traditional assumptions 

may be avoided depending on the physical situation of 

the fluid flow problem as shown in the Appendix 3F. 

For the turbulent boundary layer a revised version of 

the Blasius's profile has been employed (see 3.7.9). 

The Momentum Integral equation (46) is used in solving 

the turbulent boundary layer. For the Regions 1 and 2 

the transition point has been found by the laminar 

boundary layer separation and for the Region 3 no 

laminar layer is anticipated. For the Region-3 the 

turbulent boundary layer is more compatible with a such 

a positive pressure gradient at the rear surface of the 

cylinder than the laminar layer and consequently 

separation sets in further down stream. As a result of 
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the shifting of the separation point, connected with 

the turbulent boundary layer, the wake diminishes and 

shows a reduction in the pressure drag. 

3.7.1 Governing Equations for The Laminar Boundary 

Layer 

As shown by many authors in the past, strict and 

complete prescriptive equations for the laminar 

boundary layer are considerably complicated 

(15,17,20,49), hence are difficult to be used in 

obtaining required solution. 

Restricting the attention to the two-dimensional 

laminar flow Prandtl's boundary layer equations are 

derived from the Navier-Stokes equations (15); 

au au 1äP 2u 

uäx+ý' ay pdx +va Y2 

dU a2u 
+v 2 dx ay 

Further, assuming the main flow, outside the boundary 

layer to be inviscid, and considering the limiting 

conditions of the free stream y- ý-, u-O, the above 

equation reduces to; 
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1dPdu 

pdx dx 

3.7-1 du au du 
uöx+v dy -Udx 

a2y 

-v äx2 

by integrating both sides of the equation 3.7-1 with 

respect to y from Y=O to y=6; 

3.7-2 I6 au au dy (au au 

o 
uax+vaY y -Udx ýy-v ä6y -v ä o 

The continuity equation may be integrated to give; 

v=-y dy Joy ax 

and therefore, the equation 3.7-1 becomes; 

3.7-3 6 au au y au aU vu au 
u-- y-U dy=- R±v 

o ax ay o ax ax 6 ay 6 

By integrating the second term of 3.7-3; 

3.7-4 6 au you bau 6 au 
" dy =u dy - udy 

0 ax o ay o ax o ax 
f 

and hence the integral equation 3.7-3 becomes, 

3.7-5 6 au au aU 
_ _vU 

(3u 

0 
2uax-Uax-Uax dy 6 R+v 

yb 
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3.7-6 6d dU °° vU a 

dx[u(U-u)]dy+dx o 
(U-u)dy= 

b 
R-v v 

(ay)ö 

o 

Now since, 

b 3.7-7 

0 
u(U - u)dy = U20 

and 

3.7-8 

06 
(U - u)dy = Uö= 

Finally the momentum integral equation becomes; 

3.7-9 cl (U20) +6*UdU _ 
v-R 

_v 
au 

dx dx 6 ay b 

at point M (Fig 3.16) 

3.7-10 du 
0 

(ay)Y=6 

Therefore, 

3.7-11 16 au au aU vu au 

o axay b 
R(ay)6 

and the boundary conditions are; 
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3.7-12 

3.7.2 

y=0u=0 

do du. U 
y=b dn d-ý"R y 

Basic Assumptions Made for The Laminar Flow 

In deriving the momentum integral equation for the 

laminar boundary layer it is assumed that the flow into 

the boundary layer is due to the shear stress r on the 

surface. It is also assumed that the velocity profiles 

along the surfaces at different locations are similar, 

and hence may represent by the equation 3.7-13 in terms 

of the non-dimensional r7, 

3.7-13 u 
u, 0 

Where, f(r) is only a function of ri and does not contain 

any additional free parameters. At the wall f(rj) limit -) O 

and for 77 limit - -, it tends to 1. It is also assumed 

that the influence of the wall-jet on ri is negligible. 

Therefore the proposed 4th degree polynomial curve is 

fitted to the main flow at the edge of the boundary 

layer. In using the approximate method, the edge of 

the boundary layer is taken to be at a finite distance 

from the surface b. 
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Fig 3.16 Boundary Layer Flow and 
The Main Flow 
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3.7.3 Boundary Layer Flow in the Presence of Pressure 

Gradient 

Momentum Integral equation (3.7-2) was extended by 

Pohlhausen to cover the case of two-dimensional laminar 

flow with pressure gradient (15). Pohlhausen's method 

is modified to estimate the influence of neglecting the 

shear-stress at the edge of the boundary layer which 

arises due to the modification of velocity profile in 

the presence of a wall-jet. A coordinate system is 

chosen in which "x" denotes the distance measured along 

the surface and "y" denotes the normal distance from 

the surface. 

The velocity profile within the boundary layer is 

assumed to be a fourth-degree polynomial in 77; 

3.7-14 

Where; 

U= 
f(ij)= AO+A177+A27I2+A3%3+A474 

Y 
17 

) 

6 

b- boundary layer thickness 

u° velocity at the edge of the boundary layer 

obtained from the "Main Flow" 
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The various terms appearing in the alternative form of 

the Momentum Integral equation 3.7-9 are now derived 

based on the assumed form of the above velocity 

profile. 

The momentum thickness 0, using the above equation for 

the velocity profile and equation 3.7-7, may now be 

expressed in the form; 

3.7-15 8 

os 
f( )[ 1- f(7l )]d77 

and similarly from equations 3.7-8 and 3.7-14, the 

displacement thickness b'may be written as; 

3.7-16 b' 

ob 6[ 
1- f (77)]do 

Further the slopes of the velocity profile at the wall 

and at the edge of the boundary layer may be expressed 

in terms of the function f(77); 

3.7-17 du Ud 
f( 77)n=o ö d77 aYo 

3.7-18 au 
_Ud f ay b6 är)ýý)n=' 
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The coefficients of the polynomial defining aiu, 

equation 3.7-14 will vary with (dpldx). These are 

evaluated using the following boundary conditions for 

the velocity profile; 

at y-b 

3.7-19 (u)b =U 

ýdul 
_U R 

dYýa b 

a2u 

=0 ay2 
6 

at y=0 

3.7-20 a2u U dU 
u=0 =--" ay2 

0v 
dx 

It is assumed that, at the edge of the boundary layer, 

velocity profile is represented by a smooth curve 

without any extremum. (Fig 3.16) 

Using the equation (3.7-9) and the Bernoulli's energy 

equation applied to the main flow out side the boundary 
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layer, the boundary conditions given by the equation 

3.7-20 are obtained. 

From the above boundary conditions, coefficients of the 

equation 3.7-14 are determined in terms of a 

non-dimensional shape factor A. 

(See Appendix 3D) 

3.7-21 b2 ciU 

v äx 

The coefficients are given by; 

A0=O A, = 2+A-R 
6 

A2=-A ; A3=2R+-2 
22 

A4=11-61-R 

Substituting the coefficients, the 4th degree polynomi- 

al velocity profile becomes; 

RH( 77) 
(-U)= 

(ý)) = F(i7) + r1G(77)+ 
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Where, 

F(r7)=277-2773+774 

GC77) = (o- 3%2 + 3%3 - 774 6 

H( )= -ij(1 - 77)( 1 +7I +TI2) 

(See Appendix 3D) 

Therefore substituting for f(ry), the terms of the 

Momentum Integral equation 3.7-9 given by equations 

3.7-15 and 3.7-16 may be found as; 

a 3.7-22 
b 

(See Appendix 3D) 

3.7-23 (ofl (3 A) 
_R b- `10 120 5 

Where; 

3.7-24 37 A n2 
315 943 9072 
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3.7-25 R 
1= (29A-372R+744) 

7560 

(see Appendix 3D) 

and similarly from the equation 3.7-17; 

3.7-26 b au 
U ay 

yýo 

A 
=2+--R 6 

In the above equation R stands for; 

3u 3.7-27 
R=b" -- U ay 

y_b 

The shape factor A is still an unknown quantity since 

it contains the unknown boundary layer thickness b. 

The Momentum Integral equation (3.7-9) may be 

alternatively written in the following form, ready for 

the substitution of the various forms developed in 

terms of the assumed velocity profile; 

3.7-28 d0 )U=vI dU au au 
U2äx+ (20 +o äxd d y 

)O-Y 

y 

()6 

The above equation 3.7-28 may be considered as an 

ordinary differential equation for the shape factor : i, 
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with x as the independent variable, the integration of 

which provides A as a function of x. Hence the 

boundary layer thickness 6 may be obtained as a 

function of x through the equation 3.7-21 relating the 

shape factor A and boundary layer thickness 6. This 

ordinary differential equation will be expressed in an 

alternative form which has a mathematical advantage in 

the integration procedure as follows; 

Multiplying the equation (3.7-28) by (OIUv) we get; 

3.7-29 Ue dO b` 02 dU e au e au 
" +(2+- _- -- 

v äx 0v äx U ay 

)o 

U ay 

Introducing the new variable; 

3.7-30 
ZdU 

dx 

Where 

3.7-31 e2 
Z=- 

v 

Using the definition of A (see equation 3.7-21 and 

3.7-22), K is expressed as; 
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3.7-32 (02 
K= 

62A_ 
A(Q+ J)2 

Using the equations 3.7-22,3.7-23 and 3.7-26; 

3.7-33 6* 6*16 3 fl 
_R 0 016 10 120 5 

/ýQ Jý 

0 (auý 6 au A 

0 

)0(0)=(2 
--R)(Q+J) U3y u(ay 66 

On differentiation of the equation 3.7-31; 

dz 2ecke 
äx v dx 

Now substituting the various terms into the Momentum 

Integral equation 3.7-29 becomes; 

3.7-34 UdZ_(Q+J) 
2-2R+A -(2+fI)K 2 dx 6 

Where, 

K, f1 ,Q and J 
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are given by the equations 3.7-30,3.7-33,3.7-24 and 

3.7-25. 

The Momentum Integral equation (3.7-28) has thus been 

transformed into an ordinary differential equation 

(3.7-34) in which dUldx does not appear explicitly. 

The Right Hand Side of the equation 3.7-34 contains 

terms which are all functions of the shape factor A. 

However the A and z are related through equation 

3.7-30. Here U and dU/dx are available as functions of 

x from the "Main Flow" solution. The determination of 

the A around the octagonal cylinder is therefore done 

by; 

a) The integration of the equation 3.7-34 from the 

stagnation point 52 to the point 1 (Fig 3.5) and from 

the point S2 to the down stream separation point S 

utilising the "stagnation point initial conditions" 

considered in the next section. 

and 

b) The integration of the equation 3.7-34 from point 7 

to the down stream separation point S utilising the 

"leading edge initial conditions" given in the next 

section (see 3.7.4). 
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3.7.4 Initial Conditions for The Integration of 

Momentum Integral Equation 

For the integration procedure the initial values of A 

and the (dA/dx) at x=0 are required. 

For the Region-1 and Region-2 (see 3.7) at the starting 

point (s2)of the integration (at the stagnation point) 

the shape factor (AO) can be obtained using the argument 

which will be given in the section 3.7.5. The relevant 

equation for the A0 is; 

3.7-35 

116A0 79i1ä 
_ 

11°(294°-372R0-12)]= 
2- ++ -2R °l+ 0 

315 7560 4536 7560 

Where, 

1 /io (dS/dx)o 
R0 

Re dI//dxo (di//dx)o 

(The details are given in the Appendix 3F) 

Based on the similar argument as above, at the 

stagnation point the value of (dAldx)ois given by the 

expression; 
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3.7-36 

d gl 
dx 

)0(LO 
+ ßBo - 2E0) --4 vý0 

+ 
A0(29A0 - 744R0 - 12ý 

x 
ß(d2U/dx2)o 

7560 2 (dU/dx)o 

(d2U/cl x2)o 
+ A0[(Q0+J 0Ro)+ßB0] (dU/dx)0 

Where; 

(d2S/dx2)0 - ß(d2U/dx2)o 

(dU/dx)o 

(dS/dx)o 

(dU/dx)o 

v 
B0= 0 

7560 
29110-744+744)= fv0J0 

0.5(d2S/dx2)0 - ß(d2U/dx2)o 

(dU/dx)o 
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1 16 158 1° 3A2 2R0(58A0-372R°- 12) 0 D° 
315 + 7560 + 4536 7560 

ß yýo 110(29/10-744R0- 12) 
E°-D° 

ßl0 [1± 7560 

37-A° 5/l0 2 62-31R+(29/4)"A° 
L° 

315 9072 + R° 
630 

A0 

(clU/ctx)o 

29i10-372R0± 744 
J ,o 

7560 

du 
S= - ay 

)y=6 

Qo=Q for ý1=/l0 

For the leading edge (at point 6. Fig 3.5) the initial 

conditions (see Appendix 3G) are; 

x-40 ö-ý0 

Ö2 dU 
U--) o A-40 =-. 

v dx 
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and also 

lim 
dU 

-ý 0 
xýo dx 

IimS-ý0 
x-90 

lim 
dS 

-4 0 
x-'o 

dx 

As seen from the equation 3.7-36, for the integration 

procedure in the Regions 1 and 2 it is necessary to 

determine the value of the second derivative (d2U/dx2) at 

the initial point S2. This is obtained by a numerical 

differentiation procedure using the values of the 

derivative dUldx available at the nodal points. Owing 

to the restriction imposed by the computer timing the 

number of segments in defining the boundary of the 

two-dimensional flow in using the NAG D03EAF solution 

(see 3.6.5) is restricted. This, results in inconsis- 

tent values of the dUiax at some points due to 

numerical integration error. This causes instability 

in the integration process of the boundary layer around 

the vertices of the octagon. To overcome this, the 

computed slip velocity variation was smoothened around 

the vertices of the octagon by a curve fitting 

procedure. However the values computed with these 

146 



modifications give only an insignificant difference 

between the solutions using the appropriate values of R 

and for which R=0 . In view of this and the inherent 

inaccuracies involved in the assumptions and numerical 

integration procedure R=0 is used in the further work. 

This considerably simplifies the computing effort in 

the integration. 

Although R=o was used in the present work. R#o is a 

useful modification to the Momentum Integral equation 

when applied for a tangential wall-jet imposed on a 

free stream, and leads to the evaluation of the 

shear-stress at the edge of the laminar boundary layer. 

It was found that this procedure can successfully be 

utilized for the case of Circular cylinder, Flat plate 

or an aerofoil cross-section in a free-stream in the 

presence of a tangential jet. 

3.7.5 

Layer 

Method of Solution for the Laminar Boundary 

The equation 3.7-34 using R=O, as discussed in the 

previous section reduces to; 

147 



3.7-37 UdZ 

2dx+( l2+f `)K-Q 2+ý 
6 

Where; 

Q_(s7_nn2J 1313 943 9072 

3.7-30 
KZ 

dU 
dx 

Where 

3.7-31 g2 
Z=- 

v 

f, =b_ö 
/b 

_3_ 
)I(Q) 

0 016 10 120 

The equation (3.7-37), can also be expressed as; 

3.7-38 dZ 4Q 
1-ýI 

dx U 
ýQ 124on1J 

(Equation 3.7-38 is derived in the Appendix 3E) 

Where z may now be expressed using the equation 3.7-30 

as; 
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3.7-39 K 
Z= 

(dU/dx) 

Also for R=O from equation 3.7-32, 

3.7-40 K_ AQ2 

Right Hand Side of the equation 3.7-38 the shape factor 

may be in principle be replaced by K through the 

implicit relationship of equation 3.7-40. Further K it 

self may be considered to be a function of Z and x from 

the equation 3.7-39. Hence the equation 3.7-38 

represent a first-order non-linear differential 

equation for z in terms of x. This equation is 

integrated by the Runge-kutta method of numerical 

integration and the values of z and the shape factor A 

are obtained as a function of x. The relationship 

between Z and K (equation 3.7-38) and the implicit 

relationship between K and A, (equation 3.7-40) are 

also determined (47). For the three Regions on the 

counter C2; (Fig 3.5) 

Region-1 Numerical integration starts at x=o from the 

stagnation point S2L. The initial values at 

x=o, for /1 = /1o and (dAldx) are computed from equation 

3.7-36, where Ro=O and the integral procedure is 
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continued until the x attains a value corresponding to 

the point at which A=-1z Within this Region 

11 remains ?- 12 

Region-2 Similarly the numerical integration is from 

the stagnation point S2Lupto the down stream separation 

point S, where A remains >- 12 

(Fig 3.17) 

Region-3 Numerical integration is started from point 7 

upto to the down stream separation point S where, the 

initial value of at x=0, X10 =0 and remains ;, l <+ 14 

The influence of the assumed shape of the velocity 

profile in determining the boundary layer flow using 

these equations has been established (15). The use of 

the 4 th degree polynomial is physically feasible only 

for - 12 <A< +12. Where A>+ 12, the velocity profile has a 

maximum within the boundary layer as shown in the Fig 

3.17. For the A=-12 the solution predicts a laminar 

boundary layer separation point and for A<-12, a 

reversed flow with in the boundary layer is implied. 

For the stagnation point initial conditions 

x=0U=0 dU/dx is finite and dU/dX 0" The value of the 

dZ/dx at x=o would become infinite at the point sv 

unless the right hand side of the equation 3.7-38 is 
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equal to 0 there simultaneously. This condition is 

utilized in the Appendix 3E to evaluate the 'o and xa 

The values obtained are; 

Ko = 0.0770 

or Flo=7.052 

Hence ,A= A0= 7.052 is taken as the shape factor at the 

stagnation point. However, the differentiation coeffi- 

cient dZ/dx attains an indefinite form of 0/0, by 

stipulating right hand side of the equation 3.7-38 at 

x=0. The appropriate mathematical limit of this 0/0 

form is evaluated (details are given in the Appendix 

3E) to be; 

dZ d2U/dx2 

X=o 
0.0652 -- dx 

X=o (dU/dx)2 

A FORTRAN computer programme STTUR1 is developed and 

the subroutine "STGIC2" of this considers individual 

Regions 1,2 and 3 and selects the appropriate slip 

velocity from the Stage-1 of the programme discussed in 

the section 3.6.3 from the main flow. From these 

values the derivative dUldx was obtained at every 

location of x. (For the flow chart and the programme 

see Appendix 5B) The value of dUldx is generally 

151 



expected to be >0 for the first two Regions where 

smooth surfaces are encountered. However the slip 

velocities around the vertices of the octagon 

experience an oscillatory nature as discussed in the 

section 3.6.4. In the numerical integration this 

results in a negative value of dUldx. Occurrence of 

this behaviour around the octagonal shape considered 

can be dealt by making the dU/dx to be a positive value 

at those points, where these negative values are 

predicted. 

However for the prevailing conditions considered in 

this investigation, if the uninterrupted laminar 

boundary layer reaches the first point where the 

octagonal side changes, the flow loses its two-dimen- 

sionality and change over to a turbulent boundary layer 

(15). Hence though the approximate method employed is 

capable of determining the laminar boundary layer right 

around the octagonal cylinder, it has been used only 

upto the first separation point or otherwise only upto 

the first point on the next side of the octagon where 

the flow changes its direction. 

Values of slipstream velocities determined by the 

D03EAF routine represents, velocities at 80 equally 

divided segments on octagon sides of the inner contour 

C2. Boundary layer development has been determined by 
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the Fourth-order Runge-Kutta integration. The integra- 

tion step Ah was taken as 0.001. The Fourth-order 

Runge-Kutta integration has a truncation error of order 

h5. The velocity, and the dU/dx were interpolated/ex- 

trapolated to determine the values at each step of the 

integration, as these values were available only at 

nodal points. 

3.7.6 Evaluation of A for Given K 

In the numerical integration of the equation 3.7-34 the 

values of A are to be obtained for specified values of 

x. The relationship between the A and x is given by; 

3.7-40 K_ AQ2 

Where; 37 AA2 
Q 

315 945 9072 

Hence dfl/dK and d2A/dK2 are readily available by 

differentiating polynomial expansion of A for K. From 

the Taylor's Expansion series (51); 

K_Kp+dK(A_`Ip)+1, 
ct 2 K(A-Ar) 

+ ... 
dAl J2d; l 2 
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Where suffix P denotes the value of A and the 

corresponding values of K at a previous location. 

by approximating to the first order terms; 

K=Kp+ 
(dK )(A 

I- Ap) 
dA 

Therefore the first approximation for the A is given 

by; 

. AK 
A' 

(dK/dn)+AP 

Substituting for (A- A)2 

in the Taylor's expansion, the term ( 
1 

12 
-APJ 

4K = 
dK (A 

- ýlPý + 0.5 ( 
d2K (ýK)2 

dA "( dul ) (dK/dA)2 

Here in solving of A the interpolated value is given 

by; 

3.7-41 Jar (d2K/d42)(iK)2 

_-0 +A l 
dK/d/1.5 (dK/dA)3 

Where aK=(K-KP) 
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Fig 3.18 shows the relationship between K and A and K 

reaches its first maximum of 0.0948 at A=12. Although 

numerically shape factor A can reach higher values than 

12 they do not represent any possible velocity profile 

defined by the Fourth-degree Polynomial. 

Determination of the A for the regions 1 and 2 is 

started with x=0U=0 and n=7.052. Equation 3.7-41 was 

used to evaluate the shape factor A corresponding to 

the values of K. obtained at each step of numerical 

integration procedure. However in using this equation 

where the values of K are closer to 0.0948 the value of 

was incorrectly determined. This is due to the K-A 

relationship given by the equation 3.7-40 (Fig 3.18) 

having an extremum. at A=-+-12, K=0.0948. Therefore as 

the K reaches its maximum value (K Max = 0.0948), for 

the determination of A "bi-Section" method (50) has 

been used. Details of the procedure is given in the 

flow chart of STTUR1 (see Appendix 5B). 
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3.8.1 Turbulent Boundary Layer 

In the regions 1 and 2 of the boundary layer (Fig 3.5) 

the boundary layer is initially laminar at the 

stagnation point S. In both the cases the boundary 

layer becomes turbulent along the octagonal surface as 

the first of the vertices is approached due to the 

change of direction. Boundary layer may also become 

turbulent preceding the approach of the first vertex of 

the octagon. The transition point decided in the 

STTUR1 FORTRAN programme (see Appendix 5B) is based on 

the shear-stress becoming zero and this is taken as the 

initial point for the turbulent boundary layer growth 

in the case of Region-i and Region-2. The thickness of 

the laminar boundary layer at this transition point is 

taken as the initial value for the turbulent boundary 

layer thickness. For the Region-3, discussed in the 

section 3.7, the turbulent boundary layer is considered 

to begin from the point where the jet leaves the 

nozzle. Blasius's equation for the wall shear-stress 

for the turbulent flow is adopted in a modified form in 

the formulation of the Momentum Integral equation for 

the turbulent boundary layer. The modification results 

in solutions which are compatible with the physical 

conditions as shown in the section 3.8.3. 
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3.8.2 Momentum Integral Equation for The Determination 

of The Turbulent Boundary Layer 

The turbulent boundary layer thickness around the 

octagonal cylinder is evaluated using the Momentum 

integral equation which may be expressed in the form; 

3.8-1 d 

oa 

dV a 
vdY 

a+X 
(V -v)vdY --X 

o= 

x 
dV 

2t 
wn-d 

-VQ 

äX 

(See Appendix 3H) 

In the present development the laminar sub-layer of the 

turbulent boundary layer next to the wall surface is 

included, as was originally considered by Prandtl (52). 

Further inside the turbulent boundary layer the 

velocity profile is assumed to be given by the equation 

proposed by Prandtl for the case of a flat plate; 

3.8-2 u y1 /7 

u6 

The above equation on differentiation gives the 

velocity gradient with respect to transverse direction, 

Viz., 
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3.8-3 äu 1U 

cry 7 (by6) 7 

This shows that at the wall (y = o) the value of du/dy 

tends to infinity and predicts an infinite value for 

the shear-stress at the wall, this is a physically 

impossible condition (15,52). In reality the fluid 

turbulence always dies down in the neighbourhood of the 

wall. This anomaly arises owing to the assumption that 

the velocity profile is given by the equation (3.8-2) 

is applicable to the entire boundary layer thickness. 

However as mentioned earlier, the existence of the 

laminar sub-layer invalidates the use of the above 

profile near the wall and in fact the velocity 

variation should be expressed by different type of the 

function of the distance y, within the sub-layer. At 

the border between both the layers, the assumed 

velocity profiles are continuous but may have a 

discontinuity in slopes at the point of transition as 

shown in the Fig 3.19. However the use of equation 

(3.8-4) to evaluate the definite integral over the 

entire boundary layer thickness, appears on the Left 

Hand Side of the Momentum Integral equation (3.8-1) is 

justified as the corrections required in using the 

laminar sub-layer profile is quite small. 
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The non-dimensional wall shear-stress term appears on 

the Right Hand Side of the Momentum Integral equation 

(3.8-1) is initially assumed to be given by Blasius's 

equation; 

v 
)O. 25 3.8-4 

tw = 0.0456V2 
n-d v i�4l 

(The detailed formulation of the above equation is 

given in the Appendix 3H) In order to achieve 

algebraic simplicity a non-dimensional variable ß is 

defined as follows; 

3.8-5 5/4 

Utilising the velocity profile (3.8-13), substituting 

from equation 3.8-4 for the non-dimensional 

shear-stress and using the variable ß the Momentum 

Integral equation 3.8-1 can be expressed as (see 

Appendix 3H); 

3.8-6 d/3 
_ 

[(_I 15 dV 
, 
8+90(0.0228)V3'4 V 

dX 28 dX Re 1/4 

By integrating the above equation, with respect to x 

the value of ß, and hence the non-dimensional boundary 

layer thickness 6 is determined. At the edge of the 
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boundary layer the values of non-dimensional slip 

velocities V are obtained from the main flow solution 

(see 3.6.4) 

3.8.3 Preliminary Investigation of The Effect of The 

dVIdX on The Turbulent Boundary Layer Growth 

The equation 3.8-6 may be expressed as; 

3.8-7 d /3 
=- flF(X)+G(X) 

dX 

Where; 

1 15 1 dV 
F(X) - 28 V dX 

G(X)=a"V-`'4 

90 x 0.0228 
a= 

7xRe`/4 

The linear differential equation 3.8-7 may be 

integrated using the integration factor the exp(F(X)d. l") 

, hence ß is given by; 
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3.8-8 xxx 
8" exp 

0F(X 
)dX = 

0G(X)exp oF(X 
)dX + Const 

As shown in the Appendix 3J for the case where dV/dX is 

a constant, i. e., 

äV=S 
dX 

We get, 

F(X)dX =V 

115/28 

exp 
x 

o Vo 

Where , V0 is the value of V at X=O, and 3.8-8 reduces 

to; 

3.8-9 1V 115/28 7a 
ý. v 34/7 

+ constant 
Vo 34 SV 5128 " 

0 

Using the boundary conditions at 

at X=0 , ß=ßa 

The Constant becomes; 
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3.8-10 7a 34/7 Const =0 
34Sv 115/28 

(V,, ) 

(Details are are given in the Appendix 3J) 

Therefore, by substituting the value of the constant 

into the equation 3.8-9, 

3.8-11 7aR 
. V-115/2ß l 

(V34/7 
_ V34/7)+ f'0 

34S 01 (V/V°) 115/28 

Where, 

V=Vo+dVX 
dX 

and ß0=O 

Where, s=o, ß given by the above equation, attains a 0/0 

form. The evaluation of the approximate limit using 

the L'Hospitals rule is given in the Appendix 3J. 

