University of Huddersfield Repository

Hirschfield, Alex

Locating spatial analyses of crime: the crime analysis framework

Original Citation

This version is available at http://eprints.hud.ac.uk/id/eprint/7390/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
Locating Spatial Analyses of Crime:
The Crime Analysis Framework

Professor Alex Hirschfield, HonMFPH
Professor of Criminology and Director
International Centre for Applied Criminology
ICAC
University of Huddersfield,
Floor 14, CSB, Queensgate,
Huddersfield, UK HD1 3DH

E-mail: a.hirschfield@hud.ac.uk
Why Map & Analyse Crime Data?

- to identify the scale and distribution of crime and disorder
- to explore relationships between crime and the environment (physical & social)
- to target resources for crime prevention
- to evaluate the impact of crime prevention
- to inform police operations
- to apprehend offenders
- to profile the spatial behaviour of offenders.
- to predict the spatial and temporal distribution of offences
- to develop Early Warning Systems of emerging problems
- to communicate with and to engage communities
- to support bids for extra resources from government
The Crime Analysis Framework (Hirschfield, A., 2005)

Crime Centred Analysis (CCA)

Disaggregate

Aggregate

Crime Environment Analysis (CEA)

A

B

D

E
Crime Centred Analysis I

Where do crimes occur?
When do crimes occur?
When crimes occur, *where* do they occur?
Where crimes occur, *when* do they occur?

How do crimes occur (MO analysis)
Do areas with one crime problem have other crime problems?
Where are these areas?
Which and **how many** crimes do they have?
How much of the population is affected (prevalence)?
How concentrated is crime (socially, temporally, over space)?
Crime Centred Analysis II

To what extent are there repeat crimes?
What is the time interval between repeats?
Where are repeat crimes concentrated?
Who are the victims? Who are the offenders?

Do offenders live in the areas with the highest crime rates?
Do offence locations relate to those of previous offences?
Is the volume of crime decreasing or increasing?
Are crimes affecting the same areas or new areas?
Are crimes diffusing or concentrating?
Is there evidence of displacement or crime switch?
Crime Environment Analysis

Physical & Built Environment
- Land use
- Terrain
- Urban Design
- Communications

Social Environment
- Migration
- Ethnicity
- Deprivation
- Social cohesion

Policy Environment
- Target Hardening
- CCTV
- Alley-gates
- Street Wardens
- Home watch
- Other ABIs
Crime Environment Analysis II

What types of area have high crime?
Are they student areas or deprived estates?
Do they have particular types of housing /built environment?
Are they Policy Priority Areas?

What types of transport and communications do they have?
Are they accessible to offenders physically/ socially?
Do they have poor natural surveillance?
Do they have a large number of potential crime attractors?
Do they have crime prevention measures already?
Are they deployed in the right places at the right times?
How does the crime prevention relate to crime change?
Crime Centred Analysis (CCA)
Techniques for Aggregate CCAs

- Tabulation of crime counts and derivation of crime rates
- Identification of areas with significantly high and significantly low crime
- Calculation of the concentration of crime at area level
- Identification of crime mix and its variation across areas
Distinguishing High and Low Crime Rates

<table>
<thead>
<tr>
<th>Ward</th>
<th>Households</th>
<th>Burglary</th>
<th>Theft of Vehicle</th>
<th>Theft From Vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,752</td>
<td>35.6</td>
<td>10.9</td>
<td>37.0</td>
</tr>
<tr>
<td>2</td>
<td>1,459</td>
<td>21.2</td>
<td>12.3</td>
<td>30.1</td>
</tr>
<tr>
<td>3</td>
<td>2,366</td>
<td>29.5</td>
<td>15.2</td>
<td>44.8</td>
</tr>
<tr>
<td>4</td>
<td>2,394</td>
<td>12.9</td>
<td>6.2</td>
<td>30.4</td>
</tr>
<tr>
<td>5</td>
<td>2,284</td>
<td>52.1</td>
<td>10.5</td>
<td>30.6</td>
</tr>
<tr>
<td>6</td>
<td>2,149</td>
<td>14.4</td>
<td>19.5</td>
<td>101.4</td>
</tr>
<tr>
<td>7</td>
<td>2,839</td>
<td>24.6</td>
<td>13.7</td>
<td>31.7</td>
</tr>
<tr>
<td>8</td>
<td>2,509</td>
<td>25.1</td>
<td>19.5</td>
<td>56.6</td>
</tr>
<tr>
<td>9</td>
<td>2,876</td>
<td>47.2</td>
<td>19.8</td>
<td>70.3</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>25.1</td>
<td>12.0</td>
<td>40.4</td>
</tr>
<tr>
<td>SD</td>
<td></td>
<td>12.2</td>
<td>5.2</td>
<td>20.0</td>
</tr>
</tbody>
</table>
Malicious Ignition Dwelling Fires 1998/99

