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Abstract. Freeform surfaces are widely used in advanced optical and
mechanical devices. In order to assess the form quality of a freeform surface,
it is required to match the measurement surface with the design template. To
improve the matching efficiency and accuracy, the whole procedure is divided
into two stages, rough matching and final fitting. A new rough matching
method, called the structured region signature is proposed. The structured region
signature is a generalized global feature which represents the surface shape by a
one dimensional function. The template location occupying the best matching
signature is considered to be the correct rough position of the measurement
surface. After that the motion parameters are updated iteratively based on the
orthogonal distance fitting. The dependency between the foot-point parameters
of the projection points and the motion parameters is derived from the closest-
distance relationship between correspondance point pairs. Numerical experiments
are given to demonstrate the validity of this approach.
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1. Introduction

Traditionally, most industrial components are composed of simple geometries like
planes, spheres and cylinders. With the development of science and technologies, more
and more particular functions are required on the components, for example, an F-theta
lens is used to provide a flat image field at the plane of interest in laser printers, and
the airplane wings and fuselage is required to reduce the aerodynamic resistance. The
simple shaped components do not meet these requirements. Therefore more and more
new essential components with freeform surfaces (also termed sculptured surfaces or
curved surfaces [1]) are being developed by researchers and manufactured by industry.
In metrology, freeform surfaces are defined as the surfaces which have no invariance
degree [2], i.e. a freeform surface has no symmetry in translation or rotation.

The surface form plays an essential role in the characteristics of freeform
components. The form error of simple geometries is assessed by terms of flatness,
roundness, sphericity etc involving gauges for different shapes and applications [3].
For complex-shaped surfaces, e.g. marine propellers [4], it requires highly skilled
technicians to check the surface with numerous mechanical gauges. In optical
engineering, the form qualities of optics are generally tested with the Newton or
Fizeau interferometer [5]. A quality test plate or a reference surface is required.
The inspection in this way depends heavily on the technician’s proficiency and the
manufacturing accuracy of the test plates or gauges. It is evident that the task
is very inefficient and expensive; more importantly, the inspection accuracy cannot
be guaranteed. Consequently various automatic techniques have been developed– a
design template is provided as a reference to represent the nominal shape of a freeform
component and discrete data are measured from the component by instruments. The
deviation between the measurement data and the template is regarded as the form
error of the freeform surface and can be calculated quantitatively with mathematical
techniques. In this way human operation is no longer necessary, thereby greatly saving
time and cost, at the same time, improving the evaluation accuracy.

Usually the measured data are not exactly located in the same coordinate system
with the template, and the form error cannot be obtained by directly subtracting the
reference template from the data. Slight misalignment between the two coordinate
systems can cause serious errors in the evaluation of the form quality. This is fatal
for some key freeform elements which have higher form accuracy and perform critical
functionality. Misalignment shall be eliminated to bring the template and data into a
common coordinate system.

Matching (also referred to as localization, alignment [6], registration or best-
fitting) is generally formulated as an optimization problem involving the search for
motion parameters (three rotation angles and a translation vector) that minimize an
objective function which quantifies the matching quality, such as the average squared
distance between the two surfaces,

E =
N∑
i=1

∥qi − (Rpi + t)∥2 (1)

where qi is the correspondance template point of an arbitrary measurement point pi.
R is the optimal rotation matrix and t is the translation vector.

At present, there is a lack of practical and effective methods to characterize the
form qualities of freeform surfaces. This paper presents an effective algorithm to match
smooth freeform surfaces for precision coordinate metrology.
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2. Review of Related Work

The most straightforward way to match the measurement data with the nominal
surface is to minimize the objective function in Equation (1) using derivative-based
algorithms. However, the convergence domains of these methods are very small and
a good initial guess is required, otherwise false matching solutions can be yielded.
Consequently various techniques have been developed to supply a rough matching
between surfaces in different fields, e.g. computer aided design, computer vision and
pattern recognition etc.