3.8-12 34/7 7a 21/28 Z-1 
34SV° LZl, s/2$ 

Where, V 
Z= 

Vo 
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and 

Z 34/7 

`Z) 2115/28 
>0 

For all Z>0 

For a typical value of Re= 50000 

90 0.0228 
a= " 7 500000.25 

For a dV/dX = tonst value (non-zero) the p and z are 

calculated. A typical set of results of the boundary 

layer growth 6n-d Vs the non-dimensional distance X is 

shown in the Fig 3.21. Here three possible cases are 

examined. 

(i) For a boundary layer growth from a initial zero 

thickness (ßo = o), for both the cases of s>O or s<O 

boundary layer thickness 6 increases without an 

extremum. and hence the surface shear-stress. There- 

fore the possibility of the turbulent boundary layer 

separation is eliminated from the procedure. 

(ii) For a boundary layer growth from a non-zero 

initial thickness, for sufficiently large positive 

values of the s, the boundary layer thickness decreases 
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to a minimum value and thus the surface shear stress. 

However as the x increases the boundary layer thickness 

starts to grow further without the turbulent 

separation. 

(iii) For a boundary layer growth from a non-zero 

initial thickness, for adverse pressure gradients, 

boundary layer thickness increases without a limit. 

(Identical to the case (i)). 

Therefore use of the Blasius equation along with the 

Momentum Integral Equation cannot identify the 

turbulent separation points and therefore for most of 

the cases boundary layer thickness grow to meaningless 

large values and thus the surface shear stress. This 

is mainly due to the approximation of the velocity 

profile at the laminar sub-layer is also represented by 

the same 1/7 th power law velocity profile as for the 

turbulent boundary layer. To be compatible with the 

physical situation (page 629, Ref 15), within the 

laminar sub-layer velocity is represented by a 

parabolic profile (see 3.8.4). 
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3.8.4 Evaluation of The Non-Dimensional Surface Shear 

stress Based on The Parabolic Velocity Profile Within 

The Laminar Sub-Layer 

Velocity profile inside the laminar sub-layer is 

usually approximated by a linear variation (52). In 

the present work the turbulent boundary layer excluding 

the laminar sub-layer is represented by Prandtl's 

1/7 power law (3.8-2), and within the laminar sub-layer, 

the profile is approximated by a parabolic function 

given by (Fig 3.20); 

3.8-13 U2 
-Ao+Ai1l+A21] 

I 

Where 
n_II 

bl)-(b)(öl 

Here the two velocity profiles are matched at the edge 

of the laminar sub-layer giving; 

3.8-14 U ö1 '" 

U6 

And using the boundary conditions as given in the 

Appendix 31, constants of the equation 3.8-13 becomes, 
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=(, +U 
" (äU/dX ) öý 

0=0 A, -" v Ul 

12U dU 
A2 6` 

2v U dX 

For laminar sub-layer shear-stress at the wall is given 

by the Newtonian Viscosity equation (53) 

3.8-15 Ul b1 /7 1 
Y ̀ ý' lib (A 

') lý UbbAý 
11 

Also from Blasius's equation; 

3.8-16 pU 2 
tw = 0.0228 " o. 2s (pU6/[c) 

By assuming that the relationship between the 6 and b1 

prevails, for (dPidX)values closer to zero. The 

relationship between b and 6 can be obtained by 

equations 3.8-15 and 3.8-16; 

3.8-17 61 7/6 v )7/8 

6 0.0228 U6 

The values of öR_d and -rw are given by the equation 1-12 
R-d 

as; 
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3.8-18 
i= 

2V 1+VdV 
"ö 

n-d Re öl dX n-d n-d 

(Derivation is given in the Appendix 31) 

and from the equation 1-13 of the Appendix 31. the 

non-dimensional boundary layer thickness can be 

expressed as; 

3.8-19 1 
Ö 

,8 1 ýn-d 

= 

n-d (0.0228)7/6 " (Re)718 V7/8 

By substituting the values given in the equations 1-12, 

I-14,1-15 of the Appendix 31 to the Momentum Integral 

equation (3.8-1); 

3.8-20 

d6n-d 7 
VZ +6n-d 

7 
VdV-7. VdV+vdV =0.5tw dX 72 36 dX 8 dX dX n-d 

Where; 

0.0228 V7 1/4 
0.3TW0.25 

n-d Re on-d 

I/8 

I dv ba-d 'V +- 2dX (0.0228)'/6 

(Details are given in the Appendix 31) 

1 
Re 78 
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3.8.5 

Growth 

Typical Behaviour of Turbulent Boundary Layer 

The ordinary differential equation 3.8-20 for turbulent 

boundary layer thickness bf_dmay be numerically 

integrated for given variation of V with respect to X. 

Using a similar method to the one discussed in the 

section 3.8.3, the turbulent boundary layer thickness, 

surface shear stress and the separation points have 

been computed (see 3.8.6) for a linear velocity profile 

given by; 

V=Vo+S"X 

using a typical set of initial data given in the Table 

T-4. 

Results of the computation for the above case are given 

in the Fig 3.22 to Fig 3.24. Based on these 

investigations, use of the parabolic velocity profile 

inside the laminar sub layer leads to the following 

conclusions; 

For adverse pressure gradient, growth of the turbulent 

boundary layer without an initial boundary layer 

thickness results in a turbulent boundary layer 

separation. As the magnitude of the adverse pressure 
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gradient increases, the boundary layer separation point 

move towards the leading edge. If the boundary layer 

growth is started with an initial boundary layer 

thickness, turbulent boundary layer separation point 

move towards the trailing edge (Fig 3.23). 

For zero pressure gradient the turbulent boundary layer 

has a steady growth and as the initial boundary layer 

thickness increases the rate of the boundary layer 

growth increases (Fig 3.24). 

For a positive pressure gradient with an initial 

boundary layer thickness the growth of the boundary 

layer reaches a minimum value and then continues to 

grow with a reduced rate. If the boundary layer growth 

is started without an initial thickness, the growth 

does not exhibit a minimum value. As the pressure 

gradient increases the rate of growth of the boundary 

layer thickness decreases with the distance (Fig 3.22). 

However for positive and zero pressure gradients the 

turbulent boundary layer does not separate from the 

surface. 

170 



Table T-4 

60 S H Re V0 Remarks 
Ineg. 
Step 

0.0 2.0 Adverse 
-0.65 0.01 50000 

0.05 2.0 Pressure 
-0.65 0.01 50000 

0.05 2.0 Gradient 
-0.35 0.01 50000 

0.0 2.0 
-0.35 0.01 50000 

0.0 0.0 2.0 Zero Pr. 
0.01 50000 

0.05 0.0 2.0 Gradient 
0.01 50000 

0.05 2.0 Fav. 
0.35 0.01 50000 

0.0 2.0 Pressure 
0.35 0.01 50000 

0.0 2.0 Gradient 
0.65 0.01 50000 
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b. 

Fig 3.19 Prandtl's Turbulent Velocity Profile 
and the Laminar Sub-layer 

b, 
Fig 3.20 Proposed Laminar Sub-layer Profile 
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Proposed Parabolic Velocity 
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3.8.6 Computation of The Surface Shear Stress for The 

Laminar and The Turbulent Boundary Layer 

The FORTRAN programme STTUR1 was developed to determine 

the surface shear stress on the octagonal cylinder. 

For the computational procedure the surface around the 

octagonal cylinder is divided into three regions as 

given in the section 3.7.5. The computation of the 

boundary layer thickness, the separation points and the 

surface shear stress on the octagonal surface is 

started from the Region-1. The Reynolds number of the 

flow, the slip stream velocities, the coordinates of 

the nodal points (see 3.6.2) and the coordinates of the 

vortices of the octagonal cylinder are supplied as the 

main input data to the computer programme. By 

calculating the shape factor A, the surface shear 

stress due to the laminar boundary layer is determined 

(see 3.7.6). As the laminar flow changes to a 

turbulent flow, the boundary layer thickness and the 

surface shear stress are determined as discussed in the 

section 3.8.4 and 3.8.5. At the transition point the 

laminar boundary layer thickness is taken as the 

initial value of the turbulent boundary layer 

thickness. If the laminar boundary layer separation 

does not take place before the first vertex of the 

octagon, then this location is taken as the starting 

point of the turbulent boundary layer. This is done by 
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comparing the coordinates of the vertices of the 

octagonal cross-section with the coordinates of the 

transition point where the laminar boundary layer 

separation occurs. The location of the turbulent 

boundary layer separation where it occurs is also 

determined. For the computation of the boundary layer 

for the Region-2 a similar procedure is used. For the 

Region-3, determination of the boundary layer thickness 

and the surface shear stress is started with the 

turbulent flow conditions. The accuracy of the solution 

is increased, by taking 1/10 of a length of a distance 

between nodal points as the integration step. The slip 

velocities at these points are interpolated accordingly 

by using the subroutine INTRO2 of the STTUR1. Computed 

surface shear stresses around the octagonal cylinder 

are used to correct the lift and the drag coefficients 

determined from the pressure distribution around the 

octagonal cylinder in the presence of the tangential 

wall-jet. The Flow Chart and the FORTRAN computer 

Programme STTUR1, developed for the laminar and 

turbulent boundary layer determination are given in the 

Appendix 5B. 
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3.8.7 Lift and The Drag coefficients 

The static pressure distribution and the surface shear 

stress around the octagonal cylinder are used to 

calculate the Lift and the Drag coefficients in the 

presence of a wall-jet resulting the boundary layer 

modification. In addition, at the jet entrance AB (Fig 

3.25) the effect of the jet momentum on the lift and 

the drag coefficients are considered. For the present 

problem, boundary layer around the octagonal cylinder 

represents predominantly a turbulent flow condition for 

which there is a greater tendency for flow attachment 

to the octagonal surface resulting in flow separation 

to be delayed (15). The procedure used to evaluate the 

lift and the drag coefficients is as follows; 

3.8-21 A dxR A dxn 
L =-H px dx+H pý dx+Fi 

a 
fB 

dx a dx YR 

3.8-22 
L =-H 

A dyR 
dx+H 

A dyR 
dx F 

R 

fB 
1° r dx B 

p°° dx 
+R 

(In the above equations integral B to A is taken in the 

clock-wise direction) 

Where in the above equations, Fj and Fj represents the 
yn xn 

forces due to the jet momentum, and can be given by the 

equations; 
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3.8-23 a 
Fj=H pX 

dY" 
dx_ 1 

xn A dx 
xn 

3.8-24 a 
F1= -H pX 

dx n dx - M, 
yn Adx yn 

Using the equations 3.8-23 and p'X = pX - pIO 

we get; 

3.8-25 BP 
'x( 

Y F=HR 
)dx±HP(YNB-YNA)-J 

R dx xn 

3.8-26 
_ lB (dxn l Fi -H p'x dx-I4P-(xNB-xNA)-MJ 

yn Adx yn 

From the equations 3.8-21 and 3.8-26, the forces on the 

octagonal cylinder in the y direction can be given by; 

3.8-27 (dxn 
L =- P. dx" H-M 

R" dx y 

Similarly from equations 3.8-22 and 3.8-25 we get; 

3.8-28 
Lx =+PY 

(dYn'\ 
dx H- AV 

ndx xn 
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In the equations 3.8-27 and 3.8-28 the cyclic integral 

term is formed by the respective integral terms of the 

equations 3.8-21,3.8-26 and 3.8-22,3.8-25. 

Both the cyclic integrations are done in the clock-wise 

direction. From the Bernoulli's equation; 

P. + 
pL�2 

_ PY+ pýU2 +U2) 
2 

and hence, 

P(w2-Ll2 
PX=P+ X 

2 

Where Uxdenotes the tangential velocity at the 

surface, 

dý (- 

da 

The above equations can be given in the non-dimensional 

form of; 

3.8-29 Ly ld xn 
nr 

lP l 
dx Ln (pW2 2R äx /2) " 2RH _ 
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3.8-30 LX 
Lx -2R (P. 

Xý 
dyR 

cox 
n 

(pW /2) " 2RH 2R dx 

Let the surface shear stress r has the sign of the 

tangential velocity ('bIan). Since n is into the domain 

and the (nxR)(öP/dn) is the velocity vector tangential to 

the surface and is positive, where the shear stress r 

is in the direction of the x clock-wise, and negative 

where r is in the opposite direction to the x (Fig 

3.25) 

The Drag forces in the x and the y directions can be 

given by; 

3.8-31 d dx 
n DX =r Sign of an dx 

äx "H 
R Ql X 

3.8-32 
D 

y= t Sign of 
a dY n dx "H 

Rf[(3n at xdx 

Where x is measured in the clock-wise direction. 

defining the non-dimensional parameters; 

3.8-33 DX 
n 

DR (pW2)/2.2RH 

By 
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3.8-34 Dy 
n DR 

(pi, �2)/2 " 2RH 

ý p42/2) 

We get, 

3.8-35 
DX =t Sign of 

öý äXa 
äX 

l 

it do dX 2R 

3.8-36 )] (- 
Dy -C Sign of 

Ö(P CiY n COX 
n än dX 2R 

Hence the Lift and the Drag Coefficients are given by; 

3.8-37 
ýLY+DY 

CL - 
,o2 

RH 
LY+DY )RR 

3.8-38 
ILX+DX J 

CD (pw2 , RH) - Lx+ Dx 
nn 

Developed FORTRAN programme CLCDT to evaluate the lift 

and the drag coefficients is given in the Appendix 5C. 
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CHAPTER 4 



4 EXPERIMENTAL STUDIES - AERODYNAMIC LIFT DUE TO 

WALL-JET - ARRANGEMENT FOR WALL-JETS FOR ORBITING 

OCTAGONAL CYLINDERS 

4.1 Aim and Programme of the Experimental Work 

The experimental investigations, consisting of 

wind-tunnel studies, are carried-out under two main 

categories; 

a) Study and understand the experimental techniques 

for introducing air for the wall-jet formation and 

observation of the flow field and determination of the 

lift and drag coefficients due to the tangential 

wall-jet. 

b) Study the feasibility of the engineering applicati- 

on of the wall-jet principle by studying the orbiting 

octagonal cylinders and application of the switching 

over arrangement for wall-jets. 

The theoretical calculations of the lift and drag 

coefficients and the power produced by the machine 

consisting of wall-jets made in the chapters 2 and 3 

are based on a number of assumptions, i. e, the flow is 
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two-dimensional, irrotational. Therefore the results 

based on such an analysis require experimental 

verification. Furthermore the theoretical evaluation 

of circulation due to the tangential wall-jet on an 

octagonal cylinder requires extensive computation and 

hence an experimental determination is explored here. 

And also, all the theoretical predictions made on the 

proposed concept of the wind machine were based on the 

assumption, that the flow conditions pertaining to a 

static cylinder are applicable to the orbiting 

cylinder. The theoretical investigation also leaves a 

number of important practical issues associated with 

the wall-jet phenomenon unanswered. Such as 1) The 

optimum wall-jet location, 2) The number of wall jets 

required to achieve the aerodynamic lift, 3) The 

influence of the end plates on the aerodynamic lift, 4) 

The feasibility of the engineering application of the 

wall-jet principle for the proposed concept of a wind 

machine. 

4.2.1 Details of Wind Tunnels and Compressed Air 

Supply Used in The Experimental Work 

For the experimental studies two subsonic wind tunnels 

have been used. 
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(i) The Polytechnic wind tunnel measuring 1.5 x 1.0 m 
in cross section. In normal test conditions this wind 

tunnel can develop upto a velocity of 5 m/s. The wind 

tunnel was modified by reducing the cross-sectional 

area and by introducing an additional suction fan in 

series with the existing arrangement. After these 

modifications it was possible to achieve a steady 

maximum wind velocity of 12 m/s at its test section. 

Fig 4.7, shows the arrangement of the wind tunnel. 

(ii) The central Electricity Research Laboratories of 

the Central Electricity Generating Board (Leatherhead) 

wind tunnel measuring 4.8 x 1.6 m and capable of 

providing upto 10 m/s wind velocity at its test section 

(Fig 4.8). 

A central compressed air supply available in the 

laboratories was used to feed the tangential wall-jets. 

In both the cases compressed air line pressure was 500 

kN/m2. However during tests due to the pressure drop in 

the lines a supply pressure of 320 kN/m2 was generally 

available for steady continuous operation. 
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4.2.2 Major Measuring and Recording Instruments Used 

in The Experimental Work 

The following are the major instruments used in the 

experimental work reported here. The details of the 

instruments are given in the Appendix 4A. These 

instruments are listed with a serial number for the 

purpose of reference. 

I. 1. Transamerica Low pressure Transducer (BHL-4420) 

for pressure measurements 

1.2. Phillips PR2011 Digital Data Logger System for 

recording and analysing the data 

1.3. Modified Inclined Manometer for pressure 

measurements 

1.4. Digital Micro Multimeter for voltage and 

resistant measurements 

I. S. Hot-Wire Anemometer for the measurements of 

wind/jet air velocities 

1.6. Digital Micro Manometer (MOC F0002) for pressure 

measurements 

1.7. Stroboscope (Strobe 16K) for the rotational 

speed measurements 

1.8. Micro Manometer (T 10750/1) for the pressure 

measurements 

I. 9. Gilkes Acribes Probe/Traverse Instrument 
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(GILKES- G. 160) for the pressure measurements 

I. 10. IBM Personal Computer (AT) for recording and 

analysing the data from the digital data logger system 

4.3.1 Exploratory Wind Tunnel Studies With the NACA 

0018 Aerofoil 

In order to establish the phenomenon of lift generation 

by the effect of the tangential wall-jet on symmetrical 

bodies, wind tunnel tests were carried-out on a NACA 

0018 aerofoil in the Polytechnic wind tunnel. A 

specially made manifold with a slot and a jet flap was 

attached to the aerofoil to create the tangential 

wall-jet. To preserve the symmetry of the aerofoil a 

dummy flap was attached from the other side of the 

aerofoil to match the nozzle shape for the air jet 

introduction. Actual arrangement of the wall-jet is 

shown by the Fig 4.1. 

Compressed air was supplied to the manifold from both 

the ends. A nearly uniform air velocity across the 

slot length was achieved by inserting a coil and a 

steel wool mesh into the manifold. The actual shape of 

the coil i. e., its diameter and pitch, and the location 

of the steel wool mesh were experimentally adjusted to 

obtain a uniform wall-jet velocity, measuring by the 
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(Inst. 1.5) hot-wire anemometer. At both the ends of 
the manifold, two soft silicon tubes were connected 

through two ball-bearings which were housed inside a 

slot, machined to the exact diameter. This provided a 

nearly free rotating aerofoil about the axis of the 

manifold. Pressure tappings across the span of the 

aerofoil were connected to the micro manometer (Inst. 

1.8) through a distribution manifold. 

During tests the modified aerofoil was placed in the 

wind tunnel with a zero angle of attack. In the 

absence of the jet air supply forces on the aerofoil 

were symmetrical and no lift was produced. However 

with the jet air supply forming a wall-jet on one 

surface of the aerofoil a low pressure region was 

created and thus the lift force (Fig 4.2) is generated. 

However when the air supply through the wall-jet was 

gradually increased the lift force reached to a maximum 

value and then to a lower value. Throughout the 

experiment by using a pulley, wire and dead weights the 

aerofoil was kept in the symmetrical position. This 

qualitative study showed clearly the principle of the 

aerodynamic lift generation due to the tangential 

wall-jet. These tests also established that for a 

given wind velocity and for different air jet momentum 

coefficients, a maximum lift force occurs for a 

particular momentum coefficient. It is to be noted 
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that all the experiments on the aerofoil were conducted 

with a zero angle of attack and hence the observed lift 

produced was entirely due to the modification of the 

boundary layer flow by the tangential wall-jet. These 

experiments were carried-out in the wind tunnel no 1 

with jet air velocities upto 45 m/s. 

4.3.2 Investigation of Lift and Drag for the Octagonal 

Cylinder in The Presence of Wall-jet 

An octagonal cylinder having sides 42 mm and a height 

of 600 mm was used to experimentally determine the 

aerodynamic lift due to the tangential wall-jet. The 

model was fabricated with adjustable aluminium alloy 

sheets (Fig. 4.5). Jet air supply to one of the flat 

surfaces of the octagonal cylinder was achieved by a 

method similar to that given in the section 4.3.1. The 

manifold was made with a copper tube with a uniform 

slot across its span. To get a uniform jet velocity 

across its span a coil which has a varying diameter and 

pitch and a fine wire honey-comb were inserted into the 

copper tube. The coil has a maximum diameter at the 

middle of the manifold. The manifold was then 

installed inside the octagonal cylinder to form the 

tangential wall-jet. These inserts produce a nearly 

uniform velocity across the span. In their absence, 
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the air introduced from the ends of the manifold 

creates a maximum velocity at the centre due to 

impinging streams of air. The surface of the octagonal 

cylinder made of Aluminium alloy sheets were made to 

over-lap where air was introduced to maximize the 

tangential component of the jet to the surface of the 

cylinder. Arrangement of the tangential wall-jet is 

shown by the Fig 4.3. 

On the octagonal side of the cylinder, where the 

boundary layer was modified by the in coming jet-air, 8 

pressure tappings along its width were installed. 

Across the height of this side 16 of such rows were 

introduced (see 4.5). These pressure tappings were 

connected with 2 mm ID flexible silicon tubes to a 

manifold and then to the modified inclined manometer 

(Instrument I. 1). All experimental data were recorded 

by the Data Logger System and the IBM (AT) Personal 

Computer. 

Conditions for which the tests were carried-out on the 

octagonal cylinder are given in the Table 4-1. The 

tests no 1 to 48 cover jet angles of 125°, 135°, 145° for 

different wind velocities and jet momentum coeffi- 

cients. These jet angles are selected since the 

maximum aerodynamic lift is likely to occur at a jet 

angle of 135°, from the up-wind direction, as observed 
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in the previous studies (13) involving circular 

cylinders. This is confirmed for the case of an 

octagonal cylinder by conducting the tests 49 to 58. 

Results and the discussion on these experimental data 

are given in chapter 5. 
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Table 4-1 

Exp Kind et et xp ind et et 

No el. ngle omt. No el. Angle omt. 

1 4 125° 0.25 9 8 125° 0.25 

2 4 125 0.40 10 8 125 0.40 

3 4 125° 0.55 11 8 125° 0.55 

4 4 125° 0.75 12 8 125 0.75 

5 6 125 0.25 13 10 125° 0.25 

6 6 12? 0.40 14 10 1250 0.40 

7 6 125 0.55 15 10 125 0.55 

8 6 125 0.75 16 10 125 0.75 

xp ind et et xp rind Jet Jet 

No el. ngle omt. No el. Angle omt. 

17 4 135 0.25 25 8 
0 

135 0.25 

18 4 135° 0.40 26 8 0 135 0.40 

19 4 135° 0.55 27 8 135 0.55 

20 4 135° 0.75 28 8 135° 0.75 

21 6 135 0.25 29 10 135° 0.25 

22 6 135° 0.40 30 10 135° 0.40 

23 6 135 0.55 31 10 135 0.55 

24 6 135 0.75 32 10 135 0.75 
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Exp Rind et et Exp Rind Jet Jet 

No el. ngle omt. No el. Angle omt. 

33 4 
0 

145 0.25 41 8 145° 0.25 

34 4 145° 0.40 42 8 145 0.40 

35 4 145 0.55 43 8 1450 0.55 

36 4 
o 

145 0.75 44 8 
0 

145 0.75 

37 6 145° 0.25 45 10 0 145 0.25 

38 6 145 0.40 46 10 1450 0.40 

39 6 145° 0.55 47 10 145 0.55 

40 6 145 0.75 48 10 145 0.75 

xp Kind et et xp ind Jet Jet 

No el. Angle omt. No el. Angle omt. 

0 
49 8 0 0.55 54 8 135 0.55 

50 8 30° 0.55 55 8 1805 0.55 

0 0 
51 8 45 0.55 56 8 225 0.55 

52 8 60° 0.55 57 8 
0 

270 0.55 

53 
L8 

90° 0.55 58 8 3150 0.55 

0 
59 8 45 0.0 

195 



T 

N 

(U 
3 
f0 

C 
N 
01 
C 
f0 

F-- 

f0 

_I_- 4- 

3 

O 
4- 
O 
L 
N 

Q 
CO 

O 

Li Q 
z 

L7 

196 



0 

4-4 

rd 
U 

3} 

ýý 
4J 
U 
v 
u-4 4-4 

4J 
v 

4-4 

a 

0 
", l 

(z P 

(w 
la4 4-4 
N 4a 
U) W 

0 

4-4 

197 

i 
t 
i 

. 4j U 
N 

. y-1 4-4 
W 

U 
h 

4) 
N 
M 

3 

ty) 
rt 
Q 

3t 

4) 
Q) 

"n 

r 
r-I 
rd 

a) 

rcS 
E-1 

N 

4J 

0 
+-3 

4J 
4-4 

U 
E 
b 

b 
0 

(1) 

N 

W 

tr 
b 

Q 



'ntial 
-jet 

Fig 4.3 Arrangement of the Tangential Wall-jet 

tube 

P 

Fig 4.4 Calibration of the Pressure Gauges 
for Velocity Measurements 
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FIG 4.5 Octagonal Cylinder With Pressure Tappings 
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4.3.3 The Jet Momentum Coefficient and The Jet Mean 

Velocity 

The mean velocities of air from the nozzles have been 

used to determine the jet momentum coefficient of the 

wall-jets. For the measurement of the wall-jet 

velocity, if any probes are to be installed at the jet 

exit, the flow pattern and the boundary layer 

development due to the tangential wall-jet may be 

disturbed. The mean jet velocity depends on the volume 

flow rate of air through the jet which in turn depends 

on the supply pressure to the manifold of the jet air 

supply. Hence it is possible to calibrate the mean 

velocity of jet in terms of the supply line pressure. 

