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Abstract 
 
This thesis is concerned with the synthesis of β-sultams and the development of new routes for 

the synthesis of bicyclic versions of these molecules as potential anti-bacterials. The synthesis of 
1-azetines, 1,2-thiazetin-1,1-dioxides and isothiazol-1,1-dioxides as precursors of bicyclic 
heterocycles is described. 

1-Azetines were synthesised from azetidin-2-ones prepared via the [2+2] cycloaddition of 
alkenes with N-chlorosulfonyl isocyanate (CSI). They reacted with diphenylcyclopropenone or 
nitrile oxides to afford bicyclic systems whose reactivity was explored and afforded a range of 
heterocycles such as 1,2,4-oxadiazoles, pyridines or pyrimidines via novel reaction pathways. 
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The synthesis of 1,2-thiazetin-1,1-dioxide through two routes will be discussed: the alkylation 

of 3-oxo-β-sultams to afford 3-ethoxy-1,2-thiazetin-1,1-dioxides, and the ring contraction of an 
isothiazol-1,1-dioxide to afford a 3-diethylamino-1,2-thiazetin-1,1-dioxide. The reactivity of 
these 1,2-thiazetin-1,1-dioxides towards diphenylcyclopropenone, 1,3-dipoles and dienes was 
studied and is fully described. 
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Chapter 1 Introduction 

1 Introduction 

1.1 Biological and chemical background 

 

This project is concerned with the synthesis of β-lactams and β-sultams and the development 

of new routes for the synthesis of bicyclic versions of these molecules as potential anti-bacterial 

agents. To understand how β-lactams kill bacteria requires a little knowledge of how a bacterial 

cell wall is formed and why bacteria need cell walls. 

 

1.1.1 Role and structure of bacterial cell walls 

 

Structurally, bacterial cells consist of: 

- A cell membrane, which is usually surrounded by a cell wall and sometimes by an additional 

outer layer. 

- An internal cytoplasm with ribosomes, a nuclear region, and in some cases granules and/or 

vesicles. 

- A variety of external structures, such as capsules, flagella, and pili. 

 

The rigid cell wall lies outside the cell membrane in nearly all bacteria. It performs two 

important functions. First, it helps to maintain the characteristic shape of the cell. The cell 

membrane is the osmotic barrier that allows the retention of nutrients and the exclusion of other 

compounds. Second, it prevents the cell from bursting by allowing it to withstand a range of 

harsh conditions such as various temperatures, pH and osmotic pressure. For example, Gram-

positive and Gram-negative bacteria have internal osmotic pressures which are 10 to 30 times 

and 3 to 5 times the external osmotic pressure, respectively. The robust structure of the bacterial 

wall of both Gram-positive and Gram-negative species is due to the cross linking of linear 

polysaccharide chains by short segments of peptides called peptidoglycan (Figure1.1). 
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Figure 1.1 Molecular structure of the peptidoglycan unit for the Gram-positive bacterium 

Staphylococcus aureus1  

 

1.1.1.1 Peptidoglycan 

 

Peptidoglycan is the single most important component of the bacterial cell wall. It is a polymer 

so large that it can be thought of as one immense, covalently linked molecule. It forms a 

supporting net around a bacterium that resembles the multiple layers of chain-link fence (Figure 

1.2). 
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Figure 1.2 Three-dimensional view of peptidoglycan for the Gram-positive bacterium 

Staphylococcus aureus1

 

Gram-positive cells may have as many as forty such layers. In the peptidoglycan polymer, 

molecules of N-acetylglucosamine (NAG) alternate with molecules of N-acetylmuramic acid 

(NAM) to form the sugar backbone. These molecules are cross-linked by tetrapeptides, chains of 

four amino acids, which are also cross-linked by a peptide chain, the whole forming a massive 

network. Different organisms can have different amino acids in the tetrapeptide chain, as well as 

different cross-links. 
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1.1.1.2 Outer membrane 

 

The outer membrane, found primarily in Gram-negative bacteria, is a bilayer membrane. It 

forms the outermost layer of the cell wall and is attached to the peptidoglycan by an almost 

continuous layer of small lipoprotein molecules. The lipoproteins are embedded in the outer 

membrane and covalently bonded to the peptidoglycan. The outer membrane acts as a coarse 

sieve and exerts little control over the movement of substances into and out of the cell. 

However, it does control the transport of certain proteins from the environment. Proteins called 

porins form channels through the outer membrane. Gram-negative bacteria are less sensitive to 

penicillin than are Gram-positive bacteria, in part because the outer membrane inhibits entrance 

of penicillin into the cell. 

Lipopolysaccharide (LPS), also called endotoxin, is an important part of the outer membrane. 

It is an integral part of the cell wall and is not released until the cell walls of dead bacteria are 

broken down. LPS consists of polysaccharides and lipid A. The polysaccharides are found in 

repeating side chains that extend outward from the organism. The lipid A portion is responsible 

for toxic properties that make any Gram-negative infection a potentially serious medical 

problem. It causes fever and dilates blood vessels, so the blood pressure drops precipitously. 

Because bacteria release endotoxin mainly when they are dying, killing them may increase the 

concentration of this very toxic substance. Thus, antibiotics given late in an infection may cause 

a worsening of symptoms, or even death of the patient. 

 

1.1.1.3 Periplasmic space 

 

Another distinguishing characteristic of many bacteria is the presence of a gap between the 

cell membrane and the cell wall. In Gram-negative bacteria this gap is called the periplasmic 

space. It represents a very active area of cell metabolism. This space contains not only the cell 

wall peptidoglycan but also many digestive enzymes and transport proteins that destroy 

potentially harmful substances and transport metabolites into the bacterial cytoplasm, 

respectively. The periplasm consists of the peptidoglycan, protein constituents, and metabolites 

found in the periplasmic space. 

Periplasmic spaces are rarely observed in Gram-positive bacteria. However, such bacteria 

must accomplish many of the same metabolic and transport functions that Gram-negative 

bacteria do. At present most Gram-positive bacteria are thought to have only periplasms (not 
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periplasmic spaces) where metabolic digestion occurs and new cell wall peptidoglycan is 

attached. The periplasm in Gram-positive cells is thus part of the cell. 

 

1.1.2 Distinguishing bacteria by cell walls 

1.1.2.1 Gram-positive bacteria 

 

The cell wall in Gram-positive bacteria has a relatively thick layer of peptidoglycan, 20 to 80 

nm across. The peptidoglycan layer is closely attached to the outer surface of the cell membrane. 

Chemical analysis shows that 60 to 90% of the cell wall of a Gram-positive bacterium is 

peptidoglycan. Most Gram-positive cell walls contain very little protein. If peptidoglycan is 

digested from their cell walls, Gram-positive bacteria become protoplasts, or cells with a cell 

membrane but no cell wall. Protoplasts shrivel or burst unless they are kept in an isotonic 

solution, i.e. a solution that has the same pressure as that inside the cell. 

Gram-positive bacteria lack both an outer membrane and a periplasmic space (Figure 1.3).  

 

 
Figure 1.3 Schematic drawing of the cell wall of Gram-positive bacteria1 

 

1.1.2.2 Gram-negative bacteria 

 

The cell wall of a Gram-negative bacterium is thinner but more complex than that of a Gram-

positive bacterium. Only 10 to 20% of the cell wall is peptidoglycan; the remainder consists of 

various polysaccharides, proteins, and lipids. The cell wall contains an outer membrane, which 
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constitutes the outer surface of the wall, leaving only a very narrow periplasmic space (Figure 

1.4). Toxins and enzymes remain in the periplasmic space in sufficient concentrations to help 

destroy substances that might harm the bacterium, but they do not harm the organism that 

produced them. 

 

 
Figure 1.4 Schematic drawing of the cell wall of Gram-negative bacteria1 

 

Some methods of controlling bacteria are based on properties of the cell wall. For example, 

the antibiotic penicillin blocks the final stages of peptidoglycan synthesis. If penicillin is present 

when bacterial cells are dividing, the cells cannot form complete walls, and they die. 

 

1.1.3 Enzymes 

 

Enzymes are a special category of proteins found in all living organisms. In fact, most cells 

contain hundreds of enzymes, and cells are constantly synthesising proteins, many of which are 

enzymes. Enzymes act as catalysts by speeding up reactions to as much as a million times the 

uncatalysed rate, where the latter is ordinarily not sufficient to sustain life. 

In general, chemical reactions that release energy can occur without input of energy from the 

surroundings. Nevertheless, such reactions often occur at unmeasurably low rates because the 

molecules lack the energy to start the reaction. The energy required to start such a reaction is 

called activation energy (Figure 1.5). Activation energy can be thought of as a hurdle over 

which energy must be raised to get a reaction started. 
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Figure 1.5 The effect of enzymes on activation energy 

 

A common way to activate a reaction is to raise the temperature. But such a raise in 

temperature could be enough to denature proteins. Reactions can occur through different 

transition states and intermediates. Enzymes can modify the transition states or the intermediates 

of reactions to lower the activation energy so reactions can occur at mild temperatures in living 

cells. 

Enzymes also provide a surface on which reactions take place. Each enzyme has a certain area 

on its surface called the active site, a binding site. The binding site for a polypeptide consists of 

a series of subsites across the surface of the enzyme. The interaction between the substrate and 

the enzyme can be described following the Schrechter and Berger nomenclature2  (Figure 1.6). 

The amino acid residues are numbered according to their position with respect to the amide 

bond that is being cleaved. The section to the right of the scissile bond is called the prime side 

and to the left is the non-prime side. It is considered that residues of the substrate or inhibitor P 

(for peptide) bind to enzyme subsites S of the active site. 
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Figure 1.6 Schrechter and Berger nomenclature 

 

The active site is the region at which the enzyme forms a loose association with the substrate 

(Figure 1.7). Like all molecules, a substrate molecule has kinetic energy, and it collides with 

various molecules within a cell. When it collides with the active site of an enzyme, an enzyme-

substrate complex forms. As a result of binding to the enzyme, some of the chemical bonds in 

the substrate are weakened. The substrate then undergoes chemical change, the product(s) are 

formed, and the enzyme detaches. 

 

substrate

active sites

enzyme

enzyme-substrate
complex enzyme

product

 

Figure 1.7 Interaction between enzyme and substrate 

 

Enzymes generally have a high degree of specificity; they catalyse only one type of reaction, 

and most act on only one particular substrate. The shape of an enzyme, especially the shape and 

electrical charges at its active site, accounts for its specificity. When an enzyme acts on more 

than one substrate, it usually acts on substrates with the same functional group or the same kind 
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of chemical bonds. For example, proteolytic enzymes act on different proteins but always act on 

the peptide bonds in those proteins. 

 

1.1.4 Enzyme inhibition 

 

No organism can afford to allow continual maximum activity of all its enzymes. Not only is 

this a waste of materials and energy, but it also may allow harmful quantities of compounds to 

accumulate, while others are lacking. Therefore, there must be ways to inhibit enzyme activity 

in order to slow or even stop its rate. 

 

1.1.4.1 Competitive inhibition 

 

A molecule similar in structure to a substrate can sometimes bind to an enzyme’s active site 

even though the molecule is unable to react. This non-substrate molecule is said to act as a 

competitive inhibitor of the reaction because it competes with the substrate for the active site 

(Figure 1.8). When the inhibitor binds to an active site, it prevents the substrate from binding 

and thereby inhibits the reaction. 

 

enzyme

competitive
inhibitor substrate  

 

Figure 1.8 Competitive inhibition of enzymes 
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The competitive inhibitors are probably the most common type of enzyme inhibitors that act 

as drugs. They bind non-covalently to the enzyme and often resemble the geometry and 

structure of the substrate, the product or the transition state. Because the attachment of such a 

competitive inhibitor is normally reversible (Figure 1.9), the degree of inhibition depends on the 

relative concentrations of substrate (S) and inhibitor (I). When the concentration of the substrate 

(S) is high and that of the inhibitor (I) is low, only a few enzyme inhibitor complexes (EI) are 

formed and a lot of active sites of the enzyme remain available to form the enzyme substrate 

complexes (ES), and the rate of the reaction is only slightly reduced. In the contrary case, a lot 

of enzyme inhibitor complexes (EI) are formed and only few active sites of the enzyme remain 

available for the substrate, and the rate of the reaction is greatly reduced. So, reversible 

competitive inhibition can be overcome by high substrate concentrations. 

 

E

S

I

EI

ES EP E  +  P

 
 

Figure 1.9 Reversible competitive inhibition of enzymes 

 

Transition State Analogues 

 

One category of reversible competitive inhibitors is transition state analogues (TSA). As 

discussed above, the use of an enzyme, as that of any other catalyst in general, is to modify the 

transition state of the reaction to lower its activation energy. Hence, the enzyme must probably 

have the ability to alter the substrate in a way that it will have a greater affinity for it in its 

transition state than for the substrate itself in its ground state. This approach was originally 

advanced by Pauling,3  and it has been suggested that one way to inhibit enzymes is to design 

and synthesise compounds which would mimic the transition state.4  TSA inhibitors are, thus, 

stable molecules that are designed to resemble the substrate’s structure in its transition state in 

order to bind tighter to the enzyme than the substrate. They have to be similar to the transition 

state in several ways, for example, the geometry and the charge on the molecule have to be 

similar to that in the transition state structure. 
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1.1.4.2 Non-competitive inhibition 

 

Some non-competitive inhibitors can form a non-covalent complex with both the free enzyme 

(E) to form an enzyme inhibitor complex (EI) (Figure 1.10, pathway 1) and the enzyme 

substrate complex (ES) to form an enzyme substrate inhibitor (ESI), which then expels the 

substrate (Figure 1.10, pathway 2). 

 

E  +  S

EI  +  S

ES

ESI

E  +  P

+I 
(pathway 1)

+I 
(pathway 2)

 
 

Figure 1.10 Non-competitive inhibition 

 

To do so, they attach to the enzyme at an allosteric site, which is a site other than the active site 

(Figure 1.11). Such inhibitors distort the tertiary protein structure and alter the shape of the 

active site. Any enzyme molecule thus affected no longer can bind substrates, so it cannot 

catalyse a reaction.  

As mentioned above, the non-competitive inhibitor can interact with the enzyme substrate 

complex by altering the shape of the active site and forcing the substrate to be expelled from the 

active site, thus preventing the enzyme from catalysing the reaction (Figure 1.12). 

Although some non-competitive inhibitors bind reversibly, others bind irreversibly and 

permanently inactivate enzyme molecules, thereby greatly decreasing the reaction rate. In non-

competitive inhibition, increasing the substrate concentration does not increase the reaction rate 

as it does in competitive inhibition, because the inhibitor and the substrate bind to two different 

sites of the enzyme, i.e. they do not compete for the same kind of interactions with the enzyme. 

Thus, the substrate cannot displace the inhibitor and non-competitive inhibition cannot be 

overcome by high substrate concentrations. 
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Figure 1.11 Interaction of the allosteric inhibitor with the enzyme (pathway 1) 

 

 

enzyme

active site
substrate

enzyme

substrate

allosteric
site

allosteric
inhibitor

substrate

enzyme

allosteric
inhibitor

distorded
active site

 

Figure 1.12 Interaction of the allosteric inhibitor with the enzyme substrate complex 

(pathway 2) 

 

12 



Chapter 1 Introduction 

1.1.5 Mode of action of β-lactam antibiotics 

 

To understand how β-lactam antibiotics kill bacteria requires some knowledge about the 

biosynthesis of the peptidoglycan, which is a huge polymer (Figure 1.1) and is the most 

important component of the cell wall, as discussed in section 1.1.1. 

 

1.1.5.1 Biosynthesis of peptidoglycan 

 

To synthesise in the extracellular space a polymer larger than themselves, bacteria use a clever 

way which involves three steps:5   

 - Building activated precursors inside the cell. 

 - Exporting them via a membrane–soluble carrier. 

 - Assembling the translocated pieces with the help of membrane-bound enzymes. 

 

The first intracellular step of the process results in the formation of the N-acetylglucosamine 

(NAG) and the N-acetylmumaryl-pentapeptide (NAM-pentapeptide) units, which will constitute 

the glycan backbone. The pentapeptide is attached to the carboxyl group on the NAM residues 

(Figures 1.1 and 1.2) and has the sequence L-ala-D-glu-L-lys-D-ala-D-ala, i.e. it contains one 

additional terminal D-alanine residue compared to the tetrapeptide chain in the mature 

peptidoglycan. The length and nature of the peptide cross-links vary with bacteria, the L-lys 

residue may be replaced by meso-diaminopimelic acid, another amino carrying residue, which 

attaches the different peptide cross-links to each other. 

The second step involves the transfer of the N-acetylmumaryl-pentapeptide and N-

acetylglucosamine on the carrier, and secondary modification of the peptide. The disaccharide-

peptide unit is then translocated across the cytoplasmic membrane. 

The third and final step in the process takes place in the extracellular space and consists of two 

dinstinct reactions: a transglycosylation, which lengthens the saccharidic strands to form the 

sugar backbone of the polymer, and a transpeptidation, which closes the peptide cross-link and 

strengthens the rigidity of the cell wall. Both reactions are catalysed by membrane-bound 

enzymes. The enzyme responsible for the catalysis of the latter reaction is a DD-transpeptidase. 

Cross-linking occurs by displacing the terminal D-alanine residue of N-acetylmumaryl-

pentapeptide with the free amino group (RNH2) of L-lysine or meso-diaminopimelic acid on an 

adjacent peptide (Figure 1.13). 

13 



Chapter 1 Introduction 

 

N

H O

N

H O

OH

H3C

H

H

CH3

+ H2N R DD-transpeptidase
N

H O

N

H

R

H3C H

+ H2N

O

OH

H CH3

D-alanyl-D-alanine
terminal residue

free amino group
of an adjacent peptide chain

new peptide
cross-link loss of D-alanine

 

Figure 1.13 Cross-linkage of peptide chains by DD-transpeptidase 

 

The extent of cross-linking varies with bacterial species, and the uncross-linked sections (D-

ala-D-ala terminal residues) may be removed by carboxypeptidase action5,6  (Figure 1.14). The 

reason for this is that peptidoglycan is continuously remodelled to allow cell growth and 

division, and thus new growing sites must be created by making new aminated acceptor group 

available. 

 

N

H O

N

H O

OH

H3C

H

H

CH3

D-alanyl-D-alanine
terminal residue

N

H O

OH

H3C H

+ H2N

O

OH

H CH3

H2O

DD-carboxypeptidase

 

Figure 1.14 Creation of new growing sites by DD-carboxypeptidase activity 

 

Hence, it is easy to understand that inhibition of both catalytic processes results in the 

formation of a defective peptidoglycan, which induces the formation of a fragile cell wall 

leading eventually to the death of the cell. 
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1.1.5.2 Interaction of penicillins with DD-transpeptidase and DD-

carboxypeptidase 

 

Both enzymes, DD-transpeptidase and DD-carboxypeptidase, were found to be the target of 

penicillins and were first thought7  to be inactivated by them through an acylation process. 

Penicillins act as structural analogues of the D-alanyl-D-alanine terminal residue of the N-

acetylmumaryl-pentapeptide (Figure 1.15). 
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Figure 1.15 Structural analogy between N-acylated D-alanyl-D-alanine and 3S, 5R, 6R-

penicillin 

 

It was also suggested8  that the transpeptidation was a two step process involving an acyl-

enzyme intermediate formed by displacement of the terminal D-alanine using a serine hydroxyl 

group on the enzyme (Figure 1.16a). The acyl-D-alanyl residue was then transferred from this 

ester intermediate to the free amino group of an adjacent peptide. It was proposed that penicillin 

may be an active site-directed inhibitor capable of acylating bacterial transpeptidases (Figure 

1.16b). The transpeptidation pathway involving the attack of a hydroxyl group and the formation 

of an acyl-enzyme intermediate is now universally known.5,9  At that time the cell death was 

predicted to be directly related to the inhibition of the transpeptidation. It is now known to be 

indirect because disruption of cell wall biosynthesis is thought to activate peptidoglycan 

hydrolases that hydrolyse the cell wall causing lysis.6,10   
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Figure 1.16 The transpeptidation and hydrolysis reactions of N-acylated D-alanyl-D-alanine 

catalysed by serine enzymes (a) compared with a β-lactam antibiotic’s reaction with serine 

enzymes (b) 

 

1.1.5.3 The “active serine” model of interaction with β-lactams 

 

A kinetic analysis demonstrated that the interaction obeyed a three-step model5  (Figure 1.17), 

where E is the enzyme, I the inhibitor (antibiotic), EI a non-covalent complex, EI* a covalent 

acyl-enzyme complex and P(s) the inactive product(s) of degradation of the antibiotic. 
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Figure 1.17 Model of interaction between the enzyme and the antibiotic 

 

Efficient inactivation of the enzyme depends on a rapid and nearly quantitative accumulation of 

the EI* complex, which is the result both of its stability (low k3), and of its rapid formation 

(generally due to high k2 values). 

The enzyme group involved in the formation of the acyl-enzyme was identified as a serine 

side chain9  in the Streptomyces R61 DD-peptidase (Figure 1.18), and the same result has now 

been obtained with all penicillin-sensitive DD-peptidases.5  
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Figure 1.18 Structure of the inactive acyl-enzyme intermediate EI* formed when penicillins 

react with a penicillin-sensitive enzyme 

 

1.1.5.4 Resistance to β-lactam antibiotics 

 

Antibiotics are substances that can be produced by micro organisms and which can either kill 

or hinder the growth of other micro organisms, as discussed above. In the early stages, the 

penicillin antibiotics were effective against all types of infections caused by Gram-positive 

bacteria (e.g. skin infections, wound infections, septicaemia, pneumonia, strep throat and many 

more). Many bacteria are now resistant to most types of antibiotics, and therefore the antibiotics 

are becoming less and less effective against infections. 
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Resistance to β-lactam antibiotics occurs by four major mechanisms:11   

- Production of inactivating enzymes e.g. β-lactamases 

- Alteration in penicillin binding proteins12  

- Efflux via specific drug pumps13  

- Impaired entry into the bacterial cell e.g. Gram-negative bacteria decrease permeability due 

to the presence of an outer membrane. 

 

Among the Gram-negative bacteria, the most important mechanism is the production of β-

lactamases, and there are over 470 β-lactamases known at present.14  The resistance to 

antibiotics is causing a major problem and now efforts are being made to overcome this issue, 

i.e. improving infection control, using drugs more appropriately and developing new antibiotics. 

It is the latter that our work is focussing on by designing and synthesising novel potential 

inhibitors of the enzymes which are the target for β-lactam antibiotics, the DD-transpeptidase as 

well as those responsible for the resistance, the β-lactamases. 

The β-lactamase enzyme binds to the antibiotic in a similar fashion to the transpeptidase, 

both forming acyl-enzyme intermediates with their substrates (Figure 1.19). However, β-

lactamase has the ability to hydrolyse the intermediate, thus destroying the antibiotic and 

regenerating the enzyme (Figure 1.19b). With the antibiotic having been destroyed, the 

transpeptidase is no longer inhibited and the cell wall biosynthesis of the bacteria can be 

achieved, leading to resistance. 

One way to overcome the resistance of some bacteria to β-lactam antibiotics is to inhibit the 

β-lactamase enzyme, which is the cause of the resistance. For example, the use of mechanism 

based inactivators such as clavulanate (1), sulbactam (2) or tazobactam (3) (Figure 1.20), 

together with a penicillin, is a common therapy. The role of the inactivators is to preserve the 

antibacterial activity of the penicillin by inactivating the β-lactamase. 
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Figure 1.19 Inhibition of transpeptidase by penicillin (a) and trapping of penicillin by β-

lactamase (b) 
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Figure 1.20 Series of mechanism based inactivators 

 

1.1.6 Physico-chemical properties and reactivity of β-lactams 

 

The first β-lactam was synthesised by Staudinger in 1907.15  β-lactams (4) are four-membered 

cyclic amide derivatives of β-aminopropionic acid. 
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The realisation of the importance of the β-lactam ring came with the discovery of the structure 

of penicillin.16  To this day, the β-lactam antibiotics are the most commonly prescribed drugs for 

bacterial infections. Examples of β-lactam antibiotics are the penicillins (5), cephalosporins (6), 

carbapenems (7), nocardicins (8) and the monobactams (9). 

 

N

S

O

R

CO2H

N
O

R

CO2H

R'
N

S

O

R

CO2H

R'

N

R

O

HO2C

OH
N

R

O S OH
O

O

(5) (6) (7)

(8) (9)  
 

Unfortunately, due to bacterial resistance as discussed above, the effectiveness of the β-lactam 

antibiotics has decreased in recent years and is causing major problems in the health care 

industry.17-20  The resistance towards the β-lactam antibiotics, as discussed earlier, is primarily 

due to β-lactamases,21  which open the β-lactam ring of the antibiotics, and then are able to 

hydrolyse the acyl-enzyme intermediate, thus destroying the antibiotic and regenerating the 

enzyme (Figure 1.19). 

Research groups are therefore investigating novel β-lactam compounds and analogues, which 

are more stable towards the β-lactamase enzyme22,23  and can hence inhibit the transpeptidase 

enzyme or which inhibit the β-lactamase. The Page group here at Huddersfield has been 

investigating novel β-sultams as inhibitors of both of these enzymes. 
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1.1.7 Physico-chemical properties and reactivity of β-sultams 

 

β-Sultams (10) are four-membered heterocyclic sulfonamides and are the sulfonyl analogues 

of β-lactams (11). 

 

S NO
O R

N
O R

(10) (11)  
 

Amide resonance occurs in β-lactams but the corresponding sulfonamide resonance probably 

does not occur in β-sultams. The β-sultam ring is less stable compared with the β-lactam ring 

because of the increased distortion of the β-sultam ring, due to the C-S and N-S bonds which are 

longer than the corresponding C-C and C-N bonds of the β-lactam ring24  (Figure 1.21). 

Sulfonamides are usually more stable than amides and β-sultams are the first class of 

sulfonamides that go against this “rule”. 
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Figure 1.21 Comparison of bond lengths of β-sultam with β-lactam 

 

The sulfonylation of serine proteases is, prior to work at Huddersfield, a largely unexplored 

area for the inhibition of these enzymes compared with the traditional acylation processes. In 

addition to their normal acyl substrates, serine proteases are known to react with other 

electrophilic centres such as phosphoryl derivatives.25  The main reason why sulfonylation of 

serine enzymes is not that well studied is because sulfonyl derivatives are usually much less 

reactive than their acyl counterparts.26  

Recently, it has been shown by Page et al. that the rates of alkaline hydrolysis of N-alkyl 

(12) and N-aryl (14) β-sultams are 102 to 103 fold greater than those for the corresponding β-

lactams27  (13) and (15) (Figure 1.22). β-Sultams also show rate enhancements of 109and 107, 

respectively, compared with the acid and base catalysed hydrolysis of the corresponding acyclic 
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sulfonamides28  (16), whose rate of alkaline hydrolysis is 104 fold slower than the acyclic amide 

(17). 
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Figure 1.22 Comparison of rates of alkaline hydrolysis of β-sultam with β-lactam 

 

β-Sultams could therefore act as sulfonylating agents of serine enzymes and inactivate the 

enzyme by forming a stable adduct (18) (Figure 1.23). 
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Figure 1.23 Formation of a stable sulfonate ester 

 

The main theme of this thesis is the attempted synthesis of monocyclic β-sultams and their 

conversion into bicyclic analogues. For this reason, this introduction will review methods 

available already for the synthesis of mono- and bicyclic β-sultams. This review will also 

highlight the reactivity of β-sultams, but only on those occasions where the β-sultam ring (rather 

than side-chain substituents) is involved. 
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1.2 Literature review on the synthesis and the reactivity of 1,2-thiazetidin-

1,1-dioxides (β-sultams) 

1.2.1 Synthesis of the β-sultam ring 

 

The usual methods to synthesise the β-sultam ring are either through intramolecular 

cyclisation of 2-aminoethanesulfonic acid derivatives or 2-hydroxyethanesulfonamides, or 

through [2+2] cycloadditions of imines with sulfene derivatives or alkenes with N-

sulfonylamines. Most of these methods have been reviewed.29,30  Therefore, this review will 

cover the recent advances in the construction of this four-membered heterocycle reported in the 

literature from 1996 to early 2009. 

The main advances in the formation of 1,2-thiazetin-1,1-dioxides rely on the development of 

asymmetric syntheses using the known methodologies described above. 

 

1.2.1.1 Intramolecular cyclisation of 2-aminoethanesulfonic acid derivatives 

 

One of the most reliable approaches to synthesise diastereomerically or enantiomerically pure 

heterocycles is to introduce the chirality in an open chain precursor and subsequently close the 

ring in an intramolecular fashion. Enders et al. developed an asymmetric synthesis of 3-

substituted β-sultams using this approach.31,32  The key step is the chiral synthesis of taurine 

derivatives from the Lewis acid catalysed aza-Michael addition of an enantiomerically pure 

hydrazine to alkenylsulfonic esters (19), followed by cleavage of the chiral auxiliaries and 

protection of the amine to give the N-protected 1,2-aminosulfonate esters (20) (Scheme 1.1).33 

Deprotection and ring closure gave the β-sultam (22). 
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Scheme 1.1 

 

The Enders group also reported a diastereo- and enantioselective synthesis of cis-3,4-

disubstituted β-sultams.34  Once again, the key step was the introduction of chirality in an open 

chain precursor. This was achieved by the asymmetric synthesis of anti-1,2-sulfanyl amines 

from chiral hydrazines (Scheme 1.2).35 For example, treatment of the bromoacetal (23) by 

lithium benzylthiolate afforded the α-sulfanylated acetal (24), which upon acidic hydrolysis and 

direct reaction with (S)-1-amino-2-methoxymethylpyrrolidine (SAMP) gave the corresponding 

SAMP hydrazone ((S)-25). The hydrazone ((S)-25) was alkylated with various alkyl halides by 

metallation with lithium diisopropylamide (LDA) to yield the α-sulfanylated hydrazone ((S,S)-

26) with high diastereomeric excess. Subsequent nucleophilic 1,2-addition to the C=N double 

bond with organocerium reagents gave the benzylsulfanylated hydrazines ((S,R,S)-27). Mild 

reductive cleavage of the N-N hydrazine bond with a borane-tetrahydrofuran complex , followed 

by protection of the amine with methoxycarbonyl chloride afforded the desired anti-1,2-sulfanyl 

amines ((S,R)-28). 
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Scheme 1.2 a) 1. BnSH, nBuLi, THF, 0˚C; 2. 23, THF, reflux, 4 h; b) 1. 6N HCl, Et2O, reflux, 
7 h ; 2. SAMP, MgSO4, DCM, RT ; c) 1. LDA, THF, -20˚C, 2 h ; 2. R1X, -100˚C to RT; d) 
R2Li/CeCl3, THF, -100˚C to RT; e) 1. BH3·THF, THF, reflux, 4 h; 2. MocCl, K2CO3, DCM, 
reflux, 3 d. 

 

With compounds ((S,R)-28) in hand, the formation of the β-sultam ring was undertaken 

(Scheme 1.3).34 N-Protected 1,2-amino thiols ((S,R)-29) were obtained by cleavage of the S-

benzyl group of compounds ((S,R)-28) with lithium in ammonia without epimerisation. 

Subsequent oxidation of the thiol moiety with H2O2 in methanol with an excess of ammonium 

heptamolybdate, followed by direct conversion of the corresponding amino sulfonic acids to 

their sodium salts, and chlorination using a phosgene solution in toluene afforded the N-

protected 1,2-aminosulfonyl chlorides ((S,R)-30). Finally, the ring closure was performed by 

cleavage of the Moc-protecting group with HBr-AcOH and in situ cyclisation with an excess of 

triethylamine, yielding the β-sultams ((S,R)-31) with excellent diastereomeric and enantiomeric 

excesses. 
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Scheme 1.3 a) Li/NH3, -33˚C, 30 min; b) 1. H2O2, (NH4)6Mo7O21, MeOH; 2. NaOAc, DCM, 
RT; 3. COCl2 in toluene, DCM, DMF, RT; c) 1. DCM, HBr-AcOH, 7 d, RT; 2. Et3N, 2 h, 0˚C 

 

In 1997, Otto et al. synthesised bicyclic β-sultams from 3-acetoxy-1,2-thiazetidin-1,1-dioxide 

(36) (Scheme 1.4).36  Oxidative chlorination of benzyl L-cystine ester dihydrochloride (32), 

obtained from the esterification of L-cystine with benzyl alcohol, gave the 2-aminosulfonyl 

chloride hydrochloride (33). Cyclisation in chloroform in the presence of ammonia afforded the 

β-sultam (34a), which was silylated with tert-butylchlorodimethylsilane to form the more stable 

N-protected β-sultam (34b). The β-sultam (35) was obtained by hydrogenation of the benzyl 

ester. Treatment of compound (35) with lead tetraacetate and copper acetate afforded the 3-

acetoxy-β-sultam (36) with loss of the stereochemistry. Compound (38) was obtained by the 

reaction of (36) with the silyl enol ether of benzyl α-diazoacetoacetate (37) in the presence of 

zinc iodide. Desilylation with tetrabutylammonium fluoride (TBAF) in THF gave the 

deprotected β-sultam (39), but also caused a type of retro-Michael addition to form the open-

chained sulfonamide (40) as a side-product. Photochemical cyclisation of the deprotected β-

sultam (39) afforded the bicyclic β-sultam (42) instead of the expected bicyclic β-sultam (41). 
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Scheme 1.4 a) Cl2, H2O; b) NH3, CHCl3; c) n-BuLi, THF, -78˚C, TBDMS-Cl; d) H2, Pd-C; e) 
Pb(OAc)4, Cu(OAc)2, MeCN; f) TBAF, THF. 

 

In 2004, Otto et al. reported the asymmetric synthesis of the β-sultam ring from 

enantiomerically pure α-amino acids (Scheme 1.5).37 The amino acids (43a-e) were reduced with 

LiAlH4 in THF to their corresponding 2-aminoethanols (44a-e), which were converted to the 

bromo compounds (45a-e), either by reaction with HBr, with a mixture of HBr and PBr3, or with 

thionyl bromide. These salts (45a-e) were transformed, either into the thiols (46) with thiourea 

and tetraethylenepentamine, or into the disulfides (47) with iodine in ethanol. The air sensitivity 

of thiols (46) afforded immediate oxidation to the corresponding sulfonyl chlorides (48) with 
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Cl2/HCl in a mixture of ethanol and carbon tetrachloride. Cyclisation of compounds (48) with 

ammonia in chloroform at 0˚C afforded the enantiomerically pure 3-substituted β-sultams (49a-

e). The disulfides (47) could also be oxidised with Cl2/HCl in ethanol and carbon tetrachloride, 

thus providing an alternative route to compounds (48) and (49). 
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Scheme 1.5 a) LiAlH4, THF; b) HBr, Ph3P or SOBr2; c) Thiourea, EtOH; d) Na2S2O3, I2, 
EtOH; e) I2, EtOH; f) HCl, Cl2, CCl4, EtOH; g) NH3, CHCl3, CCl4, THF. 

 

The Otto group also reported37  the synthesis of β-sultams (51a-b) from L-cystine dialkyl ester 

hydrochlorides (50a-b), obtained from L-cystine, by oxidative chlorination (Scheme 1.6). 
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Scheme 1.6 

 

N-Substituted β-sultams may be synthesised by deprotonation of the nitrogen with a base 

(Et3N, NaOH, or NaNH2) at low temperature, followed by alkylation or acylation. However, this 
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method may not be appropriate in a stereoselective synthesis of 1,2-thiazetidin-1,1-dioxides, 

since deprotonation may lead to partial racemisation. Therefore, Otto et al. introduced the N-

substituent into the starting material using N-benzoyl-L-leucine ((S)-52) (Scheme 1.7).37 

Reduction of N-benzoyl-L-leucine ((S)-52) with lithium aluminium hydride in THF yielded the 

N-benzylated 1,2-amino alcohol ((S)-53), which was cyclised to the optically active N-

benzylated aziridine ((S)-54) with triphenylphosphine in acetonitrile. Ring opening by 

nucleophilic substitution with sodium benzyl thiolate afforded the sulfide ((S)-55). Oxidative 

chlorination of compound ((S)-55) gave the corresponding sulfonyl chloride ((S)-56). 

Subsequent cyclisation with ammonia in chloroform, THF and carbon tetrachloride afforded the 

optically active β-sultam ((S)-57). 
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Scheme 1.7 a) LiAlH4, THF; b) Ph3P, Et3N, CCl4, MeCN; c) Na/EtOH, PhCH2SH; d) HCl, 
Cl2, CHCl3, CCl4, 0˚C; e) NH3, CHCl3, THF, CCl4. 

 

Otto et al. also synthesised the 4,4-dimethyl-1,2-thiazetidin-3-carboxylate 1,1-dioxide (60) 

from D-penicillamine benzyl ester hydrochloride (58) (Scheme 1.8).37  Oxidation of compound 

(58) with bromine in dilute acetic acid yielded the taurine derivative (59) which, after 

chlorination with phosphorus oxychloride in acetonitrile and sulfolane, and subsequent 

cyclisation with triethylamine gave the enantiomerically pure β-sultam (60). 
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Scheme 1.8 

 

The same research group also performed the stereospecific synthesis of bicyclic β-sultams 

(70a) and (70b) from N-benzylated L-threonine (61a) and L-serine (61b) (Scheme 1.9).37  

Cyclisation of the starting materials with chloroacetyl chloride afforded the morpholine 

derivatives (62a) and (62b), which, after esterification to (63a) and (63b), were reduced with 

LiAlH4 to the corresponding alcohols (64a) and (64b). The latter were converted via the bromo 

compounds (65a) and (65b) into the benzyl sulfides (66a) and (66b). Replacement of the benzyl 

group by the (2,2,2-trichloroethoxy)carbonyl group afforded compounds (67a) and (67b), which 

upon treatment with zinc in glacial acetic acid resulted in conversion to the morpholine 

derivatives (68a) and (68b). Oxidative chlorination gave the sulfonyl chlorides (69a) and (69b). 

Cyclisation with ammonia in chloroform yielded the bicyclic β-sultams (70a) and (70b). 
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Scheme 1.9 a) CH2ClCOCl, NaOH; b) SOCl2, EtOH; c) LiAlH4, THF; d) Ph3P, CBr4, MeCN; 
e) NaOH, BnSH, EtOH; f) Cl3CCH2OCOCl, K2CO3; g) Zn, AcOH; h) HCl, Cl2, CHCl3, CCl4; i) 
NH3, CHCl3. 

 

Finally, the Otto group has reported the synthesis of the 3-spiro-cyclohexyl-β-sultam (76) 

(Scheme 1.10). Reduction of 1-aminocyclohexanecarboxylic acid (71) with lithium aluminium 

hydride yielded the 1,2-aminoalcohol (72), which was transformed to the hydrobromide salt (73) 

with hydrobromic acid and phosphorus tribromide. Treatment with sodium metabisulfite and 

iodine gave the disulfide (74). Oxidative cleavage with chlorine afforded the chlorosulfonyl 

ammonium chloride (75), and subsequent ring closure with ammonia in chloroform yielded the 

β-sultam (76).37  
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Scheme 1.10 a) LiAlH4; b) HBr, PBr3; c) Na2S2O3, I2, H2O; d) HCl, Cl2, CCl4, EtOH; e) NH3, 
CHCl3. 

 

Recently, Caddick et al. have developed an interesting and original stereoselective synthesis of 

β-sultams from isoxazolidines substituted by a pentafluorophenyl (PFP) sulfonate moiety 

(Scheme 1.11).38 Isoxazolidines (77) were prepared from the regio- and stereoselective 1,3-

dipolar cycloaddition of the corresponding vinyl sulfonate with a series of nitrones.39 Mild 

reductive N-O bond cleavage with Mo(CO)6 afforded the 2-aminosulfonate ester (78), which 

simply underwent an intramolecular cyclisation to form the β-sultams (79) via a nucleophilic 

substitution of the amine on the sulfonate ester, releasing the stable pentafluorophenolate anion 

as a good leaving group. 
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1.2.1.2 Intramolecular cyclisation of bromomethanesulfonamides 

 

In 2004, Paquette et al. described the synthesis of β-sultams (83) from N-substituted 

bromomethanesulfonamides (80) by reaction with α-halo ketones, esters, or nitriles in DMF with 

two equivalents of potassium carbonate (Scheme 1.12).40  
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Scheme 1.12 

 

The bromomethanesulfonamides (80) were prepared by reacting the relevant primary amine in 

DCM with DMAP and Hünig’s base with the corresponding bromomethanesulfonyl chlorides, 

obtained by reaction of dibromomethane with sodium sulfite, tetrabutylammonium hydrogen 

sulfonate, and phosphorus pentachloride.41,42  

This process also performed nicely with secondary halides such as diethyl bromomalonate and 

3-chlorobutan-2-one (Scheme 1.13). In the latter example, it is interesting to note that there is 

clearly no competition between (86a,c) and (87a, c) for the ring closure since only the four-

membered ring (88a,c) is formed and the six-membered ring (89a, c) is not formed. 
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Scheme 1.13 

 

With β-sultams (83) in hands, Paquette et al. undertook the synthesis of bicyclic derivatives 

(Scheme 1.14). The addition of methylmagnesium bromide to the ester (83f) gave the ketone 

(83d) and the alcohol (90). Compound (83d) was subjected to a Wittig olefination with 

methylenetriphenylphosphine, and compound (90) was dehydrated with phosphorus oxychloride 

in pyridine to afford the diene (91). Ring-closing metathesis (RCM) of (91) in the presence of 

(tricyclohexylphosphine[1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-

ylidene][benzylidene]ruthenium(IV) dichloride) (93) generated the bicyclic β-sultam (92). 
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Scheme 1.14 

 

A similar route employing the condensation of (83f) with one equivalent of allylmagnesium 

bromide resulted in the formation of the diene (94) (Scheme 1.15). RCM of (94) in the presence 

of the ruthenium catalyst (93) yielded the bicyclic β-sultam (95). 
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Scheme 1.15 
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In a final adaptation, the same report detailed the synthesis of the β-sultam (99) from the allyl 

β-sultam (83f) (Scheme 1.16). Reduction of the ester afforded the corresponding alcohol (96), 

which was converted to the mesylate (97) with methanesulfonyl chloride in the presence of 

triethylamine. Heating with sodium iodide in acetone gave the primary iodide (98), which was 

converted to a primary radical with tributyltin hydride in heated benzene to undergo a 

cyclisation, affording the β-sultam (99) as a 3:1 mixture of diastereoisomers. 
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Scheme 1.16 

 

1.2.1.3 Intramolecular cyclisation of 2-hydroxyethanesulfonamides 

 

In 1999, Baldoli et al. reported the stereoselective synthesis of 3-aryl-β-sultams using chiral 

tricarbonyl(η6-arene)chromium(0) complexes (Scheme 1.17).43  Nucleophilic addition of the N-

tert-butylmethanesulfonamide (101) using butyllithium in dry THF at -78˚C on optically pure 

tricarbonyl(2-substituted benzaldehyde)chromium(0) complexes (100 a-c) afforded the 

complexed 2-hydroxyethanesulfonamides (102 a-c). Exposure of a solution of compounds (102 

a-c) in DCM to air and sunlight yielded the uncomplexed 2-hydroxysulfonamides (103 a-c). 

Mesylation of the hydroxyl group followed by intramolecular nucleophilic substitution using 

sodium hydride as a base in DMF at 60˚C gave the β-sultams (105 a-c) in good yield with high 

enantiopurity (e.e. ≥ 98%). 
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Scheme 1.17 

 

1.2.1.4 [2+2] Cycloaddition reactions 

 

In 1997, Gordeev et al. reported the first solid-phase synthesis of β-sultams based on the [2+2] 

cycloaddition of activated sulfenes with imines (Scheme 1.18).44  Condensation of immobilised 

amino acids (106) with aldehydes in the presence of piperidine gave rise to the formation of 

imines (107). Addition of chlorosulfonyl acetates as reactive sulfene precursors to imines (107) 

in the presence of pyridine as a base in THF at -78˚C followed by gradual warm-up to RT 

resulted in the stereospecific formation of trans-β-sultams (108). Acidolytic or photolytic 

cleavage from the solid support afforded the free β-sultams (109). The diastereoselectivity of the 

[2+2] cycloaddition might be accounted for by a two-step mechanism starting with the 

sulfonylation of the imines (107) to generate sulfonyliminium intermediates, which cyclise to β-

sultams (108) in the presence of a base.45  
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Scheme 1.18 

 

Kataoka et al. described an interesting enantioselective synthesis of α-amino acid thioesters 

(113) based on a 1,3-asymmetric induction in the [2+2] cycloaddition of a sulfene intermediate 

with a chiral imine to form the β-sultam ring, followed by a Pummerer reaction.46 The key step 

is the ring formation of the β-sultam (112) from mesyl chloride (110) and imine (111) (Scheme 

1.19) and the results are summarised in Table 1.1. 
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Scheme 1.19 
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R1 R2 Product (% Yield)b

(R)-α-methylbenzyl Ph 112a (70, 42% de)c

(S)-α-methylbenzyl t-Bu 112b (32, 45% de)c

(R)-α,4-dimethylbenzyl Ph 112c (72, 44% de)c

rac-1-(1-naphtyl)ethyl Ph 112d (53, 47% de)c

rac-1-indanyl Ph 112e (36, 50% de)c

rac-1-cyclohexylethyl Ph 112f (60, 67% de)d

(1R, 2R, 3R, 5S)-isopinocampheyl Ph 112g (54, 80% de)d

rac-1-tert-butylethyl Ph 112h (67, >95% de)d

rac-1-(methoxymethyl)propyl Ph complex mixture 
(R)-2-(methoxymethyl)pyrrolidinyl Ph complex mixture 

 
a 2 equivalents of imines were used based on MsCl. b Isolated yield based on MsCl. 

Diastereomeric excess was calculated by the 1H NMR spectrum of the reaction mixture. c 
Separable stereoisomers. d Inseparable stereoisomers. 

 

Table 1.1 1,3-Asymmetric induction in the [2+2] cycloaddition of a sulfene intermediate and 

chiral iminesa 

 

The mechanism for the stereoselectivity is illustrated below for the formation of β-sultam 

(112h) obtained with the best diastereomeric excess (Scheme 1.20) and can be explained by a 

1,3-allylic strain responsible for the differentiation between conformers (111h) and (111h’).47  In 

order to minimise this strain, the most stable conformer (111h) reacts with the sulfene generated 

from the reaction of mesyl chloride (110) and an imine. Thus, the approach of the sulfene takes 

place from the opposite face to the bulky tert-butyl group to form the syn-isomer as the major 

product. Contribution from the less stable conformer (111h’) to form the anti-isomer is 

negligible. 
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Scheme 1.20 Mechanism of the 1,3-asymmetric induction in the formation of β-sultam (112h) 

 

From the β-sultams (112a,b), they prepared the precursors for the Pummerer reaction and 

synthesised the α-amino acid thioesters (116) and (120) (Scheme 1.21). Sulfenylation of 

compounds (112a,b) with LDA and diphenyl disulfide afforded the 3-substituted-4-

phenylsulfanyl-β-sultams (113) and (117), which were oxidised with m-CPBA to the 

corresponding 3-substituted-4-phenylsulfinyl-β-sultams (115) and (119). Treatment with 

trifluoroacetic anhydride (TFAA) gave the α-amino acid thioesters (116) and (120). 
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The mechanism of the Pummerer reaction applied to the β-sultams (115) and (119) is 

illustrated below (Scheme 1.22). 
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Scheme 1.22 

 

Nucleophilic addition of the sulfoxides (115) and (119) to trifluoroacetic anhydride generates 

the sulfonium intermediate (121a,b), which undergoes a β-elimination to form the thionium ion 

intermediates (122a,b). Nucleophilic addition of trifluoroacetate on the electrophilic thionium 

ion affords the α-substituted sulfides (123a,b). Subsequent hydrolysis and SO2 extrusion allows 

the β-sultam ring opening to afford the α-amino acid thioesters (116) and (120). 

Kataoka also reported the β-elimination and N-S bond cleavage of 3-aryl-1,2-thiazetidin-1,1-

dioxides with organometallics to form (E)-vinylsulfonamides and/or sulfones,48,49  and the C-N 

bond cleavage of 4-silyl-substituted 1,2-thiazetidin-1,1-dioxides resulting in the formation of 

(E)-vinylsulfonamides.49,50  
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Recently, Peters et al. reported a catalytic asymmetric synthesis of β-sultams (Scheme 1.23).51   

 

H

NTs

EWG

R SO2Cl+
NS

R E

O
O Ts

WG

10 mol % catalyst (Nu*),
i-Pr2NEt, DCM, -80oC

(125) (126a-e) (127a-e)

R product yield (%) dr ee (%)

Et

n-Pr

(CH2)2Cl

CH2Ph

(CH2)2OC6H4OMe

127a

127b

127c

127d

127e

82

81

78

94

95

20:1

18:1

11:1

21:1

13:1

79

91

94

94

87  
 

Scheme 1.23 

 

The initial aim of this work was to form the zwitterionic nucleophilic intermediate (130) 

generated by the addition of a catalytic amount of an enantiomerically pure nucleophile (129) to 

the sulfenes (128) which would then undergo an asymmetric formal [2+2] cycloaddition with 

electron-poor imines (125) (Scheme 1.24). 
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Scheme 1.24 

 

However, deuteration experiments demonstrated that the sulfene (128) is not generated in 

significant amounts to confirm this mechanism. Instead, the proposed mechanism for the 

formation of β-sultams (127a-e) is as follows (Scheme 1.25). 
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Scheme 1.25 

 

The nucleophilic catalyst (Nu*) (129) forms a zwitterionic aminal intermediate (131) by 

nucleophilic addition to the imine (125). The negatively charged nitrogen in the intermediate 

(131) undergoes a nucleophilic substitution on the sulfonyl chloride (126) without prior 
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formation of the sulfene to form the sulfonamide (132), which would then be deprotonated at the 

α position of the sulfonyl group to form a carbanion. Subsequent intramolecular nucleophilic 

substitution of the zwitterionic species releases the catalyst with diastereoselective formation of 

the β-sultam ring (127). 

 

1.2.2 Chemical transformations and reactivity of the β-sultam ring 

1.2.2.1 Ring enlargement of the β-sultam ring 

 

In 1996, Heimgartner et al. synthesised 1,2,5-thiadiazepine derivatives by the reaction of 1,2-

thiazetidin-3-on-1,1-dioxides with 3-amino-2H-azirines (Scheme 1.26).52  After protonation of 

the azirines (134) by the relatively acidic 3-oxo-β-sultams (133), nucleophilic addition of the 

anion (135) on the amidinium (136) afforded the aziridines (137), which underwent a ring 

enlargement to produce the zwitterionic intermediate (138). The latter rearranged through a 

second ring expansion to yield the 1,2,5-thiadiazepines (139) in high yields (Table 1.2). 
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  R1 R2 R3 R4   R5 Product 
(%) 

134a Me Me Me Me 133a Me 139a (31) 
134b Me Me Me Ph 133a   139b (91) 
134c (CH2)4 Me Ph 133a   139c (79) 
134d Me i-Bu Me Ph 133a   139d (80) 
134a Me Me Me Me 133b Et 139e (60) 
134b Me Me Me Ph 133b   139f (73) 
134d Me i-Bu Me Ph 133b   139g (81) 

 

Table 1.2 Formation of 1,2,5-thiadiazepin-6-on-1,1-dioxides (139) 

 

The Heimgartner group also carried out transamidation reactions of 2-(aminoalkyl)-3-oxo-β-

sultams53  (Scheme 1.27) to investigate whether this class of compounds would undergo a ring 

expansion, and if so, at which electrophilic centre the intramolecular nucleophilic attack would 

occur. 
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Scheme 1.27 

 

Thus, 2-(aminoalkyl)-3-oxo-β-sultams (141) were prepared from the dichloride (140).54,55 The 

mono-Boc-protected diamines were synthesised following the procedure from the literature.56-59  
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The Boc group was removed with trifluoroacetic acid to give the ammonium trifluoroacetate 

salts (142), which were treated with a polymer-bound base, (piperidinomethyl)polystyrene, to 

afford the ring enlarged compounds (143), (144) and (145) in satisfactory yields. 