Some researchers utilize simple features on the surfaces. Wang et al [7] employed
feature points, feature lines, and feature planes. The gravity centre is defined to be
the feature point and the best fitted plane is taken as the feature plane. The feature
line is defined as the vector from the gravity centre pointing to the farthest point on
the surface. Then the two surfaces can be aligned based on these features. Cheung
et al [8] proposed a five-point method. Five characteristic points are defined for each
surface respectively–the gravity centre and four corner points. Then the gravity centres
are overlapped and the measurement surface is rotated to minimize the sum of the
distances between the five characteristic point pairs. These two methods suppose that
the template and the measurement surface are of the same size and approximately
from the same location. But usually the measured data is only one small region of
the design template, hence global features like gravity centre or normal vectors will
be invalid.

If the the measured surface includes some salient features like holes, slots, pockets
etc, these features can be adopted to align the model and the measurement data
[9, 10]. However, most smooth freeform surfaces do not contain any salient features,
thus these methods are not very suitable in such cases. Some mathematical features,
like moments, invariances, Fourier descriptors, correlations etc are globally defined
on the entire surface or in the overlapping area for computer vision and image
processing [11, 12, 13]. These methods are not sufficiently representative for geometric
details. Some local features, like curvatures, shape index, integral volume descriptor
etc can also be adopted as shape descriptors [14, 15, 16]. These methods establish
correspondances between points or point groups by comparing the descriptor values
and distance constraints. Transformation between the two surfaces is calculated with
a clustering/voting method. Because these descriptors are usually calculated from
a point and its neighbourhood using derivative methods, they are very sensitive to
measurement noise and outliers, thus are prone to false matching results. In the
computer vision field, some generalized features (also termed shape descriptors or
signatures [17]) are defined, such as the spin image [18], point signature [19], geometric
histogram [20] etc. They usually break down the 3D information of the surface into a
stack of 2D descriptors on which robust 2D image matching techniques can be applied.
These methods are effective and robust to match smooth freeform surfaces. However,
it is very computationally expensive to extract and compare these locally defined
generalized features.

When a rough position is supplied by the initial matching, refinement is carried
out thereafter to obtain higher matching accuracy. The ICP (Iterative Closest
Point) algorithm is the most popular final optimization method [21, 22]. This
method establishes correspondance pairs between the measurement data and the
template points, and iteratively calculates the optimal transformation parameters to
minimize the distances between the correspondance pairs. This method can register
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several types of geometric data such as point sets, triangle sets, implicit surfaces or
parametric surfaces, and has no particular restrictions on the surface shape. It is very
computationally expensive to establish point correspondances. The iterative process
tends to be trapped at a local minimum [23], because of the non-convex character of
the optimization task. Therefore many variations have been developed for the ICP
method to improve the efficiency and accuracy [24].

If a continuous representation of the nominal template is supplied or the template
is easy to reconstruct from discrete point sets, derivative based methods, such as the
Gauss-Newton, steepest gradient descent and Levenberg-Marquardt algorithms can
be adopted [25]. Many researchers paid attention on the fitting of simple geometries
like quadric surfaces [26, 27, 28, 29], but the fitting methods of freeform surfaces have
not been well developed. Fitzgibbon fitted 3D complex surfaces using the Levenberg-
Marquardt algorithm by minimising the Huber estimator in the z direction[30]. Boggs
et al proposed an algorithm to minimize the mean squared orthogonal distance for
explicit complex surfaces [31]. Sourlier [32] discussed the fitting of parametric surfaces
based on orthogonal distance regression. For each measured point pi, the foot-point
parameters ui associated with the correspondance point qi were required to indicate
its location on the nominal surface. The dependency between the motion parameters
and the foot-point parameters of the correspondance points were ignored. This will
reduce the accuracy of the fitted results.