Therefore the pressure gauges on the compressed air 

line have been calibrated to give the mean air velocity 

at the wall-jets. The arrangement of the instruments 

for the calibration process is shown in the Fig 4.4. 

The gate valve A was used for the simulation of the 

tangential wall-jets in the Octagonal cylinder. A long 

circular pipe CD was equipped with a pitot-tube for the 

velocity measurements. First, valve B was set to give 

260kN/m` with the valve A fully open. Valve A is 

gradually closed to give (p-dp), while without 

disturbing the valve B. At point E the flow was 

assumed to be fully developed and therefore the 
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velocities measured at this point have been used to 

calculate the flow rate of air. Fig 4.6 shows the 

relationship between the supply pressure to the nozzle 

manifold and the mean jet air velocity. 

4.4.1 Feasibility of The Engineering Application of 

The Tangential Wall-jets Principle - Axial Rotary Valve 

A model of the Vertical Axis Wind Turbine Generator 

(VAWTG) consisting of 3 octagonal cylinders capable of 

orbiting on a vertical axis was fabricated for wind 

tunnel studies to establish the feasibility of the 

application of the tangential wall-jets for a new 

concept of Vertical Axis Wind Turbine Generator and to 

test the arrangements for the switching of wall-jets 

for orbiting octagonal cylinders (Fig 4.8). The new 

concept of VAWTG requires, switching on and off of the 

wall-jets located on the octagonal cylinders as they 

orbit (see 2.4). This can be done by using Solenoid 

valves or pneumatic valves or mechanically operated 

valves/ports. In the present study an axial rotary 

valve arrangement which consists of ports located on 

the vertical axis of the VAWTG has been designed for 

the wind tunnel model. The compressed air for the 

wall-jets was supplied through the hollow shaft and 

ports arrangement described in the 4.4.3 (Fig 4.9). 
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4.4.2 Octagonal Cylinders for The Model 

Octagonal cylinders measuring 42 mm in sides and 600 mm 

in height were made with light aluminium alloy sheets. 

The cylinders were fixed with end plates having a 

diameter ratio of 2 (see 2.7.2). In the present wind 

tunnel study only two sets of wall-jets per cylinder 

were provided (Fig 4.11). With such an arrangement it 

is not possible to experimentally investigate the 

optimization of the wall-jet application mentioned in 

the section 2.4. Each of the wall-jets was formed with 

the air issuing from nozzles specially fabricated by 

flattening ends of 18 short 8 mm ID copper tubes. This 

arrangement gave an uninterrupted jet air supply across 

the span of the cylinder. By connecting all the 18 

nozzles to a manifold, and also supplying compressed 

air at a distance of, a third from either end of the 

manifold, a reasonably uniform jet air velocity was 

achieved. Manifolds with the nozzles were fixed to the 

inner side of the octagonal plates to form the 

tangential wall-jets. The surfaces of the octagonal 

cylinder corresponding to each side of the octagon were 

made to over-lap where the wall-jets were introduced to 

maximize the tangential component of the velocity of 

the jet to the surface of the cylinder (Fig 4.12). 
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4.4.3 Air Supply and the Switching-On and Off of Jets 

Air supply to the cylinders was through the centre 

column of the machine through the rotary valve 

consisting of ports. On the centre hollow column (Fig 

4.10) coaxial with the wind turbine generator and 

forming its main support three slots of height 8 mm and 

circumferential length covering a 1800 angle were made. 

These slots were at different heights and are staggered 

circumferentially through an angle of 1200 in between 

them (Fig 4.13). Six compressed air tappings were made 

to supply air to the six manifolds of the three 

octagonal cylinders. These tappings were located with 

each three in two axial rows which are diametrically 

opposite to one and another. The axial separation of 

the tappings is such that they are against three slots 

on the inner fixed column. As the octagonal cylinders 

orbit, only wall-jets concerned for the lift generation 

receive compressed air through the tappings of the 

outer column. With this distribution arrangement, 

octagonal cylinders with tangential wall-jets produce 

aerodynamic lift as described in the 2.4. to generate 

useful power. Therefore, in general, at any single 

point of the orbit two out of the three cylinders of 

this model of the wind machine produce useful 

aerodynamic lift. 
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4.4.4 Arrangement of The Bearings Between The Outer 

Shaft and The Inner Shaft 

Octagonal cylinders were mounted on to the rotating 

outer shaft of the centre column. Therefore to carry 

the full mechanical load during operation, between the 

outer shaft and the inner shaft two taper roller 

bearings (SKF 30210, SKF 30211) were used. For the 

accurate manufacturing and assembling process these 

bearings were selected to be in two different 

diameters. The top and the bottom of outer shaft was 

made to house the two bearings and was covered with end 

caps, to protect and give a minimum friction during 

operation (Fig 4.10). Inner diameter of the outer 

shaft was made (52 - 0.001) mm and the outer diameter 

of the central column was made (52 + 0.001) mm. This 

small clearance between the cylinders was essential to 

keep the friction to minimum while keeping the air 

leakage between the shafts negligibly small. 

4.4.5 Wind Tunnel Tests on The Model 

Aim of the wind tunnel tests on the model were mainly, 

to establish the feasibility of the engineering 

application of the tangential wall-jet principle for a 
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wind energy conversion system and to test the switching 

over arrangement for the wall-jets for orbiting 

octagonal cylinders. 

Tests on the feasibility of the application of the 

axial rotary valves for the switching over of air-jets 

were conducted with different wind velocities and jet 

momentum coefficients. The mean jet-air velocity was 

obtained from the inlet supply air pressure by the 

calibration method discussed in the section 4.4.3. The 

jet air velocity was also measured with a pitot-tube 

for a stationary cylinder for a range of inlet supply 

air pressures to confirm the above calibration. The 

relevant experimental data is presented in the Table 

4-2. 

The power generated by the model being quite small, a 

simple rope-drum brake was used as a dissipating means. 

The brake-drum was driven through a timer-belt and 

associated pulleys. The rotational speed ratio between 

the main axis and the break-drum was 1: 1. Tests were 

conducted for various wind velocities, jet momentum 

coefficients and breaking torques. The jet momentum 

coefficient was varied by the supply of air to the 

wall-jet manifolds. The braking torque was varied by 

varying the tension in the rope brake. For each 

operation condition, the model was allowed to attain a 
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steady state and the rotational speed of the model and 

other operating parameters were recorded. The data 

obtained is given in the Table 4-2. 

Table 4-2 

W 
ms 

1 2 1 2 1 2 1 2 

2 C . 52 1.42 2.13 1.99 2.54 2.38 3.20 2.93 

m/s 
N 28 32 37 42 
rm 

3 C4 . 68 0.63 0.94 0.88 1.13 1.05 1.42 1.30 

m/s 
N 30 35 41 46 
rm 

4 C . 38 0.35 0.53 0.49 0.63 0.59 0.80 0.74 

m/s 
N 38 43 41 46 
rpm 

5 C . 24 0.23 0.34 0.32 0.41 0.38 0.51 0.46 
/ m s 

N 22 27 44 41 
rpm, 

6 C . 17 0.16 0.24 0.22 0.28 0.26 0.35 0.32 
µ 

m/s 
N 18 22 28 36 
rm 

1 Jet-momentum (Through Air inlet 

pressure) 

2 Jet-momentum (Through Mean Jet Air 

Velocity) 
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CHAPTER 5 



CHAPTER 5 RESULTS AND CONCLUSIONS 

5.1 Pressure Components of Lift and Drag Coefficients 

The values of the pressure components of lift and the 

drag coefficients (3.8.7) which are based on the 

static pressure distribution around the octagonal 

cylinder subjected to the tangential wall-jet are 

experimentally obtained. The basic results of these 

investigations, the details of which are given in 

section 4.3.2 are presented in Fig 5.1 to 5.8. Fig 5.1 

shows the lift and drag coefficients obtained for 

different locations of the jet position for which other 

conditions are kept constant as specified by the exp no 

49 to exp no 58 of the Table 4-1 (page 194). This 

shows that for the octagonal cylinder the maximum 

aerodynamic lift coefficient occurs around a jet angle 

of 145'measured from the upwind direction. 

Pressure components of the lift and drag coefficients 

are plotted against jet momentum coefficient for four 

values of Reynolds numbers, Rr, 0, 
(Appendix 3A), 

2.8x 10° . 4.3x 10° . s. 8x I0 . /. 3x 10°, and for three jet angles 

125°, ta5°. 115°. These are shown as broken lines in Fig 

5.2 to Fig 5.5. As the jet angle increases from 

125°to 1}s°the magnitudes of the pressure component of 

the lift and drag coefficients increase. However for 
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the four Reynolds numbers tested here the "magnifica- 

tion factor" based on the pressure component lift 

coefficient decreases. "Magnification factor" is 

defined as the ratio of lift to jet momentum 

coefficient (38). For example, where the Reynolds 

number is constant and 5.8 x 104 the "magnification factor" 

increases from 14.9 for jet momentum coefficient of 

0.75 to a value of 30.8 for a jet momentum coefficient 

of 0.25 (Fig 5.4). 

For increasing values of Reynolds numbers for a given 

jet momentum coefficient the pressure components of the 

lift and the drag coefficients increase in magnitude. 

This type of variation may be explained from the fact 

that the measured values of the pressure components of 

the lift and the drag coefficients do not take into 

account the effect of the shear stress at the octagonal 

surface. It may be noted that for zero jet momentum 

coefficient the pressure component drag coefficients 

are essentially in the range of 0.45 to 0.95 over the 

range of Reynolds number of 2.8x i o4 to 5.8 x 104. 

5.2 Lift and Drag Coefficients 

The theoretical procedure for estimating the lift and 

the drag coefficients from the experimentally measured 

values of the pressure coefficients of the lift and the 
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drag coefficients is given in the sections 3.8.7. This 

theoretical procedure allows for the shear stress at 

the octagonal surface and the jet reaction effect. The 

values of the lift and the drag coefficients obtained 

by the procedure are shown in Fig 5.2 to 5.5. The 

values of the lift coefficients are always lower than 

the values of the corresponding pressure components. 

However the values of the drag coefficients are greater 

than the values of the corresponding pressure 

components. This is due to the effect of the surface 

shear forces on the drag forces on the octagonal 

cylinder. The general trends of the variation for the 

pressure components of the lift and the drag 

coefficients with respect to the jet momentum 

coefficient, jet angle, and the Reynolds number stated 

in the section 5.1 are essentially valid for the lift 

and drag coefficients. As the Reynolds number (Re) 

increases from 2.7 x 104 to 5 .sx 104 the effect of the surface 

shear stress decreases for a given value of C. or with 

increased values of C, for a given Reo. However as the 

Reynolds number increases from 5.5X 104 to 6.9 x 104 the 

effect of the surface shear stress on the drag 

coefficient increases. 

For zero values of the jet momentum coefficients-the 

drag coefficients are essentially in the range of 0.5 

to 1.1. These results correspond to the values of the 
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drag coefficients for an octagonal cylinder for 

cross-flow within the above range of Reynolds numbers, 

neglecting the effect of the protruding lip for the jet 

formation (Fig 3.5) and the effect of the orientation 

of the octagonal cylinder. Maximum values of the lift 

coefficients (CL(Max) for the test range of Reynolds 

numbers (Re) 2.7x loo, 4.3x 104,5.8x 104,7.3x 104, shown in Fig 

5.2 to 5.5, are located and these maximum values are 

re-plotted against C, for different jet angles and are 

shown in the Fig 5.6. As the jet momentum coefficient 

increases the maximum values of the lift coefficients 

increase. Fig 5.6 also shows the relationship of 

CL(Max)/Co against the C.. Here CD is the drag 

coefficient corresponding to the conditions for the 

occurrence of C1(Max). It may be observed that the lift 

to drag coefficient decreases with C. for all jet 

angles, 0 within the range of C . =0 .25 to 0.75. However 

this ratio should be zero for c, =o indicating that a 

maximum value for the lift to drag ratio within the 

range of C=0 to 0.25. 

5.3 Effective Circulation r 

Assuming the validity of the Joukowski's theorem for 

the case of an octagonal cylinder with a tangential 

wall-jet the relationship between the effective 

circulation and the non-dimensional jet velocity (V, /6) 
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is calculated from the equations in section 3.6.8. Fig 

5.7 shows the relationship between the effective 

circulation and the non-dimensional jet velocity. It 

may be noted that the circulation created by the 

tangential wall-jet is essentially independent of the 

Reynolds number within the range of Reynolds numbers 

4.3 x104,5.8 xi0,7.3 x 104. Flow field created by the tangen- 

tial wall-jet is similar in nature to a flow field 

created by a axially rotating cylinder. Circulation 

due to a axially rotating cylinder (Magnus Effect) is 

calculated and shown by a coloured line in the Fig 5.7. 

Comparisons of the circulation created by the 

tangential wall-jet and the Magnus Effect has been 

made. Upto a non-dimensional peripheral velocity of 

3.8, with an End plate to Diameter ratio of 2 the 

circulation created by the Magnus Effect is lower to 

the circulation created by a tangential wall-jet having 

a non-dimensional jet velocity of 3.8 for flow 

conditions with Reynolds numbers 4.3x 104,5.8x 104,7.3x io4. 

Hence it is possible to achieve a higher lift force by 

using a single tangential wall-jet, than the Magnus 

Effect for corresponding values of non-dimensional jet 

velocity and non-dimensional peripheral velocity 

respectively. 
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5.4 Stream Lines for the Main Flow 

Stream lines around the octagonal cylinder for 

different flow conditions are shown in Fig 5.9 to 5.13. 

The flow field around the octagonal cylinder is 

modified by the tangential wall-jet and as mentioned 

earlier the flow pattern created is similar in nature 

to that of the Magnus Effect. In the present work, in 

the mathematical Model-2 (Left Hand Contour) (3.2.2) 

the upstream stagnation point has been calculated for 

the Model-2 (Right Hand Contour) (3.2.2) and for 

different values of the jet momentum coefficient 

upstream stagnation point has been kept unchanged. 

This has caused the distortion of the stream lines at a 

point closer to the upstream stagnation point. It is 

possible to eliminate this distortion due to the strip 

on the upstream flow field and on the stream lines by 

relocating the upstream stagnation point for different 

flow conditions. This will require repetition of the 

computer runs with the FORTRAN programme PART4N 

(Appendix 5A) for all the different flow conditions 

i. e., jet momentum coefficients, and jet angles. 

However this was not carried out as the influence of 

the distortion has negligible effect on the calculation 

of the pressure distribution. 

220 



C 

9 

8 

7 

6 

5 

4 

3 

2 

1 

0 

-1 

_2 

2 

1 

0 

_2 

-1 

Fig 5.1 Effect of the Jet Angle on 
Lift and Drag Coefficients 

221 

0 
0 

0 e 



c 
10 

9- 

8 

7 

6 

5 

4 

3 

2 

1 

0 

5 

4 

3 

2 

1 

0 

Fig 5.2 Lift and Drag Coefficients against 
Jet-momentum Coefficient (8. =1250,1350,1450) 
Re = 2.8 x 10 

0 
222 

C 
µ 

C 
µ 



12 

11 

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

0 

4 

3 

2 

1 

0 

Fig 5.3 Lift and Drag Coefficients against 
Jet-momentum Coefficient (6. = 125,135°, 145) 
Re = 4.3 x 10 

0 

C 
µ 

C 
11 

223 



12 

11 

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

0 

5 

4 

3 

2 

1 

0 

Fig 5.4 Lift and Drag Coefficients against 
jet-momentum coefficient (6j= 125,1350,145°) 
Re = 5.8 x 10 

0 

Cµ 

C 
µ 

224 



12 

11 

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

0 

cý 

5 

4 

3 

2 

1 

0 
C 
. AA 

Fig 5.5 Lift'and Drag Coefficients againsto 0 
Jet-momentum coefficients (9. = 125,135p, 145) 
Re = 7.3 x 10 

0 
225 



CL (Max) 

12 

11 

10 

9 

8 

7 

6 

5 

4 

3 

2 

i 

0 

7 

6 

5 

4 

3 

2 

1 

0 

I 
%"` 

0.2 5 0.57 - 0.7 5 C,,, 

Fig 5.6 CL(Max), CL(Max)/ CD against C 

for 9. = 125°, 135°, 145D 
J 

226 



3 

"n 

d' 

M 
3 
z 

3 
M 

b 
IT 
R5 

rn 

Ný 

N 

C) 
.H w 

TH 

L 

227 

d' MNrI0 
NHO r-i 01 CO N lD ßf1 co 



U 

0 
4-4 

Q) 
04 
w 
0 
+ý s s~ U 
Nv 

U 

44 
4-4 
Q) 00 
O 
UO 

a) 

0 

0 

d' 

0 

N 

O 

229 

0 

0 

00 

ýD 

d' 

N 

0 

ri 

30 
r-i 

a+-) 
4J 
a) Tj Q) 
ro v 
r-+04 PQ U) 

Cd 4-3 

0 

0 
Ei 

b 
a) 
U) 
0 
a 
0 
a 

4) 
4-4 

0 
a) U 

tai 

0 
4-a 

P4 
w 
0 
4) 
a) 
. -, U 

4-4 
4-1 
a) 0 
U 

rn 
Lr) 

G-4 



Flow field represented by the stream lines for 

different flow conditions also indicate the effect of 

the jet momentum coefficient and the jet angle on the 

aerodynamic lift created by the tangential wall-jet. 

This is possible by a comparison with the flow field 

created by the Magnus Effect. 

5.5 Coefficient of Performance of the Proposed Wind 

Turbine Generator 

Results of the theoretical evaluation for different 

values of blade-tip / wind speed ratio for the optimum 

power coefficient of the proposed wind turbine 

generator concept is shown in Fig 5.8. The present 

evaluation is based on three octagonal cylinders with a 

jet height ratio of 0.1, which has a direct influence 

on the jet momentum coefficient, (C,. The power 

coefficient of the wind machine increases with an 

increase value of c.. However the magnitude of jet 

height ratio is limited by the practical arrangement 

for introducing the two-dimensional wall-jets. The 

drag coefficient also increases with a greater value of 

jet height ratio, due to the increased octagonal 

cylinder projected area. A value of 0.1 is thus a 

compromise between the requirement for achieving a high 

C, and the above detrimental effects. 
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5.6 Major Parameters for a Three Bladed 100 kW Machine 

Following are the major parameters for a Vertical Axis 

Wind Turbine Generator with tangential wall-jets for a 

rated net power out put of 100 kW. Investigation and 

the equations given in the sections 2.3,2.6.3 and 
A 

2.6.4 are been used. It is to be noted that non of the 

advantages or optimization given in the sections 2.4, 

2.6.1 and 2.6.2 have been included in determining the 

following major parameters 

1 Rated power of the Machine 158 kW 

2 Net out put power of the machine 

3 Power required for the Jet 58 kW 

4 Number of blades 3 

5 Operational Wind Speed 10 m/s 

6 Height of the octagonal cylinders 

7 Radius of the Machine 18.9 m 

8 Coefficient of performance 43 

9 Solidity Ratio 0.28 

10 Jet height 0.189 m 

10 0 kW 

16.2 m 

11 Volume rate of air required for tangential 

wall-jets of three octagonal cylinders for 

simultaneous operation 229.63 rn3/s 
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5.7 Conclusions 

The generation of aerodynamic lift due to the 

tangential wall-jet on an octagonal cylinder for the 

application to a Vertical Axis Wind Turbine Generator 

(VAWTG) has been investigated. Two fluid flow 

mathematical models have been developed and used in the 

theoretical investigation. The stream lines of the 

above two-dimensional simulated flows were computed 

around the octagonal cylinder and have been used to 

evaluate the two mathematical models. Boundary layer 

growth and the surface shear stress on the octagonal 

cylinder have been evaluated for both the laminar and 

the turbulent flow conditions. 

By introducing a parabolic velocity profile within the 

laminar sub-layer of the traditional 1/7th Power law 

turbulent boundary layer and obtaining the solution for 

the Momentum Integral Equation for turbulent flow 

conditions the boundary layer growth and the surface 

shear-stress are evaluated. The turbulent boundary 

layer separation is predicted from the condition of 

shear stress becomes zero. In the case of the Laminar 

boundary layer the 4th degree polynomial velocity 

profile was matched with the main flow for both 

magnitude and gradient. This modification to the 

traditionally used procedure for obtaining the laminar 

boundary layer development is applied for the case of a 
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tangential wall-jet with a non-zero pressure gradient. 

The feasibility of this procedure for flow past bodies 

such as flat plates, smooth circular cylinders with 

tangential wall-jets have been tested. In the present 

investigation the laminar boundary layer occurs only 

over a small region. Therefore the above modification 

in evaluating the laminar boundary layer comparable to 

the use of the traditional Pohlhausen's approximate 

method and does not significantly influence the overall 

lift/drag calculation. Pressure components of lift and 

drag forces have been obtained which are allowing for 

the shear stresses and the jet reaction force. 

The principle of lift generation by the wall-jet is 

similar to the Magnus effect. A preliminary examina- 

tion of the application of the tangential wall-jet 

principle in place of the axially rotating cylinders in 

the Madaras Rotor Concept gives as much as much as 30 

increment in the net-power out put. 

A new concept of VAWTG based on the aerodynamic lift 

due to the tangential wall-jet is proposed. Such a 

machine will have an optimum value of power coefficient 

for blade-tip /wind ratio of about 1.0. Optimum jet 

momentum coefficient and the corresponding power 

required for the formation of the tangential wall-jets 

have been established. Net power out-put by the 

machine has been evaluated. 
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Investigations showed that the power coefficient for 

certain operating and design conditions for this type 

of wind machine may exceed the traditional Betz limit. 

This is due to the pressure variation along the surface 

of the "stream tube" past the "Actuator Disc" 

representing the machine. Hence the limiting values of 

the performance coefficient depend on the shape of the 

stream tube considered. It is shown that in general 

the use of the Betz limit as the performance indicator 

for a VAWTG where the pressure recovery between the 

operating elements is possible may be misleading. 

Experimental studies have been carried out on a 

stationary octagonal cylinder with a tangential 

wall-jet and the pressure components of the lift and 

the drag forces have been obtained. A single 

tangential wall-jet at an angle of about 145°from the 

up-wind direction can generate lift, adequate for the 

proposed wind turbine generator. A wind tunnel model 

of the proposed concept of the wind machine consisting 

of three octagonal cylinders mounted on a vertical axis 

was fabricated and tested for the feasibility of the 

application of the tangential wall-jet principle. 

Theoretical and experimental studies have confirmed 

that it is feasible to use the principle of aerodynamic 
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lift due to the tangential wall-jet on an octagonal 

cylinder for a Medium / Large scale Vertical Axis Wind 

Turbine Generator. 

Further work is required through prototype development 

and testing to compare the theoretical performance of 

the machine with the actual operational performance and 

to evaluate the practical difficulties in implementa- 

tion of the tangential wall-jets. 
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Appendix 2A 

Lift and Drag Forces Due to the Magnus Effect 

Lift force due to the axial rotation of a cylinder can 

be expressed in the form of a vector as; 

2A-1 L= (-21-7r 2H P) (W x U) 

The drag force due to the axial rotation can be 

expressed in the form of a vector as; 

2A-2 D= (Co prHU�t)U 

Where; 

LI=W-V 

([)xR) 

(see Fig 2A. 1) 

.ý 

w 

Fig 2A. 1 

2-1 



Therefore by using the unit vectors i, j, %,, 

R=(Rcosß)1+(Rsinß)j 

ý=(ý=)k 
cu - ý%uzýk 

LJ=Wi 

Therefore; 

ijk 
V00 f) 

z 
kcosß Rsinß 0 

= [-Rnsinß]±y[Rncosß] 

hence the components of the v in the non-dimensional 

form can be given by; 

2A-3 
VX=-Dz"sin# 

i� 

R 
Vy= Oz - cosß" 

equation 2A-1 can also be expressed as; 

ijk 

L=-217r2pH 00w 

U. 
X 

Uy WZ) 

_ -217 r2pHIi(-U, Wz)+ j(UXWX)l 

Therefore the components of the non-dimensional lift 

force can also be written in the form; 

2A-4 217r2pJIwz(Uy) 
L_= (pI«2rH) 

2T7 io Uz L'X 
Lv -- (p1ý 2rH) 
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The components of the relative velocity of the cylinder 

can be expressed as; 

2A-5 U=W -V 

Uy=-Vy 

The two components of the non-dimensional drag force 

can expressed as; 

2A-6 CDP(rH)UºmUX 
n= LX ( PW2rH) 

CDP(YH)U�tU 
Dy = (pw2rH) 

Therefor the the non-dimensional lift force given by 

the equation 2A-4 can also be expressed as; 

2A-7 
L_ 2TwzR. 

) zU Lx 
R nz Wy 

L_ -2ý 

LUz Rnz 
U 

yR nz W 

and similarly the components of the non-dimensional 

forces given by the equation 2A-6 can be expressed as; 

2A-8 DX = CxUmUX 

Dy=CDUmUy 

Therefore the components of the total force at any 

orbital point can be expressed as; 

2A-9 Fx = DX +L 

Fy=Dy+Ly 
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and therefore the instananeous power due to the axial 

rotation is; 

2A-10 F=F -V= FXVX+FYVY 
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Appendix 2B 

Lift and Drag Forces due to the Tangential Wall-jet and 

the Power Required to Form the Jet 

The components of the lift force due to the wall-jet on 

an octagonal cylinder may be obtained from 

2B-1 L= _PCrr2HUm(CIJ 
x U) 

Where, Cris the ratio of the lift coefficient to the 

jet momentum coefficient, 

C= 
I( 

ý` 2 Um r 

Therefore the non-dimensional components of the lift 

are; 

2B-2 pC, rHU(i Uy) 
Lx -pW2( 

rH) 

2B-2 pC, rHU, n(f_I. zUX) L'' 
ply/'2(rH) 

And the components of the non-dimensional drag 

coefficient can be expressed by the equation 2A-6 of 

the Appendix 2A. 