In order to elucidate whether the intramolecular nucleophilic attack was occurring at the 

carbonyl or at the sulfonyl centre, the same sequence was performed with the 3-oxo-β-sultam 

(141d) (Scheme 1.28). Deprotection of (141d) with trifluoroacetic acid followed by basification 

with a large excess of (piperidinomethyl)polystyrene afforded the ring expanded compound 

(146) as a single product, indicating that the transamidation was taking place at the carbonyl, 

rather than at the sulfonyl to afford compound (147). 
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In 1997, Otto et al. reported the formation of 1,3-thiazolidin-4-ones from N-substituted 3-oxo-

β-sultams (Scheme 1.29).60 3-Oxo-β-sultam (133a) was synthesised following a modified 

procedure described in the literature.54,61 N-Alkylation using sodium hydride in DMF afforded 

the corresponding N-substituted 3-oxo-β-sultams (148 a-d). Treatment of compounds (148a-d) 

with NaH in DMF gave interesting results, where the course of the reaction seemed to be 

strongly dependent on the amount of DMF used and on the temperature. When compounds 

(148a) and (148c) were treated at room temperature with a large excess of DMF with 2 

equivalents of NaH, the products (149a) and (149c) of the base-catalysed condensation with 

DMF were isolated. When the reaction was carried out with N-substituted 3-oxo-β-sultams 

(148a-d) at 0˚C in about half the amount of DMF, the 1,3-thiazolidin-4-ones (152a-d) were 
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isolated in reasonable yields (52-61%). When the reaction was performed at -20˚C with 

dimethylsulfate, the 1,3-thiazolidin-4-ones (153a-d) were isolated. 
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Scheme 1.29 

 

The formation of compounds (152) and (153) can be accounted for by the deprotonation of the 

methylene group attached to the nitrogen in compound (148) by NaH, followed by the insertion 

of this carbon between the nitrogen and the sulfonyl group by ring opening via the S-N bond 

cleavage to form an imine derivative intermediate stabilised by the sulfur atom (Scheme 1.30). 

A possible competition of the cleavage between the S-N and C-N bond could be expected, but 

ring opening through the C-N bond cleavage would result in a less stabilised ring opened 

intermediate. The ring closure of this stabilised imine derivative to the favoured five-membered 

ring resulted in the formation of the tautomeric anions (150) / (150’). The tautomer (150) loses 

SO2 to give the acylimine (151) as an excellent Michael acceptor. Nucleophilic addition of the 
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tautomer (150) on the acylimine (151) afforded compounds (152). The formation of compounds 

(153) is a simple double methylation of the tautomer (150’). 
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The ring transformation of the β-sultam ring with Lewis acids via C-S bond cleavage has been 

reported by the Kataoka group.62,63 Depending on the reaction conditions, these transformations 
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can result in a ring enlargement to form trans-1,2,3-oxathiazolidin-2-oxides or in a ring 

contraction to form syn-aziridines (Scheme 1.31). 
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β-Sultam 
Compound 

No. R 
Conditions (equivalents) Products (% yield, ratio) 

154a-cis 3-Pyridyl EtAlCl2 (2.0), RT, 12 h 155a / 155'a (65%, 70 / 30) 

154a-cis 3-Pyridyl EtAlCl2 (4.5), reflux, 60 h 155a / 155'a (5%, 80 / 20), 
156a (62%) 

154a-trans 3-Pyridyl EtAlCl2 (1.4), RT, 12 h No reaction 

154b-cis 4-Pyridyl EtAlCl2 (4.5), 0˚C, 22 h 155b / 155'b (49%, 90 / 
10), 156b (11%) 

154b-cis 4-Pyridyl AlCl3 (4.0), reflux, 28 h 155b / 155'b (8%, 91 / 9), 
156b (54%) 

154c-cis 2-Pyridyl EtAlCl2 (2.2), RT, 14 h 155c / 155'c (40%, 90 / 10), 
156c (18%) 

154c-cis 2-Pyridyl AlCl3 (4.0), RT, 27 h 155c / 155'c (9%, 94 / 6), 
156c (18%) 

154d-cis p-NO2C6H4 EtAlCl2 (1.0), 0˚C, 12 h 155d / 155'd (18%, 95 / 5)  
154e-cis p-CNC6H4 AlCl3 (1.5), RT, 14 h 156e (23%) 

154f (cis : 
trans = 1 : 

1.8) 
t-Butyl EtAlCl2 (1.1), RT, 12 h 155f (93%) 

 

Table 1.3 Ring transformation of β-sultam (154) with EtAlCl2 or AlCl3

 

The mechanism of formation of compounds (155), (155’) and (156) is described in Scheme 

1.32. The C-S bond of the β-sultam (154) is cleaved by the coordination of the Lewis acid to the 

sulfonyl group under the influence of the steric repulsion generated by the substituents at the C-

3 and C-4 carbons to form the cationic intermediate (157), which cyclises by a nucleophilic 

attack of the oxygen on the cation to provide stereoselectively the anti-1,2,3-oxathiazolidin-2-

oxides (155). It is also possible to postulate that the intermediate (157) undergoes an extrusion 

of SO2 to generate the cationic intermediate (158), which cyclises to the thermodynamically 

more stable syn-aziridine (156).64,65   
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1.2.2.2 Functionalisation at the C-4 position of the β-sultam ring 

 

Apart from the nitrogen, the only reactive site of the ring is at the α-position of the sulfonyl 

group, or C-4 position. Otto et al. described the deprotonation of N-protected β-sultams (159) 

and their subsequent reaction with electrophiles (Scheme 1.33).66  Some of these reactions are 

summarised in table 1.4. Several functionalisations were performed such as aldol reactions, 

carboxylations, silylations, or halogenations. 
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Starting 
material R1 R2 Electrophile 

(eq.) 
Base 
(eq.) Product(s) R3 R4 Yield 

(%) 

159a TBDPS H Ph2CO 
(1.25) 

BuLi 
(2.0) 160a C(OH)Ph2 H 41 

159a TBDPS H MeOCOCl 
(1.0) 

BuLi 
(1.5) 160b CO2Me CO2Me 26 

159a TBDPS H DEAD (1.6) LDA 
(1.6) 160c CO2Et H 10 

159b TBDMS H OC(CO2Et)2 
(3.0) 

LDA 
(1.5) 160d C(OH)(CO2Et)2 H 17 

159b TBDMS H CO2
BuLi 
(1.5) 160e CO2H H 45 

159c C6H11 H TBDMSCl 
(1.0) 

LDA 
(1.5) 160f TBDMS H 65 

160g Br Br 29 
159a TBDPS H Br2 (2.0) BuLi 

(2.0) 160h Br H 13 

160i Br Br 20 
159c C6H11 H Br2 (2.0) BuLi 

(2.0) 160j Br H 15 

159b TBDMS H Br2 (1.0) BuLi 
(1.0) 160k Br TBDMS 17 

159d TBDMS CO2Me I2 (2.0) LDA 
(1.5) 160l I CO2Me 20 

 

Table 1.4 

 

In summary, the formation of the β-sultam ring either by intramolecular cyclisation or [2+2] 

cycloaddition reported in the literature requires multi-step syntheses over 5 steps. In the case of 

bicyclic β-sultams, once the β-sultam ring is formed, the synthesis of the precursor for the 

cyclisation is not straight forward, and again, several steps are needed. Sometimes, the 

cyclisation is performed by ring closure metathesis, which requires the use of relatively 

expensive reagents. 

The aim of this project is to develop a novel, quick, and cheap synthesis of bicyclic β-sultams 

bearing the structural features known to be necessary for the synthesis of potential new anti-

bacterial agents. This strategy has several advantages which fulfil this aim: 

- the formation of the β-sultam ring can be performed in three steps from commercially or 

readily available reagents. 

- the precursor for the cyclisation is synthesised in one step. 

- the bicyclic structure is generated in one step by cycloaddition on the precursor. 
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Chapter 2 Results and Discussion 

2 Results and Discussion 

2.1 Outline of discussion 

 

Monocyclic and bicyclic β-lactams are well known as inhibitors of β-lactamases,67,68  serine 

transpeptidases69  and elastases. β-Sultams are less well explored but substantial work has been 

carried out at Huddersfield and has shown, for example, that monocyclic β-sultams can function 

as inhibitors of porcine pancreatic elastase.70  The corresponding bicyclic β-sultams have 

attracted relatively little attention in the literature.30,36,37,40,71  Thus, the synthesis of 1,2-thiazetin-

1,1-dioxides (161) has been explored, and their potential as cycloaddition precursors for the 

synthesis of a series of novel bicyclic β-sultams will be discussed in this chapter. 
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O
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Previous work72,73  has shown that 1-azetines (162) (Scheme 2.1) are excellent dipolarophiles, 

furnishing the cycloadducts (163) with a range of 1,3-dipoles. This work also showed that the 

cycloadducts (163) could be ring opened with nucleophiles or upon heating to give excellent 

yields of the azoles (164). It also found that 1-azetines (162) react with cyclopropenones (165) 

to give adducts (166) in high yields. 

1-Azetines are less challenging to make compared to 1,2-thiazetin-1,1-dioxides (161), and 

previous work carried out with 1-azetines (162) by our group had shown interesting results. 

Therefore, this PhD started by completing the work thus far performed with 1-azetines (162). 

Thus, the first part of this thesis will focus on the work done with 1-azetines. 

The second part of this chapter will describe approaches to the synthesis of the 1,2-thiazetin-

1,1-dioxides (161) following several routes: one from 3-oxo-β-sultams, another exploring a 

literature route through the synthesis of isothiazolines and isothiazoles, and a final one through 

new ways to build the 4-membered ring. The subsequent reaction of 1,2-thiazetin-1,1-dioxides 

with 1,3-dipoles, cyclopropenones and their reactivity towards Diels-Alder reactions will be 

discussed. 
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The third part of the discussion will describe the reactivity of the sulfonimine moiety of the 

isothiazolines and isothiazoles synthesised through the literature route discussed in the second 

part towards 1,3-dipolar cycloadditions. 

 

N

R2

R1
XR3

R1

R2

a
b

c

N c
b

a
R2

R1

R1

R2

XR3

N c
b

a

R2R1

R1

R2
Nu

O

R4 R4

(162) (163) (164)

(165)

(166)

+  XR3
Nu

XR3

N

R2

R1

R1

R2

O

R4

R4

 

Scheme 2.1 

 

2.2 Synthesis and reactivity of 1-azetines 

2.2.1 Synthesis of 1-azetines 

 

Several synthetic routes to 1-azetines have been described in the literature. Simple alkyl and 

aryl-1-azetines can be formed through the thermal ring expansion of cyclopropyl azides,74,75  

whereas thermal rearrangement of 1-(alkylthio)cyclopropyl azides leads to 2-alkylthio-1-

azetines.76  Treatment of dimethylamides with phosgene in the presence of triethylamine gives 

α-chloroenamines (167), which react with benzhydryl imines (168) to afford 2-dimethylamino-

1-azetines (169) after ion exchange, hydrogenation and basification (Scheme 2.2).77  
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Scheme 2.2 

 

2,3-Dichloro-1-azetine (171) was also formed by nucleophilic addition of 

trichlomethyllithium to azirine (170) and subsequent basification with potassium tert-butoxide 

(Scheme 2.3).78,79  Treatment with sodium methoxide afforded the corresponding 2-methoxy-1-

azetine (172). 

 

N

Ph
H

Me
N

Me
H Ph

C

H

Cl

Cl
Cl

N

Ph

Cl
Cl

Me
H

N

ClPh

H

Cl

Me

Cl

LiCCl3

MeONa

N

Ph

Me

H

Cl

Cl

t-BuOK

t-BuO  K

(170)

(171) (172)

N

OMePh

H

Cl

Me

 

Scheme 2.3 

 

55 



Chapter 2 Results and Discussion 

Few photochemical syntheses of 1-azetines have been reported80,81  but do not represent a 

reliable route to this four-membered ring. Finally, O-alkylation of azetidin-2-ones (173, X = O) 

and S-alkylation of azetidin-2-thiones (173, X = S) (available from thionation of azetidin-2-

ones) with trialkyloxonium tetrafluoroborates followed by basification affords a versatile route 

to 2-alkoxy-1-azetines (174, X = O) and the analogous 2-ethylthio-1-azetines (174, X = S), 

respectively (Scheme 2.4).82-85  
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Scheme 2.4 

 

In regard to preliminary studies72,73,86  and to the synthetic strategy described in Scheme 2.1, 

we embarked upon the synthesis of 1-azetines following the latter route. 1,2-Thiazetin-1,1-

dioxides, the sulfonyl analogues, are expected to have a similar reactivity, so that 1-azetines can 

be regarded as model systems too. 

 

2.2.1.1 Synthesis of 2-ethylthio-4-phenyl-1-azetine 

2.2.1.1.1 Synthesis of 4-phenylazetidin-2-one 

 

The β-lactam ring was synthesised by the chlorosulfonyl isocyanate (176) to styrene (175) 

[2+2] cycloaddition (Scheme 2.5). The N-chlorosulfonyl β-lactam (177) was not isolated and 

sodium sulfite was used as a reducing agent from a known method to give the azetidinone 

(178).87-90  

 

56 



Chapter 2 Results and Discussion 

Ph

O

C

N
SO2Cl

N

O

Ph SO2Cl
N

O

Ph H

+
Et2O

NaHCO3 / Na2SO3

H2O / ice

(175) (176) (177) (178)
 

Scheme 2.5 

 

The evidence for the structure of the azetidinone was provided by the spectroscopic data. The 
1H NMR spectrum was consistent with the ring formation, showing a doublet of doublets at 4.67 

ppm for the benzylic proton with J=5.2 Hz and 2.3 Hz, indicating the coupling with the anti 

proton and the syn proton, respectively, and two other signals at 3.38 and 2.80 ppm for the two 

protons of the CH2 with J=14.8 Hz. The characteristic broad singlet for the NH appears at 6.97 

ppm and the five aromatic protons also appear at ~7.34 ppm. The 13C NMR spectrum shows a 

signal at 168.48 ppm for the carbonyl, 3 signals for the 3 aromatic CHs, a CH at 50.15 ppm and 

a CH2 at 47.60 ppm. The IR and MS data further confirmed the structure of the azetidinone. 

 

2.2.1.1.2 Synthesis of 4-phenylazetidin-2-thione 

 

The most exploited route to thioamides is the thionation of their amide analogues. A wide 

range of thionating agents has been used for the thionation of carbonyl compounds.91,92  

Amongst the large amount of methods developed to thionate amides or lactams to thioamides or 

thiolactams, improved methods with phosphorus pentasulfide (P4S10) combined with Na2CO3,93  

hexamethyldisiloxane (HMDO) assisted or not by microwave irradiation,94-98  alumina,99,100 

silica under microwave irradiations101,102  have been disclosed. Many reagents designed for 

thionation are also available such as Lawesson’s reagent,103-105  Davy’s reagent,106,107  or 

Heimgartner’s reagent.108,109  Methods proceeding through prior activation of the amide include 

combinations of trifluoromethanesulfonic anhydride and pyridine with aqueous ammonium 

sulfide,110  oxalyl chloride or phosphorus oxychloride with benzyltriethylammonium 

tetrathiomolybdate,111  phosphorus oxychloride with hexamethyldisilathiane (HMDST),112  and 

trialkyloxonium tetrafluoroborates with sodium hydrosulfides.113  

High yields, convenient handling, easy work-up, commercial availability, and use of mild 

conditions make Lawesson’s reagent a very attractive thionating reagent. Furthermore, it has 

been reported in many thionations of amides, and lactams.114-118  Thus, it was our reagent of 
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choice for the thionation of the β-lactam ring (178), giving the desired compound (179) in 61% 

(Scheme 2.6). 
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Scheme 2.6 

 

The main evidence of successful thionation are the chemical shift in the 13C NMR spectrum 

from 168.48 ppm (C=O) to 204.42 ppm (C=S), as well as the shift of the absorption on IR from 

1705 cm-1 (C=O) to 1486 cm-1 (C=S). In the 1H NMR spectrum, the presence of the ring is 

confirmed by the doublet of doublets at 5.18 ppm for the benzylic proton with J=4.6 and 1.8 Hz 

along with the signals at 3.51 ppm and 3.02 ppm for the anti and syn protons of the adjacent 

CH2, respectively. 

 

2.2.1.1.3 Synthesis of 2-ethylthio-4-phenyl-1-azetine 

 

The alkylation of thioamides or thiolactams is a very well known method to access imidates or 

cycloimidates.119 Amongst the alkylating reagents available, triethyloxonium tetrafluoroborate 

(Meerwein’s reagent) has become the reagent of choice for the O- or S-alkylation of amides and 

thioamides.119,120  Thus, the final step to give the desired 1-azetine (180) was performed by S-

alkylation of the 1-azetidin-2-thione (179) using triethyloxonium tetrafluoroborate,83,85  in 23% 

yield (Scheme 2.7). The yield seemed to be affected by the quality of the batch of Meerwein’s 

reagent; better yields were obtained with fresh solutions of Meerwein’s reagent, which is known 

to be decomposed by moisture.120  On the other hand, 4-phenyl-1-azetine (180) was volatile, 

making its isolation and handling difficult. 

 

58 



Chapter 2 Results and Discussion 

N

S

Ph H
N

Ph

SEtMeerwein's
reagent

DCM

(179) (180)  
 

Scheme 2.7 

 

The evidence of the presence of the ethyl group was provided by the 1H NMR spectrum with 

the appearance of a quartet at 3.06 ppm and a triplet at 1.40 ppm. The evidence of S-alkylation 

was provided by 13C NMR data on one hand, with a shift from 204.42 ppm (C=S) to 183.56 ppm 

(C=N), and the IR data on the other hand, showing a shift in absorption from 1486 cm-1 (C=S) to 

1655 cm-1 (C=N), along with the disappearance of the NH broad absorption at 3136 cm-1. Both 

of them confirm the occurrence of the S-alkylation, and disclaim the N-alkylation. The presence 

of the ring is still confirmed by 1H NMR, with the characteristic doublet of doublets at 5.02 ppm 

for the benzylic proton, showing coupling constants of 4.3 Hz with the anti proton and 2.0 Hz 

with the syn proton of the CH2 at 3.56 ppm and 2.96 ppm, respectively. 

Given the low yields obtained with Meerwein’s reagent, other alkylating reagents could be 

attempted. The regioselective alkylation of ambident compounds, such as lactams, thiolactams, 

pyridin-2-ones, or hydroxypyridines is a recurrent goal in heterocyclic chemistry, and several 

alkylating reagents have been reported in the literature to achieve this regioselective reaction. 

However, there is no general procedure to perform selectively the O-, S- or N-alkylation of 

amides or thioamides because the alkylation is dependent on the nature of the substrate, the 

solvent, and the alkylating reagent. Thus, according to the desired regioselectivity, the reaction 

conditions can be tuned to favour the formation of the desired product. Only the most common 

alkylating agents used for the alkylation of ambident species are outlined here such as 

halides,121-125  tosylates,125,126  dimethylsulfate,127  methyl orthocarboxylates,128  the Mitsunobu-

type reactions,129,130  the use of silver salts in non polar solvents,125,126,131 , diazomethane61,131-134  

or diazoethane,135  trimethylsilyldiazomethane,136  and the alkyldiphenylsulfonium salts.137 In the 

case of a successful thionation of 3-oxo-β-sultams (see later), the alkylating method described 

by Brzozowski et al.127  to alkylate an α-thioxosulfonamide would probably be the first to be 

attempted in regard to our strategy. 
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2.2.1.2 Synthesis of 3,3,4,4-tetramethyl-1-azetine 

2.2.1.2.1 Synthesis of 3,3,4,4-tetramethylazetidin-2-one 

 

Formation of the β-lactam ring was done in the same fashion as described above. Hence, [2+2] 

cycloaddition of CSI (176) with 2,3-dimethylbut-2-ene (181) afforded the desired target (183) in 

75% yield (Scheme 2.8). 
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Scheme 2.8 

 

Spectroscopic data provided evidence of the formation of the azetidinone. The IR spectrum 

showed a broad band at 3187 cm-1 (NH) and a strong absorption at 1704 cm-1 (C=O). On the 1H 

NMR spectrum, the presence of the NH was further confirmed by a broad singlet at 6.00 ppm, 

and two sets of methyl groups at 1.39 and 1.23 ppm. The structure of the ring was confirmed by 

the 13C NMR spectrum. The carbonyl group was present at 174.91 ppm, the two quaternary sp3 

carbons of the azetidinone ring appeared at 58.18 and 54.54 ppm, and the two sets of methyl 

groups appeared at 24.40 and 19.06 ppm. Further support was provided by consistent MS data. 

 

2.2.1.2.2 Synthesis of 3,3,4,4-tetramethylazetidin-2-thione 

 
Thionation was carried out with Lawesson’s reagent, as previously described, to give in 

excellent yield the thioxo analogue (184) (Scheme 2.9). 
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Scheme 2.9 

 

The main evidence for successful thionation was provided by the IR spectrum with a shift in 

absorption from 1704 cm-1 (C=O) to 1494 cm-1 (C=S), and by 13C NMR spectroscopy with a 

shift from 174.91 ppm (C=O) to 212.29 ppm (C=S). The structural assignment was further 

supported by MS data. 

 

2.2.1.2.3 Synthesis of 2-ethylthio-3,3,4,4-tetramethyl-1-azetine 

 

S-Alkylation was carried out using Meerwein’s reagent, as discussed above, to afford the 

corresponding S-alkylated product (185) in 31% yield (Scheme 2.10). 
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Scheme 2.10 

 

The evidence of the presence of the ethyl group was provided by the 1H NMR spectrum with 

the appearance of a quartet at 2.96 ppm and a triplet at 1.33 ppm with a coupling constant of 7.4 

Hz. The evidence of S-alkylation was provided by the 13C NMR data on one hand, with a shift 

from 212.29 ppm (C=S) to 186.98 ppm (C=N), and the IR data on the other hand, showing a 

shift in absorption from 1494 cm-1 (C=S) to 1532 cm-1 (C=N), along with the disappearance of 

the NH broad absorption at 3116 cm-1. All the data were consistent with the occurrence of the S-

alkylation rather than the N-alkylation. 

 

61 



Chapter 2 Results and Discussion 

2.2.1.3 Reactivity of 2-ethylthio-4-phenyl-1-azetine 

2.2.1.3.1 Cycloaddition with diphenylcyclopropenone 

 

On the basis of the known reactivity of electron rich imines with diphenylcyclopropenone 

(DPP),86,138-141  4-phenyl-1-azetine (180) was reacted with DPP (186) to afford the 

corresponding azabicyclo[3.2.0]hept-2-ene (187) in 64% yield (Scheme 2.11) as a mixture of 

diastereoisomers in a 1.6/1 ratio. 
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Scheme 2.11 

 

The structure of the product was confirmed by the complex 1H NMR spectrum. Firstly, the 

fifteen aromatic protons were present as a series of multiplets in the range of 7.61-6.81 ppm. 

Secondly, the presence of the three protons of the four-membered ring was confirmed by two 

sets of signals, confirming that the product was formed as a mixture of diastereoisomers. The 

first set appeared as a triplet at 5.57 ppm for the benzylic CH with J=8.2 Hz, and two doublets 

of doublets at 3.00 ppm and 2.93 ppm for each proton of the CH2 with J=8.2 and 13.1 Hz. The 

second set appeared as a doublet of doublets at 4.25 ppm for the benzylic CH with J=5.5 and 9.6 

Hz indicating the syn and anti relationship with the two protons of the adjacent CH2, 

respectively. A doublet of doublets at 3.16 ppm with J=9.6 and 12.6 Hz was seen for the proton 

of the CH2 in an anti position relative to the benzylic CH, and a doublet of doublets at 2.48 ppm 

with J=5.5 and 12.6 Hz for the proton of the CH2 in a syn position relative to the benzylic CH. 

Thirdly, the CH2 of the ethyl group appeared as 3 overlapping doublets of quartets at 2.66, 

2.60 and 2.54 ppm with J=7.4 and 12.3 Hz, indicating the diastereotopic relationship between 

the two protons of the CH2 close to a chiral centre. The fourth doublet of quartets could not be 

identified due to the complex overlapping. The CH3 of the ethyl group appears as two triplets at 

1.24 and 1.23 ppm with J=7.4 Hz, indicating once again the formation of the product as a 

diastereomeric mixture. 

62 



Chapter 2 Results and Discussion 

The presence of two diastereoisomers was also confirmed by the doubling of each signal in 

the 13C NMR spectrum. As a matter of convenience, only the most characteristic assignments 

are outlined here: the carbonyl at 202.69 and 202.29 ppm, the unsaturated carbon of the enone in 

β position at 176.83 and 174.66 ppm, the unsaturated carbon of the enone in α position at 126.00 

and 123.66 ppm, the benzylic CH of the 4-membered ring at 66.50 and 65.85 ppm, the CH2 of 

the 4-membered ring at 35.01 and 31.74 ppm, the CH2 of the ethyl group at 23.55 and 23.44 

ppm, the CH3 of the ethyl group at 14.49 and 14.47 ppm. 

The MS data further supported the proposed structure with an accurate measured mass (m/z) 

of 398.1569 for a required mass of 398.1573. 

 

The mechanism of the reaction involves the electron-donating thioethyl group of the azetine, 

which activates the nucleophilicity of the nitrogen (Scheme 2.12). A nucleophilic attack of the 

nitrogen on the Michael acceptor forms the intermediate (188), consisting of an enolate and an 

activated electrophilic carbon. The enolate undergoes an intramolecular nucleophilic attack on 

the electrophilic carbon, resulting in the formation of the product (187) through the ring 

expansion of diphenylcyclopropenone (186). 
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Scheme 2.12 

 

2.2.1.3.2 Thermolysis of 5-ethylthio-2,3,7-triphenyl-1-azabicyclo[3.2.0]hept-2-en-1-one: 

synthesis of 2-(ethylthio)-triphenylpyridine 

 

Previous work had shown that the cycloadduct (189) resulting from the addition of 3,3,4,4-

tetramethyl-1-azetine with DPP gave the dimer (190) (Scheme 2.13).86  It was therefore 

interesting to investigate whether compound (187) would behave similarly. 
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Scheme 2.13 

 

In the event, the thermolysis of the cycloadduct (187) was carried out in refluxing toluene 

until disappearance of the starting material to afford a surprising tetrasubstituted pyridine (191 

or 192) as the major product (Scheme 2.14), albeit in ~20% yield. 
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Scheme 2.14 

 

Spectroscopic analysis allowed the determination of the structure of the product. In the 1H 

NMR spectrum, a quartet at 3.29 ppm and a triplet at 1.46 ppm with J=7.3 Hz suggested that the 

thioethyl group was still present in the molecule and that the two protons of the CH2 were not 

diastereotopic anymore. The remaining signals were all in the aromatic region and were 

integrating to sixteen protons, suggesting that the three phenyl groups of the starting material 

were probably still present in the product together with an extra aromatic proton, but the 4-

membered ring was no longer present in the molecule. This was confirmed by the 13C NMR 

spectrum, with the presence of ten CHs in the aromatic region between 131.50 and 121.56 ppm, 

the presence of one CH2 at 24.47 ppm and one CH3 at 14.91 ppm, and the disappearance of the 

CH and CH2 of the 4-membered ring. This also confirms the presence of an extra aromatic CH 

in the molecule. 

In the IR spectrum, the absence of a strong absorption band at ~1675 cm-1 indicated the loss of 

the unsaturated carbonyl. 
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With those spectroscopic data in hand and considering the structure of the starting material, 

the formation of the pyridine was suggested through the reaction cascade shown in Scheme 

2.15. 
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Scheme 2.15 

 

The first step of the proposed mechanism is a retro [2+2] cycloaddition of compound (187) 

driven by the release of the strain of the 4-membered ring to liberate styrene (175) and the 

heterodienone (193), which then undergo a hetero Diels-Alder cyclisation to form a 2-

azabicyclo[2.2.1]hept-2-en-7-one (194 or 195) as an intermediate. The final step of this 

sequence is a CO extrusion with loss of hydrogen gas to form the corresponding pyridine (191 

or 192) driven by the aromaticity of the final product. The cheletropic extrusion of carbon 

monoxide from cyclopentadienone derivative Diels-Alder cycloadducts is a well-known process 

to generate aromatic molecules.142-151  

The structural determination was confirmed by HRMS analysis with a measured accurate 

mass (m/z) of 367.1385 for a required mass of 367.1389. 

 

2.2.1.3.3 1,3-Dipolar cycloaddition with 2-azidobenzohydroximoyl chloride: synthesis of 

2-(2-azidophenyl)-5-ethylthio-7-phenyl-4,1,3-oxadiazabicyclo[3.2.0]hept-2-ene 

 

As stated in the introduction of this chapter, we were interested in the reactivity of 1-azetines 

towards cycloadditions, and the chemistry of their subsequent cycloadducts. For these purposes, 

1-azetine (180) was reacted with 2-azidobenzohydroximoyl chloride (196) (Scheme 2.16) to 
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yield the corresponding cycloadduct (197) as a single diastereoisomer. Hydroximoyl chlorides 

can be prepared by chlorination of the corresponding aldoximes employing different 

halogenating agents.152  The nitrile oxide was then generated in situ by dehydrohalogenation 

using triethylamine.152-155  
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Scheme 2.16 

 

The structure of cycloadduct (197) was determined by spectroscopic analysis. The 1H NMR 

spectrum indicates the presence of nine aromatic protons in the molecule. The benzylic proton 

of the 4-membered ring next to the nitrogen appears deshielded at 4.81 ppm as a doublet of 

doublets with J=9.3 and 5.4 Hz, indicating the anti and syn relationship with the two protons of 

the adjacent CH2, respectively. Those two protons in anti and syn position relative to the 

benzylic proton appear at 3.69 and 2.72 ppm with J=13.1 and 9.3 Hz, and J=13.1 and 5.4 Hz, 

respectively. The two diastereotopic protons of the CH2 in the thioethyl group appear at 2.86 and 

2.75 ppm as doublets of quartets with J=12.6 and 7.5 Hz. The methyl group appears at 1.36 ppm 

as a triplet with J=7.5 Hz. 

On the 13C NMR spectrum, the C=N carbon appears at 158.55 ppm, and the seven signals 

between 139 and 119 ppm confirm the presence of seven different aromatic CHs in the 

molecule. The quaternary carbon of the ring junction appears at 110.92 ppm, and the presence of 

the thioethyl group is indicated by the signals at 45.22 and 14.58 ppm for the CH2 and the CH3, 

respectively. The CH and the CH2 of the 4-membered ring appear at 66.79 and 22.52 ppm, 

respectively. One quaternary aromatic carbon is missing due to overlapping. The connectivity of 

the structure has been determined by HSQC and HMBC analysis. 

On the IR spectrum, the presence of the azide and the C=N is confirmed by strong absorption 

at 2114 cm-1 and a medium absorption at 1683 cm-1, respectively. 
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HRMS analysis with an accurate mass (m/z) of 351.1145 (for 351.1148 required) further 

supported the proposed structure. 

The mechanism of the reaction is a concerted [3+2] 1,3-dipolar cycloaddition between the 

nitrile oxide (198) and the C=N double bond of the 1-azetine (180) to form the product (197) in 

63% yield (Scheme 2.17). 
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Scheme 2.17 

 

2.2.1.3.4 Thermolysis of 2-(2-azidophenyl)-5-ethylthio-7-phenyl-4,1,3-oxadiazabicyclo-

[3.2.0]hept-2-ene 

 

As discussed above, thermolysis of the adducts obtained from 1-azetines with DPP gave some 

interesting results.73,86  Thus, adduct (197) was also thermolysed and the reaction monitored, in 

order to see if further interesting reactions could be discovered, particularly given the presence 

of the azide group. 

The thermolysis of the cycloadduct (197) was carried out in refluxing toluene until 

disappearance of the starting material (after 47h) to afford the stable fully conjugated 1,2,4-

oxadiazole (199) as the only identified product (~20% yield), through a retro [2+2] 

cycloaddition (Scheme 2.18). 
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Scheme 2.18 

 

Spectroscopic data provided the evidence for the formation of the product. The simple 1H 

NMR spectrum suggested the loss of styrene by the appearance of only four signals at 7.99, 

7.55, 7.27 and 7.19 ppm, indicating only four aromatic protons were present in the molecule. 

The presence of the thioethyl group is confirmed by a quartet at 3.34 ppm and a triplet at 1.54 

ppm with J=7.4 Hz for the CH2 and the CH3, respectively. 
13C NMR, HSQC and HMBC analysis provided the connectivity of the molecule and further 

confirmed the proposed structure with the sp2 carbon bearing the thioethyl substituent appearing 

at 177.62 ppm, the C=N carbon at 166.66 ppm, two quaternary aromatic carbons at 138.89 and 

118.23 ppm, and four aromatic CHs at 132.09, 131.58, 124.87 and 119.34 ppm. Two signals for 

a CH2 and a CH3 at 27.27 and 14.77 ppm give evidence of the presence of the thioethyl group. 

HRMS data confirmed the proposed structure of the product with a measured accurate mass 

(m/z) of 248.0603 for 248.0601 required, and IR spectroscopy confirmed that the azide was 

intact. 

 

2.2.1.3.5 Reaction of 2-(2-azidophenyl)-5-ethylthio-7-phenyl-4,1,3-oxadiazabicyclo[3.2.0]-

hept-2-ene with dimethylacetylene dicarboxylate (DMAD) 

 

DMAD (200) is known to be an excellent dipolarophile.156  With cycloadduct (197) in hand, 

we decided to investigate the reactivity of its azide moiety towards DMAD. The reaction was 

performed in refluxing toluene overnight (~20h) to afford, in 41% yield, the corresponding 

benzene ring (201) substituted with an oxadiazole ring on one hand, and a triazole ring on the 

other hand, formed via a retro [2+2] cycloaddition to form the oxadiazole and a 1,3-dipolar 

cycloaddition to form the triazole (Scheme 2.19). 
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Scheme 2.19 

 

The structure of the product was determined by spectroscopic analysis. The 1H NMR 

spectrum was consistent with the structure with three signals integrating to four protons in the 

aromatic region, and two singlets integrating to three protons each at 4.02 and 3.76 ppm, 

indicating the presence of the two methyl esters in the molecule. Evidence for the presence of 

the thioethyl group was provided by a quartet at 3.09 ppm and a triplet at 1.36 ppm with J=7.4 

Hz for the CH2 and the CH3, respectively. 
13C NMR , HSQC and HMBC analysis provided the connectivity of the molecule and further 

confirmed the proposed structure with the sp2 carbon bearing the thioethyl substituent appearing 

at 178.85 ppm, the C=N carbon at 165.49 ppm, two quaternary carbons at 160.40 and 158.10 

ppm for the two carbonyls, two quaternary carbons at 133.78 and 133.14 ppm for the two sp2 

carbons of the triazole ring, two quaternary aromatic carbons at 139.06 and 124.20 ppm, and 

four aromatic CHs at 131.63, 131.37, 130.08 and 128.69 ppm. Two CH3 appear at 53.31 and 

52.74 ppm for the methyl esters, and two signals for a CH2 and a CH3 at 27.42 and 14.53 ppm 

give evidence of the presence of the thioethyl group. 

In the IR spectrum, a strong absorption band at 1735cm-1 (C=O) supports the presence of the 

two methyl esters, and the loss of N3 absorption supports successful cycloaddition. HRMS data 

confirmed the proposed structure with a measured accurate mass (m/z) of 390.0867 for 390.0867 

required. 
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2.2.1.4 Reactivity of 2-ethylthio-3,3,4,4-tetramethyl-1-azetine 

2.2.1.4.1 1,3-Dipolar cycloaddition with 2-azidobenzohydroximoyl chloride: synthesis of 

2-(2-azidophenyl)-5-ethylthio-6,6,7,7-tetramethyl-4,1,3-oxadiazabicyclo[3.2.0]-

hept-2-ene 

 

1-Azetine (185) was reacted with 2-azidobenzohydroximoyl chloride (196) in the presence of 

triethylamine to yield the corresponding cycloadduct (202) in 75% yield (Scheme 2.20). 
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Scheme 2.20 

 

Spectroscopic analysis provided the evidence of the formation of the product. In the 1H NMR 

spectrum, the four signals at 7.64, 7.46, 7.26 and 7.18 ppm indicate the presence of the four 

aromatic protons. The two diastereotopic protons of the CH2 in the thioethyl substituent appear 

at 2.72 and 2.66 ppm as doublets of quartets with J=12.4 and 7.4 Hz. The four methyl groups 

attached to the 4-membered ring appear at 1.51, 1.31, 1.26 and 0.96 ppm as singlets, whereas the 

methyl from the ethylthio substituent appears at 1.29 ppm as a triplet with J=7.4 Hz. 

In the 13C NMR spectrum, the sp2 carbon attached to the aromatic ring (C=N) appears at 

156.69 ppm with a correlation on HMBC with the nearest aromatic proton. The two quaternary 

aromatic carbons and the four aromatic CHs appear at 137.84, 118.76, 131.18, 130.31, 124.35 

and 119.21 ppm, respectively. The sp3 quaternary carbon at the ring junction appears at 116.92 

ppm with a correlation on HMBC with the two diastereotopic protons from the ethylthio 

substituent and the protons of the two nearest methyl groups attached to the 4-membered ring. 

The two sp3 quaternary carbons of the 4-membered ring appear at 71.63 and 52.80 ppm, and the 

four methyl groups attached to them appear at 26.38, 20.86, 20.36 and 19.77 ppm. The presence 

of the ethylthio group is provided by a CH2 and a CH3 at 21.54 and 14.58 ppm, respectively.  
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In the IR spectrum, the two very strong absorptions at 2127 and 2093 cm-1 confirm the 

presence of the azide, and the medium absorption at 1581 cm-1 confirms the presence of the 

C=N bond. 

The proposed structure is further supported by HRMS analysis with a measured accurate mass 

(m/z) of 332.1540 for 332.1540 required. 

The mechanism of this reaction is the same as the one described in Scheme 2.17 (section 

2.2.1.3.3). 

 

2.2.1.4.2 Thermolysis of 2-(2-azidophenyl)-5-ethylthio-6,6,7,7-tetramethyl-4,1,3-

oxadiazabicyclo[3.2.0]hept-2-ene 

 

Upon thermolysis in refluxing toluene for 47 hours, the cycloadduct (202) underwent a ring 

opening of the 4-membered ring affording the corresponding oxadiazole (203) on one hand, and 

the transformation of the azide moiety into an amine affording the amine analogue (204) of the 

starting material on the other hand (Scheme 2.21). Compounds (203) and (204) were isolated in 

10% and 22% yield, respectively. 
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Scheme 2.21 

 

Spectroscopic analysis provided the evidence for the formation of the two products. 

 

3-(2-azidophenyl)-5-(2,3-dimethylbut-1-en-3-yl)-1,2,4-oxadiazole (203) 

 

The IR spectrum showed two strong bands at 2128 and 2096 cm-1 which confirm that the 

azide moiety is still present in the molecule. 
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In the 1H NMR spectrum, the presence of only two singlets, one integrating to three protons at 

1.77 ppm and one integrating to six protons at 1.65 ppm, instead of four singlets integrating to 

three protons each suggested that two methyl groups were identical and the 4-membered ring 

had been altered. The appearance of two singlets integrating to one proton each at 4.98 and 4.95 

ppm suggested the presence of a methylene group. The four signals at 8.00, 7.53, 7.31 and 7.26 

ppm integrating to four protons suggested the aromatic ring was unchanged. The disappearance 

of the two protons around 2.60-2.70 ppm suggested the loss of the ethylthio group. 

The 13C NMR spectrum confirmed these suggestions with the appearance of a CH2 at 111.81 

ppm for the methylene, a quaternary sp2 carbon at 138.79 ppm (C=CH2) and a quaternary sp3 

carbon at 42.01 ppm (bearing the two methyl groups). Two deshielded signals appear at 183.82 

and 166.14 ppm for the two quaternary sp2 carbon of the oxadiazole ring, confirming the ring 

opening of the 4-membered ring. The loss of the ethyl group is further supported by the presence 

of only two types of CH3. 

MS data were consistent with the proposed structure of compound (203). 

 

The mechanism of formation of compound (203) could follow two routes (Scheme 2.22). It 

could proceed through the loss of thioethoxide with participation of the lone pair of the adjacent 

nitrogen to form the oxadiazolium species (205) via an E2-type mechanism (scheme 2.22a). The 

thioethoxide picks up a proton on one of the two methyl groups adjacent to the nitrogen to open 

the four-membered ring, hence releasing the strain of the ring and generating the more stable 

fully conjugated 1,2,4-oxadiazole (203). The other possible way is to form a “stable” tertiary 

cationic intermediate (206) with ring opening through an E1-type mechanism and loss of 

thioethoxide, with the latter picking up a proton to form the olefinic double bond (scheme 

2.22b). 
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Scheme 2.22 

 

2-(2-aminophenyl)-5-ethylthio-6,6,7,7-tetramethyl-4,1,3-oxadiazabicyclo[3.2.0]hept-2-ene 

(204)

 

The disappearance of the two strong IR absorptions around 2100 cm-1 and the appearance of 

two broad bands at 3465 and 3349 cm-1 suggest the transformation of the azide into an amine. 

In the 1H NMR spectrum, the broad singlet at 5.41 ppm integrating to two protons confirms 

the presence of the primary amine. The other signals suggest the rest of the molecule remains 

unchanged with four aromatic protons, four methyl substituents at 1.56, 1.33, 1.27 and 0.99 ppm 

as singlets, respectively. The multiplet and the triplet at 2.66 and 1.26 with J=7.4 Hz confirms 

the presence of the thioethyl group in the molecule. 

On the 13C NMR spectrum, the quaternary sp2 carbon of the oxadiazoline ring appears at 

159.77 ppm, the two quaternary aromatic carbons appear at 146.32 and 109.72 ppm, and the 

four aromatic CHs appear at 131.22, 129.70, 116.39 and 115.56 ppm. The quaternary sp3 carbon 
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at the ring junction appears at 116.01 ppm, whereas the two other quaternary sp3 carbons in the 

4-membered ring appear at 71.81 and 51.67 ppm. The four methyl groups linked to the 4-

membered ring appear at 26.49, 21.24, 20.97 and 19.68 ppm, and the CH2 and the CH3 at 21.72 

and 14.63 ppm, respectively, confirm the presence of the ethylthio group. 

MS data further supported the structure of this product, with fully consistent mass (m/z) of 

306.2 ([M+H]+) and 328.1 ([M+Na]+). 

 

Azides are known to form nitrenes by thermal decomposition.157,158  Under heating, the azide 

can lose spontaneously nitrogen to form a nitrene (207), which can then abstract two hydrogens 

from toluene to give the product (204) and a stablised benzylic radical (208) (Scheme 2.23). 
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2.2.1.4.3 Reaction of 2-(2-azidophenyl)-5-ethylthio-6,6,7,7-tetramethyl-4,1,3-oxadiaza-

bicyclo[3.2.0]hept-2-ene with DMAD 

 

The reaction of cycloadduct (202) with DMAD (200) was performed in toluene at reflux for 

21 hours (Scheme 2.24) to afford a mixture of compound (209) (35 mg, 25 %) and (210) (30 

mg, 25 %) in a ~1:1 ratio based upon 1H NMR. 
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Scheme 2.24 

 

Spectroscopic analysis provided the evidence of the formation of the two products. 

 

2-(2-azidophenyl)-4,4-dimethyl-5,6-dimethoxycarbonyl-3-(1-ethylthio-2-methylpropan-1-on-

2-yl)-4H-pyrimidine (209): 

 

In the IR spectrum, the strong absorption at 2126 cm-1 confirmed the presence of the intact 

azide and the appearance of a strong absorption at 1734 cm-1 confirmed the presence of carbonyl 

groups in the molecule. The absorption at 1665 cm-1 supports the presence of a C=N functional 

group. 

The 1H NMR spectrum (appendix I) showed four signals integrating to one proton each 

between 7.60 and 7.20 ppm, indicating the presence of the aromatic ring. The two singlets at 

4.01 and 3.88 ppm integrating to three protons suggested the presence of the two methoxy 

groups. The quartet at 2.83 ppm and the triplet at 1.22 ppm with J=7.4 Hz supported the 

presence of the thioethyl group, and the two singlets at 1.42 and 1.30 ppm integrating to six 

protons each suggested the presence of the four methyl groups. The fact that the two protons of 

the CH2 from the ethyl group were a simple quartet suggested that the SCH2CH3 group was not 

attached to a chiral center anymore. 
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In the 13C NMR spectrum (appendix II), a deshielded quaternary sp2 carbon appeared at 

204.22 ppm and two signals at 160.37 and 158.62 ppm for the two carbonyls of the methyl 

esters, along with the two signals at 133.04 and 131.89 ppm for the two quaternary sp2 carbons 

of the pyrimidine ring bearing the methoxycarbonyl groups. The two peaks at 53.27 and 52.68 

ppm confirmed the presence of the two methoxy groups. The C=N carbon appeared at 138.64 

ppm. The two quaternary sp3 carbons bearing the gem dimethyls appeared at 64.76 and 55.48 

ppm, indicating they were in a significantly different electronic environment. This is supported 

by the HMBC data (appendix III). On HMBC, a correlation between the deshielded carbon at 

204.22 ppm and the two protons of the CH2 of the ethylthio group at 2.83 ppm suggested the 

presence of a thio ester or thione ester moiety. 

The proposed structure is further supported by MS data with a measured accurate mass (m/z) 

of 474.1805 for 474.1806 required. 

 

The mechanism for this unexpected reaction may proceed through a retro [2+2] cycloaddition 

of the four-membered ring to form a heterodiene, which then undergoes a [4+2] hetero Diels-

Alder cyclisation with DMAD, followed by a [3,3]-rearrangement of the N-susbtituent into the 

thioester (209) (Scheme 2.25). 
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3-(2-(4,5-dimethoxycarbonyl-1,2,3-triazol-1-yl))phenyl-5-(2,3-dimethylbut-2-en-3-yl)-1,2,4-

oxadiazole (210): 

 

The 1H NMR spectrum supported the presence of a methylene group with the appearance of 

two singlets at 4.88 and 4.82 ppm integrating to one proton each, suggesting the alteration of the 

4-membered ring. Two singlets at 4.00 and 3.73 ppm integrating to three protons acknowledged 

the presence of the two methoxy groups. A singlet integrating to three protons at 1.60 ppm and 

another one integrating to six protons at 1.45 ppm, along with the absence of signals for the 

ethylthio group confirmed the ring opening of the 4-membered ring with loss of SEt. 

The 13C NMR spectrum exhibited four peaks at 184.46, 165.12, 160.38 and 158.16 ppm for 

the two quaternary sp2 carbons of the oxadiazole ring and the two carbonyl groups of the 

triazole ring. The two quaternary sp2 carbons of the triazole ring appear at 133.89 and 133.36 

ppm, and the two methyls of the methoxy substituents appear at 53.20 and 52.65 ppm. The 

evidence of the unsaturated side chain on the oxadiazole ring is provided by a peak at 146.67 

ppm for the quaternary sp2 carbon bearing the methylene group, a peak at 111.75 ppm for the 

methylene, a peak at 41.79 ppm for the quaternary sp3 carbon bearing the two methyl 

substituents, a peak at 25.40 ppm for the two identical CH3s and a peak at 19.55 ppm for the 

vinylic CH3, confirming the ring opening of the 4-membered ring. 

MS data further support the structure of this compound with a measured accurate mass (m/z) 

of 412.1613 for 412.1615 required. 

 

The formation of the ring opened analogue can proceed through two routes (Scheme 2.26): 

addition of DMAD on the azide moiety followed by the ring opening of the intermediate (path 

a), or the occurance of the ring opening before the addition of DMAD on the intermediate (203) 

(path b). 
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Scheme 2.26 

 

Having previously isolated compound (203), we decided to mix it with DMAD (200) in 

refluxing toluene to confirm that it is able to react and afford compound (210) through path b. 

This reaction was successfully performed in 24% yield, thus suggesting that compound (210) is 

formed via the ring opening prior to the addition of DMAD on the azide moiety (path b), a 

hypothesis seemingly confirmed as compound (210) was formed from compound (202) in the 

same yield. 

 

2.2.2 Synthesis and reactivity of 3,4-dihydro-5-ethylthio-2H-pyrrole 

 

In order to prove the efficiency of the methodology developed with 1-azetines, we decided to 

apply it to a 5-membered ring analogue. The success of this concept would allow easy access to 

pyrrolizidines, a structural core present in a wide range of biologically active natural 

products.159-166  

 

2.2.2.1 Synthesis of pyrrolidin-2-thione 

 

The thionation of pyrrolidin-2-one (211) proceeded easily using Lawesson’s reagent to give 

the desired product (212) in 86% yield (Scheme 2.27). 
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Scheme 2.27 

 

Spectroscopic analysis provided the evidence for the formation of the product. Both the IR 

spectrum with a broad absorption at 3153 cm-1 and the 1H NMR spectrum with a broad singlet at 

8.77 ppm confirmed the presence of the amine. The strong absorption at 1536 cm-1, and the 

deshielded peak at 205.77 ppm in the 13C NMR spectrum supported the presence of C=S. In the 
1H NMR spectrum, two triplets and a multiplet at 3.65, 2.90 and 2.20 ppm, respectively, 

integrating to two protons each for each for the three CH2 confirmed the 5-membered ring was 

present. 

 

2.2.2.2 Synthesis of 3,4-dihydro-5-ethylthio-2H-pyrrole 

 

The alkylation was performed with Meerwein’s reagent in DCM (Scheme 2.28). The 

recovery, and hence the yields, were poor, suggesting the product (213) was volatile, making its 

isolation and handling difficult. The procedure involved the use of potassium carbonate and 

aqueous work-up to isolate the imine from its HBF4 salt. Thus, a modification of the original 

procedure described in the experimental (section 3.1.2.2) was attempted by using triethylamine 

followed by careful concentration and silica chromatography instead of potassium carbonate 

followed by vacuum filtration through Celite®, extraction and concentration. However, the 

recovery remained very low after chromatography. Hence, in order to overcome those problems, 

the handling of the product during the isolation was minimised, and the product was used as 

crude without further purification, and identified only by 1H and 13C NMR spectroscopy. 
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Scheme 2.28 
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NMR analysis provided the evidence of the proposed structure. On the 1H NMR spectrum, 

three multiplets integrating to two protons each were seen at 3.78, 2.53 and 1.91 ppm, which 

suggested the presence of the three CH2 of the ring. A quartet and a triplet with J=7.4 Hz at 2.98 

and 1.27 ppm, respectively, confirmed the presence of the ethylthio moiety. 

This was further confirmed by the 13C NMR spectrum and DEPT data with loss of the C=S at 

~206 ppm and a new peak at 172.59 ppm for the C=N carbon bearing the ethylthio group, four 

CH2s at 60.70, 38.65, 24.97 and 23.34 ppm, and one CH3 at 14.38 ppm. 

 

2.2.2.3 Reaction of 3,4-dihydro-5-ethylthio-2H-pyrrole with DPP: synthesis of 2,3-

diphenyl-5-ethylthio-1-azabicyclo[3.3.0]oct-2-en-4-one 

 

This reaction was carried out in DCM instead of acetonitrile as stated in the original procedure 

with 1-azetines (scheme 2.29). The reason for this modification was the use of the starting 

material as a crude solution, which meant keeping it in the solvent of the previous reaction, as 

mentioned above. A few attempts were also made to perform the alkylation of the pyrrolidin-2-

thione (212) and the ring expansion with DPP (186) in one pot, in the presence of triethylamine 

as a base, but the yields were lower (18-29%) than those obtained by using the crude starting 

material (53%). 
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Scheme 2.29 

 

Spectroscopic analysis established the structure of the product. The 1H NMR spectrum 

displays ten aromatic protons between 7.50 and 7.10 ppm. Two deshielded doublets of triplets 

with J= 11.1 and 6.6 Hz integrating to one proton each at 3.55 and 3.08 ppm confirmed the 

presence of the CH2 attached to the nitrogen. The two diastereotopic protons of the CH2 and the 

three protons of the CH3 in the ethylthio substituent appeared as doublets of quartets with 

J=12.0 and 7.4 Hz at 2.65 and 2.56 ppm, and as a triplet with J=7.4 Hz at 1.20 ppm, 
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respectively. The two remaining CH2s in the heterocycle appeared as a multiplet integrating to 

two protons at 2.23 ppm, and two multiplets integrating to one proton each at 2.07 and 1.94 

ppm. 

The mechanism involved in this reaction is the same as the one previously described with 1-

azetines (Scheme 2.9, section 2.2.1.3.1). This brief investigation has shown that this is a valid 

route for the synthesis of pyrrolizidines and is now being explored by others. 

 

2.3 Synthesis and reactivity of 1,2-thiazetin-1,1-dioxides 

 

As mentioned in the outline of the discussion (section 2.1), the ultimate purpose of this project 

was to synthesise bicyclic β-sultams. To do so, the strategy was to use the methodology 

previously described for 1-azetines. Therefore, the synthesis of 1,2-thiazetidin-3-on-1,1-dioxides 

(215) was a key because their conversion to their thioxo analogues (216) with Lawesson’s 

reagent and the alkylation of those analogues with Meerwein’s reagent to access 1,2-thiazetin-

1,1-dioxides (161) needed to be investigated (Scheme 2.30). Then, the behaviour of compound 

(161) towards cycloadditions to access our target molecules (217) and (218) would be the final 

goal. In this context, we embarked upon the synthesis of 3-oxo-β-sultams (215). Alternatively, 

O-alkylation of 1,2-thiazetidin-3-on-1,1-dioxides would give other potential templates for 

cycloaddition. 
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2.3.1 Synthesis of 1,2-thiazetidin-3-on-1,1-dioxides (3-oxo-β-sultams) 

 

3-Oxo-β-sultams (215a-c) were synthesised using the general methodology previously used in 

the laboratory167 (Scheme 2.31). All the analytical data were compared to the data provided by 

this previous work and were consistent with the expected structures of the products. 