3. The Structured Region Signature Method

Unlike traditional industrial components and simple geometries, most smooth freeform
surfaces do not have any salient features or shape parameters to be utilized for
matching and alignment. Based on Chua et al’s point signature [19], this paper
proposes a novel generalized feature, called the Structured Region Signature (SRS)
to describe the shape of freeform shapes.

3.1. Definition of the Structured Region Signature

Given a freeform surface consisting of discrete points, P = {pi ∈ R3×1, i =
1, 2, · · · , N}, the central point c = [xc, yc, zc]

T on the surface is selected and a sphere
is constructed centred at c with a radius R such that it is cut into two parts by the
surface. To make the signature more descriptive, the radius R should be as large as
possible provided that the sphere is within the boundary of the surface. Practically, R
is selected to be the smallest distance from c to the boundary, as shown in Figure 1(a).
All the points lying within the sphere (they are called region points and denoted with
dots in Figure 1(b)) constitute a region Re. A plane p is fitted through the region,
i.e. a plane ax+ by + cz + e = 0 such that,

(a, b, c, e) = argmin
∑

pi∈Re

(axi + byi + czi + e)2

a2 + b2 + c2
(2)

where pi = [xi, yi, zi]
T is an arbitrary region point.

In practice, the normal vector n = [a, b, c]T of the plane is calculated with an
eigenvector method. Firstly a 3× 3 symmetric covariance matrix is constructed,

A =
∑

pi∈Re

(pi − pc)(pi − pc)
T (3)
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where pc is the gravity centre of all the region points.
If λ1 ≥ λ2 ≥ λ3 denote the eigenvalues of A associated with unit eigenvectors

v1,v2 and v3 respectively, v3 [33] is taken to be the normal vector n.
A new plane p′ is defined by moving the best-fitted plane p to go through the

centre point c, without changing the normal vector n. The function of the new plane
p′ is,

a(x− xc) + b(y − yc) + c(z − zc) = 0

or rewritten as

ax+ by + cz + e′ = 0 (4)

Then an appropriate number, e.g. Nc of region points lying nearest to the sphere
surface are selected to constitute a circle, see Figure 1(b). These circle points are
projected onto the plane p′ and the signed projection distances are,

di = axi + byi + czi + e′, i = 1, 2, . . . , Nc (5)

The corresponding projection points {p′
i} on the plane are x′

i

y′i
z′i

 =

 xi − adi
yi − bdi
zi − cdi

 (6)

To make the surface signature independent of the orientation and position of
the surface, a local cylindrical coordinate system is defined, by setting the signature
centre c as the original point and defining the normal vector as the z axis [0, 0, 1]T , thus
yielding the projection plane p′ to be the r−θ plane. Hence the signed distances {di}
of all the circle points form a one dimensional function with respect to the azimuth
angles {θi| − π < θi ≤ π, i = 1, 2, · · · , Nc} , as shown in Figure 1(d). This distance
profile is called the SRS of the surface.

3.2. The Matching Procedure using the SRS Method

The measurement surface is usually only one small region of the design template,
thus the real correspondance location of the measurement surface is unknown on
the template. The core idea of this initial matching method is to construct SRSs
{Sti|i = 1, 2, . . . , Ns} on some selected plausible correspondance locations on the
template using the same radius R with the measurement signature Sm. The location
which occupies the most similar signature with that of the measurement surface is
regarded to be the best matching. The matching procedure is illustrated in Figure 2.

If the surface is smooth, the signature curve should also be smooth. However, the
circle points are not exactly located on the sphere. This will introduce undulations
on the signature curve, causing the SRS not to faithfully describe the surface shape.
Therefore all the signature profiles are interpolated with some smoothing techniques,
e.g. least squares cubic splines [34].