The Jet momentum coefficient I_Lz-ýtCm) 

and from the jet location angle range (Fig 2.2B) 

17 
0>, 8 >2 
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31-l 
>ß>217 

2 

The jet momentum coefficient C, is taken as the 

negative value, and the jet location angle range of, 

[1 317 
22 

The jet momentum coefficient C, is taken as a positive 

value. (See Fig 2B. 1) 

---ý 

Fig 2B. 1 

yr 

Power required to form the tangential wall-jet PN can 

be expressed as; 

2B-3 P, =rrCp(To-TQ) 

and V? j 2= 17 NCho -h 

Where TiN is the efficiency of the nozzle. 

(ho-k1) =CP(To - T, 
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=CPT", 
(T(3_1) 

T, 

By substituting the, 

n To_ p° 
_( nl 

T, pI 

Where,, v-1 
n= 

v 

2B-4 v2 
21 , INCPT 1ýýR- 1 

and To - Ta 
7Ic-To_TQ 

Therefore, 

2B-5 I a T o-T a=c"TQ 
(O_ 

1 
77 

and 

2B-6 71 
T1n 1+ -(on 

1 

v21+1/17, (o- 1) 
ýR _ 2 

(11NCPTa)[ 

a[ 

1] 

Therefore the power required to form the jet is; 

2B-7 
PN 

rhC pTQ(o"- 
l 

77 c 
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Appendix 3A 

Non Dimensional Conversions Used in the Document 

Following are the basic non-dimensional conversions 

used in the thesis. 

1. Non-dimensional Distance = Distnnro 

2. Non-dimensional Velocity = Velocity 

3. Non-dimensional Force = Force 

4. Non-dimensional Power = 

pw2(rH) 

Power 

pW3(rH) 

5. Non-dimensional Circulation =r 

6. Non-dimensional Shear Stress = Shear Stress 

pL�2/2 

7. Reynolds Number 

8. Reynolds Number 

Re = 
pWl 

p4 /(2r) 
Reo = 
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Appendix 3B 

Determination of the boundary conditions at the 

Jet-entrance 

In prescribing the boundary conditions of the contour 

C2, in 3.4.1 the stream function at the point A of the 

jet has been taken to be zero (O^=o). The velocity 

profile at the jet entrance is prescribed by the 1i 7'th 

Power Law (Fig 3B. 1) 

A 

s 

S 

Fig 3B. 1 Jet Velocity Profile 

qS 
)1/7 

qm ax 
h/2 

3-2 



3B-1 
=q 

(2s) /7 
q- 

max h 

Where, 

3B-2 
q 

mean 

2O /z/2 
qds 

h 

and hence, 7 
q 

mean 8q max 

The jet momentum Coefficient C. 

C_ 
JetMomentum 

' Wind(air)Momentum 

Therefore, 

3B-3 p grn aa(hX 1 )gmean 
Cµ= 

pW (2rX 1 )W 

q 
m2 oan Cý` 
W2 2r 

From 3B-2. 

7 
Cµ- 

(max)2 

W22r 

q 
max 

SC 

W7 (h/2r) 

Therefore 

8Ic,, gmax =- (h/1)sin(n/8) 

For the octagonal cross-section, hhn 
2r l8 
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From 3B-1, 

2s m 

din-d 
h/ l 

qmax 

n-d 

Where; 1 
m=- 7 

On the jet AB upto the mid-point M the stream function 

can be expressed in the form of; 

P` h/l gmax 
ml n-d 

(Fig 3B. 1) 

Where; ml =m, + 1 

and from the mid-point M to the point B the stream 

function can be expressed in the form of; 

ßp2=-2K1K2 
h )n'+ 

K1 K2Sm 
21 

Where; K1=q max 
n-d 

2m1 
K2= 

h/ l ml 

(Fig 3B. 1) 

Hence, at point M the stream function becomes; 

ýM=-K1K2" 
21 

and at point B stream function becomes; 

cB=-K1K2" 
h ml 

2l 
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or, (p B= 2(Pm 

Now with respect to the boundary conditions at A, B 

boundary conditions on the remaining sides of the 

contours Cl and C2 are determined. (3.4.1 , 3.5.1) 

3-5 



Appendix 3C 

Slip stream velocities at the contour C2 

Considering a uniform stream of velocity U parallel 

with the x axis, (Fig 3C. 1) for the stream function on 

the contour C2 0 is; 

(for y=constant) 

0=Uy 

or, O=UrSinO 

By differentiating gives 

u=a0= öy 

v=-ate=o ox 

For a uniform stream velocity V parallel with the y 

axis (Fig 3C-2) (for x=constant) 

q5=-Vx or O=VrCos6 

By differentiating the above equation we get; 

u=aý=0 
ay 

a v=- 
ý=V 

a . ýý 

Therefore a uniform stream having velocity components U 

and V in the directions of x and y, 
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O=Uy-Vx 

or O=UrSin0-VrCos0 

Therefore the slip velocity on the contour C2 is given 

by; 

30 
=-USin0+VcosO an 
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Appendix 3D 

Momentum integral equation with dU UR (3y 

6 

The momentum integral equation is written in the form; 

D-1 
U2d6+(20+ 6*lUdU_Tov 

du 
dX J dX p ay b 

For a non-zero pressure gradient, the velocity profile 

may be expressed as a fourth degree polynomial 

equation; 

= 
u2 
U= 

A0 }A1 rl + A2% + A3'%3 + A477 4 

Where ;y 
TI 6 

By using the boundary conditions; 

D-2 

At y=b (U)b=U 

77 
au 

_UR 
(ay), 

5 6 

D-3 

a2u 
=0 ay2 

b 

At y=0 u=0,77=1 
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a2u U dU 

aye 0V dX 

using the boundary conditions given by the equations 

D-2 and D-3 with the fourth degree polynomial; 

A0= 0, 

A 
A2=-2, 

A 
A4= 1-6-R 

Where; b2dU 
A=- 

v dX 

A 
A, =2 +6-R 

A3=-2+2R+A 
2 

Hence the velocity profile can be expressed; 

=1 2+6-Rn-ZnZ2-2R-2 173+( 16-R 
)77 

OR u= FCij)+ AG(q) + RH( ) 
U 

D-4 

Where; F(q)= 2r7-2773+r 4 

G( r7) =1 6(77 - 3q2 + 3773 - 174 

H(q) = -q (I _Tl)(1 +17_772) 

The displacement thickness; 

( 

b` -Jo Uldý 
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1[1 -F(7I)-AG(t7)-RH(7I)]di7 
0 

b -Jo \1 UldTj 

_ [1 -F(77)-AG(i)-RH(77)]d0 
0 

D-5 b* 3 ( A) 
-R 6 10 120 3 

and the momentum thickness; 8 'u 
_u 6oU1U 

dý 

D-6 

[F(77)+ AG(77)+RH( )][1-F( )-AG(i7)-RH( )]dTI 
0 

I 

77 =Q-R H( )[F( )+AG(Tl)- 1+F(77)+AG(77)+RH(i7)]d 
0 

Where; 37 A A2 
313 943 9072 

from equations D-4 and D-6; 

e 
-=Q+J b 

Where; R 
J= 

7560 
(29A-372R+744) 

Therefore; 

6* 6*16 
(10 

120 5) 
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tie-t0 2+-R ýQ+`ý)=f2 CCU U66 

by defining, 

D-7 e2dU K= -" v dX 

D-8 e2 
z=- V 

D-9 
K-Z 

dU 
dX 

Therefore; e2 
K° b il°/1(Q+J)2 

The momentum integral equation becomes; 

U dZ+r2+f 
, 
)K=f2-R(Q+J) 

2 dX l 

if R= O from equations D-6, D-7, D-8, D-9 

K=4Q I-A Q- 
16 - A)] 1 
240 

If s is the distance measured along the surface in the 

down stream direction of the boundary layer flow, the 

momentum integral equation becomes; 

D-10 
äs(avýas)- 

ý[ i-'ý(Q-lz4o 
)] 
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Appendix 3E 

Initial Values of Z and dZIdX at the Stagnation Point 

For the numerical integration procedure given in the 

section 3.7.5 for the Region 1 and Region 2 the initial 

conditions of z and dZ/dX are determined. With the 

approximation R=R(x)=0 the initial values are calculat- 

ed in this section (The initial conditions for R=R(x)760 

are determined in the Appendix 3F). 

From the equation 3.7-38; 

dZ F(K) 
dX U 

and, K=Q2A 

K=ZdU 
dX 

definitions are used to calculate the initial values 

of, 

Z(= Zj 
dZ 

and 
dX 

dX dX 0 

using the non-dimensionalisation; 

U 
X= x- 

l 

Therefore, 1I- d1 
K Zl 

dX 

3-12 



E-1 
Z =ZW02W=Re 

e2 

l vt l 

OR e22 

Z; =Re -- öl 

v 
=Re"Q 2"u"I 

- (dU/dX) 12 

2 vl A1 
-Re Q 

L� (äV/dX) l2 

Q2 Al K 
Z=_ 

(dV'/dX) (dV /dX ) 

E-2 dz* F(K) 
dX V 

E-3 K 
Z= 

(äV /dX ) 

and K= Q2 .A 

Where, 37 A A2 
Q 

315 945 9072 

F(K)=2f2-2K(2+f, ) 

Therefore, 

E-4 
F(K)=2Q 2-2A_/1 2Q- 

A 

13 120 

From E-2 and E-4, 

clZ* 2Q[2- sly-l(2Q- 
120 )J 

dX 1- 

3-13 



=4Q Ll-ýlI Q -, 2406/) L 

Initial conditions for the stagnation point S; 

Ko0.0770 
Z0 

(dV /dX )o (dV /dX )o 

If X-O, v- o 

F(KK) 
--> \'/ 

Therefore by taking the limiting values, 

F(K)dx[F(X)] cdK/äX dF(K) 
lim _= 
x-+o V dV /äX dV /dX dK 

Z; = 
K 

dV /äX 

dV dK K d2 
dZ* dX 

. 
dX 

V 

dX2 

dx (dV/dx)2 

dF(K) 
[2Q[2- ?s- n(2Q 

120 
)jj 

dK dn(Q2A) 

2Q[ 
is 
2 2Q+60]-2- 2-is /1(2Q 12A 0 Jý 

(Q2± l 2AQdQ 

Hence, for I{ -) KO, X -) 0 

Q_ 
37 

_ 
A° 

_ 
A0 

0 
315 945 9072 . 1045 ° 

Ao = 7.052 

dQ 
=- 

1- 
, 104536 = 2.612X103 

dA0 945 
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dF(K) 
dK J1; 

m-+o 

Therefore; 

= -5.556 

dZ' 
11 

)=-Ko (d2V/dX2) 

dX ° 5.556 (dV /dX )2 

dx o= 
o. obs2 

(d2V/dX2) 

(dV /dX) 2 
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Appendix 3F 

Initial Conditions for Stagnation point for R#0 

From the boundary conditions specified by the equation 

B-2 in the Appendix 3B; 

F-1 6(dUl 
R=U ýdYia 

employing 62 dU 

v dx 

and A 
dU/dx 

S=rdU1 lay ib 

F_2 
b- vý 

-Vv duldx 

R=r"J"S 
U 

Therefore; 0 

dR 
vS1 

dý \äS SfdU 

cox U2Fclx U dx U2 äx 

F-3 dR S dA/dx d2U 
_ dx U 2ý dU/dx dU/dx dx2 

dS s dU 
1 +- dxUd _x 
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from the equation 3.7-39, K 
Z= 

(äU/äx) 

F-4 dZ (dU/dx)(dK/dx)- K" (d2U/dx2) 

dx (dU/dx)2 

But, 

F-5 dK_dA(Q+J)2+2A(Q+J) dQ+dJ 
dx dx dx dx 

from the equation B-6, F-3 and F-4 ; 

F-6 U (dK/dx) d2U/dx2 

2 (dU/dx)-K (dU/dx)2 -(2+f') A (Q+J)2 

+ (Q+J) 2-2R+A 
6 

When, CQ+J): f- 0 

The differential equation F-6 for A may be expressed 

as; 

F-7 
LdA = 2T , 

dU/dx 
+ A(Q + J, R) 

d2U/dx2 
dx u dU/dx 

2A dR ((29A-744R±744) 

7560 dx 

Where, 

dQ+ 29R F-8 
L(Q+JR)+2A 

(d,, 

Ill 7560 

37 1 12 
Q-(315 

9+5 9072 
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29A-372R+744 
J'= 

7560 

F-9 r1 
T'=T-2R-2AR\2J"-51 

1164 79A 2 A3 
T=2- ++ 315 7560 4536 

Hence; 

37-A 5A2 62-31R+29 A 
L= - +R 315 9072 630 

T'= 
(2 

- 
116/1 

+ 
79/12 

+ : ý13 )-2R [I 
+ 

A(29/1-372R- 12) 
313 7560 4536 3780 

from equations F-3 and F-7, 

dA 
L+ 

2A 
(29A-744R+744)Vvý" 

S 
=2T'du/dx dx 7560 2Uý(dU/dx) U 

(d2U/dx2) 2A 
+A (Q +J 'R) 

(dU/dx) 7560(29 
1- 744R+ 744) 

U 

F-10 S(d2U/dx2) 
+ 

ds dU/dx 

2(dU/dx) dx u 

For x-0 

U-0 

du 
- (#oý 

äx 

:1( 0) (i"10ý 

Left Hand Side of the differential equation F-10, 
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RR0=A0 lim 
s 

(du/clx)o xýo lý' 

Assuming that S -4 0 at x -4 0 

The case where s -4 ý, 0 (m so) is later considered. Where 

in that case d (dx 

0 

limit 
S= 

x-30 

(dS/dx)o 
ß 

(dU/dx)0 

A0 

(dU/dx)o 

(dS/dx)o 
(dU/dx)o 

Assuming that the S/U is a finite limit, 

37-Ao 5A 62-31R+(29/4)"Flo 
L 

315 9072 +R0 630 
Lo 

2940(40-372R0- 12) 
T' ýT 2R 1+= ° T' 0 3780 ° 

When, To -T for A =Flo 

Therefore the differential equation F-10 reduces to, 

y 2To(dU/dx)o 1d/1 
L0 l(29Ao-744R0 +744) 

dx 7560 U 

ý- 
2A0 dS 

)(29A0-744R0±744) 
7560 

(dx 

0 

y K- CIU 
2 

+ 2ý0 - B(29AO-744Ro+744)) / tt 
7560 

(dx 

0 

+ 
(Cl zU z)0 

°l 
r+J, 

oR 
l+ ßr29.1o-744Ro+744 

(dU/dx)o 
Qo °J 7560 t 
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For a finite value of (dAldx)o the numerator of the RIHS 

of the equation F-12 should be equal to zero. 

Hence; 

T 
dU 

_ 
yýoA 

29A1 -744R+744 
dS 

0 
° dx ° 7360 01` °J 

(dx 

1_ 
(dU/dx)o (dU/dx)o 

_0 (dU/dx)o (dU/dx)o 

Thus, 
T, o 

dU 
=0 dx. 0 

T'o =0 

For x-0 the differential equation has the form, 

clA 
_ 

2T 'o(dU/äx)o 
äx 

)O(Lo+ßBo) 

U 

(d2U/dx2) 
+ °" A0[(QD+J °R°)+ßB°] (dU/dx)o 

Where, 
B0 =v (29140-744R0+744 

7360 

Using the L'Hospitals rule, 

cAd 
(ä2U/äx2 

clx o 

(L0 +ßB 0)=2 dx 
(T') + (äU/äx)0 

°' AO(QO 

But, 

dT' 
- 

d. 1 
- 

116+ 158A0+ 3/1 
_2 

dR 1+ 
A0(29i0- 372R0- 12) 

dx dx 0 315 7560 4536 dx 3780 

- 2R 
(dnl291 )0-372 [d. 

r Jo(29: 

1o-362Ro121 

3780 

)3780[ 

\d. v d. v 

3-20 



Thus the last two terms of the equation F-2 for, 

ýýRl 
have a (o) form 

If, 

(dS/dx) - (S/U)(dU/dx)o 
a= 

U 

d2S 
_S 

d2U dU dS S dU 
a° U /[ 

dx2 U dx2 dx dx Udx 
U(dU/dx)] 

a_ 
d22_ d2U 

2_ 
dU 

(a) /[(dU/dx)] 
dx dx dx 

22 

a=0.5 
Cl 2- 

ßd 
2 

ýLCdU/dx)) 
dx dx 

From equation F-15, 

dT'_ d/1 
_ 

116+ 15811°+ 3r1ä 
_2R 

58i1°-372R°- 12 
dx dx 0 315 7560 4536 ° 3780 

- 2dR 
[_3780A0R0+1+ 372 140(29A0 - 372RO - 12) 

3780 

also can be expressed in the form of; 

dT' 
- 

d11 (DO) -2dR 1 140(29A°-744R°- 12) 

dx ° dx° dx 3780 

Where, 1 16 158 1° 3i1° (58A°-372R°- 12) 
D0 

315 + 7560 + 4536 -2R0 3780 

But on substitution for a in the equation for (dR/dx) 

dR ß ((di/d. v)o (d2U/d. ß. 2)0 

dx o=vo zoo (dU/dx)o - ýo 
(dU/dz )o 
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Substituting for dR (dx) 

dT" 
= 

do 
21 

A0(29/1°-744R°- 12) 
dx ° dx 

)OEO 

3780 

dx2 

__Cd2U 
(vIý0 a2 dU 

l dx /0 

Where; 

E-D -ß 
VF" 

1 
A0(29A0-744R0- 12) 

00+ ßl0 3780 

Hence substituting for (dT'/dx)ointo equation for 

(dA/dx)o 

cl A A0(29A 0-744R0- 12) 
(L0+ßB0-2E0)_-4 vý0 1 

(dx 

o 
3780 

d2U 
(C1ý2(%/CLýx2)0 

La__ 
ß. 

A0(Q0+J 0R0+ßBo) 2 (du) CCIU /cl x )0 
dx 0 
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Appendix 3G 

Initial Conditions for the Leading Edge 

Integration of the boundary layer for the Region-3 has 

been stared with the initial conditions; 

x-'0 öý0 

and U-)0 

Therefore 62 du 
A -) 0 

v dx 

and dU 
lim -0 
x->o 

dx 

lim SSO 
x -*O 

lim 
-S 

0 
X-0 dx 

from F-2 

Rý vV nS 
U (äU/dx) 

from F-8; 

L=(Q+JR)+2A 
dQ+ 29R (d 

A 7560 

Where; 37 A A2 

315 943 9072 

Therefore; 37 
umL -) 
x-4o 315 
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From F-9 
T'=T-2R-2AR 2J'-- 

3 

Where, 1 16 A 79A 2 X13 
315 7560 4536 

Hence; T' 1im -- 2 
x-0 

Therefore; 

(d, ')_[ 37 
_(dU/dx)X4 dx 

X +o 313 U 

(dj4 315X4 (dU/dx) 
dx o 37 U 

(dA 1260 (dU/dx) 
dx Xý0 37 U 

It may be noted that 

dA dU 
and dx dx 

should always take the same sign. 
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Appendix 3H 

Momentum Integral Equation for the Turbulent Boundary 

Layer 

In the presence of a laminar sub-layer. Momentum 

Integral Equation can be expressed in the form; 

H-1 1d 
ý2(l) 

l(V-v)udY- 1W 2 dV bvdY 

l dX ol dX o 

tW 16n-d 
-+ 

Pp 

Also from the Bernoulli's equation, for the flow 

outside the boundary layer; 

H-2 dP+pU dU=O 
dX dX 

For p= Constant 

The equation H-1 becomes; 

H-3 1d6 lW 2 dV 6 

I dX 
W 2ý l) 

o 
(V - v)vdy -I- dX o 

UdY 

TV 
+lS_VdV1, 

� 2 

pp n-d P dX 1 

The shear-stress at the wall can be expressed by the 

Blasius semi-emperical equation; 

H-4 y 
tW 

n_d 
= 0.0456 XV2 

I-'W - ön "1 

1/4 
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Which also can be expressed in the form of; 

H-5 V2 (1)1/4 

a wn d-0.0456- 1 /4 "- 
(V ' 6n-d) Re 

By using the substitution 

H_6 6n-d 
= p0.8 

Equation H-5 becomes; 

H-7 0.0456 V 7"4 
iWn-d 

(Re) 1/4 ßo. 2 

and thus the equation H-3 can be expressed in the form; 

H_S d1 dV b 
(V - v)vdY - dX o 

vdY dX 0 

_ 
0.0228 ]. ( V7 

)114 

-6 
Vdv 

(Re) 1/4 ön-d n-d dX 

OR 

J 

LHS-d ý1ýý_'2 äL 
dx 

(dX) 

0.0228 ]. ( 
V' 1/4 dV 

R. H. S. = (Re) 1/4 4 dX 

The velocity profile inside the turbulent boundary 

layer can be expressed by the Prandtl's 1/7 th Power 

equation, Where; 

H_9 u y1i7 
Uö 

Therefore; b 

0 
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6y 1/7 
}, 1 17 

0 6n-d 6n-d 

6n-d y )1/7_( 2/7 

V2y 
ldY 

06 n-d 
6 

n-d 

1, =v .7 72 

6 

I2 = 
JudY 

=V 
0 

"äY 6n-d 

Vy 817 

(bn-d)1/7 (8/7) 

I2=V"ön-a 
7 

ý8 

Therefore the equation H-8 becomes; 

dba-d 7 
V2 +6n-d( 

7 
VdV _7VdV+VdV dX 72 36 dX 8 dX dX 

0.0228 y7 1/4 

o. 2s (Re) 

(6n-d 

OR 

don-d 7 (V 2 23 a '[i 0.0228 V' 
1/4 

0 

dX 72l 72 clx n-d Re 1/4 ön-d 

OR 

H-10 

Al/4d6n-d 
7 

V2 +23 
dV 5/4 

dX 72 72V dX 
ön-d 
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0.0228 
V 7/4 0 

(Re) 1/4 

Here ; 
lim 

dbR_d 
I x--30 dX 

lim and 
bn-d"40 

ö°_d 
dödX d- Finite limit 

S/4 If 
N =6 

n-d 

H-11 dfl S 
0.25 

dba-d 

dX 4 
ýn-d 

cox 

and thus the equation H-9 becomes; 

H-12 d, 8 28 2 23ý dV 1 

dX 360V +72 V 
dXýý 

0.0228 
V 7,4 

Re'/4 

In the equation H-11; 

For X -) 08 -3 0 but 

at lim 
df 

finite value 
x-io dX 

Therefore from the equation H-ll; 

dß 1 13 dV, 
6+90 

0.0228V314 

dX 28 dX 7 Re 1/4 

Where ß=0 X=0 v0 
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Appendix 31 

Parabolic Velocity Profile for the Laminar Sub Layer 

In the Laminar sub layer velocity profile is prescribed 

by; 

I-1 u Ao+A77+A2'72 
l 

Where; 

11 =y= 
(y). (6) 

61 6 61 

and the turbulent layer is prescribed by; 

I_2 
uy 

)I/7 

Uö 

Therefore; u, 6c1 /7 

Uö 

b 
bn-d =1 

(6, ) 

n-d 

Applying the boundary conditions for the equation I-1; 

I-3 d2yUdpU äU 

dye y=o pv dx v dx 

1-4 Where; y=6t, u=Ul 

I-5 u=0, r7=0 
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therefore, Ao 

and u 
=A ji7+A2 

77 
2 

c 

I-6 äu Ui (A 
dy b1 

d2u UI l 
dy2 = (l (2A2) 

Therefore For the Laminar sub-layer shear stress at the 

wall 

I-7 Uc 
tw =, u 

(ay)y=o 

I-8 Ui 
"AI tw=µ 

(61 

From the conditions given in the equation 1-3; 

Ul U dU 

ö2 
2A2 

v dx c 

I-9 Therefore, 
_12U 

dU 
A2 6` 

U äx 

From the conditions described by the 1-4; 

u=U1 for A, +A2= 1 

and U 62 (dU/dx) 
Al= 1+-" 

U1 v 

From equation 1-6; 

I-10 du (U(UödU (dy 

q_o 
öl U1 2v d. 
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1/7 

UI=U. -` 6 

Therefore, 

UI 6C 1/7 

61 6 ö1 

Ub I/7 

Ul öl 

From Blasius's equation for the case where, 

(dP/dX) =0v (dU/dX) =0 

il( /4 
du 

= 0.0228 PU2 

cl y y=o (PU6/j) 

- 
Ut 

- pU 
ýt º/7 1 

61 6 61 

Assume that the same relationship between the 6A the 6 

prevails for the (dpldx) values closer to zero and 

hence; 

(ö1)6/7=66/7 
.1V 

)3/4 

U6 

OR 
11 

7/6 v )7/8 

6 0.0228 U6 

and therefore, 

2-cW ji(du/dy)y=0 
n-d oh/2 0(ti�2/2) 
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From the equation I-10; 

2v U, (I+ U 62 1 dLI 

R_d b1 U, 2v dx W2 

- 
2v V`+Vö dV 
Wl 6 n-d dX 

n-d 

But 

I-12 
_ 

2. V, 
+VdV .b 

n-d Re ö, dX n-d n-d 

and from the equation I-11; 

1-13 b 7/6 a-d 

6n-d 

(O. 

O28) a 

(Vöd/1) 

Therefore; 

11'-a 

n6-1d (0.0228)7/6 (Re)718 V'/8 

Vl_ 111V 
be (0.0228)1/6 (Re)iss (VÖn-d) 1/8 

n- d 

its 11 Sa-d 

(0.0228)'16 (Re)718 V7 

Therefore; 

1/4 VL=. 
(0.0228)(Re)3/4 

6L 6n-d 

n-d 
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By substituting the value of 1-14,1-13 and 1-12 in 1-8 

the momentum integral equation becomes; 

dbn-d 72 )±ofld(L. v 
dx dx 

_7 VdV +VdV 
1. 

t 8 dX dX 
}2 

n_ä 

Where; 

1 0.0228 V' )1 14 
1/4 2 

n-d (Re) 6n-d 

l dV 
+- 2dX 

n-d 

(0.0228)7/6. (Re )7/8 
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Appendix 3J 

Turbulent Boundary Layer Thickness and the dV/dX 

By finding a numerical solution to the equation H-13 

the turbulent boundary layer growth is evaluated; 

d ß- (-115 1 dV 
+90 

x 0.0228 
v- 0.25 

". 2s dx 28 V dX 7x Re 

Therefore, dß 
dx -8- F(X)+G(X) 

Where 
F( X) _ 

115 1 dV 
28 V dX 

G(X)=a" 1/-o. 2s 

90 x 0.0228 
a' - 7x Re o. 2s 

Hence; dß 

dX+, 
6F(X)-G(X) 

Therefore; 

ßexp F(X)dX = G(x)exp F(X)dX+Const 

also, 

1 28 JVdX. 