 

R1

R2

O

O

O

R2

R1
NaO

S

O O

R1 R2

O

ONa Cl
S

O O

R1 R2

O

Cl

S N

R2

R1

O
O H

O
NH3

Et2O

SOCl2

DMF

1) H2SO4

2) NaOH

(215a) R1 = R2 = Me
(215b) R1 = R2 = Et
(215c) R1 = R2 =  c-Hex

 

Scheme 2.31 

 

2.3.1.1 Synthesis of 4,4-dimethyl-3-oxo-β-sultam 

2.3.1.1.1 Synthesis of disodium 2-methyl-2-sulfonato propionate 

 

Acid hydrolysis of commercially available isobutyric anhydride (219) with concentrated 

sulfuric acid followed by alkaline work-up afforded the desired disodium salt (220) (Scheme 

2.32). 
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Scheme 2.32 

 

Spectroscopic analysis of the product was consistent with the assigned structure. The 1H NMR 

spectrum displayed one singlet integrating to six protons, and the 13C NMR spectrum exhibited 
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the carbonyl at 177.67 ppm, the quaternary sp3 carbon at 66.02, and a peak for the two CH3s at 

22.56 ppm. 

The IR spectrum showed two strong bands at 1590 and 1577 cm-1 for the carboxylate ion 

(C=O) and a strong band at 1204 cm-1 for the sulfonate ion (SO2). 

 

The mechanism of the reaction is shown below (Scheme 2.33). The conversion of isobutyric 

anhydride (219) to disodium 2-methyl-2-sulfonato propanoate (220) presumably occurs by the 

formation of the enol under strong acid conditions, which then undergoes a nucleophilic attack 

on the oleum present in concentrated sulfuric acid to form the sulfonato anhydride. Subsequent 

hydrolysis of the anhydride by water forms the sulfonic acid and isobutyric acid. The latter is 

extracted with ether, whereas the sulfonic acid must be in an ionic form in water due to its 

stronger acidity, and remains in the aqueous layer, which is treated with sodium hydroxide to 

give the desired product (220). 
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Scheme 2.33 

 

2.3.1.1.2 Synthesis of 2-chlorosulfonyl-2-methylpropanoyl chloride 

 

Chlorination of the disodium salt (220) with thionyl chloride in the presence of DMF yielded 

the corresponding dichloride (221) (Scheme 2.34). 
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Scheme 2.34 

 

Spectroscopic analysis was consistent with the formation of the product. On the IR spectrum, 

the presence of the carbonyl of the acyl chloride was confirmed by a band at 1763 cm-1, and the 

sulfonyl chloride by two absorptions at 1364 and 1172 cm-1. 

The 1H NMR spectrum displays a singlet integrating to six protons for the two methyl groups, 

and the 13C NMR spectrum shows three peaks at 169.36, 85.37 and 22.20 for the carbonyl, the 

sp3 quaternary carbon and the two CH3s, respectively, which is consistent with the structure of 

the product. 

The mechanism of the reaction is described below (Scheme 2.35). The use of a catalytic 

amount of dimethylformamide is to activate thionyl chloride via a Vilsmeier-type intermediate 

and to dissociate the sodium cation from the sulfonate and carboxylate anions, thus increasing 

their nucleophilicity towards thionyl chloride. 
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2.3.1.1.3 Synthesis of 4,4-dimethyl-3-o

The ring closure of the dichloride (221) with liquid ammonia proceeded in 34% yields to 

afford the desired four-membered ring (215a) (Scheme 2.36).61  

xo-β-sultam 

 

 

Cl
S

O O O

Cl

S NO
O H

O
NH3

Et2O

(221) (215a)  
 

Scheme 2.36 

Spectroscopic analysis provided evidence of the form e product. On the IR spectrum, 

the NH absorption appeared at 3115 cm-1, the carbonyl appeared at 1748cm-1, and the 

sulfonam

 integrating to six protons at 1.76 ppm for the 

two CH

sp3 carbon and the two CH s, respectively. 

nucleophilic attack on the carbonyl of the acyl chloride. Then, the amide is deprotonated and 

undergoes a nucleophilic attack 

 

ation of th

ide appeared at 1328 and 1157 cm-1. 

The 1H NMR was consistent with the structure of the product with a broad singlet integrating 

to one proton at 8.27 ppm for the NH, and a singlet

3s. 

The 13C NMR spectrum also confirmed the structure with a peak at 163.87, 82.36 and 18.55 

ppm for the carbonyl, the quaternary 3

 

The mechanism of the ring closure is described below (Scheme 2.37). Ammonia undergoes a 

on the sulfonyl chloride to form the 4-membered ring. 
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Scheme 2.37 

 

2.3.1.2 Synthesis of 4,4-diethyl-3-oxo-β-sultam 

2.3.1.2.1 Synthesis of sodium 2-ethylbutyrate (sodium 2-ethylbutanoate) 

 

Treatment of 2-ethylbutyric acid (222) with sodium ethoxide in ethanol gave the 

corresponding sodium carboxylate (223) (Scheme 2.38). 
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Scheme 2.38 

 

Spectroscopic data are in accordance with the structure. The IR spectrum shows strong 

absorptions at 1548 cm-1 and 1412 cm-1 for the carboxylate ion (C=O). 

The 1H NMR spectrum displays a triplet of triplets with J=8.3 and 6.5 Hz at 2.04 ppm for the 

methine proton, a multiplet at 1.44 ppm integrating to four protons for the two CH2s, and a 

triplet at 0.86 ppm integrating to six protons for the two CH3s. 

The 13C NMR spectrum is consistent with the structure, displaying a quaternary carbon at 

186.44 ppm, a CH at 53.02 ppm, a CH2 at 25.79 ppm, and a CH3 at 11.71 ppm.  
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The surprisingly complex pattern for the methine proton suggests a restricted rotation around 

the CH-CH2 bond due to steric hindrance. Assuming this hypothesis, it is possible to explain the 

triplet of triplets for the CH from the analysis of the Newman projections of the molecule, 

looking down the CH-CH2 bond (Figure 2.1). By looking at those projections, we can see that 

the molecule is most likely to favour conformation (b) or (c) to minimise the steric hindrance 

between the methyl and both the carboxylate and the ethyl. Therefore, the two protons Ha and 

Ha’ are never in the same environment at any one time. Thus, the methine proton coupled to 

them with J=8.3 and 6.5 Hz, depending on the dihedral angle with Ha and Ha’. 
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Figure 2.1 Newman projections of sodium 2-ethylbutyrate (223) along the CH-CH2 bond 

 

The same argument can be applied to the two protons Hb and Hb’ on the second ethyl group 

(Figure 2.2). The fact that Ha / Hb are the same and Ha’ / Hb’ are the same, but Ha is different to 

Ha’ and Hb is different to Hb’ gives a triplet of triplets. 
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Figure 2.2 Newman projection of sodium 2-ethylbutyrate (223) 
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2.3.1.2.2 Synthesis of 2-ethylbutyryl chloride (2-ethylbutanoyl chloride) 

 

The chlorination of 2-ethylbutyric acid (222) was performed using thionyl chloride to afford 

the corresponding acyl chloride (224) (Scheme 2.39). 
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Scheme 2.39 

 

Spectroscopic analysis confirmed the structure of the product. The 1H NMR again displayed a 

triplet of triplets with J=8.2 and 5.5 Hz for the methine proton. The two CH2s appeared as a 

multiplet at 1.80 ppm integrating to two protons and two doublets of quartets at 1.69 and 1.65 

ppm integrating to one proton each with J=5.5 and 7.5 Hz. The two CH3s appeared as a triplet at 

0.99 ppm with J=7.5 Hz. 

The 13C NMR spectrum was also consistent with the structure of the molecule. 

As mentioned above, the unexpected complex pattern observed on 1H NMR could be 

explained by a steric hindrance, which could restrict the rotation around the CH-CH2 bond. 

 

2.3.1.2.3 Synthesis of 2-ethylbutyric anhydride (2-ethylbutanoic anhydride) 

 

The coupling of sodium 2-ethylbutyrate (223) and 2-ethylbutyryl chloride (224) was carried 

out in refluxing toluene to afford the corresponding anhydride (225) (Scheme 2.40). 
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The spectroscopic data were consistent ation of the product. The IR spectrum 

sh

MR spectrum displayed a triplet of triplets at 2.31 ppm with J=8.2 and 5.5 Hz 

in

ry carbon at 171.79 ppm (C=O), a CH at 49.68 

pp

might be explained by a possible restricted 

ro

2.3.1.2.4 Synthesis of disodium 2-ethyl-2-sulfonatobutyrate (disodium 2-ethyl-2-

 

ydrolysis of 2-ethylbutyric anhydride (225) under strong acidic conditions gave disodium 2-

et

 with the form

owed two bands at 1811 and 1744 cm-1, characteristic of the C=O absorptions for a carboxylic 

anhydride. 

The 1H N

tegrating to two protons for the two methine protons, two multiplets at 1.68 and 1.58 ppm 

integrating to four protons each for the four CH2, and a triplet at 0.96 ppm with J=7.5 Hz 

integrating to twelve protons for the four CH3. 

The 13C NMR spectrum displayed a quaterna

m, a CH2 at 24.34 ppm, and a CH3 at 11.53 ppm. 

Once again, the pattern shown for the four CH2 

tation in the CH-CH2 bond due to steric hindrance. Subsequently, the two protons for each 

CH2 would not be in the same environment at any one time as shown in the Newman projection 

in Figure 2.1 (Section 2.3.1.2.1), and as discussed previously. 

 

sulfonatobutanoate) 

H

hyl-2-sulfonatobutyrate (226) in 63% yield (Scheme 2.41). 

 

O

O

O

NaO
S

O O O

ONa
1) H2SO4

2) NaOH

(225) (226)  
 

Scheme 2.41 

 

pectroscopic data were consistent with the structure. On the IR spectrum, a strong absorption 

at

wo protons each with J=7.5 

Hz for the two methylenes, and a triplet at 0.96 ppm integrating to six protons with J=7.5 Hz for 

the two methyls. 

S

 1578 cm-1 acknowledged the presence of the carboxylate (C=O), and the two absorptions at 

1385 and 1160 cm-1 confirmed the presence of the sulfonate (SO2). 

The 1H NMR displayed two quartets at 1.97 ppm integrating to t
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In the 13C NMR spectrum, the carbonyl appeared at 176.27, the sp3 quaternary carbon 

appeared at 73.81, the CH2 signal appeared at 25.35, and the CH3 signal appeared at 9.01 ppm. 

Again, the pattern for the four methylene protons suggested a restricted rotation around the C-

C

 

2.

of 2-chlorosulfonyl-2-ethylbutyroyl chloride (2-chlorosulfonyl-2-

ethylbutanoyl chloride) 

 

dimethylfo osulfonyl-2-ethylbutyroyl chloride (227) in 53% yield 

(Scheme 2.42). 

H2 bond, in the same fashion as previously described in Figure 2.1 (section 2.3.1.2.1). The 

mechanism of this reaction is the same as the one previously described in Scheme 2.33 (section

3.1.1.1). 

 

2.3.1.2.5 Synthesis 

Chlorination of the disodium salt (226) with thionyl chloride in presence of 

rmamide yielded 2-chlor

 

NaO
S

O O O

ONa Cl
S

O O O

Cl
SOCl2

DMF

(226) (227)  
 

Scheme 2.42 

 

he structure of the product was determined by spectroscopic analysis. The IR spectrum 

provides the evidence of the chlorination with absorption at 1790 and 1765 cm-1 for the carbonyl 

of the acyl chloride, and two bands at 1371 and 1171 cm-1 for the sulfonyl chloride (SO2). 

e sp3 

qu

T

The 1H NMR displayed a quartet at 2.48 ppm integrating to four protons and a triplet at 1.22 

ppm integrating to six protons with J=7.4 Hz. 

The 13C NMR showed two peaks at 169.10 and 94.09 ppm for the carbonyl and th

aternary carbon, respectively, and two other peaks at 26.98 and 8.82 ppm for the CH2 and 

CH3, respectively. 

The mechanism of the chlorination has already been described in Scheme 2.35 (section 

2.3.1.1.2). 
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2.3.1.2.6 Synthesis of 4,4-diethyl-3-oxo-β-sultam 

The ring closure of the dichloride (227) was performed in liquid ammonia to give 4,4-diethyl-

3-oxo-β-sultam (215b) in 33% yield (Scheme 2.43). 

 

 

Cl
S

O O O

Cl
S NO

O H

O
NH3

Et2O

(227) (215b)  
 

Scheme 2.43 

 

Evidence of the formation of the desired product was provided by spectroscopic analysis. The 

IR spectrum confirmed the presence of NH with a broad band at 3237cm-1. It also showed an 

absorption at 1772cm-1 for C=O (~1745cm-1 for β-lactams) and two absorptions at 1339 and 

1145 cm-1 for SO2. 

The 1H NMR spectrum displayed a broad singlet at 9.00 ppm, indicating the presence of the 

NH, and hence the ring closure of the dichloride. It also displayed a quartet at 2.18 ppm 

integrating to four protons and a triplet at 1.14 ppm integrating to six protons for the two CH2s 

and the two CH3s, respectively. 

The 13C NMR further supported the structure and the data are consistent with those available 

from previous work.168  

The mechanism of the ring closure has already been discussed in Scheme 2.37 (section 

2.3.1.1.3). 

 

2.3.1.3 Synthesis of 4-spiro-cyclohexyl-3-oxo-β-sultam 

2.3.1.3.1 Synthesis of sodium cyclohexanecarboxylate 

 

Treatment of cyclohexane carboxylic acid (228) with sodium ethoxide afforded the 

corresponding carboxylate (229) (Scheme 2.44). 
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OH

O O

ONa
EtONa

EtOH

(228) (229)  

Scheme 2.44 

 

Spectroscopic analysis was consistent with the structure of the product.  The IR spectrum 

exhibited the antisymmetrical and symmetrical stretching absorptions in the 1550 cm-1 range 

and at 1412 cm-1, respectively, for the carboxylate carbonyl. 

he 1H NMR displayed an expected triplet of triplets at 2.14 ppm with J=11.3 and 3.4 ppm for 

the methine proton, and four multiplets at , and 1.26 ppm for the five CH2s of the 

cyclohexyl ring. 

s of cyclohexanecarbonyl chloride 

 

T

1.81, 1.72, 1.64

The 13C NMR was also consistent with the structure by displaying a quaternary carbon at 

186.60 ppm (C=O), a CH at 46.86 ppm, and three CH2s at 29.78, 25.59 and 25.44 ppm. 

2.3.1.3.2 Synthesi

 

Chlorination of cyclohexane carboxylic acid (228) gave the corresponding chloride (230) in 

good yields (Scheme 2.45). 

 

OH

O

Cl

O

SOCl2

(228) (230)  
 

Scheme 2.45 

 

 compound (230). The IR spectrum 

showed a strong absorption at 1794 cm-1 for the acyl chloride carbonyl group. 

pm was matching the number of protons in the 

cyclohexyl ring. 

Spectroscopic data were consistent with the structure of

On the 1H NMR spectrum, the integration of a triplet of triplets with J=11.0 and 3.6 Hz at 2.66 

ppm, and five multiplets in the range 2.10-1.20 p
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The 13C NMR spectrum was also supporting the product displaying a quaternary carbon at 

176.86 ppm (C=O), a CH at 54.91 ppm, and three CH2s at 28.96, 25.35, and 24.93 ppm. 

 

2.3.1.3.3 Synthesis of cyclohexanecarboxylic anhydride 

Coupling of sodium cyclohexanecarbox d cyclohexanecarbonyl chloride (230) 

yielded the corresponding anhydride (231) (Scheme 2.46). 

 

ylate (229) an

 

O

ONa Cl

O

toluene

reflux
O

O

O

+

(229) (230) (231)

Scheme 2.46 

pectroscopic analysis confirmed the structure of the product. In the IR spectrum, the two 

st

ne proton appeared at 2.40 ppm as a triplet of triplets with J=11.1 

and 3.6 Hz, and five multiplets integrating to ten protons appeared between 2.00 and 1.20 ppm 

for the five CH2s of the cyclohexyl ring. 

In the 13C NMR spectrum, the carbonyl appeared at 171.84 ppm, the CH appeared at 43.91 

ppm, and the three CH2s appeared at 28.35, 25.53, and 25.12 ppm, which is consistent with the 

structure of compound (231). 

 

2.3.1.3.4 Synthesis of disodium 1-sulfonylcyclohexanecarboxylate 

 

 

 

S

rong absorptions at 1810 and 1742 cm-1 supported the presence of the anhydride carbonyl. 

In the 1H NMR, the methi

 

Acid hydrolysis of cyclohexanecarboxylic anhydride (231) followed by alkaline work-up gave 

the disodium salt (232) (Scheme 2.47). 
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O

O

O

1) H2SO4

2) NaOH
NaO

S

O O O

ONa

(231) (232)  

pectroscopic data were consistent with the structure of the expected product. On the IR 

spectrum, a strong band appeared at 1581 cm-1 for the carboxylate carbonyl. The presence of the 

sulfonate was supported by two absorptions at 1386 and 1169 cm-1. 

The 1H NMR spectrum displays four multiplets integrating to ten protons at 2.39, 1.72, 1.61, 

and 1.21 ppm. 

In the 13C NMR, the carbonyl appeared at 175.24 ppm, the quaternary sp3 carbon appeared at 

70.83 ppm, and the three different CH2s appeared at 30.51, 25.28, and 23.83 ppm. 

The mechanism of this reaction has alrea bed in Scheme 2.33 (section 2.3.1.1.1). 

oride (233) (Scheme 2.48). 

 

Scheme 2.47 

 

S

dy been descri

 

2.3.1.3.5 Synthesis of 1-chlorosulfonylcyclohexanecarbonyl chloride 

 

The chlorination of the disodium salt (232) was performed in thionyl chloride in the presence 

of DMF to afford the corresponding dichl

 

NaO
S

O O O

ONa
SOCl2

DMF
Cl

S

O O O

Cl

(232) (233)  

pectroscopic analysis provided the evidence of the formation of the desired product. The IR 

spectrum displayed a strong absorption at 1767 cm-1 for the acyl chloride carbonyl, and two 

 

Scheme 2.48 

 

S
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strong bands at 1376 and 1169 cm-1, supporting the presence of the sulfonyl chloride in the 

molecule. 

The 1H NMR spectrum showed five multiplets integrating to ten protons between 2.90 and 

1.30 ppm. 

In the 13C NMR spectrum, the carbonyl appeared at 169.64 ppm, the quaternary 3 carbon 

appeared at 90.30 ppm, and the three CH2s appeared at 30.73, 23.89, and 22.95 ppm. 

The mechanism of this chlorination re same as the one already described in 

scheme 2.35 (section 2.3.1.1.2). 

ure of the dichloride (233) was carried out in liquid ammonia to afford 4-spiro-

cy

Cl

 sp

action is the 

 

2.3.1.3.6 Synthesis of 4-spiro-cyclohexyl-3-oxo-β-sultam 

 

The ring clos

clohexyl-3-oxo-β-sultam (215c) (Scheme 2.49). 

 

Cl
S

O O O

NH3

Et2O S N

O

O
O H

(233) (215c)  

Spectroscopic data were consistent with the data available from the previous work done in the 

laboratory169  and with the structure of the product. On the IR spectrum, a broad absorption at 

3099 cm-1 attested the presence of the NH. The strong absorption at 1759 cm-1 for the carbonyl 

is consistent with the absorption of the strained carbonyl in β-lactams (~1745 cm-1). The two 

strong bands at 1331 and 1161 cm-1 confirmed the presence of the sulfonamide (SO2). 

he 1H NMR spectrum displayed a broad singlet at 8.42 ppm for the amide / sulfonamide NH, 

and six multiplets between 2.40 and 1.35 p protons of the cyclohexyl ring. 

 the 13C NMR spectrum, the usual peaks were shown with the carbonyl at 163.50 ppm, the 

qu

 

 

Scheme 2.49 

 

T

pm for the ten 

In

aternary sp3 carbon at 86.79 ppm, and the three different CH2s at 28.05, 24.01, and 22.60 

ppm. 
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2.3.2 Reactivity of 1,2-thiazetidin-3-on-1,1-dioxides: towards the synthesis of 1,2-

thiazetin-1,1-dioxides 

ttempted thionations of 1,2-thiazetidin-3-on-1,1-dioxides2.3.2.1 A  

2.

) and 4-spiro-cyclohexyl-3-oxo-β-sultam (215c) for the simple 

reason that they were expected to be more stable compounds than 4,4-dimethyl-3-oxo-β-sultam 

 w ce of bulky substituents on 

the 4-position decreases the distortion of the 4-membered ring (Thorpe-Ingold effect171-173  or 

ge

ad shown that the 4,4-dimethyl compound 

(215a) was resistant to thionation. 

 

3.2.1.1 With Lawesson’s reagent 

 

The thionation reaction with Lawesson’s reagent in THF (Scheme 2.50) was attempted with 

4,4-diethyl-3-oxo-β-sultam (215b

(215a)170 hich is susceptible to hydrolytic ring opening. The presen

m-dialkyl effect), which makes it less likely to release its strain by ring opening, and therefore 

increases its stability. Other work in the group h

S N

O

O
O

R1
R2

H
S N

S

O
O

R1
R2

H

Lawesson's
reagent

THF

(215b) R1 = R2 = Et
(215c) R1 = R2 = spiro-cyclohexyl

(216b)
(216c)  

 

Scheme 2.50 

bably not 

su

during 

ch

 

The reactions were monitored by TLC, but unfortunately, no change seemed to occur, and 

neither the product nor the starting material could be isolated after chromatography on neutral 

alumina with both 3-oxo-β-sultams (215b) and (215c). The requirement to use chromatography 

in order to remove the by-products derived from Lawesson’s reagent itself is pro

itable for 3-oxo-β-sultams due to their sensitivity to ring opening. It was concluded that no 

reaction had occurred, or the product and the starting material had degraded 

romatography. Hence, two other methods previously outlined (section 2.2.1.1.2) have been 

attempted and are described below. 
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2.3.2.1.2 With phosphorus pentasulfide and alumina 

 

and amides.99,100  This 

method, which does not require chromatography to separate the product from organic side 

spiro-cyclohexyl-3-oxo-β-sultam (215c) into its thioxo 

analogue (216c) (Scheme 2.51). 

The combination of P4S10/Al2O3 can be used to thionate ketones 

products, was attempted to convert 4-

 

S N

O

O
O

R1
R2

H
S N

S

O
O

R1
R2

H

P4S10 / Al2O3

ACN or THF

(215c) R1 = R2 = spiro-cyclohexyl (216c)  
 

Scheme 2.51 

The procedure was carried out in both acetonitrile and THF. On TLC, no reaction seemed to 

have occurred in both cases. In acetonitrile, the presence of the starting material and the 

appearance of another compound on TLC were confirmed by the 1H NMR spectrum of the crude 

product. Purification by chromatography on basic alumina afforded only thioacetamide, as a 

result of the hydrolysis of acetonitrile followed by thionation of its carbonyl group. The starting 

m terial was not recovered. 

 

2.3.2.1.3 With pyridine, trifluoromethane sulfonic anhydride, and aqueous ammonium 

 

a

sulfide 

 

A mild method has been developed by Charette110  for the conversion of amides to thioamides 

by prior activation of the amide with an electrophilic reagent (Scheme 2.52). 
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O
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O

R2

S N

O H
S N

S

O

R1
R2

O H

(215b) R1 = R2 = Et
(215c) R1 = R2 = spiro-cyclohexyl

1) Tf2O, pyridine, D
-40oC to RT

CM

2) aq. (NH4)2S, -5oC

Scheme 2.52 

 

This method was first tested on pyrrolidin-2-one to perform the reaction described in Scheme 

2.27 (section 2.2.2.1). Unfortunately, the yields published could not be reproduced in our 

laboratory and were much lower than the ones produced with Lawesson’s reagent. Moreover, 

this method also requires purification by chromatography. Furthermore, this procedure requires 

the use of aqueous ammonium sulfide, a medium that 3-oxo-β-sultams will not withstand due to 

hydrolysis. For all those reasons, this me doned and not explored further. Other 

possible methods for use in future work might be attempted (section 2.2.1.1.2). 

(216b)
(216c)  

 

thod was aban

 

2.3.2.2 Alkylation of 3-oxo-β-sultams: synthesis of 4,4-dialkyl-3-ethoxy-1,2-thiazetin-1,1-

dioxides 

 

Having failed to thionate 3-oxo-β-sultams, we decided to try direct O-alkylation using 

Meerwein’s reagent. 

 

2.3.2.2.1 Alkylation of 4,4-dimethyl-3-oxo-β-sultam 

 

 the first place, the alkylation was attempted with Meerwein’s reagent (Scheme 2.53) using 

th

the crude product, 

the absence of a broad absorption in the region 3100-3500 cm-1 suggested alkylation had 

occurred. A strong band at 1774 cm-1 was suggesting the carbonyl was still present in the 

sample, but a medium band at 1584 cm-1 was also suggesting the presence of a C=N bond. From 

this spectrum, we concluded that both O- and N-alkylation could have occurred, and that we 

In

e same procedure as the one used for 1-azetines. The reaction was monitored by TLC, which 

indicated the disappearance of the starting material. On the IR spectrum of 
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were dealing with a mixture of compounds (161a) and (234a), a feature confirmed by 1H/13C 

NMR analysis. 

In a second attempt, the alkylation was performed with dimethyl sulfate. The reaction was 

monitored by TLC and IR, but no reaction took place at all. On the IR spectrum, no band at 

1584 cm-1 for the C=N appeared, indicating no O-methylation occurred, and the absorption for 

C=O remained at 1750 cm-1, whereas it should have shifted to ~1775 cm-1 if N-methylation had 

occurred as suggested above with Meerwein’s reagent. 

 

S NO
O H

O Meerwein's
reagent

DCM S NO
O

OEt

S NO
O Et

O

+

(215a) (161a)
(X = O; R3 = Et)

(234a)
 

 

Scheme 2.53 

 

2.3.2.2.2 Alkylation of 4,4-diethyl-3-oxo-β-sultam 

 

er to confirm the suspicions of O- and N-alkylation, ethylation of 4,4-diethyl-3-oxo-β-

sultam

In ord

 (215b) with Meerwein’s reagent was carried out (Scheme 2.54). 

 

S NO
O H

O Meerwein's
reagent

DCM O S N

O

OEt

S NO
O Et

O

+

(215b) (161b) (234b)

Compounds (161b) and (234b) were found to be inseparable. 

(X = O; R3 = Et)  
 

Scheme 2.54 

 

Interestingly, as well as the expected products (161b) and (234b), after purification by gravity 

silica chromatography, 2-ethylcrotonamide (235) was isolated as a side-product in 8 % yield. It 

is believed to form through a SO2 extrusion of the starting material (215b) (Scheme 2.55). 
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O

NH2S NO
O H

O OH

NH

(215b) (235)

-SO2

 
 

Scheme 2.55 

 

Spectroscopic analysis confirmed the presence of the O- and N-alkylated compounds (161b) 

and (234b). First, on the IR spectrum, the alkylation was confirmed by the absence of the NH 

absorption between 3100 and 3500 cm-1. The two bands at 1766 and 1579 cm-1 suggested the 

presence of both C=O and C=N, respectively, in the molecule. 

he 1H NMR spectrum clearly confirmed the formation of O- and N-alkylated products. It 

displayed one quartet at 4.50 ppm with J=7.1 Hz for the CH2 attached to the oxygen in the O-

ethylated compound (161b) and a quartet at 3.54 ppm with J=7.4 Hz for the CH2 attached to the 

four CH2s for the ethyl groups present 

overall in the two products at the 4-position appeared as a quartet at 2.18 ppm with J=7.5 Hz, a 

quartet at 2.17 ppm with J=7.5 Hz, and a multiplet at 2.14 ppm. The two CH s of the O- and N-

ethyl groups appeared at 1.47 ppm

3 e 4-position of the 

N-alkylated product (234b), and a triplet at 1.12 ppm with J=7.5 Hz for the two CH3s at the 4-

position of the O-alkylated product (161b). 

The 13C NMR spectrum confirmed the presence of C=O and C=N bonds with peaks at 180.98 

and 163.63 ppm, respectively. Two quaternary sp3 carbons appeared at 93.85 and 90.55 ppm. 

The CH2 attached to the oxygen appeared at 68.38 ppm, whereas the one attached to the 

nitrogen appeared at 35.72 ppm. The two CH2s and the two CH3s of the ethyl groups at the 4-

position appeared at 23.08, 22.53, 8.44, and 8.43 ppm, respectively. The two CH3s for the O- 

and N-ethyl groups appeared at 13.90 and pectively. 

he spectroscopic data supported the formation of the O- and N-alkylated products (161b) and 

(2

T

nitrogen in the N-ethylated compound (234b). The 

3

 with J=7.1 Hz, and 1.40 ppm with J=7.4 Hz, respectively. 

Finally, a triplet at 1.16 ppm with J=7.5 Hz appeared for the two CH s at th

13.39 ppm, res

T

34b) in a 1:2 ratio, reinforcing the observation made with the alkylation of 4,4-dimethyl-3-

oxo-β-sultam (215a). 
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2.3.2.2.3 Alkylation of 4-spiro-cyclohexyl-3-oxo-β-sultam 

 

Alkylation of 4-spiro-cyclohexyl-3-oxo-β-sultam (215c) was performed with Meerwein’s 

reagent to afford the O-alkylated product (161c) and the N-alkylated product (234c) as an 

inseparable mixture (Scheme 2.56). 

 

O

S NO
O H

Meerwein's
reagent

DCM S N

OEt

O
O

S N

O

O
O Et

+

cating the presence of the two cyclohexyl rings. 

F

e nitrogen appeared at 35.73 

pp

ectroscopic data supported the formation of both O- and N-alkylated 

products (161c) and (234c), in a 1:2.75 ratio. 

(215c) (161c)
(X = O; R3 = Et)

(234c)
 

 

Scheme 2.56 

 

Spectroscopic analysis confirmed the formation of 4-spiro-cyclohexyl-3-ethoxy-1,2-thiazetin-

1,1-dioxide (161c) and 4-spiro-cyclohexyl-2-ethyl-1,2-thiazetidin-3-on-1,1-dioxide (234c). The 

IR spectrum showed the two characteristic bands for C=O and C=N at 1768 and 1581 cm-1, 

respectively, and the absence of the NH broad absorption over 3000 cm-1. 

The 1H NMR spectrum displayed a quartet at 4.43 ppm with J=7.1 Hz for the ethoxy CH2, and 

another quartet at 3.49 ppm with J=7.4 Hz for the CH2 attached to the nitrogen, integrating to 

four protons overall. A complex series of multiplets appeared between 2.60 and 1.50 ppm, 

integrating to twenty protons overall, indi

inally, the ethoxy CH3 appeared as a triplet at 1.42 with J=7.1 Hz, and the CH3 attached to the 

nitrogen appeared as a triplet at 1.35 ppm with J=7.4 Hz, with an overall integration of six 

protons. 

On the 13C NMR, two peaks appeared at 180.91 and 163.71 ppm for the C=O and the C=N 

bonds, respectively. The two quaternary sp3 carbons appeared at 91.62 and 87.53 ppm. The 

ethoxy CH2 appeared at 68.25 ppm, whereas the one attached to th

m. Six CH2s for the two cyclohexyl rings appeared between 28.54 and 22.65 ppm. The two 

CH3s resulting from the O- and N-ethylation appeared at 13.76 and 13.22 ppm, respectively. 

Once again, the sp
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In order to overcome this problem of reactivity and regioselectivity, other alkylating reagents 

could be used, as previously discussed in the case of the alkylation of 1-azetines (section 

2.

2.3.3 Reactivity of 3-alkoxy-1,2-thiazetin-1,1-dioxide towards cycloadditions

2.1.1.3). However, before embarking on a detailed and time consuming study, it was decided 

to explore the reactivity of the 3-alkoxy-1,2-thiazetin-1,1-dioxides present in the above 

mixtures. 

 

 

2.3.3.1 Attempted trapping of 4,4-diethyl-3-ethoxy-1,2-thiazetin-1,1-dioxide with 

diphenylcyclopropenone 

 

he mixture of O- and N-alkylated compounds (161b) and (234b) was dissolved in dry 

acetonitrile and heated under reflux with one for 22 hours (Scheme 2.56). After 

purification by column chromatography, the starting materials were mostly recovered. However, 

2-

T

dicyclopropen

ethylcrotonamide (235) was isolated as a side-product and a mechanism for its formation is 

proposed (Scheme 2.57). None of the desired bicyclic product (218b) was present. 
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O OH
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(215b) (235)  
Scheme 2.57 
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2.3.3.2 Attempted trapping of 4-spiro-cyclohexyl-3-ethoxy-1,2-thiazetin-1,1-dioxide with 

diphenylcyclopropenone 

 

The ring expansion with diphenylcyclopropenone was attempted in DCM and in acetonitrile 

by dissolving the mixture of (161c) and (234c) in the solvents and stirring the whole overnight 

at RT (Scheme 2.58). In both cases, purification by silica chromatography recovered almost 

 other 

identifiable products. 

quantitatively the starting materials, with no traces of the desired target (218c) or any

 

S NO
O

OEt

S NO
O Et

O

+
S NO

O Ph

Ph

OEt O

DPP
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(161c) (234c) (218c)
(X = O; R3 = Et)  

 

Scheme 2.58 

 

A third attempt was made by trying to alkylate 3-oxo-β-sultam (215c) with Meerwein’s 

reagent, deprotonate the intermediate species with triethylamine without isolating the alkylated 

product (161c), and trap the alkylated intermediate in situ by adding diphenylcyclopropenone 

(Scheme 2.59). But once again, only diphenylcyclopropenone was recovered after column 

chromatography, and neither the starting material (215c) nor any new products could be 

detected or isolated. 
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Scheme 2.59 
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2.3.3.3 Attempted trapping of 4,4-diethyl-3-ethoxy-1,2-thiazetin-1,1-dioxide with nitrile 

oxides 

 

he attempted trapping of 4,4-diethyl-3-ethoxy-1,2-thiazetin-1,1-dioxide (161b) by the nitrile 

oxide generated 

T

in situ from 2-azidobenzohydroximoyl chloride (196) was performed in ether 

by adding a dilute ethereal solution of triethylamine over three hours (Scheme 2.60). After 

purification by silica chromatography, only the starting materials and the dimer of the nitrile 

oxide were isolated, indicating none of the desired reaction had taken place. 
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N
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(236)

 

Scheme 2.60 

 

2.3.3.4 Attempted trapping of 4-spiro-cyclohexyl-3-ethoxy-1,2-thiazetin-1,1-dioxide with 

nitrile oxides 

 

The attempted trapping of 4-spiro-cyclohexyl-3-ethoxy-1,2-thiazetin-1,1-dioxide (161c) was 

performed, as discussed above, by generating the nitrile oxide in situ in the presence of 

triethylamine in ether (Scheme 2.61). Purification by column chromatography on silica afforded 

the dimer of the nitrile oxide as the only isolated product. The starting compound (161c) was not 

recovered. 
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Scheme 2.61 

 

These results indicate that 3-alkoxy-1,2-thiazetin-1,1-dioxides (161b) and (161c) are not 

reactive towards diphenylcyclopropenone and nitrile oxides. Further efforts to prepare 3-alkoxy 

systems were not made. However, a 3-amino-1,2-thiazetin-1,1-dioxide was prepared as 

described below. It is noteworthy that 2-amino-1-azetines are reactive towards 

diphenylcyclopropenone.141  

 

2.3.4 Synthesis of 4-cyano-3-dieth methoxyphenyl)-1,2-thiazetin-1,1-ylamino-4-(4-

dioxide 

 

as discussed in the introduction (section 1.2). However, recently, Clerici et al.174  isolated 4-

cyano-3-diethylamino-4-(4-methoxyphenyl)-1,2-thiazetin-1,1-dioxide (252) through an 

un

In the literature, only a few papers mention the formation of 1,2-thiazetin-1,1-dioxide systems, 

expected ring contraction of 3-diethylamino-5-methanesulfonyl-4-(4-methoxyphenyl)-

isothiazol-1,1-dioxide (251) (Scheme 2.62). In our quest to investigate the reactivity of these 4-

membered ring systems towards cycloaddition reactions, we embarked upon the synthesis of this 

compound. This synthesis gave some interesting observations and is discussed in full below. 
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2.3.4.1 Synthesis of 1-(4-methoxyphenyl)-3-phenylprop-2-en-1-one 

 

The aldol condensation of benzaldehyde (238) with 4’-methoxyacetophenone (239) in the 

presence of sodium hydroxide in ethanol occurred in the expected manner to give the desired 

α,β-unsaturated ketone (240) in 85% yield (Scheme 2.63). 

 

O

H

O

OMe

O

OMe

H

H

+
NaOH

EtOH

(238) (239) (240)
 

Scheme 2.63 

 

The spectroscopic data were fully consistent with the formation of the expected product.  

 

2.3.4.2 Synthesis of 2,3-dibromo-1-(4-methoxyphenyl)-3-phenylpropan-1-one 

 

The bromination of the α,β-unsaturated ketone (240) was performed in chloroform to yield the 

corresponding dibromo compound (241) in 85% yield (Scheme 2.64). 

 
O

OMe

H

H

O

OMe

Br

Br

Br2
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Scheme 2.64 

 

The bromination of the α,β-unsaturated ketone was confirmed by spectroscopic analysis. The 

IR spectrum showed the absorption of the carbonyl at 1667 cm-1. 

Evidence of the bromination was given by NMR spectroscopy. On the 1H NMR spectrum, the 

shift of the two doublets of the ethylenic CH from 7.83 and 7.58 ppm to 5.84 and 5.68 ppm with 
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J=11.3 Hz indicated the bromination of the double bond. The other signals confirmed that the 

rest of the molecule remained unchanged. 

Hs. The remaining signals remained 

unchanged and are consistent with the structure of the product. 

 

2.3.4.3 Synthesis of 2-diethylamino-1-(4-methoxyphenyl)-3-phenylprop-2-en-1-one

The 13C NMR spectrum also confirmed the bromination of the double bond by showing a shift 

of the two CH signals from 143.96 and 121.83 ppm to 49.99 and 46.72 ppm, which is consistent 

with a transformation from two ethylenic CHs to two sp3 C

 

 

The formation of the enamine (242) from the α,β-dibromoketone (241) was carried out in 

ethanol in the presence of diethylamine (81% yield) (Scheme 2.65).175  

 
O

OMe

Br

Br

Et2NH

EtOH

O

OMe
NEt2

(241) (242)  
 

pectroscopic analysis gave the evidence of the proposed structure of the product. The IR 

spectrum exhibited a band at 1708 cm-1 for the carbonyl, and a band at 1657 cm-1 suggesting the 

presence of the enamine grouping. 

In the 1H NMR spectrum, the four aromatic protons from the AB system of the para-

substituted aromatic ring are present at 8.06 and 6.89 ppm as two doublets with J=8.8 Hz. The 

five other aromatic protons were also present at 7.05 and 6.93 ppm as two multiplets. The 

olefinic proton appeared at 5.60 ppm as a  three protons from the methoxy group 

appeared at 3.85 ppm as a singlet. A quartet integrating to four protons at 3.15 ppm and a triplet 

in

at 55.48 ppm, and the CH2 and the CH3 of the diethylamino group were shown at 43.51 and 

12.39 ppm, respectively. 

Scheme 2.65 

 

S

singlet and the

tegrating to six protons at 1.16 ppm with J=7.0 Hz gave the evidence of the presence of the 

diethylamino group. 

The 13C NMR spectrum displayed the five quaternary carbons and the five different aromatic 

CH groups. The olefinic CH appeared at 102.16 ppm, the methyl of the methoxy group appeared 
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A possible mechanism of formation of the enamine (242) is described in Scheme 2.66. First, 

diethylamine acts as a base to deprotonate the starting material to form the corresponding α-

br

he formation of the β-bromo-α-

diethylaminoketone (256). The bromide is now in the correct position so that compound (256) 

can undergo a β-elimination under the action of sodium ethoxide (or, as in the original 

m the 

desired α-diethylamino-α,β-unsaturated ketone (242). The formation of α-dialkylamino-α,β-

un

 a ays showed a mixture of 

two or three spots very close to each other which were hard to separate, correlating with the 

complex equilibrium described in this mechanism. The α-bromo-α,β-unsaturated ketone (253) 

formed during the course of the reaction was isolated once after silica chromatography and was 

fully characterised by NMR, IR and HRMS. Usually, however, the product was used as crude 

without further purification to avoid a difficult separation, and without affecting the next step o

the synthesis. 

 

omo-α,β-unsaturated ketone (253). Second, the diethylamine acts as a nucleophile in a 

Michael addition on compound (253) to afford the β-diethylamino-α-bromoketone (254), which 

undergoes an intramolecular nucleophilic attack to give the aziridinium salt (255). The released 

bromide anion then attacks the aziridinium salts, resulting in t

procedure, a third equivalent of diethylamine) to reset the conjugated system and for

saturated ketones has already been reported in the literature.175,176  

 It is noteworthy to mention that, on TLC and HPLC, the reaction lw

f 
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Scheme 2.66 

 

2.3.4.4 Synthesis of methanesulfonyl azide 

 

Methanesulfonyl azide (244) was prepared in 88% yield by mixing commercially available 

methanesulfonyl chloride (243) with sodium azide in dry acetone (Scheme 2.67).177  
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MeSO2 Cl
NaN3

acetone
MeSO2 N3

(243) (244)  
 

Scheme 2.67 

 

Spectroscopic analysis gave the necessary evidence for the formation of the product. The IR 

spectrum displayed the absorption of the azide at 2132 cm-1, and the two absorptions of the 

sulfonyl at 1349 and 1148 cm-1. 

The 1H NMR spectrum showed a singlet at 3.29 ppm, and the 13C NMR spectrum showed a 

CH3 at 42.75 ppm. 

 

2.3.4.5 Synthesis of N-methanesulfonylamidine (245) 

 

N-Methanesulfonylamidine (245) was preprared in 82% yield by refluxing the enamine (242) 

with methanesulfonyl azide (244) in ethanol overnight (Scheme 2.68).178  
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Scheme 2.68 

 

The structure of the desired product d by spectroscopic analysis. The IR 

spectrum showed absorptions at 1674, 1596 and 1544 cm-1, for C=O, C=N and the aromatic 

ring, respectively. Two other bands appeared at 1288 and 1129 cm-1 for SO2. 

 1 ic protons appeared at 7.87 and 7.00 ppm, one as 

a broad doublet with J=7.2 Hz and the other one as a doublet with J=9.1 Hz. The three protons 

of

nd 7.1 Hz, 

and at 3.20 and 3.17 ppm as two doublets of quartets with J=14.2 and 7.1 Hz, integrating to one 

proton each. This suggested the four protons were in a different environment, indicating the 

double bond character of the C-NEt2 bond due to resonnance with the zwitterionic form of the 

was confirme

In the H NMR spectrum, two pairs of aromat

 the methoxy group appeared at 3.89 ppm as a singlet. The two CH2s of the diethylamino 

group were present at 3.73 and 3.53 ppm as two doublets of quartets with J=13.5 a
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amidine. The two CH3s appeared as two triplets with J=7.1 Hz at 1.33 and 1.10 ppm. The 

methyl of the methanesulfonyl group appeared at 2.98 ppm as a singlet. 

In the 13C NMR spectrum, the two peaks at 190.58 and 162.24 ppm gave evidence of the 

presence of the carbonyl and the amidine carbon, respectively. The four signals at 164.88, 

131.40, 127.68 and 114.54 ppm were consistent with the four expected resonances of the 

aromatic ring. The methoxy CH  was present at 55.63 ppm, and the methanesulfonyl CH  

appeared at 42.57 ppm

 structure, which was further confirmed by 

HRMS with a m

mation of the N-methanesulfonylamidine (245) is produced by 1,3-dipolar 

to form the unstable 5-amino-1,2,3-

triazoline (257), which undergoes a cycloreversion via the intermediate (258) to afford the 

de

3 3

. The two ethyl groups were displayed as two CH2 at 44.12 and 42.46 

ppm, and two CH3 at 13.71 and 11.90 ppm. 

The NMR data were consistent with the proposed

easured accurate mass (m/z) for the [M+Na]+ ion of 335.1033 for 335.1036 

required. 

The for

cycloaddition of the azide on the enamine double bond 

sired product (245) and phenyldiazomethane (259) (Scheme 2.69).179,180  
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2.3.4.6 Synthesis of 3-diethylamino-4-hydroxy-4-(4-methoxyphenyl)-4,5H-isothiazolin-

1,1-dioxide 

 

The intramolecular cyclisation of N-methanesulfonylamidine (245) was performed in THF in 

the presence of potassium tert-butoxide acting as a base to give the desired cyclised product 

(246) in 89% yield (Scheme 2.70).178  
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Scheme 2.70 

 

Spectroscopic analysis gave the evidence of the formation of the cyclised product. In the IR 

spectrum, the disappearance of the absorption for the carbonyl at 1674 cm-1 and the appearance 

of a band at 3384 cm-1 for the hydroxyl group suggested that the intramolecular cyclisation had 

occurred. The C=N absorption was present at 1582 cm-1, as well as the two bands of the sulfonyl 

group at 1297 and 1125 cm-1. 

In the 1H NMR spectrum, a broad singlet appeared at 5.54 ppm for the OH proton. The 

disappearance of the singlet at 2.98 ppm for the methane sulfonyl group confirmed the loss of 

the methyl and the appearance of two doublets integrating to one proton each at 3.93 and 3.65 

ppm with J=14.0 Hz confirmed the presence of a methylene group in the molecule, further 

indicating the cyclisation of the starting m

his cyclisation was further confirmed by the 13C NMR spectrum with the disappearance of 

the peak in the region 180-190 ppm, indicating the loss of C=O, and the appearance of a 

quaternary sp3 carbon and a CH2 at 83.47 and 64.68 ppm, respectively, indicating the presence 

of the quaternary carbon bearing the hydroxyl group and the methylene adjacent to the sulfonyl 

group. The C=N carbon appeared at 168.84 ppm, and the aromatic carbon bearing the methoxy 

group appeared at 159.47 ppm. The aromatic CHs in meta position relative to the methoxy 

group appeared more downfield at 125.27 ppm, whereas those in ortho position were more 

aterial. 

T

113 



Chapter 2 Results and Discussion 

upfield at 114.31 ppm. The methoxy carbon, the diethylamino methylene and methyl carbons 

The structu irmed by HRMS with a measured accurate mass 

(m/z) for [M+Na]+ of 335.1028 for 335.1036 required. 

thylamino-4-(4-methoxyphenyl)-4,5H-isothiazolin-1,1-

appeared at 55.31, 44.88, 43.36, 12.73, and 11.33 ppm, respectively. 

re of the product was further conf

 

2.3.4.7 Synthesis of 4-chloro-3-die

dioxide 

 

The chorination of the cyclic alcohol (246) was performed in thionyl chloride at reflux to 

afford the corresponding chlorinated compound (247) in 95% yield (Scheme 2.71).178  
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Scheme 2.71 

 

The structure of the product was assigned on the basis of spectroscopic data. The IR spectrum 

di

m the diethylamino group was also different 

fr

splayed a strong absorption at 1578 cm-1 for the C=N bond, and two strong bands at 1310 and 

1137 cm-1 for the sulfonyl group. 

In the 1H NMR spectrum, the two protons adjacent to the sulfonyl group appeared more 

downfield than in the starting material at 4.17 and 3.82 ppm as doublets with J=14.5 Hz. The 

pattern for the four protons of the two CH2s fro

om that of the starting material. They appeared as two sets of two doublets of quartets at 3.67 

and 3.51 ppm with J=13.5 and 7.0 Hz, and at 3.21 and 3.08 ppm with J=14.4 and 7.1 Hz. The 

two methyls appeared as triplets at 1.30 and 0.90 ppm with J=7.0 Hz and J=7.1 Hz, respectively. 

The two sets of aromatic protons were displayed at 7.42 and 6.93 ppm as doublets with J=8.9 

Hz, and the three protons of the methoxy group occurred at 3.85 ppm. 

On the 13C NMR spectrum, the C=N carbon appeared at 164.59 ppm, and the aromatic carbon 

bearing the methoxy group appeared at 160.09 ppm. The aromatic CHs in meta position relative 
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to the methoxy group appeared more downfield at 126.08 ppm compared to those in ortho 

position, which was more upfield at 114.74 ppm. The quaternary sp3 carbon and the CH2 

ad

arbons appeared at 55.43, 44.97, 43.98, 

12.30, and 11.06 ppm, respectively. 

Finally, the chlorination was confirmed by HRMS with a measured accurate mass (m/z, 35Cl) 

 

high yiel

) was formed 

and underwent a β-elimination to give the conjugated isothiazole (248) (431mg, 10%), which in 

turn was chlorinated to afford the dichlorinated isothiazolin-1,1-dioxide (261) as an impurity 

(225 mg, 4%) (Scheme 2.72). 

 

l

jacent to the sulfonyl group appeared at 71.03 and 67.81 ppm, respectively. The methoxy 

carbon, and the diethylamino methylene and methyl c

for [M+Na]+ of 353.0690 for 353.0697 required. The desired product (247) was formed in very

d (95%). 

 

Interestingly, two side products (261) and (248) could, on occasion, be isolated from the 

reaction mixture. It is possible that under the reaction conditions, compound (260
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Scheme 2.72 

 

This mechanism involves the electrophilic addition of chlorine to the olefinic double bond of 

the isothiazole (248). Obviously the question of the generation of 

ixture arises. A possible explanation is that thionyl chloride is the source of chlorine either 

directly by thermal decomposition,181  or indirectly by oxidation to sulfuryl chloride182  which is 

115 



Chapter 2 Results and Discussion 

known to be a source of chlorine. Thus, under the conditions of the reaction (reflux), chlorine 

could have formed through a radical dimerisation of thionyl chloride to form chlorine and the 

intermediate (262), which then underwent a concerted reduction and oxidation of the two 

adjacent sulfur atoms to give the species (263), which in turn released sulfur dioxide, elemental 

sulfur and further chlorine via another radical pathway (Scheme 2.73). Thionyl chloride could 

also have been oxidised to sulfuryl chloride, which decomposed upon heating to generate 

chlorine and sulfur dioxide. 
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2.3.4.8 Synthesis of 3-diethylamino-4-(4-methoxyphenyl)isothiazol-1,1-dioxide

O

 

 

The dehydrohalogenation of the chlorinated isothiazoline (247) was performed in refluxing 

acetone using potassium carbonate as a base to undergo a β–elimination and form the 

corresponding isothiazole (248) in 86% yield (Scheme 2.74).178  

 

MeO

NS
O

O

NEt2
Cl

N

NEt2

MeO

S

O O

K2CO3

acetone, reflux

Scheme 2.74 

(247) (248)  
 

116 



Chapter 2 Results and Discussion 

The structure of the product was assigned on the basis of spectroscopic data. The IR spectrum 

displayed the absorption of the C=N at 1603 cm-1, and the absorption of the sulfonyl group at 

1288 and 1189 cm-1. 

In the 1H NMR spectrum, the disappearance of the two protons of the methylene adjacent to 

the sulfonyl group at 4.17 and 3.82 ppm from the starting material, and the appearance of the 

deshielded olefinic proton at 7.17 ppm as a singlet gave the evidence of the occurance of the β–

elimination. The meta aromatic protons relative to the methoxy group appeared at 7.24 ppm as a 

doublet with J=8.8 Hz, whereas those in the ortho position appeared at 6.97 ppm. The three 

protons of the methoxy group occurred at 3.86 ppm as a singlet. The two CH2s and the two 

CH3s from the diethylamino group appeared at 3.64 and 3.14 ppm as broad doublets with J=6.3 

Hz, and at 1.31 and 0.93 ppm as broad singlets, respectively. The splitting of the two methylenes 

and the two methyl groups indicated the double bond character of the C-NEt2 bond, but the 

unexpected broadening of the signals could be related to the loss of the stereogenic center 

adjacent to the carbon bearing the diethylamino group, after the occurance of the β–elimination. 

By losing the chiral center, the two protons of the methylenes lose their diastereotopic 

relationship. 