Resource Targeting Table (RRT)

<table>
<thead>
<tr>
<th>Ward Code & Name</th>
<th>Cum %</th>
<th>Cum %</th>
<th>No. of</th>
<th>Cum %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pop</td>
<td>Hhlds</td>
<td>Incidents98/99</td>
<td>Incidents98/99</td>
</tr>
<tr>
<td>1 BNFG Bradford</td>
<td>0.46</td>
<td>0.49</td>
<td>47</td>
<td>4.00</td>
</tr>
<tr>
<td>2 BNFE Beswick and Clayton</td>
<td>0.94</td>
<td>0.98</td>
<td>39</td>
<td>7.33</td>
</tr>
<tr>
<td>3 BNFD Benchill</td>
<td>1.45</td>
<td>1.46</td>
<td>37</td>
<td>10.48</td>
</tr>
<tr>
<td>4 BNFM Cheetham</td>
<td>2.01</td>
<td>2.00</td>
<td>37</td>
<td>13.63</td>
</tr>
<tr>
<td>5 BNFY Lightbowne</td>
<td>2.54</td>
<td>2.55</td>
<td>36</td>
<td>16.70</td>
</tr>
<tr>
<td>6 BNFZ Longsight</td>
<td>3.14</td>
<td>3.11</td>
<td>34</td>
<td>19.59</td>
</tr>
<tr>
<td>7 BRFJ Langworthy</td>
<td>3.55</td>
<td>3.57</td>
<td>32</td>
<td>22.32</td>
</tr>
<tr>
<td>8 BRFC Broughton</td>
<td>3.96</td>
<td>4.00</td>
<td>31</td>
<td>24.96</td>
</tr>
<tr>
<td>9 BNFK Central</td>
<td>4.32</td>
<td>4.43</td>
<td>30</td>
<td>27.51</td>
</tr>
<tr>
<td>10 BNFF Blackley</td>
<td>4.80</td>
<td>4.94</td>
<td>25</td>
<td>29.64</td>
</tr>
<tr>
<td>11 BNFU Harpurhey</td>
<td>5.27</td>
<td>5.45</td>
<td>25</td>
<td>31.77</td>
</tr>
<tr>
<td>12 BPFW Werneth</td>
<td>5.73</td>
<td>5.86</td>
<td>23</td>
<td>33.73</td>
</tr>
<tr>
<td>13 BRFK Little Hulton</td>
<td>6.19</td>
<td>6.34</td>
<td>23</td>
<td>35.69</td>
</tr>
<tr>
<td>14 BNFB Baguley</td>
<td>6.68</td>
<td>6.84</td>
<td>20</td>
<td>37.39</td>
</tr>
<tr>
<td>15 BQFD Central and Falinge</td>
<td>7.11</td>
<td>7.28</td>
<td>20</td>
<td>39.10</td>
</tr>
<tr>
<td>16 BRFL Ordsall</td>
<td>7.39</td>
<td>7.60</td>
<td>20</td>
<td>40.80</td>
</tr>
<tr>
<td>17 BPFR St.Marys</td>
<td>7.88</td>
<td>8.05</td>
<td>18</td>
<td>42.33</td>
</tr>
<tr>
<td>18 BQFP Middleton West</td>
<td>8.16</td>
<td>8.33</td>
<td>18</td>
<td>43.87</td>
</tr>
<tr>
<td>19 BNGA Moss Side</td>
<td>8.68</td>
<td>8.88</td>
<td>17</td>
<td>45.32</td>
</tr>
<tr>
<td>20 BPFJ Hollinwood</td>
<td>9.08</td>
<td>9.28</td>
<td>17</td>
<td>46.76</td>
</tr>
<tr>
<td>21 BNFA Ardwick</td>
<td>9.47</td>
<td>9.69</td>
<td>15</td>
<td>48.04</td>
</tr>
<tr>
<td>22 BNGC Newton Heath</td>
<td>10.00</td>
<td>10.23</td>
<td>15</td>
<td>49.32</td>
</tr>
</tbody>
</table>