115, 
lnV= 

1151n V 

28 28 I'o 
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For X=X0 , V=V0, A let V000 

Then, 

XV 115/28 

exp F(X)dX = 
o Vo 

Also let dV 
=S=Km dX 

and hence, 1 15 / 28 

I G(X) 
V" 

dX 
Vo 

aV 115/28 . dV 

SV 115/28 v1 /4 
0 

a7V 34/7 

SV 11s/2s 34 
0 

Therefore, 

L, i 1si2s 7a 
" V34/' +C onst 

V' 34S V 115/28 00 

If, ß=0 at X=0 

Then 7a 34/7 Const =- 
115/28 

Vo 

34S1/ o 

Therefore ; 

115/28 
V7aV 34/7 

_V 
34/7 

V- 115/28 0 
0 34SV o 

and also 

_ 

7a 

.V 
-115/28r V34/7 _ 

V34/7 34/7) 

=l 34S 

For s>0 

For s=0 

V>Vo 
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Therefore using the L'Hospital's rule ; 

7aV 304/7 V -115/28 V )34/7 

34SV 115/28 VV-1 
000 

7 aV 
21/28 (V /V 

0)34/7 _1 

,80 0 It 01 (v/ 

Therfore 

7a 
V21/2s Y34/7 -1 

34S °y 115/28 

ß= 4x 10-3 .v "28[ ] 

Where, V 
Y -Vo 

y 
34/7 

y 
115/28 

Therefore, (, =y 21 X28 _y -1 I5/28 

ä(P 21 1 13 
yy dy 28 28 

1 (21 y-114+ 1 13y-1431281 
28l J 

ndO>0 for d y>O dy 

Typical set of values for 4) as a function of y is given 

the Table T-J1. 
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Table T-J1 

Y o(Y) y -q(Y) 

1.0 0 0.95 0.27 

1.2 0.67 0.90 "0.61 

1.4 1.04 0.80 1.65 

1.6 1.27 0.70 3.56 

1.8 1.47 0.60 7.47 

2.0 1.62 0.50 16.6 

4.0 2.8 0.40 42.59 

8.0 4.76 0.20 742.3 

10.0 8.0 0.10 12798 
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Appendix 3K 

A solution for the Flow Around a Circular 
Using the Nag DO3EAF Routine 

Table T-K1 

Cylinder 

X Y Slip Vel. 

-0.1000E+02 0.1000E+01 0.1096E+02 

-0.1000E+02 0.2000E+01 0.1195E+02 

-0.1000E+02 0.3000E+01 0.1295E+02 

-0.1000E+02 0.4000E+01 0.1397E+02 
IF--0.1000E+02 1 1 

0.5000E+01 0.1500E+02 

-0.1000E+02 0.6000E+01 0.1604E+02 

-0.1000E+01 0.1000E+01 0.1053E+02 

-0.1000E+01 0.2000E+01 0.1163E+02 

-0.1000E+01 0.3000E+01 0.1275E+02 

-0.1000E+01 0.4000E+01 0.1382E+02 

-0.1000E+01 0.5000E+01 0.1488E+02 

0.0000E+00 0.1000E+01 0.1001E+02 

0.0000E+00 0.1100E+01 0.1020E+02 

0.0000E+00 0.1200E+01 0.1038E+02 

0.0000E+00 0.1300E+01 0.1055E+02 

0.0000E+00 0.1400E+01 0.1071E+02 

0.0000E+00 0.1500E+01 0.1086E+02 

0.0000E+00 0.1600E+01 0.1100E+02 

0.0000E+00 0.1700E+01 0.1114E+02 

0.0000E+00 0.1800E+01 0.1127E+02 

0.0000E+00 0.1900E+01 0.1140E+02 IE- 
0.0000E+00 0.2000E+01 0.1153E+02 

0.0000E+00 

0.0000E+00 

0.2200E+01 

0.2400E+01 

0.1178E+02 

0.1202E+02 

0.0000E+00 0.2600E+01 0.1226E+02 

0.0000E+00 0.2800E+01 0.1249E+02 
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0.0000E+00 0.3000E+01 0.1271E+02 

0.0000E+00 0.3500E+01 E 0.1327E+02 

0.0000E+00 0.4000E+01 
1 

0.1381E+02 
11 

0.1000E+01 0.0000E+00 0.1000E+02 

0.1000E+01 0.1000E+01 0.1053E+02 

0.1000E+01 0.2000E+01 0.1163E+02 

0.1000E+01 0.3000E+01 0.1275E+02 

0.1000E+01 0.4000E+01 0.1382E+02 

0.1000E+01 0.5000E+01 0.1488E+02 

0.7071E+00 -0.7071E+00 0.1004E+02 

-0.7071E+00 -0.7071E+00 0.9958E+02 

-0.7071E+00 0.7071E+00 0.9958E+02 
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Appendix 3L 

Set of Typical Values of Slip Velocities Around the 
Contour C2 

Table T-L1 

Side 1 Slip Velocity 

AB 
IF-0.000000E+00 

0.000000E+00 

0.000000E+00 

0.000000E+00 

0.000000E+00 

0.000000E+00 

BC -0.115644E+03 

-0.753181E+02 

-0.340921E+02 

-0.159202E+02 

-0.829200E+01 

-0.530377E+01 

-0.338044E+02 

-0.517450E+02 

-0.574094E+02 

-0.630737E+02 

CD -0.238803E+02 

-0.202634E+02 

-0.166466E+02 

-0.146739E+02 

-0.156750E+02 

-0.128799E+02 

-0.104761E+02 

-0.104110E+02 

-0.116186E+02 

-0.128263E+02 

Side 11 Slip velocity 

DE -0.251919E+02 

-0.185590E+02 

-0.119261E+02 

-0.173760E+02 

-0.192101E+02 

-0.199946E+02 

-0.158086E+02 

-0.166300E+02 

-0.169059E+02 

1 -0.171181E+02 

EF -0.865634E+02 

-0.865572E+02 

-0.865511E+02 

-0.856502E+02 

-0.865007E+02 

-0.845152E+02 

-0.819519E+02 

-0.816981E+02 

-0.820292E+02 

-0.923602E+02 

See Fig 3.25 
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FH -0.583437E+02 IJ 0.285344E+01 

-0.477506E+02 -0.271284E+01 

-0.371575E+02 -0.827913E+01 

-0.268633E+02 -0.227060E+02 

-0.184475E+02 -0.257419E+02 

-0.870399E+01 -0.399195E+02 

0.110540E+01 -0.526711E+02 

0.299809E+01 -0.716744E+02 

0.357436E+01 -0.924683E+02 

0.415603E+01 -0.113262E+03 

HI 0.415603E+02 JA -0.655732E+02 

0.490882E+02 -0.641151E+02 

0.554637E+02 -0.627287E+02 

0.587969E+02 -0.612934E+02 

0.606138E+02 -0.598556E+02 

0.619919E+02 -0.584259E+02 

0.608528E+02 -0.569861E+02 

0.579001E+02 -0.555497E+02 

0.540625E+02 -0.541275E+02 

0.502250E+02 -0.527053E+02 
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Appendix 4A 

Major measuring and Recording Instruments used for the 

Wind Tunnel Tests 

1. Pressure Transducer Transamerica BHL-4420 

A miniature semiconductor strain gauge transducer is 

used. Pressure transducer gives a high level out put 

directly proportional to the applied pressure. 

Following are the specifications of the Transducer; 

Pressure range 0- 50 kN /m2 

With input supply of 11 to 15 Volts dc and 60 mA 

Maximum 

Output Span of 0-5 Volts ± 1% 

Alternative out put 0- 35 mV 

accuracy; The combined non-linearity, and non-repeata- 

bility value less than 0.35% Span 

2. Digital Data Logger System 

Philips PR2011 series data acquisitional and monitoring 

system was used. This computer controlled intelligent 

data logger system is capable of measuring, monitoring 

and recording upto 256 physical quantities. In the 

present experimental work this was used only for low 
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static pressure measuring and recording purposes. The 

instrument can acknowledge upto 480 measurements per 

second. The alarm levels on channels were used as a 

special monitoring and cut off system, for excessive 

static pressures over loading the other instruments. 

The data logger system was connected to a IBM AT 

Personal computer through a IEC interface to provide 

and to receive signals to and from the data logger 

system. 

3. Inclined Manometer 

A sensitive inclined manometer was modified for 

accurate pressure readings. A travelling microscope 

and a potential meter have been used to obtain a 

accurate a differential pressure reading of upto 

accuracy of 0.001 mm of Water. The resistance of the 

potential meter was used as a indicator for the 

conversion of the pressure readings of the inclined 

manometer. 
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PROGRAM PART4N 
REAL M, Ml, Kl, K2 
INTEGER SG(21), SG11(11) 
LOGICAL REDO, RSC 
COMMON X, Y, PHI, PHID, XS, YS, NEST, SG, N1Pl, N, PHIB 
COMMON RSC, PI, NST 
DIMENSION I0(9), IVECS(20) 
EQUIVALENCE (IOA, IO(1)), (IOB, IO(2)), (IOC, IO(3)) 

*(IOD, IO(4)), (IOE, IO(5)), (IOF, IO(6)), (IOH, IO(7)) 
*(IOI, IO(8)), (IOJ, IO(9)) 

DIMENSION DELNMS(25) 
DIMENSION SRS(26) 
DIMENSION XS(21), YS(21), NEST(21) 
DIMENSION PHI(116), X(233), Y(233), PHID(116) 
COMMON XM(80), YM(80) 

C N=SEGMENTS REFER TO NAG NOTATION 
C SG(1) TO SG(21) SEGMENTS FOR EACH SIDE 
C N1P1=(2N+1) COORD POINTS ON CONTOUR REF TO NAG NOTAT. 
C NODAL POINTS ARE MID -POINT OF SEGMENTS= N IN NUMBER 
962 FORMAT (1X , 2E13.6) 
903 FORMAT (1X , I10) 
800 FORMAT(' THETAD SHOL CMU'/1H , 3E13.6) 
555 FORMAT(I10) 
850 FORMAT(1H , Il0/(1H , 2E13.6)) 
951 FORMAT(1X , 3E13.6) 
861 FORMAT(1H , 2E13.6) 
961 FORMAT(14X , E13.6) 
869 FORMAT(1H , 513) 

F(S)=-Kl*K2*(S**M1) 
G(S)=-2*Kl*K2*((SHOL/2. )**Ml)+Kl*K2*(S**Ml) 
FYCK(Xl, X2, Yl, Y2, XZ)=Yl+(Y2-Yl)*(XZ-X1)/(X2-X1) 

910 FORMAT(lX, 2Ll, 2I2) 
DATA DELNMS/0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08, 

*0.09,0.1,0.11,0.12,0.13,0.14,0.16,0.18,0.20,0.22, 
*0.24,0.26,0.28,0.30,0.32,0.34,0.36/ 

NU=15 
OPEN(UNIT=NU, FILE='PIN15') 
OPEN(UNIT=10, FILE='PIN10') 
OPEN(UNIT=9, FILE='PIN9') 
READ(7,910)REDO, RSC, ICOUNT, KST 
PI=3.141593 
R1=1. /(2. *SIN(PI/8. )) 
DB=2. *PI/80. 
SRS(1)=R1 
DO 500 I=2,26 

500 SRS(I)=SRS(I-1)+DELNMS(I-1) 
IF(REDO) GO TO 3334 
IF(RSC)GO TO 3331 
READ(10,962)(X(J), Y(J), J=1,233) 
READ(9,962)(XS(I), YS(I), I=1,21) 
READ(15,903)IFRP 
READ(15,961)PHID 
DATA SG11/1,1,1,4,4,8,4,4,1,1,1/ 
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c 
3331 

3334 

995 

3339 

540 
530 

525 
C 
C 

535 
C 
C 

575 

DELNM, DELNMS ARE INCREMENTS FOR LACATING M-POINTS 
READ(7,951) THETAD, SHOL, CMU 
WRITE (8,800)THETAD, SHOL, CMU 
GO TO 3339 
READ(7,951)THETAD, SHOL, CMU 
READ(9,962)(XS(I), YS(I), I=1,21) 
IF(KST. NE. O)_READ(21,995)(IVECS(I), I=1, KST) 
FORMAT(1X, 5I5) 
GO TO 3333 
THETA=THETAD*PI/180. 
M=1. /7. 
M1=M+1. 
K1=8. /7. *SQRT(CMU/(SHOL*SIN(PI/8. ))) 
R1R2=0.5*Rl*SQRT(2. ) 
CT=COS(THETA) 
ST=SIN(THETA) 
K2=((2. /SHOL)**M)/M1 
IF(RSC) GO TO 525 
CALL UPSTGN 
IN=2. *NST 
XS(1)=X(IN) 
YS(1)=Y(IN) 
IN1=IN-1 
XS(11)=X(IN)+0.01*(X(IN1)-X(IN)) 
YS(11)=Y(IN)+0.01*(Y(IN1)-Y(IN)) 
CALL BETA(XS(1), YS(1), BET1) 
TTEMP=THETA 
DO 540 I=1,5 
TTEMP=TTEMP+PI*0.25 
IF(BET1. GE. TTEMP) GO TO 540 
ISN=I+1 
GO TO 530 
CONTINUE 
CONTINUE 
GO TO 535 
ISN=8 
SUPPLY THE KPN KNS, NUM. OF FULL SIDES 
KPN &KNS ARE FOR DOWNST. STG. POINT AT 
KPN=6 
KNS=1 
GO TO 575 
CONTINUE 
NST IS AVAILABLE AT THIS STAGE 
ALSO IFRP IS READ IN 
KNS=((NST-10+IFRP)/10)+2 
KPN=7-KNS 
IFR=NST+IFRP-10*(KNS-1) 
IOA=ISN 
IOB=ISN+1 
J=IOB 
DO 413 I=1, KNS 
J=J+1 
IP2=I+2 

OF OCT. P-N &S-N 
67.5 +OR-10 DEG. 

5-3 



413 IO(IP2)=J 
J=IP2 
DO 414 I=1, KPN 
J=J+1 

414 IO(J)=(I+1) 
IOP=1 
IOS=11 

C COORDINATES OF A 
XS(IOA)=R1*CT 
YS(IOA)=R1*ST 

C CORDINATES OF B 
XS(IOB)=(R1-SHOL)*CT 
YS(IOB)=(R1-SHOL)*ST 

C COORDINATES OF C 
XS(IOC)=R1R2*(ST+CT) 
YS(IOC)=R1R2*(ST-CT) 

C CORDINATES OF D 
XS(IOD)=YS(IOA) 
YS(IOD)=-XS(IOA) 

C COORDINATES OF E 
XS(IOE)=YS(IOC) 
YS(IOE)=-XS(IOC) 

C COORDINATES OF F 
XS(IOF)=-XS(IOA) 
YS(IOF)=-YS(IOA) 

C COORDINATES OF H 
XS(IOH)=-XS(IOC) 
YS(IOH)=-YS(IOC) 

C COORDINATES OF I 
XS(IOI)=-XS(IOD) 
YS(IOI)=-YS(IOD) 

C COORDINATES OF J 
XS(IOJ)=-XS(IOE) 
YS(IOJ)=-YS(IOE) 
IF(RSC) GO TO 444 
GO TO 445 

C INITIAL RUN TO DECIDE UPSTREAM STG POINT 
444 TCD=(YS(IOC)-YS(IOD))/(XS(IOC)-XS(IOD)) 

T=-TAN(PI/8. ) 
XINT=(TCD*XS(IOC)-YS(IOC))/(TCD-T) 
FR=10. *(XINT-XS(IOD))/(XS(IOC)-XS(IOD)) 
IFR=FR 
IF(IFR. EQ. 10)IFR=9 
FR=0.1*FLOAT(IFR) 
XS(1)=XS(IOC)+FR*(XS(IOD)-XS(IOC)) 
YS(1)=YS(IOC)+FR*(YS(IOD)-YS(IOC)) 
FR=FR-0.01 
XS(11)=XS(IOC)+FR*(XS(IOD)-XS(IOC)) 
YS(11)=YS(IOC)+FR*(YS(IOD)-YS(IOC)) 

C IFR IS ALREADY AVAILABLE FOR RIGHT CONTOUR 
C SG(1) TO SG(10) DEPENDS ON STGN POINT POSITION 
445 CONTINUE 

SG(1)=10-IFR 
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SG(10)=IFR 
C FROM POINT P TO NOZZLE 

DO 411 I=1, KPN 
411 SG(I+1)=10 

SG(ISN)=6 
J=ISN 

C FROM NOZZLE TO POINT S 
DO 412 I=1, KNS 
J=J+1 

412 SG(J)=10 
C SG(11) TO SG(21) ARE SET USING DATA FROM SG(11) 

DO 480 I=1,11 
480 SG(I+10)=SG11(I) 

IF(REDO) GO TO 3333 
N=0 

C CALCULATE NO OF SEGMENTS =NODAL POINTS 
DO 1 I=1,10 

1 N=N+SG(I) 
C CALCULATE MP FOR DO3EAF 

N1P1=2*N+1 
NE=O 

C EVALUATE THE COORD. OF ALL THE POINTS USE DO L-10 
DO 10 I=1,10 
NB=NE+1 
NBP1=NB+1 
NIS=SG(I) 
NE=2*NIS+NB-1 
NEST(I)=NE 

C NE DENOTES END POINT -1. 
X(NB)=XS(I) 
Y(NB)=YS(I) 

C DELX, DELY =0.5*DISTANCE BETWEEN NODAL POINTS 
IP1=I+1 
DELX=0.5*(XS(IP1)-XS(I))/FLOAT(NIS) 
DELY=0.5*(YS(IP1)-YS(I))/FLOAT(NIS) 
DO 11 J=NBP1, NE 
X(J)=X(J-1)+ DELX 

11 Y(J)=Y(J-1)+ DELY 
10 CONTINUE 
C PHID VALUES SET=O FOR DIRECHLETE INTERIOR PROBLEM 

DO 100 J=1,116 
100 PHID(J)=0. 
C PROG. FOR FINDING PHI VALUES FOR NODAL POINTS 
C NBD= THE POINT CORRRESPONDS MID POINT OF NOZZLE SEG 

NBD=1+SG(ISN)+NEST(ISN-1) 
J=0 
DO 25 I=2, N1P1,2 
J=J+1 
IF(I. GT. NEST(ISN-1)) GO TO 65 
PHI(J)=0. 
GO TO 25 

65 IF(I. GT. NBD) GO TO 66 
S=SQRT((XS(ISN)-X(I))**2+(YS(ISN)-Y(I))**2) 
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PHI(J)=F(S) 
GO TO 25 

66 IF(I. GT. NEST(ISN)) GO TO 68 
S=SQRT((XS(ISN+1)-X(I))**2+(YS(ISN+1)-y(I) 

)**2) PHI(J)=G(S) 
IF(I. NE. NEST(ISN)) GO TO 25 
PHIB=-2. *Kl*K2*((SHOL/2. )**M1) 
GO TO 25 

68 PHI(J)=PHIB 
25 CONTINUE 

GO TO 3335 
3333 CONTINUE 

CALL BETA(XS(1), YS(1), BL) 
CALL BETA(XS(14), YS(14), BH) 
BL=BL-DB 
BH=BH+DB 

C EXPECT BH GT. BL NORMALLY 
C IF BH LT. BH INTER CHANGE 

IF(BH. GT. BL) GO TO 4499 
B=BH 
BH=BL 
BL=B 

4499 CONTINUE 
WRITE(20,2657)(SRS(J), J=1,26), BH, DB 

2657 FORMAT(1H , 2E13.6) 
I=0 
B=BH 

443 IF(B. GT. BL) GO TO 441 
GO TO 442 

441 B=B-DB 
I=I+1 
GO TO 443 

442 IMAX=81-I 
C I=1 TO MAX CLEAN RADIALS 

B=BH 
SR=SRS(ICOUNT) 
DO 450 I=1,80 
XT=SR*COS(B) 
YT=SR*SIN(B) 
IF(I. LE. IMAX) GO TO 550 
IF(XT. LT. -2.5)GO TO 557 
YCK=YS(1)+FYCK(XS(1), XS(21), YS(1), YS(21), XT) 
IF(YT. GT. YCK)GO TO 550 
YCK=YS(11)+FYCK(XS(11), XS(12), YS(11), YS(12) , XT) 
IF(YT. LT. YCK) GO TO 550 

C A BORDER POINT IS FOUND TO BE REJECTE 
GO TO 580 

557 YCK=YS(21)+FYCK(XS(21), XS(20), YS(21), YS(20) , XT) 
IF(YT. GT. YCK) GO TO 550 
YCK=YS(12)+FYCK(XS(12), XS(13), YS(12), YS(13) , XT) 
IF(YT. LT. YCK)GO TO 550 

C A BORDER POINT IS FOUND TO BE REJECTED 
580 KST=KST+1 
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IVECS(KST)=(ICOUNT-1)*80+I 
550 XM(I)=XT 

YM(I)=YT 
B=B+DB 

450 CONTINUE 
GO TO 3336 

3335 CALL SUBP3N 
WRITE (13,888)IFR 

C WRITE (13,851)PHID 
888 FORMAT(1H 

, I10) 
WRITE (16,861)(XS(I), YS(I), I=1,21) 
WRITE (8,861)(X(J), Y(J), J=1, N1P1) 
WRITE (12,861)(X(J), Y(J), J=1, N1P1) 
WRITE (12,861)(PHI(J), PHID(J), J=1, N) 
WRITE(17,861)(X(J), Y(J), J=1, N1P1) 
WRITE(19,861)(X(JT), Y(JT), JT=2,172,2) 
WRITE(19,861)(XS(I), YS(I), I=1,21) 
WRITE(19,869)(IO(IJ), IJ=1,9) 
IF(RSC) GO TO 3338 
REDO=. TRUE. 

3338 RSC=. FALSE. 
GO TO 3400 

3336 WRITE(4,861)(XM(I), YM(I), I=1,80) 
IF(KST. EQ. 0) GO TO 3745 
WRITE(18,895)(IVECS(I), I=1, KST) 

3745 CONTINUE 
895 FORMAT(1H , 515) 

ICOUNT=ICOUNT+1 
IF(ICOUNT. EQ. 27) GO TO 81 

3400 WRITE(14,860)REDO, RSC, ICOUNT, KST 
863 FORMAT(1H , 3E13.6) 

WRITE(14,863)THETAD, SHOL, CMU 
81 STOP 
860 FORMAT(1H , 2Ll, 2I2) 

END 
SUBROUTINE SUBP3N 
LOGICAL RSC, REDO 
INTEGER SG(21), SG11(11) 
COMMON X, Y, PHI, PHID, XS, YS, NEST, SG, NIPI, N, PHIB 
COMMON RSC, PI, NST 
DIMENSION DELNMS(25) 
DIMENSION SRS(26) 
DIMENSION XS(21), YS(21), NEST(21) 
DIMENSION PHI(116), X(233), Y(233), PHID(116) 
COMMON XM(80), YM(80) 
DATA D/10. / 

C ASSUME LEFT CONTOUR 
XS(17)=D 
YS(17)=D 
XS(15)=-D 
YS(15)=-D 
XS(16)=D 
YS(16)=-D 
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XS(18)=-D 
YS(18)=D 
IF(. NOT. RSC) GO TO 460 
DO 461 I=15,18 
XS(I)=-XS(I) 

461 YS(I)=-YS(I) 
IF(RSC) GO TO 465 

C COORDINATE OF Q=19,000RD R=14 
460 XS(14)=-D 

XS(19)=-D 
YS(19)=-10. +20. *(10. +PHIB)/(20. +PHIB) 
YS(14)=YS(19)-0.01 

C CALCULATA COORDS. OF P1, P2, S1, S2/21,20,12,13 
XS(20)=-9. 
YS(20)=YS(19) 
XS(21)=-2.5 
YS(21)=YS(1)*(-2.5)/XS(1) 
XS(12)=XS(21) 
XS(13)=XS(20) 
YS(12)=YS(21)-0.01 
YS(13)=YS(20)-0.01 
GO TO 4651 

465 CONTINUE 
C RIGHT CONTOUR POINTS TO BE FOUND 

XS(14)=D 
XS(19)=D 
YS(19)=-10. +20. *D/(20. -PHIS) 
YS(14)=YS(19)+0.01 

C COORDINATES OF 21,20,12,13 
YS(20)=YS(19) 
XS(20)=9.0 
XS(21)=2.5 
YS(21)=YS(1)*(2.5)/XS(1) 
XS(12)=XS(21) 
XS(13)=XS(20) 
YS(12)=YS(21)+0.01 
YS(13)=YS(20)+0.01 

4651 N=116 
C CALCULATE NO OF SEG. =NOD POINTS 

N1P1=2*N+1 
C SETS PHID VALUES =0 FOR INT. DIRCH. PROBLEM 

DO 100 J=87,116 
100 PHID(J)=0. 
C CALCULATE THE COORDINATES OF ALL POINTS DO L-10 

C 

C 

NE=NEST(10) 
DO 10 I=11,21 
NB=NE+1 
NBP1=NB+1 
NO OF INTERVALES IN THE SECTION(I) 
NIS=SG(I) 
NE=2. *NIS+NB-1. 
NEST(I)=NE 
NE DENOTES THE END POINT -1. 
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X(NB)=XS(I) 
Y(NB)=YS(I) 
IP1=I+1 
IF(IP1. EQ. 22) IP1=1 
DELX=0.5*(XS(IPl)-XS(I) )/FLOAT(NIS) 
DELY=0.5*(YS(IPl)-YS(I) )/FLOAT(NIS) 
DO 11 J=NBP1, NE 
X(J)=X(J-1)+DELX 

11 Y(J)=Y(J-1)+DELY 
10 CONTINUE 
C CONTOUR IS COMPLETED BY REPEATING START POINT 

X(N1P1)=X(1) 
Y(N1P1)=Y(1) 

C FINDING PHI VALUES FOR NODAL POINTS 
J=86 
NNOD11=NEST(10)+2 
DO 25 I=NNOD11, N1P1,2 
J=J+1 

C SECTION K-R HAS A CONST STREAM FUNTION 
IF(I. GT. NEST(13)) GO TO 35 
PHI(J)=PHIB 
GO TO 25 

35 PHI15=-D 
IF(RSC)PHI15=D 
IF(I. GT. NEST(14)) GO TO 37 
PHI(J)=(Y(I)-YS(14))*(P HI15-PHIB)/(YS(15) 

*-YS(14))+PHIB 
GO TO 25 

37 IF(I. GT. NEST(15)) GO TO 39 
PHI15=-D 
IF(RSC)PHI15=D 
PHI(J)=PHI15 
GO TO 25 

39 IF(I. GT. NEST(16)) GO TO 41 
PHI(J)=Y(I) 
GO TO 25 

41 IF(I. GT. NEST(17)) GO TO 43 
PHI17=D 
IF(RSC)PHI17=-D 
PHI(J)=PHI17 
GO TO 25 

43 IF(I. GT. NEST(18)) GO TO 45 
PHI(J)=-PHI15*(1-(Y(I)-YS(18))/(YS(19)-YS(18))) 
GO TO 25 

45 PHI(J)=0. 
25 CONTINUE 

RETURN 
END 
SUBROUTINE UPSTGN 
LOGICAL REDO, RSC 
INTEGER SG(21), SG11(11) 
COMMON X, Y, PHI, PHID, XS, YS, NEST, SG, NIPI, N, PHIB 

COMMON RSC, PI, NST 
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DIMENSION DELNMS(25) 
DIMENSION SRS(26) 
DIMENSION XS(21), YS(21), NEST(21) 
DIMENSION PHI(116), X(233), Y(233), PHID(116) 
COMMON XM(80), YM(80) 

C READ PHID VALUES FROM TEXT1 OUT-PUT AFTER FIRST RUN 
C WITH RSC=TRUE AND REDO=FALSE 
C DECIDE THE UPSTREAM STG. POINT 

IS=14 
10 IS=IS+1 

IF(PHID(IS). GE. O. )GO TO 10 
DO 20 I=IS, 86 
IS=IS+1 
IF(PHID(IS)*PHID(IS-1). GT. O. ) GO TO 20 
NST=IS 
GO TO 25 

20 CONTINUE 
WRITE(13,800) 

800 FORMAT('CHECK NO UPSTREAM STGN POINT FOUND') 
25 RETURN 

END 
SUBROUTINE BETA(XD, YD, B) 
LOGICAL REDO, RSC 
INTEGER SG(21), SG11(11) 
COMMON X, Y, PHI, PHID, XS, YS, NEST, SG, NIPI, N, PHIB 
COMMON RSC, PI, NST 
DIMENSION DELNMS(25) 
DIMENSION SRS(26) 
DIMENSION XS(21), YS(21), NEST(21) 
DIMENSION PHI(116), X(233), Y(233), PHID(116) 
COMMON XM(80), YM(80) 
IF(ABS(XD). LT. 1. E-08) GO TO 10 
BBASE=ATAN(ABS(YD/XD)) 
GO TO 11 

10 BBASE=0.5*PI 
11 IF(XD. LT. O. ) GO TO15 

IF(YD. LT. O. ) GO TO 20 
C FIRST QUART. 