In the 13C NMR spectrum, the olefinic CH was displayed at 142.94 ppm, whereas the olefinic 

quaternary carbon was displayed at 13 e disappearance of the characteristic 

quaternary sp3 carbon and CH2 from the starting material at 71.03 and 67.81 ppm, respectively, 

further confirmed the dehydrohalogenation had taken place. 

urate mass 

(m/z) for [M+Na]+ of 317.0931 for 317.0930. 

or isothiazoline (261), which was 

isolated in the previous step (Scheme 2.72). A small amount of compound (261) must have been 

carried through this step, and its dehydrochlorination in refluxing acetone under the action of 

potassium carbonate afforded 5-chloro-3-diethylamino-4-(4-methoxyphenyl)-isothiazol-1,1-

dioxide (264) (Scheme 2.75). 

9.67 ppm. Th

The evidence of the β–elimination was completed by HRMS with a measured acc

 

During this process, the side product (264) was isolated. It is believed that this product must 

be formed easily from the dehydrochlorination of the dichl o
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Scheme 2.75 

 

Spectroscopic analysis gave the evidence of the formation of the product (264). The IR 

spectrum showed the usual characteristic bands at 1624 cm-1 for the C=N bond, and at 1306 and 

1153 cm-1 for the sulfonyl group. 

The 1H NMR and the 13C NMR spectra were very similar to that of the 5-bromoisothiazol-1,1-

dioxide (249) described below, as expected. 

The identification of the chlorinated product (264) was confirmed by HRMS with a measured 

accurate mass (m/z for 35Cl) for [M+H]+ of 329.0719 for 329.0721 required. 

 

2.3.4.9 Synthesis of 5-bromo-3-diethylamino-4-(4-methoxyphenyl)isothiazol-1,1-dioxide 

 

The bromination of compound (248) was carried out by treatment of the olefinic double bond 

with bromine in carbon tetrachloride followed by dehydrobromination with triethylamine to give 

the brominated isothiazole (249) in 93% yield (Scheme 2.76).183  The use of sodium 

m

O O

etabisulfite during the work-up removed any trace of bromine left in the reaction mixture. 
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Scheme 2.76 
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Spectroscopic analysis gave the evidence for the formation of the product. In the IR spectrum, 

the band at 1603 cm-1 confirmed the continued presence of a C=N bond, and the two bands at 

1306 and 1150 cm-1 indicated the presence of the sulfonyl group. 

In the 1H NMR spectrum, the absence of the singlet at 7.17 ppm suggested that the olefinic 

CH was no longer present in the molecule. 

In the 13C NMR spectrum, the disappearance of the CH at 142.94 ppm combined with the 

presence of two quaternary sp2 carbon at 137.90 and 135.87 ppm confirmed the loss of the 

olefinic CH present in the starting material

he bromination was further confirmed by HRMS with a measured accurate mass (m/z for 
79

lamino-5-methanesulfanyl-4-(4-methoxyphenyl)isothiazol-

. 

T

Br) for [M+Na]+ of 395.0038 for 395.0035 required. 

 

2.3.4.10 Synthesis of 3-diethy

1,1-dioxide 

 

The substitution of the bromide in compound (249) by the methansulfanyl group was 

performed using sodium thiomethoxide in dichloromethane to give the desired product (250) in 

97% yield (Scheme 2.77).184  The nucleophilic substitution was carried out in the presence of 

e 

protonation. 

O OBr

triethylamine, in order to maintain the nucleophilicity of sodium methoxide in case of a possibl
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Scheme 2.77 

 

The spectroscopic data gave the evidence of the formation of the desired product. The IR 

spectrum showed the usual absorptions at 1583 cm-1 for the C=N bond, with further peaks at 

1286 and 1145 cm-1 for the sulfonyl group. 
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In the 1H NMR spectrum, the three protons of the methanesulfonyl group appeared at 2.79 

ppm as a singlet. 

In the 13C NMR spectrum, the methyl of the methanesulfanyl group appeared at 12.92 ppm. 

The carbon on which the nucleophilic substitution took place shifted from 137.90 to 157.02 

ppm. 

The nucleophilic substitution was further confirmed by HRMS with a measured accurate mass 

(m/z) for [M+H]+ of 341.0992 for 341.0988 required. 

 

2.3.4.11 Synthesis of 3-diethylamino-5-methanesulfonyl-4-(4-methoxyphenyl)isothiazol-

1,1-dioxide 

 

was carried out with two equivalents of meta-chloroperbenzoic acid (m-CPBA) in 

dichloromethane to afford compound (251) in 51% yield (Scheme 2.78).174  

O OMeS

The oxidation of the methanesulfanyl group in compound (250) to the methanesulfonyl group 

 

NEt2

MeO

N
S

m-CPBA
NEt2

MeO

DCM N
S

O OMeSO2

(250) (251)  
 

Scheme 2.78 

 

Spectroscopic analysis provided the evidence of the formation of the product. On the 1H NMR 

spectrum, the singlet for the three protons of the methanesulfonyl group appeared at 3.17 ppm, 

whereas they were appearing at 2.79 ppm in the methanesulfanyl group. 

In the 13C NMR spectrum, the chemical ethyl group was even more significant 

by moving from 12.92 ppm in the methanesulfanyl group to 43.93 ppm in the methanesulfonyl 

gr

ired. 

 shift of the m

oup, confirming the oxidation of the sulfur atom. 

The structure of the product was confirmed by HRMS with a measured accurate mass (m/z) 

for [M+Na]+ of 395.0710 for 395.0706 requ
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2.3.4.12 Synthesis of 3-diethylamino-5-methanesulfinyl-4-(4-methoxyphenyl)isothiazol-1,1-

dioxide 

 

The oxidation of the methanesulfanyl group in compound (250) to the methanesulfinyl group 

was carried out with one equivalent of m-CPBA in dichloromethane to afford compound (265) 

in 67% yield (Scheme 2.79), which, although not needed here, would be used in the 1,3-dipolar 

cycloadditions described later in this thesis. 
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Scheme 2.79 

 

Spectrosocopic analysis provided the evidence of the formation of the product. On the 1H 

NMR spectrum, the singlet for the three protons of the methanesulfinyl group appeared at 3.16 

ppm as a sinlet. The four aromatic protons appeared unexpectedly as three broad singlets 

integrating to four at 7.41, 7.15 and 7.02 ppm. 

 the 13C NMR spectrum, the chemical shift of the methyl of the sulfinyl group appeared at 

38.34 ppm. 

he structure of the product was confirmed by HRMS with a measured accurate mass (m/z) 

fo

In

T

r [M+NH4]+ of 374.1198 for 374.1203 required. 
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2.3.4.13 -5-methanesulfonyl-4-(4-methoxyphenyl)-Ring contraction of 3-diethylamino

isothiazol-1,1-dioxide: synthesis of 4-cyano-3-diethylamino-4-(4-methoxyphenyl)-

1,2-thiazetin-1,1-dioxide 

 57% yield (Scheme 2.80), using an adaptation of 

a procedure previously described in the literature.174  

 

 

The ring contraction of the five-membered ring (251) to the four-membered ring (252) was 

performed with sodium azide in acetonitrile in

N
S

NEt2

O O

MeO

MeSO2

NaN3

ACN S NO
O

NEt2
NCMeO

(251) (252)  
Scheme 2.80 

ed the proposed structure of the product, and was consistent 

with the spe

3 is shown at 3.81 ppm as a singlet. The two CH2s of the diethylamino group are 

displayed as four doublets of 

 with J=14.4 and 7.2 Hz integrating to 

one proton each on the other hand. The two methyls appeared at 1.28 and 1.06 ppm with J=7.2 

Hz. 

The differentiation of the two ethyl groups indicates the double bond character of the enamine 

bond, meaning that the two ethyl groups are in a different environment. The differentiation 

between the two protons in each CH2 is due to their diastereotopic relationship. 

In the 13C NMR spectrum, the quaternary aromatic carbon bearing the methoxy group 

appeared at 161.68ppm, and the quaternary carbon bearing the diethylamino group appeared at 

160.58 ppm. The remaining quaternary aromatic carbon appeared at 116.45 ppm, and the two 

 

Spectroscopic analysis confirm

ctroscopic data described in the literature. In the IR spectrum, the weak absorption 

at 2241 cm-1 confirmed the presence of the cyano group. The C=N bond appeared as a strong 

band at 1641 cm-1, as well as the SO2 showing with two strong absorptions at 1336 and 1158 

cm-1. 
1In the H NMR, the four aromatic protons appeared at 7.40 and 7.00 ppm with J=8.9 Hz. The 

methoxy CH

quartets at 3.61 and 3.43 ppm with J=13.9 and 7.2 Hz integrating 

to one proton each on one hand, and at 3.12 and 3.09 ppm
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types of aromatic CHs resonated at 128.37 and 115.08 ppm. The cyano carbon appeared at 

 

The methoxy m 2 3  

diethylam 1, 42.19, 12.63, and 11.32 ppm, respectively. 

he structure of the product was further confirmed by a measured accurate mass (m/z) of 

33

in  the reaction course. The mechanism is 

described below (Scheme 2.81). It should be noted that the structure of compound (252) was 

confirmed unequivocally by X-ray crystallography.174  

 

111.14 ppm, whereas the quaternary sp3 carbon of the 4-membered ring appeared at 86.23 ppm.

ethyl appeared at 55.38 ppm, and the two CH s and the two CH s of the

ino group appeared at 45.3

T

0.0888 for 330.0883 required. 

The mechanism of this expected but surprising ring contraction must involve some unusual 

rearrangement of the intermediates formed dur g

SO2

N
N

N
N

Ar NEt2

N

N

NNa

NEt2

N

O2S
N3

Ar

CN
S NO

O

NEt2
NC

Ar
Na

+ NaN3
-N2

(266) ( (252)

mechanism proposed in the literature implies, after the loss of sodium methanesulfonate, 

th

267)

 
Scheme 2.81 

 

The 

e ring opening of the bicyclic triazole (266) initiated by the nucleophilic attack of the sulfonyl 

moiety by the azide with loss of nitrogen to form a stablised anion (267). The latter undergoes a 

nucleophilic substitution on the sulfonyl group to release the azide anion, forming the 4-

membered ring (252) (Scheme 2.81). 
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2.3.5 Reactivity of 3-diethylamino-1,2-thiazetin-1,1-dioxide towards 

cycloadditions 

2.3.5.1 Attempted trapping of 4-cyano-3-diethylamino-4-(4-methoxyphenyl)-1,2-

thiazetin-1,1-dioxide with diphenylcyclopropenone 

 

The addition of diphenylcyclopropenone to the 1,2-thiazetin-1,1-dioxide (252) was attempted 

in acetonitrile (Scheme 2.82). The reaction was monitored by TLC, and after 58 hours at RT, no 

reaction seemed to occur. The reaction mixture was then heated at reflux for four days, but again 

no new product appeared on TLC. Acetonitrile was evaporated under reduced pressure and the 

m xture was dissolved and refluxed in toluene for 24 hours, at which point the reaction was 

stopped and the crude product was purified. Silica chromatography afforded an unidentified 

product and the starting material. The 1H NMR spectrum of the unidentified compound 

displayed only protons in the aromatic region between 7.69 and 7.03 ppm, but no protons for the 

methoxy group at ~3.80 ppm nor for the CH2 at ~3.50 ppm and for the CH3 at ~1.00 ppm for the 

diethylamino group, indicating the loss of both the methoxyphenyl and the diethylamino moeity. 

 

NEt2
NCMeO

i

S NO
O

DPP

ACN, RT, 58 h S NO

NCMeO NEt2
O

Ph

then ACN, reflux, 4 d
then toluene, reflux, 24 h O Ph

(252) (268)  
 

Scheme 2.82 
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2.3.5.2 Attempted trapping of 4-cyano-3-diethylamino-4-(4-methoxyphenyl)-1,2-

thiazetin-1,1-dioxide with nitrile oxides 

 

triethylam nyl)-1,2-thiazetin-1,1-

dioxide (252) and 4-methoxybenzohydroximoyl chloride (268) in ether (Scheme 2.83). 

P

The 1,3-dipolar cycloaddition was attempted by slow addition of a dilute ethereal solution of 

ine to a mixture of 4-cyano-3-diethylamino-4-(4-methoxyphe

urification on silica gel allowed almost quantitative recovery of the starting material together 

with formation of the dimer of the nitrile oxide as the major product, indicating that the desired 

1,3-dipolar cycloaddition had failed. 

 

+
Et3N

Et2O
Cl

N
OH

MeO

S NO
O

N
O

OEtNC
Ar

OMe

S NO
O

NEt2
Ar

NC

(252)
Ar=4-MeOPh

(268) (269)
 

 

Scheme 2.83 

 

2.3.5.3 Attempted trapping of 4-cyano-3-diethylamino-4-(4-methoxyphenyl)-1,2-

thiazetin-1,1-dioxide with dienes 

 

The Diels-Alder cyclisation of 1,2-thiazetin-1,1-dioxide (252) with both 2,3-

dimethylbutadiene (270) and 2,5-dimethyl-2,4-hexadiene (271) was attempted (Scheme 2.84). 

Under the conditions used, none of the dienes reacted with the four-membered ring to form 

compounds (272) and (273). Instead, in the presence of zinc chloride, two isomers of the starting 

material were isolated, products of a zinc promoted rearrangement as discussed below. 
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Scheme 2.84 

 

Possibly, the formation of these two isomers could be the result of a ring opening of the four-

m mbered ring under the catalysis of the Lewis acid followed by ring closure to the less strained 

and more stable five-membered diastereom iazolin-2-oxides (274) and (274’) in 

~20% yield (Scheme 2.85). A similar ring expansion of 1,2-thiazetidin-1,1-dioxides catalysed 

by Lewis acids has already been reported.49,62  

e

eric 1,2,3-oxath
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Scheme 2.85 

 

2.3.6 Conclusion 

cyclisation with dienes. By 

comparing these results with those previously described with 1-azetines (sections 2.2.1.3.1 and 

2.2.1.3.3), it seems sensible to suggest that the sulfonyl group is responsible for the difference of 

reactivity. Indeed, the ring expansion of DPP, the mechanism involves the nucleophilicity of the 

nitrogen (Scheme 2.12). Hence, it is possible that the presence of the sulfonyl in 1,2-thiazetin-

1,1-dioxides reduces the nucleophilicity of the nitrogen to such an extent that no reaction 

occurred (Scheme 2.86). Thus, the electron-donating effect of the 3-ethoxy or 3-diethylamino 

groups would be deviated by the sulfonyl group, resulting in an electron-poor double bond 

involved in the cyclisation reaction and a reduction of the nucleophilicity of the nitrogen. 

 

 

In the light of all the reactions performed with 1,2-thiazetin-1,1-dioxides, it can be concluded 

that they are not reactive towards 1,3-dipolar cycloaddition with nitrile oxides, or the formal 

[3+2] cycloaddition with diphenylcyclopropenone, or Diels-Alder 
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Scheme 2.86 

 

In concerted cycloadditions driven by frontier molecular orbitals (FMO), the presence of the 

electron-donating substituents OEt or NEt2 on the imine double bond should raise the energy of 

LUMO and HOMO of the dipolarophile, whereas the electron-withdrawing SO2 group should 

lower energy. Hence, the ethoxy or diethylamino groups favour the interaction of the LUMO of 

the dipole with the HOMO of the dipolarophile, whereas the sulfonyl group favours the 

interaction of the LUMO of the dipolaroph MO of the dipole. Thus, in the case of 

the 1-azetines (180) and (185) studied in section 2.2.1 which are reactive towards 1,3-dipoles 

tron-donating substituent (SEt) is present, it is possible to assume that the 

molecular orbitals interacting are the dipole’s LUMO and the dipolarophile’s HOMO. In the 

case of the 1,2-thiazetin-1,1-dioxides, where the sulfonyl group is present, it is likely that the 

di

ile with the HO

and where only an elec

polarophile’s HOMO is lowered and the gap between the latter and the dipole’s LUMO is 

enhanced, thus accounting for the difference of reactivity of those systems towards dipoles 

compared to that of 1-azetines. 

Another possible explanation is that the orientation of the molecular orbitals of the two S=O 

double bonds of the sulfonyl group does not allow the sulfonyl group to act as an electron-

withdrawing substituent due to a lack of overlapping with the molecular orbitals of the C=N 

bond. However, this unsuitable orientation of the orbitals could create repulsive secondary 

interactions with the dipole’s orbitals during the approach. 
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2.4 Attempted [2+2] cycloadditions as routes to 3-thioxo-β-sultams 

 

In order to overcome the problem of the thionation and the alkylation of 3-oxo-β-sultams, we 

thought to try [2+2] cycloaddition reactions to form directly 3-thioxo-β-sultams (275), which, 

after deprotection of the nitrogen, should be easier to alkylate to produce the desired 1,2-

thiazetin-1,1-dioxides (161; X=S). A simple retrosynthetic analysis gives two obvious pathways 

to reach this target (Scheme 2.87): on one hand, the [2+2] cycloaddition of sulfenes (276) with 

isothiocyanates (277), and on the other ha ycloaddition of thioketenes (278) with 

N ulfonylamines (279). The former was attempted and the latter was not but both of them will 

be

nd, the [2+2] c

-s

 discussed in this section, as the latter will be attempted in the future. 
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Scheme 2.87 

 

Sulfenes185  have been used as intermediates in the construction of a wide range of 

heterocyclic four-membered rings such as thietane 1,1-dioxides,186-189  thiete 1,1-

dioxides,42,190,191  β-sultones,192  and β-sultams.44,45,193  They have also been used in [3+2]194,195  

and [4+2]196,197  cycloadditions for the construction of bigger heterocycles. 

 

2.4.1 [2+2] Cycloadditions of sulfenes with isothiocyanates 

Sulfenes are generally generated in situ185,198,199  from sulfonyl chlorides (280) in the presence 

of a base. Depending on the base used, it is possible to generate as an intermediate either the 

electrophilic sulfenes (276) or the corresponding nucleophilic zwitterions (281) (Scheme 

2.88).200,201  
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Scheme 2.88 

 

The equilibrium between the sulfene and the zwitterion depends on several parameters such as 

the base size or the polarity of the solvent. According to the species predominantly formed, the 

mechanism involved in the potential formation of 3-thioxo-β-sultams (275) and the reactivity 

towards isothiocyanates can be hugely different (Scheme 2.89a and b). The base size will affect 

the nucleophilicity of the trialkylamine, and the polarity of the solvent will affect the formation 

of the zwitterion. Hence, with a bigger size of the tertiary amine and a less polar solvent, the 

formation of the sulfene (276) should be favoured (Scheme 2.89a), whereas with a smaller size 

of the tertiary amine and a more polar solvent, the formation of the zwitterion (281) should be 

favoured (Scheme 2.89b). 
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mechanism involves the formation of the electrophilic sulfene (276), which 

undergoes a concerted [2+2] cycloaddition with the isothiocyanate (277) (Scheme 2.89a), 

whereas the second one involves the nucleophilic addition of the zwitterion (281) on the 

 

Scheme 2.89 

 

The first 
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thiocarbonyl of the isothiocyanate (277) to form the intermediate (282), which undergoes an 

intramolecular nucleophilic substitution on the sulfonyl group, with the trialkylamine as a 

leaving group (Scheme 2.89b). 

Therefore, we embarked on the study of the reaction between sulfonyl chlorides (280) and 

isothiocyanates (277) (Scheme 2.90), using various sulfonyl chlorides with benzyl 

isothiocyanate and benzoyl isothiocyanate unde various conditions as summarised in Table 2.1. 

All the reactions were carried out at -10º course of the reaction, in all cases, the 

precipitation of the trialkylamine hydrochloride salt was observed. With benzylsulfonyl 

ch

r 

C. During the 

loride, the disappearance of the starting material was also observed by TLC, indicating the 

reaction of the sulfonyl chloride with the base to form either the sulfene or the zwitterion. In all 

cases, there was no reaction observed with isothiocyanates, which were recovered as the major 

products. 
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Scheme 2.90 

 

The aim of this work was to investigate whether this reaction would show any signs of success 

by changing the different parameters, and use any sign of success to drive an optimisation 

process. Whilst it is obvious that further work is required to conclude definitively that the 

formation of 3-thioxo-β-sultams from sulfenes and isothiocyanates cannot occur, it remains the 

case that no indication of even a trace of the desired product could be seen. Given the success of 

some other areas, further work was not pursued in this area. 
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Reactants in reaction mixture Added reactant 

E
 

Eq. 
of R1 R2 Concentration Addition 

time 
Solvent Reaction 

time (h) Lewis 
acid 

ntry 
R3 Concentration Base

 

(mol/L) base (mol/L) (min) 
1 PhCH2 0.25 Et3N 1 Ph H 1.26 30 Et2O 16 - 
2 PhCH2 0.15 Et3N 1 Ph H 0.15 60 Et2O 21 BF3

3 PhCH2 0.15 Et3N 1 Ph H 0.15 60 Et2O 21 ZnCl2

4 PhCH2 0.15 Et3N 1 Ph H 0.15 60 DCM 22 - 

5 PhCH2 0.075 Me3N large 
xs Ph H 0.037 90 Et2O overnight - 

6 PhCH2 0.075 Me3N large 
xs Ph H 0.075 30 DCM 1 - 

7 PhCH2 0.075 Me3N large 
xs  Ph H 0.075 90 ACN 1 - 

8 PhCH2 0.075 Me3N large 
xs  Me H 0.037 90 Et2O 1 - 

9 PhCH2 0.075 Me3N large 
xs Me H 0.075 15 DCM 1 - 

10 PhCH2 0.075 Me3N large 
xs Me H 0.075 60 ACN 1 - 

11 PhCH2 0.25 Et3N 1 H H 1.26 30 Et2O 16 - 

12 PhCH2 0.075 Me3N large 
xs H H 0.075 60 ACN 1 - 

13 PhCO 0.25 Et3N 1 Ph H 1.24 30 Et2O 19 - 
14 PhCO 0.74 Me3N xs Ph H 1.48 30 DCM 18 - 

15 PhCO 0.74 Me3N xs Me H 1.48 30 DCM 18 - 

16 PhCO 0.25 Et3N 1 H H 1.24 30 Et2O 19 - 
17 PhCO 0.74 Me3N xs H H 1.48 30 DCM 18 - 

Entry R1 R2 Concentration 
(mol/L) Base 

Eq. 
of 

base 

c. 
l/L) 

Addition 
time 
(min) 

Solvent Reaction 
time (h) 

Lewis 
acid R3 Con

(mo

18 Ph H 0.15 Me3N xs PhCH2 0.15 10 Et2O overnight - 

19 Ph H 0.15 Me3N 1 
drop PhCH2 0.075 90 Et2O 19 - 

20 Ph H 0.075 
Et3N 

+ 
Me3N 

1 eq. 
+ 2 

drops 
PhCH2 0.075 60 Et2O overnight - 

 

Table 2.1 Reaction conditions for the reaction between sulfonyl chlorides (280) and 

isothiocyanates (277) 

 

2.4.2 [2+2] Cycloadditions of N-sulfonylamines with thioketenes 

 

As stated above, the other obvious route to 3-thioxo-β-sultams (275) is the [2+2] 

cycloaddition of N-sulfonylamines (279) with thioketenes (278) (Scheme 2.91). 
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Scheme 2.91 
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2.5 Synthesis of unsubstituted γ-sultams 

 

e β ms and ultam  o

could be studied as taurine and homotaurine pro-drugs. Taurines (283) (Figure 2.3) and their 

derivatives have been recently reviewed.211 ents 

such as epilepsy,  cardiovascular diseases, congestive heart failure,  myocardial 

infarction,215  anti-hypertension,216  diabetes,  ischemia,219  obesity,220  alleviation of the 

noxious effects of smoking,221  treatment of alcoholic craving after detoxification,222  and 

 high potential for 

activity against various diseases, are poorly absorbed and the ratio between doses administered 

or

s step and could 

The purpose of this work was to synthesise som -sulta  γ-s s in rder that they 

 They are involved in various therapeutic treatm
212 213,214 

217,218 

prevention of neurodegeneration in the elderly.223  Taurines, despite their

ally and the corresponding levels which reach the target are very unfavourable.211  β-Sultam 

(284) (Figure 2.3) is a taurine pro-drug, it leads to taurine via a simple hydrolysi
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potentially be used in the place of taurines. The addition of an acyl group to this molecule also 

delays its hydrolysis, thereby enhancing intracellular concentrations of taurines. 

 

S NO
O HH3N

SO3

(283) (284)

S NO
O

O
(285)  

 

Figure 2.3 

mpounds were required in order to assess their 

va

 

As a part of a collaboration with a Belgian research group, and because of their obvious 

relationship to the chemistry discussed in this thesis, unsubstituted β-sultam (284) and N-acyl-β-

sultam (285) have been synthesised. These co

lidity as taurine pro-drugs in laboratory Alzheimer and alcohol detoxification models. 

 

2.5.1 Synthesis of unsubstituted β-sultam and N-acyl β-sultam 

2.5.1.1 Synthesis of taurine sulfonyl chloride 

 

Oxidative chlorination was performed by bubbling chlorine through a suspension of cystamine 

dihydrochloride (286) in chloroform and ethanol to give taurine sulfonyl chloride (287) in 

quantitative yield (Scheme 2.92). 

 

H3N
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S
NH3

H3N
SO2Cl

Cl ClCl
CHCl3 / EtOH

(286) (287)

Cl2

 
 

Scheme 2.92 

 

Disulfides are known to produce the corresponding sulfonyl chlorides by oxidative 

chlorination in water.224-228  The mechanism of oxidation is very complex and remains unclear 

due to the potential presence of a large amount of species in the mixture (Scheme 2.93). 
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Scheme 2.93 

 

Disulfides (288) can be cleaved by chlorine into sulfenyl chlorides (289), which, on one hand, 

c

ld the corresponding sulfonic acids (294), which can be 

chlorinated in the presence of chlorine to afford sulfonyl chlorides (295).226 On the other hand, 

sulfenyl chlorides (289) can react with water to form sulfenic acids (290), which can react with 

another molecule of sulfenyl chloride to form thiolsulfinates (296).231  It has also been suggested 

that thiolsulfinates (296) can be formed by disproportionation of sulfenic acids (290).232  Easy 

disproportionation of thiolsulfinates (296) leads to disulfides (288) and thiolsulfonates ( 97).233-

23  Chlorination of thiolsulfonates (297) leads to sulfonyl chlorides (295) and organosulfur 

trichlorides (291).224,236  

nother mechanistic suggestion is the direct oxidation of the disulfides (288) to sulfenic acids 

(2

 be the 

actual oxidant in the oxidative chlorination of disulfides (Scheme 2.93, [O] = HOCl). If this is 

an be converted to sulfur trichlorides (291).224,226,229  These intermediates (291) can be 

hydrolysed to the corresponding sulfinyl chlorides (292) and sulfinic acids (293).224,229,230 

Sulfinic acids decompose to yie

2
5 

A

90) under the action of a strong oxidising agent. Aqueous chlorine generates hypochlorous 

acid (300) (Scheme 2.94), a strong oxidising agent, which has been extensively reported to react 

with sulfur-containg compounds.237,238 Thus, hypochlorous acid (300) could possibly
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the case, oxidation of thiolsulfonates (297) to α-disulfones (299) via sulfinyl sulfones (298) 

can’t be excluded.226,239 It is then possible to suggest the subsequent oxidation of these 

compounds to sulfonyl chlorides (295).240  

 

Cl2 + H2O HOCl + HCl
(300)

hypochlorous
acid  

 

Scheme 2.94 

 

Nevertheless, the generation of hypochlorous acid (300) with chlorine occurs in water, 

whereas the reaction was performed in chloroform and ethanol. It is noteworthy that the reaction 

was achieved in both laboratory grade and pre-dried solvents without affecting the yield of the 

reaction. It is possible to suggest that hypochlorous acid is generated either from water 

contained in the solvents or produced in situ during the course of the reaction (Scheme 2.93), 

but these suggestions are unlikely since the reaction has been carried out in pre-dried solvent 

and the reaction requires 4 moles of water per mole of disulfide. It is also possible to suggest 

that hypochlorous acid is generated from ethanol (Scheme 2.95) by analogy to the reaction of 

water with chlorine described above. However, the generation of hypochlorous acid from the 

reaction of alcohols with chlorine has never to our knowledge been reported in the literature and 

is, once again, very unlikely. 

 

Et OH Et Cl + HOCl+ Cl2
(300)

hypochlorous
acid  

 

Scheme 2.95 

 

The last possibility is the presence of a strong oxidising agent other than hypochlorous acid 

such as ethyl hypochlorite (301) produced from the reaction of ethanol with chlorine (Scheme 

(2.96). But both the formation of ethyl hypochlorite and its oxidising ability remain hypothetic 

since no example of such reactions has been reported in the literature to the best of our 

knowledge. 
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Et OH Et OCl HCl+ Cl2

(301)

+

ethyl hypochlorite  

Scheme 2.96 

 

Thus, the mechanism of oxidative chlorination in ethanol and chloroform remains unexplained 

and would require a much more detailed investig tion which was not necessary for the course of 

this work. 

he IR spectrum of the spectrum (287) showed two strong absorptions at 1371 and 1159 cm-1, 

in

 

a

T

dicating the presence of the sulfonyl group. 

 

2.5.1.2 Ring closure of taurine sulfonyl chloride: synthesis of unsubstituted β-sultam 

 

Treatment of taurine sulfonyl chloride (287) with sodium carbonate in ethyl acetate afforded 

unsubstituted β-sultam (284) in 14 to 60% yield (Scheme 2.97). But the scale of the reaction was 

sufficient to provide enough material for the next step and biological tests. 

 

H3N
SO Cl2Cl

S NO
HO

Na2CO3

EtOAc
(287) (284)  

 

Scheme 2.97 

 

he ring closure of taurine sulfonyl chloride was confirmed by spectroscopic analysis. The IR 

spectrum displayed a broad absorption  for the NH, and two other strong 

absorptions at 1300 and 1150 cm-1 for the sulfonyl group. 

T

at 3297 cm-1

The 1H NMR spectrum displayed a broad singlet at 5.33 ppm for the NH, and two doublets of 

triplets at 4.25 and 3.33 ppm for the methylenes. 

The 13C NMR spectrum displayed two CH2 signals at 60.93 and 28.14 ppm. 
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2.5.1.3 N-acylation of β-sultam: synthesis of N-acyl-β-sultam 

 

-acylation of β-sultam (284) was performed in DCM with acetyl chloride in the presence of 

triethylamine and a catalytic amount of DMAP to produce the N-acyl-β-sultam (285) (Scheme 

2.98). 

N

 

S NO
O H

S NO
O

O

AcCl/DMAP

Et3N
DCM

Scheme 2.98 

he N-acylation was confirmed by spectroscopic analysis. In the IR, the disappearance of 

b -1

 singlet at 2.25 ppm 

integrating to three protons for the methyl of the acyl group. The C NMR spectrum showed an 

additional peak at 167.34 ppm for the carbonyl and another one at 23.33 ppm for the methyl, 

confirming the presence of the acyl group. 

 

2.5.2 Synthesis of unsubstituted γ-sultam and N-acyl-γ-sultam

(284) (285)  
 

 

T

road absorption in the 3300 cm  region indicated the absence of NH in the molecule, and the 

appearance of a strong band at 1695 cm-1 provided the evidence of the presence of the carbonyl. 

The acylation was further confirmed by the presence, on 1H NMR, of a
13

 

 

ne of the issues identified during pharmacological assays of the β-sultams was a relatively 

p

m (γ-sultam or propanesultam) was 

id

ropanesultam, and its N-acyl analogue was 

u -sultam and may 

therefore give further advantages. 

O

oor absorption caused by low lipophilicity. One possibility to enhance the absorption of 

taurines is to increase their lipophilicity without ignoring the water solubility. Thus, the 

synthesis of the five-membered ring analogue of the β-sulta

entified as a strategy to increase their lipophilicity by adding an extra carbon to the ring chain. 

Hence, the synthesis of the parent γ-sultam, p

ndertaken. The γ-sultam is also much more resistant to hydrolysis than the β
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2.5.2.1 Synthesis of 3-chloropropanesulfonamide 

 

3-chloropropanesulfonamide (303) was prepared by amination of commercially available 3-

chloropropanesulfonyl chloride (302) with concentrated aqueous ammonia (Scheme 2.99).241  

 

Cl SO2NH2Cl SO2Cl
conc. aq. NH3

Et2O
(302) (303)  

 

Scheme 2.99 

Spectroscopic analysis confirmed the the product. The IR displayed broad 

absorptions in the 3200-3400 cm-1 region for the stretching of N-H suggesting the presence of 

N

 

in

sulfonamide: synthesis of unsubstituted γ-sultam

 

formation of 

H2. The two strong bands at 1302 and 1120 cm-1 confirmed the presence of the sulfonyl group. 

The 1H NMR confirmed the presence of the NH2 with a broad singlet integrating to two 

protons at 4.90 ppm. The presence of the three methylenes was provided by three signals

tegrating to two protons each at 3.71, 3.33, and 2.35 ppm. The 13C NMR further confirmed 

their presence with three CH2 signals at 52.52, 42.63, and 27.04 ppm. 

 

2.5.2.2 Ring closure of 3-chloropropane  

 

lution of 

potassium ethoxide to give the desired product (304) (Scheme 2.100).241  

The ring closure of the sulfonamide (303) was performed using an ethanolic so

 

Cl SO2NH2
S

N H

O
O

EtOK / EtOH

(303)
(304)  

 

Scheme 2.100 

 

Spectroscopic analysis confirmed the ring closure of 3-chloropropanesulfonamide. On the IR 

spectrum, a broad absorption appeared at 3269 cm-1 for the N-H stretching. Two strong 

absorptions at 1289 and 1130 cm-1 confirmed the presence of the sulfonyl group. 
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On the  integrating to one proton at 4.39 

ppm gave the evidence of the presence of NH in the molecule. Three signals integrating to two 

pr

he structure of the product was further confirmed by a consistent MS analysis. 

 

2.5.2.3 N-Acylation of γ-sultam: synthesis of N-acyl-γ-sultam

1H NMR spectrum, the occurance of a broad singlet

otons at 3.43, 3.09, and 2.48 ppm confirmed the presence of the three methylenes. This was 

further confirmed by three CH2 peaks on the 13C NMR spectrum. 

T

 

As for β-sultam (284), the acylation of ) was performed in DCM with acetyl 

chloride in the presence of triethylamine and a catalytic amount of DMAP to give compound 

(3

 

 γ-sultam (304

05) (Scheme 2.101). 

 

N H
S

O
O

S
N

O
O

O

AcCl/DMAP

Et3N
DCM

(304) (305)  
 

Scheme 2.101 

d the evidence of the formation of the product. On the IR 

spectrum

ed by the H NMR spectrum, with the appearance of a singlet integrating to 

three protons at 2.43 ppm, and by 13C NMR with the appearance of a quaternary carbon at 

167.77 ppm for C=O and a CH3 signal at 22.82 ppm, both indicating the presence of the acyl 

group. 

The structure of the product was further confirmed by HRMS analysis with an accurate 

m asured mass (m/z) for [M+NH4]+ of 181.0642 for 181.0641 required. 

 

2.6 Cycloaddition reactions with 4,5H-isothiazolin-1,1-dioxides and 

 

Spectroscopic analysis provide

, the disappearance of the NH strectching absorption and the appearance of a strong 

stretching C=O absorption suggested the success of the N-acylation. 
1This was confirm

e

isothiazol-1,1-dioxides: attempted syntheses of bicyclic γ-sultams 
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T

-1,1-dioxides, and we thought 

th  contain the 

sulfonimine moiety, which is the key structural feature in our strategy to synthesise bicyclic 

systems. The investigation of their chemical behaviour towards cycloadditions would allow us 

icyclic heterocycles. Second, 

in case of positive results, it would provide some bicyclic γ-sultams (Scheme 2.102), which 

w

xploration of cycloadditions with the isothiazolin-1,1-dioxides and 

isothiazol-1,1-dioxides, the synthesis of which has been discussed earlier in this thesis (section 

2.3.4). 

 

he initial and ultimate aim of this research was to synthesise bicyclic β-sultams through the 

use of 1,2-thiazetin-1,1-dioxides. As discussed above, we had failed to do so, but on our way to 

make the 3-diethylamino-1,2-thiazetin-1,1-dioxide (252), we had several isothiazol-1,1-dioxides 

in hand, which are the 5-membered ring analogues of 1,2-thiazetin

ey were interesting molecules for several reasons. First, these molecules

to conclude whether the sulfonimine moiety is able or not to form b

ould be made available for biological testing as discussed above (section 2.5). Third, these 

products constitute in some cases hitherto unreported heterocycles. For these reasons, we 

embarked upon the e

a

b
c
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Scheme 2.102 

2.6.1 Cycloaddition with diphenylcyclopropenone (DPP) 

1 Reactivity of 4,5H-isothiazolin-1,1-dioxides2.6.1.  
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The attempted formal [2+2] cycloadditions of 4-hydroxy-(4-methoxyphenyl)-4,5H-

isothiazolin-1,1-dioxide (246) and 4-chloro-4-(4-methoxyphenyl)-4,5H-isothiazolin-1,1-dioxide 

(247) with DPP (186) to give the corresponding bicyclic compounds (306) and (307) were 

unsuccessful (Scheme 2.103). 
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MeO
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Ph Ph

X = OH:
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X = Cl:
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NS

X NEt2
O

Ph

Ph
O

O

MeO

(246) X = OH
(247) X = Cl

(306) X = OH
(307) X = Cl
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Scheme 2.103 

 

2.6.1.2 Reactivity of isothiazol-1,1-dioxides 

 

3-Diethylamino-4-(4-methoxyphenyl)-isothiazol-1,1-dioxide (248) did not react with DPP to 

form the cycloadduct (308) (Scheme 2.104). The reaction was carried out in acetonitrile at RT 

and was monitored by TLC. After 50 hours, no sign of reaction could be observed, and a 

catalytic amount of zinc chloride (8% mol.) was added to the mixture, which was stirred for a 

further 54 hours, but no formation of any new product could be seen on TLC and the reaction 

was stopped. 
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Ph Ph
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Scheme 2.104
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2.6.2 1,3-Dipolar cycloaddition with nitrile oxides 

 

[3+2] Cycloadditions are a useful tool to access a wide range of five-membered heterocyclic 

compounds by addition of a dipole to a multiple bond.154,155,242,243  

itrile oxides (310) are usually generated in situ from the corresponding hydroximoyl 

chlorides (309) using triethylamine as a base to perform the dehydrochlorination.152,153,155  Being 

highly reactive species, nitrile oxides tend to dimerise in the absence of a dipolarophile to give 

the corresponding oxadiazole N-oxide (311) (Scheme 2.105).152,154  But even in the presence of a 

dipolarophile, the dimer is still able to form, depending on the reactivity of the dipolarophile 

relative to that of the nitrile oxide itself. In order to minimise the formation of this dimer, the 

addition of triethylamine was performed very slowly over several hours using a syringe pump 

and a dilute ethereal solution. 

N

R Cl

N
OH

NEt3+ + Et3NHCl
N

O ON

R R

N OCR

C NR O

N OCR

(309)

(310)

(311)

 

Scheme 2.105 

2.6.2.1 Reactivity of 4,5H-isothiazolin-1,1-dioxides 

2.6.2.1.1 Reactivity of 3-diethylamino-4-hydroxy-4-(4-methoxyphenyl)-4,5H-isothiazolin-

1,1-dioxide 

 

The cycloadditions of 3-diethylamino-4-hydroxy-4-(4-methoxyphenyl)-4,5H-isothiazolin-1,1-

dioxide (246) with different nitrile oxides generated in situ from the corresponding hydroximoyl 

chlorides (196), (268) and (312a-c) to give the corresponding isothiazolidino-oxazolines (313a-

e) were all unsuccessful (Scheme 2.106). The only isolated compounds after column 

chromatography were the starting material and the oxadiazole-N-oxides from the dimerisation of 

the nitrile oxides. 
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Scheme 2.106 

 

2.6.2.1.2 Reactivity of 3-diethylamino-4-chloro-4-(4-methoxyphenyl)-4,5H-isothiazolin-

1,1-dioxide 

 

The cycloaddition of 3-diethylamino-4-chloro-4-(4-methoxyphenyl)-4,5H-isothiazolin-1,1-

dioxide (247) with 2-azidobenzohyroximoyl chloride (196) in the presence of triethylamine was 

attempted, but it was revealed to be unsuccessful and did not afford the corresponding 

cycloadduct (314) (Scheme 2.107). Given the failure of 4-hydroxy-4,5H-isothiazolin-1,1-

dioxide (246) to react with nitrile oxides, no further attempts of 1,3-dipolar cycloaddition of 4-

chloro-4,5H-isothiazolin-1,1-dioxide (246) with nitrile oxides was made. 
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Scheme 2.107 

 

Given the failure of the corresponding four-membered ring to react, these results are perhaps 

not surprising. 
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2.6.2.2 Reactivity of isothiazol-1,1-dioxides 

 

The next set of reactions explored were those of the fully conjugated isothiazole system with 

compounds (248), (249), (251), (264) and (265). Instead of occurring on the imine double bond, 

as described above (Scheme 2.101), the addition of the nitrile oxides occurred, in all cases, on 

the olefinic double bond to give the corresponding isothiazolino[5,4-d]isoxazolin-4,4-dioxides 

(315a-i), hence forming two new stereogenic centres (Scheme 2.108). In all cases, only a single 

diastereoisomer was formed, i.e. the reaction was diastereospecific, typical of the concerted 1,3-

dipolar cycloaddition152,155,242,244-247 . It is interesting to note that there are  examples of two-step 

1,3-dipolar cycloadditions248,249  and that th  debate on the mechanism of such 

reactions.250-253 It is notable that only a single regioisomer was formed in these reactions. A 

given the f othiazol-1,1-dioxides (246) and (247) (which lack the alkene) to react. 

OO
R'

ere is much lively

summary of the results is shown in Table 2.2. The result of these reactions is not a surprise 

ailure of the is
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Scheme 2.108 

(315f) R = 4-MeOPh ; R' = Cl
(315g) R = 4-MeOPh ; R' = Br
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etermination of structuresD  

 

CH2 and a CH3 at 62.92 and 13.85 ppm, respectively. 

In each other case (entry 2-9), the evidence of the cycloaddition was provided by the 

appearance of the appropriate number of protons in the aromatic region on 1H NMR. 

Cycloaddition was further confirmed by the appearance, on 13C NMR, of the new C=N bond 

carbon in the range of 151.00-155.44 ppm, and the appearance of the appropriate number of 

additional aromatic CH and quaternary carbons. 

The HMBC analysis was in accordance with the expected regioselectivity of the cycloaddition 

on the olefinic double bond. However, it is noteworthy to highlight that the expected coupling 

between the proton and the quaternary sp3 carbon at the ring junction was missing for 

compounds (315a-c) (appendix VI for (315c)) and (315e) (entry 1-3 and 5), and that only a 

weak coupling was observed for coumpound (315d) (entry 4, appendix IX). The lack of this 

coupling had thrown a slight suspicion on the exact identification of the isomer isolated, but the 

crystal structures of compounds (315a) and (315c) did confirm the formation of the proposed 

structures, confirming the regioselectivity of the cycloaddition suggested by HMBC analysis. 

The structure of each product was further confirmed by HRMS analysis with a consistent 

accurate mass for each compound when compared to the proposed structures. 

 

Entry 
Isothiazol-

1,1-dioxides 
(R') 

Hydroximoyl 
chlorides (R) Product Yield 

(%) Comment 

 

The structure of the products was, in each case, assigned on the basis of 1H NMR, 13C NMR, 

HSQC, HMBC, MS, and IR analysis. 

When R’=H (entry 1-5), the proton of the ring junction appeared in the range of 4.97-5.70 

ppm as a characteristic singlet on 1H NMR. 

With ethyl chlorooximidoacetate (entry 1), the presence of the carbonyl in the product was 

given by the appearance of an IR absorption at 1742 cm-1. In the 1H NMR spectrum, the 

appearance of a quartet at 4.42 ppm and a triplet at 1.38 ppm with J=7.1 Hz confirmed the 

presence of the ethyl group from the ethoxy carbonyl moiety in the molecule. The addition of 

the nitrile oxide was further confirmed by 13C NMR with the appearance of two quaternary sp2 

carbons at 157.97 and 147.65 ppm for C=O and C=N, respectively, and also the appearance of a

1 H EtO2C 315a 86 single 
diastereoisomer 
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2 H Ph 315b 71 single 
diastereoisomer 

3 H 2-N3-Ph 315c 28 single 
diastereoisomer 

4 H 4-O2N-Ph 315d 28 diastereoisomer 
single 

5 H 4-MeO-Ph 315e 71 single 
diastereoisomer 

6 Cl 4-MeO-Ph 315f 56 single 
diastereoisomer 

7 Br 4-MeO-Ph 315g 54 diastereoisomer 
single 

8 MeSO 4-MeO-Ph 315h 34 mixture of 
diastereoisomers 

9 MeSO2 4-MeO-Ph 315i 68 single 
diastereoisomer 

10 MeS 4-MeO-Ph 315j no 
reaction - 

 

Table 2.2 Yields of the cycloaddition of nitrile oxides on isothiazol-1,1dioxides 

 

It is interesting to note that no reaction occurred with 5-methanesulfanyl-isothiazol-1,1-

dioxide (R’ = MeS, entry10), indicating a dramatic change of reactivity of the fully conjugated 

system when the substituent at the 5-position is electron- onating compared to electron-

withdrawing substituents (entry 6-9). 

 

d

Determination of the syn-stereochemistry at the ring junction 

 

The syn-stereochemistry of the ring junction of compounds (315a) and (315c) was clearly and 

undoubtedly established by 1D and 2D nOe experiments. The NOESY spectra showed a 

correlation between the hydrogen at the ring junction and the aromatic proton in the meta 

position relative to the methoxy group of the aryl group attached to the ring junction (Figure 

2.4). This correlation is possible only if the hydrogen and the aromatic ring are in a syn 

configuration, which is consistent with the concerted mechanism of the cycloaddition of nitrile 

ox

rogen at the ring 

junction. It was therefore assumed by correlation that the stereochemistry of the ring junction 

should be syn e o ct

The NOESY spectrum also showed aromatic hydrogens closer to 

the ring junction with one CH2 and the two CH3s of the diethylamino group, indicating the close 

relationship in space between those hydrogens. 

ides on double bonds. The crystal structures of compounds (315a) and (315c) further 

confirmed, once again, the syn configuration of the aryl group and the hyd

for th ther produ s. 

correlations between the two 
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Figure 2.4 NOE correlations for compounds (315a) and (315c) 

 

his assumption about the syn configuration at the ring junction was further suggested by 

un

or compounds (315f, R’=Cl) and (315g, R’=Br), the AB system of the two pairs of aromatic 

pr stead, the four protons appeared, 

on 1H NMR, as broad singlets (appendix X and XI) with significantly different chemical shifts 

(δ

the broadening of the signals on 1H NMR disappeared but 

th

 the electronic environment for each proton. 

T

expected stereoelectronic effects observed on the 1H NMR spectrum for the aromatic protons 

of the aryl group on the ring junction of compounds (315f-i). Those effects would not be 

observed if the aryl group and the R’ group at the ring junction were in an anti configuration. 

This is explained below. 

F

otons of the aryl group was expected to give two doublets. In

 

), indicating they are in a very different electronic environment. Unfortunately the broadening, 

flattening and coalescence of the signals did not allow a proper observation of this 

discrimination. 

For compound (315h, R’=MeSO) isolated as a mixture of diastereoisomers, the AB system of 

the two pairs of aromatic protons of the aryl group appeared as four multiplets, which, in fact, 

looked like broad unresolved doublets (appendix XII and XIII). The broadening and coalescence 

of the signals was stronger for one stereoisomer compared to the other one. Once again, this 

indicated those four protons are in a different electronic environment, suggesting a restricted 

rotation of the aromatic ring at the ring junction. 

For compound (315i, R’=MeSO2), 

e four aromatic protons gave four dinstinct doublets of doublets (appendix XIV), indicating, 

once again, a possible restricted rotation of the aromatic ring resulting in a blocked 

conformation of the ring and a discrimination of
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It is interesting to note that, for compounds (315f, R’=Cl) and (315g, R’=Br), two flattened 

peaks appeared in the 13C NMR spectrum for the two aromatic CH carbons closer to the 

stereogenic center at the ring junction, whereas no discrimination was observed between the two 

other aromatic CH carbons, i.e. those ortho to the methoxy group. For compound (315h, 

R’=MeSO), the two aromatic CH carbons ortho to the methoxy group appeared as two peaks at 

114.51 and 114.16 ppm for one stereoisomer. For the other stereoisomer, they appeared at 

115.02 and 114.35 ppm, and the two CH carbons closer to the ring junction were flattenened. 

This indicated that the four aromatic CH carbons on the ring junction were discriminated, 

further suggesting the restriction of the rotation of the aromatic ring. For compound (315i, 

R’=MeSO2), only the two aromatic CH carbons closer to the ring junction were discriminated. 

 possible explanation for a restricted rotation of the methoxyphenyl ring, resulting in the 

discrimination of  group and the 

substituent R’ at the ring junction (Figure 2.5). This steric hindrance could account for the 

re

A

 the aromatic protons, is that of steric hindrance between the aryl

stricted rotation of the aromatic ring by creating a vibrational/switching movement of the ring. 

 
steric hindrance

R' = Cl, Br, SOMe or SO2Me

Ar=4-MeO-Ph

restricted rotation
of the aromatic ring
at the ring junction

due to steric hindrance

HH

OMe OMe

H HNEt2N
R'

MeO

H

SO2

O
N

OMe

O
N SO2

N

NEt2

Ar

R'

O
N SO2

N

NEt2

Ar

steric hindrance

R'

 

ent increases, the amplitude of the movement 

decrea

Figure 2.5 Possible restricted rotation of the aryl group at the ring junction 

 

It is interesting to note that the broadening of the signals for these aromatic protons on 1H 

NMR decreases from R’=halogen to R’=SO2Me (appendix X, XI, XII, XIII and XIV). This 

could be explained by the amplitude of this movement. Indeed, moving from the halogens to the 

methanesulfonyl group, the size of the substitu

ses until the aromatic ring is blocked in a given conformation when R’=SO2Me (Figure 

2.6). 
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Figure 2.6 Reduction or complete loss of rotation of the aryl group with enhanced steric 

hindrance 

 

The broadening of signals can be caused by efficient relaxation promoted by the fluctuation of 

a local magnetic field created by a vibrational movement, which restores the equilibrium 

Boltzmann population.254  Hence, the bigger the substituent, the smaller is the amplitude of the 

rotation, the smaller is the vibrational movement, the more defined and uniform is the electronic 

environment, the more resolved are the signals. It is then possi  a scale related to the 

size of the substituent R’ (Figure 2.7). Therefore, in the case of compounds (315f-g, 

R’=halogens), this effect can take place and account for the broadening of the signals, whereas 

in the case of compounds (315h, R’=MeSO) and (315i, R’=MeSO2), the aromatic ring is 

blocked and the vibrational movement cannot take place, resulting in more resolved and sharp 

signals. 

The flattening and broadening of signals could also be caused when the rate constant for the 

exchange from one environment to another is greater than the frequency difference of the proton 

resonances tons will 

appear as separate signals, and, if the rate of exchange is fast, they will appear as a single signal. 

In

menon cannot take place, resulting in more resolved and sharp signals. 

ble to define

in the separate environments.254 Thus, if the rate of exchange is low, the pro

 between, if the rate constant of exchange is comparable to the frequency difference, the 

protons appear as broadened signals. In the case of compounds (315f-g), R’=halogens), it is 

possible to assume the occurance of this phenomenon, resulting in the broadening of the signals. 

In the case of compounds (315h, R’=MeSO) and (315i, R’=MeSO2), there is no change of 

environment for the protons since the aromatic ring is in a blocked conformation, and the 

pheno
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Figure 2.7 Scale relating the size of the substitutent R’ to the broadening of signals on 1H 

NMR for the aromatic protons 

This phenomenon also accounts for the intact A  observed when R’=H. Indeed, with 

R’=H, there is complete free rotation of the arom tic ring at the ring junction because there is no 

steric hind

ent for these aromatic carbons. 

 

B system

a

rance at all. Hence, the two aromatic protons in each pair are in the same environment 

at any time and appear as two doublets as expected. Similarly, it can be argued that the rate of 

exchange between all the environments during the rotation of the aromatic ring is very fast. 

Hence the protons appear as a single sharp signal. 