As the two coordinate systems of the measurement surface and the template are
probably misaligned, there may be a relative shift ϕ in the azimuth angle between their
signature profiles. Given a template signature Sti and the measurement signature Sm,
the similarity between them is evaluated with the structure function,

{St0, ϕ0} = argmin

∫ π

−π

[Sm(θ + ϕ)− Sti(θ)]
2
dθ (7)
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where −π < ϕ ≤ π is the azimuth shift between the two signatures.
Practically, the signature curves are sampled uniformly with an appropriate

interval, e.g. 2π/Nc. Thus the signature curves become discrete date set {S(θk)|k =
1, 2, · · · , Nc} and the candidate shift angles will be,

ϕj =
π

Nc
(2j −Nc), j = 1, 2, · · · , Nc

Subsequently Equation (7) will have a discrete representation,

{St0, ϕ0} = argmin

Nc∑
k=1

[Sm(θk + ϕj)− Sti(θk)]
2

(8)

After all the signatures are compared, the location associated with the signature
St0 and shift angle ϕ0 which occupies the least dissimilarity value is regarded as the
best matching. Here the centre of the measurement signature is denoted with cm, the
centre of the best-matching template signature St0 is ct, and the two corresponding
normal vectors are nm and nt respectively.

The measurement surface is rotated thereafter to align the two normal vectors.
Three unit vectors are defined to construct two orthonormal frames for measurement
and template surfaces, n0 = (nm × nt)/∥nm × nt∥

n1 = (nm × n0)/∥nm × n0∥
n2 = (nt × n0)/∥nt × n0∥

(9)

Then the rotation matrix to align the two orthonormal frames is,

R1 = [nt,n0,n2]× [nm,n0,n1]
T (10)

Because there is a shift angle ϕ0 between the two signatures, the measurement
surface needs to be rotated about the normal vector nt = [at, bt, ct]

T . This rotation
matrix is [36],

R2 =

 c+ n2
x(1− c) nzs+ nxny(1− c) −nys+ nxnz(1− c)

−nzs+ nxny(1− c) c+ n2
y(1− c) nxs+ nynz(1− c)

nys+ nxnz(1− c) −nxs+ nynz(1− c) c+ n2
z(1− c)


where s = sin(ϕ0) and c = cos(ϕ0) .

Finally the measurement surface is translated to overlap the two signature centres,
and the new measurement surface is,

P′ = R2R1(P− cm) + ct (11)

3.3. Implementation Issues

If the discrete points are very sparse on the surface, the circle points will not be located
sufficiently close to the sphere surface, which will cause unnecessary undulations on
the signature curve. In fact, the most exact way to obtain a signature curve is not
to interpolate the discrete circle points, but directly to calculate the intersection
curve between the freeform surface and the sphere. However it is usually very
computationally expensive. In this case, a new circle can be obtained by moving
the circle points iteratively toward the sphere surface, xi ← xi + (1− ∥pic∥/R)(xi − xc)

yi ← yi + (1− ∥pic∥/R)(yi − yc)
zi ← f(xi, yi)

(12)
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In the equation, pi = [xi, yi, zi]
T is an arbitrary circle point, c = [xc, yc, zc]

T is
the signature centre, R is the radius of the signature sphere and z = f(x, y) is the
analytical function of the freeform surface. If the template is given as a parametric
function, this can be interpolated by solving a nolinear point-inversion problem[35].
It is demonstrated that usually via several iterations, the circle points will be very
close to the sphere surface and a smooth signature curve can be obtained. To make
the signature more descriptive, more points can be sampled on one signature circle,
and multiple concentric circles can be employed for one signature. Consequently the
signature can represent the shape in several bounding areas and more geometrical
information can be involved.