← 25% of Incidents

← 50% of Incidents
CCA:
Crime Mix

Crime Mix: Barchester

Crime Mix: Ward 18

Crime Mix: Ward 14
<table>
<thead>
<tr>
<th>Ward</th>
<th>Burglary Prevalence</th>
<th>Burglary Concentration</th>
<th>Burglary Prominence</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>52.1 (1)</td>
<td>8.8 (2)</td>
<td>20.3 (1)</td>
</tr>
<tr>
<td>21</td>
<td>47.2 (2)</td>
<td>10.0 (1)</td>
<td>11.6 (14)</td>
</tr>
<tr>
<td>1</td>
<td>42.2 (3)</td>
<td>7.3 (4)</td>
<td>12.0 (12)</td>
</tr>
<tr>
<td>8</td>
<td>35.6 (4)</td>
<td>6.5 (7)</td>
<td>13.6 (8)</td>
</tr>
<tr>
<td>13</td>
<td>35.6 (5)</td>
<td>7.2 (5)</td>
<td>14.4 (7)</td>
</tr>
<tr>
<td>9</td>
<td>34.1 (6)</td>
<td>8.5 (3)</td>
<td>18.9 (3)</td>
</tr>
<tr>
<td>7</td>
<td>33.1 (7)</td>
<td>6.6 (6)</td>
<td>12.2 (11)</td>
</tr>
<tr>
<td>15</td>
<td>26.5 (8)</td>
<td>5.2 (9)</td>
<td>10.7 (17)</td>
</tr>
<tr>
<td>2</td>
<td>25.9 (9)</td>
<td>4.2 (11)</td>
<td>16.3 (5)</td>
</tr>
<tr>
<td>20</td>
<td>25.1 (10)</td>
<td>4.6 (10)</td>
<td>7.6 (20)</td>
</tr>
<tr>
<td>19</td>
<td>24.6 (11)</td>
<td>5.2 (9)</td>
<td>11.3 (16)</td>
</tr>
<tr>
<td>14</td>
<td>21.2 (12)</td>
<td>2.3 (16)</td>
<td>19.0 (2)</td>
</tr>
</tbody>
</table>
CCA Mapping Techniques

Disaggregate Data Analyses

• Mapping the distribution of individual incidents (offence, victim, offender locations);

• Mapping the distribution of repeat incidents (multiple incidents, repeat victims, prolific offenders)

• Identifying clusters/‘hot spots’ from points

• Exploring space-time clustering
Criminal Damage to Bus Stops Wirral

(Newton 2004)

Points
Criminal Damage to Bus Stops Wirral

(Newton 2004)

Hot Spots
A day of crime in Harrow.

24 hour animation of street crime patterns, created using one year of crime data.

(Chainey, 2001)
Crime Environment Analysis (CEA)
Techniques for Aggregate CEAs

• Derivation of crime rates for areas ranked by deprivation level
• Derivation of crime rates for different types of residential neighbourhood
• Identification of overlap between high crime and high values on other social indicators (e.g. unemployment)
• Calculation of the concentration of crime by area type, social indicator
HIGHEST ARSON & HIGHEST DEPRIVATION

Highest 10% Deprivation

Highest 10% Arson
Mapping crime with deprivation

Residential burglary rate by deprivation level

ILC decile

<table>
<thead>
<tr>
<th>Decile</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Crime rate

0 1 2 3 4 5 6 7 8 9 10

Deprivation decile

Residential burglary rate by deprivation level

0 10 20 30 40 50

Bar chart showing the relationship between deprivation decile and residential burglary rate.
Assault Rate: Merseyside

Deprivation Decile

Assaults per 10,000 Population

0 20 40 60 80 100 120

Deprivation Decile

1 2 3 4 5 6 7 8 9 10

Assault Rate
Assault Distance from Home: Merseyside

Deprivation Decile

Kilometres from Home to Place of Attack

Assault Distance from Home

Deprivation Decile

0 1 2 3 4 5 6 7 8 9 10
Disaggregate Data Analyses

• Mapping incidents on contextual backcloths (Geodemographics, land use maps, digital aerial photos)

• Mapping hot spots and spatial-temporal clusters in relation to the environment

• Identifying ‘hot spot’ demographics & land use

• Conducting specific site and RADIAL analyses
Offences in Oxton
Offenders in Oxton
High Definition GIS at Temple University

Crime Environment Analysis
(Disaggregate)

Prof. George Rengert (Temple)
Crime Environment Analysis (Disaggregate)

Spencer Chainey (Jill Dando Institute, UCL, London)
Conclusion

• **Much** can be gained solely through CCAs
• **CEAs** add further insights by identifying factors that facilitate/inhibit crime (e.g. low/high social cohesion, good/poor natural surveillance)

Both CCA and CEA require:

• **Awareness** of sources of data on crime, disorder, land use and socio-demographic conditions
• **Expertise** in data manipulation and processing
• **Basic skills** in data analysis
• **Competence** in the use of GIS
• **An ability** to interpret the results from analysis