In the 13C NMR spectrum of compounds (315f) and (315g), the phenomena of efficient 

relaxation and environmental exchange described above could also account for the flattening, 

broadening and coalescence of some signals. For compounds (315h) and (315i), the full splitting 

of the four aromatic CH carbons is due to the blocked conformation of the aromatic ring closer 

to the ring junction caused by the steric hindrance, resulting in four distinct electronic 

environm

 

Selectivity between the olefinic and the imine double bond 

 

The selectivity between the imine and the olefinic double bonds could be explained by a 

difference in the influence of the sulfonyl group on each double bond. The cycloaddition of 

nitrile oxides with alkenes is known to be more efficient with alkenes substituted by both 

electron-withdrawing and electron-donating groups.  The olefinic double bond of the starting 

materials are either trisubstituted (R’=H) or tetrasubstituted (R’=Br, Cl, SOMe or SO Me) by 

electron-donating or electron-withdrawing groups, a fact that should enhance the reactivity of 

this double bond. 
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It is also known that trans alkenes are better dipolarophiles than cis alkenes towards the 

addition of nitrile oxides.152  The sulfonyl group is a more electron-withdrawing group than the 

Et2N-C=N group, forming a trans substituted ‘push-pull’ system with the electron-donating 4-

methoxyphenyl group (Figure 2.8). This structural feature should also increase the reactivity of 

the olefinic double bond by creating a favourable electron density on both carbons, which 

accounts for the regioselectivity of the reaction. 
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N
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NEt2

OR

MeO
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Figure 2.8 Trans substituted ‘push-pull’ system 

 

The cycloaddition of nitrile oxides on the imine double bond should be increased by both the 

presence of the diethylamino group and the imine nitrogen, by creating a favourable electron 

density towards the HOMO/LUMO interactions. In other words, the electron-donating 

diethylamino group should increase both the nucleophilicity of the nitrogen and the 

electrophilicity of the carbon by the mesomeric effect (Scheme 2.109). 

 

N
S

NEt2

O OR

MeO

N
S

NEt2

O OR

MeO

enhanced electrophilicity

enhanced nucleophilicity 
Scheme 2.109 

 

However, the presence of the sulfonyl group attached to the imine nitrogen could lower its 

nucleophilicity by moderating the electron-donating effect of the diethylamino group, thus 

reducing its reactivity towards the cycloadditon with nitrile oxides (Scheme 2.110). 
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Scheme 2.110 

 

2.6.3 1,3-Dipolar cycloaddition with a nitrile imine 

2.6.3.1 Reactivity of 3-diethylamino-4-hydroxy-4-(4-methoxyphenyl)-4,5H-isothiazolin-

1,1-dioxide 

 

The 1,3-dipolar cycloaddition of 4,5H-isothiazolin-1,1-dioxide (246) with a nitrile imine was 

attempted. The dipole was generated in situ from the corresponding α-chlorobenzaldehyde 

phenylhydrazone (316) in the presence of triethylamine to yield the cycloadduct (317) (Scheme 

2.111). Unfortunately, once again, the dipolar cycloaddition was unsuccessful. 

 

NS

NEt2

OHAr

O
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+
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N

Ph

NHPh

Cl
NS

N
N

NEt2Ar

PhO
O

OH Ph

Et3N

Et2O

(316) (317)
Ar = 4-MeOPh  

 

Scheme 2.111 

 

2.6.3.2 Reactivity of 3-diethylamino-4-(4-methoxyphenyl)isothiazol-1,1-dioxide 

 

3-Diethylamino-4-(4-methoxyphenyl)-isothiazol-1,1-dioxide (248) was reacted with α-

chlorobenzaldehyde phenylhydrazone (316) in the presence of triethylamine to give the 
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cycloadduct (318) in 27% yield (Scheme 2.112). Nitrile imines, as described earlier for nitrile 

oxides, react with double bonds in a concerted fashion.154,155  
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N
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H

Ph

Ph

NEt2

O O

 
 

2.6.4 1 cycloaddition with sodium azide

Scheme 2.112 

 

,3-Dipolar  

isothiazole from 

m thanesulfonyl to methanesulfinyl, i.e. by putting a worse leaving group at this position, we 

wanted to see if the isothiazole ring would follow the same path. The reaction was carried out, 

the methanesulfinyl substituent did not act as a leaving group and the reaction of 5-

methanesulfinylisothiazol-1,1-dioxide (265) with sodium azide in acetonitrile afforded the 

bicyclic adducts 319 and 319’ as a mixture of diastereoisomers in 22 and 27% yield, 

respectively (Scheme 2.113), which further confirmed the mechanism of the ring contraction, as 

discussed before (Scheme 2.81). 

 

The proposed mechanism of the surprising ring contraction of 5-methanesulfonylisothiazol-

1,1-dioxide (251) to afford the 3-diethylamino-1,2-thiazetine (252) previously described 

involves the loss of methanesulfinate as a leaving group (Scheme 2.80 and 2.81, section 

2.3.4.13). Thus, by changing the substituent in the 5-position of the 

e
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Scheme 2.113 

 

2.6.5 Conclusion 

 

d with isothiazol-1,1-dioxides (248), (249), (264), (265) and 

(251

In the light of the results obtaine

), it may be concluded that the effect of the sulfonyl group is to activate the olefinic double 

bond and deactivate the imine double bond, a fact which is consistent with the difference of 

reactivity observed between 1-azetines and 1,2-thiazetin-1,1-dioxides discussed earlier in this 

thesis. 

Moreover, the fact that 4,5H-isothiazolin-1,1-dioxides (246) and (247) did not react with 1,3-

dipoles, nor with diphenylcyclopropenone further supports the lack of reactivity of the 

sulfonimine moiety. 

156 



Chapter 2 Conclusion 

Conclusion 

 

Some 1-azetines have been synthesised and reacted successfully with diphenylcyclopropenone 

and nitrile oxides to afford the corresponding bicyclic compounds. The thermolysis of the 

strained cycloadducts (or their reaction with dimethylacetylene dicarboxylate where appropriate) 

released the strain of the four-membered ring to afford five- and six-membered heterocycles 

such as 1,2,4-oxadiazoles, a pyridine, and a pyrimidine. 

 the same fashion, one example of 3,4-dihydro-2H-pyrrole was synthesised and reacted with 

diphenylcyclopropenone to open a new r dines, a five-fused heterocycle present 

in a wide range of alkaloids. 

1,2-Thiazetin-1,1-dioxides, the sulfonyl analogues of 1-azetines, were also synthesised via the 

-sultams and via the ring contraction of an isothiazol-1,1-dioxide. 

Unfortunately, they failed to react with DPP, nitrile oxides or dienes. The introduction of the 

su

ed. However, 3-diethylamino-1,2-thiazetin-1,1-dioxide reacted with a Lewis acid, zinc 

ch

with nitrile oxides, a nitrile imine and an azide to give the corresponding 

bicycles, thus forming two new stereogenic centres. Two isothiazolin-1,1-dioxides lacking the 

olefinic double bond failed to react with DPP and 1,3-dipoles, thus confirming the lack of 

reactivity of the sulfonimine moiety observed with 1,2-thiazetin-1,1-dioxides. 

Unsubstituted and N-acylated β- and γ-sultams were synthesised and assessed as taurine pro-

drugs in laboratory Alzheimer and alcohol detoxification models. 

 

Future work 

 

First, the synthesis of 3-thioxo-β-sultams via the [2+2] cycloaddition of sulfenes with 

isothiocyanates can be further investigated, e.g. the generation of sulfene at lower temperatures. 

The [2+2] cycloaddition of thioketenes with N-sulfonylamines has not been explored and could 

In

oute to pyrrolizi

alkylation of 3-oxo-β

lfonyl group in the four-membered ring changed dramatically the reactivity of the double 

bond, thus impeding the access to bicyclic β-sultams through a new route. The presence of the 

sulfonyl group also affected the reactivity of the carbonyl in 3-oxo-β-sultams since the 

thionation of those molecules remained unsuccessful whereas that of 1-azetines was smoothly 

perform

loride, to undergo a ring enlargement yielding a 1,2,3-oxathiazolin-2-oxide.  

A series of isothiazol-1,1-dioxides was synthesised. Their olefinic double bond reacted 

diastereospecifically 
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offer another route to access those molecules. Their subsequent alkylation would also need to be 

t the synthesis of 3-alkylthio-1,2-thiazetin-1,1-dioxides. 

econd, the 1,3-dipolar cycloaddition step requires further investigation such as the attempt to 

us

studied to attemp

S

e other dipoles or other reaction conditions. 

Finally, the access to other pyrrolizidines also requires further examination such as the use of 

other cyclopropenones and the functionalisation of the subsequent cycloadduct in order to target 

natural products. This latter aspect is currently being investigated in the laboratory. 
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Chapter 3 Experimental 

General information 

nless otherwise stated or unnecessary, all reactions were conducted using oven-dried 

glassware under nitrogen dried through 4 Å molecular sieves and delivered through a gas 

m nifold. Work-up procedures were carried out in air. All solvents were purchased from Fisher 

Chemicals and were of analytical grade. 

nhydrous grade solvents were freshly distilled using a continuous still under nitrogen. 

Acetone was dried overnight over 3 Ǻ molecular sieves (10% w/v), and then distilled over 

freshly activated 3 Ǻ molecular sieves over 3-4 h. Chloroform was dried over 4 Ǻ molecular 

sieves or distilled over phosphorus pentoxide (3% w/v). Dichloromethane, ethyl acetate and 

toluene were distilled over calcium  

pre-dried over sodiu  

benzophenone (0.2-0. r magnesium 

turning (5 g/L) and i ere purchased 

from Acros or Sigma-

All reactions were monitored by TLC, which was carried out on 0.20 mm Macherey-Nagel 

Alugram® Sil G/UV254 silica gel-60 F254 precoated aluminium plates and visualisation was 

achieved using UV light and / or vanillin stain. n chromatographies were performed on 

Merck silica 

The NMR ance 

500. 

IR spectra p for 

liquids or neat for solids. 

Mass spectra were recorded on a Bruker Daltonics micrOTOF mass spectrometer operating at 

a positive ion mode under an electrospray ionisation (ESI +) method. High resolution mass 

spectra were recorded on a Finnegan MAT 900 XTL instrument operated by the EPSRC 

National Mass Spectrometry service at the University of Swansea. 

Melting points were recorded on a Gallenkamp apparatus. 

Crystallographic data were recorded on a Bruker Apex Duo instrument at the University of 

Huddersfield or at the EPSRC centre for crystallography at the University of Southampton. 

 

U

a

A

 hydride (5% w/v) over 4-6 h. Diethyl ether and THF were

m wires, and then distilled over sodium wires (1-2% w/v) with

3% w/v) as an indicator. Absolute ethanol was dried ove

odine (0.5 g/L) over 6 h. Any other anhydrous solvents w

Aldrich. 

 Colum

gel (0.063-0.200 mm, 60 Å). 

spectra were recorded on a Bruker DPX-400 instrument or on a Bruker Av

were recorded on a Nicolet 380 FT-IR instrument as a thin film for oils, a dro
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3 Experimental 

3.1 Synthesis and reactivity of 1-azetines and 3,4-dihydro-2H-pyrrole 

3.1.1 Synthesis of 1-azetines 

3.1.1.1 Synthesis of 2-ethylthio-4-phenyl-1-azetine 

3.1.1.1.1 Synthesis of 4-phenylazetidin-2-one 

 

Ph

O

C

N
SO2Cl

N

O

Ph SO2Cl
N

O

Ph H

+
Et2O

NaHCO3 / Na2SO3

H2O / ice

(178)
C9H9NO

styrene N-chlorosulfonyl
isocyanate

MW = 147.17 g/mol
 

 at room temperature for 1 h 40 min. The solvent was 

th

 over 10 minutes to a vigorously stirred solution of water (30 mL), sodium carbonate (9 g, 

10

tered. The organic layer was separated, and the aqueous layer was 

w

491 (m), 1453 (m), 1404 (m) 1390 

(w

 
1H NMR: δ (500 MHz, CDCl3) 7.34 (5H, m, Ph), 6.97 (1H, bs, NH), 4.67 (1H, dd, J=5.2 and 

2.3 Hz, CH), 3.38 (1H, ddd, J=14.8, 5.2 and 2.3 Hz, CH2), 2.80 (1H, dd, J=14.8 and 2.3 Hz, 

CH2). 

 

To styrene (3.7 mL, 3.32 g, 31.9 mmol) in dry ether (15 mL) was added, dropwise under an 

inert atmosphere, N-chlorosulfonyl isocyanate (CSI) (3.2 mL, 5.24 g, 37.0 mmol, 1.2 eq.) over 

10 minutes. The mixture was stirred gently

en removed in vacuo to give an oily residue, which was redissolved in ether (20 mL) and 

added

7.1 mmol, 3.3 eq.), sodium sulfite (6 g, 47.6 mmol, 1.5 eq.) and ice (20 g). The solution was 

stirred for 1 hour and fil

ashed with ether (5 x 20 mL). The combined organic extracts were dried over magnesium 

sulfate, the solution was filtered and the solvent evaporated under vacuum to yield the product 

as a white solid (3.51g, 75%, m.p. = 102-103ºC). 

 

IR υmax (cm-1) 3207 (br, NH), 1737 (m), 1705 (s, C=O), 1

), 1368 (m), 1282 (w), 1214 (w), 1185 (m), 1171 (m), 1007 (w), 979 (m), 962 (m), 783 (w), 

757 (s), 697 (s). 
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1 Cl3) 168.48 (C=O), 140.13 (C (Ph)), 128.44 (CH (Ph)), 127.93 

(CH (Ph)), 125.47 (CH (Ph)), 50.15 (CH), 47.60 (CH2) 

MS (m/z): 170 [M+Na]+, 317 [2M + Na]+. 

 

3C NMR δ (500 MHz, CD

 

 

3.1.1.1.2 Synthesis of 4-phenylazetidin-2-thione 

 

N

O

Ph H
N

S

Ph H

Lawesson's
reagent

THF

(178) (179)
C9H9NS

MW = 163.23 g/mol 
 

To 4-phenylazetidin-2-one (178) (1.07 g, 7.3 mmol) in dry THF (15 mL) was added 

Lawesson’s reagent (1.54 g, 3.8 mmol, 0.5 eq.), and the whole was stirred under an inert 

a

Hz, CH2), 3.02 (1H, dd, J=15.5 and 1.8 Hz, 

CH2). 

7 (CH (Ph)), 58.89 (CH), 51.26 (CH2). 

tmosphere at room temperature for 1 h and at ~60ºC for 20 minutes. The solvent was removed 

by rotary evaporation to yield the crude product as an orange oil (3.30g). It was purified by 

gravity silica chromatography (PE 40-60ºC / EtOAc : 3/1, Rf = 0.24) to yield a slight brown / 

white solid (0.73 g, 61%, m.p. = 117-118ºC). 

 

IR υmax (cm-1) 3136 (br, NH), 1486 (s, C=S), 1450 (s), 1403 (m), 1359 (m), 1263 (w), 1236 

(s), 1176 (m), 1146 (m), 1068 (w), 980 (m), 963 (s), 756 (s), 694 (s). 

 
1H NMR: δ (500 MHz, CDCl3) 8.28 (1H, bs, NH), 7.38 (5H, m, Ph), 5.18 (1H, dd, J=4.6 and 

1.8 Hz, CH), 3.51 (1H, ddd, J=15.5, 4.6 and 2.1 

 
13C NMR δ (500 MHz, CDCl3) 204.42 (C=S), 138.03 (C (Ph)), 129.03 (CH (Ph)), 128.82 

(CH (Ph)), 125.7
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3.1.1.1.3 Synthesis of 2-ethylthio-4-phenyl-1-azetine 

 

S

N
Ph H

N
Ph

SEtMeerwein's
reagent

DCM

(180)
C11H13NS

MW = 191.29 g/mol

(179)

 
 

To 4-phenylazetidin-2-thione (179) (580 mg, 3.56 mmol) was added Meerwein’s reagent (1M 

solution in DCM, 5 mL, 5 mmol, 1.4 eq.) under an inert atmosphere. The whole was stirred at 

room temperature for 1 h, and then at reflux for 1 h. The solution was then added dropwise to a 

50% solution of potassium carbonate (5 mL) at -10ºC. The solution was then filtered through 

Celite® and the organic layer was separated. The aqueous layer was washed with 

d

, 2926 (w), 1655 (m, C=N), 1554 (m), 1514 (m), 

1493, (m), 1450 (m), 1374 (m), 1325 (m), 1264 (m), 1029 (m), 972 (m), 755 (m), 697 (s). 

4.3 and 2.0 Hz, CH), 3.56 

(1H, dd, J=14.6 and 4.3 Hz, CH2), 3.06 (1H, q, J=7.4 Hz, SCH2CH3), 3.06 (1H, q, J=7.4 Hz, 

S

MR δ (400 MHz, CDCl3) 183.56 (EtS-C=N), 140.82 (C (Ph)), 128.37 (CH (Ph)), 127.34 

(CH (Ph)), 125.96 (CH (Ph)), 65.10 (CH), 43.57 (CH2), 23.36 (SCH2CH3), 14.65 (SCH2CH3). 

 ([M3+H]+), 765.3 ([M4+H]+), 956.4 

([M5+H]+). 

 

 

ichloromethane (2 x 10 mL), and the combined organic extracts were dried over magnesium 

sulphate. Filtration and concentration in vacuo gave the crude product as a dark orange oil. 

Purification by gravity silica chromatography (PE 40-60ºc / EtOAc : 5/1, Rf = 0.14) yielded the 

product as a yellow oil (160 mg, 23%). 

 

IR υmax (cm-1) 3059 (w), 3030 (w), 2968 (w)

 
1H NMR: δ (400 MHz, CDCl3) 7.30 (5H, m, Ph), 5.02 (1H, dd, J=

CH2CH3), 2.96 (1H, dd, J=14.6 and 2.0 Hz, CH2), 1.40 (3H, t, J=7.4 Hz, SCH2CH3). 

 
13C N

 

MS (m/z): 192.1 ([M+H]+), 383.2 ([M2+H]+), 574.2
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3.1.1.2 Synthesis of 2-thioethyl-3,3,4,4-tetramethyl-1-azetine 

3.1.1.2.1 Synthesis of 3,3,4,4-tetramethylazetidin-2-one 

 

O

C

N
SO2Cl

N

O

SO2Cl
N

O

H

+
Et2O

NaHCO3 / Na2SO3

H2O / ice

(183)
C7H13NO

MW = 127.18 g/mol

2,3-dimethylbut-2-ene N-chlorosulfonyl
isocyanate

 

 and concentration in vacuo yielded the product as a 

white solid (3.04 g, 75%, m.p. = 102-104ºC). 

 1377 

(m ), 1252 (w), 1200 (w), 1144 (s), 1126 (m), 957 (m), 783 (m), 745 (s), 718 (s), 674 

(m

, s, 2 x 

CH3). 

 

(CH3). 

50.1 [M+Na]+, 255.2 [M2+H]+, 277.2 [M2+Na]+. 

To 2,3-dimethylbut-2-ene (3.8 mL, 2.68 g, 31.9 mmol) in dry ether (15 mL) was added, 

dropwise over 10-15 minutes under an inert atmosphere, N-chlorosulfonyl isocyanate (CSI) (3.3 

mL, 5.24 g, 37.0 mmol, 1.2 eq.). The mixture was stirred gently at room temperature for 2 h. 

The solvent was removed in vacuo to give a pale yellow solid. It was redissolved in diethyl ether 

(20 mL) and added, dropwise over 15 minutes, to a vigorously stirred solution of water (30 mL), 

sodium carbonate (9.0 g, 107.1 mmol, 3.3 eq.), sodium sulfite (6.0 g, 47.6 mmol, 1.5 eq.) and 

ice (20 g). The solution was stirred for 1 h and filtered. The organic layer was separated, and the 

aqueous layer was extracted with ethyl acetate (4 x 25 mL). The combined organic extracts were 

dried over anhydrous MgSO4. Filtration

 

IR υmax (cm-1) 3187 (br, NH), 2982 (w), 1747 (m), 1704 (s, C=O), 1449 (w), 1396 (m),

), 1311 (m

), 586 (s). 

 
1H NMR: δ (500 MHz, CDCl3) 6.00 (1H, bs, NH), 1.32 (6H, s, 2 x CH3), 1.21 (6H

 
13C NMR δ (500 MHz, CDCl3) 174.91 (C=O), 58.18 (C), 54.54 (C), 24.40 (CH3), 19.06

 

MS (m/z) 1
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3.1.1.2.2 Synthesis of 3,3,4,4-tetramethylazetidin-2-thione 

 

N

O

H
N

S

H

Lawesson's
reagent

THF

(184)
C7H13NS

MW = 143.24 g/mol

(183)

 
 

H NMR: δ (500 MHz, CDCl3) 8.21 (1H, bs, NH), 1.39 (6H, s, 2 x CH3), 1.23 (6H, s, 2 x 

C

δ (500 MHz, CDCl3) 212.29 (C=S), 68.57 (C), 56.84 (C), 23.54 (CH3), 20.90 

(CH3). 

m/z) 144.1 [M+H] , 166.1 [M+Na] , 309.1 [M2+Na] . 

To 3,3,4,4-tetramethylazetidin-2-one (183) (1.93 g, 15.2 mmol) in dry THF (31 mL) was 

added Lawesson’s reagent (3.19 g, 7.9 mmol, 0.5 eq.) and the whole was stirred under an inert 

atmosphere at room temperature for 1 h, and then at ~60ºC for 20 minutes. The solvent was 

removed in vacuo and the crude product (6.20 g) was purified by gravity silica chromatography 

(PE 40-60ºC / EtOAc : 3/1, Rf = 0.34) to yield the product as a white solid (2.06 g, 95%, m.p. = 

122-124ºC). 

 

IR υmax (cm-1) 3116 (br, NH), 2988 (w), 1494 (s, C=S), 1455 (m), 1392 (w) 1369 (m), 1311 

(w), 1261 (w), 1210 (w),1131 (s), 1066 (s), 976 (w), 949 (m), 838 (w), 716 (s). 

 
1

H3). 

 
13C NMR 

 

MS ( + + +
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3.1.1.2.3 Synthesis of 2-ethylthio-3,3,4,4-tetramethyl-1-azetine 

 

N

S

H
N

SEtMeerwein's
reagent

DCM

(185)
C9H17NS

MW = 171.30 g/mol

(184)

 
 

 x 5mL) and the combined organic extracts were dried over anhydrous MgSO4. 

Filtration and concentration in vacuo gave the crude product as an orange oil (300 mg). It was 

p

), 1134 (s), 1050 (m), 1033 (s), 956 (s), 948 (s), 829 (w). 

3), 1.25 (6H, s, 2 x CH3), 1.12 (6H, s, 2 x CH3). 

), 51.28 (C), 23.83 (CH3), 21.78 

(S 2CH3), 20.63 (CH3), 14.52 (SCH2CH3). 

 

MS (m/z) 172.1 [M+H]+, 194.1 [M+Na]+, 365.2 [M2+Na]+. 

 

To 3,3,4,4-tetramethylazetidin-2-thione (184) (380 mg, 2.65 mmol) was added Meerwein’s 

reagent (1M solution in DCM, 7.96 mL, 7.96 mmol, 3 eq.) under an inert atmosphere. The 

whole was stirred at room temperature for 2 h, and then at reflux for 2 h. The solution was then 

added dropwise to a 50% solution of potassium carbonate (4 mL) at -10ºC. The solution was 

filtered through Celite® and the organic layer was separated. The aqueous layer was extracted 

with DCM (2

urified by silica gravity chromatography (PE 40-60ºC / EtOAc : 5/1, Rf = 0.16) to yield the 

product as a pale yellow oil (140 mg, 31%). 

 

IR υmax (cm-1) 2984 (m), 2958 (m), 2921 (m), 1532 (s, C=N), 1447 (m), 1369 (m), 1265 (w), 

1224 (w

 
1H NMR: δ (500 MHz, CDCl3) 2.96 (2H, q, J=7.4 Hz, SCH2CH3), 1.33 (3H, t, J=7.4 Hz, 

SCH2CH

 
13C NMR δ (500 MHz, CDCl3) 186.98 (C=N), 69.88 (C

CH
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3.1.1.3 Reactivity of 2-ethylthio-4-phenyl-1-azetine 

3.1.1.3.1 Reaction with diphenylcyclopropenone (DPP): synthesis of 5-ethylthio-2,3,7-

triphenyl-1-azabicyclo[3.2.0]hept-2-en-4-one 

 

N
Ph

SEt

Ph Ph

O

N

O

Ph

Ph
Ph

SEt

+
ACN

il (40 mg, 64%). 

241 (m), 1180 (w), 1156 (m), 

1106 (w), 1073 (m), 1026 (m), 971 (w), 912 (w), 755 (m), 693 (s), 669 (s), 647 (m). 

Ph), 5.57 (1H, t, J=8.2 Hz, Ph-CH-

CH2), 4.25 (1H, dd, J=5.5 and 9.6 Hz, Ph-CH-CH2,), 3.16 (1H, dd, J=9.6 and 12.6 Hz, Ph-CH-

C

2-CH3), 2.60 (1H, dq, J=7.4 and 12.2 Hz, S-CH2-

CH3), 2.54 (1H, dq, J=7.4 and 12.2 Hz, S-CH2-CH3), 2.48 (1H, dd, J=5.5 and 12.6 Hz, Ph-CH-

C z, S-CH2-CH3). 

13C NMR δ (500 MHz, CDCl3) 202.69 (C=O), 202.29 (C=O), 176.83 (C=C-C=O), 174.66 

(C=C-C=O), 141.20 (C (Ar)), 135.05 (C (Ar)), 131.88 (C (Ar)), 131.75 (CH (Ar)), 131.03 (C 

(Ar)), 130.95 (C (Ar)), 130.38 (CH (Ar)), 130.04 (CH (Ar)), 129.89 (C (Ar)), 129.36 (CH 

(Ar)), 128.77 (CH (Ar)), 128.72 (CH (Ar)), 128.47 (CH (Ar)), 128.45 (CH (Ar)), 128.37 (CH 

(Ar)), 128.33 (CH (Ar)), 128.15 (CH (Ar)), 127.79 (CH (Ar)), 127.71 (CH (Ar)), 127.57 (CH 

(187)
C26H23NOS

MW = 397.53 g/mol

(180) (186)

 
 

To 4-phenyl-2-ethylthio-1-azetine (180) (30 mg, 0.16 mmol) in dry acetonitrile (4 mL) was 

added diphenylcyclopropenone (DPP) (32 mg, 0.16 mmol, 1 eq.) in one portion. The solution 

was stirred at room temperature under an inert atmosphere overnight. The solvent was 

evaporated in vacuo and the crude product (310 mg) was purified by gravity silica 

chromatography (PE 40-60ºC / EtOAc : 4/1, Rf = 0.21) to yield the product as a mixture of 

diastereoisomers in a 1.6/1 ratio as a yellow o

 

IR υmax (cm-1) 3068 (w), 3035 (w), 2964 (w), 2926 (w), 1675 (s, C=O), 1600 (m), 1581 (m), 

1558 (m), 1507 (m), 1496 (m), 1448 (m), 1373 (m), 1311 (w), 1

 
1H NMR: δ (500 MHz, CDCl3) 7.61-6-81 (15H, m, 3x

H2), 3.00 (1H, dd, J=8.2 and 13.1 Hz Ph-CH-CH2), 2.93 (1H, dd, J=8.2 and 13.1 Hz, Ph-CH-

CH2), 2.66 (2H, dq, J=7.4 and 12.2 Hz, S-CH

H2), 1.24 (3H, t, J=7.4 Hz, S-CH2-CH3), 1.23 (3H, t, J=7.4 H
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(Ar)), 12 26.00 (C=C-C=O), 125.93 (CH 

(Ar)), 123.66 (C=C-C=O), 66.50 (CH), 65.85 (CH), 35.01 (CH ), 31.74 (CH ), 23.55 (S-CH -

3 2 3

 

S (m/z): 398.2 [M+H]+, 420.1 [M+Na]+, 817.3 [M2+Na]+. 

 

HRMS (m/z) [M+H]+ for C26H24NOS calculated 398.1573 measured 398.1569. 

 

3.1.1.3.2 Thermolysis of 5-ethylthio-2,3,7-triphenyl-1-azabicyclo[3.2.0]hept-2-en-4-one: 

synthesis of 2-ethylthio-3,5,6-triphenylpyridine or 2-ethylthio-4,5,6-

triphenylpyridine 

7.22 (CH (Ar)), 126.92 (CH (Ar)), 126.88 (CH (Ar)), 1

2 2 2

CH ), 23.44 (S-CH2-CH3), 14.49 (S-CH2-CH3), 14.47 (S-CH -CH ). 

M

 

N

OSEt

Ph
Ph

Ph

NEtS

Ph Ph

Ph NEtS

Ph

Ph

Ph

or
∆

toluene

(191)
C H NS

(187)
25 21

MW = 367.50 g/mol

(192)
C25H21NS

MW = 367.50 g/mol  

ial on TLC. 

The solvent was evaporated under reduced pressure to give the crude product as a yellow oil (61 

m

δ (500 MHz, CDCl3) 7.30 (2H, m, CH (Ar)), 7.20-7.18 (7H, m, CH (Ar)), 7.07-7.03 

(5

 

5-Ethylthio-2,3,7-triphenyl-1-azabicyclo[3.2.0]hept-2-en-4-one (187) (61 mg, 0.15 mmol) was 

heated at reflux in toluene under nitrogen until disappearance of the starting mater

g). It was purified by gravity silica chromatography (PE 40-60˚C/EtOAc: 20/1) to give the 

product as a yellow oil (11 mg, 20%). 

 

IR υmax (cm-1) 2956 (w), 2924 (m), 2854 (w) , 1716 (w), 1559 (w), 15221 (w), 1492 (w), 1445 

(w), 1374 (w), 1260 (m), 1029 (m), 800 (m), 766 (m) , 699 (s), 669 (m). 

 
1H NMR: 

H, m, CH (Ar)), 6.86 (2H, m, CH (Ar)), 3.29 (2H, q, J=7.3 Hz, CH2), 1.46 (3H, t, J=7.3 Hz, 

CH3). 
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13C NMR δ (500 MHz, CDCl3) 157.48 (C), 150.03 (C), 140.60 (C), 139.31 (C), 137.24 (C), 

131.50 (CH), 130.26 (C), 130.06 (CH), 129.19 (CH), 127.81 (CH), 127.66 (CH), 127.41 (CH), 

127.33 (CH), 127.30 (CH), 126.44 (CH), 121.56 (CH), 24.47 (CH2), 14.91 (CH3). 

sured 367.1385. 

3.1.1.3.3 Cycloaddition with 2-azidobenzohydroximoyl chloride: synthesis of 2-(2-

azidophenyl)-5-ethylthio-7-phenyl-4,1,3-oxadiazabicyclo[3.2.0]hept-2-ene 

N3

 

HRMS (m/z) [M+H]+ for C25H21NS calculated 367.1389 mea

 

 

SEt

N
N

O

PhN
Ph

SEt

+

N3

Cl

N
HO

Et3N

Et2O

(197)
C18H17N5OS

MW = 351.42 g/mol

(196)(180)

 
 

o 2-ethylthio-4-phenyl-1-azetine (180) (352 mg, 1.84 mmol) and 2-azidobenzohydroximoyl 

ch

/ EtOAc : 9/1) to give the product as a single 

diastereoisomer as a yellow oil (206 mg, 63%). 

-1 7 (m), 1559 (w), 1541 

(w), 1498 (m), 1455 (m), 1418 (w), 1293 (m), 1164 (m), 1090 (m), 1054 (m), 989 (w), 829 (w), 

74

MR: δ (400 MHz, CDCl3) 7.57 (2H, d, J=7.1 Hz, Ph), 7.43-7.33 (5H, m, Ph), 7.24 (1H, 

d, =7.4 Hz, Ph), 6.87 (1H, t, J=7.6 Hz, Ph), 4.81 (1H, dd, J=9.3 and 5.4 Hz, PhCHN), 3.69 

(1H, dd, J=13.1 and 9.3 Hz, PhCHCH2), 2.86 (1H, dq, J=12.6 and 7.5 Hz, SCH2CH3), 2.75 (1H, 

T

loride (196) (181 mg, 0.92 mmol, 0.5 eq) was added triethylamine (0.15 mL, 112 mg, 1.10 

mmol, 0.6 eq.) diluted in diethyl ether (5 mL) over 5 hours at room temperature. The mixture 

was stirred overnight under an inert atmosphere. The solution was filtered and the solvent was 

removed in vacuo to give the crude product as an orange oil (400 mg). It was purified by gravity 

silica chromatography (PE 40-60ºC 

 

IR υmax (cm ) 2928 (w), 2114 (s, N3), 1683 (m, C=N), 1592 (m), 157

9 (s), 698 (s). 

 
1H N

 J
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dq

C NMR δ (400 MHz, CDCl3) 158.55 (N-C=N), 140.45 (C (Ar)), 138.81 (C (Ar)), 131.65 

(C H (Ph)), 124.58 

(CH (Ph)), 119.40 (CH (Ph)), 110.92 (C-SEt), 66.79 (CH), 45.22 (SCH2CH3), 22.52 (CH2), 

14.58 (SCH CH ). 

MS (m/z) 352.1 [M+H] 2

HRMS (m/z) [M+H]+ for C18H17N5OS calculated 351.1148 measured 351.1145. 

 

3.1.1.3.4 Thermolysis of 2-(2-azidophenyl)-5-ethylthio-7-phenyl-4,1,3-oxadiazabicyclo-

[3.2.0]hept-2-ene: formation of 3-(2-azidophenyl)-5-ethylthio-1,2,4-oxadiazole 

 
SEt

, J=12.6 and 7.5 Hz, SCH2CH3), 2.72 (1H, dd, J=13.1 and 5.4 Hz, PhCHCH2), 1.36 (3H, t, 

J=7.5 Hz, SCH2CH3). 

 
13

H (Ph)), 130.82 (CH (Ph)), 128.56 (CH (Ph)), 128.02 (CH (Ph)), 126.12 (C

2 3

 
+, 374.1 [M+Na]+, 725.2 [M  + Na]+. 

 

N
N

O

Ph

N3

N
N

OEtS

N3

∆

oxadiazabicyclo[3.2.0]hept-2-ene (197) (120 

mg, 0.34 mmol) was dissolved in toluene (5 mL) and heated at reflux for 47 h. The solvent was 

re

 υmax (cm-1) 2930 (w), 2130-2100 (s, N3), 1601 (w), 1582 (m), 1520 (m), 1505 (m), 1470 

(m

toluene

(199)
C10H9N5OS

MW = 247.27 g/mol

(197)

 
 

2-(2-Azidophenyl)-5-ethylthio-7-phenyl-4,1,3-

moved in vacuo and the crude product was purified by gravity silica chromatography (PE 40-

60ºC / EtOAc : 7/1) to yield the product as an orange oil (10 mg, 17%). 

 

IR

), 1339 (s), 1304 (m), 1271 (m), 1187 (m), 750 (m). 
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The assignment for NMR was established from HSQC and HMBC data and is as follows: 

 

O

N
N

N3

EtS

a
b

c

 

δ (400 MHz, CDCl3) 7.99 (1H, dd, J=7.8 and 1.6 Hz, CHd (Ph))‡, 7.55 (1H, ddd, 

J 7.19 (1H, td, 

J CHc (Ph))#, 3.34 (2H, q, J=7.4 Hz, SCH2CH3), 1.54 (3H, t, J=7.4 Hz, 

SCH CH ). 

# Signals m

13C NMR δ (400 MHz, CDCl3) 177.62 (EtS-C=N), 166.66 (N-C=N), 138.89 (C (Ar)), 132.09 

(CHb (Ar)), 131.58 (CHd (Ar)), 124.87 (CHc (Ar)), 119.34 (CHa (Ar)), 118.23 (C-N3 (Ar)), 

27.27 (SCH2CH3), 14.77 (SCH2CH3). 

 

MS (m/z) 248.1 [M+H]+, 270.0 [M+Na]+, 517.1 [M2+Na]+. 

 

HRMS (m/z) [M+H]+ for C10H10N5OS calculated 248.0601 measured 248.0603. 

d

 
1H NMR 

=8.1 7.4 and 1.6 Hz,CHb (Ph))#, 7.27 (1H, dd, J=8.1 and 0.8 Hz, CHa (Ph))‡, 

=7.6 and 0.8 Hz, 

2 3

‡ Signals may be interchanged. 

ay be interchanged. 
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3.1.1.3.5 Reaction of 2-(2-azidophenyl)-5-ethylthio-7-phenyl-4,1,3-oxadiazabicyclo[3.2.0]-

hept-2-ene with DMAD 

 

N
N

O

Ph

SEt

N3

+

CO2Me

CO2Me

N
N

OEtS

N

N
N

CO2Me

CO2Me
toluene

∆

(201)
C16H15N5O5S

MW = 389.38 g/mol

(197) (200)

 

 

2-(2-Azidophenyl)-5-ethylthio-7-phenyl-4,1,3-oxadiazabicyclo[3.2.0]hept-2-ene (197) (110 

m ylene dicarboxylate (DMAD) (200) (42µL, 49 mg, 0.34 mmol, 

1 eq.) were dissolved in toluene (5 mL) and the whole was heated at reflux under nitrogen 

ov

 υmax (cm ) 2954 (w), 1735 (s, C=O), 1557 (w), 1507 (m), 1474 (m), 1448 (m), 1358 (s), 

1 )  809 (w), 777 

(w), 758 (m), 669 (w). 

 
1H NMR δ (500 MHz, CDCl3) 8.25 (1H, dd, J=7.1 and 2.2 Hz, CH (Ar)), 7.71 (2H, m, CH 

(Ar)), 7.54 (1H, dd, J=7.4 and 1.6 Hz, CH (Ar)), 4.02 (3H, s, CO2Me), 3.76 (3H, s, CO2Me), 

3.09 (2H, q, J=7.4 Hz, SCH2CH3), 1.36 (3H, t, J=7.4 Hz, SCH2CH3). 

 
13C NMR δ (500 MHz, CDCl3) 178.85 (EtS-C=N), 165.49 (N-C=N), 160.40 (C=O), 158.10 

(C=O), 139.06 (C (Ar)), 133.78 (C=C), 133.14 (C=C), 131.63 (CH (Ph)), 131.37 (CH (Ph)), 

130.08 (CH (Ph)), 128.69 (CH (Ph)), 124.20 (C-triazole (Ar)), 53.31 (CO2CH3), 52.74 

(CO2CH3), 27.42 (SCH2CH3), 14.53 (SCH2CH3). 

 

MS (m/z) 390.1 [M+H]+, 412.1 [M+Na]+, 779.2 [M2+H]+, 801.1 [M2+Na]+. 

g, 0.31 mmol) and dimethylacet

ernight. The solvent was removed in vacuo to give the crude product (130 mg) as an orange 

oil. It was purified by gravity silica chromatography (PE 40-60ºC / EtOAc : 10 / 1) to give the 

product as a yellow oil (50 mg, 41%). 

 

-1IR

290 (m), 1232 (m), 1181 (m , 1105 (m), 1078 (m), 1004 (w), 963 (w), 826 (w),
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HRMS (m/z) [M+H]+ for C H N O S calculated 390.0867 measured 390.0867. 

3.1.1.4 Reactivity of 2-ethylthio-3,3,4,4-tetramethyl-1-azetine

16 16 5 5

 

 

3.1.1.4.1 Cycloaddition of 2-ethylthio-3,3,4,4-tetramethyl-1-azetine with 2-azidobenzo-

hydroximoyl chloride: synthesis of 2-(2-azidophenyl)-5-ethylthio-6,6,7,7-

tetramethyl-4,1,3-oxadiazabicyclo[3.2.0]hept-2-ene 

 

N

SEt

N3

NCl

OH

+
N

N
O

SEt

N3

Et3N

Et2O

(202)
C16H21N5OS

MW = 331.43 g/mol

(185)

(196)

 
 

To 2-ethylthio-3,3,4,4-tetramethyl-1-azetine (185) (190 mg, 1.11 mmol) and 2-

azidobenzohydroximoyl chloride (196) (195 mg, 0.99 mmol, 0.9 eq.) in dry diethyl ether (4.5 

mL) was added, dropwise over 6-7 hours at room temperature, triethylamine (170 µL, 120 mg, 

1.19 mmol, 1.1 eq.) diluted in dr

was purified by gravity silica chromatography 

(PE 40-60ºC / EtOAc : 19/1, Rf = 0.33) to yield the product as a yellow oily solid (247 mg, 

75%

m, C=N), 1491 (s), 1447 

(m), 1393 (w), 1372 (m), 1344 (m), 1300 (s), 1160 (m), 1090 (m), 1067 (m), 1051 (m), 909 (m), 

860 (w). 825 (m

y diethyl ether (34 mL). The solution was stirred overnight 

under nitrogen. The mixture was filtered, and the solvent was removed in vacuo to give the 

crude product as a pale yellow oil (0.330 g). It 

). 

 

IR υmax (cm-1) 2959 (m), 2925 (m), 2127 and 2093 (vs, N3), 1581 (

), 758 (s), 708 (m). 
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The assignment for NMR was established from HSQC and HMBC data and is as follows: 

SEt

 

O
N

N

N3

a
b  

 
1H NMR δ (500 MHz, CDCl3) 7.64 (1H, dd, J=7.6 and 1.6 Hz, CHd (Ar)), 7.46 (1H, ddd, 

J=8.0, 7.6 and 1.6 Hz, CHb (Ar)), 7.26 (1H, dd, J=8.0 and 1.0 Hz, CHa (Ar)), 7.18 (1H, td, 

J=7.6 and 1.0 Hz, CHc (Ar)), 2.72 (1H, dq, J=12.4 and 7.4 Hz, SCH2CH3), 2.66 (1H, dq, J=12.4 

and 7.4 Hz, SCH2CH3), 1.51 (3H, s, CH3), 1.31 (3H, s, CH3), 1.29 (3H, t, J=7.4 Hz, SCH2CH3), 

1.26 (3H, s, CH3), 0.96 (3H, s, CH3). 

 
13C NMR δ (500 MHz, CDCl3) 156.69 (N-C=N), 137.84 (C (Ar)), 131.18 (CHb (Ar)), 130.31 

(CHd (Ar)), 124.35 (CHc (Ar)), 119.21 (CHa (Ar)), 118.76 (C-N3 (Ar)), 116.92 (C-SEt), 71.63 

(C

c

d

Me2), 52.80 (CMe2), 26.38 (C(CH3)2), 21.54 (SCH2CH3), 20.86 (C(CH3)2), 20.36 (C(CH3)2), 

19.77 (C(CH3)2), 14.58 (SCH2CH3). 

 

MS (m/z) 332.2 [M+H]+, 354.1 [M+Na]+, 685.3 [M2+Na]+, 1016.4 [M3+Na]+. 

 

HRMS (m/z) [M+H]+ for C16H21N5OS calculated 332.1540 measured 332.1540. 
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3.1.1.4.2 Thermolysis of 2-(2-azidophenyl)-5-ethylthio-6,6,7,7-tetramethyl-4,1,3-

oxadiazabicyclo[3.2.0]hept-2-ene 

 

N
N

O
SEt

N3

N
N

O

N3

+
N

N
O

SEt

H2N

(203)
C14H15N5O

MW = 269.30 g/mol

(204)
C16H23N3OS

MW = 305.43 g/mol

toluene

∆

in toluene (5 mL) and heated at reflux under nitrogen. 

The reaction was monitored by TLC. After 47h, the solvent was evaporated in vacuo to give the 

crude product (602 mg) as a dark brown oily

ethylbut-1-en-3-yl)-1,2,4-oxadiazole (203):

(202)

 
 

2-(2-azidophenyl)-5-ethylthio-6,6,7,7-tetramethyl-4,1,3-oxadiazabicyclo[3.2.0]hept-2-ene 

(202) (0.688 g, 2.07 mmol) was dissolved 

 tar. It was purified by gravity silica 

chromatography (PE 40-60ºc / EtOAc : 20/1) to give compound (203) (56 mg, 10 %) and 

compound (204) (138 mg, 22 %). 

 

3-(2-azidophenyl)-5-(2,3-dim  

υ  (cm-1) 2955 (m), 2924 (s), 2854 (m), 2128 and 2096 (s, N ), 1586 (w), 1558 (m), 1484 

(m

 

The assignment for NMR is as follows: 

 

 

IR max 3

), 1456 (m), 1346 (m), 1300 (m), 1161 (m), 1139 (m), 901 (m), 756 (s). 

N
N

O

N3

a
b

c

d
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1H NMR δ (500 MHz, CDCl ) 8.00 (1H, dd, J=7.8 and 1.4 Hz, CH  (Ar)), 7.53 (1H, td, J=7.8 

a c

(1H, s, C=CH2 2 CH3), 1.65 (6H, s, 2 x CH3). 

13C NMR δ (500 MHz, CDCl3) 183.82 (O-C=N), 166.14 (N-C=N), 147.09 (C (Ar)), 138.79 

(C=CH2), 131.87 (CH (Ar)), 131.67 (CH (Ar)), 124.84 (CH (Ar)), 119.30 (CH (Ar)), 118.74 

(C-N3 (Ar)), 111.81 (C=CH2), 42.01 (CMe2), 25.76 (C(CH3)2), 19.86 (CH3-C=CH2). 

 

MS (m/z) 270.1 [M+H]+, 292.1 [M+Na]+, 561.2 [M2+Na]+. 

 

2-(2-aminophenyl)-5-ethylthio-6,6,7,7-tetramethyl-4,1,3-oxadiazabicyclo[3.2.0]hept-2-ene 

3 d

and 1.5 Hz, CHb (Ar)), 7.31 (1H, d, J=8.1 Hz, CH  (Ar)), 7.26 (1H, t, J=7.5 Hz, CH  (Ar)), 4.98 

), 4.95 (1H, s, C=CH ), 1.77 (3H, s, 

 

(204): 

447 

 
SEt

 

IR υmax (cm-1) 3465 and 3349 (br, NH2), 2965 (w), 2926 (w), 1617 (s, C=N), 1491 (m), 1

(m), 1393 (m), 1372 (m), 1358 (m), 1317 (m), 1261 (m), 1159 (s), 1051 (m), 911 (m), 865 (m), 

825 (m), 750 (s), 668 (m). 

 

The assignment for NMR was established from HSQC and HMBC data and is as follows: 

O

N
N

H2N

a
b  

H NMR δ (500 MHz, CDCl3) 7.41 (1H, dd, J=7.7 and 1.4 Hz, CHd (Ar))‡, 7.19 (1H, td, J=7.7 

and 1.4 Hz, CHb (Ar))#, 6.71 (1H, d, J=7.9 Hz, CHa (Ar))‡, 6.70 (1H, t, J=7.9 Hz, CHc (Ar))#, 

5.41 (2H, bs, NH2), 2.66 (2H, m, SCH2CH3), 1.56 (3H, s, CH3), 1.33 (3H, s, CH3), 1.27 (6H, s, 

2 x CH3), 1.26 (3H, t, J=7.4 Hz, SCH2CH3 ), 0.99 (3H, s, CH3). 

 
13C NMR δ (500 MHz, CDCl3) 159.77 (N-C=N), 146.32 (C (Ar)), 131.22 (CHb (Ar))‡, 129.70 

(CHd (Ar))#, 116.39 (CHc (Ar))‡, 116.01 (C-SEt), 115.56 a (Ar))#, 109.72 (C-NH2 (Ar)), 

c

d

 
1

(CH
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7

 The assignment may be interchanged. 

3.1.1.4.3 a-

bicyclo[3.2.0]hept-2-ene with DMAD 

1.81 (C(CH3)2), 51.67 (C(CH3)2), 26.49 (C(CH3)2), 21.72 (SCH2CH3), 21.24 (C(CH3)2), 20.97 

(C(CH3)2), 19.68 (C(CH3)2), 14.63 (SCH2CH3). 

‡ The assignment may be interchanged. 

#

 

MS (m/z) 306.2 [M+H]+, 328.1 [M+Na]+. 

 

Reaction of 2-(2-azidophenyl)-5-ethylthio-6,6,7,7-tetramethyl-4,1,3-oxadiaz

 

(202) (200)

N
N

O
SEt

N3

CO2Me

CO2Me

+

N

NN

MeO2C

N
N

O

MeO2C

+
toluene

∆

(209)
Ar = 2-N3Ph
C22H27N5O5S

MW = 473.54 g/mol
20 21 5 5

MW = 411.41 g/m

(210)
C H N O

ol

N ArMeO2C
O

N
MeO2C SEt

 

 

2-(2-Azidophenyl)-5-ethylthio-6,6,7,7-tetramethyl-4,1,3-oxadiazabicyclo[3.2.0]hept-2-ene 

(202) (97 mg, 0.29 mmol) and dimethylacetylene dicarboxylate (DMAD) (200) (40 µL, 46 mg, 

0.32 mmol, 1 eq.) were dissolved in toluene (5 mL) and the reaction was heated at reflux under 

nitrogen for 21h. The solvent was removed in vacuo and the crude product (150 mg) was 

purified by flash column chromatography (hexane/EtOAc: 5/1) to give compounds (209) (35 

mg, 25%) and (210) (30 mg, 25%) in a ~1:1 ratio. 

 

2-(2-azidophenyl)-4,4-dimethyl-5,6-dimethoxycarbonyl-3-(1-ethylthio-2-methylpropan-1-on-

2-yl)-4H-pyrimidine (209): 

 

IR υmax (cm-1) 2953 (w), 2928 (w), 2126 (vs, N3), 1734 (s, C=O), 1665 (m, C=N), 1599 (m), 

1511 (m), 1445 (m), 1361 (m), 1289(m), 1232 (m), 1203 (m), 1172 (m), 1126 (m), 1079 (m), 

1003 (m), 944(m), 824 (w), 807 (w), 762 (m). 
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The assignment for NMR was established from coupling constants, HSQC and HMBC data, 

and is as follows: 

 

N

NMeO2C

MeO2C

O SEt

N3
a

b

c
d

 

δ (500 MHz, CDCl3) 7.51 (1H, dd, J=7.8 and 1.4 Hz, CHd (Ar)) ‡, 7.48 (1H, td, 

J=7.9 and 1.4 Hz, CHb (Ar))#, 7.35 (1H, dd, J=7.9 and 1.1 Hz, CHa (Ar)) ‡, 7.27 (1H, td, J=7.8 

and 1.1 Hz, CHc (Ar))#, 4.01 (3H, s, CO2Me), 3.88 (3H, s, CO2Me), 2.83 (2H, q, J=7.4 Hz, S-

CH2-CH3), 1.42 (6H, s, 2 x Me), 1.30 (6H, s, 2 x Me), 1.22 (3H, t, J=7.4 Hz, S-CH2-CH3). 

 
13C NMR δ (500 MHz, CDCl3) 204.22 (O=C-SEt), 160.37 (C=O), 158.62 (C=O), 138.64 (N-

C=N), 136.43 (C (Ar)), 133.04 (C=C), 131.89 (C=C), 131.41 (CHb (Ar)) ‡, 129.12, (C (Ar)), 

127.23 (CHd (Ar))#, 124.90 (CHc (Ar)) ‡, 124.56 (CHa (Ar))#, 64.76 (C(CH3)2), 55.48 

(C(CH3)2), 53.27 (CO2CH3), 52.68 (CO2CH3  26.99 (C(CH3)2), 23.60 (SCH2CH3)), 21.72 

(C(CH3)2), 14.27 (SCH2CH3). 

 

1H NMR 

),

‡ The assignment may be interchanged. 

# The assignment may be interchanged. 

 

HRMS (m/z) [M+H]+ for C22H27N5O5S calculated 474.1806 measured 474.1805. 
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3-(2-(1H-(4,5-dimethoxycarbonyl-1,2,3-triazolyl))phenyl)-5-(2,3-dimethylbut-1-en-3-yl)-

1,2,4-oxadiazole (210): 

The assignment for NMR was established by deduction from other analogues, and is as 

follows: 

 

C

 

N
N

O

N
NN

MeO2

CO2Me
a

b

c

 
 

d

 CH 

(Ar)), 7.56 (1H, dd, J=7.3 and 1.2 Hz, CHa (Ar)), 4.88 (1H, s, C=CH2), 4.82 (1H, s, C=CH2), 

4

 (CH (Ar)), 131.28 (CH (Ar)), 130.06 (CH (Ar)), 128.60 (CH 

(A 2), 53.20 (CO2CH3), 52.65 (CO2CH3), 41.79 (CMe2), 

2

 The assignment may be interchanged. 

HRMS (m/z) [M+H]+ for C20H21N5O5 calculated 412.1615 measured 412.1613. 

 

1H NMR δ (500 MHz, CDCl3) 8.25 (1H, dd, J=7.4 and 1.6 Hz, CHd (Ar)), 7.71 (2H, m,

.00 (3H, s, CO2CH3), 3.73 (3H, s, CO2CH3), 1.60 (3H, s, CH3), 1.45 (6H, s, 2xCH3). 

 
13C NMR δ (500 MHz, CDCl3) 184.46 (O-C=N), 165.12 (N-C=N) ‡, 160.38 (C=O)‡, 158.16 

(C=O) ‡, 146.67 (Me-C=CH2), 139.01 (C (Ar))#, 133.89 (MeO2C-C=C-CO2Me)#, 133.36 

(MeO2C-C=C-CO2Me)#, 131.46

r)), 124.64 (C (Ar)), 111.75 (Me-C=CH

5.40 (C(CH3)2), 19.55 (CH3-C=CH2). 