The template signature centres are discrete points sampled on the template. It
is almost impossible to find the exact correspondance location of the measurement
surface. The goal of the SRS matching is to find the candidate location which is
nearest to the real correspondance position. If the rough correspondance area is
already known before matching, it is feasible to arrange signature centres with a
higher density at this area. At the template area where the surface shape changes
greatly, signatures can have significant difference even at two locations that are very
near to each other. Therefore, the candidate locations will be sampled with their
density proportional to the surface curvatures. If no prior knowledge is supplied
about the rough correspondance location or the surface is very smooth, the template
signature centres can be sampled uniformly with an appropriate spacing. It is apparent
that if a higher density is adopted, the matching error can be reduced. But more
signatures need to be calculated and compared, which will subsequently increase the
computational expense. To solve this problem, the template signature centres can be
selected in a coarse-to-fine approach, i.e. first sampling centres with a bigger spacing,
and then sampling centres with a smaller spacing around the neighbourhood of the
current best-matching location. This is repeated until the matching result is good
enough or the spacing is sufficiently small.

The SRS matching method is based on the assumption that the template location
whose signature is the most similar with the measurement signature is nearest to the
real correspondance location. But this may not necessarily be true. The signature
curve is taken from the circle points and only the surface shape at this bounding area
is involved, rather than the shape of the whole surface, and hence there may be many
locations having nearly the same signature curve, especially for the surfaces which
include symmetric parts. As a result of measurement noise and calculation error, the
location occupying the best-matching signature may be an incorrect one. That is
to say, the real correspondance location will have a well matched signature, but the
signature which is the most similar to the measurement signature may not be at the
correct correspondance location. To solve this problem, a residual-checking strategy
is employed. All the plausible matching locations are sorted in an ascending order by
their signature structured functions in Equation (8). The matching residual of each
location is checked successively. Once the preset residual threshold is satisfied, the
checking process is terminated and a correct location is found. Here, the RMSE (Root
Mean Squared Error) of the residual is adopted as a metric to assess the matching
quality.
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3.4. Utilization of SRS

The spin image method [18] is a very popular representation for image registration.
It creates a local 2D image for each chosen oriented point. For each neighbourhood
point, only the distances to the fitted plane and to the normal vector are recorded
and the azimuth angle are ignored. At least two spin images are needed to restrict 6
degrees of freedom in the 3D space, subsequently the involved region of each image
will be much smaller than the measured surface. Since the surface shapes used in
precision engineering are normally very smooth and local shape variations are not so
remarkable, as a consequence not much geometrical information can be included in
each image. That means the spin image method may lead to false correpondances. On
the contrary, SRS utilizes all the heights and azimuth angles along the entire circle of
each signature, instead of accumulating them together. Thus only one SRS is sufficient
to establish the relative matching between two surfaces.

Compared with Chua and Jarvis’ point signature [19], SRS does not need to
calculate intersection curves between the freeform surface and the placed spheres,
hence the computational cost is greatly reduced. More importantly, the point signature
method decides the rotation angle ϕ about the normal vector by overlapping the
two points which have the greatest projection distances. When the surface is nearly
symmetric, there may be several points which have similar projection distances,
consequently false matching will be caused. However SRS records all the angular
locations sampled from each signature and decides the azimuth angle by minimising
the difference between the two signature curves. Therefore it can make the best use of
the shape information in the signature curves and a more reliable matching result can
be obtained. Furthermore, the point signature is locally defined at a small area on the
surface whilst SRS is a global one. Since most freeform surfaces in the precision
metrology field are very smooth, there will not be significant difference between
the locally defined signatures. Therefore the point signature is not appropriate for
application in precision engineering either.

It is worth noting that SRS does not work well for non-smooth surfaces. It is
based on the assumption that two locations near to each other have similar signatures.
This holds true for most smooth freeforms surfaces. If a surface contains great shape
variation, sharp edges, peaks, pits or steps, the signatures will be significantly different
even when the two locations are very near to each other. Here the spin image method is
recommended for surfaces with salient global shapes, and the point signature method
to match surfaces with many significant local variations.

Furthermore if the measurement surface is a long and narrow patch, the radius of
the signature will be relatively very small and not much information is involved in the
sphere region of the signature, so that SRS cannot represent the surface shape very
well. Fortunately, this rarely occurs in practice.