B=BBASE 
GO TO 25 

20 B=2. *PI-BBASE 
GOTO 25 

15 IF(YD. LT. O. )GO TO 30 
B=PI-BBASE 
GO TO 25 

30 B=PI+BBASE 
25 RETURN 

END 
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MAIN FLOW CHART OF TH-E 
FORTRAN PROGRAM STT"_. 1 
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0 
SET THE NODAL POINTS RIGHT OF THE 

STAGNATION POINT (CLOCK-WISE DIRECTION) 

FIND THE NSTF, STAGNATION POINT FOR THE 
DOWN STREAM MAIN FLOW 

SET NBEG 
, NEND FOR CASE 1, CASE 2, CASE 3 

CALCULATE 

CASE 1 
ISTEP =1 
CALCULATE XNT 

CALCULATE VNT(IT) 
IT 1, NPTM1 

VNT(1) CALCULATED 
SUCH THAT V= 0 AT 
X= 0, S TGN. POINT 
CALCULATE VNT(NPT) 
INTERPOATED 

THE NPT FOR CASE 1, CASE 2, CASE 3 

CASE 2 
ISTEP =-1 
CALCULATE XNT 

CALCULATE VNT(IT) 
IT= 2, NPTM1 

VNT(1)= 0 
CALCULATE VNT(NPT) 
INTERPOLATED 

0 

CASE 3 
ISTEP =1 
VNT(NPT) 
PHID(NEND) 

CALCULATE 
VNT(1) 
(EXTRAPOLATED) 
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O 
IDENTIFY THE END NAG NODES ON 
THE OCTAGONAL SIDES FOR CASE 1 
CASE 2, CASE 3 

CALCULATE THE X TUR(I) 
, XVALUES AT WHICH 

OCTAGONAL CORNERS OCCUR 

LOCATION OF THE EXTREMUMS OF ALL VELOCITIES AT THE 
EDGE OF THE THE BOUNARY LAYER, USED IN LAMINAR 
BOUNDARY LAYER WITH POHLHAUSON METHOD 

AT EXTREME POINTS MAXIMUM AND MINIMUM ARE FOUND 

CASE 1, CASE 2, INITIAL CONDITIONS 
FOR BOUNDARY LAYER INTEGRATION 

IS SET 

CALL SUBROUTINE STGIC 2 

INITIAL CONDITIONS FOR THE POHLHAUSON 

METHOD OF STAGNATION CONDITION IS 

SET A=7.052 

3 
5-13 
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O C® 
LAMDA<-12 OR 
X< XTUR(KTUR) 

NO 

YES 

TURBULENT BOUNDARY LAYER IS CALCULATED 

CALL SUBROUTINE INTRO 2 

CASE1, CASE2, SET X T= X 
BOUNDARY LAYER GROWTH 

CONTINUES FROM LAM. B. L. 

CALCULATE DELB, BT, BET 

RUNGE KUTTA METHOD OF INTEGRATION FOR BET USES 
SUBROUTINE DBETX TO FIND (dß/dx) USING x STEPS= H 

CALCULATE DELB AND TAUX FROM BET , 
DELB= BET 

NO 
TAUX>O 

YES 

CASH SET BT, BET= 0 
BOUNDARY LAYER GROWTH 

STARTS AS TURB. B. L. 
vý 0, DVX4o 

8 

RESTART 
B. L. GROWTH 

CONTINUE THE CALCULATION TAUX, DELB 

X< XLAST 
YES 8 

NO 
STOP 
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MAIN SUBROUTINE CF THE STTUR1 
STGIC2 

FK(LDA1) = LDA1(SA-LDA1 (SB+SC*. LDA1) )**2 

CALL I NRO 2 
INTERPOLATION OF LDA AT XT 

BK IS CALCULATED 

YES IF BK > 0,0949 

NO 

WRITE THE 
D IAG: REPORT 

STOP 

YES 
IF LDA>+12 

NO 

YES 
DVX * LDA> 0 

G=SA-LDA*(S6+LDA*SC ) 

CFX IS CALCULATED 

RETURN 

DBKP, DB2KP IS CALCULAED 

LDA IS CALCULATED 
TAYLOR SERIES IS USED 

0 NO 

SET X= XEXT(KK ) 

RESTART THE INTEGRATION 
SET XT=X, LDA=O, BK=O 
BKP= 0, D'BKP=SAO, D2BKP=Sß0 

RETURNI I CALLINTR02 

0 
SET I9-=2, DVX= 0, KK= KK+ 1 
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0 ITERATION ISDONE USING 
METHOD OF HALVING 

CALCULATE D BKP 
, LDA1, INITIAL TRIAL 

VALUE LAMDA USING THE TAYLOR SERIES 

LDAI NC = 0.5 *ABS (LDA1 - LDAP ) 

YES 
IF LDA1>12 

NO 
SET LDA 1= 12. 

BK1 = FK (L DA1) 

IF BK>BK1 

LDINC=-LDINC 

6 
LDA1= LDA1 +LDINC 

F LDINC <1.105 I 
YES 

YES 
1F LDA1>12. 

NO 

BK1 = FK (lDA1 ) 
O 

5-17 

IF BK= BM YES 
O 

NO 

O 

LDA1 = 12. 
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PROGRAM STTUR1 
LOGICAL STAGTN, CASE1, CASE2, CASE3, LNODE, LSTEPA, EXWRIT 
DIMENSION XNN(86), YNN(86), XS(21), YS(21) 
DIMENSION 10(9) 
COMMON/A/ XNT(42), VNT(42), PHID(92), TAUN(92), XEXT(10) 
COMMON/B/ X, XT, LDA, YT, LDAX, V, DVX, D2VX, NPT, NPTM1, XCHK 
COMMON/C/ H, H02, DELN, DELNO2, RDN2, RDNS, R6, Rl, R2, R8, R9 
COMMON/D/ SAO, SA1, SA2, SA3, SBO, SBI, SB2, SC1, SDO, SD1, SD2 
COMMON/E/ SEO, SE1, SFO, CF, CFI, CFX, CFXI, SD, TD, LDAI, DVXI 
COMMON/F/ SQO, SA4, SA, SB, SC, R240, DBKP, D2BKP, Q, D2VXI, KK 
COMMON/G/ VSCA, RE, IC, ZT, BKP, SB3, LDAP, IQ 
REAL LDA, LDAI, LDAX, LDAP 
F(VNTP)=(VNTPM-VNTPP)/(VNTPM+VNTPP-2. *VNTP)*DELNO2 

801 FORMAT(1H , 513) 
802 FORMAT (1H 

, E13.6) 
815 FORMAT (1H 

, 2E13.6) 
810 FORMAT (1H 

, 7E13.6) 
820 FORMAT (E13.6) 
830 FORMAT(' LAST POINT IN CASES INK'/1H , 13) 
840 FORMAT(' LAST POINT IN CASE4 INL'/lH , 13) 
8000 FORMAT(' TURB. PROF. X BET TAU V DELB'/1H , 5E13.6) 
850 FORMAT('XEXT VALUES'/1H , 6E13.6) 
875 FORMAT(1H , 3E13.6) 
975 FORMAT(1X, 2E13.6) 
900 FORMAT (1X, E13.6) 
901 FORMAT (4L2) 
902 FORMAT (1X, 4E13.6) 
969 FORMAT(lX , 513) 
C DELN=DIST. BETWEEN NODAL POINTS 
CH IS THE INCREMENT FOR THE INTEGRATION 
C RE IS THE RENOLDS NUMBER 
C XLAST=POINT AT THE END OFTWO SECT. BC-CD OR IH-HG 

READ(3,901) EXWRIT 
READ (3,901) CASE1, CASE2, CASE3 
READ (3,902) H, DELN, RE, GAMA 
READ (3,900) (PHID(I), I=1,86) 
READ(8,975)(XNN(I), YNN(I), I=1,86) 
READ(8,975)(XS(I), YS(I), I=1,21) 
READ(8,969)(IO(IJ), IJ=1,9) 
WRITE(7,875)(XNN(I), YNN(I), PHID(I), I=1,86) 
PI=3.141592 
CONSG1=(SIN(PI/8. ))/PI 
VSGA=GAMA*CONSG1 

C CORRECT THE PHID FOR (+)VE CIRCULATION 
DO 350 I=1,86 

350 PHID(I)=PHID(I)+VSGA 
STAGTN=CASE1. OR. CASE2 
DELNO2=DELN*0.5 
RDN2=0.5/DELN 
RDNS=RDN2/DELN 
HO2=H*0.5 
R6=1. /6. 
R8=1. /SQRT(RE) 
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C 

C 

C 

15 
10 

16 
20 

C 

R9=2. *R8 
R240=1. /240. 
RE1=1. /(RE)**0.25 
TAUC=RE1*0.0456 
SAT1=-115. /28. 
SATB1=2.052/7. 
SBRE=SATB1*RE1 
COEFFICIENTS OF Q 
SA=37. /315. 
SB=1. /945. 
SC=1. /9072. 
COEF. OF DBK & D2BK(1ST & 2ND DEF. 
SAO=SA**2 
SA1=-4. *SA*SB 
SA2=3. *(SB**2-2. *SA*SC) 
SA3=8. *SB*SC 
SA4=5. *SC**2 
SBO=SA1 
SB1=2. *SA2 
SB2=3. *SA3 
SB3=4. *SA4 
/'4TT91 --- -- ---_ ---- 

OF BK WRT LDA) 

uriHNUlNV TO THE NEW NUMBERING FOR LEFT CONTOUR 
IOI=IO(8) 
XNI=XS(IOI) 
YNI=YS(IOI) 
IOJ=IO(9) 
XNJ=XS(IOJ) 
YNJ=YS(IOJ) 
IF(XNI. EQ. XNJ) GO TO 10 
DO 15 I=1,86 
IF(XNN(I). LT. XNJ) GO TO 15 
NEIJ=I-1 
GO TO 20 
CONTINUE 
DO 16 I=1,86 
IF(YNN(I). LT. YNJ) GO TO 16 
NEIJ=I-1 
GO TO 20 
CONTINUE 
CONTINUE 
NECAS1=NEIJ+10 
WRITE(4,969) NECAS1 
NBCAS3=NECAS1+7 
SET NODAL POINT RIGHT OF STAG POINT(CLOCKWISE-D. ) 
NSTB=NECAS1+30 

65 NSTB1=NSTB 
IF(NSTB. GT. 86) NSTB1=NSTB-86 
IF(PHID(NSTB1). LT. 0. ) GO TO 60 
NSTB1=NSTB1+5 
GO TO 65 

60 NSTB=NSTB1 
NSTE=NSTB+43 
DO 61 I=NSTB, NSTE 

5-20 



IN=I 
IF(I. GT. 86) IN=I-86 
IF(PHID(IN). LE. O. ) GO TO 61 
GO TO 62 

61 CONTINUE 
62 NST=IN 
C FINDING THE NST, NAG NODE OF STAGN. UPSTREAM 
C NSTF NAG NODE FOR THE STAGN POINT UPSTREAM 

NSTB=NBCAS3 
DO 66 I=NSTB, 86 
IF(PHID(I). GE. O. ) GO TO 66 
GO TO 67 

66 CONTINUE 
67 NSTF=I 
C SET NBEG & NEND FOR THE APPROPRIATE CASE 
C ALSO SET VNT(1) FOR CASES 1&2 
C NOTE VNT(1) IS EXTRAPOLATED FOR CASES 3 

IF(. NOT. CASEl) GO TO 23 
NBEG=NST-1 
NEND=NECAS1 

C LSTPA IS SET TRUE FOR SMOOTH INCR. OF NAG NODE COUNT 
C (IF NO STEP CHANGE FROM 1 TO 86) & VICE VERSA 

LSTEPA=NBEG. LT. NEND 
GO TO 30 

C CASE 2 
23 IF(. NOT. CASE2) GO TO 24 

NBEG=NST 
NEND=NSTF+5 

C LSTPA FOR CASE2 SIMILAR TO CASE 1 
LSTEPA=NBEG. GT. NEND 
GO TO 30 

C CASE 3 IS NOW LEFT 
24 NBEG=NBCAS3 

NEND=NSTF-1 
30 CONTINUE 
C NPT ETC. ARE CALCULATED 
C NUMBER OF NAG NODES FOR POLHAUSEN B LAYER INTEGR. 

IF(CASE1. OR. CASE3) NPT=NEND-NBEG+1 
IF(CASE2) NPT=NBEG-NEND+l 
IF(CASE3) GO TO 4260 
IF(LSTEPA) GO TO 4230 

C NPT IS MODIFIED TO ACC FOR STEP IN NAG NODE AT 1&86 

NPT=NPT+86 
4230 CONTINUE 

IF(IN. EQ. 1. OR. IN. EQ. 86)LSTEPA=. FALSE. 
C LSTEPA MADE FALSE TO GET "IN" FOR XNODE CALCULATION 
C SEE SECTION GO TO 300 ...... 300 CONTINUE 
4260 CONTINUE 

NPTM1=NPT-1 
NPTM2=NPT-2 
NPTM3=NPT-3 
IF(. NOT. CASE3) GO TO 40 
VNT(NPT)=PHID(NEND) 
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C XNT VECTOR 
40 SUM=-(DELN+DELNO2) 

DO 26 IT=1, NPT 
SUM=SUM+DELN 

26 XNT(IT)=SUM 
IF(CASE2) GO TO 27 

C NOW CASE 1 IS CONSIDERED 
C ISTEP DEPENDS ON THE FLOW DIRECTION 
C SET VALUES OF VNT(IT) IT=2, NPTM1 

ISTEP=1 
NBEG1=NBEG-1 
DO 31 IT=2, NPTM1 
I=NBEG1+IT 
IN=I 
IF(I. GT. 86)IN=I-86 

31 VNT(IT)=PHID(IN) 
GO TO 155 

C ONLY CASES 2 LEFT 
27 NBEG1=NBEG+1 
C "IN" CALCULATION ISTEP=-1 FOR CASE 2 

ISTEP=-1 
DO 32 IT=2, NPTM1 
I=NBEG1-IT 
IF(I. LE. 0) I=I+86 

32 VNT(IT)=-PHID(I) 
155 IF(CASE3) GO TO 42 
C VNT(1) FOR CASES 1&2 FROM PARABOLA THRU VNT(2)&(3) 
C THIS IS TO FORCE V=O. AT X=O. FOR CASES 1&2 

VNT(1)=-2. *VNT(2)+VNT(3)/3. 
C FOR CASE 1&2 INTERPOLATION 

VNT(NPT)=3. *(VNT(NPTM1)-VNT(NPTM2))+VNT(NPTM3) 
GO TO 156 

C ONLY CASES 3 LEFT 
42 VNT(1)=3. *(VNT(2)-VNT(3))+VNT(4) 
C TEMP COND FOR THE WRITING OF STAGNATION POINTS 
156 CONTINUE 

WRITE(9,801)NPT, NST 
WRITE(9,802)(VNT(IT), IT=1, NPT) 
WRITE (4,815)(VNT(IT), IT=1, NPT) 

326 WRITE (4,860) NPT 
860 FORMAT(' NPT', I10) 

WRITE(4,815) (XNT(I), VNT(I), I=1, NPT) 
320 KK=O 

IF(VNT(2)-VNT(1))201,202,203 
C INITIAL EXTREME LOCATED 
202 KK=KK+1 

VNTP=VNT(2) 
VNTPM=VNT(1) 
VNTPP=VNT(3) 
XEXT(KK)=F(VNTP)+XNT(I-1) 

C DECIDE WHETHER MAX OR MIN TO BE FOUNDED 

IF(VNT(2). LT. VNT(3)) GO TO 203 

C MIN TO BE FOUND 
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201 IP=l 
GO TO 209 

C MAX TO BE FOUND 
203 IP=2 
209 VNTP=VNT(2) 

DO 205 I=3, NPT 
GO TO (206,207), IP 

206 IF(VNT(I). LT. VNTP) GO TO 205 
IP=2 
GO TO 208 

207 IF(VNT(I). GT. VNTP) GO TO 205 
IP=1 

208 KK=KK+1 
VNTPM=VNT(I-2) 
VNTPP=VNT(I) 
XEXT(KK)=F(VNTP)+XNT(I-1) 

205 VNTP=VNT(I) 
C SET VALUE OF XLAST FOR ALL CASES 

XLAST=XNT(NPT)-DELNO2 
IF(KK. GT. O) GO TO 210 
KK=1 
XEXT(1)=XLAST 
XEXT(2)=XLAST 

210 WRITE(4,850)(XEXT(I), I=1, KK) 
C INITIALISATION FOR B. LAYER INTEGRATION 

IN=NBEG 
IT=2 
XNODE=XNT(2) 
LNODE=. FALSE. 
X=O. 
KK=1 
IQ=1 
XCHK=XEXT(KK) 

C INITIAL COND FOR STAGN CASES 1&2 (1 
IF(STAGTN) GO TO 72 

c 
c 

C 
72 

OR 2 TRUE) 

INITIAL CONDITIONS FOR LEADING EDGE CASES 3 
NOTE VN EQUAL TO ZERO AT X=O. 
XT=X 
CALL INTRO2 
BT=O. 
DELB=O. 
BET=O. 
GO TO 775 
SG-SA INTEG. IS START. WITH STAGNATION 
CALL STGIC2 
XT=X 
V=O. 
CFX=CFXI 
LDA=LDAI 
DVX=DVXI 
CF=CFI 
ZT=CF 
GO TO 1 

POINT CONDT. 
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5 IC=1 
CALL DERCFX 
GO TO (1,425), IQ 

425 IQ=1 
GO TO 5 

1 CONTINUE 
BK=CF*DVX 
BKP=BK 
LDAP=LDA 

C WRITING ONLY AT NODAL POINTS 
IF(X. LT. XNODE) GO TO 300 
IT=IT+1 
IN=IN+ISTEP 
IF(CASE3) GO TO 4250 
IF(LSTEPA) GO TO 4250 
IF(IN. LE. 0) IN=IN+86 
IF(IN. GT. 86) IN=IN-86 

4250 CONTINUE 
XNODE=XNT(IT) 
LNODE=. TRUE. 

300 CONTINUE 
C CASE 3 IS TURBULENT BL 

IF(CASE3) GO TO 770 
IF(CASE1) GO TO 51 

C TAU CALCULATION SUSPENDED UPTO X=XNT(2)=DEL/2 
IF(IT. EQ. 2) GO TO 101 

C TAU IS NON-DIM ; TAU(DIMEN)/(RHO*W**2*0.5) 
TAU=R9*V*(2. +R6*LDA)*SQRT(DVX/LDA) 
IF(TAU. GT. O) GO TO 55 
XLAST=XT 
WRITE (4,820) XLAST 
WRITE (4,830) IN 
GO TO 225 

C IN CASE3 IN=INK, IN CASE2 IN=INL 
55 IF(LNODE) GO TO 54 

GO TO 101 
51 IF(LNODE) GO TO 52 

GO TO 101 
52 TAU=R9*V*(2. +R6*LDA)*SQRT(DVX/LDA) 
C TAU(IN) TO BE USED WITH LIFT/DRAG PROG. 
54 TAUN(IN)=TAU 

LNODE=. FALSE. 
626 FORMAT('X LDA TAU V BL. THICKNESS'/1H , 5E13.6) 

DELB=SQRT(LDA/DVX) 
WRITE(4,626) X, LDA, TAU, V, DELB 

101 D1=H*CFX 
XT=X+HO2 
ZT=CF+0.5*Dl 
IC=2 
CALL DERCFX 
GO TO (426,427), IQ 

427 IQ=1 
GO TO 5 
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426 

429 

428 

431 

430 

3334 

C 
770 

775 

771 

117 
C 

7250 

7300 

C 
755 

751 

D2=H*CFX 
ZT=CF+0.5*D2 
IC=3 
CALL DERCFX 
GO TO (428,429), IQ 
IQ=1 
GO TO 5 
D3=H*CFX 
XT=X+H 
ZT=CF+D3 
IC=4 
CALL DERCFX 
GO TO (430,431), IQ 
IQ=1 
GO TO 5 
D4=H*CFX 
ZT=CF+(D1+2. *(D2+D3)+D4)*R6 
X=XT 
CF=ZT 
IF(X. GT. XLAST) GO TO 225 
GO TO 5 
TURBULENT BOUNDARY LAYER INTEGRATION 
CONTINUE 
DBX=(SAT1*BT*DVX+SBRE*V**0. 
IC=1 
GO TO 776 
CONTINUE 
IF(CASE3) GO TO 117 
IF(LDA. LE. -12. ) GO TO 7720 
IF(X. EQ. 0. ) GO TO 7720 
WRITE AT NODAL POINTS FIND 
IF(X. LT. XNODE) GO TO 7300 
IT=IT+1 
IN=IN+ISTEP 
IF(CASE3) GO TO 7250 
IF(LSTEPA) GO TO 7250 
IF(IN. LE. 0) IN=IN+86 
IF(IN. GT. 86) IN=IN-86 
CONTINUE 
XNODE=XNT(IT) 
LNODE=. TRUE. 
CONTINUE 
IF(CASE1) GO TO 751 
TAU=TAUC*V**1.75/BET**0.2 
IF(TAU. GT. O. ) GO TO 755 
XLAST=XT 
WRITE(4,820) XLAST 
WRITE(4,830) IN 
an mit 77's 

75)/V 

INK INL THE SEP. POINTS 

vv iv v..... + 

IN WRITTING ABOVE IS INK FOR CASE3 & INL FOR CASE2 

IF(LNODE) GO TO 754 
GO TO 7101 
IF(LNODE) GO TO 752 
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GO TO 7101 
752 TAU=TAUC*V**1.75/BET**0.2 
C TAUN(IN) TO BE USED IN THE LIFT PROG. 754 TAUN(IN)=TAU 

LNODE=. FALSE. 
DELB=BET**0.8 
WRITE(4,8000)X, BET, TAU, V, DELB 

7720 CONTINUE 
7101 D1=H*DBX 

BT=BET+0.5*Dl 
XT=X+H02 
IC=2 
GO TO 776 

772 D2=H*DBX 
BT=BET+0.5*D2 
IC=3 
GO TO 776 

773 D3=H*DBX 
BT=BET+D3 
XT=X+H 
IC=4 
GO TO 776 

774 D4=DBX*H 
BT=BET+(D1+2. *(D2+D3)+D4)*R6 
BET=BT 
X=XT 
IF(X. GT. XLAST) GO TO 225 
GO TO 775 

776 GO TO (472,471,472,471) IC 
471 CALL INTRO2 
472 CONTINUE 

GO TO (771,772,773,774) IC 
225 STOP 

END 
SUBROUTINE STGIC2 
REAL LDA, LDAX, LDAI, LDAP 
COMMON/A/ XNT(42), VNT(42), PHID(92), TAUN(92), XEXT(10) 
COMMON/B/ X, XT, LDA, YT, LDAX, V, DVX, D2VX, NPT, NPTM1, XCHK 
COMMON/C/ H, HO2, DELN, DELNO2, RDN2, RDNS, R6, Rl, R2, R8, R9 
COMMON/D/ SAO, SA1, SA2, SA3, SBO, SB1, SB2, SC1, SDO, SD1, SD2 
COMMON/E/ SEO, SE1, SFO, CF, CFI, CFX, CFXI, SD, TD, LDAI, DVXI 
COMMON/F/ SQO, SA4, SA, SB, SC, R240, DBKP, D2BKP, Q, D2VXI, KK 
COMMON/G/ VSGA, RE, IC, ZT, BKP, SB3, LDAP, IQ 
EQUIVALENCE(SQD3, SA3), (SZ2, SFO), (SZD2, SD2) 