‡

# The assignment may be interchanged. 
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3.1.2 Synthesis and reactivity of a 3,4-dihydro-5-ethylthio-2H-pyrrole 

3.1.2.1 Synthesis of pyrrolidin-2-thione 

 

N
H

O

N
H

SLawesson's
reagent

THF

(212)
C4H7NS

MW = 101.16 g/mol

(211)

 
 

To pyrrolidin-2-one (211) (421 mg, 4.94 mmol) in dry THF (10 mL) was added Lawesson’s 

reagent (1.040 g, 2.57 mmol, 0.5 eq.) and the reaction was stirred under nitrogen at RT for one 

h

2CH2). 

), 49.64 (CH2), 43.23 (CH2), 22.89 (CH2). 

Synthesis of 3,4-dihydro-5-ethylthio-2H-pyrrole

our, and then at ~60ºC for 20 minutes. The solvent was removed in vacuo and the yellow oily 

crude product (1.759 g) was purified by silica chromatography (hexane / EtOAc: 1/1) to yield 

the product as a pale yellow solid (428 mg, 86%, m.p.=114-115ºC). 

 

IR υmax (cm-1) 3141 (br, NH), 2918 (w), 2884 (w), 1536 (m, C=S), 1469 (w), 1449 (m), 1292 

(s), 1217 (m), 1111 (m), 1061 (m), 1035 (m), 972 (m), 787 (s). 

 
1H NMR δ (500 MHz, CDCl3) 8.77 (1H, bs, NH), 3.65 (2H, t, J= 7.2 Hz, CH2N), 2.90 (2H, t, 

J= 8.0 Hz, CH2C=S), 2.20 (2H, m, CH2CH

 
13C NMR δ (500 MHz, CDCl3) 205.77 (C=S

 

3.1.2.2  

 

N
H

S

N

SEtMeerwein's
reagent

DCM

(213)
C6H11NS

MW = 129.22 g/mol

(212)
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To pyrrolidin-2-thione (212) (268 mg, 2.65 mmol) was added triethyloxonium 

mol, 1.5 eq.) 

 RT for 1 hour, and then at reflux for 1 hour. The 

solution was then added dropwise to a 50% solution of potassium carbonate (4 mL) at -10ºC. 

The solution was filtered through Celite®, and the organic layer was separated. The aqueous 

layer was extracted with DCM (2 x 4 mL) and the combined extracts were dried over anhydrous 

magnesium sulfate. Filtration and careful concentration (volatile compound) gave the crude 

product as a pale yellow oily solid (193 mg). It was carried through the next step without further 

purification. 

3. -

tetrafluoroborate (Meerwein’s reagent) (4 mL of a 1M solution in DCM, 4.00 m

under nitrogen. The reaction was stirred at

 
1H NMR δ (400 MHz, CDCl3) 3.78 (2H, m, CH2N), 2.98 (2H, q, J= 7.4 Hz, SCH2CH3), 2.53 

(2H, m, CH2C=N), 1.91 (2H, m, CH2CH2CH2), 1.27 (3H, t, J= 7.4 Hz, SCH2CH3). 

 
13C NMR δ (400 MHz, CDCl3) 172.59 (EtS-C=N), 60.70 (CH2N), 38.65 (CH2), 24.97 (CH2), 

23.34 (CH2), 14.38 (SCH2CH3). 

 

1.2.3 Reaction with DPP: synthesis of 2,3-diphenyl-5-ethylthio-1-azabicyclo[3.3.0]oct-2

en-4-one 

 

Method 1: 

 

N

SEt

N

SEt

Ph

Ph

O

+

O

Ph Ph
DCM

(214)
C21H21NOS

MW = 335.46 g/mol

(213) (186)

 
 

To the crude 3,4-dihydro-5-ethylthio-2H-pyrrole (213) (96.5 mg, 0.75 mmol) in DCM (2.5 

mL) was added diphenylcyclopropenone (186) (154 mg, 0.75 mmol, 1 eq.) in one portion. The 

whole was stirred at RT under nitrogen overnight. Concentration in vacuo

product as an dark yellow oil (269 mg). Purification by silica chromatography (PE 40-60ºC / 

 gave the crude 
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EtOAc: gradient elution 5/1-3/1-1/1) afforded the product as a strong yellow oil (133 mg, 

≥53%). 

 

Method 2: 

 

N

S

H

1) Meerwein's reagent

2) Et3N, DPP (186) N

SEt

Ph

O

Ph
(214)(212)

o pyrrolidin-2-thione (212) (300 mg, 2.96 mmol) was added Meerwein’s reagent (1M 

solu

flux temperature. Then, triethylamine (630 µL, 455 mg, 4.50 

mmol, 1.5 eq.) was added to the mixture, and the whole was stirred at RT for 1 hour. 

reaction, which was monitored by TLC. After 15 hours, the solvent was evaporated under 

reduced pressure and the crude product was purified by silica chromatography (PE 40-60ºC / 

EtOAc: 5 / 1) to give the product as a yellow oil (284 mg, 29%). 

υmax (cm-1) 3059 (w), 2965 (w), 2925 (w), 1735 (w), 1674 (s, C=O), 1601 (m), 1581 (m), 

1556 (m), 1498 (w), 1483 (w), 1448 (m), 1395 (m), 1300 (m), 1280 (m), 1183 (m), 1074 (w), 

1026 (w), 976 (w), 927 (w), 779 (w), 723 (m), 696 (s). 

 
1H NMR δ (500 MHz, CDCl3) 7.47-7.43 (3H, m, CH (Ph)), 7.39-7.36 (2H, m, CH (Ph)), 7.21 

(4H, m, CH (Ph)), 7.14 (1H, m, CH (Ph)), 3.55 (1H, dt, J=11.1 and 6.6 Hz, NCH2CH2CH2), 

3.08 (1H, dt, J=11.1 and 6.7 Hz, NCH2CH2CH2), 2.65 (1H, dq, J=12.0 and 7.4 Hz, SCH2CH3), 

2.56 (1H, dq, J=12.0 and 7.4 Hz, SCH2CH3), 2.23 (2H, m, CH2), 2.07 (1H, m, CH2), 1.94 (1H, 

m

C21H21NOS
MW = 335.46 g/mol  

 

T

tion in DCM, 4.5 mL, 4.50 mmol, 1.5 eq.) under nitrogen. The mixture was stirred for 1 

hour at RT, and for 1 hour at re

Diphenylcyclopropenone (186) (610 mg, 2.96 mmol, 1 eq.) in DCM (10 mL) was added to the 

 

IR 

, CH2), 1.20 (3H, t, J=7.4 Hz, SCH2CH3). 

 
13C NMR δ (500 MHz, CDCl3) 200.09 (C=O), 174.95 (PhCα=CβPh), 131.31 (C (Ph)), 131.05 

(CH (Ph)), 131.00 (C (Ph)), 129.54 (CH (Ph)), 128.72 (CH (Ph)), 128.63 (CH (Ph)), 127.98 
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(CH (Ph)), 126.08 (CH (Ph)), 116.21 (PhCα=CβPh), 80.40 (C ring junction), 48.42 (NCH2), 

32.87 (CH2), 26.46 (CH2), 23.11 (SCH2CH3), 14.25 (SCH2CH3). 

8.1 [M+Na]+, 693.3 [2M+Na]+. 

HRMS (m/z) [M+Na]+ for C21H21NNaOS calculated 358.1236 measured 358.1232. 

 

3.2 Synthesis and reactivity of 1,2-thiazetin-1,1-dioxides

 

MS (m/z) 35

 

 

3.2.1 Synthesis of 4,4-dialkyl-3-oxo-β-sultams 

3.2.1.1 Synthesis of 4,4-dimethyl-1,2-thiazetidin-3-one-1,1-dioxide (4,4-dimethyl-3-oxo-β-

sultam) 

3.2.1.1.1 Synthesis of disodium 2-methyl-2-sulfonato propanoate 

 

O

O

O

NaO
S

O O O

ONa1) H2SO4

2) NaOH

C
(219) (220)

4H6Na2O5S
MW = 212.12 g/mol  

ol) and the mixture was stirred at room 

temperature for 45 minutes. The reaction mixture was then stirred at 90˚C for 22 hours at which 

ti

ter (30 to 40 mL) and precipitated by addition of 

ethanol (~300 mL), and the resulting precipitate was isolated by vacuum filtration. Several crops 

w

 

 

Concentrated sulfuric acid (5.3 mL, 9.70 g, 98.9 mmol, 0.78 eq.) was added dropwise to 

isobutyric anhydride (219) (21 mL, 20.03 g, 126.6 mm

me the reaction had reached completion*. The hot mixture was poured into ice-cold water (50 

mL), and extracted with ether (3 x 40 mL). To the aqueous layer, a solution of sodium 

hydroxide (12.32 g, 308 mmol, 2.4 eq.) in water (40 mL) was added in small portions to adjust 

the pH to around 10. The aqueous solution was evaporated to dryness under reduced pressure at 

40˚C. The residue was dissolved in hot wa

ere isolated by adding ethanol to the mother liquor. The product was isolated as a white solid 

(18.70 g, 89 %) and was carried through to the next step without any further purification. 
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*The completion of the reaction was checked with barium chloride: a solution of BaCl2 (1 

mL) was added to a sample of the reaction mixture, if no precipitation occurred the reaction was 

judged to be complete. 

 υmax (cm-1) (neat) 3564 (br), 3424 (br), 2981 (w), 1590-1577 (s, C=O), 1459 (w), 1405 

(m ), 795 (w), 

713 (m), 640 (s). 

* Assignments may be interchanged. 

H NMR δ (500 MHz, D2O) 1.49 (6H, s, 2 x CH3). 

13C NM  MHz, D2O) 177.67 (C=O), 66.02 (C(CH3)2), 22.56 (CH3). 

 

3.2.1.1.2 Synthesis of 2-(chlorosulfonyl)-2-methylpropanoyl chloride 

 

 

IR

)*, 1371 (m, SO2)*, 1262 (m), 1204 (s, SO2)#, 1156 (s)#, 1033(s), 943 (w), 855 (m

# Assignments may be interchanged. 

 
1

 

R δ (500

NaO
S

O O O

ONa Cl
S

O O O

ClSOCl2

DMF

(221)
C4H6Cl2O3S

MW = 205.05 g/mol

(220)

 
 

Disodium 2-methylsulfonatopropanoate (220) (4.88 g, 23 mmol) was added to thionyl chloride 

(18.3 mL, 251 mmol, 10.9 eq.) in small portions over 10 minutes at 0˚C with stirring. DMF 

(0.37 mL, 0.349 g, 4.78 mmol, 0.2 eq.) was added dropwise over 2 minutes and the mixture was 

heated to 70˚C. After gas evolution was complete, the mixture was heated for a further 4 hours 

at 70˚C. Excess thionyl chloride was evaporated under reduced pressure, yielding a pale yellow 

slurry which was dissolved in ether. The resultant white solid (NaCl) was filtered off, and 

concentration in vacuo gave the product as an orange oil (3.65 g, 77%). It was carried through 

the next step with no further purification. 
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IR υmax (cm-1) 3014 (w), 2950 (w), 1824 (w), 1763 (m, C=O), 1463 (w), 1364 (s, SO2), 1172 

(m, SO2), 1124 (m), 1036 (w), 1014 (w), 947 (m), 883 (m), 858 (m), 720 (w), 668 (m), 633 (m), 

594 (s), 556 (s), 534 (m), 510 (s), 463 (m). 

 MHz, CDCl3) 169.36 (C=O), 85.37 (C(CH3)2), 22.20 (CH3). 

3.2.1.1.3 Synthesis of 4,4-dimethyl-3-oxo-β-sultam 

 
1H NMR δ (400 MHz, CDCl3) 2.01 (6H, s, 2 x CH3). 

 
13C NMR δ (400

 

 

Cl
S

O O O

Cl

S NO
O H

O
NH

Et2O

(215a)

MW = 149.16 g/mol

(221)

 

2-Chlorosulfonyl-2-methylpropionyl chloride (221) (1.00 g, 4.90 mmol) was dissolved in 

ether (2.4 mL) and added dropwise over 45 minutes to liquid ammonia (~6 mL, 3.54 g, 208 

mmol, large excess) in diethyl ether (2.4 mL) at -78˚C. The mixture was allowed to warm to RT 

and stirred until all solvent had evaporated (overnight). The residue was dissolved in chloroform 

(2.5 mL) and water (2.5 mL). The solution was cooled to 0˚C and the pH adjusted to 1 with a 

2M HCl solution. The aqueous layer was extracted with chloroform (3 x 5 mL) and the 

c

 bs, NH), 1.76 (6H, s, 2 x CH3). 

13C NMR δ (400 MHz, CDCl3) 163.87 (C=O), 82.36 (C(CH3)2), 18.55 (CH3). 

3

C4H7NO3S

 

ombined organic layers were dried over anhydrous sodium sulfate. The solvent was removed in 

vacuo to yield a white solid (0.246 g, 34%, m.p.=145-146ºC, lit.: 149-151ºC61 ). 

 

IR υmax (cm-1) 3115 (br, NH), 2999 (w), 2922 (w), 1748 (m, C=O), 1458 (w), 1328 (s, SO2), 

1262 (m), 1213 (m), 1157 (m, SO2), 1112 (m), 957 (w), 843 (w), 741 (m), 729 (w), 659 (m), 614 

(s), 568 (s). 

 
1H NMR δ (400 MHz, CDCl3) 8.27 (1H,
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3.2.1.2 Synthesis of 4,4-diethyl-1,2-thiazetidin-3-one-1,1-dioxide (4,4-diethyl-3-oxo-β-

sultam) 

3.2.1.2.1 Synthesis of sodium 2-ethylbutyrate (sodium 2-ethylbutanoate) 

 

O

OH
EtONa

EtOH
O

ONa

(223)
C6H11NaO2

MW = 138.14 g/mol 
 

2-Ethylbutyric acid (222) (10 mL, 9.24 g, 79.5 mmol) was added dropwise to a solution of 

sodium ethoxide in ethanol (1.98 g, 86.1 mmol, 1.1 eq. of sodium in 32 mL of ethanol) at RT. 

The reaction mixture was stirred for 1 hour, and the solvent was removed under reduced 

pressure at 50˚C. The residue was washed with toluene (2x20 mL) to yield the product as a 

white solid (10.99g, 100%). 

H3). 

(222)

 

IR υmax (cm-1) 2960 (m), 2932 (w), 2874 (w), 1548 (s, C=O), 1460 (m), 1412 (s), 1378 (w), 

1318 (m), 1294 (w), 1245 (w), 1105 (w), 809 (m), 773 (w), 637 (w), 517 (m). 

 
1H NMR: δ (500 MHz, D2O) 2.04 (1H, tt, J=8.3 and 6.5 Hz, CH), 1.44 (4H, m, 2 x CH2), 0.86 

(6H, t, J=7.4 Hz, 2 x CH3). 

 
13C NMR δ (500 MHz, D2O) 186.44 (C=O), 53.02 (CH), 25.79 (CH2), 11.71 (C

 

3.2.1.2.2 Synthesis of 2-ethylbutyryl chloride (2-ethylbutanoyl chloride) 

 

O

OH
SOCl

O

2 Cl

(224)(222)
C6H11ClO

MW = 134.60 g/mol 

185 



Chapter 3 Experimental 

Thionyl chloride (6.6 mL, 10.76 g, 90.5 mmol, 1.14 eq.) was added dropwise to 2-ethylbutyric 

heated at reflux for 30 minutes. The product was isolated by distillation as a colourless liquid 

 
1H NMR δ (400 MHz, CDCl3) 2.68 (1H, tt, J=8.2 and 5.5 Hz, CH), 1.80 (1H, q , J=7.5 Hz, 

CH2), 1.78 (1H, q , J=7.5 Hz, CH2),1.69 (1H, dq, J=7.5 and 5.5 Hz, CH2), 1.65 (1H, dq, J=5.5 

and 7.5 Hz, CH2), 0.99 (6H, t, J=7.5 Hz, 2 x CH3). 

 
13C NMR δ (400 MHz, CDCl3) 177.23 (C=O), 60.22 (CH), 24.65 (CH2), 11.27 (CH3). 

 

3.2.1.2.3 Synthesis of 2-ethylbutyric anhydride (2-ethylbutanoic anhydride) 

O

acid (222) (10 mL, 9.24 g, 79.5 mmol) at 30˚C over 25 minutes. The reaction mixture was then 

(6.99 g, 65%, b.p.= 138-140˚C at 760 mm Hg). 

 

O

O

toluene

reflux
O

ONa

O

Cl+

(225)(223) (224)

 

224) (6.87 g, 51.03 mmol, 1 eq.) was added dropwise over 15 

mi

the addition. The mixture was heated at reflux for 1 hour 15 

m  to RT. Ice (28 g) was added to the reaction mixture which was 

stir

over anhydrous sodium sulfate. Concentration under vacuum gave the crude product as a clear 

l ss liquid (7.96 g, 

73%, b.p.= 82-84˚C at ~1 mm Hg, lit.: 115.5˚C at 10 mm Hg61 ). 

 

IR υmax (cm-1) 2968 (s), 2938 (s), 2879 (s), 1811 (s, C=O), 1744 (s, C=O), 1461 (s), 1385 (m), 

1263 (m), 1225 (m), 1163 (m), 1081 (m), 1010 (s), 910 (m). 

 
1H NMR δ (500 MHz, CDCl3) 2.31 (2H, tt, J=8.2 and 5.5 Hz, CH), 1.68 (4H, m, 4 x 1H from 

the four CH2), 1.58 (4H, m, 4 x 1H from the four CH2), 0.96 (12H, t, J=7.5 Hz, 4 x CH3). 

C12H22O3
MW = 214.30 g/mol

 

2-Ethylbutyryl chloride (

nutes to a solution of sodium 2-ethylbutyrate (223) (7.05 g, 51.03 mmol) in toluene (35 mL). 

An exotherm was observed during 

inutes, and then allowed to cool

red until the ice was melted. The two layers were separated and the organic layer was dried 

yellow oi (10.65 g). Vacuum distillation afforded the product as a colourle
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13C NMR δ (500 MHz, CDCl3) 171.79 (C=O), 49.68 (CH), 24.34 (CH2), 11.53 (CH3). 

 

3.2.1.2.4 Synthesis of disodium 2-ethyl-2-sulfonatobutyrate (disodium 2-ethyl-2-

sulfonatobutanoate) 

O

 

O

O

NaO
S

O O

ONa

O

1) H2SO4

2) NaOH

(226)
C6H10Na2O5S

MW = 240.18 g/mol

(225)

 

oncentrated sulfuric acid (2 mL, 3.66 g, 37.3 mmol, 1 eq.) was added dropwise to 2-

ethylbutyric anhydride (225) (7.84 g, 36.6 mmol) and the solution was stirred for 30 minutes at 

20-35˚C. The reaction mixture was heated at 90˚C and stirred overnight until shown to be 

complete*. The hot viscous reaction mixture was poured into ice-cold water (15 mL) and then 

extracted with diethyl ether (3 x 15 mL). To the aqueous layer, a solution of sodium hydroxide 

(3.50 g, 87.5 mmol, 2.4 eq.) in water (12 mL) was added dropwise to adjust the pH to around 8. 

The aqueous solution was then evaporated to dryness under reduced pressure at 40˚C. The pale 

brown solid residue was dissolved in hot water (8 mL)** and precipitated by adding ethanol (30 

m

97 (w), 946 (w), 893 (w), 809 (m), 

746 (w), 710 (m), 650 (s), 616 (m), 565 (m), 531 (m), 499 (m). 

 

C

L). Vacuum filtration afforded the product as a pale brown solid (5.51 g, 63%), which was 

carried through the next step without any further purification. 

 

*The completion of the reaction was checked with barium chloride: a solution of BaCl2 (1 

mL) was added to a sample of the reaction mixture, if no precipitation occurred the reaction was 

judged to be complete. 

** In some cases, the solution was dark brown/orange, and so charcoal was added to it before 

the addition of ethanol. 

 

IR υmax (cm-1) 2980 (w), 2914 (w), 2858 (w), 1578 (s, C=O), 1439 (w), 1385 (m, SO2), 1291 

(w), 1238 (m), 1160 (s, SO2), 1143 (s), 1125 (s), 1034 (s), 9

 

187 



Chapter 3 Experimental 

1H NMR δ (500 MHz, D2O) 1.97 (2 x 1H, q, J=7.5 Hz, CH2), 1.97 (2 x 1H, q, J=7.5 Hz, 

CH2), 0.96 (6H, t, J=7.5 Hz, 2 x CH3). 

 

2 3

 

3.2.1.2.5 Synthesis of  2-chlorosulfonyl-2-ethylbutyroyl chloride (2-chlorosulfonyl-2-

ethylbutanoyl chloride) 

 

13C NMR δ (500 MHz, D2O) 176.27 (C=O), 73.81 (C), 25.35 (CH ), 9.01 (CH ). 

NaO
S

O O O

ONa Cl
S

O O O

Cl
SOCl2

DMF

(227)
C6H10Cl2O3S

MW = 233.11 g/mol

(226)

 
 

Disodium 2-ethylsulfonatobutanoate (226) (5.47 g, 22.8 mmol) was added to thionyl chloride 

(20 mL, 33.21 g, 279 mmol, 12.2 eq.) in small portions over 10 minutes at 0˚C with stirring. 

DMF (0.37 mL, 0.35 g, 4.8 mmol, 0.2 eq.) was added dropwise over 2 minutes and the mixture 

was heated to 70˚C. After gas production was complete, the mixture was heated for a further 5 

hours at 70˚C. Excess thionyl chloride was evaporated off under reduced pressure at 40˚C, 

yielding a pale yellow sticky residue which was dissolved in ether. The resultant white solid 

(NaCl) was filtered off, and concentration in vacuo gave the product as a yellow oil (2.80 g, 

53%). It was carried through the next step with no further purification. 

 1113 (w), 1070 (w), 1039 (w), 1012 (w), 966 (m), 857 (w), 809 (s), 779 

(m

δ (500 MHz, CDCl3) 2.48 (4H, q, J=7.4 Hz, 2 x CH2), 1.22 (6H, t, J=7.4 Hz, 2 x 

C

 

IR υmax (cm-1) 2984 (w), 2949 (w), 2877 (w) 1791 (m, C=O), 1765 (m, C=O), 1449 (m), 1371 

(s, SO2), 1171 (s, SO2),

), 721 (m), 644 (m), 592 (s), 550 (s), 505 (s). 

 
1H NMR 

H3). 
13C NMR δ (500 MHz, CDCl3) 169.10 (C=O), 94.09 (C), 26.98 (CH2), 8.82 (CH3). 
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3.2.1.2.6 Synthesis of 4,4-diethyl-3-oxo-β-sultam 

Cl

 

Cl
S

O O O

S NO

O

O H

NH3

Et2O

(215b)
C6H11NO3S

MW = 177.21 g/mol 
 

A solution of 2-chlorosulfonyl-2-ethylbutyryl chloride (227) (2.041 g, 8.75 mmol) in dry 

diethyl ether (30 mL) was added dropwise at -78˚C to liquid ammonia (~11 mL, 6.49 g, 378 

mmol, large excess) in dry diethyl ether (30 mL). The mixture was allowed to warm to RT and 

stirred until all the solvent had evaporated. The residue was dissolved in chloroform (15 mL) 

and water (15 mL) at 0˚C. The pH of the solution was adjusted to 1 with a 2M HCl solution. The 

aqueous layer was extracted with chloroform (3 x 15 mL) and the combined organic layers were 

d

s, NH), 2.05 (2H, q, J=7.5 Hz, CH2), 2.05 (2H, 

q =7.5 Hz, CH2), 1.02 (6H, t, J=7.5 Hz, 2 x CH3). 

MR δ (400 MHz, DMSO-D6) 163.65 (C=O), 88.73 (C), 22.09 (CH2), 8.14 (CH3). 

(227)

ried over anhydrous magnesium sulfate. Filtration and concentration under vacuum gave the 

product as an orange oil (0.517 g, 33%). 

 

IR υmax (cm-1) 3237 (br, NH), 2979 (w), 2947 (w), 1772 (s, C=O), 1457 (w), 1339 (s, SO2), 

1238 (m), 1182 (w), 1145 (m, SO2), 1110 (m), 796 (w), 720 (w), 669 (m), 617 (m), 590 (m). 

 
1H NMR δ (400 MHz, CDCl3) 9.00 (1H, bs, NH), 2.18 (4H, q, J=7.5 Hz, 2 x CH2), 1.14 (6H, 

t, J=7.5 Hz, 2 x CH3). 

 
13C NMR δ (400 MHz, CDCl3) 163.83 (C=O), 89.67 (C), 22.50 (CH2), 8.20 (CH3). 

 
1H NMR δ (400 MHz, DMSO-D6) 3.80 (1H, b

, J

 
13C N
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3.2.1.3 Synthesis of 4-spiro-cyclohexyl-1,2-thiazetidin-3-on-1,1-dioxide (4-spiro-

cyclohexyl-3-oxo-β-sultam) 

3.2.1.3.1 Synthesis of sodium cyclohexanecarboxylate 

 

OH

O O

ONa
EtONa

EtOH

(229)
C7H11NaO2

MW = 150.15 g/mol  
 

Cyclohexane carboxylic acid (228) (10 g, 78.02 mmol) was added in small portions over 5 to 

10 minutes to a solution of sodium ethoxide in ethanol (1.80 g, 78.29 mmol, 1 eq. of sodium in 

29 mL of ethanol) at RT. The reaction mixture was stirred for 1 hour, and the solvent was 

removed under reduced pressure. The residue was washed with toluene (2 x 20 mL) to yield the 

product as a white solid (11.71 g, 100%). 

 

(228)

 υmax (cm-1) 2923 (m), 2849 (m), 1567 and 1549 (s, C=O), 1412 (s, C=O), 1328 (w), 1280 

(w

IR

), 1253 (w), 1224 (w), 1204 (w), 1180 (w), 1136 (w), 1037 (w), 934 (w), 893 (m), 803 (w), 

779 (m), 734 (w), 644 (w), 504 (w). 

 

The assignment for the cyclohexyl moiety used for NMR analysis is as follows: 

 

ONa

O
a

c

δ (500 MHz, D2O) 2.14 (1H, tt, J=11.3 and 3.4 Hz, CH), 1.81 (2H, m, cyclohexyl 

C hexyl 

CH2). 

 
13C NMR δ (500 MHz, D2O) 186.60 (C=O), 46.86 (CH), 29.78 (CH2a), 25.59 (CH2c), 25.44 

(CH2b). 

b

 
 
1H NMR 

H2), 1.72 (2H, m, cyclohexyl CH2), 1.64 (1H, m, cyclohexyl CH2), 1.26 (5H, m, cyclo
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3.2.1.3.2 Synthesis of cyclohexanecarbonyl chloride 

 

OH

O

Cl

O

SOCl2

(230)
C7H11ClO

MW = 146.61 g/mol

(228)

 
 

Thionyl chloride (6.4 mL, 10.44 g, 87.7 mmol, 1.1 eq.) was added dropwise to cyclohexane 

carboxylic acid (228) (10 mL, 9.24 g, 79.5 mmol) at 30˚C over 25 minutes. The reaction mixture 

was then heated at reflux for 30 minutes. The product was isolated by vacuum distillation as a 

c

e

olorless liquid (8.97 g, 78%, b.p.= 42-43˚C at ~1 mm Hg). 

 

IR υmax (cm-1) 2938 (s), 2859 (s), 1794 (s, C=O), 1704 (m), 1452 (s), 1359 (w), 1327 (w), 

1292 (m), 1265 (w), 1235 (w), 1184 (w), 1138 (m), 1091 (m), 1045 (m), 953 (s), 924 (m), 895 

(m), 867 (w), 841 (m), 794 (s), 737 (s). 

 

The assignm nt for the cyclohexyl moiety used for NMR analysis is as follows: 

 

Cl

O
a

b

c

 
 
1H NMR δ (500 MHz, CDCl3) 2.66 (1H, tt, J=11.0 and 3.6 Hz, CH), 2.02 (2H, m, cyclohexyl 

CH2), 1.73 (2H, m, cyclohexyl CH2), 1.59 (1H, m, cyclohexyl CH2), 1.46 (2H, m, cyclohexyl 

CH2), 1.21 (3H, m, cyclohexyl CH2). 

 
13C NMR δ (500 MHz, CDCl ) 176.86 (C=O), 54.91 (CH), 28.96 (CH ), 25.35 (CH ), 24.93 

(CH ). 

 

3 2a 2c

2b
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3.2.1.3.3 Synthesis of cyclohexanecarboxylic anhydride 

 

O

ONa Cl

O

toluene

reflux
O

O

O

+

(231)
C14
 23

H22O3
MW = 8.32 g/mol

(229) (230)

 

ixture was heated at reflux for 1 

hour 15 minutes, and then allowed to cool to RT. Ice (27 g) was added to the reaction mixture 

w

 distillation afforded the product as a colorless liquid 

(10.96 g, 76%, b.p.= 138-140˚C at ~1 mm Hg, lit.: b.p. = 155-156˚C at 0.7 mm Hg255 ). 

IR υmax (cm-1) 2934 (s), 2857 (s), 1810 and 1742 (s, C=O), 1704 (s), 1452 (s), 1418 (w), 1372 

(w), 1309 (m), 1260 (w), 1239 (m), 1213 (w) 1184 (w), 1140 (m), 1122 (m), 1083 (s), 1067 (s), 

992 (s), 922 (m), 895 (m), 839 (w). 

 

he assignment for the cyclohexyl moiety used for NMR analysis is as follows: 

 

Cyclohexanecarbonyl chloride (230) (8.83 g, 60.2 mmol) was added dropwise over 10 minutes 

to a solution of sodium cyclohexane carboxylate (229) (9.04 g, 60.2 mmol, 1 eq.) in toluene (72 

mL). An exotherm was observed during the addition. The m

hich was stirred until the ice was melted. The two layers were separated and the organic layer 

was dried over anhydrous Na2SO4. Concentration under vacuum gave the crude product as a 

clear pale yellow oil (15.75 g). Vacuum

 

T

 

b

c

O

O

O
a

 
 
1H NMR δ (500 MHz, CDCl3) 2.40 (1H, tt, J=11.1 and 3.6 Hz, CH), 1.95 (2H, m, CH2), 1.78 

(2H, m, CH2), 1.64 (1H, m, CH2), 1.48 (2H, m, CH2), 1.28 (3H, m, CH2). 
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13C NMR δ (500 MHz, CDCl ) 171.84 (C=O), 43.91 (CH), 28.35 (CH2a), 25.53 (CH2c), 25.12 

2b

3.2.1.3.4 Synthesis of disodium 1-sulfonylcyclohexanecarboxylate 

 

3

(CH ). 

O

O

O

1) H2SO4

2) NaOH
NaO

S

O O O

ONa

(232)
C7H10Na2O5S

MW = 252.19 g/mol  
 

Concentrated sulfuric acid (2.5 mL, 4.57 g, 46.6 mmol, 1 eq.) was added dropwise to 

cyclohexanecarboxylic anhydride (231) (10.80 g, 45.3 mmol) and the solution was stirred for 30 

minutes at 20-35˚C. The reaction mixture was heated at 90˚C and stirred overnight until shown 

to be complete

(231)

the pH 

to around 10. The aqueous solution was then evaporated to dryness under reduced pressure at 

40˚C. The pale brown solid residue was dissolved in hot water (27 mL)** and precipitated by 

a

rther purification. 

n of BaCl2 (1 

mL) was added to a sample of the reaction mixture, if no precipitation occurred the reaction was 

judged to be complete. 

** In some cases, the solution was dark brown/orange, and thus charcoal was added to it 

before the addition of ethanol. 

-1

5 (w), 1014 (m), 945 

(w), 903 (w), 846 (w), 836 (w), 781 (w), 729 (w), 636 (s), 614 (m), 574 (m), 563 (w), 529 (m), 

499 (w). 

*. The hot viscous reaction mixture was poured into ice-cold water (18 mL) and 

then extracted with diethyl ether (3 x 20 mL). To the aqueous layer, a solution of sodium 

hydroxide (4.70 g, 117.5 mmol, 2.6 eq.) in water (16 mL) was added dropwise to adjust 

dding ethanol (80 mL). Several crops could be obtained by adding ethanol to the mother liquor. 

Vacuum filtration afforded the product as a pale brown solid (6.93 g, 61%), which was carried 

through the next step without any fu

 

*The completion of the reaction was checked with barium chloride: a solutio

 

IR υmax (cm ) 2989 (w), 2934 (w), 2855 (w), 1581(s, C=O), 1444 (w), 1431 (w), 1386 (m, 

SO2), 1343 (w), 1286 (w), 1235 (m), 1169 (s, SO2), 1110 (s), 1068 (s), 103
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The assignment for the cyclohexyl moiety used for NMR analysis is as follows: 

 

NaO
S

O O O

ONa
a

b
c

 
 
1H NMR δ (500 MHz, D2O) 2.39 (2H, m, CH2), 1.72 (2H, m, CH2), 1.61 (3H, m, CH2), 1.21 

(3H, m, CH2). 

 

C NMR δ (500 MHz, D2O) 175.24 (C=O), 70.83 (C), 30.51 (CH2a), 25.28 (CH2c), 23.83 

(C

13

H2b). 

 

3.2.1.3.5 Synthesis of 1-chlorosulfonylcyclohexanecarbonyl chloride 

 

NaO
S

O O O

ONa
SOCl2

DMF
Cl

S

O O O

Cl

(233)
C H Cl O S

(232)
7 10 2 3

MW = 245.12 g/mol  

, 0.52 g, 7.2 mmol, 0.2 eq.) was added dropwise over 2 minutes and the 

m

 thionyl chloride was evaporated under reduced pressure yielding 

a pale yellow residue which was dissolved in ether. The resultant white solid (NaCl) was filtered 

o

 

Disodium 1-sulfonylcyclohexanecarboxylate (232) (7.42 g, 29.4 mmol) was added in small 

portions to thionyl chloride (23.5 mL, 38.47 g, 323 mmol, 11 eq.) over 10 minutes at 0˚C with 

stirring. DMF (0.55 mL

ixture was heated to 70˚C. After gas production was complete, the mixture was heated for a 

further 5 hours at 70˚C. Excess

ff, and concentration in vacuo gave the product as a clear brown oil (3.82 g, 53%). It was 

carried through the next step with no further purification. 
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IR υmax (cm-1) 2946 (w), 2866 (w), 1767 (s, C=O), 1454 (m), 1376 (s, SO2), 1346 (m), 1291 

(w), 1200 (m), 1169 (s, SO2), 1155 (m), 1072 (w), 1028(w), 1014 (w), 973 (s), 933 (w), 907 (w), 

872 (w), 850 (s), 829 (w), 771 (m), 650 (w), 588 (s), 558 (s), 540 (s). 

 

The assignment for the cyclohexyl moiety used for NMR analysis is as follows: 

 

Cl Cl
S

O O O

a

b
c

 

R δ (500 MHz, CDCl3) 2.87 (2H, m, CH2), 2.15 (2H, m, CH2), 2.01 (2H, m, CH2), 

1.80 (1H, m, CH2), 1.39 (3H, m, CH2). 

 

CH2c), 22.95 

(CH2b). 

 

3.2.1.3.6 Synthesis of 4-spiro-cyclohexyl-3-oxo-β-sultam 

 

Cl

 
1H NM

13C NMR δ (500 MHz, CDCl3) 169.64 (C=O), 90.30 (C), 30.73 (CH2a), 23.89 (

Cl
S

O O O

NH3

Et2O S NO

O

O H

(215c)
C7H11NO3S

MW = 189.22 g/mol

(233)

 
 

A solution of 1-chlorosulfonylcyclohexane carbonyl chloride (233) (3.82 g, 15.6 mmol) in dry 

diethyl ether (26 mL) was added dropwise at -78˚C to liquid ammonia (~19 mL, 11.21 g, 658 

mmol, 42.2 eq.) in dry diethyl ether (36 mL). The mixture was allowed to warm to RT and 

stirred until all the solvent had evaporated. The residue was dissolved in chloroform (18 mL) 

and water (18 mL) at 0˚C. The pH of the solution was adjusted to 1 with a 2M HCl solution. The 

aqueous layer was extracted with chloroform (3 x 18 mL) and the combined organic layers were 

195 



Chapter 3 Experimental 

d

 υmax (cm-1) 3099 (br, NH), 2956 (m), 2858 (m), 1759 (s, C=O), 1450 (m), 1443 (m), 1331 

(s , 729 (m), 684 

(m), 669 (m), 649 (m), 623 (m), 603 (s). 

 

The assignment for the cyclohexyl moiety used for NMR analysis is as follows: 

 

ried over anhydrous sodium sulfate. Filtration and concentration under vacuum gave the 

product as a white solid (1.31 g, 44%). 

 

IR

, SO2), 1299 (m), 1239 (m), 1161 (s, SO2), 1133 (s), 1086 (m), 957 (w), 771 (m)

S NO
O H

O
a

bc

 
 
1  NMR δ (400 MHz, CDCl ) 8.42 (1H, bs, NH), 2.32 (2H, m, CH ), 1.91 (2H, m, CH ), 1.82 

(2H, m, CH

H

2), 1.64 (1H, m, CH2), 1.51 (2H, m, CH2), 1.35 (1H, m, CH2). 

13 28.05 (CH2a), 24.01 (CH2c), 22.60 

(CH2b). 

3.2.2 Synthesis of 1,2-thiazetin-1,1-dioxides

3 2 2

 

C NMR δ (400 MHz, CDCl3) 163.50 (C=O), 86.79 (C), 

 

 

3.2.2.1 Alkylation of 3-oxo-β-sultams: synthesis of 1,2-thiazetin-1,1-dioxides 

3.2.2.1.1 Alkylation of 4,4-dimethyl-3-oxo-β-sultam 

 

S NO
O H

O Meerwein's
reagent

DCM S NO
O

OEt

S NO
O Et

O

+

(161a)
C6H11NO3S

MW = 177.21 g/mol

(234a)
C6H11NO3S

MW = 177.21 g/mol

(215a)
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To 4,4-dimethyl-1,2-thiazetidin-3-one (215a) (179 mg, 1.20 mmol) was added 

triethyloxonium tetrafluoroborate (Meerwein’s reagent) (1.8 mL of a 1M solution in DCM, 1.80 

mmol, 1.5 eq.) under nitrogen. The whole was stirred at RT for 1 hour and then at reflux for 1 

h

anic layer was separated, and the aqueous layer was 

extracted with DCM (3 x 5 mL). The combined organic extracts were dried over anhydrous 

M llow needles. 

IR υmax (cm-1) 2925 (w), 1774 (s, C=O), 1584 (m, C=N), 1462 (w), 1390 (w), 1331 (s, SO2), 

1191 (m), 1180 (m), 1120 (s, SO2), 1006 (w), 966 (w), 922 (w), 846 (w), 749 (w), 669 (w), 651 

(w), 633 (m), 615 (w), 582 (m). 

 

3.2.2.1.2 Alkylation of 4,4-diethyl-3-oxo-β-sultam 

our. The reaction mixture was then added dropwise to a 50% solution of potassium carbonate 

(1.8 mL) at -10˚C. The solution was then filtered through Celite®. The cake of Celite® was 

washed with water and DCM. The org

gSO4. Filtration and concentration in vacuo gave the crude product (56 mg) as ye

 

 

O

S NO
HO

Meerwein's OEt
reagent

O
DCM S NO S NO

EtO

O

+

(161b)
C8H15NO3S

MW = 205.27 g/mol

(234b)
C8H15NO3S

MW = 205.27 g/mol

(215b)

 

To 4,4-diethyl-1,2-thiazetidin-3-one (215b) (517 mg, 2.92 mmol) was added triethyloxonium 

mol, 1.5 eq.) 

r and then at reflux for 1 hour. The 

reaction mixture was then added dropwise to a 50% solution of potassium carbonate (5 mL) at -

10˚C. The solution was then filtered through Celite®. The cake of Celite® was washed with 

water and DCM. The organic layer was separated, and the aqueous layer was extracted with 

DCM (2 x 5 mL). The combined organic extracts were dried over anhydrous MgSO4. Filtration 

and concentration in vacuo gave the crude product (383 mg) as a yellow oil. It was purified by 

silica chromatography (PE 40-60˚C / EtOAc: 1/1) to yield a mixture of O- and N-alkylated 

product as an oil (99 mg, 16%, ratio O-/N- alkylation: ~1/2). 

 

tetrafluoroborate (Meerwein’s reagent) (4.40 mL of a 1M solution in DCM, 4.40 m

under nitrogen. The whole was stirred at RT for 1 hou
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IR υmax (cm-1) 2979 (w), 1766 (s, C=O), 1579 (s, C=N), 1459 (m), 1384 (w), 1321 (s, SO2), 

1172 (s, SO2), 1156 (s, SO2), 1110 (m), 1005 (w), 925 (w), 630 (m), 598 (s). 

 
1H NMR δ (400 MHz, CDCl3) 4.50 (2H, q, J=7.1 Hz, OCH2CH3), 3.54 (2H, q, J=7.4 Hz, 

NCH2CH3), 2.18 (2H, q, J=7.5 Hz, CH2CH3), 2.17 (2H, q, J=7.5 Hz, CH2CH3), 2.14 (4H, m, 

CH2CH3), 1.47 (3H, t, J=7.1 Hz, OCH2CH3), 1.40 (3H, t, J=7.4 Hz, NCH2CH3), 1.16 (6H, t, 

J=7.5 Hz, CH2CH3), 1.12 (6H, t, J=7.5 Hz, CH2CH3). 

 
13C NMR δ (400 MHz, CDCl3) 180.98 (C=O), 163.63 (C=N), 93.85 (C), 90.55 (C), 68.38 

(O

3.2.2.1.3 Alkylation of 4-spiro-cyclohexyl-3-oxo-β-sultam 

CH2CH3), 35.72 (NCH2CH3), 23.08 (CH2CH3), 22.53 (CH2CH3), 13.90 (OCH2CH3), 13.39 

(NCH2CH3), 8.44 (CH2CH3), 8.43 (CH2CH3). 

 

 

S NO
O H

O Meerwein's
reagent

DCM S NO
O

OEt

S NO
O Et

O

+

(161c)
C9H15NO3S

MW = 217.28 g/mol

(234c)
C9H15NO3S

MW = 217.28 g/mol

(215c)

 
 

To 4-spiro-cyclohexyl-1,2-thiazetidin-3-one (215c) (504 mg, 2.66 mmol) was added 

triethyloxonium tetrafluoroborate (Meerwein’s reagent) (4 mL of a 1M solution in DCM, 4.00 

mmol, 1.5 eq.) under nitrogen. The whole was stirred at RT for 1 hour and then at reflux for 1 

hour. The reaction mixture was then added dropwise to a 50% solution of potassium carbonate 

(4 mL) at -10˚C. The solution was then filtered through Celite®. The cake of Celite® was washed 

with water and DCM. The organic layer was separated, and the aqueous layer was extracted 

with DCM (2 x 4 mL). The combined organic extracts were dried over anhydrous MgSO4. 

Filtration and concentration in vacuo gave the crude product as an oily orange solid mixture of 

O- and N-alkylated product (137 mg, 24%, ratio O-/N- alkylation: 1/2.75). 
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IR υmax (cm-1) 2939 (w), 2862 (w), 1768 (s, C=O), 1581 (s, C=N), 1450 (m), 1381 (w), 1326 

(s, SO2), 1165 (s, SO2), 1090 (w), 1002 (w), 958 (w), 924 (m), 872 (w), 844 (m), 802 (w), 740 

(w), 710 (w), 662 (m), 629 (s), 604 (s). 

NCH2CH3). 

thoxyphenyl)-1,2-thiazetin-1,1-

 
1H NMR δ (400 MHz, CDCl3) 4.43 (2H, q, J=7.1 Hz, OCH2CH3), 3.49 (2H, q, J=7.4 Hz, 

NCH2CH3), 2.60-1.53 (20H, m, 10 x CH2), 1.42 (3H, t, J=7.1 Hz, OCH2CH3), 1.35 (3H, t, 

J=7.4 Hz, NCH2CH3). 

 
13C NMR δ (400 MHz, CDCl3) 180.91 (C=O), 163.71 (C=N), 91.60 (C), 87.53 (C), 68.25 

(OCH2CH3), 35.73 (NCH2CH3), 28.54 (CH2), 27.83 (CH2), 24.12 (CH2), 24.01 (CH2), 22.79 

(CH2), 22.65 (CH2), 13.76 (OCH2CH3), 13.22 (

 

3.2.2.2 Synthesis of 4-cyano-3-diethylamino-4-(4-me

dioxide 

3.2.2.2.1 Synthesis of 1-(4-methoxyphenyl)-3-phenylprop-2-en-1-one 

 

O

H

O

OMe

O

OMe

H

H

+
NaOH

EtOH

(240)
C16H14O2

MW = 238.28 g/mol
 

Benzaldehyde (238) (6 mL, 6.300 g, 59.4 mmol) and 4’-methoxyacetophenone (239) (8.92 g, 

59.4 mmol) were dissolved in dry ethanol (25 mL). Sodium hydroxide (0.70 g, 17.5 mmol, 0.3 

eq.) in water (2 mL) was added to the mixture. The whole was stirred for 5-10 minutes. The 

resulting yellow solution was allowed to stand for 10 minutes and cooled in an ice bath to form 

a yellow solid. Recrystallisation from ethanol gave the product as pale yellow needles (12.07 g, 

85%, m.p.=107-108˚C). 

 
-1

(238) (239)

 υmax (cm ): 3058 (w), 2972 (w), 2936 (w), 1655 (s, C=O), 1599 (s), 1572 (m), 1447 (m), 

1339 (m), 1261 (m), 1228 (m), 1186 (m), 1036 (m), 973 (m), 829 (m), 762 (s). 

 

IR
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The assignment for NMR was established from HSQC and HMBC data and is as follows: 

 
O

OMe
H

H

a

b

d

δ (400 MHz, CDCl3) 8.07 (2H, d, J=8.9 Hz, CHb (Ar)), 7.83 (1H, d, J=15.6 Hz, 

P

-OMe (Ar)), 143.96 (PhCH=CH)), 

135.05 (C (Ph)), 131.06 (C-CO (Ar)), 130.81 (CHb (ArOMe)), 130.32 (CHe (Ph)), 128.91 (CHd 

(Ph)), 128.35 (CH  (Ph)), 121.83 (PhCH=CH)), 113.82 (CH  (ArOMe)), 55.49 (CH )). 

3.2.2.2.2 Synthesis of 2,3-dibromo-1-(4-methoxyphenyl)-3-phenylpropan-1-one 

 

c

e
 

 
1H NMR 

hCH=CH), 7.66 (2H, m, CHc (Ph)), 7.58 (1H, d, J=15.6 Hz, PhCH=CH), 7.43 (3H, m, CHd,e 

(Ph)), 7.01 (2H, d, J=8.9 Hz, CHa (Ar)), 3.92 (3H, s, ArOCH3). 
13C NMR δ (400 MHz, CDCl3) 188.70 (C=O), 163.40 (C

c a 3

 

O

OMe

H

H

O

OMe

Br

Br

Br2

CHCl3

(241)
C16H14Br2O2

MW = 398.09 g/mol

(240)

 

1-(4-Methoxyphenyl)-3-phenylprop-2-en-1-one (240) (12.07 g, 50.6 mmol) was dissolved in 

d

oroform and petroleum ether 60-80˚c gave the product as a white solid 

(14.33 g, 71%, m.p.=156-158˚C). 

ry chloroform (30 mL). A solution of bromine (59 mL of a 1M solution in chloroform, 59.0 

mmol, 1.2 eq.) was added dropwise over 15 minutes at room temperature to the mixture which 

turned from pale yellow to dark orange. Petroleum ether 60-80˚C (90 mL) was added to the 

solution, which was corked and left to stand at room temperature for 30 minutes. The resulting 

white solid was collected by vacuum filtration and washed with cold petroleum ether. 

Recrystallisation from chl
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IR υmax (cm-1) 3006 (w), 2837 (w), 1667 (s, C=O), 1599 (s), 1513 (m), 1455 (m), 1418 (w), 

1378 (m), 1327 (m), 1309 (m), 1270 (s), 1229 (m  1171 (m), 1157 (s), 1124 (m), 1023 (m), 982 

(m), 840 (s), 809 (w), 751 (s), 693 (s), 611 (m), 578 (s), 563 (s). 

 

The assignment for NMR was established from HSQC and HMBC data and is as follows: 

 
Br

),

O

OMe
Br

ad

e

bc

 

 (1H, d, 

J CH), 5.68 (1H, d, J=11.3 Hz, CH), 3.94 (3H, s, ArOCH3). 

 

R 3 CHb 

(Ar)), 129.23 (CHe (Ar)), 128.83 (CHd (Ar)), 128.35 (CHc (Ar)), 127.17 (C (Ar)), 114.26 (CHa 

(Ar)), 55.63 (CH3), 49.99 (CHα), 46.72 (CHβ). 

 

3.2.2.2.3 Synthesis of 2-diethylamino-1-(4-methoxyphenyl)-3-phenylprop-2-en-1-one 

 

Br

 
1H NMR δ (500 MHz, CDCl3) 8.12 (2H, d, J=8.9 Hz, CHb (Ar)), 7.56 (2H, m, CHc (Ph)), 7.46 

(2H, m, CHd (Ph)), 7.42 (1H, m, CHe (Ph)), 7.05 (2H, d, J=8.9 Hz, CHa (Ar)), 5.84

=11.3 Hz, 

13C NM δ (500 MHz, CDCl ) 189.63 (C=O), 164.43 (C (Ar)), 138.41 (C (Ar)), 131.36 (

O

OMe
Br

Et2NH

EtOH

OMe
NEt2

O

(242)
C20H23NO2

MW = 309.40 g/mol

(241)

 
 

Dry ethanol (6.5 mL) was added to 2,3-dibromo-1-(4-methoxyphenyl)-3-phenylpropan-1-one 

(241) (6.508 g, 20.52 mmol) to form a damp solid mixture. Diethylamine (4.2 mL, 2.982 g, 

40.78 mmol, 2 eq.) was rapidly added to the mixture at room temperature, which, after 10 

minutes, turned to a dark red solution. The whole was stirred under nitrogen for 26 hours 

(monitored by TLC). After 26 hours, a solution of sodium ethoxide (0.472 g; 20.52 mmol; 1 eq. 

of sodium in 10 mL of dry ethanol) was added to the mixture. The reaction mixture was stirred 
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fo

119 g, 81%). 

509 

(m), 1454 (m), 1378 (m), 1307 (m), 1250 (s), 1167 (s), 1025 (m), 838 (m). 

 
1H NMR δ (500 MHz, CDCl3) 8.06 (2H, d, J=8.8 Hz, CH (Ar)), 7.05 (4H, m, CH (Ph)), 6.93 

(1H, m, CH (Ph)), 6.89 (2H, d, J=8.8 Hz, CH (Ar)), 5.60 (1H, s, CH), 3.85 (3H, s, ArOCH3), 

3.15 (4H, q, J=7.0 Hz, NCH2CH3), 1.16 (6H, t, J=7.0 Hz, NCH2CH . 

9 (NCH2CH3). 

r a further 18 hours (monitored by TLC). The solvent was removed in vacuo to give the crude 

product as a dark red oil (m=8.56 g). It was purified by gravity silica chromatography (PE 40-

60ºC / ethyl acetate: 10/1) to give the product as an orange oil (5.

 

IR υmax (cm-1) 2976 (w), 2839 (w), 1708 (w, C=O), 1657 (m, C=C-NEt2), 1594 (s, Ar), 1

3)

 
13C NMR δ (500 MHz, CDCl3) 195.70 (C=O), 163.86 (C), 145.57 (C), 137.35 (C), 131.96 

(CH (Ar)), 129.70 (C), 127.98 (CH (Ar)), 127.09 (CH (Ar)), 124.28 (CH (Ar)), 113.74 (CH 

(Ar)), 102.16 (CH=C-NEt2)), 55.48 (ArOCH3), 43.51 (NCH2CH3), 12.3

 

3.2.2.2.4 Synthesis of methanesulfonyl azide 

 

MeSO2 Cl
NaN3

acetone
MeSO2 N3

(244)
CH3N3O2S

(243)

MW = 121.11 g/mol  
 

To a solution of methanesulfonyl chloride (243) (3 mL, 4.444 g, 38.8 mmol) in dry acetone 

(20 mL) was added sodium azide (3.770 g, 58 mmol, 1.5 eq.) under nitrogen over 40 minutes in 

small portions using a powder addition funnel. The mixture was stirred for 2 to 3 days at room 

temperature. The reaction mixture was filtered, and the salt was washed with dry acetone (3 x 5 

mL). The solvent was removed in vacuo at 25˚C to give the product as a pale yellow oil (4.144 

g, 88%). 

