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SPECTRAL CHARACTERISATION OF THE SHORTENED PULSE POSITION 

MODULATION FORMAT 

 

R. A. Cryan 

 

Indexing terms: SPPM, PSD, PPM 

Shortened pulse position modulation (SPPM) is a new modulation format that has recently been 

proposed for underwater wireless optical communication.  This Letter considers, for the first time, a 

full spectral characterisation of SPPM and presents original expressions, which are validated 

numerically, for predicting both the continuous and discrete spectrum. 

 

 

Introduction:  Conventional n-ary pulse position modulation (PPM) has been proposed for the 

optical fibre [1], optical wireless [2], optical satellite [3] and optical underwater [4] channels due to 

its enhanced sensitivity performance.  However, this is at the cost of significant bandwidth 

expansion and so alternative, more bandwidth efficient schemes have been proposed such as 

multiple PPM [5] and n
k
-PPM [6].    

 

In [7], a new format, termed as shortened PPM, was proposed for underwater wireless optical 

communication because of its bandwidth efficiency over n-ary PPM.  The M bits of binary PCM, 

contained in a timeframe 
f b

T MT= , are converted into the SPPM format by dividing 
f

T  into 

11 2M
n

−= +  time slots.  The first binary PCM bit is carried forward to the first SPPM slot and the 

remaining ( )1M −  binary PCM bits are conveyed by positioning a single pulse in one of the 

remaining 12M −  time slots.  The bandwidth expansion of SPPM over binary PCM is ( )12 1M M− +  

which is more bandwidth efficient than the 2M M expansion required for n-ary PPM. 



 

This Letter evaluates, for the first time, the power spectral density (PSD) of SPPM.  By making use 

of the cyclostationary properties of the modulation format, original expressions are derived for 

predicting both the continuous and discrete spectrum and these are verified numerically by taking 

the Fast Fourier Transform of the SPPM pulse stream. 

 

Spectral Characterisation:  Following the approach outlined in [8] the data pulse stream can be 

represented as 

( ) ( )
∞

=−∞

= −∑ q

q

m t a p t qT  

where { }q
a is the SPPM sequence and ( )p t is the pulse shape.  To compute the discrete PSD of 

( )m t , namely, ( )d

mS f , the statistical correlation function, ( ; ) ( ) ( )mR t m t m tτ τ= + , must first be 

averaged over t  and then the Fourier transform taken:  
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where fT  is the SPPM frame-time.   The term { }
π 

+  
 

=

∑E

2
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n j lq
n

q
q

a e  represents the characteristic 

function of the data distribution on the SPPM frame and so makes the cyclostationary property 

explicit.  Evaluating this and assuming a rectangular pulse of height, A , and width, 
p

t , allows 

( )d

mS f to be written as: 
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where ( ) ( )sinc( ) sin π π=x x x . 

 

The continuous PSD can be determined by evaluating the Fourier transform of the autocorrelation 

function of a zero-mean SPPM sequence.  The autocorrelation function is given by 
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where ( ) { } { } { }− = −E E E
* *;a n m n mK n m n a a a a .  Taking the Fourier transform of this gives 
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Evaluating this for SPPM gives 
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Results:  In order to validate the analytic results of (1) and (2), the PSD of SPPM was evaluated 

numerically using the Fast Fourier Transform.   A sampling rate of 256 samples per SPPM slot 

duration was used and 50 FFT’s were averaged in order to decrease the noise due to the randomness 

of the data sequence.   

 

Fig. 1 shows the power spectral density, calculated both numerically and with the new analytic 

expressions of (1) and (2), for a 9-slot SPPM system with the pulse width set at the slot duration, 

p f
t T n= .  Note that the frequency axis is normalised to the slot repetition frequency.  As can be 

seen, unlike n-ary PPM, there are discrete lines at the frame repetition frequency that will facilitate 

frame synchronisation.  However, for full-width pulses, the nulls of the sinc-function in the first 

term occur at the slot repetition frequency and so this masks the discrete spectrum and so there is no 

discrete spectrum at the slot repetition frequency, 
s f

f n T= .  Fig. 1 also demonstrates that there is 

excellent agreement between the numerical and analytical results for predicting the continuous 

spectrum so validating the accuracy of expression (2). 

 

Fig. 2 shows the PSD, calculated both numerically and analytically, for a 17-slot SPPM system with 

the pulse width set at half the slot duration ( ( )2p ft T n= ).  Again, the numerical and analytical 

results are in excellent agreement so confirming the validity of (1) and (2) for predicting the PSD of 

SPPM.  The results demonstrate that there is a strong discrete line at the SPPM slot-rate and so this 

can be extracted for synchronisation purposes directly from the pulse stream.  Again, due to the 

non-uniform distribution of the data within the frame, there are components available at the frame 

repetition frequency.   

 

Conclusions:  Original expressions, for both the discrete and continuous spectrum, have been 

presented that offer a full spectral characterisation of the recently proposed shortened PPM 

modulation format.  It is shown that, unlike conventional PPM, there are components at the frame 



repetition frequency that will facilitate frame clock extraction.  Furthermore, when half-width 

pulses are used, there are components at both the slot and frame repetition frequency and so SPPM 

has the key advantages of both improved bandwidth efficiency and also being able extract 

synchronisation signals directly from the data stream.  
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Fig. 1 Power spectral density of SPPM with 9n =  and p st t=  
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Fig. 2 Power spectral density of SPPM with 17n =  and 
2
s

p

t
t =  
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