4. Refinement Based on the Orthogonal Distance Fitting

After initial matching with the structured region signature algorithm, final fitting
is performed to optimize the result. The ICP method could be adopted here. Its
superiority is that the ICP method can register different types of representations
in either continuous or discrete forms. Hence it is not necessarily required to
supply a design function or to reconstruct the given discrete template into a
continuous function. However, it is very computationally expensive to establish point
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correspondances between the two surfaces. False correpondances often appear and it
is not easy to distinguish and reject them [37]. Furthermore, the point sets of the
given nominal model may be very sparse and consequently the final fitting accuracy
is restricted. Therefore this paper adopts a derivative based method and a continuous
function is required for the template.

If the measurement data are to be located within a tolerance zone of width t, the
orthogonal distances from the measurement points to the associated surface should
not be greater than t/2 [38, 39]. Thus the refinement result is better when calculated
based on the orthogonal distance fitting (ODF); otherwise some points will be over-
weighted and the fitted results can be biased. NURBS (Non-Uniform Rational B-
Spline) has become a standard representation in both academy and industry [35] and
it is commonly used in CAD models. It is a parametric representation with two foot-
point parameters {u, v}, which are usually normalized into a span [−1, 1]. As a result
the orthogonal distance matching with parametric templates will be considered,

min
m

N∑
i=1

min
ui,vi

∥pi − qi∥2 (13)

This means, the matching problem is solved in a nested approach. Firstly solve
the foot-point parameters {ui, vi} associated with the orthogonal projection point
qi on the template for each measurement point pi at the inner iteration, and then
update the six motion parameters m = [θx, θy, θz, tx, ty, tz]

T at the outer iteration. A
fast and stable method was adopted to calculate projection points on NURBS surfaces
[40]. This will not be presented in detail here.

If the reference function is moved into a non-standard position, the representation
will become rather complicated. It is proved that moving the measurement data is
equivalent to moving the template, and their fitting results are the same [29]. As a
consequence transformations are always performed on the measurement data in this
paper.

A vector is defined as g ∈ R3N×1,

gk =

 xi −Xi, k = 3i− 2
yi − Yi, k = 3i− 1
zi − Zi, k = 3i

, i = 1, 2, . . . , N

where [Xi, Yi, Zi]
T = qi.

Then Equation (13) can be rewritten as,

min
m

3N∑
i=1

g2k = min
m

3N∑
i=1

gTg (14)

It can be solved with the Levenberg-Marquardt algorithm [41][(
∂g

∂m

)T
∂g

∂m
+ λI

]
δm = −

(
∂g

∂m

)T

m (15)

here I is a 6× 6 identity matrix.
The three rows of the Jacobian matrix J = ∂g/∂m ∈ R3N×6 associated with the

point pi are,  J3i−2

J3i−1

J3i

 =
∂pi

∂m
− ∂qi

∂ui

∂ui

∂m
(16)
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Here ui = [ui, vi]
T are the foot-point parameters of qi. When the measurement

point pi moves, the closest point qi moves as well and the corresponding foot-
point parameters ui need to be updated simultaneously. Some researchers ignore the
parameter dependency for the ease of implementation [32], but the fitting accuracy
can be greatly influenced. Here the parameter dependency ∂ui/∂m will be derived as
follows.

Each pair of points are nearest to each other and the following equation always
holds true [42],

∂

∂ui
(pi − qi)

T (pi − qi)

= −(∂qi

∂ui
)T (pi − qi)

= 0

For the sake of clarity, the subscript i is omitted and the partial derivatives ∂q/∂u
can be rewritten as qu, so that,

∂

∂m
(−qT

u (p− q))

= qT
uquum −

[
qT
uu(p− q) qT

uv(p− q)
qT
uv(p− q) qT

vv(p− q)