 

IR υmax (cm-1) 3034 (w), 2937 (w), 2132 (s, N3), 1349 (s, SO2), 1327 (s), 1193 (s), 1148 (s, 

SO2), 963 (s), 773 (s), 727 (s). 

 
1H NMR δ (500 MHz, CDCl3) 3.29 (3H, s, CH3). 
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13C NMR δ (500 MHz, CDCl3) 42.75 (CH3). 

 

3.2.2.2.5 Synthesis of N-methanesulfonylamidine 

 
O

OMe
NEt2

MeSO2 N3+
EtOH

reflux

O

OMe
NEt2

N
MeSO2

(245)(242)

(244)

C14H20N2O4S
MW = 312.38 g/mol

 

eated at 

reflux for 22 hours. The solvent was evaporated under reduced pressure to give the crude 

product as a dark orange oil. It was crystallised from dry diethyl ether (20 mL) to give the 

3-125˚C, lit.: m.p. = 116˚C178 ). 

IR υmax (cm-1) 2979 (w), 2938 (w), 1674 (m, C=O), 1596 (s, C=N), 1544 (s, Ar), 1512 (m), 

1457 (m),1423 (w), 1383 (w), 1360 (w), 1288 (s, SO2), 1264 (s), , 1243 (s), 1214 (m), 1170 (s), 

1154 ((m), 1129 (s, SO2), 1082 (w), 1020 (m), 981 (m), 961 (w), 881 (m), 855 (w), 831 (s), 786 

(m), 728 (m). 

NEt2

A solution of methanesulfonyl azide (243) (0.825 g, 6.81 mmol) in dry ethanol (7 mL) was 

added to a solution of 2-diethylamino-1-(4-methoxyphenyl)-3-phenylprop-2-en-1-one (242) 

(2.108 g, 6.81 mmol, 1 eq.) in dry ethanol (14 mL) under nitrogen. The whole was h

product as a yellow solid (1.754 g, 82%, m.p.=12

 

 

The assignment for NMR was established from HSQC and HMBC data and is as follows: 

 
O

N
MeSO2

a
b

OMe  

3.73 (1H, dq, J=13.5 and 7.1 Hz, NCH2CH3), 3.53 (1H, dq, 

J CH2CH3), 3.20 (1H, dq, J=14.2 and 7.1 Hz, NCH2CH3), 3.17 (1H, dq, 

J= 2), 1.33 (3H, t, J=7.1 Hz, NCH2CH3), 1.10 

(3H, t, J=7.1 Hz, NCH2CH3). 

 
1H NMR δ (400 MHz, CDCl3) 7.87 (2H, bd, J=7.2 Hz, CHb (Ar)), 7.00 (2H, d, J=9.1 Hz, CHa 

(Ar)), 3.89 (3H, s, ArOCH3), 

=13.5 and 7.1 Hz, N

14.2 and 7.1 Hz, NCH2CH3), 2.98 (3H, s, CH3SO
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13C NMR δ (400 MHz, CDCl3) 190.58 (C=O), 164.88 (C-OMe (Ar)), 162.24 (C=N), 131.40 

(CH  (Ar)), 127.68 (C (Ar)), 114.54 (CH  (Ar)), 55.63 (ArOCH3), 44.12 (NCH2CH3), 42.57 

3 2 2 3 2 3 0 (NCH2CH3). 

MS (m/z): 313.1 ([M+H]+), 335.1 ([M+Na]+), 647.2 ([2M+Na]+). 

 

HRMS (m/z): [M+Na]+ for C14H20N2NaO4S calculated 335.1036 measured 335.1033. 

 

3.2.2.2.6 Synthesis of 3-diethylamino-4-hydroxy-4-(4-methoxyphenyl)-4,5H-isothiazolin-

b a

(CH SO ), 42.46 (NCH CH ), 13.71 (NCH CH ), 11.9

 

1,1-dioxide 

 

O

N

NEt2

MeSO2

OMe

t-BuOK

THF

NEt2
OH

MeO

NS
O

O
(246)

C14H20N2O4S
MW = 312.38 g/mol

(245)

 
 

N-Methanesulfonyl amidine (245) (1.674 g, 5.36 mmol) was dissolved in dry THF (10 mL) 

under nitrogen. Potassium tert-butoxide (3 mL of a 20% solution in THF, 0.601 g, 5.36 mmol, 1 

e The 

reaction mixture was neutralised with 1M HCl. The aqueous layer was extracted with DCM (2 x 

5 mL). The combined organic layers were washed with water (2 x 10 mL), dried over anhydrous 

Na2SO4 and filtered. The solvent was evaporated in vacuo to yield the product as a yellow solid 

(1.486g, 89%, m.p.=169-170˚C, lit.: m.p. = 177˚C178 ). 

 

 υmax (cm-1) 3384 (br, OH), 2976 (w), 1582 (s, C=N), 1513 (s), 1442 (m), 1383 (w), 1361 

(w

q.) was added to the mixture which turned very milky. The whole was stirred for 2 hours. 

IR

), 1297(s, SO2), 1252 (s), 1228 (s), 1179 (m), 1148 (s), 1125 (s, SO2), 1080 (m), 1031 (m), 

969 (m), 949 (m), 914 (m), 854 (m), 834 (m), 800 (w), 783 (m), 768 (w), 732 (m). 
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The assignment for NMR was established from HSQC and HMBC data and is as follows: 

O
O

 

OH

MeO

NEt2

NS

a
b

H NMR δ (400 MHz, CDCl3) 7.45 (2H, d, J=8.8 Hz, CHb (Ar)), 6.94 (2H, d, J=8.8 Hz, CHa 

J=14.0 Hz .54 (1H, dq, J=13.5 and 7.0 Hz, NCH2CH3), 3.45 (1H, dq, J=13.5 and 

7.0 Hz, NCH2CH3), 3.32 (1H, q, J=7.0 Hz, NCH2CH3), 3.31 (1H, q, J=7.0 Hz, NCH2CH3), 1.25 

(3H, t, J=7.0 Hz, NCH2CH3), 0.81 (3H, t, J=7.0 Hz, NCH2CH3). 

 
13C NMR δ (400 MHz, CDCl3) 168.84 (Et2N-C=N), 159.47 (C-OMe (Ar)), 133.03 (C (Ar)), 

125.27 (CHb (Ar)), 114.31 (CHa (Ar)), 83.47 (C), 64.68 (CH2SO2), 55.31 (ArOCH3), 44.88 

(NCH2CH3), 43.36 (NCH2CH3), 12.73 (NCH2CH3), 11.33 (NCH2CH3). 

 

MS (m/z): 335.1 ([M+Na]+), 647.2 ([2M+Na]+), 959.3 ([3M+Na]+), 1271.4 ([4M+Na]+). 

+

 
 
1

(Ar)), 5.54 (1H, bs, OH), 3.93 (1H, d, J=14.0 Hz, CH2SO2), 3.83 (3H, s, ArOCH3), 3.65 (1H, d, 

, CH2SO2), 3

 

HRMS (m/z): [M+Na]  for C14H20N2NaO4S calculated 335.1036 measured 335.1028. 

 

3.2.2.2.7 Synthesis of 4-chloro-3-diethylamino-4-(4-methoxyphenyl)-4,5H-isothiazolin-

1,1-dioxide 

 
MeO MeO

NEt2
OH

NS
O

O

NEt2
Cl

NS
O

O

SOCl2

(247)
C14H19ClN2O3S

MW = 330.82 g/mol

(246)
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3-Diethylamino-4-hydroxy-4-(4-methoxyphenyl)-4,5H-isothiazolin-1,1-dioxide (246) (1.222 

g, 3.91 mmol) was heated in thionyl chloride (2 mL, 3.262, 27.42 mmol) at reflux temperature 

for 2 hours. Excess thionyl chloride was evaporated under reduced pressure. The residue was 

dissolved in DCM (10 mL) and neutralised with a 10% solution of NaHCO3. The aqueous layer 

was extracted with DCM (2 x 10 mL), and the combined organic layers were washed with water 

(2 x 10 mL). The organic layer was separated, dried over anhydrous NaSO4, filtered, and 

concentrated to give the crude product as an oily yellow solid. Purification by gravity silica 

chromatography (petroleum ether/ethyl acetate: 2/1) gave the desired product as a yellow solid 

(1.230 g, 95%, m.p.= 103-105˚C, lit.: m.p. = 102˚C178 ). Upon repeat reactions, also isolated on 

The assignm

occasion were compounds (248) (431 mg, 10%) and (261) (225 mg, 4%). 

 

IR υmax (cm-1) 2974 (w), 1578 (s, C=N), 1509 (s), 1439 (m),1416 (w), 1383 (w), 1360 (w), 

1310 (s, SO ), 1237 (s), 1207 (m), 1183 (m), 1137 (s, SO22 ), 1082 (w), 1053 (m), 1028 (m), 971 

(m), 938 (w), 906 (s), 826 (s), 783 (m), 751 (w), 735 (w). 

 

ent for NMR was established from HSQC and HMBC data and is as follows: 

 

NEt2
Cl

NS
O

O

MeO

a

b

 
 

3 b a 

(Ar)), 4.17 (1H, d, CH2SO2), 3.85 (3H, s, ArOCH3), 3.82, (1H, d, J=14.5 Hz, 

CH2SO2), 3.67 (1H, dq, J=13.5 and 7.0 Hz, NCH2CH3), 3.51 (1H, dq, J=13.5 and 7.0 Hz, 

NCH2CH3), 3.21 (1H, dq, J=14.4 and 7.1 Hz, NCH2CH3), 3.08 (1H, dq, J=14.4 and 7.1 Hz, 

NCH2CH3), 1.30 (3H, t, J=7.1 Hz, NCH2CH3), 0.90 (3H, t, J=7.0 Hz, NCH2CH3). 

 
13C NMR δ (500 MHz, CDCl3) 164.59 (C=N), 160.09 (C-OMe (Ar)), 130.35 (C (Ar)), 126.08 

(CHb (Ar)), 114.74 (CHa (Ar)), 71.03 (C), 67.81 (CH2SO2), 55.43 (ArOCH3), 44.97 

(NCH2CH3), 43.98 (NCH2CH3), 12.30 (NCH2CH3), 11.06 (NCH2CH3). 

 

S (m/z) (35Cl): 353.1 ([M+Na]+), 683.2 ([2M+Na]+). 

1H NMR δ (500 MHz, CDCl ) 7.42 (2H, d, J=8.9 Hz, CH  (Ar)), 6.93 (2H, d, J=8.9 Hz, CH

J=14.5 Hz, 

M
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HRMS (m/z)(35Cl): [M+Na]+ for C14H19ClN2NaO3S calculated 353.0697 measured 353.0690. 

 

3.2.2.2.8 Synthesis of 3-diethylamino-4-(4-methoxyphenyl)isothiazol-1,1-dioxide 

 

NS

NEt2
Cl

MeO

O
O

N
S

O O

NEt2

MeO

K2CO3

Acetone, reflux

(248)
C14H18N2O3S

MW = 294.36 g/mol

(247)

 
 

4-Chloro-3-diethylamino-4-(4-methoxyphenyl)-4,5H-isothiazolin-1,1-dioxide (247) (0.999 g, 

3 ol, 

1 eq.) was added to the solution in one portion. The whole was heated at reflux under nitrogen 

for 4 days and 20 hours. The solvent was evaporated under reduced pressure, and the residue 

was redissolved in DCM (10 mL), and neutralised with a 10% solution of hydrochloric acid (2.5 

mL). The organic layer was separated and the aqueous layer was extracted with DCM (2 x 2.5 

mL). The combined organic layers were washed with water (2 x 20 mL), dried over anhydrous 

sodium sulfate, filtered and concentrated in vacuo to yield the product as a yellow solid (0.761 

g, 86%, m.p. = 133-135˚C, lit.: m.p. = 134˚C178 ). The product was used at the next step with no 

fu

(m). 

.02 mmol) was dissolved in dry acetone (6 mL) and potassium carbonate (0.417 g, 3.02 mm

rther purification. 

 

IR υmax (cm-1) 3075 (w), 2975 (w), 2839 (w), 1603 (m, C=N), 1556 (s), 1506 (s), 1443 (m), 

1408 (m), 1383 (w), 1358 (m), 1288 (s, SO2), 1245 (s), 1189 (s, SO2), 1159 (m), 1122 (s), 1083 

(m), 1028 (m), 970 (m), 945 (m), 914 (m), 826 (m), 790 (m), 776 (m), 743 (m), 683 
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The assignment for NMR was established from HSQC and HMBC data and is as follows: 

O O

MeO

 

N
S

NEt2
a

b

 
 
1H NMR δ (400 MHz,CDCl3) 7.24 (2H, d, J=8.8 Hz, CHb (Ar)), 7.17 (1H, s, CH), 6.97 (2H, 

d, J=8.8 Hz, CHa (Ar)), 3.86 (3H, s, ArOMe), 3.64 (2H, bd, J=6.3 Hz, NCH2CH3), 3.14 (2H, 

bd, J=6.3 Hz, NCH2CH3), 1.31 (3H, bs, NCH2CH3), 0.93 (3H, bs, NCH2CH3). 

 
13C NMR δ (400 MHz,CDCl3) 161.09 (Et2N-C=N), 160.61 (C-OMe (Ar)), 142.94 (C=CH), 

139.67 (C=CH), 128.71 (CH  (Ar)), 123.82 (C (Ar)), 114.56 (CH  (Ar)), 55.45 (ArOCH ), 

4
b a 3

6.67 (NCH2CH3), 43.90 (NCH2CH3), 14.12 (NCH2CH3), 11.93 (NCH2CH3). 

 

MS (m/z): 295.1 ([M+H]+), 317.1 ([M+Na]+), 611.2 ([2M+Na]+), 905.3 ([3M+Na]+). 

 

HRMS (m/z): [M+Na]+ for C14H18N2NaO3S calculated 317.0930 measured 317.0931. 

 

3.2.2.2.9 Synthesis of 5-bromo-3-diethylamino-4-(4-methoxyphenyl)isothiazol-1,1-dioxide 

 
MeO

N
S

O

NEt2

O

N
S

2

OBr

NEt

O

MeO

1) Br2, CCl4

2) Et3N

(249)
C14H17BrN2O3S

MW = 373.26 g/mol

(248)

 
 

3-Diethylamino-4-(4-methoxyphenyl)-isothiazol-1,1-dioxide (248) (0.942 g, 3.20 mmol) was 

dissolved in carbon tetrachloride (9.4 mL) and dichloromethane (4.7 mL), and a solution of 
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b ded 

dropwise to the mixture at room temperature under nitrogen. After 2 hours, the starting material 

had disappeared on TLC, and triethylamine (446 µL, 0.324 g, 3.20 mmol, 1 eq.) was added to 

the reaction mixture, which was stirred for a further 5 hours. The reaction mixture was washed 

with an aqueous solution of sodium metabisulfite (Na2S2O5) (28 mL), the organic layer was 

separated, dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced 

pressure to yield the product as a yellow solid (1.114 g, 93%, m.p. = 144-145˚C, lit.: m.p. = 

163-164˚C183 ). 

I

48 (m), 705 (s). 

 Assignments may be interchanged. 

 

, q, J=7.0 Hz, 

N H2CH3), 1.24 (3H, t, J=7.1 Hz, NCH2CH3), 0.86 (3H, t, J=7.0 Hz, NCH2CH3). 

C NMR δ (400 MHz, CDCl3) 160.92 (Et2N-C=N), 160.36 (C-OMe (Ar)), 137.90 (C=C-Br), 

1 OCH3), 

46.31 (NCH2CH3), 43.77 (NCH2CH3), 13.84 (NCH2CH3), 11.62 (NCH2CH3). 

S (m/z): 395.0 (79Br) ([M+Na]+), 397.0 (81Br) ([M+Na]+), 769.0 ([2M+Na]+), 1143.0 

([3M+Na]+). 

 

HRMS (79Br) (m/z): [M+Na]+ for C14H17BrN2NaO3S calculated 395.0035 measured 395.0038. 

 

romine (164 µL, 0.511 g, 3.20 mmol, 1 eq.) in carbon tetrachloride (1.9 mL) was ad

 

R υmax (cm-1) 2939 (w), 1619 (w, C=N), 1603 (m, C=C), 1562 (s), 1506 (s), 1470 (w), 1439 

(m), 1400 (w), 1361 (w), 1306 (s, SO2)*, 1291 (s)*, 1251 (s), 1179 (w), 1150 (s, SO2), 1110 

(m), 1096 (m), 1017 (m), 1004 (m), 972 (m), 868 (s), 827 (s), 797 (m), 774 (s), 7

*

1H NMR δ (400 MHz, CDCl3) 7.14 (2H, d, J=8.8 Hz, CH (Ar)), 6.98 (2H, d, J=8.8 Hz, CH 

(Ar)), 3.81 (3H, s, ArOMe), 3.58 (2H, q, J=7.1 Hz, NCH2CH3), 3.09 (2H

C

 
13

35.87 (C=CBr), 128.77 (CHb (Ar)), 122.62 (C (Ar)), 114.67 (CHa (Ar)), 55.17 (Ar

 

M
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3.2.2.2.10 Isolation of 5-chloro-3-diethylamino-4-(4-methoxyphenyl)isothiazol-1,1-dioxide 

 

N
S

NEt2

O O

MeO

Cl

(264)
C14H17ClN2O3S

MW = 328.81 g/mol

K2CO3

Acetone, refluxS
N

NEt2

H
Cl

Ar
Cl

O
O

(247)
Ar = 4-MeO h

NS

NEt2
Cl

Ar

O
O

P

+
N

S

NEt2

O O

MeO

(248)
C14H18N2O3S

MW = 294.36 g/mol

(261)
Ar = 4-MeOPh
C14H17ClN2O3S

MW = 328.81 g/mol

p ol, 1 eq.) was added in one portion. The mixture was 

heated at reflux temperature under nitrogen for 7 days and 19 hours. The solvent was removed 

in

re dried over 

N 2SO4 and filtered. The solvent was evaporated under reduced pressure to give the crude 

p

4 (w), 1357 (w), 1306 (s, SO2), 1248 (s), 1206 (w), 1153 (s, SO2), 1111 (w), 1097 

(w), 1082 (w), 1050 (w),  1024 (m), 972 (w), 884 (s), 830 (m), 802 (m), 770 (m), 755 (w), 736 

(w

+

 

A mixture 4-chloroisothiazol-1,1-dioxide (247) and 4,5-dichloroisothiazolin-1,1-dioxide (261) 

(3.231 g, ~10/1 mixture approximately from NMR) was dissolved in dry acetone (10 mL) and 

otassium carbonate (1.350 g, 9.77 mm

 vacuo and the residue was dissolved in DCM (~12 mL). It was neutralised with a 10% 

solution of hydrochloric acid. The aqueous layer was extracted with DCM (2 x 10 mL) and the 

organic layer was washed with water (2 x 10 mL). The combined organic layers we

a

roduct as a sticky orange solid (2.207 g). Purification by gravity silica chromatography 

(PE/EtOAc: 2/1) afforded the isothiazol-1,1-dioxide (248) (1.243 g) and the 5-chloroisothiazol-

1,1-dioxide (264) as a yellow solid (224 mg, m.p. = 123-125˚C). 

 

IR υmax (cm-1) 2976 (w), 2840 (w), 1624 (m, C=N), 1604 (m), 1564 (m), 1508 (s), 1443 (w), 

1399 (w), 138

), 713 (w). 
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The assignment for NMR data is as follows: 

 

N
S

NEt2

O O

MeO

Cl

a

b

 
 
1H NMR δ (500 MHz, CDCl3) 7.20 (2H, d, J=8.5 Hz, CHb (Ar)), 7.03 (2H, d, J=8.5 Hz, CHa 

(A

3.2.2.2.11 

O

Br

r)), 3.87 (3H, s, OCH3), 3.65 (2H, q, J=7.1 Hz, NCH2CH3), 3.15 (2H, q, J=7.1 Hz, 

NCH2CH3), 1.30 (3H, t, J=7.1 Hz, NCH2CH3), 0.91 (3H, t, J=7.1 Hz, NCH2CH3). 

 
13C NMR δ (500 MHz, CDCl3) 160.69 (Et2N-C=N), 160.42 (C-OMe (Ar)), 147.75 (C=C-Cl), 

132.28 (C=C-Cl), 129.19 (CHb (Ar)), 121.89 (C (Ar)), 114.94 (CHa (Ar)), 55.38 (OCH3), 46.46 

(NCH2CH3), 43.72 (NCH2CH3), 14.10 (NCH2CH3), 11.92 (NCH2CH3). 

 

MS (m/z) (35Cl): 329.1 ([M+H]+). 

 

HRMS (m/z) (35Cl): [M+H]+ for C14H18ClN2O3S calculated 329.0721 measured 329.0719. 

 

Synthesis of 3-diethylamino-5-methanesulfanyl-4-(4-methoxyphenyl)isothiazol-

1,1-dioxide 

 
Me

N
S

NEt2

O O

N
S

NEt2

O O

MeO

MeS

MeSNa

DCM

(250)
C15H20N2O3S2

MW = 340.45 g/mol

(249)
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5-Bromo-3-diethylamino-4-(4-methoxyphenyl)-isothiazol-1,1-dioxide (249) (0.706 g, 1.89 

mmol) was dissolved in dichloromethane (15 mL). Sodium thiomethoxide (0.132 g, 1.89 mmol, 

1 eq.), and triethylamine (270 µ0.196 g, 1.93 mmol, 1 eq.) were added to the mixture at room 

temperature under stirring. The reaction was stirred under nitrogen for 5 hours. The mixture was 

neutralised with a 10% solution of hydrochloric acid, and the aqueous layer was extracted with 

dichloromethane. The combined organic layers were dried over anhydrous sodium sulfate, 

filtered and the solvent was evaporated in vacuo to yield the product as a yellow solid (0.627g, 

97%, m.p.=170-171˚C, lit.: m.p. = 174˚C184 ). 

I

NEt2

O O

 

R υmax (cm-1) 2935 (w), 1608 (w), 1583 (s, C=N), 1550 (m), 1505 (m), 1440 (w), 1393 (m), 

1286 (s, SO2), 1245 (s), 1145 (s, SO2), 1109 (m), 1096 (m) ,1081 (m), 1025 (m), 968 (w), 886 

(m), 828(m), 801 (m), 777 (m), 731 (s), 694 (m). 

 

The assignment for NMR was established from HSQC and HMBC data and is as follows: 

 
MeO

N
S

MeS

a

b

 
 

3

(Ar)), 3.87 (3H, s, ArOCH3), 3.61 (2H, q, J=7.0 Hz, NCH2CH3), 3.11 (2H, q, J=7.0 Hz, 

N H2CH3), 2.79 (3H, s, SMe), 1.30 (3H, t, J=7.0 Hz, NCH2CH3), 0.89 (3H, t, J=7.0 Hz, 

NCH2CH3). 

 
13C NMR δ (500 MHz, CDCl3) 160.97 (N=C-NEt2), 160.26 (C-OMe (Ar)), 157.02 (C-SMe), 

129.55 (CHb (Ar)), 125.73 (C (Ar-C=C-SMe)), 124.17 (C (Ar)), 114.95 (CHa (Ar)), 55.32 

(OCH3), 46.39 (NCH2CH3), 43.30 (NCH2CH3), 14.09 (NCH2CH3), 12.92 (SCH3), 12.15 

(NCH2CH3). 

 

S (m/z) 341.1 ([M+H]+), 703.2 ([2M+Na]+). 

 

HRMS (m/z): [M+H]+ for C15H21N2O3S2 calculated 341.0988 measured 341.0992. 

1H NMR δ (500 MHz, CDCl ) 7.19 (2H, d, J=8.7 Hz, CH (Ar)), 7.01 (2H, d, J=8.7 Hz, CH 

C

M
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3.2.2.2.12 Synthesis of 3-diethylamino-5-methanesulfinyl-4-(4-methoxyphenyl)isothiazol-

1,1-dioxide 

 

N
S

NEt2

MeO

MeS
O O

m-CPBA

DCM N

NEt2

MeO

S

O OMeS

O

(265)
C15H20N2O4S2

(250)

MW = 356.45 g/mol  

500 

mg, 1.47 mmol), was dissolved in dry DCM (10 mL) and m-CPBA (253 mg, 1.47 mmol, 1 eq.) 

was added in one portion. The reaction was stirred at RT under nitrogen. The reaction was 

monitored by thin layer chromatography and other portions of m-CPBA were added to the 

mixture to complete the reaction (after 6 hours: 51 mg, 0.30 mmol, 0.2 eq.; after 27 hours: 25 

mg, 0.14 mmol, 0.1 eq.; after 50 hours: 25 mg, 0.14 mmol, 0.1 eq.). After 54 hours, the 

metachlorobenzoic acid precipitate was filtered off, and the filtrate was washed with a 20% 

NaHCO3 solution (5 mL) and water (2 x 5 mL). The organic layer was separated, dried over 

anhydrous Na2SO4, and the solvent was removed under reduced pressure to give the crude 

p

 υmax (cm-1) 2977 (w), 1601 (s, C=N), 1561 (s), 1507 (s), 1443 (m), 1406 (m), 1384 

(w

 

3-Diethylamino-5-methanesulfanyl-4-(4-methoxyphenyl)-isothiazol-1,1-dioxide (250) (

roduct as a yellow solid. It was purified by gravity silica chromatography (PE 40-60ºC / ethyl 

acetate: gradient elution 2/1, 3/2, 1/1) to yield the product as a yellow solid (350 mg, 67%, 

m.p.=167-169˚C). 

 

IR

),1358 (m), 1290 (s, SO2), 1247(s), 1205 (m), 1146 (s, SO2), 1066 (s), 1021 (s), 964 (s), 921 

(w), 873 (w), 829 (s), 799 (w), 777 (m), 733 (m), 708 (m). 
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The assignment for NMR in CDCl3 was established from HSQC and HMBC data and is as 

follows: 

 

N
S

NEt2

O O

MeO

S

O

Me

a

b

 
 
1H NMR δ (400 MHz, CDCl3) 7.41 (1H, bs, CHb (Ar)), 7.15 (1H, bs, CHb (Ar)), 7.02 (2H, bs, 

CHa (Ar)), 3.87 (3H, s, OCH3), 3.66 (1H, dq, J=13.6 and 7.1 Hz, NCH2CH3), 3.60 (1H, dq, 

J

t, J=7.0 Hz, NCH2CH3), 0.83 (3H, t, J=7.0 Hz, NCH2CH3). 

60 (NCH2CH3), 11.47 (NCH2CH3). 

MS (m/z) 357.1 ([M+H]+), 713.2 ([2M+H]+), 735.2 ([2M+Na]+). 

 

HRMS (m/z): [M+NH4]+ for C15H24N3O4S2 calculated 374.1203 measured 374.1198. 

 

=13.6 and 7.1 Hz, NCH2CH3), 3.16 (3H, s, CH3SO), 3.11 (2H, q, J=7.1 Hz, NCH2CH3), 1.31 

(3H, t, J=7.1 Hz, NCH2CH3), 0.92 (3H, t, J=7.1 Hz, NCH2CH3). 

 
13C NMR δ (400 MHz, CDCl3) 161.02 (C-OMe (Ar)), 158.54 (Et2N-C=N), 155.81 

(ArC=CSOCH3), 141.21 (ArC=CSOCH3), 129.72 (CHb (Ar)), 128.66 (CHb (Ar)), 120.84 (C 

(Ar)), 114.91 (CHa (Ar)), 114.56 (CHa (Ar)), 55.40 (OCH3), 47.26 (NCH2CH3), 43.75 

(NCH2CH3), 38.34 (CH3SO), 14.16 (NCH2CH3), 11.72 (NCH2CH3). 

 
1H NMR δ (500 MHz, DMSO-D6) 7.54 (1H, bd, J=8.2 Hz, CHb (Ar)), 7.47 (1H, bd, J=8.2 Hz, 

CHb (Ar)), 7.09 (1H, bd, J=8.2 Hz, CHa (Ar)), 7.06 (1H, bd, J=8.2 Hz, CHa (Ar)), 3.81 (3H, s, 

OCH3), 3.53 (2H, bq, J=7.0 Hz, NCH2CH3), 3.08 (2H, bq, J=7.0 Hz, NCH2CH3), 3.04 (3H, s, 

CH3SO), 1.20 (3H. 

 
13C NMR δ (500 MHz, DMSO-D6) 160.29 (C), 157.68 (C), 154.79 (C), 139.89 (C), 129.98 

(CH (Ar)), 129.21 (CH (Ar)), 121.33 (C), 114.47 (CH (Ar)), 114.28 (CH (Ar)), 55.30 (OCH3), 

46.54 (NCH2CH3), 43.40 (NCH2CH3), 38.90 (CH3SO), 13.
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3

1,1-dioxide 

.2.2.2.13 Synthesis of 3-diethylamino-5-methanesulfonyl-4-(4-methoxyphenyl)isothiazol-

 

N
S

NEt2

O O

MeO

MeS

m-CPBA

DCM N
S

NEt2

O O

MeO

MeSO2

(251)
C15H20N2O5S2

MW = 372.45 g/mol

(250)

 
 

3-Diethylamino-5-methanesulfanyl-4-(4-methoxyphenyl)-isothiazole-1,1-dioxide ( ) (2.65 

g, 7.78 mmol) was dissolved in dry DCM (60 mL), and -CPBA (2.69 g, 15.59 mmol, 2 eq.) 

250

m

was added in one portion. The solution was stirred under nitrogen at room temperature, and the 

reaction was m

id p f and the filtrate was 

washed with a 20% sodium bicarbonate solution (18 mL), and then with water (2 x 18 mL). The 

organic layer was separated, dried over anhydrous sodium

. It was crysta

-1

), m

779 (m), 766 (m), 743 (m), 714(m). 

onitored by thin layer chromatography (TLC). More m-CPBA was added to the 

mixture until disappearance of the starting material on TLC (1.35 g (1 eq.) after 5 hours, 0.68 g 

(0.5 eq.) after 24 hours, 0.27 g (0.2 eq.) after 29 hours). The whole was stirred for 31 hours 

overall. Then, the metachlorobenzoic ac recipitate was filtered of

 sulfate, and the solvent was 

evaporated to dryness affording the crude product as a yellow solid (3.23 g) llised 

from DCM (10 mL) / diethyl ether (5 mL) to give the product as a yellow solid (1.469g, 51%, 

m.p.=172˚C, lit.: m.p.=159-161˚C174 ) 

 

IR υmax (cm ) 2980 (w), 1605 (m, C=N), 1568 (m), 1509 (m), 1464 (w), 1443 (w), 1405 (m), 

1360 (w), 1332 (s), 1316 (m), 1292 (s, SO2), 1249 (m), 1204 (m)1162 (s), 1153 (s), 1141 (s, 

SO2), 1099 (m), 1073 (m), 1047 (m  1021 (m), 968 (s), 921 (m), 880 (m), 841 (m), 810 ( ), 
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The assignment for NMR was established from HSQC and HMBC data and is as follows: 

 

N
S

NEt2

O O

MeO

MeSO2

a

b

 
 
1H NMR δ (400 MHz, CDCl3) 7.33 (2H, d, J=8.8 Hz, CHb (Ar)), 7.03 (2H, d, J=8.8 Hz, CHa 

(Ar)), 3.87 (3H, s, OCH3), 3.64 (2H, q, J=7.1 Hz, NCH2CH3), 3.17 (3H, s, CH3SO2), 3.08 (2H, 

q =7.1 Hz, NCH2CH3), 1.32 (3H, t, J=7.1 Hz, NCH2CH3), 0.91 (3H, t, J=7.1 Hz, NCH2CH3). 

 nthesis of 4-cyano-3-diethylamino-4-(4-methoxy-

phenyl)-1,2-thiazetin-1,1-dioxide 

 

O OMeSO2

, J

 
13C NMR δ (400 MHz, CDCl3) 161.23 (C-OCH3 (Ar)), 158.24 (Et2N-C=N), 152.63 

(ArC=CSO2Me), 142.15 (ArC=CSO2Me), 129.08 (CHb (Ar)), 119.84 (C (Ar)), 114.57 (CHa 

(Ar)), 55.37 (OCH3), 47.86 (NCH2CH3), 44.05 (NCH2CH3), 43.93 (SO2CH3), 14.19 

(NCH2CH3), 11.65 (NCH2CH3). 

 

MS (m/z) 395.1 ([M+Na]+), 767.2 ([2M+Na]+). 

 

HRMS (m/z): [M+Na]+ for C15H20N2NaO5S2 calculated 395.0706 measured 395.0710. 

 

3.2.2.2.14 Ring contraction of 3-diethylamino-5-methanesulfonyl-4-(4-methoxyphenyl)-

isothiazol-1,1-dioxide: sy

NEt2

MeO

N
S

NaN3

ACN S NO
O

NEt2
NCMeO

(252)
C14H17N3O3S

MW = 307.36 g/mol

(251)
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3-Diethylamino-5-methanesulfonyl-4-(4-methoxyphenyl)-isothiazol-1,1-dioxide (251) (360 

mg, 0.97 mmol) was dissolved in dry acetonitrile (18 mL). Sodium azide (63 mg, 0.97 mmol, 1 

eq.) was added to the mixture, and the reaction was stirred under nitrogen at room temperature 

until disappearance of the starting material on TLC (after 5 hours). The solvent was evaporated 

in vacuo, and the residue was taken up with DCM (70 mL), and washed with water (2 x 35 mL). 

The organic layer was separated, dried over anhydrous sodium sulfate, filtered, and concentrated 

under reduced pressure to give the crude product as an orange oil (330 mg). It was purified by 

flash silica chromatography (petroleum ether / ethyl acetate: gradient elution 5/2→1/1) to give 

the product as a white solid (170 mg, 57%, m.p.=104-105˚C, lit.: m.p. = 121˚C174 ). 

 

 

(w), 907 (w), 814 (m), 788 (m). 

 

IR υmax (KBr, cm-1) 2981 (w), 2246 (w, CN), 1641 (s, C=N), 1608 (m), 1513 (s), 1464 (w), 

1386 (w), 1336 (s, SO2), 1308 (m), 1262 (s), 1173 (s), 1158 (s, SO2), 1030 (m), 966 (w), 942

The assignment for NMR was established from HSQC and HMBC data and is as follows: 

 

S NO
O

NEt2
NCMeO

a
b

 
 
1H NMR δ (400 MHz, CDCl3) 7.40 (2H, d, J=8.9 Hz, CHb (Ar)), 7.00 (2H, d, J=8.9 Hz, CHa 

and 7.2 Hz

7.2 Hz, NC 2CH3), 1.06 (3H, t, J=7.2 Hz, NCH2CH3). 

 
13C NMR δ (400 MHz, CDCl3) 161.68 (C-OMe (Ar)), 160.58 (Et2N-C=N), 128.37 (CHb 

(Ar)), 116.45 (C (Ar)), 115.08 (CHa (Ar)), 111.14 (CN), 86.23 (C), 55.38 (OCH3), 45.31 

(NCH2CH3), 42.19 (NCH2CH3), 12.63 (NCH2CH3), 11.32 (NCH2CH3). 

 

MS (m/z): 330.1 ([M+Na]+), 637.2 ([2M+Na]+). 

 

HRMS (m/z): [M+Na]+ for C14H17N3NaO3S calculated 330.0883 measured 330.0888. 

 

(Ar)), 3.81 (3H, s, OCH3), 3.61 (1H, dq, J=13.9 and 7.2 Hz, NCH2CH3), 3.43 (1H, dq, J=13.9 

, NCH2CH3), 3.12 (1H, dq, J=14.4 and 7.2 Hz, NCH2CH3), 3.09 (1H, dq, J=14.4 and 

H2CH3). 1.28 (3H, t, J=7.2 Hz, NCH

217 



Chapter 3 Experimental 

3.3 Synthesis of β-sultams and γ-sultams 

3.3.1 Synthesis of β-sultams (ethanesultams) 

3.3.1.1 Synthesis of taurine sulfonyl chloride 

 

(287)

Cl2

CHCl3 / EtOH

(286)

H3N
S

S
NH3

C2H7Cl2NO2S
MW = 166.06 g/mol

Cl
Cl

H3N
SO2Cl

Cl

 

hanol (125 mL). Chlorine was passed into the solution at -10˚C 

under an atmosphere of nitrogen until complete saturation, noted by a permanent pale green 

c was 

added to the mixture, which was stirred for a further 1 hour at room temperature. The reaction 

mixture was stored at 4˚C overnight. The white precipitate was filtered off under vacuum and 

washed with dry diethyl ether to give the product as a white solid (13.82 g, 94%). 

 

IR υmax (cm-1) 2995 (w), 2912 (w), 2910 (bs, NH3), 1599 (w), 1558 (w), 1515 (w), 1399 (w) 

1371 (s, SO2), 1279 (w), 1173 (m), 1159 (s, SO2), 1107 (w), 1085 (m), 1040 (w), 1029 (w), 943 

(w

 

A suspension of cystamine dihydrochloride (286) (10.0 g, 44.4 mmol) was mixed in dry 

chloroform (250 mL) and dry et

olouration (1 hour). The system was purged with nitrogen, and dry diethyl ether (60 mL) 

), 837 (w), 773 (m), 701 (s), 600 (w). 

 

3.3.1.2 Synthesis of 1,2-thiazetidin-1,1-dioxide (β-sultam) 

 

S N
H

O
O

Na2CO3

EtOAc

(28(287)

H3N
SO2Cl

4)
C2H5NO2S

MW = 107.12 g/mol

Cl

 

aurine sulfonyl chloride (287) (13.54 g, 81.5 mmol) was added to finely ground anhydrous 

so d at RT 

r 46 hours. The reaction mixtutre was filtered through Celite®. The solvent was removed in 

 

T

dium carbonate (17.28 g, 163.0 mmol, 2 eq.) in dry ethyl acetate (370 mL) and stirre

fo
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vacuo to give the product as a white solid (2.62-5.29 g, 14-60 %, m.p.= 50-52˚C, lit: m.p.= 

53˚C29 ). 

x
-1 ), 2987 (w), 2919 (w), 1629 (w), 1485 (w), 

1415 (w), 1300 (s, SO2), 1252 (s), 1150 (s, SO2), 1114 (m), 992 (w), 963 (m), 917 (w), 763 (m), 

654 (m). 

 
1H NMR δ (400 MHz, CDCl3) 5.32 (1H, bs, NH), 4.25 (2H, dt, J=7.0 and 1.7 Hz, CH2SO2), 

3.33 (2H, dt, J=7.0 and 3.9 Hz, CH2NH). 

 
13C NMR δ (400 MHz, CDCl3) 60.93 (CH2SO2), 28.14 (CH2NH). 

 

IR υma  (cm ) 3581 (br), 3297 (br, NH), 3048 (w

 

3.3.1.3 N-Acylation of β-sultam 

 

S NO
O H

S NO
O

O

AcCl/DMAP

Et3N
DCM

(285)(284)
C4H7NO3S

MW = 149.16 g/mol  

5 mL) at -78˚C. The reaction mixture was stirred for 30 

m ine (750 µL, 542 mg, 5.36 mmol, 1 eq.) at -78˚C over 5 

irred for 27 hours. Filtration and 

concentration under reduced pressure gave the crude product as a yellow oily solid (1.414 g). It 

was purified by silica chromatography (PE 40-60˚C/EtOAc : 1/2) to give the product as a white 

solid (439 mg, 56%, m.p.=74-75˚C, lit.: m.p.=74˚C256 ). 

 

IR υmax (cm-1) 2982 (w), 1695 (s, C=O), 1557 (w), 1373 (m), 1316 (s, SO2), 1286 (m), 1199 

(s, SO2)*, 1158 (s)*, 1037 (w), 959 (w), 907 (s), 779 (m), 724 (s), 688 (m), 648 (m), 623 (w), 

588 (w), 547 (s). 

Freshly distilled acetyl chloride (380 µL, 419 mg, 5.34 mmol, 1 eq.) was added dropwise to a 

solution of β-sultam (284) (566 mg, 5.28 mmol) and N,N-dimethylaminopyridine (49 mg, 0.40 

mmol, 0.2 eq.) in dry dichloromethane (1

inutes before the addition of triethylam

minutes. The mixture was then allowed to warm to RT and st

*Assignments may be interchanged 
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1H NMR δ (500 MHz, CDCl3) 4.17 (2H, t, J=7.2 Hz, CH2SO2), 3.65 (2H, t, J=7.2 Hz, CH2N), 

2.25 (3H, s, CH3). 

3.3.2 Synthesis of γ-sultams (propanesultams)

 
13C NMR δ (500 MHz, CDCl3) 167.34 (C=O), 57.37 (CH2SO2), 31.02 (CH2N), 23.33 (CH3). 

 

 

3.3.2.1 Synthesis of 3-chloropropanesulfonamide 

 

Cl SO2Cl
conc. aq. NH3

Et2O
Cl SO2NH2

(303)
C3H8ClNO2S

MW = 157.61 g/mol

(302)

 

A solution of concentrated aqueous ammonia (2.157 g, 7 mL of a 35% sol., 126.6 mmol, 2.2 

eq.) in dry ether (57 mL) was cooled in an ice bath. A solution of 3-chloropropanesulfonyl 

chloride (302) (10.192 g, 7 mL, 57.6 mmol), in dry ether (29 mL) was added to the stirred 

mixture at such a rate as to maintain the temperature at 5˚C (over 1 hour). After further stirring 

at ice temperature for 30 minutes, the ether layer was separated and dried over anhydrous 

so

 product as a white solid (3.5 g, 38% 

overall yield, m.p.=63-64˚C, lit. m.p.=64-65˚C241 ). 

0 (s, SO2), 1057 (m), 1028 (m), 908 (s), 862 (m), 798 (m), 781 (m), 745 (s), 

6

 

dium sulfate. The ether solution was filtered, treated with petroleum ether 40-60˚C to faint 

turbidity and cooled in a freezer overnight. The deposited white solid was filtered under vacuum 

(3.0 g, m.p. = 63-64˚C). The filtrate was evaporated to dryness under reduced pressure, giving a 

sticky white solid residue, which was combined with the solid obtained by evaporation of the 

aqueous layer of the reaction mixture and extracted with toluene (3 x 30 mL). A residual oil left 

at the bottom of toluene was carefully separated and toluene was evaporated under reduced 

pressure to a quarter of its initial volume, and the mixture was left in the freezer overnight. 

Vacuum filtration gave an additional crop (0.5 g) of the

 

IR υmax (cm-1) 3351 and 3244 (br, NH2), 1535 (w), 1439 (w), 1302 (s, SO2), 1265 (s), 1192 

(m), 1157 (s), 112

45 (s), 572 (s). 
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1H NMR: δ (400 MHz, CDCl3) 4.90 (2H, bs, NH2), 3.71 (2H, t, J=6.2 Hz, CH2Cl), 3.33 (2H, 

m, CH2SO2), 2.35 (2H, m, CH2). 

 
13C NMR δ (400 MHz, CDCl3) 52.52 (CH2), 42.63 (CH2), 27.04 (CH2). 

 

3.3.2.2 Synthesis of γ-sultam 

 

Cl SO2NH2
S

N H

O
O

EtOK / EtOH

(304)
C3H7NO2S

MW = 121.15 g/mol

(303)

 
 

To a solution of 3-chloropropanesulfonamide (303) (1.500 g, 9.51 mmol), in dry ethanol (13 

agnesium and iodine, was added a solution of potassium hydroxide 

(0.533 g, 9.51 mmol, 1 eq.) in dry ethanol (4 mL) The solution became turbid almost at once. 

The mixture was heated at reflux under nitrogen for 75 minutes. The pH of the reaction mixture 

was acidic (pH~4). An additional portion of potassium hydroxide (0.127 g, 2.26 mmol, 0.2 eq.) 

was added to the mixture, which was heated at reflux for a further 45 minutes (2 hours overall). 

The reaction mixture was slightly basic (pH~8-9). The solvent was removed in vacuo to yield 

the crude product as a yellow oil (1.128g). It was purified by flash silica chromatography (PE 

40-60˚C / ethyl acetate: 1/2) to yield the product as a colourless oil (0.865 g, 75%). 

 

IR υ

mL) freshly distilled over m

J=6.5 Hz, CH2NH), 3.09 (2H, 

2 2 2 2 2). 

+). 

 

max (cm-1) 3269 (br, NH), 2962 (w), 1731 (w), 1453 (w), 1387 (m), 1289 (s, SO2), 1175 

(m), 1130 (s, SO2), 1042 (m), 997 (m), 923 (m), 729 (s), 700 (m), 597 (m). 

 
1H NMR: δ (400 MHz, CDCl3) 4.39 (1H, bs, NH), 3.43 (2H, q, 

t, J=7.5 Hz, CH SO ), 2.48 (2H, m, CH CH CH

 
13C NMR δ (400 MHz, CDCl3) 46.53 (CH2), 42.20 (CH2), 23.87 (CH2). 

 

m/z): 144.0 ([M+Na]MS (
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3.3.2.3 N-Acylation of γ-sultam 

 

S
N H

O
O

S
N

O
O

O

AcCl/DMAP

Et3N
DCM

(305)
C5H9NO3S

MW = 163.19 g/mol  
 

To a solution of propanesultam (304) (0.865 g, 7.14 mmol) and DMAP (0.058 g, 0.47 mmol) 

in dry DCM (20 mL) was added freshly distilled acetyl chloride (0.507 mL, 0.560 g, 7.14 mmol, 

1 eq.) at 0˚C. The reaction mixture was stirred under nitrogen for 30 minutes before 

triethylamine (1 mL, 0.729 g, 7.21 mmol, 1 eq.) was added dropwise over 5 minutes at 0˚C. The 

m d to warm at RT and was stirred overnight. The mixture was filtered 

a

+

(304)

ixture was then allowe

nd the solvent was removed in vacuo to yield the crude product (2.052 g) as yellow sticky 

needles. It was purified by gravity silica chromatography (PE 40-60ºC/ethyl acetate: 1/2) to 

yield the product as a white solid (0.721 g, 62%, m.p. = 73-74˚C). 

 

IR υmax (cm-1) 2959 (w), 1687 (s, C=O), 1416 (w), 1376 (m), 1303 (s, SO2), 1270 (m), 1144 

(s, SO2), 1099 (w), 1036 (w), 1000 (m), 966 (w), 870 (w), 730 (m). 

 
1H NMR: δ (400 MHz, CDCl3) 3.86 (2H, t, J=6.8 Hz, CH2NAc), 3.42 (2H, t, J=7.2 Hz, 

CH2SO2), 2.43 (3H, s, CH3), 2.41 (2H, m, CH2CH2CH2). 

 
13C NMR δ (400 MHz, CDCl3) 167.77 (C=O), 49.81 (CH2), 44.53 (CH2), 22.82 (CH3), 18.05 

(CH2). 

 

HR-CIMS (m/z): [M+NH4]  for C5H13N3O3S calculated 181.0641 measured 181.0642. 
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3.4 1,3-Dipolar cycloadditions 

3.4.1 Reaction of 3-diethylamino-4-(4-methoxyphenyl)isothiazol-1,1-dioxide with 

nitrile oxides 

3.4.1.1 Synthesis of (+/-)-3-diethylamino-6-ethoxycarbonyl-3a-(4-methoxyphenyl)-

isothiazolino[4,5-d]isoxazolin-1,1-dioxide 

 

N
S

NEt2

O O

MeO

+
N

OH

EtO2C Cl

Et3N

Et2O

S
N

O
N

NEt2

O OEtO2C
H

OMe

(315a)

(312a)
(248)

C18H23N3O6S
MW = 409.45 g/mol

 

) (100 mg; 0.34 mmol) and 

ethyl chlorooximidoacetate (312a) (51 mg; 0.34 mmol; 1 eq.) were dissolved in dry diethyl ether 

(5

nd the mixture was stirred overnight. 

Filtration and evaporation under reduced pressure gave the crude product as a yellow oil (214 

m

rless oil (120 mg; 86 %). 

, SO2), 

1254 (m), 1211 (m), 1179 (s, SO2), 1135 (m), 1092 (m), 1030 (w), 971 (w), 948 (m), 907 (w), 

835 (m). 

 

 

3-Diethylamino-4-(4-methoxyphenyl)-isothiazol-1,1-dioxide (248

 mL) under nitrogen. Triethylamine (47 µL; 34 mg; 0.34 mmol; 1 eq) in dry diethyl ether (10 

mL) was added dropwise to the mixture over 20 hours, a

g). Purification by flash silica chromatography (PE 40-60˚C/EtOAc: 2/1) afforded the product 

as a colo

 

IR υmax (cm-1) 2980 (w), 1742 (m, C=O), 1597 (s, C=N), 1514 (m), 1443 (m), 1328 (m
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The assignment for NMR was established from HSQC, HMBC, NOE, selective 1D NOE and 

INADEQUATE data and is as follows: 

 

S
N

O
N

NEt2

O OEtO2C
H

OMe

a

b

 
 
1H NMR δ (500 MHz, CDCl3) 7.28 (2H, d, J=8.8 Hz, CHb (Ar)), 6.98 (2H, d, J=8.8 Hz, CHa 

(Ar)), 4.97 (1H, s, CH (ring junction)), 4.42 (2H, q, J=7.1 Hz, OCH2CH3) 3.84 (3H, s, OCH3), 

3.66 (1H, dq, J=13.6 and 7.0 Hz, NCH2CH3), 3.42 (1H, dq, J=13.6 and 7.0 Hz, NCH2CH3), 

3.28 (1H, dq, J=14.4 and 7.0 Hz, NCH2CH3), 3.19 (1H, dq, J=14.4 and 7.0 Hz, NCH2CH3), 

1.38 (3H, t, J=7.1 Hz, OCH2CH3), 1.26 (3H, t, J=7.0 Hz, NCH2CH3), 0.88 (3H, t, J=7.0 Hz, 

NCH2CH3). 

RMS (m/z): [M+Na]  for C18H23N3NaO6S calculated 432.1200 measured 432.1209. 

 
13C NMR δ (500 MHz, CDCl3) 162.50 (N=C-NEt2), 160.55 (C-OMe), 157.97 (C=O), 147.65 

(N=C-CO2Et), 127.19 (C (PhOMe)), 124.96 (CHb (Ar)), 115.09 (CHa (Ar)), 100.40 (C (ring 

junction)), 77.26 (CH (ring junction)), 62.92 (OCH2CH3), 55.38 (OCH3), 45.09 (NCH2CH3), 

44.10 (NCH2CH3), 13.85 (OCH2CH3), 12.64 (NCH2CH3), 11.19 (NCH2CH3). 

 

MS (m/z): 432.1 ([M+Na]+), 841.3 ([2M+Na]+). 

 
+H

 

Crystallograpic data: appendix XVI 
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3.4.1.2 Synthesis of (+/-)-3-diethylamino-3a-(4-methoxyphenyl)-6-phenylisothiazolino-

[4,5-d]isoxazolin-1,1-dioxide 

 

N
S

NEt2

O O

MeO

+

N
OH

Cl

Et3N

Et2O
S

N
O

N

NEt2

O OH

OMe

(315b)
C21H23N3O4S

MW = 413.49 g/mol

(248) (312b)

 

 

3-Diethylamino-4-(4-methoxyphenyl)-isothiazol-1,1-dioxide (248) (100 mg; 0.34 mmol) and 

benzohydroximoyl chloride (312b) (53 mg; 0.34 mmol; 1 eq.) were suspended in dry diethyl 

et

y gravity silica 

chromatography (PE 40-60˚C / AcOEt: 2/1) to give the product as a white fluffy solid (99 mg; 

71

I 2), 1252 

(s), 1210 (w), 1177 (s, SO2), 1136 (s), 1096 (m), 1031 (m), 968 (m), 947 (m), 920 (m), 890 (m), 

83

 

her (5 mL). Triethylamine (47 µL; 34 mg; 0.34 mmol; 1 eq.) in dry diethyl ether (10 mL) was 

added dropwise to the mixture over 4-5 hours. The mixture was stirred overnight (20 hours) 

under nitrogen. It was filtered, and the solvent was evaporated under reduced pressure to give 

the crude product as a pale yellow solid (170 mg). It was purified b

%; m.p.=78-80°C). 

 

R υmax (cm-1) 2975 (w), 1593 (s, C=N), 1512 (m), 1445 (m), 1352 (m), 1320 (s, SO

2 (m), 773 (m), 732 (m). 
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The assignment for NMR was established from HSQC and HMBC data and is as follows: 

 

S
N

O
N

NEt2

O OH

OMe

a

b

c

d

e  
 
1H NMR δ (400 MHz, CDCl3) 7.79 (2H, dd, J=7.5 and 1.6 Hz, CHc (Ph)), 7.44 (3H, m, CHd,e 

(Ph)), 7.36 (2H, d, J=8.9 Hz, CHb (Ar)), 6.98 (2H, d, J=8.9 Hz, CHa (Ar)), 5.12 (1H, s, CH 

(ring junction)), 3.84 (3H, s, OCH3), 3.70 (1H, dq, J=13.6 and 7.1 Hz, NCH2CH3), 3.43 (1H, 

q, J=13.6 and 7.1 Hz, NCH2CH3), 3.27 (2H, m, NCH2CH3), 1.29 (3H, t, J=7.1 Hz, 

N

MS (m/z): 436.1 ([M+Na]+), 849.3 ([2M+Na]+), 1262.4 ([3M+Na]+), 1675.6 ([4M+Na]+). 

d

CH2CH3), 0.87 (3H, J=7.1 Hz, NCH2CH3). 