801 FORMAT (18H DV/DX IS NAGETIVE) 
C NUM. OF NODAL POINTS ON EACH SIDE=10 

D2VXI=(VNT(1)+VNT(3)-2. *VNT(2))/DELN**2 
C NOTE DVXI SHOULD BE POSSITIVE 

DVXI=(VNT(2)-VNT(1))/DELN 
IF(DVXI. GT. 0. ) GO TO 50 

C DIAGNOSTIC REPORT TO GIVE ATT. TO DVXI(-) 
WRITE(4,801) 
DVXI=0.1 

5-26 



50 CONTINUE 
C POHLHAUSENS METHOD FOR STAG. CONDITION 

LDAI=7.052 
Q=SA-LDAI*(SB+SC*LDAI) 
CFI=(LDAI*Q**2)/DVXI 
CFXI=-0.0652*(D2VXI/DVXI**2) 
RETURN 
END 

C SUBROUTINE FOR INTERPOLATION 
SUBROUTINE INTRO2 
COMMON/A/ XNT(42), VNT(42), PHID(92), TAUN(92), XEXT(10) 
COMMON/B/ X, XT, LDA, YT, LDAX, V, DVX, D2VX, NPT, NPTM1, XCHK 
COMMON/C/ H, H02, DELN, DELN02, RDN2, RDNS, R6, R1, R2, R8, R9 
COMMON/D/ SAO, SA1, SA2, SA3, SBO, SB1, SB2, SC1, SDO, SD1, SD2 
COMMON/E/ SEO, SE1, SFO, CF, CFI, CFX, CFXI, SD, TD, LDAI, DVXI 
COMMON/F/ SQO, SA4, SA, SB, SC, R240, DBKP, D2BKP, Q, D2VXI, KK 
COMMON/G/ VSGA, RE, IC, ZT, BKP, SB3, LDAP, IQ 
REAL LDA, LDAX, LDAI, LDAP 

C LOCATE THE NEAREST NODAL POINT 
M2=NPT 
DO 89 I=2, NPTM1 
IF(XNT(I). LE. XT) GO TO 89 
M2=I 
GO TO 90 

89 CONTINUE 
90 IF((XNT(M2)-XT). GT. DELN02) M2=M2-1 

DELINT=XT-XNT(M2) 
C 3-P METHOD WITH LOCATED (. ) NEAR TO MIDDLE OF 3-P 

M1=M2-1 
M3=M2+1 
VN1=VNT(Ml) 
VN2=VNT(M2) 
VN3=VNT(M3) 
SAX=(VN3-VNl)*RDN2 
SBX=(VN1+VN3-2. *VN2)*RDNS 
V=VN2+DELINT*(SAX+DELINT*SBX) 
DVX=SAX+DELINT*2. *SBX 
RETURN 
END 

C SUBROUTINE FOR THE CALCULATION OF LAMDA CR 
SUBROUTINE DERCFX 
COMMON/A/ XNT(42), VNT(42), PHID(92), TAUN(92), XEXT(10) 

COMMON/B/ X, XT, LDA, YT, LDAX, V, DVX, D2VX, NPT, NPTMI, XCHK 

COMMON/C/ H, H02, DELN, DELN02, RDN2, RDNS, R6, Rl, R2, R8, R9 

COMMON/D/ SA0, SA1, SA2, SA3, SB0, SB1, SB2, SCI, SDO, SDI, SD2 

COMMON/E/ SE0, SE1, SF0, CF, CFI, CFX, CFXI, SD, TD, LDAI, DVXI 

COMMON/F/ SQ0, SA4, SA, SB, SC, R240, DBKP, D2BKP, Q, D2VXI, KK 

COMMON/G/ VSGA, RE, IC, ZT, BKP, SB3, LDAP, IQ 

REAL LDA, LDAP, LDAI, LDAX 
C USES XT FROM COMMON TO EVALUATE V, DVX AT XT 

C INTERPOLATION FOR LDA AT XT FOR GIVEN ZT 

GO TO (2,1,2,1), IC 
1 CALL INTRO2 
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2 CONTINUE 
BK=ZT*DVX 
DELK=BK-BKP 
GO TO (31,30,31,31), IC 

30 DBKP=SAO+LDAP*(SA1+LDAP*(SA2+LDAP*(SA3+LDAP*SA4))) 
D2BKP=SBO+LDAP*(SB1+LDAP*(SB2+LDAP*SB3)) 

31 TR1=DELK/DBKP 
TR2=D2BKP/DBKP 
LDA=LDAP+TR1*(1. -0.5*TR1*TR2) 
IF(LDA. LT. -17.75) STOP 
IF(LDA. GT. 12. ) STOP 
IF(LDA*DVX. GE. 0) GO TO 36 

C NOTE LDA & DVX HAVE ALWAYS SAME ALGEBRIC SIGN 
C HENCE AT EXTREMUM DVX CHANGES SIGN MAKING LDA & DVX 
C NEG. / TO REDIRECT B. L INTEG. BEYOND EXTREMUM 

X=XEXT(KK) 
XT=X 
LDA=O. 
BK=O. 
LDAP=O. 
BKP=0. 
DBKP=SAO 
D2BKP=SBO 

C USE INTRO2 FOR GETTING V NOTE DVX=O SINCE X=XEXT 
CALL INTRO2 
DVX=O. 

C INTEGRATION ABONDONED AND IQ=2 SET FOR RESTARTING 
IQ=2 
KK=KK+1 
XCHK=XEXT(KK) 
RETURN 

860 FORMAT(' DIAG LDA CF DVX CFX XCHK '/lH , 5E13.6) 

C EVALUATION OF DZX AT XT AND ZT 
36 Q=SA-LDA*(SB+LDA*SC) 

CFX=4. *Q*(1. -LDA*(Q-(LDA-16. )*R240))/V 

RETURN 
END 
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PROGRAM CLCDT 
DIMENSION NB(10), NE(10), XNN(86), YNN(86), PHIDM(86) 
DIMENSION DXNDXC(10), DYNDXC(10), YLX(86), YDX(86) 
DIMENSION YLY(86), NEVAL(8), YVAL(86,4), TAUN(86) 
DIMENSION SUMS(4), Z2(4), Z4(4), Z1S(86), YDY(86) 
COMMON/A/ SLX, SLY, SDX, SDY 
COMMON YLX, YLY, YDX, YDY 
EQUIVALENCE (YLX, YVAL) 
EQUIVALENCE (SLX, SUMS) 
READ(3,900) DELN, DELNJ 
READ(3,900) CMU, SHOL 
READ (7,920) (XNN(I), YNN(I), PHIDM(I), I=1,86) 

C READ NAG COORD AND VELOCITY AT B. L. EDGE AFTER 
C ACC FOR CIRCULATION PHIDM VALUES FROM PROG STTUR1 
C NOTE GAMA (+) VE FOR CLOCK WISE DIRECTION 
C NEVAL VALUES FROM THE PROG. STTUR1 

READ(7,929)(NEVAL(I), I=1,8) 
C READING TAUN FROM STTUR1 PROG AFTER RUN CASES123 

READ(7,931)(TAUN(I), I=1,86) 
929 FORMAT(1X, 813) 
931 FORMAT(1X, E13.6) 
900 FORMAT (2E13.6) 
920 FORMAT (1X 

13E13.6) 930 FORMAT (E13.6) 
800 FORMAT (' CL CD '/lH , 2E13.6) 
810 FORMAT(1H , 4E13.6) 

PI=3.141593 
SL2R=SIN(PI/8. ) 
SM=1. /7. 
VMAX=(8. /7. )*SQRT(CMU/(SHOL*SIN(PI/8. ))) 

C NEVAL(l) TO NEVAL(8) GIVE NAG NODES AT ENDS OF SIDES 
C JA, IJ, HI, (FG), DE, BC, IN ORDER 

NB(1)=1 
NE(10)=86 
DO 299 IN=1,86 
DO 299 IV=1,8 
IF(IN. NE. NEVAL(IV)) GO TO 299 
IVS=IV 
NE(1)=IN 
GO TO 399 

299 CONTINUE 
399 IV=IVS 

DO 499 IS=2,10 
NB(IS)=NCOR86(NE(IS-1)+1) 

C IV=1 CORRESPONDS TO SIDE JA HENCE LOCATE NOZZLE 

IF(IV. EQ. 1) GO TO 599 
NE(IS)=NCOR86(NB(IS)+9) 
GO TO 499 

599 NE(IS)=NCOR86(NB(IS)+5) 
IV=8 

C ISS IS SIDE NUMBER FOR SIDE BC OF OCTAGON 

ISS=IS+1 
GO TO 799 
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499 
799 

899 
999 
C 
C 

C 

171 

173 

174 

2 
C 

175 

176 

803 
C 

IV=IV-1 
IVLST=IVS 
DO 899 IS=ISS, 10 
NB(IS)=NCOR86(NE(IS-1)+1) 
IF(IV. EQ. IVLST) GO TO 999 
IV=IV-1 
IF(IS. EQ. 10) GO TO 899 
NE(IS)=NCOR86(NB(IS)+9) 
CONTINUE 
CONTINUE 
SLOPES DXN/DX AND DYN/DX FOR SEGMENTS 
NOTE SEGMENT NO INCREMENTS CLOCK-WISE 
KSP=1 
DO 2 I=1,10 
JB=NB(I) 
JE=NE(I) 
CHECK FOR ONE NODE ONLY FOR SIDES 1& 
IF(I. EQ. 1) GOTO 171 
IF(I. EQ. 10) GO TO 173 
IF(JB. NE. JE) GO TO 174 
KSP=2 
GO TO 2 
IF(JB. NE. JE) GO TO 174 
KSP=3 
GO TO 2 
DELX=(XNN(JE)-XNN(JB)) 
DELY=(YNN(JE)-YNN(JB)) 
DXC=SQRT(DELX**2+DELY**2) 
DXNDXC(I)=DELX/DXC 
DYNDXC(I)=DELY/DXC 
CONTINUE 

DIRECTION 

10 

DETERMINE THE SLOPE 1&10 FOR SINGLE NODE CASE 
IF(KSP. EQ. 1) GO TO 176 
IF(KSP. NE. 2) GO TO 175 
DXNDXC(1)=DXNDXC(10) 
DYNDXC(1)=DYNDXC(10) 
DXNDXC(10)=DXNDXC(1) 
DYNDXC(10)=DYNDXC(1) 
CONTINUE 
WRITE(4,803) DXNDXC, DYNDXC 
FORMAT(' DXNDXC, DYNDXC'/1H , 5E11.3) 
MODIFIED PHID FOR JET TO ACC FOR NORMAL VEL COMP. 
KBEG=NEVAL(1)+l 
KEND=KBEG+5 
XABN=XNN(KEND)-XNN(KBEG) 
DXAB=XABN/5. 
XAB=ABS(XABN+DXAB) 
XNM=(XNN(KBEG+2)+XNN(KBEG+3))*0.5 
DO 60 I=KBEG, KEND 
T=ABS(XNN(I)-XNM) 
SX=XAB*0.5-T 
ARG=2. *SX/XAB 
V=ARG**SM*VMAX 
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PHIDM(I)=SQRT(PHIDM(I)**2+V**2) 
60 CONTINUE 
C CALCULATION OF NON-DIM. PRES. BY BERNOULLI EQ. DO 100 I=1,86 
100 Z1S(I)=1. -PHIDM(I)**2 

WRITE(4,802) Z1S 
802 FORMAT(1H , 7E10.2) 
801 FORMAT(1H , 6E10.2/1H 

, 8(5E10.2)) 
DO 10 IS=1,10 
CDXN=DXNDXC(IS) 
CDYN=DYNDXC(IS) 
JB=NB(IS) 
JE=NE(IS) 
DO 1000 IN=JB, JE 
Z1=Z1S(IN) 
ALSN=TAUN(IN) 
IF(PHIDM(IN). LT. O. )ALSN=-ALSN 
YDX(IN)=ALSN*CDXN 
YDY(IN)=ALSN*CDYN 
YLX(IN)=Z1*CDYN 

1000 YLY(IN)=Z1*CDXN 
10 CONTINUE 

JFOUR=4 
C CHECK SECTION STARTS HERE 

JFOUR=1 
XT=O. 
DO 37 IS=1,10 
JB=NB(IS) 
JE=NE(IS) 
DO 38 IN=JB, JE 
IF(IS. EQ. (ISS-1)) GO TO 40 
XT=XT+DELN 
GO TO 38 

40 XT=XT+DELNJ 
YLX(IN)=XT**3 

38 CONTINUE 
37 CONTINUE 
3700 CONTINUE 

DO 91 IS=1,10 
JB=NB(IS) 
JE=NE(IS) 

C FOR SIDES HAVING 2 OR 1 NODES TRAP. RULE FO INTG. 
IF((JE-JB). LE. 1) GO TO 92 
JL1=JB 
JL2=JB+1 
JL3=JB+2 
JR1=JE 
JR2=JE-1 
JR3=JE-2 

C END AREAS FROM PARABOLIC FIT EQUATION 

C NOTE MULTIPLICATION WITH "H" IS REQUIRED 

DO 51 J=1, JFOUR 
SUMS(J)=34. *(YVAL(JL1, J)+YVAL(JR1, J)-14. *(YVAL 

*(JL2, J)+YVAL(JR2, J))+4. *(YVAL(JL3, J)+YVAL(JR3, J))) 
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51 CONTINUE 
NSTRIP=(JE-JB) 
N02=NSTRIP/2 
IF(2*NO2. EQ. NSTRIP) GO TO 95 

C NSTRIP IS ODD NOW 
C USE 3/8 SIMPSONS RULE FOR FIRST THREE STRIPS 

JO=JB 
J1=JB+1 
J2=JB+2 
J3=JB+3 
DO 52 J=1, JFOUR 
SUMS(J)=SUMS(J)+0.375*(YVAL(JO, J)+3. *(YVAL(Jl, J) 

*+YVAL(J2, J))+YVAL(J3, J)) 
52 CONTINUE 

NSTRIP=NSTRIP-3 
JB=J3 

95 IF(NSTRIP. EQ. 0) GO TO 14 
C 1/3 SIMPSONS RULE FOR EVEN STR. NODES JB TO JE 
C JB IS MOD IF 3/8 RULE IS ALREADY USED FOR ODD STRIPS 

J4ST=JB+1 
J4EN=JE-1 
DO 53 J=1, JFOUR 
Z4(J)=0. 
DO 25 IN=J4ST, J4EN 

25 Z4(J)=Z4(J)+YVAL(IN, J) 
53 CONTINUE 

IF(J4ST. EQ. J4EN) GO TO 15 
C THERE ARE TWO STRIPES ONLY 
C NOW THERE ARE FOUR OR MORE STRIPES 

J2ST=JB+2 
J2EN=JE-2 
DO 54 J=1, JFOUR 
Z2(J)=0. 
DO 26 IN=J2ST, J2EN 

26 Z2(J)=Z2(J)+YVAL(IN, J) 
SUMS(J)=SUMS(J)+2. *Z2(J) 

54 CONTINUE 
15 CONTINUE 

DO 55 J=1, JFOUR 
SUMS(J)=SUMS(J)+4. *Z4(J) 

55 CONTINUE 
14 CONTINUE 

DO 56 J=1, JFOUR 
IF(IS. EQ. (ISS-1)) GO TO 30 
SUMS(J)=SUMS(J)*DELN 
GO TO 91 

30 SUMS(J)=SUMS(J)*DELNJ 
56 CONTINUE 
92 CONTINUE 

DO 58 J=1, JFOUR 
IF(IS. EQ. 1) SUMS(J)=O- 
Do 58 IN=JB, JE 
SUMS(J)=SUMS(J)+DELN*YVAL(IN, J) 
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58 CONTINUE 
91 CONTINUE 
C NOTE ISS IS NO FOR BC 
C DELNJ IS REARRANGED FOR JET, 
C DELET THE NEXT WRITE CHECK 

WRITE(8,810)SUMS(1) 
SLX=SLX*SL2R 
SLY=-SLY*SL2R 
SDX=SDX*SL2R 
SDY=SDY*SL2R 
CL=SLY+SDY 
CD=SLX+SDX 
WRITE (4,800) CL, CD 

5000 STOP 
END 
FUNCTION NCOR86(NT) 
IF(NT. GT. 86) NT=NT-86 
NCOR86=NT 
RETURN 
END 

IS=ISS-1 
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PROGRAM POWERG1 
LOGICAL ROT, END 
DIMENSION PDOMF(13), PDGF(13) 
DIMENSION FST(13), PIDST(13), PBDST(13), PMUDST(13) 
DIMENSION LXST(13), LYST(13), DXST(13), DYST(13) 
DIMENSION PDST(13), PDOMST(13), BETST(13) 
DIMENSION PDF(13), CMUS(13), SCL(13), CDS(13), UMS(13) 

900 FORMAT(5E15.0) 
800 FORMAT(' RR VM THETC RSBOM 

*/1H , 4E13.6) 
801 FORMAT(' E* PERCENT JET POWER '/lH 

, 2E15.8) 
810 FORMAT(' BETA(DEG) CMU CL CD 

* NON DIM REL VEL' ) 
802 FORMAT(1H , 5E15.6) 
815 FORMAT(' BETA(DEG) CL CD NON DIM 

*REL VEL') 
803 FORMAT(1H , 4E15.6) 
816 FORMAT(' F P*(I) P*(B) P*(MU) ') 
805 FORMAT(1H , 4E15.6) 
891 FORMAT(' BETA(DEG) PD PDOM' 
890 FORMAT(1H , 3E15.6) 
820 FORMAT (' LXST LYST DXST DYST 
821 FORMAT (1H 

, 4E13.6) 
804 FORMAT(' RR VM THETAC SBSR VJM'/1H , 5E13.6) 
901 FORMAT(2L1) 

REAL LX, LY, MUZ, MAD 
READ(1,901) ROT 
NS=O 
NST=1 
PI=3.141592 
IF(ROT) GOT075 
READ(1,900) RR, VM, THETC, SBSR, VJM 

150 NS=O 
NST=1 
VJM=VJM+0.25 
WRITE(6,804) RR, VM, THETC, SBSR, VJM 
CON2=0.5*SBSR*VJM**2 
CON5=0.5*VJM**3*SBSR 
GOT076 

75 READ(1,900)RR, VM, THETC, RSBOM 
WRITE(6,800) RR, VM, THETC, RSBOM 
CON1=2. *PI*RR*RSBOM*VM 
VMRR=VM*RR 

76 CONTINUE 
PI06=30. 
BETAA=(180. -THETC)/2. 
BETAB=BETAA+THETC 
BETAC=BETAA+180. 
BETAD=BETAC+THETC 
BETAINC=3.0 
K=1 
SUM=O. 
SUMG=O. 
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SUMJ=O. 
BETA=O. 
DO 200 N=1,121 
IF(BETA. GT. BETAA)GO TO 10 
AR=-l. 
GO TO 50 

10 IF(BETA. GT. BETAB)GO TO 20 
AR=2. *(BETA-BETAA)/THETC-1. 
GO TO 50 

20 IF(BETA. GT. BETAC)GO TO 30 
AR=1. 
GO TO 50 

30 IF(BETA. GT. BETAD)GO TO 40 
AR=1. -2. *(BETA-BETAC)/THETC 
GO TO 50 

40 AR=-l. 
50 BETAR=BETA*PI/180. 

IF(AR. GE. O. ) GO TO 130 
ABAR=-AR 
SIGN=-1. 
GO TO 131 

130 ABAR=AR 
SIGN=1. 

131 CONTINUE 
VX=-VM*SIN(BETAR) 
VY=VM*COS(BETAR) 
UX=1. -VX 
UY=-VY 
UM=SQRT(UX**2+UY**2) 
IF(. NOT. ROT)GO TO 60 
OMR=RSBOM*ABAR 
MAD=VM*RR*OMR/UM 
IF(MAD. GT. 0.8) GO TO 51 
CL=O. 
GO TO 53 

51 IF(MAD. GT. 4. ) GO TO 52 
CL=4.2*MAD-3.77 
GO TO 53 

52 CL=13. 
53 CONTINUE 

IF(MAD. GT. 2.5) GO TO 54 

CD=0.8 
GO TO 57 

54 IF(MAD. GT. 4.75) GO TO 55 

CD=1.64*MAD-3.31 
GO TO 57 

55 CD=4.5 
57 CONTINUE 

LX=CL*UY*SIGN 
LY=-CL*UX*SIGN 
DX=CD*UY*SIGN 
DY=-CD*UX*SIGN 
IF(RSBOM. NE. 0) GO TO 70 
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PDOM=O 
GO TO 70 

60 CMU=CON2*(AR/UM)**2 
CL=20. *CMU 
IF(CL. GT. 8. ) CL=8. 
CD=(16. *CMU+9.7)/13.3 
IF(CMU. NE. 0. ) GOT066 
LX=O. 
LY=O. 
GOT067 

66 CLS=CL/CMU 
MUZ=-CMU 
IF(BETA. LE. 90. )GO TO 65 
IF(BETA. GT. 270. )GO TO 65 

67 MUZ=CMU 
65 CON3=UM*CLS*MUZ 

LX=CONS*UY 
LY=-CON3*UX 
PDOM=CON5*ABAR**3 

70 CONTINUE 
DX=CD*UM*UX 
DY=CD*UM*UY 
FX=LX+DX 
FY=LY+DY 
IF(. NOT. ROT) GO TO 78 
F=SQRT(FX**2+FY**2) 
CON4=RR*VM 
PID=5. *(RSBOM*CON4)**3/RSBOM 
PBD=0.8*CON4*OMR*(0.02856*F+0.0225) 
PMUD=0.00737*(CON4*OMR)**2.8 
PDOM=PID+PBD+PMUD 
CONTINUE 

78 PD=FX*VX+FY*VY-PDOM 
C PDG=GROSS POWER PRODUCED 

PDG=FX*VX+FY*VY 
IF(N. LT. NST)GO TO 80 
NST=NST+10 
NS=NS+1 
BETST(NS)=BETA 
UMS(NS)=UM 
IF(. NOT. ROT)CMUS(NS)=CMU 
CDS(NS)=CD 
SCL(NS)=CL 
PDST(NS)=PD 
PDOMST(NS)=PDOM 
LXST(NS)=LX 
LYST(NS)=LY 
DXST(NS)=DX 
DYST(NS)=DY 
GO TO 80 
PIDST(NS)=PID 
PBDST(NS)=PBD 
PMUDST(NS)=PMUD 
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80 PDF(K)=PD 
PDGF(K)=PDG 
PDOMF(K)=PDOM 
K=K+1 
IF(K. LE. 3)GO TO 200 
K=2 
SUMJ=SUMJ+(PDOMF(1)+4. *PDOMF(2)+PDOMF(3)) 
PDOMF(1)=PDOMF(3) 
SUMG=SUMG+(PDGF(1)+4. *PDGF(2)+PDGF(3)) 
PDGF(1)=PDGF(3) 
SUM=SUM+(PDF(1)+4. *PDF(2)+PDF(3)) 
PDF(1)=PDF(3) 

200 BETA=BETA+BETAINC 
E=SUM/360. 
EG=SUMG/360. 

C PERCENT JET POWER 
E1=SUMJ/(3.6*EG) 
WRITE(6,801) E, El 
IF(ROT)GO TO 300 
WRITE(6,810) 
WRITE(6,802)(BETST(I), CMUS(I), SCL(I), CDS(I) 

*, UMS(I), I=1, NS) 
GO TO 400 

300 WRITE(6,815) 
WRITE(6,803)(BETST(I), SCL(I), CDS(I), UMS(I), I=1, NS) 
WRITE(6,816) 
WRITE(6,805)(PIDST(I), PBDST(I), PMUDST(I), I=1, NS) 
WRITE(6,820) 
WRITE (6,821)(LXST(I), LYST(I), DXST(I), DYST(I), I=1, NS) 

400 CONTINUE 
WRITE(6,891) 
WRITE(6,890)(BETST(I), PDST(I), PDOMST(I), I=1, NS) 
READ (1,901) END 
IF(. NOT. END) GO TO 150 
STOP 
END 
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PROGRAM GRID1 
DIMENSION XST(80,26), YST(80,26), PHIST(80,26) 
DIMENSION PMINS(80), PMAXS(80), XG(240), YG(240), NGRS(20) 
DIMENSION SRS(26), KGT(160), PHICST(20), KM(80), IVECS(20) 
COMMON/BX/XG, YG, KGT, IG, NGR 
LOGICAL LHIGH, LMOD 
READ(9,8800) ICOUNT, KST 
IF(KST. EQ. 0) GO TO 1234 
READ(18,8810) (IVECS(I), I=1, KST) 

1234 CONTINUE 
8800 FORMAT(3X, 2I2) 
8810 FORMAT(1X, 5I5) 

LTI=O 
READ (3,900)((XST(I, J), YST(I, J), PHIST(I, J) 

*, I=1,80), J=1,26) 
READ (3,902) NPHIC, LMOD 
READ (3,901) (PHICST(I), I=1, NPHIC) 
READ(3,915)(SRS(J), J=1,26), BH, DB 

915 FORMAT(1X, 2E13.6) 
C FIND MAX & MIN OF PHI ON ANY RADIAL NORMAL LINE 
C MODIFICATION FOR CIRCULATION 

IF(. NOT. LMOD) GO TO 61 
READ(3,901)GAMA 
PI=3.1418 
ROL=0.5/SIN(PI/8. ) 
C1= GAMA/(4. *PI) 
C2=-GAMA/(2. *PI)*ALOG(ROL) 
DO 60 J=1,26 
SRS1=SRS(J)**2 
DO 60 I=1,80 
PHIMOD=C1*ALOG(SRS1)+C2 