]
um − qT

upm

= 0

We obtain,

um =

{
qT
uqu −

[
qT
uu(p− q) qT

uv(p− q)
qT
uv(p− q) qT

vv(p− q)

]}−1

qT
upm (17)

Substituting Equation (17) into Equation (16), then the increment of the motion
parameter vector in Equation (15) can be obtained. λ in Equation (15) is a damping
factor used to guarantee convergence and to control the step length at each iteration.
If the matrix A = JTJ is not positive-definite, or it is ill-conditioned, the solution
will be very unstable or even become divergent. Since A is a positive-semidefinite
Hermitian matrix, according to the spectral theorem,the singular values are the same
with its eigen-values [43], i.e.

A = USUT

where U ∈ R6×6 is an orthogonal matrix and S = diag{σ1, σ2, . . . , σ6}. Here
σ1 ≥ σ2 ≥ . . . ≥ σ6 are the singular values. It is evident that,

A+ λI = U(S+ λI)UT

Therefore the singular value decomposition does not need to be performed twice
and the new singular values are {σ′

i|σ′
i = σi + λ, i = 1, 2, . . . , 6}. A very large λ will

reduce the step length of the motion parameters and a very small singular value will
make the solution unstable [44]. Consequently λ is selected according to the value of
σ6. If σ6 > ϵ, where ϵ is a user-set threshold, e.g. 10−7, then λ = 0; otherwise set
λ = ϵ− σ6.
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5. Numerical Experiments

In the present paper all the programmes were coded with MATLAB 7 and run on a
3GHz Pentium 4 PC, with 2GB of RAM.

The peaks function is commonly utilized in numerical computation [45]. It was
adopted to represent the shape of the reference template and modelled with NURBS.
A small section was chosen from the template as the measured surface and moved to
an arbitrary position as a situation before matching, as shown in Figure 3

Figure 3. The relative position before matching

The data points were sampled with a spacing d = 0.5mm, which is a normal
scanning density of coordinate measuring machines. The Fractional Brownian Motion
illustrated in Figure 4 [46] was employed to simulate noise. Noise with mean value 0
and standard deviation 0.5µm was added to the x, y and z coordinates of the data
points respectively.

The nominal points were sampled uniformly with a spacing d = 0.5 mm as well.
The rough matching was performed with SRS. As the surface is very smooth, the
signature centres were uniformly sampled on the template surface. If the spacing
between these centres was adopted to be D = R/3 (R = 9.813mm is the radius of the
signature sphere) and Nc =50 data points were sampled on each signature curve, the
matching result is shown in Figure 5(a).

Then the orthogonal distance fitting was undertaken onto the rough-matched
data and template. In order to speed up point projection the whole NURBS template
was divided into Bézier patches and then the foot-point parameters of the projection
points were solved using the Newton-Raphson algorithm [40]. Three outer iterations
were implemented to update the six motion parameters. To evaluate the quality of
the refinement result, the relative angular and translational errors of the fitted result
with respect to the ideal location are given in Table 1. Since the optimization was
implemented by minimising the sum of squared orthogonal distances, the residual
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is also represented using the orthogonal distances. However, the data points are
sampled uniformly on the X−Y plane, instead of on the surface, thus the sampling
space has been changed and the height parameters Sa and Sq [47] cannot be obtained
by simply calculating the mean values, and resampling is required. Here the peak-
to-valley parameter P−V is adopted to evaluate the amplitude of the residuals. For
consistency, the orthogonal distances associated with the rough-matched data by SRS
are also calculated, although SRS does not need to calculate these distances or even
a continuous representation is not required for the template. The corresponding Sz

parameter is also presented in Table 1.

Table 1. The matching result of the two-stage strategy

Angular error (◦) Positional error(mm)
Method

θx θy θz tx ty tz
P−V (µm) Time(sec)

SRS 0.91 0.83 1.75 0.18 0.27 -0.11 601 0.40
ODF -1.06e-3 -3.81e-4 -3.08e-3 -2.13e-5 6.54e-4 -5.24e-5 5.30 6.270

From this table we can see that SRS can find a very good rough match.
Theoretically the translational error of SRS is no greater than D and the rotational
error of the azimuth angle ϕ is no greater than 2π/Nc.