 
13C NMR δ (400 MHz, CDCl3) 163.54 (Et2N-C=N), 160.40 (C-OMe (Ar)), 152.52 (Ph-C=N-

O), 131.13 (CHe (Ph)), 128.90 (CHd (Ph)), 128.86 (C (Ar)), 127.55 (CHc (Ph)), 126.82 (C 

(Ph)), 125.10 (CHb (ArOMe)), 115.05 (CHa (ArOMe)), 99.16 (C (ring junction)), 79.27 (CH 

(ring junction)), 55.44 (OCH3), 45.04 (NCH2CH3), 44.21 (NCH2CH3), 12.76 (NCH2CH3), 

11.38 (NCH2CH3). 

 

 

HRMS (m/z): [M+Na]+ for C21H23N3NaO4S calculated 436.1301 measured 436.1303. 
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3.4.1.3 Synthesis of (+/-)-6-(2-azidophenyl)-3-diethylamino-3a-(4-methoxyphenyl)-

isothiazolino[4,5-d]isoxazolin-1,1-dioxide 

 

N
S

NEt2

O O

MeO

+

N
OH

Cl

N3 Et3N

Et2O
S

N
O

N

NEt2

O OH

OMe

N3

(315c)
C21H22N6O4S

MW = 454.50 g/mol
 

 

3-Diethylamino-4-(4-methoxyphenyl)-isothiazol-1,1-dioxide (248) (100 mg; 0.34 mmol) and 

2-azidobenzohydroximoyl chloride (196) (67

(248) (196)

 mg; 0.34 mmol; 1 eq.) were suspended in dry 

diethyl ether (5 mL). Triethylamine (47 µL; 34 mg; 0.34 mmol; 1 eq.) in dry diethyl ether (10 

m

 28%; m.p.=159-160°C). 

 

1346 

(m), 1323 (s, SO2), 1253 (m), 1176 (s, SO2), 1134 (m), 1091 (w), 1033 (w), 969 (w), 946 (w), 

9

 

L) was added dropwise to the mixture over 10 hours. The mixture was stirred overnight (24 

hours) under nitrogen. It was filtered, and the solvent was evaporated under reduced pressure to 

give the crude product as a pale brown solid (189 mg). It was purified by gravity silica 

chromatography (PE 40-60˚C / EtOAc: gradient elution 4/1 to 1/1) to give the product as a pale 

brown solid (43 mg;

IR υmax (cm-1) 2980 (w), 2132 (m, N3), 1595 (s, C=N), 1513 (m), 1487 (w),1447 (m), 

07 (w), 893 (w), 833 (m), 783 (w), 756 (w). 
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The assignment for NMR was established from HSQC and HMBC data and is as follows: 

 

S
N

O
N

NEt2

O OH

OMe

N3

a

b

c

d
e

f

 
 
1H NMR δ (400 MHz, CDCl3) 7.92 (1H, dd, J=7.9 and 1.4 Hz, CHc (PhN3)), 7.47 (1H, m, 

CHd (PhN3)), 7.37 (2H, d, J=8.9 Hz, CHb (PhOMe)), 7.20 (1H, m, CHf (PhN3)), 7.18 (1H, m, 

CHe (PhN3)), 7.00 (2H, d, J=8.9 Hz, CHa (PhOMe)), 5.70 (1H, s, CH (ring junction)), 3.84 (3H, 

s,

ng junction)), 79.35 (CH (ring junction)), 55.37 

(CH3 (OMe)), 44.73 (NCH2CH3), 43.91 (NCH2CH3), 12.78 (NCH2CH3), 11.28 (NCH2CH3). 

RMS (m/z): [M+Na]  for C21H22N6NaO4S calculated 477.1315 measured 477.1316. 

 

HRMS (m/z): [M+H]+ for C21H23N6O4S calculated 454.1418 measured 454.1418. 

 

 OCH3), 3.69 (1H, dq, J=13.6 and 7.1 Hz, NCH2CH3). 3.39 (1H, dq, J=13.6 and 7.1 Hz, 

NCH2CH3), 3.29 (1H, dq, J=14.4 and 7.1 Hz, NCH2CH3), 3.21 (1H, dq, J=14.4 and 7.1 Hz, 

NCH2CH3), 1.26 (3H, t, J=7.1 Hz, NCH2CH3), 0.90 (3H, t, J=7.1 Hz, NCH2CH3). 

 
13C NMR δ (400 MHz, CDCl3) 163.58 (Et2N-C=N), 160.32 (C-OMe (PhOMe)), 151.00 

(N=C-PhN3), 138.01 (C (PhN3)), 132.00 (CHd (PhN3)), 129.94 (CHc (PhN3)), 128.61 (C 

(PhOMe)), 125.21 (CHb (PhOMe)), 124.99 (CHe (PhN3)), 118.94 (CHf (PhN3)), 118.67 (C-N3 

(PhN3)), 114.96 (CHa (PhOMe)), 98.47 (C (ri

 

MS (m/z): 477.1 ([M+Na]+), 931.3 ([2M+Na]+), 1385.4 ([3M+Na]+). 

 
+H

228 



Chapter 3 Experimental 

3.4.1.4 Synthesis of (+/-)-3-diethylamino-3a-(4-methoxyphenyl)-6-(4-nitrophenyl)-

isothiazolino[4,5-d]isoxazolin-1,1-dioxide 

 

N
S

NEt2

O O

MeO

+

N
OH

Cl

O2N

Et3N

Et2O S
N

O
N

NEt2

O OH

OMe

O2N
(315d)

C21H22N4O6S
MW = 458.48 g/mol

 

3-Diethylamino-4-(4-methoxyphenyl)-isothiazol-1,1-dioxide (248) (100 mg; 0.34 mmol) and 

4-nitrobenzohydroximoyl chloride (312c) (68 mg; 0.34 mmol; 1 eq.) were suspended in dry 

diethyl ether (5 mL). Triethylamine (47 µL; 34 mg; 0.34 mmol; 1 eq.) in dry diethyl ether (10 

(248) (312c)

mL) was added dropwise to the mixture over 4-5 hours. The mixture was stirred for 5 days and 

19 hours under nitrogen. It was filtered, and the 

υ  (cm-1) 2980 (w), 1597 (s, C=N), 1514 (s), 1443 (m), 1342 (s), 1321 (s, SO2), 1253 (s), 

1209 (w), 1178 (s, 2 ), 908 (w), 852 

(m), 833 (m), 783 (w), 746 (w). 

solvent was evaporated under reduced pressure 

to give the crude product as an orange solid (95 mg). It was purified by gravity silica 

chromatography (PE 40-60˚C / EtOAc: gradient elution 3/1 to 2/1) to give the product as a 

yellow oil (43 mg; 28%). 

 

IR max

SO ), 1137 (m), 1095 (w), 1030 (w), 969 (m), 947 (w), 933 (w
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The assignment for NMR was established from HSQC and HMBC data and is as follows: 

 

S
N

O
N

NEt2

O OH

OMe

O2N

a

b

c

d

 
 
1H NMR δ (400 MHz, CDCl3) 8.28 (2H, d, J=8.9 Hz, CHd (PhNO2)), 7.96 (2H, d, J=8.9 Hz, 

CHc (PhNO2)), 7.35 (2H, d, J=8.9 Hz, CHb (PhOMe)), 7.00 (2H, d, J=8.9 Hz, CHa (PhOMe)), 

5.12 (1H, s, CH (ring junction)), 3.84 (3H, s, 3 (OMe)), 3.70 (1H, dq, J=13.6 and 7.0 Hz, 

N

H (ring junction)), 55.46 (CH3 (OMe)), 45.24 (NCH2CH3), 44.28 

(N 2CH ), 12.75 (NCH CH ), 11.32 (NCH CH ). 

RMS (m/z): for C21H23N4O6S calculated 459.1333 measured 459.1322. 

 

CH

CH2CH3), 3.43 (1H, dq, J=13.6 and 7.0 Hz, NCH2CH3), 3.32 (1H, dq, J=14.3 and 7.3 Hz, 

NCH2CH3), 3.25 (1H, dq, J=14.3 and 7.3 Hz, NCH2CH3), 1.29 (3H, t, J=7.1 Hz, NCH2CH3), 

0.90 (3H, t, J=7.1 Hz, NCH2CH3). 

 
13C NMR δ (400 MHz, CDCl3) 163.26 (Et2N-C=N), 160.59 (C (PhOMe)), 151.28 (O2NPh-

C=N-O)), 148.89 (C-NO2 (PhNO2)), 132.95 (C (PhNO2)), 128.43 (CHc (PhNO2)), 128.03 (C 

(PhOMe)), 125.04 (CHb (PhOMe)), 124.04 (CHd (PhNO2)), 115.18 (CHa (PhOMe)), 100.16 (C 

(ring junction)), 78.25 (C

CH 3 2 3 2 3

 

MS (m/z): 459.1 [M+H]+, 934.3 [2M+NH4]+, 1392.4 [3M+NH4]+. 

 

H
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3.4.1.5 Synthesis of (+/-)-3-diethylamino-3a,6-di(4-methoxyphenyl)isothiazolino[4,5-

d]isoxazolin-1,1-dioxide 

 

N
S

NEt2

O O

MeO

+

N
OH

Cl

MeO

Et3N

Et2O S
N

O
N

NEt2

O OH

OMe

MeO

(315e)
C22H25N3O5S

MW = 443.51 g/mol
 

3-Diethylamino-4-(4-methoxyphenyl)-isothiazol-1,1-dioxide (248) (100 mg; 0.34 mmol) and 

4-methoxybenzohydroximoyl chloride (268) (63 mg; 0.34 mmol; 1 eq.) were suspended in dry 

diethyl ether (5 mL). Triethylamine

(248) (268)

 (47 µL; 34 mg; 0.34 mmol; 1 eq.) in dry diethyl ether (10 

mL) was added dropwise to the mixture over 4-5 hours. The mixture was stirred overnight (20 

ho

 υmax (cm-1) 2978 (w), 1594 (s, C=N), 1514 (s), 1443 (m), 1422 (w) 1353 (m), 1320 (s, 

S (m), 968 (m), 948 (w), 920 

(m ), 781 (w), 734 (w). 

urs) under nitrogen. It was filtered, and the solvent was evaporated under reduced pressure to 

give the crude product as a yellow solid (185 mg). It was purified by gravity silica 

chromatography (PE 40-60˚C / AcOEt: gradient elution 3/1 to 2/1) to give the product as a white 

solid (108 mg; 71%; m.p.=83-85°C). 

 

IR

O2), 1253 (s), 1211 (w), 1178 (s, SO2), 1137 (m), 1096 (w), 1030 

), 890 (w), 833 (m
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The assignment for NMR was established from HSQC and HMBC data and is as follows: 

 

S
N

O
N

NEt2

O OH

OMe

MeO

a

b

c

d

 
 
1H NMR δ (400 MHz, CDCl3) 7.73 (2H, d, J=8.9 Hz, CHc (Ar)), 7.37 (2H, d, J=8.9 Hz, CHb 

(Ar)), 6.98 (2H, d, J=8.9 Hz, CHa (Ar)), 6.94 (2H, d, J=8.9 Hz, CHd (Ar)), 5.09 (1H, s, CH 

(ring junction)), 3.84 (3H, s, OCH3), 3.83 (3H, s, OCH3), 3.69 (1H, dq, J=13.6 and 7.1 Hz, 

N

m/

O5S calculated 466.1407 measured 466.1409. 

CH2CH3)), 3.42 (1H, dq, J=13.6 and 7.1 Hz, NCH2CH3), 3.26 (2H, m, NCH2CH3), 1.28 (3H, 

t, J=7.1 Hz, NCH2CH3), 0.86 (3H, t, J=7.1 Hz, NCH2CH3). 

 
13C NMR δ (400 MHz, CDCl3) 163.69 (Et2N-C=N), 161.76 (C-OMe (Ar)), 160.34 (C-OMe 

(Ar)), 151.97 (Ar-C=N-O), 129.23 (CHc (Ar)), 129.03 (C (Ar)), 125.12 (CHb (Ar)), 119.22 (C 

(Ar)), 115.00 (CHa (Ar)), 114.34 (CHd (Ar)), 98.86 (C (ring junction)), 79.57 (CH (ring 

junction)), 55.43 (OCH3), 55.38 (OCH3), 44.99 (NCH2CH3), 44.17 (NCH2CH3), 12.74 

(NCH2CH3), 11.37 (NCH2CH3). 

 

MS ( z): 466.1 ([M+Na]+), 909.3 ([2M+Na]+), 1352.4 ([3M+Na]+). 

 

HRMS (m/z): [M+Na]+ for C22H25N3Na

 

232 



Chapter 3 Experimental 

3.4.2 Reaction of 5-substituted-3-diethylamino-4-(4-methoxyphenyl)-isothiazol-

1,1-dioxides with 4-methoxybenzonitrile oxide 

3.4.2.1 Synthesis of (+/-)-6a-chloro-3-diethylamino-3a,6-di(4-methoxyphenyl)-

isothiazolino[4,5-d]isoxazolin-1,1-dioxide

 

MeO

N
S

NEt2

O OCl

+

N
OH

Cl

MeO

Et3N

Et2O S
N

O
N

NEt2

O O

OMe

Cl

MeO

(315f)

(264) (268)

C22H24ClN3O5S
MW = 477.96 g/mol

 

he reaction mixture was filtered, and the solvent was removed 

in vacuo to give the crude product as a white oily solid (85 mg). Purification by gravity silica 

c llow oil (22 mg; 56%). 

83 (w), 

1335 (s, SO2), 1306 (m), 1256 (s), 1209 (w), 1180 (s), 1162 (s, SO2), 1122 (w), 1101 (w), 1068 

(w), 1028 (m), 981 (m), 963 (m), 945 (w), 918 (m), 833 (m), 810 (w), 794 (w), 770 (w), 732 

(m). 

 

5-Chloro-3-diethylamino-4-(4-methoxyphenyl)-isothiazol-1,1dioxide (264) (27 mg; 0.08 

mmol) and 4-methoxybenzohydroximoyl chloride (268) (15 mg; 0.08 mmol; 1 eq) were 

suspended in dry diethyl ether (5 mL). Triethylamine (12 µL; 8.7 mg; 0.09 mmol; 1 eq) in dry 

diethyl ether (5 mL) was added dropwise to the mixture under nitrogen over 4 to 5 hours. The 

whole was stirred for 21 hours. T

hromatography (PE 60-80˚C/EtOAc : 3/1) afforded the product as a ye

 

IR υmax (cm-1) 2926 (w), 2853 (w), 1593 (s, C=N), 1513 (s), 1441 (m), 1420 (w), 13
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The assignment for NMR was established from HSQC and HMBC data and is as follows: 

MeO

Cl

 

OMe

S
N

O
N

NEt2

O O

a

b

c

d

 
 
1H NMR δ (500 MHz, CDCl3) 7.99 (2H, d, J=8.8 Hz, CHc (Ar)), 7.57 (1H, bs, CHb (Ar)), 

7.00 (3H, bs, CHb,a (Ar)), 6.93 (2H, d, J=8.8 Hz, CH (Ar)), 3.85 (3H, s, OCH3), 3.85 (3H, s, 

OCH3), 3.77 (1H, dq, J=13.6 and 7.0 Hz, NCH2CH3), 3.40 (1H, dq, J=14.2 and 7.0 Hz, 

NCH2CH3), 3.36 (1H, dq, J=13.6 and 7.0 Hz, NCH2CH3), 3.15 (1H, dq, J=14.2 and 7.0 Hz, 

NCH2CH3), 1.26 (3H, t, J=7.0 Hz, NCH2CH3), 1.03 (3H, t, J=7.0 Hz, NCH2CH3). 

 
13C NMR δ (500 MHz, CDCl3) 162.94 (N=C-NEt2), 161.74 (C-OMe (Ar)), 160.94 (C-OMe 

(Ar)), 154.81 (Ar-C=N), 130.42 (CHc (Ar)), 127.95 (CHb (Ar)), 127.22 (CHb (Ar)), 123.70 (C 

(Ar)), 117.36 (C (Ar)), 114.51 (CHa (Ar)), 113.77 (CHd (Ar)), 101.01 (C (ring junction)), 90.36 

(C-Cl (ring junction)), 55.36 (OCH3), 55.33 (OCH3), 44.80 (NCH2CH3), 44.10 (NCH2CH3), 

12.81 (NCH2CH3), 11.17 (NCH2CH3). 

 

MS (m/z): 500.1 (35Cl) ([M+Na]+), 977.2 (35Cl) ([2M+Na]+). 

 

HRMS (35Cl) (m/z): [M+Na]+ for C22H24ClN3NaO5S calculated 500.1017 measured 500.1016. 
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3.4.2.2 Synthesis of (+/-)-6a-bromo-3-diethylamino-3a,6-di(4-methoxyphenyl)-

isothiazolino[4,5-d]isoxazolin-1,1-dioxide 

 

N
S

NEt2

O O

MeO

Br

+

N
OH

Cl

MeO

Et3N

Et2O S
N

O
N

NEt2

O OBr

OMe

MeO

(315g)
C22H24BrN3O5S

MW = 522.41 g/mol
 

5-Bromo-3-diethylamino-4-(4-methoxyphenyl)-isothiazol-1,1-dioxide (249) (102 mg; 0.27 

mmol) and 4-methoxybenzohydroximoyl chloride (268) (51 mg; 0.27 mmol; 

(249) (268)

1 eq.) were 

suspended in dry diethyl ether (5 mL). Triethylamine (38 µL; 27 mg; 0.27 mmol; 1 eq.) in dry 

di

, 1440 (m), 1419 (w), 1383 (w), 

1359 (w), 1333 (s, SO2), 1305 (m), 1254 (s), 1208 (w), 1179 (s), 1159 (s, SO2), 1121 (w), 1100 

(w

(s). 

 

ethyl ether (10 mL) was added dropwise to the mixture under nitrogen over 4-5 hours. The 

whole was stirred overnight (21 hours). The reaction mixture was filtered, and the solvent was 

removed in vacuo to give the crude product as a white oily solid (195 mg). Purification by 

gravity silica chromatography (PE 60-80˚C/EtOAc : 3/1) gave the product as an orange oil (77 

mg; 54%). 

 

IR υmax (cm-1) 2935 (w), 2840 (w), 1591 (s, C=N), 1512 (s)

), 1062 (m), 1026 (m), 978 (m), 959 (m), 936 (m), 910 (m), 831 (s), 804 (m), 792 (m), 728 
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The assignment for NMR was established from HSQC and HMBC data and is as follows: 

 

S
N

O
N

NEt2

O OBr

OMe

MeO

a

b

c

d

 
 
1H NMR δ (500 MHz, CDCl3) 8.05 (2H, d, J=9.0 Hz, CHc (Ar)), 7.61 (1H, bs, CHb (Ar)), 

7.02 (1H, bs, CHb (Ar)), 6.98 (2H, bs, CHa (Ar)), 6.91 (2H, d, J=9.0 Hz, CHd (Ar)), 3.84 (3H, s, 

OCH3), 3.84 (3H, s, OCH3), 3.76 (1H, dq, J=13.6 and 7.0 Hz, NCH2CH3), 3.41 (1H, dq, J=14.3 

a

2CH3), 11.12 (NCH2CH3). 

MS (79Br) (m/z): [M+H]+ for C22H25BrN3O5S calculated 522.0693 measured 522.0693. 

nd 7.0 Hz, NCH2CH3), 3.35 (1H, dq, J=13.6 and 7.0 Hz, NCH2CH3), 3.13 (1H, dq, J=14.3 and 

7.0 Hz, NCH2CH3), 1.25 (3H, t, J=7.0 Hz, NCH2CH3), 1.03 (3H, t, J=7.0 Hz, NCH2CH3). 

 
13C NMR δ (500 MHz, CDCl3) 163.35 (N=C-NEt2), 161.67 (C-OMe (Ar)), 160.88 (C-OMe 

(Ar)), 155.44 (Ar-C=N), 130.80 (CHc (Ar)), 128.17 (CHb (Ar)), 127.08 (CHb (Ar)), 125.36 (C 

(Ar)), 117.60 (C (Ar)), 114.33 (CHa (Ar)), 113.56 (CHd (Ar)), 101.21 (C (ring junction)), 81.77 

(C-Br (ring junction)), 55.32 (OCH3), 55.29 (OCH3), 44.77 (NCH2CH3), 44.05 (NCH2CH3), 

12.82 (NCH

 

MS (m/z): (79Br) 522.1 ([M+H]+), (81Br) 524.1 ([M+H]+), (79Br) 544.1 ([M+Na]+), (81Br) 

546.1 ([M+Na]+). 

 

HR
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3.4.2.3 Synthesis of (+/-)-3-diethylamino-6a-methanesulfinyl-3a,6-di(4-methoxyphenyl)-

isothiazolino[4,5-d]isoxazolin-1,1-dioxide 

 

N
S

NEt2

O O

MeO

MeSO

+

N
OH

Cl

MeO

Et3N

Et2O

(315h)
Ar = 4-MeOPh
C23H27N3O6S2

MW = 505.60 g/mol

(265) (268)

SO2

N
O

N

NEt2

Ar

OMe

S
O

Me

SO2

N
O

N

NEt2

Ar

OMe

S
O

Me

+

(315h')
Ar = 4-MeOPh
C23H27N3O6S2

MW = 505.60 g/mol
 

d the 

solvent was evaporated under reduced pressure to give the crude product as a yellow oil (m=141 

m

hed from HSQC and HMBC data and is as follows: 

NEt2

OMe

MeO

SOMe

3-Diethylamino-5-methanesulfinyl-4-(4-methoxyphenyl)-isothiazol-1,1-dioxide (265) (100 

mg; 0.28 mmol) and 4-methoxybenzohydroximoyl chloride (268) (52 mg; 0.28 mmol; 1 eq.) 

were suspended in dry diethyl ether (5 mL). Triethylamine (39 µL; 28 mg; 0.28 mmol; 1 eq.) in 

dry diethyl ether (10 mL) was added dropwise to the mixture under nitrogen over 4 to 5 hours. 

The whole was stirred overnight (21 hours). The resulting precipitate was filtered off, an

g). Purification by gravity silica chromatography (hexane/EtOAc: 2/1) afforded the two 

diastereoisomers as a yellow solid (315h) (48 mg; 34%; m.p. = 192-193˚C) and a yellow oil 

(315h’) (26 mg, 18%) in a ~2:1 ratio. 

 

The assignment for NMR was establis

O
N

SO2

N

a

b

c

d
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Diastereoisomer (315h): 

IR υmax SO2)*, 1306 

(s)*, 1256 (s), 1208 (w), 1181 (s), 1156 (s, SO2), 1072 (m)#, 1028 (m, SO)#, 964 (m), 912 (m), 

836 (m). 

* Assignments may be interchanged 
# Assignments may be interchanged 

 
1H NMR δ (500 MHz, CDCl3) 8.02 (2H, d, J=8.8 Hz, CHc (Ar)), 7.83 (1H, m, CHb (Ar)), 

7.13 (1H, m, CHb (Ar)), 7.05 (1H, m, CHa (Ar)), 6.96 (2H, d, J=8.8 Hz, CHd (Ar)), 6.96 

(overlapping) (1H, m, CHa (Ar)), 3.85 (6H, s, 2x OCH3), 3.78 (1H, dq, J=13.5 and 7.0 Hz, 

NCH2CH3), 3.43 (1H, dq, J=14.3 and 7.0 Hz, NCH2CH3), 3.36 (1H, dq, J=13.5 and 7.0 Hz, 

NCH2CH3), 3.11 (1H, dq, J=14.3 and 7.0 Hz, NCH2CH3), 2.56 (3H, s, CH3SO) 1.29 (3H, t, 

J=

M+Na]+, 1538.4 [3M+Na]+ 

 

Crystal data: appendix XVI 

Crystal structure: appendix XV 

 

Diastereoisomer (315h’):

 

 (cm-1) 2938 (w), 2839 (w), 1602 (s, C=N), 1512 (s), 1440 (w), 1325 (s, 

7.0 Hz, NCH2CH3), 1.05 (3H, t, J=7.0 Hz, NCH2CH3). 

 
13C NMR (500 MHz, CDCl3) 165.01 (Et2N-C=N), 161.53 (C-OMe (Ar)), 161.15 (C-OMe 

(Ar)), 151.70 (Ar-C=N-O), 133.05 (CHc (Ar)), 129.41 (CHb (Ar)), 127.64 (CHb (Ar)), 121.41 

(C (Ar)), 119.56 (C (Ar)), 114.51 (CHa (Ar)), 114.16 (CHa (Ar)), 113.76 (CHd (Ar)), 102.49 

(C-Ar (ring junction)), 95.34 (C-SOMe), 55.31 (OCH3), 55.26 (OCH3), 45.16 (NCH2CH3), 

43.94 (NCH2CH3), 35.41 (SOCH3), 12.82 (NCH2CH3), 11.12 (NCH2CH3). 

 

MS (m/z): 528.1 [M+Na]+, 1033.3 [2

 

HRMS (m/z): [M+Na]+ for C23H27N3NaO6S2 calculated 528.1233 measured 528.1248. 

 

 

IR υmax (cm-1) 2938 (w), 2840 (w), 1597 (s, C=N), 1513 (s), 1441 (m), 1420 (w), 1333 (s, 

SO2), 1308 (s), 1258 (s), 1208 (w), 1183 (s), 1158 (s, SO2), 1061 (m), 1032 (m, SO), 981 (w), 

953 (m), 912 (m), 836 (m). 
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1H NMR δ (400 MHz, CDCl3) 8.23 (2H, d, J=9.0 Hz, CHc (Ar)), 7.55 (1H, m, CHb (Ar)), 

7.50 (1H, m, CHb (Ar)), 6.99 (2H, m, CHa (Ar)), 6.94 (2H, d, J=9.0 Hz, CHd (Ar)), 3.86 (3H, s, 

O

CH2CH3), 2.33 (3H, s, CH3SO), 1.20 (3H, t, J=7.0 Hz, NCH2CH3), 0.91 (3H, t, J=7.0 

H

C NMR δ (400 MHz, CDCl3) 163.73 (Et2N-C=N), 162.03 (C-OMe (Ar)), 161.07 (C-OMe 

(A

+Na]+ 

3.4.2.4 Synthesis of (+/-)-3-diethylamino-6a-methanesulfonyl-3a,6-di(4-methoxyphenyl)-

CH3), 3.84 (3H, s, OCH3), 3.67 (1H, dq, J=13.5 and 7.0 Hz, NCH2CH3), 3.33 (1H, dq, J=14.3 

and 7.0 Hz, NCH2CH3), 3.28 (1H, dq, J=13.5 and 7.0 Hz, NCH2CH3), 3.15 (1H, dq, J=14.3 and 

7.0 Hz, N

z, NCH2CH3). 

 
13

r)), 154.67 (Ar-C=N-O), 132.22 (CHc (Ar)), 129.16 (CHb (Ar)), 126.71 (CHb (Ar)), 120.05 

(C (Ar)), 118.26 (C (Ar)), 115.02 (CHa (Ar)), 114.35 (CHa (Ar)), 113.79 (CHd (Ar)), 100.03 

(C), 93.85 (C), 55.43 (OCH3), 55.33 (OCH3), 45.45 (NCH2CH3), 43.22 (NCH2CH3), 35.51 

(CH3SO), 12.81 (NCH2CH3), 11.08 (NCH2CH3). 

 

MS (m/z): 528.1 [M+Na]+, 1033.3 [2M+Na]+, 1538.4 [3M

 

HRMS (m/z): [M+Na]+ for C23H27N3NaO6S2 calculated 528.1233 measured 528.1243. 

 

Crystal data: appendix XVI 

 

isothiazolino[4,5-d]isoxazolin-1,1-dioxide 

 

N
S

NEt2

O OMeSO2

MeO

+

N
OH

Cl

MeO

Et3N

Et2O SO2

N
O

N

NEt2

e

SO2Me

OM

MeO

(315i)
C23H27N3O7S2

MW = 521.60 g/mol  

(251) (268)
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3-Diethylamino-5-methanesulfonyl-4-(4-methoxyphenyl)-isothiazol-1,1-dioxide (251) (101 

mg; 0.27 mmol) and 4-methoxybenzohydroximoyl chloride (268) (50 mg; 0.27 mmol; 1 eq.) 

were dissolved in dry diethyl ether (5 mL). Triethylamine (38 µL; 28 mg; 0.27 mmol; 1 eq.) in 

dry diethyl ether (10 mL) was added to the mixture under nitrogen over 4 hours. The whole was 

stirred overnight (23 hours). The resulting suspension was filtered off, and the solvent was 

removed under reduced pressure to give the crude product as a yellow solid (m=159 mg). 

Purification by gravity silica chromatography (PE 60-80˚C/EtOAc: 2/1) afforded the product as 

a 

T  data and is as follows: 

O

NEt2

MeO

Me

white solid (96 mg; 68%; m.p.=198-199˚C). 

 

IR υmax (cm-1) 2935 (w), 1603 (s, C=N), 1513 (s), 1442 (w), 1332 (s, SO2), 1308 (s), 1259 (s), 

1183 (s, SO2), 1169 (s, SO2), 1161 (s, SO2), 1144 (s, SO2), 1026 (m), 985 (w), 966 (m), 916 

(w), 835 (m). 

 

he assignment for NMR was established from HSQC and HMBC

 

OMe

SO2

NN

SO2

a

b

c

d

 
 
1H NMR δ (400 MHz, CDCl3) 8.19 (2H, d, J=9.1 Hz, CHc (Ar)), 7.87 (1H, dd, J= 8.8 and 2.6 

Hz, CHb (Ar)), 7.19 (1H, dd, J= 8.8 and 2.6 Hz, CHb (Ar)), 7.09 (1H, dd, J=8.8 and 2.6 Hz, 

CHa (Ar)), 6.98 (1H, dd, J=8.8 and 2.6 Hz, CHa (Ar)), 6.93 (2H, d, J=9.1 Hz, CHd (Ar)), 3.87 

(3H, s, OCH3), 3.84 (3H, s, OCH3), 3.80 (1H, dq, J=13.6 and 7.0 Hz, NCH2CH3), 3.40 (1H, dq, 

J=14.2 and 7.0 Hz, NCH2CH3), 3.31 (1H, dq, J=13.6 and 7.0 Hz, NCH2CH3), 2.99 (1H, dq, J= 

14.2 and 7.0 Hz, NCH2CH3), 1.28 (3H, t, J=7.0 Hz, NCH2CH3), 1.13 (3H, t, J=7.0 Hz, 

NCH2CH3). 
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13C NMR δ (400 MHz, CDCl3) 163.73 (Et2N-C=N), 161.76 (C-OMe (Ar)), 161.74 (C-OMe 

(Ar)), 152.71 (Ar-C=N-O), 133.00 (CHc (Ar)), 129.99 (CHb (Ar)), 128.57 (CHb (Ar)), 120.03 

(C (Ar)), 118.67 (C (Ar)), 114.88 (CHa (Ar)), 113.42 (CHd (Ar)), 99.87 (C (ring junction)), 

98.44 (C-SO2Me), 55.50 (OCH3), 55.28 (OCH3), 45.21 (NCH2CH3), 43.94 (NCH2CH3), 42.76 

(SO2CH3), 12.92 (NCH2CH3), 11.02 (NCH2CH3). 

 

MS (m/z): 544.1 [M+Na]+, 1065.3 [2M+Na]+. 

 

HRMS (m/z): [M+Na]+ for C23H27N3NaO7S2 calculated 544.1183 measured 544.1197. 

3 xide 

 

Crystal data: appendix XVI 

 

.4.3 Cycloaddition of 3-diethylamino-4-(4-methoxyphenyl)isothiazol-1,1-dio

with N-phenylbenzonitrile imine: synthesis of (+/-)-3-diethylamino-4,6-

diphenyl-3a-(4-methoxyphenyl)isothiazolino[4,5-d]pyrazolin-1,1-dioxide 

 

N
S

NEt2

O O

MeO

+

Ph Cl

N
N

Ph

H
Et3N

Et2O

S
N

N
N

NEt2

Ph

OMe

H

Ph

O O

(318)
C27H28N4O3S

MW = 488.60 g/mol

(248) (316)

 

 

3-Diethylamino-4-(4-methoxyphenyl)-isothiazol-1,1-dioxide (248) (100 mg, 0.34 mmol) and 

α-chlorobenzaldehyde phenylhydrazone (316) (78 mg, 0.34 mmol, 1 eq.) were suspended in dry 

ether (5 mL). Triethylamine (47 µL, 34 mg, 0.34 mmol, 1 eq.) in dry ether (10 mL) was added 

dropwise to the mixture over 4 to 5 hours. The whole was stirred under nitrogen at RT for 4 

days and 17 hours. Then, it was refluxed for 28 hours. The mixture was filtered off, and the 

solvent evaporated to give the crude product as a pale brown oil (183 mg). It was purified by 

241 



Chapter 3 Experimental 

g

133 (s, SO2), 1096 (m), 1075 (w), 1031 (m), 

977 (m), 950 (w), 911 (m), 894 (m), 836 (m), 781 (m), 755 (m), 729 (s), 705 (m), 692 (m). 

H NMR δ (500 MHz, CDCl3) 7.80 (2H, m, CH (Ph)), 7.51 (2H, m, CH (Ph)), 7.36 (8H, m, 

C (3H, s, 

O H3), 3.56 (1H, dq, J=13.6 and 7.0 Hz, NCH2CH3), 3.01 (1H, dq, J=13.6 and 7.0 Hz, 

N 4.2 and 7.0 Hz, NCH2CH3), 1.99 (1H, dq, J=14.2 and 7.0 Hz, 

N H2CH3), 0.78 (3H, t, J=7.0 Hz, NCH2CH3), 0.33 (3H, t, J=7.0 Hz, NCH2CH3). 

 

143.01 

128.92 ( 5.19 

 (ring junction)), 82.84 (CH (ring junction)), 55.43 (OCH3), 45.28 (NCH2CH3), 44.16 

(NCH2CH3), 11.24 (NCH2CH3), 10.51 (NCH2CH3). 

 

MS (m/z): 511.2 [M+Na]+, 999.4 [2M+Na]+. 

 

HRMS (m/z): [M+Na]+ for C27H28N4NaO3S calculated 511.1774 measured 511.1778. 

 

Crystal data: appendix XVI 

 

ravity silica chromatography (PE 40-60˚C / EtOAc: gradient elution 3/1, 2/1) to give the 

product as a yellow solid (45 mg, 27 %, m.p. = 210-211˚C). 

 

IR υmax (cm-1) 2979 (w), 1574 (s, C=N), 1508 (m), 1492 (m), 1463 (w), 1444 (m), 1357 (m), 

1308 (s, SO2), 1250 (s), 1210 (w), 1171 (s, SO2), 1

 
1

H (Ph)), 7.00 (2H, d, J=9.00 Hz, CHa (Ar)), 4.90 (1H, s, CH (ring junction)), 3.82 

C

CH2CH3), 2.96 (1H, dq, J=1

C

13C NMR δ (500 MHz, CDCl3) 162.11 (Et2N-C=N), 159.87 (C-OMe (Ar)), 144.26 (C), 

(C), 132.02 (C), 130.23 (C), 129.76 (CH (Ar)), 129.61 (CH (Ar)), 129.13 (CH (Ar)), 

CH (Ar)), 128.74 (CH (Ar)), 126.49 (CH (Ar)), 125.98 (C), 115.05 (CHa (Ar)), 8

(C
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3.4.4 Cycloaddition of 3-diethylamino-5-methanesulfinyl-4-(4-methoxyphenyl)-

isothiazol-1,1-dioxide with sodium azide: synthesis of (+/-)-3-diethylamino-

6a-methanesulfinyl-3a-(4-methoxyphenyl)isothiazolino[4,5-d]triazolin-1,1-

dioxide 

 

+ NaN3

RT

ACN
N

N
N S

N

S

NEt2H

OMe

Me
O
O O

N
N N

NEt2H

N S
S

OMe

Me
O
O O

+

S
N

O

NEt2

MeSO

MeO

O

(319')
C15H21N5O4S2

MW = 399.48 g/mo

(319)
C15H21N5O4S2

MW = 399.48 g/mol
 

 

3-Diethylamino-5-methanesulfinyl-4-(4-methoxyph

l

(265)

enyl)-isothiazol-1,1-dioxide (264) (200 

mg, 0.56 mmol) was dissolved in dry acetonitrile (10 mL), and sodium azide (38 mg, 0.58 

m

reaction was monitored by TLC. After 30 hours, the solvent was removed in vacuo to give the 

c (PE 40-

60 C/EtOAc: gradient elution 1/1, 1/2, 1/4) gave the product as two separable diastereoisomers 

(3 ˚C) and (319’) (60 mg, 27%, m.p. = 142-143˚C) in a 1.2/1 ratio. 

Diastereoisomer (319):

mol, 1 eq.) was added to the mixture. The whole was stirred at RT under nitrogen, and the 

rude product as a yellow solid (257 mg). Purifiaction by flash silica chromatography 

˚

19) (50 mg, 22%, m.p.=133

 

 

 

IR υmax (cm-1) 3080 (br, NH), 2964 (w), 2929 (w), 2853 (w), 1638 (w), 1590 (s, C=N), 1513 

(m), 1425 (w), 1384 (w), 1360 (w), 1327 (s, SO2), 1304 (m), 1257 (s), 1208 (w), 1157 (s, SO2), 

1131 (m), 1100 (w), 1029 (s, SO), 985 (w), 961 (w), 912 (w), 896 (w), 836 (m). 

 
1H NMR δ (500 MHz, CDCl3) 12.16 (1H, bs, NH), 7.45 (1H, m, CHb (Ar)), 7.40 (1H, m, CHb 

(Ar)), 6.97 (2H, d, J=8.7 Hz, CHa (Ar)), 3.85 (3H, s, OCH3), 3.74 (1H, dq, J=14.5 and 7.0 Hz, 

NCH2CH3), 3.49 (1H, dq, J=13.5 and 7.0 Hz, NCH2CH3), 3.39 (1H, dq, J=13.5 and 7.0 Hz, 
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NCH CH ), 3.37 (1H, dq, J=14.5 and 7.0 Hz, NCH CH ), 2.11 (3H, s, CH SO), 1.17 (3H, t, 

 
13C N b 

(Ar)), 1 b (Ar)), 121.67 (C (Ar)), 115.03 (CHa (Ar)), 98.90 (C), 96.43 (C-SOMe), 

55.43 (OCH3), 45.56 (NCH2CH3), 43.83 (NCH2CH3), 33.27 (CH3SO), 12.51 (NCH2CH3), 

11.28 (NCH2CH3). 

 
1H NMR δ (400 MHz, DMSO-D6) 13.78 (1H, bs, NH), 7.44 (1H, m, CH (Ar)), 7.19-7.07 (3H, 

m, CH (Ar)), 3.78 (3H, s, OCH3), 3.67 (1H, dq, J=14.3 and 7.0 Hz, NCH2CH3), 3.43-3.32 (3H, 

m, NCH2CH3), 1.99 (3H, s, CH3SO), 1.07 (3H, t, J=7.0 Hz, NCH2CH3), 0.56 (3H, t, J=7.0 Hz, 

NCH2CH3). 

 
13C NMR δ (400 MHz, DMSO-D6) 161.95 (Et2N-C=N), 160.72 (C-OMe (Ar)), 129.02 (CHb 

(Ar)), 128.72 (CHb (Ar)), 121.78 (C (Ar)), 115.42 (CHa (Ar)), 98.50 (C), 97.02 (C-SOMe), 

55.87 (OCH3), 45.44 (NCH2CH3), 43.93 (NCH2CH3), 33.46 (CH3SO), 12.74 (NCH2CH3), 

11.56 (NCH2CH3). 

2 3 2 3 3

J=7.0 Hz, NCH2CH3), 0.65 (3H, t, J=7.0 Hz, NCH2CH3). 

MR δ (500 MHz, CDCl3) 161.66 (Et2N-C=N), 160.90 (C-OMe (Ar)), 128.85 (CH

28.16 (CH

 

MS (m/z): 422.1 [M+Na]+, 821.2 [2M+Na]+. 

 

HRMS (m/z): [M+NH4]+ for C15H25N6O4S2 calculated 417.1373 measured 417.1367. 

 

Diastereoisomer (319’): 

 
-1IR υmax (cm ) 3118 (br, NH), 3017 (w), 2976 (w), 2935 (w), 2898 (w), 1604 (s, C=N), 1510 

(m 2), 1299 (s), 1258 (m), 1244 (m), 1165 (m), 1153 (s, SO2), 1128 (m), 

1045 (m), 1025 (s, SO), 1002 (m), 957 (m), 911 (m), 836 (s). 

J=8.6 Hz, CHa 

(Ar)), 3.86 (3H, s, OCH3), 3.67 (1H, dq, J=13.5 and 7.0 Hz, NCH2CH3), 3.57 (1H, dq, J=14.3 

an

), 1424 (m), 1316 (s, SO

 
1H NMR δ (400 MHz, CDCl3) 10.64 (1H, bs, NH), 7.35 (1H, d, J=8.6 Hz, CHb (Ar)), 7.16 

(1H, d, J=8.6 Hz, CHb (Ar)), 7.02 (1H, d, J=8.6 Hz, CHa (Ar)), 6.99 (1H, d, 

d 7.0 Hz, NCH2CH3), 3.50 (1H, dq, J=14.3 and 7.0 Hz, NCH2CH3), 3.39 (1H, dq, J=13.5 and 

7.0 Hz, NCH2CH3), 2.87 (3H, s, CH3SO), 1.27 (3H, t, J=7.0 Hz, NCH2CH3), 0.90 (3H, t, J=7.0 

Hz, NCH2CH3). 
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13C NMR δ (400 MHz, CDCl3) 162.59 (Et2N-C=N), 160.92 (C-OMe (Ar)), 129.67 (CHb 

(Ar)), 127.82 (CHb (Ar)), 121.71 (C (Ar)), 114.95 (CHa (Ar)), 114.40 (CHa (Ar)), 102.77 (C), 

95

Hz, DMSO-D6) 13.22 (1H, bs, NH), 7.21 (1H, d, J=8.7 Hz, CH (Ar)), 7.10 

(1H, d, J=8.7 Hz, CH (Ar)), 7.06-7.02 (2H, m, CH (Ar)), 3.79 (3H, s, OCH3), 3.54-3.44 (3H, m, 

N

 (400 MHz, DMSO-D6) 163.03 (Et2N-C=N), 160.75 (C-OMe (Ar)), 130.12 (CHb 

(Ar)), 128.25 (CHb (Ar)), 122.43 (C), 114.92 (CHa (Ar)), 114.88 (CHa (Ar)), 101.35 (C), 96.21 

(C

+Na]+, 821.2 [2M+Na]+. 

lculated 417.1373 measured 417.1379. 

3.5 Synthesis of 1,2,3-oxathiazolin-2-oxide

.66 (C-SOMe), 55.35 (OCH3), 45.16 (NCH2CH3), 44.42 (NCH2CH3), 34.72 (CH3SO), 12.87 

(NCH2CH3), 11.25 (NCH2CH3). 

 
1H NMR δ (400 M

CH2CH3), 3.35 (1H, m, NCH2CH3), 2.73 (3H, s, CH3SO), 1.12 (3H, t, J=7.0 Hz, NCH2CH3), 

0.77 (3H, t, J=7.0 Hz, NCH2CH3). 

 
13C NMR δ

-SOMe), 55.82 (OCH3), 45.17 (NCH2CH3), 44.40 (NCH2CH3), 34.10 (CH3SO), 13.10 

(NCH2CH3), 11.53 (NCH2CH3). 

 

MS (m/z): 422.1 [M

 

HRMS (m/z): [M+NH4]+ for C15H25N6O4S2 ca

 

Crystal data: appendix XVI 

 

 

O

 

2
NCMeO

S N

NEt

O

O
S

N

CNMeO NEt2

O

O
S

N

2CNMeO NEt

O

+
toluene
reflux

 under nitrogen at 60˚C for 22 hours. The mixture was then heated at reflux for 

ZnCl2

(274)
C14H17N3O3S

MW = 307.36 g/mol

(274')
C14H17N3O3S

MW = 307.36 g/mol

(252)

 

3-Diethylamino-1,2-thiazetin-1,1-dioxide (251) (155 mg, 0.50 mmol) and zinc chloride (250 

µL of a 1M sol. in diethyl ether, 0.25 mmol, 0.5 eq.) were dissolved in toluene (2 mL). The 

whole was stirred
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a further 25 hours. The solvent was removed in vacuo to give the crude product as a dark brown 

oi

ure fraction of diastereoisomer (274)*:

l (m=96 mg). Purification by gravity silica chromatography (hexane/EtOAc: 2/1) gave the 

product as two diastereoisomers (274) (25 mg, 16 %) and (274’) (10 mg, 6 %) in a 2.5/1 ratio, 

one as a pure fraction, the other one as mixed fractions. 

 

P  

2N-C=N), 161.23 (C-OMe (Ar)), 128.81 (CHb 

(Ar)), 125.25 (C (Ar)), 115.01 (CHa (Ar)), 114.55 (CN), 84.16 (C), 55.51 (OCH3), 45.47 

(N

37.2 [2M+Na]+. 

Mixed fractions of diastereoisomer (274’)*:

 

IR υmax (cm-1) 2975 (w), 2938 (w), 2838 (w), 2055 (w, CN), 1595 (vs, C=N), 1514 (m), 1442 

(w), 1359 (w), 1309 (w), 1261 (m), 1209 (w), 1183 (s), 1066 (w), 1030 (w), 968 (w), 884 (w), 

836 (w). 

 
1H NMR δ (400 MHz, CDCl3) 7.60 (2H, d, J=8.9 Hz, CHb (Ar)), 7.00 (2H, d, J=8.9 Hz, CHa 

(Ar)), 3.85 (3H, s, OCH3), 3.58 (2H, q, J=7.1 Hz, NCH2CH3), 3.25 (1H, q, J=7.1 Hz, 

NCH2CH3), 3.24 (1H, q, J=7.1 Hz, NCH2CH3), 1.30 (3H, t, J=7.1 Hz, NCH2CH3), 0.83 (3H, t, 

J=7.1 Hz, NCH2CH3). 

 
13C NMR δ (400 MHz, CDCl3) 164.72 (Et

CH2CH3), 44.15 (NCH2CH3), 12.30 (NCH2CH3), 11.15 (NCH2CH3). 

 

MS (m/z): 330.1 [M+Na]+, 6

 

 

δ (500 MHz, CDCl3) 7.37 (2H, d, J=8.8 Hz, CHb (Ar)), 6.99 (2H, d, J=8.8 Hz, CHa 

(Ar)), 3.84 (3H, s, OCH3), 3.73 (1H, dq, J=13.6 and 7.1 Hz, NCH2CH3), 3.50 (1H, dq, J=13.6 

and 7.1 Hz, NCH2CH3), 3.24 (1H, m (overlapping), NCH2CH3), 3.18 (1H, dq, J=14.4 and 7.1 

Hz, NCH2CH3), 1.31 (3H, t, J=7.1 Hz, NCH2CH3), 0.88 (3H, t, J=7.1 Hz, NCH2CH3). 

 
13C NMR δ (500 MHz, CDCl3) 166.34 (Et2N-C=N), 161.45 (C-OMe (Ar)), 127.52 (CHb 

(Ar)), 124.75 (C (Ar)), 115.11 (CHa (Ar)), 114.63 (C (CN)), 81.68 (C), 55.53 (OCH3), 45.47 

(N

 
1H NMR 

CH2CH3), 44.75 (NCH2CH3), 12.35 (NCH2CH3), 11.23 (NCH2CH3). 

 

* The two diastereoisomers may be interchanged. 
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Crystallographic Data

Data 315a 315h 315h' 315i 318 319'
Empirical formula C18H23N3O6S C23H27N3O6S2 C23H27N3O6S2 C23H27N3O7S2 C27H28N4O3S C15H21N5O4S2
Molecular weight 
(g/mol)

409,45 505,60 505,60 521,60 488,59 399,48

Temperature (K) 120(2) 100(2) 100(2) 100(2) 120(2) 100(2)
Wavelength (Å) 0,71073 0,71073 0,71073 0,71073 0,71073 0,71073

Crystal system Orthorhombic Triclinic Monoclinic Triclinic Monoclinic Monoclinic

Space group Pbca P-1 P2(1)/n P-1 P2(1)/c P2(1)/n
Unit cell 
dimensions
a (Å) 12.9462(7) 8.9873(5) 11.789(1) 8.9413(4) 8.9260(8) 9.3651(3)
b (Å 14.7915(7) 11.0990(6) 14.752(2) 11.7201(5) 15.4665(7) 19.5330(6)
c (Å) 21.2167(8) 13.0584(7) 14.574(2) 13.5584(6) 17.789(1) 12.7944(4)
α  (˚) 90,00 70.595(1) 90,00 95.727(1) 90,00 90,00
β  (˚) 90,00 76.291(1) 113,86 94.027(1) 99.900(3) 109.830(1)
γ  (˚) 90,00 83.975(2) 90,00 105.992(1) 90,00 90,00
Volume (Å3) 4062.9(3) 1193.1(1) 2318.0(6) 1351.9(1) 2419.3(3) 2201.6(1)
Z 8 2 4 4 4 4
Density 
(calculated) 
(mg/m3)

1,339 1,491 1,42 1,352 1,341 1,272

Absorption 
coefficient (mm-1)

0,198 0,276 0,274 0,429 0,171 0,272

Crystal cut block, 
colourless

cut block, 
colourless

cut block, 
colourless

cut block, 
colourless

cut block, 
colourless

cut block, 
colourless

θ  range for data 
collection (˚)

3.15-27.48 1.69-35.63 2.06-28.48 1.82-29.63 2.99-27.21 1.99-29.22

-14 ≤ h  ≤ 16 -14 ≤ h  ≤ 14 -15 ≤ h  ≤ 15 -12 ≤ h  ≤ 12 -11 ≤ h  ≤ 11 -12 ≤ h  ≤ 12
-19 ≤ k  ≤ 19 -18 ≤ k  ≤ 18 -19 ≤ k  ≤ 18 -16 ≤ k  ≤ 16 -19 ≤ k  ≤ 18 -26 ≤ k  ≤ 26
-27 ≤ l  ≤ 27 -21 ≤ l  ≤ 21 -19 ≤ l  ≤ 8 -18 ≤ l  ≤ 12 -22 ≤ l  ≤ 22 -17 ≤ l  ≤ 17

Reflections 
collected

26596 43008 15611 28474 31632 23543

4656 10964 4259 7503 5360 5953
R int  = 0.0769 R int  = 0.0348 R int  = 0.0702 R int  = 0.0258 R int  = 0.1765 R int  = 0.0357

Refinement 
method

Full-matrix 
least-squares 

on F 2

Full-matrix 
least-squares 

on F 2

Full-matrix 
least-squares 

on F 2

Full-matrix 
least-squares 

on F 2

Full-matrix 
least-squares 

on F 2

Full-matrix 
least-squares 

on F 2

Data / restraints / 
parameters

4656 / 0 / 258 10964 / 0 / 
312

4259 / 0 / 312 7503 / 0 / 348 5360 / 0 /316 5953 / 0 / 281

Goodness-of-fit on 
F 2 1,054 1,013 0,760 1,028 1,010 0,970

R1  = 0.0558 R1  = 0.0379 R1  = 0.0402 R1  = 0.0307 R1  = 0.0749 R1  = 0.0321
wR2  = 0.1281 wR2  = 0.1026 wR2  = 0.0822 wR2  = 0.0793 wR2  = 0.1418 wR2  = 0.0813
R1  = 0.0982 R1  = 0.0502 R1  = 0.0769 R1  = 0.0358 R1  = 0.1647 R1  = 0.0432

wR2  = 0.1467 wR2  = 0.1100 wR2  = 0.0916 wR2  = 0.0828 wR2  = 0.1743 wR2  = 0.0874
Extinction 
coefficient 0.0017(5) - - - - -

Largest diff. peak 
and hole (e/Å3)

0.755 and -
0.363

1.579 and -
0.309

0.256 and -
0.502

0.447 and -
0.508

0.481 and -
0.481

0.519 and -
0.397

Compounds

Final R  indices 
[F 2  > 2σ (F 2 )]
R  indices (all 
data)

Index ranges

Independent 
collections
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