60 PHIST(I, J)=PHIST(I, J)+PHIMOD 
61 CONTINUE 

DO 1 I=1,80 
PMIN=PHIST(I, l) 
PMAX=PMIN 
DO 2 J=2,26 
IF(KST. EQ. 0) GO TO 255 
IVEC=(J-1)*80+I 
DO 326 KI=1, KST 
IF(IVECS(KI). NE. IVEC) GO TO 326 
GO TO 2 

326 CONTINUE 
255 CONTINUE 

PHIT=PHIST(I, J) 
IF(PHIT. GE. PMIN) GO TO 2 

PMIN=PHIT 
2 CONTINUE 

PMINS(I)=PMIN 
DO 3 J=2,26 
IF(KST. EQ. 0) GO TO 355 
IVEC=(J-1)*80+I 
DO 426 KI=I, KST 
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IF(IVECS(KI). NE. IVEC) GO TO 426 
GO TO 3 

426 CONTINUE 
355 CONTINUE 

PHIT=PHIST(I, J) 
IF(PHIT. LE. PMAX) GO TO 3 
PMAX=PHIT 

3 CONTINUE 
PMAXS(I)=PMAX 

1 CONTINUE 
DO 10 IPHI=1, NPHIC 
PHIC=PHICST(IPHI) 
KN=O 
KSUM=O 
NGR=1 
IS=1 
KNS=1 
B=BH-DB 
DO 15 I=1,80 
B=B+DB 
IF(PHIC. LT. PMINS(I)) GO TO 15 
IF(PHIC. GT. PMAXS(I)) GO TO 15 
K=0 
KN=KN+1 
IF((I-IS). EQ. (KN-KNS)) GO TO 50 
IF(KSUM. EQ. 0) GO TO 52 
NGR=NGR+1 
KSUM=O 
KN1=KN-1 
WRITE (4,850) PHIC 
WRITE (4,810)KNl, (KM(IX), IX=KNS, KN1) 
WRITE (4,805)IG 
WRITE (4,850) (XG(IX), YG(IX), IX=1, IG) 
CALL BRGRID 
WRITE (6,889)IG 
WRITE (6,888)(XG(IX), YG(IX), IX=1, IG) 

52 IS=I 
KNS=KN 

50 CONTINUE 
LHIGH=PHIST(I, 1). GT. PHIC 
DO 20 J=2,26 
IF(KST. EQ. 0) GO TO 455 
IVEC=(J-1)*80+I 
DO 526 KI=1, KST 
IF(IVECS(KI). NE. IVEC) GO TO 
GO TO 20 

526 CONTINUE 
455 CONTINUE 

IF(LHIGH) GO TO 21 
IF(PHIST(I, J). LT. PHIC) GO TO 
LHIGH=. TRUE. 
JH=J 
JL=J-1 

526 

20 
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GO TO 22 
21 IF(PHIST(I, J). GT. PHIC) GO TO 20 

LHIGH=. FALSE. 
JL=J 
JH=J-1 

22 K=K+1 
IG=KSUM+K 

C KGT VALUES INDICATE BRANCH. OF 
KGT(IG)=K 
IF(K. LE. 3) GO TO 30 
WRITE(4,860)I, J 
KN=KN-1 
IG=IG-1 
GO TO 15 

30 PHIL=PHIST(I, JL) 
PHIH=PHIST(I, JH) 
IF(LHIGH) GO TO 31 
JINT=JH 
JH=JL 
JL=JINT 
PHINT=PHIH 
PHIH=PHIL 
PHIL=PHINT 

31 IF(PHIL. GT. -999. ) GO TO 32 
JL=JL-1 
IF(JL. GE. 1) GO TO 34 
JL=JH+1 
PHIL=PHIST(I, JL) 
GO TO 33 

34 PHIL=PHIST(I, JL) 
GO TO 31 

32 IF(PHIH. GT. -999. ) GO TO 33 
JH=JH+1 
IF(JH. LE. 26) GO TO 35 
JH=JL-1 
PHIH=PHIST(I, JH) 
GO TO 33 

35 PHIH=PHIST(I, JH) 
GO TO 32 

33 CONTINUE 
RATIO=(PHIC-PHIL)/(PHIH-PHIL) 
SRL=SRS(JL) 
SRH=SRS(JH) 
SR=SRL+RATIO*(SRH-SRL) 
XG(IG)=SR*COS(B) 
YG(IG)=SR*SIN(B) 

20 CONTINUE 
KM(KN)=K 
KSUM=IG 

15 CONTINUE 
WRITE (4,850) PHIC 
WRITE (4,810)KN, (KM(I), I=1, KN) 
WRITE (4,805) IG 

MULT. INT. STR. LINES 
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WRITE (4,850)(XG(I), YG(I), I=1, IG) 
CALL BRGRID 
WRITE(6,889) IG 
WRITE(6,888)(XG(I), YG(I), I=1, IG) 
NGRS(IPHI)=NGR 

10 CONTINUE 
WRITE(4,815)(NGRS(I), I=1, NPHIC) 
WRITE(7,889)NPHIC 
WRITE(7,889)(NGRS(I), I=1, NPHIC) 
STOP 

888 FORMAT(1H , 2E13.6) 
889 FORMAT(1H , 1015) 
900 FORMAT(1X, 3E15.4) 
2655 FORMAT(1H , 3E15.4) 
901 FORMAT(5F10.0) 
902 FORMAT(I2, L1) 
860 FORMAT(' MULTIPLE POSIT. DATA SPACE EXPECTED', 2I10) 
810 FORMAT(1H 

, 'KN, KM'/lH , I10/(1H , 10I4)) 
850 FORMAT(1H , 2E13.6) 
805 FORMAT(' NUNMBER OF POINTS ON A STREAM 

*LINE', I10/'X &Y DATA') 
815 FORMAT(' NGR VALUES', /1H 

, 1015) 
END 
SUBROUTINE BRGRID 
COMMON/BX/XG, YG, KGT, IG, NGR 
DIMENSION XG2(120), YG2(120), XG(240), YG(240), KGT(160) 

889 FORMAT(1H , 10I5) 
888 FORMAT(1H , 2E13.6) 

DO 70 IGT=1, IG 
IF(KGT(IGT). EQ. 1) GO TO 70 
GO TO 71 

70 CONTINUE 
C MULTIPLE BRANCHES ARE NOT PRESENT 

RETURN 
C MULTIPLE BRANCHES ARE PRESENT 
C GRAPHS ARE RE ORGERNISED 
71 IG1=0 

IG2=0 
DO 74 IGT=1, IG 
IF(KGT(IGT). EQ. 2) GO TO 75 
IG1=IG1+1 
XG(IG1)=XG(IGT) 
YG(IG1)=YG(IGT) 
GO TO 74 

75 IG2=IG2+1 
XG2(IG2)=XG(IGT) 
YG2(IG2)=YG(IGT) 

74 CONTINUE 
WRITE(6,889) IG2 
WRITE(6,888)(XG2(IX), YG2(IX), IX=1, IG2) 

NGR=NGR+1 
IG=IG1 
RETURN 
END 
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PROGRAM PART2 
REAL M, Ml, K1, K2 
INTEGER SG(10) 
DIMENSION DELXS(8), DELYS(8), NBEGS(8), NENDS(8) 
DIMENSION XS(10), YS(10), NEST(10) 
DIMENSION PHI(92), X(185), Y(185), PHID(92) 
COMMON XM(80), YM(80), XR(80), YR(80) 
DIMENSION XMM(42), YMM(42), XRR(42), YRR(42) 
EQUIVALENCE (XMM, XM(43)), (YMM, YM(43)) 
EQUIVALENCE (XRR, XR(43)), (YRR, YR(43)) 

C N=SEGMENTS REFER TO NAG NOTATION 
C SIDES(=10 FOR OCTAGON WITH JET AND SUCTION) 
C SG(1) TO SG(10) SEGMENTS FOR EACH SIDE 
C N1P1=(2N+1) COORD POINTS ON CONTOUR REF TO NAG NOTAT 
C NODAL POINTS ARE MID -POINT OF SEGMENTS= N IN NUMBER 
851 FORMAT(1H , 3E15.4) 
900 FORMAT(5F13.6) 
901 FORMAT(10I2) 
800 FORMAT(' THETAD SHOL CMU'/1H , 3E13.6) 
801 FORMAT('SG(l) SG(2) SG(3) SG(4) SG(5) SG(6) SG(7) 

*SG(8) SG(9), SG(10)'/lH , 1014) 
850 FORMAT(1H , 2E13.6) 

F(S)=-Kl*K2*(S**Ml) 
G(S)=-2*Kl*K2*((SHOL/2. )**M1)+Kl*K2*(S**M1) 
READ (3,900) DELNM 
READ(3,900) THETAD, SHOL, CMU 
READ(3,901) SG 

C WRITE(4,800)THETAD, SHOL, CMU 
C WRITE(4,801) SG 

PI=3.141593 
THETA=THETAD*PI/180. 
M=1. /7. 
M1=M+1. 
123=0 
K1=8. /7. *SQRT(CMU/(SHOL*SIN(PI/8. ))) 

C (R/SMALL L) IS R1 
R1=1. /(2. *SIN(PI/8. )) 

C NON-DIMENSIONALISED WRT SIDE OF OCTAGON(L) 
R1R2=0.5*Rl*SQRT(2. ) 
CT=COS(THETA) 
ST=SIN(THETA) 
K2=((2. /SHOL)**M)/M1 

C COORDINATES OF A 
XS(1)=R1*CT 
YS(1)=R1*ST 

C CORDINATES OF B 
XS(2)=(Rl-SHOL)*CT 
YS(2)=(R1-SHOL)*ST 

C COORDINATES OF C 
XS(3)=R1R2*(ST+CT) 
YS(3)=R1R2*(ST-CT) 

C CORDINATES OF D 
XS(4)=YS(1) 
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YS(4)=-XS(1) 
C COORDINATES OF E 

XS(5)=YS(3) 
YS(5)=-XS(3) 

C COORDINATES OF F 
XS(6)=-XS(1) 
YS(6)=-YS(1) 

C COORDINATES OF G 
XS(7)=-XS(2) 
YS(7)=-YS(2) 

C COORDINATES OF H 
XS(8)=-XS(3) 
YS(8)=-YS(3) 

C COORDINATES OF I 
XS(9)=-XS(4) 
YS(9)=-YS(4) 

C COORDINATES OF J 
XS(10)=-XS(5) 
YS(10)=-YS(5) 
N=0 

C CALCULATE NO OF SEGMENTS =NODAL POINTS 
DO 1 I=1,10 

1 N=N+SG(I) 
C CALCULATE MP FOR DO3EAF 

N1P1=2*N+1 
NE=O 

C SETS PHID VALUES=O FOR DIRICH. INTER. PROB. 
DO 100 J=1, N 

100 PHID(J)=0. 
C EVALUATE THE COORD. OF ALL THE POINTS USE DO L-10 

DO 10 I=1,10 
NB=NE+1 
NBP1=NB+1 

C NO OF INTERVALS IN THE SEGMENT (I) 
NIS=SG(I) 
NE=2*NIS+NB-1 
NEST(I)=NE 

C NE DENOTES END POINT -1. 
X(NB)=XS(I) 
Y(NB)=YS(I) 
IP1=I+1 
IF(IPl. EQ. 11) IP1=1 

C DELX, DELY =0.5*DISTANCE BETWEEN NODAL POINTS 
DELX=0.5*(XS(IP1)-XS(I))/FLOAT(NIS) 
DELY=0.5*(YS(IP1)-YS(I))/FLOAT(NIS) 
IF(I. EQ. 1. OR. I. EQ. 6) GO TO 13 

C DELX DELY FOR OCTAGON SIDES ONLY, STORED (1-8) 

I23=I23+1 
DELXS(I23)=DELX 
DELYS(I23)=DELY 

13 CONTINUE 
DO 11 J=NBP1, NE 
X(J)=X(J-1)+ DELX 
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11 
10 
C 

c 
c 

50 

16 
15 
C 
C 

35 

37 

C 

Y(J)=Y(J-1)+ DELY 
CONTINUE 
THE CONTOUR IS COMPLETED BY REPEAT. START. 
A(NlPl)=X(1) 
Y(N1P1)=Y(1) 
CALCULATION OF THE COORD. OF M 
HERE ONLY OCTAGON SIDESS CONSIDERS FOR 
IS=0 
DO 50 I=1,10 
IF(I. EQ. 1. OR. I. EQ. 6) GO TO 50 
IS=IS+1 
NBEGS(IS)=NEST(I-1)+2 
NENDS(IS)=NEST(I) 
CONTINUE 
NS=O 
DO 15 I=1,8 
DELX=DELXS(I) 
DELY=DELYS(I) 
DELN=2. *SQRT(DELX**2+DELY**2) 
RATIO=2. *DELNM/DELN 
DELMX=RATIO*DELY 
DELMY=RATIO*DELX 

NBEG=NBEGS(I) 
NEND=NENDS(I) 
DO 16 J=NBEG, NEND, 2 
XJ=X(J) 
YJ=Y(J) 
NS=NS+1 
XM(NS)=XJ-DELMX 
YM(NS)=YJ+DELMY 
CONTINUE 

M POINTS 

PROG. FOR FINDING PHI VALUES FOR NODAL POINTS 
NBD= THE POINT CORRRESPONDS MID POINT OF SEG. 1 
NBD=1+SG(1) 
J=0 
DO 25 I=2, N1P1,2 
J=J+1 
IF(I. GT. NBD) GO TO 35 
S=SQRT((XS(1)-X(I))**2+(YS(1)-Y(I))**2) 
PHI(J)=F(S) 
GO TO 25 
IF(I. GT. NEST(1)) GO TO 37 
S=SQRT((XS(2)-X(I))**2+(YS(2)-Y(I))**2) 
PHI(J)=G(S) 
IF(I. NE. NEST(1)) GO TO 25 
PHIB=-2. *Kl*K2*((SHOL/2. )**M1) 
GO TO 25 
IF(I. GT. NEST(5)) GO TO 38 
PHI(J)=PHIB 
GO TO 25 
PHI IS MADE CONSTANT =PHIB UP TO POINT F 

PHI(J)=PHIB*(XS(7)-X(I))/(XS(7)-XS(6)) 
GO TO 25 
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39 PHI(J)=0. 
25 CONTINUE 

IX=12 
DO 444 I=7, N 
IX=IX+2 
IF(I. GT. 46. AND. I. LT. 53) GO TO 444 

444 CONTINUE 
FIRST TWO WRITE STATEMENTS ARE FOR CHECKING ONLY 
WRITE(4,850)(X(J), Y(J), J=14,92,2) 
WRITE(4,850)(X(J), Y(J), J=106,184,2) 
WRITE(7,850)(XM(I), YM(I), I=1,80) 
WRITE(4,851)(X(J), Y(J), PHI(J), J=14,92,2) 
WRITE(4,851)(X(J), Y(J), PHI(J), J=106,184,2) 
WRITE(4,850)(DELXS(I), DELYS(I), I=1,8) 
WRITE (9,850)(XS(I), YS(I), I=1,10) 
WRITE (4,850)(X(J), Y(J), J=1, N1P1) 
WRITE (8,850)(PHI(J), PHID(J), J=1, N) 
WRITE(6,850)(X(JT), Y(JT), JT=2, N1P1,2) 
END 
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850 
900 
950 

C 

C 

C 

C 

C 

1 
C 

C 

PROGRAM PART3 
INTEGER SG(4) 
DIMENSION XS(4), YS(4), NEST(4) 
DIMENSION PHI(24), PHID(24), X(49) 
FORMAT (1H 

, 2E13.6) 
FORMAT (5F13.6) 
FORMAT (412) 
READ(3,900) D 
READ(3,950) SG 
COORDINATES OF K 
XS(1)=D 
YS(1)=D 
COORDINATES OF R 
XS(2)=-D 
YS(2)=D 
COORDINATES OF P 
XS(3)=-D 
YS(3)=-D 
COORDINATES OF M 
XS(4)=D 
YS(4)=-D 
N=O 
CALCULATE NO OF SEG. =NOD POINTS 
DO 1 I=1,4 
N=N+SG(I) 
CALCULATE M POINT FOR NAG ROUT. 
N1P1=2*N+l 

, Y(49) 

SETS PHID VALUES =0 FOR INT. DIRCH. PROBLEM 
DO 100 J=1, N 

100 PHID(J)=0. 
C CALCULATE THE COORDINAT ES OF ALL POINTS DO L-10 

NE=O 
DO 10 I=1,4 
NB=NE+1 
NBP1=NB+1 

C NO OF INTERVALES IN THE SECTION(I) 
NIS=SG(I) 
NE=2. *NIS+NB-1. 
NEST(I)=NE 

C NE DENOTES THE END POINT -1. 
X(NB)=XS(I) 
Y(NB)=YS(I) 
IP1=I+1 
IF(IPl. EQ. 5) IP1=1 
DELX=0.5*(XS(IP1)-XS(I) )/FLOAT(NIS) 
DELY=0.5*(YS(IP1)-YS(I) )/FLOAT(NIS) 
DO 11 J=NBP1, NE 
X(J)=X(J-1)+DELX 

11 Y(J)=Y(J-1)+DELY 
10 CONTINUE 
C CONTOUR IS COMPLETED BY REPEATING START POINT 

X(N1P1)=X(1) 
Y(N1P1)=Y(1) 
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C FINDING PHI VALUES FOR NODAL POINTS 
J=0 
DO 25 I=2, N1P1,2 
J=J+1 

C SECTION K-R HAS A CONST STREAM FUNCTION 
IF(I. GT. NEST(1)) GO TO 35 
PHI(J)=D 
GO TO 25 

C AT THE ENTRANCE FLOW IS UNIFORM 
35 IF(I. GT. NEST(2)) GO TO 37 

PHI(J)=Y(I) 
GO TO 25 

C SECTION P-M HAS A CONST STREAM FUNCTION 
37 IF(I. GT. NEST(3)) GO TO 39 

PHI(J)=-D 
GO TO 25 

C AT THE EXIT THE FLOW IS UNIFORM 
39 PHI(J)=Y(I) 
25 CONTINUE 

WRITE (4,850)(X(J), Y(J), J=1, N1P1) 
WRITE (4,850)(X(1), Y(1)) 
WRITE (6,850)(PHI(J), PHID(J), J=1, N) 
STOP 
END 
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PROGRAM CPMAX 
REAL KS(20), K, KMXVAL 
DIMENSION YS(20,20), XLS(20,20), XHS(20,20), ELS(20,20) 
DIMENSION EL1S(20), ELMS(20), KMXVAL(20), EHS(20,20) 
DIMENSION YMOXMS(20), Y1OX1S(20), YMINS(20), YLMS(20) 

C EL, EH ARE EFFICIENCIES FOR LOW AND HIGH LEGS 
C ELM IS EFFICIENCY MAXIMUM OF LOWER LEG 
C EL1 IS EFFICIENCY FOR Y=1 
C YMOXM IS (Y/X) FOR MAX EFFICIENCY POSS. OF LOWER LEG 
C YlOX1 IS Y/X FOR LOWER LEG WHEN Y=1 
CY IS V'/V(INFINITY) =(A INFT/A') 
CX IS V (M)/V(INFT) = (A INFT/A (M)) 

LOGICAL LSIGN 
PHI(YD) = 4. *BET*YD**3-(ALF*YD-1. )**2 
DATA ER/0.000001/ 

C IKM -NUMBER OF K VALUES MAX =20 
C INPUT REQUIRED IS K VALUES 
CK MUST BE IN THE RANGE OF 0 TO1 1 
C K=0 CORRESPOND TO THE TRADITIONAL BETZ'S LIMIT 

READ (7,900) IKM 
READ (7,901)(KS(I), I=1, IKM) 

900 FORMAT (12) 
901 FORMAT (5F10.0) 

KMAX=O 
IK=1 

100 K=KS(IK) 
ALF=(4. -K)/(2. -K) 
BET=K/(2. -K) 
WRITE (6,800)K, ALF, BET 

800 FORMAT(' K, ALF, BET', 3E15.8) 
C DETERMINE Y MIN VALUES 

YTR=0.5 
IF(KS(IK). EQ. 0. ) GO TO 25 
DY=0.1 
PHI1=PHI(YTR) 
LSIGN=PHIl. GT. O. 

20 YTR=YTR+DY 
IF(ABS(DY). LT. ER) GO TO 25 
PHI2=PHI(YTR) 
IF(LSIGN) GO TO 10 
IF(PHI2) 20,25,30 

30 LSIGN=. NOT. LSIGN 
DY=-0.5*DY 
GO TO 20 

10 IF(PHI2) 35,25,20 
35 DY=-0.5*DY 

LSIGN=. NOT. LSIGN 
GO TO 20 

25 CONTINUE 
YMIN=YTR+(ER) 
WRITE(6,8010)YMIN 

8010 FORMAT(' YMIN', E15.8) 
C DECIDE DY STEP, INITIALY 
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DY=(1. -YMIN)/19. 
Y=YMIN 
DO 150 I=1,20 

C DETERMINE XL, XH 
XT=(ALF*Y-1. ) 
DISC=SQRT(XT**2-4. *BET*Y**3) 
XH=(XT+DISC)*0.5 
XL=(XT-DISC)*0.5 
EH=Y*(1. -XL**2) 
EL=Y*(l. -XH**2) 

C NOTE I=20 CORRESPOND TO Y=1 
YS(I, IK)=Y 
XHS(I, IK)=XH 
XLS(I, IK)=XL 
EHS(I, IK)=EH 
ELS(I, IK)=EL 

150 Y=Y+DY 
C LOCATE THE ELMAX POSITION 

ELMX=ELS(20, IK) 
DO 50 I=2,20 
IB=21-I 
IF(ELS(IB, IK). GT. ELMX) GO TO 52 
GO TO 55 

52 ELMX=ELS(IB, IK) 
50 CONTINUE 

GO TO 85 
55 IF(IB. LT. 19) GO TO 70 
85 WRITE(6,8050)K 
8050 FORMAT(' THIS K HAS NO EL MAX', E15.8) 

GO TO 75 
C LOCATE MAX POSITION 
70 IB1=IB+1 

IB2=IB+2 
KMAX=KMAX+1 
ELO=ELS(IB, IK) 
EL1=ELS(IB1, IK) 
EL2=ELS(IB2, IK) 
YO=YS(IB, IK) 
Y1=YS(IB1, IK) 
Y2=YS(IB2, IK) 
C=(EL2+ELO-2. *EL1)/(2. *DY**2) 
B=(ELl-ELO)/DY-C*(Y1+Y0) 
A=ELO-B*Y0-C*Y0**2 
YLMS(KMAX)=-B/(2. *C) 
ELMS(KMAX)=A+B*YLMS(KMAX)+C*YLMS(KMAX)**2 
KMXVAL(KMAX)=KS(IK) 

C DETERMINE XMAX CORRES. TO YMAX=YLMS(KMAX) 
YMAX=YLMS(KMAX) 
XT=ALF*YMAX-1. 
DISC=SQRT(XT**2-4. *BET*YMAX**3) 

XMAX=(XT-DISC)*0.5 
YMOXMS(KMAX)=YMAX/XMAX 

75 CONTINUE 
EL1S(IK)=ELS(20, IK) 
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YMINS(IK)=YMIN 
Y1OX1S(IK)=1. /XLS(20, IK) 
IK=IK+1 
IF(IK. LE. IKM) GO TO 100 
DO 301 IK=1, IKM 
WRITE(6,831)KS(IK) 

831 FORMAT(' K VALUE-GRAPH1 EL VS Y', 1H , E15.8) 
WRITE(6,851)(ELS(IG, IK), YS(IG, IK), IG=1,20) 

851 FORMAT(1H , 2E15.8) 
301 CONTINUE 
C WRITING FOR GRAPH 2 

DO 302 IK=1, IKM 
WRITE(6,832) KS(IK) 

832 FORMAT(' KVALUE-GRAPH 2 EH VS Y', 1H , E15.8) 
WRITE(6,851)(EHS(IG, IK), YS(IG, IK), IG=1,20) 

302 CONTINUE 
C WRITING FOR GRAPH 3 

DO 303 IK=1, IKM 
WRITE(6,833)KS(IK) 

833 FORMAT(' K VALUES -GRAPH 3 XL VS Y', 1H , E15.8) 
WRITE(6,851)(XLS(IG, IK), YS(IG, IK), IG=1,20) 

303 CONTINUE 
C WRITING FOR GRAPH 4 

DO 304 IK=1, IKM 
WRITE(6,834)KS(IK) 

834 FORMAT(' K VALUES -GRAPH 4 XH VS Y', 1H , E15.8) 
WRITE(6,851)(XHS(IG, IK), YS(IG, IK), IG=1,20) 

304 CONTINUE 
C WRITING FOR GRAPH 5 

WRITE(6,835) 
835 FORMAT(' GRAPH-5 EL(Y=1)VS K') 

WRITE(6,851)(EL1S(IK), KS(IK), IK=1, IKM) 
C WRITING FOR GRAPH 6 

WRITE(6,836) 
836 FORMAT(' GRAPH-6 EL(MAX)VS K') 

WRITE(6,851)(ELMS(IK), KMXVAL(IK), IK=1, KMAX) 
C WRITING FOR THE GRAPH 7 

WRITE(6,837) 
837 FORMAT(' GRAPH-7 Y(MAX)/X(MAX) VS K') 

WRITE(6,851)(YMOXMS(IK), KMXVAL(IK), IK=1, KMAX) 

C WRITING FOR THE GRAPH 8 
WRITE(6,838) 

838 FORMAT(' GRAPH-8 1/(X AT Y=1) VS K') 

WRITE(6,851)(Y1OX1S(IK), KS(IK), IK=I, IKM) 

C WRITING FORTHE GRAPH 9 

WRITE(6,839) 
839 FORMAT(' GRAPH-9 Y MIN VS K') 

WRITE(6,851)(YMINS(IK), KS(IK), IK=I, IKM) 

C WRITING FOR THE GRAPH-10 
WRITE(6,840) 

840 FORMAT(' GRAPH-10 
IKATVAMAX) L(IK)SIK, l, KMAX) 

WRITE(6,851)(YLMS( ), 

STOP 
END 
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