Table 1 shows ODF improves the matching accuracy by three orders and the
residual achieves the same amplitude as the introduced noise, i.e. an accurate matching
is established and the relative form deviation of the measured data with respect to
the nominal shape can be evaluated accordingly.

To demonstrate the superiority of the procedure presented in this paper, it was
compared with the most commonly used registration technique ICP (Iterative Closest
Point). The correspondance relationship between point pairs is established using the
k-D tree [48] and the motion parameters are worked out with the singular value
decomposition technique [49]. Both ODF and ICP are run 25 iterations and their
rotational and translational errors at each iteration are listed in Figures 6(a) and 6(b)
respectively.

The ODF result converges after only three iterations. Its convergence rate
depends on the relative value of the residual, i.e. on the quality of rough matching and
the amplitude of noise. If the SRS matching result is good enough, the convergence
rate can achieve a quadratic order, as shown in this example. Otherwise the motion
parameters will converge linearly. In some cases when the rough position is beyond the
convergence domain of ODF, the fitting result may be incorrect or even diverge[50].
However, the convergence rate of ICP is linear, and usually ICP needs more than 20
iterations to obtain a good matching between two point sets. Moreover, it tends to be
trapped at a local minimum. Especially when both the template and data points have
nearly the same density and the same distribution mode, ICP will intend to overlap
point pairs, instead of finding the best matching between the two surfaces [51], i.e. it
is the lateral point locations, instead of the geometrical shapes of the surfaces that
determine the matching result. That is why ICP cannot overcome the relative shift
in the y direction (approximately d/2) in Figure 6(b).

Therefore ICP is not preferable for the applications in precision metrology, and the
derivative-based methods which employ continuous template functions always deserve
a prior consideration. If the representation of the reference surface is very complicated,
which causes the derivatives very difficult to be obtained, the finite difference method
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can be utilized[52].

6. Conclusions and Future Work

To assess the form quality of a freeform surface, the measured data need to be matched
with the reference template. In this paper the whole matching procedure is divided
into two stages, initial matching and final matching.

An initial matching algorithm called the Structured Region Signature is proposed.
It represents the surface shape with a one-dimensional signature profile, thus is very
efficient and straightforward to implement. The signature is a global feature of a
surface, and not sensitive to measurement noise and local surface variation. The
accuracy of rotation is determined by the sampling density of points on each signature
profile, whereas the accuracy of translation is restricted by the sampling spacing of
the candidate signature centres on the template.

When an approximate position is supplied, the final optimization is performed
thereafter. It is carried out by minimising the sum of squared orthogonal distances
from the measured data to the reference surface. It is consistent with the definition of
form deviations in ISO standards and the bias in the fitted parameters can be greatly
reduced. Compared with the extensively used ICP method, it shows superiority in
both accuracy and efficiency. The least squared distances adopted here is the best
estimator when the noise in the data obeys the normal distribution. But in practice
the distribution of errors may be in other forms and the data probably include defects
or outliers, which may cause significant error in the matching result. Hence the
objective function of refinement will be adopted according to the distribution of the
measurement errors. Various robust estimators such as the ℓ1 norm [53], the least
median deviation [54], the reweighted least squares [55] et al will be investigated to
improve the robustness and accuracy of the final matching programme.
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Figure 1. Creating a structured region signature: (a)Inscribed sphere, (b)Region,
(c)Projection and (d)Signature curve
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Figure 2. Procedure of SRS matching

Figure 4. Noise simulated with the fractional Brownian motion
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Figure 5. Matching results and residuals: (a)SRS result, (b)SRS residual(mm),
(c)ODF result and (d)ODF residual(µm)
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